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Abstract. After a short introduction to the characteristic geometry underlying
weakly hyperbolic systems of partial differential equations we review the notion
of symmetric hyperbolicity of first-order systems and that of regular hyperbolic-
ity of second-order systems. Numerous examples are provided, mainly taken from
nonrelativistic and relativistic continuum mechanics.

1 Introduction

The notion of hyperbolicity of a partial differential equation (PDE), or a
system of PDE’s, is central for the field theories of mathematical physics.
It is closely related to the well-posedness of the Cauchy problem and to the
causal structure underlying these theories. In standard theories describing
relativistic fields in vacuo this causal structure is that given by the spacetime
metric, a second-order symmetric tensor of Lorentzian signature. If matter is
included, things become both more complicated and more subtle. In fact, the
awareness of some of those complications predates Relativity by centuries.
An example is afforded by the phenomenon, already studied by Huygens, of
birefringence in crystal optics1.

There is currently an increase of attention in the field of Relativity, due in
part to demands from Numerical Relativity, devoted to certain notions of hy-
perbolicity applied to the Einstein equations (for an excellent review see [18]).
There the main challenge, not discussed in the present notes at all, comes
from the fact that, already in vacuum, the Einstein equations by themselves,
i.e. prior to the imposition of any gauge conditions, are not hyperbolic. The
main burden, then, is to find a “hyperbolic reduction” turning the Einstein
equations, or a subset thereof, into a hyperbolic system appropriate for the
purpose at hand. However the complications in the causal structure one finds
in continuum mechanics, which are our main focus here, are absent in the
Einstein vacuum case – at least for the reductions proposed so far. Of course,
these complications do come into play ultimately once matter-couplings are
included.

1For a fascinating account of the history of the associated mathematics see [20].
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These notes attempt an elementary introduction to some notions of hy-
perbolicity and the “characteristic geometry” associated with or underlying
these notions. The section following this one is devoted to the general notion
of a hyperbolic polynomial, which in our case of course arises as the charac-
teristic polynomial of a PDE. It is interesting that this notion is on one hand
restrictive enough to encode essentially all the required features of a theory
in order to be “causal” – on the other hand flexible enough to account for an
amazing variety of phenomena – relativistic or nonrelativistic – ranging from
gravitational radiation to water waves or phonons in a crystal. We devote a
significant fraction of Sect. 2 to examples, which at least in their nonrela-
tivistic guise all appear in the standard literature such as [13], though not
perhaps from the unified viewpoint pursued here. Some of these examples are
not fully worked out, but perhaps the interested reader is encouraged to fill in
more details, possibly using some of the cited literature. We hope that some
workers in Relativity, even if they have little interest in continuum mechan-
ics for its own sake, find these examples useful for their understanding of the
notion of hyperbolicity. While hyperbolicity of the characteristic polynomial
of a theory is important, it is not in general sufficient for the well-posedness
of the initial value problem for that theory. Well-posedness is the subject
of our Sect. 3. We recall the notion of a symmetric hyperbolic system of a
system of 1st order PDE’s, which is indeed sufficient for well-posedness. A
similar role for 2nd order equations is played by a class of systems, which
were to some extent implicit in the literature, and for which an elaborate
theory has been recently developed in [10,11]. These systems are called regu-
lar hyperbolic. They encompass many second order systems arising in physics
one would like to qualify as being hyperbolic – such as the Einstein equations
in the harmonic gauge. If applicable, the notion of regular hyperbolicity is
particularly natural for systems of 2nd order derivable from an action prin-
ciple, as is the case for many problems of continuum mechanics. We show
the fact, obvious for symmetric hyperbolic systems and easy-to-see although
not completely trivial for regular hyperbolic ones, that these systems are spe-
cial cases of weakly hyperbolic systems, i.e. ones the determinant of whose
principal symbol is a hyperbolic polynomial. We also touch the question of
whether a system of the latter type can be reduced to one of the former type
by increasing the number of dependent variables. Throughout this section our
treatment will be informal in the sense of ignoring specific differentiability
requirements. We also do not touch questions of global well-posedness.

2 Hyperbolic Polynomials

The PDE’s we are interested in are of the form

Mµ1...µl

AB (x, f, ∂f, . . . , ∂(l−1)f)∂µ1 . . . ∂µl
fB + lower order terms = 0 . (1)
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Here A,B = 1, ...,m and µi = 1, . . . , n. Relevant equations of this form
are the Euler equations for a barotropic fluid (for n = 4, l = 1,m = 4), the
Einstein equations (for n = 4, l = 2,m = 10) or the equations governing an
ideal elastic solid (for n = 4, l = 2,m = 3). The Maxwell equations, in the
form they are originally written down, are not of this form, but a suitable
subset of them is, as we will discuss later.

