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D-branes, B Fields and Deformation Quantization
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The worldvolume geometry of flat and curved Dp-branes embedded in flat and curved back-
ground spaces in the zero slope limit of Seiberg and Witten is studied.

1 Introduction

Dp branes in the Type II superstring theory with nonzero NS-NS B fields have the interesting
features. When B field is switched off the system of the D0-D6 BPS branes is nonsupersymmet-
ric. But it becomes supersymmetric when a suitable constant B field is turned on.

In the absence of the B field the system of D0-D4 branes is supersymmetric. But the presence
of the B field changes the properties of supersymmetry. The D0-D4 system of branes remaines
supersymmetric only if the B field is anti-self-dual [1].

An identification of the Dp-brane charges with K-theory classes holds in the case of vanishing
B field. In the presence of a B field the arguments of [2] have to be modified. The point is that
a gauge field in the presence of a B field is rather a connection over a noncommutative algebra
than over a vector bundle. Therefore it is natural to suspect that Dp-brane charges must be
identified with K-theory classes of some noncommutative algebra. It is the principal property of
Dp-branes with switched B fields is following: theirs worldvolume geometry is noncommutative.

The noncommutative geometry studies geometric spaces (and their generalizations) using
noncommutative algebras of functions on them. The noncommutative torus is one of the most
important examples of the manifolds in noncommutative geometry. The noncommutative geom-
etry of the worldsheet plays an important role in the study of the string theory. These problems
have attached much attention [3, 4, 5, 6].

But most of them were dealing with the case of a constant B field in the flat background.
Connes, Douglas, Schwarz [3] have shown that the matrix theory of M theory compactified on
a T 2 with a background three form potential, C−12 is related to gauge theory on a noncommu-
tative torus. Douglas and Hull [4] have studied Dp-branes on T 2 with the constant NS-NS two
form field, B, and have shown that the effective worldvolume theory will be noncommutative
gauge theory on the noncommutative torus.

When a Dp-brane is placed into a background which carries a non-vanishimg constant B
field the algebra of functions on its classical worldvolume is deformed. The involving of this con-
stant B field background can be described by replacing the ordinary product of functions on the
worldvolume of the Dp-branes by the Moyal product, which is associative and noncommutative.
This case corresponds to the embedding of a flat Dp-brane into a flat background.

In the zero slope limit α′ → 0 of Seiberg and Witten this case is extended to the one in
which ω = B + F is such that dω = 0. Here F is the strength of some U(1) gauge field on
a Dp-brane. In this case the ordinary product of functions on the worldwolume of a Dp-brane
is replaced by the Kontsevich star product which is also associative and noncommutative. This
case corresponds to the embedding of a curved Dp-brane into a flat background.

There are several attempts to extend this consideration to open strings in a general back-
ground. In the terminology of Dp-branes it corresponds to the embedding of the curved Dp-
branes in the curved backgrounds. The last corresponds to the case dω = dB = H �= 0. The
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ordinary product of the algebra of functions on a Dp-brane is replaced by the Kontsevich star
product. But in this case it is noncommutative and nonassociative. The algebra of functions on
it defines “a noncommutative and nonassociative manifold”.

In this article we shall study the noncommutative and homotopy associative algebras of
functions on Dp-branes defining on them noncommutative and homotopy associative structures
of the manifold. We shall clarify the role of their K-theory classes in the labeling of unequivalent
unstable Dp-brane configurations.

2 Open string description of Dp-brane
in parallelizable backgrounds

The bosonic part of the action for a fundamental open string ending on a Dp-brane in the
background of a NS-NS B field is

S =
1

4πα′

∫
Σ

gab(X)dXa ∧ �dXb

+
i

4πα′

∫
Σ

Bab(X)dXa ∧ dXb +
i

2πα′

∫
∂Σ

ds(∂sX
aAa(X)), (1)

or

S =
1

4πα′

∫
Σ

gab(X)dXa ∧ �dXb +
i

4πα′

∫
Σ
(Bab(X) + Fab(X))dXa ∧ dXb, (2)

where F (X) = dA(X). The action (2) of the open string is invariant under both gauge trans-
formations for the one-form gauge field A → A + dΛ, B → B and for the two-form gauge field
B → B + dΛ, A → A − Λ.

From now on we will consider the Dp-brane in the weakly curved backgrounds [7]. We shall
restrict ourselves to the case of maximal branes and assume that Σ has the topology of the disk.

In order to use (2) for calculation of the correlation functions it is useful to introduce Riemann
normal coordinates at the origin in which we have [7]

gab(x) = gab − 1
3
Rabcdx

cxd + · · · , (3)

Bab(x) = Bab +
1
3
Habcx

c +
1
4
∇dHabcx

cxd + · · · . (4)

With the help of (3) and (4) the action (2) can be represented in approximation in small curved
devivation from the flat closed string background

SB = S0 + S1, (5)

S0 =
1
2
gab

∫
Σ

dXa ∧ �dXb + i

∫
Σ
(Bab + Fab(X))dXa ∧ dXb, (6)

S1 =
i

6
Habc

∫
Σ

XadXb ∧ Xc. (7)

Let us denote ω(x) = Bab + Fab(x) and consider

S0 + S1 =
1
2
gab

∫
Σ

dXa ∧ �dXb + i

∫
Σ

ωabdXa ∧ dXb +
i

6
Habc

∫
Σ

XadXb ∧ Xc. (8)

The simplest way to prove the noncommutativity of a Dp-brane is to quantize the open string
ending on it. In the zero slope limit α′ → 0 [1] the closed string metric g scales to zero and
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since dω = 0 we can use the Cattaneo and Felder path integral representation of the Kontsevich
deformation quantization product [8] to calculate of the correlation functions corresponding
to S0. If we choose n functions f1, . . . , fn positioned at ordered points τ1, . . . , τn on the boundary
∂Σ of the string worldsheet, then path integral∫

[dX]e−S0(X)f1(X(τ1)) · · · fn(X(τn)) (9)

defines the n-point correlation functions corresponding S0 [6, 9]

〈f1 · · · fn〉 =
∫

V (B)dx(f1 ∗ · · · ∗ fn), (10)

V (B) =
√

det B and ∗ is the Moyal star product (we put F (x) = 0)

f � g = fg +
i

2
αab∂af∂bg − i

8
αacαbd∂a∂bf∂c∂dg + O (

α3
)
, α = B−1.

Analogously, the path integral∫
[dX]e−S0(X)−S1(X)f1(X(τ1)) · · · fn(X(τn)) 	

∫
[dX]e−S0(X)[1 + ν + µ], (11)

ν = − i

6
Habcx

c

∫
Σ

dζa ∧ dζb, (12)

µ = − i

6
Habc

∫
Σ

ζadζb ∧ dζc, (13)

defines n-point correlation functions corresponding to S0 + S1 [7]. The integral (11) as a result
of the path integration is decomposed into three parts. The first part gives the nonperturbed
correlation function∫

f1 ∗ · · · ∗ fn, (14)

the second ones coming from the two-vertex ν gives

V +
∑
i<j

Vij , (15)

V =
1
3
Habcθbc

∫
xa ∗ (f1 ∗ · · · ∗ fn), (16)

Vij =
i

6
Habcθ

aãθab̃

∫
xc ∗ (f1 ∗ · · · ∗ ∂ãfi ∗ · · · ∗ ∂b̃fj ∗ · · · ∗ fn). (17)

The third part coming from the three-vertex µ is given by the expression

∑
i<j<k

S

(
τji

τik

)
Wi<j<k, (18)

Wijk = − 1
12

Habcθ
aãθbb̃θcc̃

∫
f1 ∗ · · · ∗ ∂ãfi ∗ · · · ∗ ∂b̃fj ∗ · · · ∗ ∂c̃fk ∗ · · · ∗ fn, (19)

S(x) = 1 − 2L(x), and L(x) is the Rogers dilogarithm [10].
It is useful to change the notation and represent functions as operators, the ∗ product as the

operator multiplication and integral
∫

as Tr:

xa → Xa, fi → Fi,

∫
V (ω) → Tr, θaã∂ãf → −i[Xa, F ], θab → −i[Xa, Xb].
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In these notations the formulas (16), (17), (19) are represented as

V = −2i

3
Habc Tr

(
XaXbXcF1 · · ·Fn

)
, (20)

Vij = − i

6
Habc Tr

(
XcF1 · · · [Xa, Fi] · · · [Xb, Fj ] · · ·Fn

)
, (21)

Wijk = − i

12
Habc Tr

(
F1 · · · [Xa, Fi] · · · [Xb, Fj ] · · · [Xc, Fk] · · ·Fn

)
. (22)

The foregoing construction can be generalized to the case where ωab = Bab + Fab(x).
As has shown in [7] to this end it is necessary to replace

Wijk → Wijk = Wijk − 1
n

(Wij − Wik + Wjk), (23)

Wij =
i

24
Habc Tr

(
F1 · · · [[Xa, Xb], Fi] · · · [Xc, Fj ] · · ·Fn

)

− i

24
Habc Tr

(
F1 · · · [Xa, Fi] · · · [[Xb, Xc], Fj ] · · ·Fn

)
. (24)

The correct generalization V of V (F1, . . . , Fn) [7] together with (23) gives the final result for
the n-point correlation function in this case