The principal symbol of the PDE (1) is defined as

MAB(k) = Mµ1...µl

AB kµ1 . . . kµl
, kµ ∈ (Rn)∗ (2)

We here suppress the dependence on x and on f . The characteristic poly-
nomial P (k) is defined by P (k) = det MAB(k), where the determinant is
taken with respect to some volume form on f -space ⊂ R

m. The polynomial
P (k) is homogenous of degree p = m · l. A homogenous polynomial of de-
gree p > 0 is called hyperbolic with respect to ξµ ∈ (Rn)∗ if P (ξ) �= 0 and
the map λ �→ P (η + λξ), itself a polynomial of degree p, has only real roots
λi, i = 1, · · · , p for all η ∈ (Rn)∗. The roots λi(ξ, η) need not be distinct.
If, for all η with η ∧ ξ �= 0, λi(ξ, η) �= λj(ξ, η) for i �= j, P is called strictly
hyperbolic2. We write C∗ for the set of k ∈ (Rn)∗ \ {0}, where P vanishes. It
is sometimes called the cone of characteristic conormals.

It is clear that a product of hyperbolic polynomials is hyperbolic. Also, if
a hyperbolic polynomial can be factorized into polynomials of lower degree
(in which case it is called reducible), these factors are also hyperbolic. There
is a wealth of information which can be inferred about a polynomial P (k) if
it is hyperbolic. Before explaining some of this, we look at a few examples
for hyperbolic polynomials.

Example 1. P (k) = (a, k) = aµkµ for some nonzero aµ ∈ R
n. The set C∗ is a

punctured hyperplane ⊂ (Rn)∗.
Clearly P (k) is hyperbolic with respect to any ξµ such that aµξµ �= 0. The

polynomial P (k) = (a1, k)(a2, k)(a3, k), with a1, a2, a3 linearly independent
∈ R

3, arises in the problem of finding, for a three dimensional positive definite
metric, a coordinate system in which the metric is diagonal (see [14]) – which
shows that hyperbolic problems can also arise in purely Riemannian contexts.

Example 2. P (k) = γµνkµkν , where γµν is a (contravariant) metric of Lor-
entzian signature (−,+, . . . ,+). The set C∗ is the two-sheeted Minkowski
light cone.

When n = 2, P (k) is hyperbolic with respect to any non-null ξµ, when
n > 2, P (k) is hyperbolic with respect to any ξµ with γµνξµξν < 0, i.e. ξ
is timelike with respect to γµν . Checking that P (k) is hyperbolic accord-
ing to our definition is equivalent to the so-called reverse Cauchy-Schwarz

2This case is not general enough for the purposes of physics. Furthermore there
exist physically relevant cases of non-strictly hyperbolic polynomials which are sta-
ble, in the sense that they possess open neighbourhoods in the set of hyperbolic
polynomials just containing non-strictly hyperbolic ones [26,28].
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inequality for two covectors one of which is timelike or null with respect
to γµν (which is the mathematical rationale behind the twin “paradox” of
Relativity). Surprisingly there are similar inequalities for general hyperbolic
polynomials (see [19]) which play a role in diverse fields of mathematics [5].

Example 2 is of course the most familiar one. If it arises from nonrela-
tivistic field theory, the quantity γµν currently runs under the name of the
“Unruh or acoustic metric” [4] (see also [12]) in the Relativity community.
It is not an elementary object of the theory, but is built as follows: Take
first the Galilean metric hµν , a symmetric tensor with signature (0,+, . . . ,+)
together with a nonzero covector τµ satisfying hµντν = 0: these are the ab-
solute elements . Then pick a 4-vector uµ normalized so that uµτµ = 1 and
define γµν = hµν − c−2uµuν . This describes waves propagating isotropically
at phase velocity c in the rest system, defined by uµ, of a material medium.
The relativistic version of the above is as follows: Start with the spacetime
metric gµν and define γµν = gµν + (1 − c−2)uµuν , where uµ is normalized
by taking τµ = −gµνu

ν , with gµν the covariant spacetime metric defined by
gµνg

νλ = δµ
λ. Note: if there are metrics γµν

1 ,γµν
2 with c2 < c1, then the

“faster” cone lies inside the slower one. We will come back to this point later.

Example 3. P (k) = sµνkµkν , where sµν has signature (−,+, ...,+, 0, ..., 0), is
hyperbolic with respect to any ξ such that sµνξµξν < 0.

Here is a case occurring in the real world. Let gµν be a Lorentz metric on
R

4, uµ a normalized timelike vector, i.e. gµνu
µuν = −1, Fµν = F[µν] nonzero

with Fµνu
ν = 0. The quadratic form sµν = −euµuν + 1/2 FρσF

ρσgµν −
Fµ

ρF
νρ, with e > 0, has signature (−,+,+, 0). The characteristic cone C∗

of P (k) = 0 consists of two hyperplanes punctured at the origin. When e
is interpreted as e =“energy density + pressure” and Fµν as the frozen-
in magnetic field of an ideally conducting plasma, then P (k) describes the
Alfvén modes of relativistic magnetohydrodynamics [45] [2].

Example 4. Let n = 4, εµνλρ some volume form on R
4 and mµνλρ = m[µν][λρ].

With Gµνρσ = εαβδε εκφψω mαβκ(µmν|δφ|ρmσ)εψω we define P by P (k) =
Gµνρσkµkνkρkσ.

As a special case take mµνλρ of the form mµνλρ = hλ[µhν]ρ − eλ[µuν]uρ +
eρ[µuν]uλ, where the symmetric tensors hµν and sµν , both of signature (0,++
+), satisfy hµντν = eµντν = 0 for uµτµ �= 0: this is the situation encountered
in crystal optics with the nonzero eigenvalues of eµν relative to hµν being
essentially the dielectric constants. The crystal is optically biaxial or triaxial,
depending on the number of mutually different eigenvalues. The 4th order
polynomial P (k) turns out to be hyperbolic with respect to all ξµ in some
neighbourhood of ξµ = τµ , and the associated characteristic cone is the
Fresnel surface (see e.g. [25]). For an optically isotropic medium or in vacuo
P (k) is reducible, in fact the square of a quadratic polynomial of the type of
Example 2. We leave the details as an exercise. More general conditions on
mµνλρ in order for P (k) to be hyperbolic can be inferred from [32].
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The quartic polynomial P (k), as defined above, comes from a general-
ized (“pre-metric”) version of electrodynamics (see [24]), as follows: Let Fµν

be the electromagnetic field strength and write Hµν = mµνλρFλρ for the
electromagnetic excitation. The premetric Maxwell equations then take the
form

∂[µ(ενλ]ρσH
ρσ) = Jµνλ, ∂[µFνλ] = 0, (3)

where Jµνλ is the charge three form3. The (3) reduce to the standard ones
in vacuo when mµνλρ ∼ gλ[µgν]ρ with gµν the metric of spacetime. If one
sets mµνλρ = γλ[µγν]ρ, with γµν = hµν − c−1uµuν , hµν the Galilean metric
and uµ a constant vector field s.th. uµτµ = 1, one has the Maxwell equations
in a “Galilean” (not Galilean-invariant) version with uµ describing the rest
system of the aether (see [43]). One then looks at hypersurfaces along which
singularities can propagate. The result is that the conormal nµ of such sur-
faces has to satisfy P (n) = 0. Put differently, one can look at the 8 x 6 –
principal symbol of the Maxwell equations: then P (k) = 0 is exactly the con-
dition for this principal symbol to have nontrivial kernel. If one considered an
appropriately chosen subset amongst (3), the evolution equations, one would
obtain an equation of the form (1), whose characteristic polynomial contains
P (k) as a factor. We will treat the vacuum case of this later.

Our last and most complicated example comes from elasticity [6]:

Example 5. Take n = 4, l = 2,m = 3 in (1) with

Mµν
AB = −GABu

µuν + Cµν
AB , (4)

where GAB = G(AB) and Cµν
AB = Cνµ

BA and Cµν
ABτν = 0 for some covector

τ satisfying (u, τ) = uµτµ = 1. The theory is intrinsically quasilinear: all
quantities entering (4) are functions of f and ∂f and in general also of x. For
example fA is required to have maximal rank, and uµ satisfies uµ(∂µf

A) = 0.
Furthermore Cµν

AB = CADBE(∂ρf
D)(∂σf

E)hρµhσν , with hµν , τµ being, in the
nonrelativistic case, the absolute Galilean objects, or, in the relativistic case,
hµν = gµν + uµuν and τµ = −gµνu

ν .
There are the following basic constitutive assumptions.

GAB is positive definite, Cµν
ABm

AmBηµην > 0 for m �= 0, η ∧ τ �= 0 (5)

Defining the linear map (M)A
B by (M)A

B(k)=−(u, k)2δA
B+GADCµν

DBkµkν ,
the polynomial P (k) can, by general linear algebra, be written as

6 P (k) = (trM)3 − 3 (trM2)(trM) + 2 trM3 . (6)

It will follow from a more general result, to be shown below, that the 6th order
polynomial P (k) is hyperbolic with respect to ξµ in some neighbourhood of

3These equations play a certain role in current searches for violations of Lorentz
invariance in electrodynamics [30]
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τµ. In the special case of an isotropic solid, the “elasticity tensor” CABDE

has to be of the form

CABDE = l GABGDE + 2m GD(AGB)E , (7)

and the second of (5) is satisfied iff c22 = m > 0, c21 = l + 2m > 0. The
polynomial P (k) turns out to reduce to the form

P (k) ∼ (γµν
1 kµkν)(γρσ

2 kρkσ)2 (8)

with γµν
1,2 = hµν − c−2

1,2 uµuν . The quantities c1 and c2 are the phase ve-
locities of pressure and shear waves respectively. If the medium is elastically
anisotropic, such as a crystal, one can start by classifying possible fourth-rank
tensors CABDE according to the symmetry group of the crystal lattice, allow
for dislocations, etc. The richness of possible structure of C∗ and the corre-
sponding range of captured physical phenomena – studied by theoreticians
and experimentalists – is enormous.

This ends our list of examples. We now turn to some general properties
of hyperbolic polynomials and their physical interpretation. It is clear from
the definition that C∗ has codimension 1: since P (η+λξ) has to have at least
one complex root for each η, and the roots are all real, there is at least one
real root. And since there are no more than p · l different roots, C∗ can not
have larger codimension. It is then known from real algebraic geometry that
C∗ consists of smooth hypersurfaces outside a set of at least codimension 2
(see [9]). The roots λi(ξ, η) can for fixed ξ be assumed to be ordered according
to λ1 ≤ λ2 ≤ · · · ≤ λp for all η. The set of points k = η + λi(ξ, η)ξ is called
the i’th sheet of C∗. The hypersurface C∗ has to be smooth at all points k
lying on a line intersecting p different sheets4. In particular all sheets are
everywhere smooth when P is strictly hyperbolic.

Next recall that the defining property of a hyperbolic polynomial refers to
a particular covector ξ. That covector however is not unique. It is contained in
a unique connected, open, convex, positive cone Γ ∗(ξ) of covectors ξ′ sharing
with ξ the property that P (ξ′) �= 0 and P (η+λξ′) has only real zeros λi(ξ′, η)
[19]. Note that Γ ∗(ξ) = −Γ ∗(−ξ). Furthermore ∂Γ ∗(ξ) ⊂ C∗, and Γ ∗(ξ) is
that connected component of the complement of C∗ containing ξ. Not all
points of ∂Γ ∗(ξ) have to be smooth points of C∗.

The roots λi(ξ, η), i = 1, . . . , p, due to the homogeneity of P , are homoge-
nous in ξ of order −1 and positively homogenous of order 1 as a function
of η. They also satisfy λi(ξ, η) = −λp+1−i(ξ, η). At regular points of C∗, i.e.
when the gradient of P at η + λiξ is non-zero, λi(ξ, η) is a smooth function
of its arguments due to the implicit function theorem. Next choose a vec-
tor X ∈ R

n so that (X, ξ′) > 0 for all ξ′ ∈ Γ ∗(ξ). We call such a vector
4The reason is that a polynomial of order p in one real variable, if it has p

different zeros, has non-vanishing derivative at each zero, so k is a non-critical
point of P .
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“causal”. We now look at the intersection S of the hyperplane (X, ξ′) = 1
with C∗. Note (X, ξ′) = 1 is transversal to C∗ at smooth points of C∗, so S
is smooth there also. Note also that S may be empty, as in Example 1. For
reasons explained below, S is often called “slowness surface”. To describe S
more concretely, we pick some τ ∈ Γ ∗(ξ) with (X, τ) = 1. The pair X, τ
constitutes a “rest frame”. Using it, we can decompose every covector k as
kµ = τµ + k⊥µ where k⊥ is tangential to the hyperplane, i.e. (X, k⊥) = 0.
This k lies on C∗ iff λi(τ, k⊥) = 1 for some i. Thus S consists of the sheets
λJ(τ, k⊥) = 1, viewed as (n−2)-surfaces in k⊥ ∈ R

n−1. Here J runs through
some subset of the i’s parametrizing λi from above. Clearly, as J increases,
these sheets form a nested family of not necessarily compact surfaces5. The
innermost of these surfaces is nothing but the intersection of ∂Γ ∗(ξ) with the
hyperplane (X, ξ′) = 1 and is hence convex. We call C∗(ξ) those components
of C∗ which consist of half-rays connecting the origin with the points of S.
In the examples 2, 4, 5 the set S and C∗(ξ) consist of at most 1, respectively
2 and 3 sheets. For the last-mentioned case, see [15]. Not all the occurring
sheets are compact. It is possible for example for P (k) to be an irreducible hy-
perbolic polynomial with some sheets of S compact and others non-compact:
this is the case e.g. for the acoustic modes in magnetohydrodynamics [13].

We now explain the name “slowness surface”. Consider the hyperplane in
R

n given by (x, k) = 0 for fixed k ∈ C∗, i.e. the wave front of the plane wave
associated with k. To measure the “speed” at which this wave front moves,
decompose observers with tangent V which “move with this wave front”, i.e.
such that (V, k) = 0, according to V = X + v⊥. It follows that (v⊥, k⊥) =
−1. Thus, if there is a natural “spatial” metric h mapping elements l⊥ into
elements w⊥ = h ◦ l⊥ orthogonal to τ , one can define the “phase velocity”
v⊥ph = −‖k⊥‖−2 h◦k⊥. Thus, the smaller k⊥ is, the larger the phase velocity.
Of course the equation (v⊥, k⊥) = −1 does not define v⊥ uniquely. But there
is a “correct” choice for V tangential to the wave front, called “ray or group
velocity”, which is independent of any spatial metric, and which is defined
at least when k is a smooth point of C∗: this V is given by the conormal to
C∗ ⊂ (Rn)∗ at k, which by duality is a vector ∈ R

n. If k is in addition a non-
critical point, this ray velocity V µ is ∼ ∂/∂kµP (k), which satisfies kµV

µ = 0
by the positive homogeneity of P (k). The spatial group velocity in the frame
X, τ can then be written as which is also the textbook expression.

(v⊥gr)
µ(k⊥) =

(
τλ

∂P

∂kλ

)−1 (
δµ

ν −Xµτν
) ∂P

∂kν

∣∣∣∣
k=τ+k⊥

, (9)

We should add a cautionary remark here. Although the differential topol-
ogy of the slowness surface is independent of the choice of X satisfying
(X, ξ′) > 0 for all ξ′ ∈ Γ ∗(ξ), its detailed appearance, and physical quan-
tities such as phase velocity, group velocity or angle between two rays do

5In particular, when sheets seem to pass through each other, the two sides are
counted as belonging to different sheets.
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of course depend on the choice of rest system X, τ and a notion of spatial
metric with respect to that observer. Of course there will be, for any partic-
ular physical theory, a singled-out class of rest systems, e.g. τµ can be the
absolute object in a Galilean spacetime or be of the form τµ = −gµνX

ν in
a relativistic theory. Or the slowness surface can have more symmetry (say
symmetry with respect to reflection at the origin) in some rest system than in
others, as is the case with crystal optics or elasticity. For a careful discussion
of these issues, in the more specialized context of “ray-optical structures” on
a Lorentzian spacetime, consult [34].

We now come back to the “ray” concept. If k is a smooth critical point
of C∗, finding the map k �→ V (k) is already a nontrivial problem in algebraic
geometry [35]. If k is not a smooth point of C∗, there is no unique assignment
of a group velocity to k. Still well-defined is the set C of all V �= 0 satisfying

(V, k) = 0 where P (k) = 0 , (10)

called the dual or ray cone. Loosely speaking, each sheet of the ray cone cor-
responds to a spherical wave front tangent to (or “supported by”) the planar
wave fronts defined by the different points k in some corresponding sheet of
C∗ [13]. There holds (C∗)∗ = C. The dual cone is again an algebraic cone,
which, except in degenerate cases, is again the zero-set of a single homoge-
nous polynomial. The structure of this dual cone, in particular its singularity
structure which can be very complicated, is another difficult matter of real
algebraic geometry. For example the degree of its defining polynomial is in
general much higher than that of C∗ (see [37], [21]). This “dual” polynomial
need not be hyperbolic: in order to be hyperbolic it would have to have a
central sheet which is convex, which is not the case for some of the exam-
ples one finds in the literature. In our examples from above the situation
is as follows: In our Example 1 the dual cone C∗ consist of the two half-
lines {αaµ|α > 0} and {αaµ|α < 0}. The cone dual to the quadratic cone
gµνkµkν = 0 in Example 2 is given by gµνV

µV ν = 0 with gµνg
νλ = δµ

λ.
For a nonrelativistic acoustic cone γµν = hµν − (1/c2)uµuν we obtain for
the ray cone γµν = hµν − c2τµτν , where hµν is the unique tensor defined
by hµνu

ν = 0 and hµνh
νλ = δµ

λ − τµu
λ. If one has two sound cones, as in

isotropic elasticity, it is the faster ray cone which lies outside. In Example 3 C

is given as a subset of vectors Xµ in a linear space T , which is the annihilator
of the null space of sµν , namely where this subset is given by sµνX

µXν = 0,
where sµν is the inverse of sµν on T . In the magnetohydrodynamic example
the preceding statement corresponds to the fact that Alfvén waves “travel
along the direction of the magnetic field”. For Example 4 the ray cone C is
a 4th order cone of the same type as C∗, a fact already known by Ampère in
the case of crystal optics and shown generally in [36]. For anisotropic elas-
ticity the structure of the ray cone does not seem to be fully known, except
for a general upper bound on its degree, namely 150 on grounds of general
algebraic geometry (see [15], [37], [21]) and detailed studies for certain spe-
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cific crystal symmetries – which give rise to a beautiful variety of acoustic
phenomena [44]6.

3 Initial Value Problem

We now come to the issue of posing an initial value problem for hyperbolic
equations of the form of (1). This requires two things: firstly a notion of
“spacelike” initial value surface, secondly a notion of domain of dependance.
Not surprisingly these notions can be formulated purely in terms of the char-
acteristic polynomial. A hypersurface Σ in R

n will be called spacelike, if it
has a conormal nµ lying everywhere in Γ ∗(ξ) for some ξ. If the equation (1)
is nonlinear, every property concerning the characteristic polynomial has to
refer to the data of some reference field f0, i.e. the value of f0 on Σ and those
of its derivatives up to order l − 1. It is then the case that Σ is spacelike
also for any sufficiently near-by data. The reason is that ξ′ ∈ Γ ∗(ξ) can be
characterized by λ1(ξ, ξ′) > 0, and the eigenvalues λi, being zeros of a poly-
nomial having real roots only, depend continuously on the coefficients of this
polynomial [1]. A point x in R

n is said to lie in the domain of dependence
of Σ if each causal curve (i.e. each curve whose tangent vector X satisfies
(X, ξ′) �= 0 for all ξ′ ∈ Γ ∗(ξ)) through x which is inextendible intersects Σ
exactly once. The Cauchy problem for (1) is said to be well-posed if, for the
above data, there is a unique solution in some domain of dependence of Σ
and, secondly, if this solution depends in some appropriate sense continu-
ously on the data. The question then is whether well-posedness holds under
the above conditions. The answer is affirmative when (1) is linear with con-
stant coefficients and the lower-order terms are absent. Then the initial value
problem can be solved “explicitly” by using a fundamental solution (“Green
function” in the physics literature) – which in turn can be obtained e.g. by the
Fourier transform. By a refined version of a well-known argument in physics
texts concerning the wave equation in Minkowski space (see e.g. [3]), one can
show that the fundamental solution is supported in Γ (ξ), which is the closure
of the set of causal vectors just described. The set Γ (ξ) is a closed, convex
cone, dual to Γ ∗(ξ). If the outermost component of the cone C(ξ) dual to
C∗(ξ) is convex, its closure is the same as Γ (ξ), otherwise its convex closure
is the same as Γ (ξ). If one is interested in finer details than just wellposed-
ness, even the linear, constant-coefficient case becomes very nontrivial. An
example is the question of the existence of “lacunas”, i.e. regions in Γ (ξ)
where the fundamental solution vanishes. For isotropic elasticity mentioned
in Example 4, when c2 < c1 (which is the experimentally relevant case), the
fundamental solution vanishes inside the inner shear cone determined by c2.
(Note that “inner” and “outer” are interchanged under transition between

6There are computer codes designed for algebraic elimination, which might be
worth applying to this problem [23].
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normal and ray cone.) For anisotropic elasticity this issue, or the somewhat
related question of the detailed time decay, already presents great difficulties
(see [15,39]). The existence of lacunas for general, linear hyperbolic systems
with constant coefficients was studied in [3].

The problem now is that many field equations in physics give rise to vari-
able coefficients, to various forms of lower-order terms and-or nonlinearities.
But if one has a system of PDE’s with hyperbolic characteristic polynomial
(such systems are often called “weakly hyperbolic”) , which in addition has
a well posed initial value problem, a perturbation of the coefficients will in
general destroy the latter property (see e.g. [31]). It is thus hard to get any
further without additional assumptions. One such assumption is that of hav-
ing a symmetric hyperbolic system. This is given by a system of the form of
(1) with l = 1. It is furthermore assumed that

M µ
AB = M µ

(AB) (11)

and that there exists ξµ so that

MAB(ξ) = M µ
AB ξµ is positive definite . (12)

The symmetric hyperbolic system has a characteristic polynomial which is
hyperbolic with respect to ξ. To see this one simply observes that the equation

det(M µ
AB(ηµ + λξµ)) = 0 (13)

characterizes eigenvalues of the quadratic form MAB(η) relative to the metric
MAB(ξ) – and these eigenvalues have to be real. There is then, for quasilinear
symmetric hyperbolic systems, a rigorous existence statement along the lines
informally outlined at the beginning of this section [29]. The uniqueness part
uses the concept of “lens-shaped domains” (see e.g. [18]) which is essentially
equivalent to that of domain of dependence above.

Several field theories of physical importance naturally give rise to a sym-
metric hyperbolic system. An example is afforded by the hydrodynamics of
a perfect fluid both nonrelativistically and relativistically7. The most promi-
nent examples are perhaps the Maxwell equations in vacuo and the vacuum
Bianchi identities in the Einstein theory. For the latter this was first observed
in [17]. For completeness we outline a proof for the well-known Maxwell case
following [45]. We have that

∇νFµν = 0, ∇[µFνλ] = 0 (14)

with ∇µ being the covariant derivative with respect to gµν , a Lorentz metric
on R

4. These are 8 equations for the 6 unknowns Fµν . Next pick a timelike
vector field uµ with u2 = −1 and define electric and magnetic fields by

Eµ = Fµνu
ν , Bµνλ = 3F[µνuλ] , (15)

7For an elegant treatment of the latter, see [16]



Concepts of Hyperbolicity and Relativistic Continuum Mechanics 111

so that
Fµν = −2E[µuν] −Bµνλu

λ . (16)

We assume for simplicity that uµ is covariant constant, otherwise the ensuing
equations contain zero’th order terms which are of no concern to us. The
operator

∇µν = 2u[µ∇ν] (17)

contains derivatives only in directions orthogonal to uµ. Using Eq.’s (14) we
find the evolution equations

3∇[µνEλ] = −uρ∇ρBµνλ, ∇λρBνλρ = 2uρ∇ρEν . (18)

Taking now uλ∇ρ of (15), we rewrite the evolution equations in the form

Wµ′ν′λ
µν ∇λFµ′ν′ = 0 . (19)

Now take the positive definite metric

wµν = 2uµuν + gµν . (20)

Consider now the positive definite metric aµνλρ = 2wρ[µwν]λ on the space of
2-forms and use it to raise indices in Wµ′ν′λ

µν : One obtains quantities Wµνµ′ν′λ

satisfying

Wµνµ′ν′λ = Wµ′ν′µνλ, Wµνµ′ν′λuλ ∼ aµνµ′ν′
. (21)

Thus the (18) are symmetric hyperbolic with respect to uµ. For the charac-
teristic polynomial one finds

P (k) ∼ (uµkµ)2(gρνkρkν)2 . (22)

We now turn to 2nd order equations. Let us assume that the quantities
Mµν

AB of (1) satisfy
Mµν

AB = Mνµ
BA . (23)

This is necessarily the case when (1) comes from a variational principle,
because then

Mµν
AB ∼ ∂2L

(∂∂µfA)(∂∂νfB)
, (24)

where L = L(x, f, ∂f). Of course, since only the quantities M (µν)
AB enter the

differential equation (1), one might as well have assumed the stronger condi-
tions Mµν

AB = Mνµ
AB = Mµν

BA. This is not usually done in continuum mechanics.
The reason is that, while the PDE (and hence the characteristic polynomial)
is unaffected by the above symmetrization, other physical quantities in the
theory, like the stress, depend on the unsymmetrized object – and such ob-
jects typically enter, if not the equation, then the natural boundary conditions
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for the equation on the surface say of an elastic body (see [8]). A related rea-
son is that the symmetrized object would hide other symmetries – present
in some situations – which are more fundamental such as invariances un-
der isometries. For example the object CA(B|D|E), with CABDE the elasticity
tensor of (7), is not symmetric in (AB) and (DE). But the latter symmetry
is important for understanding the solutions of the linearized equations of
motion when the spacetime has Killing vectors. The work [10] also uses the
unsymmetrized form of Mµν

AB , the reason being that in this approach one is
only interested in properties of Mµν

AB which do not change when a total di-
vergence is added to the Lagrangian, and the stronger symmetry, if present,
would in general be destroyed by such an addition. Next it is assumed that
there exists a pair Xµ, ξν satisfying

Mµν
ABξµξν is negative definite (25)

and
Mµν

AB(mAηµ)(mBην) > 0 for all mAηµ �= 0 with (X, η) = 0 . (26)

The conditions (25,26) essentially state that the PDE is the sum of a “time-
like part” and an “elliptic part”, the latter obeying the Legendre-Hadamard
condition of the calculus of variations [22]. If the equation (1) has l = 2 and
satisfies (23,25,26), the system is called regular hyperbolic with respect to
ξ. We now check that every regular hyperbolic system with respect to ξ is
weakly hyperbolic with respect to ξ. The characteristic condition reads

det(Mµν
AB(ηµ + λξµ)(ην + λξν)) = 0 (27)

The covector η in (27) can be decomposed as η = (X,η)
(X,ξ) ξ + l where l sat-

isfies (X, l) = 0. Thus we can after redefining λ assume that η in (27) has
(X, η) = 0. Defining GAB = −MAB(ξ) = −Mµν

ABξµξν , VAB = MAB(η),
QAB = Mµν

(AB)ξµξν , consider the eigenvalue problem

Df̂ = λE f̂ , (28)

in

f̂ =
(
uA

vB

)

where the quadratic forms D, E are given by

D =
(

0 VAB

VAB 2QAB

)

and

E =
(
VAB 0

0 GAB

)
.

Since E is positive definite, all eigenvalues λ are real. But (28) for f̂ �= 0 is
equivalent to
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(−GABλ
2 + 2QABλ+ VAB)vB = 0 , (29)

for vA �= 0 which in turn is equivalent to (27). This proves our assertion that
regular hyperbolic systems are weakly hyperbolic. (Note that every “timelike
vector” X in the sense of (26) is causal, i.e. (X, ξ) �= 0 for all ξ ∈ Γ ∗(ξ),
but not conversely.) We can now come back to Example 5. The leading-order
coefficients Mµν

AB in (4) clearly belong to a regular hyperbolic system, when
we choose the vector Xµ ∼ uµ. It then follows from the preceding result that
the polynomial in (6) is indeed a hyperbolic polynomial.

As with symmetric hyperbolic systems, it turns out that there is, for regu-
lar hyperbolic systems, a local existence theorem [27] along the lines sketched
at the beginning of this section. The appropriate domain of dependence the-
orem is proved in [10].

One may ask the question if it is possible to convert a regular hyper-
bolic system into an equivalent symmetric hyperbolic one by introducing
first derivatives as additional dependent variables (at the price of course of
having to solve constraints for the initial data). (This was the approach we
originally followed for elasticity in [6], since we were unaware that there was
already an existence theorem which applied, namely [27]). If the condition
(12) is provisionally ignored, it turns out this is possible provided that Mµν

AB

is of the form of (4) for some pair uµ, τν , i.e. certain cross-terms vanish8. But
the positivity condition (12) will not always be satisfied. (Essentially this re-
quires the ”rank-one positivity” condition (26) to be replaced by the stronger
rank-two positivity: Mµν

ABm
A

µm
B

ν > 0 for all mA
µ �= 0 with XµmA

µ = 0.)
In the case of isotropic elasticity it was shown in [6] that one can add to Mµν

AB

a term of the form Λµν
AB , which has the symmetries Λµν

AB = Λ
[µν]
[AB], so that

both the field equations and the requirement (23) remains unchanged, but
at the same time condition (12) is valid. However it is an algebraic fact that
such a trick does not always work (see [38,42]).

Finally let us mention the notion of strong hyperbolicity, which is inter-
mediate between weak hyperbolicity and symmetric or regular hyperbolicity
in the first or second order case respectively. This notion, which involves the
tool of pseudodifferential reduction [40,41], also gives wellposedness but has
greater flexibility, see [33] for applications to the Einstein equations. It would
be interesting to see if the chain “weakly hyperbolic – strongly hyperbolic –
symmetric or regular hyperbolic” has an analogue for PDE’s of order greater
than 2.
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