V =
∑
i,j,k

SijkWijk. (25)

3 Nonassociative algebra of functions
on worldvolume of Dp-brane

According to [8] the generalization of the symplectic form ωab = Bab to the one ω̃ab(x) =
ωab + Fab(x) gives in the zero slope limit [1] the correlation functions

〈f1(X(τ1)) · · · fn(X(τn))〉 =
∫

V (ω)dn+1xf1 ∗ · · · ∗ fn, (26)

where now ∗ is the Kontsevich star product (because dω(x) = 0) [11]

(f ∗ g)(x) = exp
[

i

2
αab ∂

∂xa

∂

∂yb

]
f(x)g(y)|x=y (27)

or

f ∗ g = fg +
i

2
αab∂af∂bg − 1

8
αacαbd∂a∂bf∂c∂dg

− 1
12

αad∂dαbc(∂a∂bf∂cg − ∂bf∂a∂cg) + O (
α3

)
. (28)

Hence,

(f ∗ g) ∗ h − f ∗ (g ∗ h) =
1
6

(
αil∂lα

jk + αjl∂lα
ki + αkl∂lα

ij
)

∂if∂jg∂kh + O (
α3

)
. (29)

If α is invertible and d
(
α−1

)
= dω = 0, from (29) it follows the associativity of the ∗ product.

As it was shown in the previous section the ∗ product (28) with ω̃ab(x) = Bab + 1
3Habcx

c gives
the correlation functions defined by (26). But in this case the product becomes nonassociative
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(because dα̃ = H �= 0). It is denoted by •. The associator of the product • of functions is
defined by the equation

(f • g) • h − f • (g • h) =
1
6
αiaαjbαkcHabc∂if∂jg∂kh + · · · . (30)

Because Habc �= 0 the product • is not associative. The two products ∗ and • given by the
Kontsevich expansion (28) in terms of ωab and ω̃ab(x) = ωab(x) + 1

3Habcx
c, respectively, are

connected between themselves by the relation

f • g = f ∗ g +
i

12
Habc

{
xc, [xa, f ]∗ ∗ [xb, g]∗

}
∗
, (31)

or in the operator form

F • G = FG − i

12
Habc

{
Xc[Xa, F ][Xb, G]

}
. (32)

One can find more general relation

f1 • (f2 • · · · • (fn−1 • fn) · · · ) = f1 ∗ f2 ∗ · · · ∗ fn +
∑
i<j

Vij . (33)

4 Homotopy associative structure of algebra
of functions on Dp-brane

With the help of the methods of the preceding section we can obtain the exact expressions of
the first correlation functions of the model. The two-point correlation function is given by

P2(f1, f2) =
∫

f1f2

(
1 +

1
3
Habcx

aθbc

)
. (34)

The three-point correlation function is written

P3(f1, f2, f3) =
∫

f1 ∗ f2 ∗ f3 +
1
3
BbcK

abc

∫
f1 ∗ ya ∗ f2 ∗ f3

− i

6
Kabc

∫
(−∂af1 ∗ yc ∗ ∂bf2 ∗ f3 − ∂af1 ∗ yc ∗ f2 ∗ ∂bf3 + f1 ∗ yc ∗ ∂a ∗ f2∂b ∗ f3) , (35)

where Kabc = θaãθbb̃θcc̃ and ya = Babx
b. Every n-point correlation function can be represented

in the operator form Pn[F1, . . . , Fn]. It depends on the n − 3 conformal moduli of the insertion
points τ1, . . . , τn of the functions F1, . . . , Fn. The one-point correlation function

P1[F ] = Tr (F ) +
2i

3
Habc Tr

(
XaXbXcF

)
(36)

defines operator P [F ] := P1[F ]. With the help of the operator P one can represent the correlation
functions

P1[F1] = P [O1(F1)(τ1)], P2[F1, F2] = P [O2(F1, F2)(τ1, τ2)],
P3[F1, F2, F3] = P [O3(F1, F2, F3)(τ1τ2τ3)],
P4[F1F2F3F4] = P [O4(F1, F2, F3, F4)(τ1, τ2, τ3, τ4)],

where

O1[F1] = F1, (37)
O2[F1, F2](τ1, τ2) = F1 • F2, (38)
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O3[F1, F2, F3](τi) = L(1 − x)(F1 • F2) • F3 + L(x)F1 • (F2 • F3), x =
τ21

τ31
, (39)

O4[F1, . . . , F4](τi) = L

[(
1 − x

y

) (
1 − 1 − y

1 − x

)]
(F1 • F2) • (F3 • F4)

+ L

[(
1 − x

y

) (
1 − x

1 − y

)]
((F1 • F2) • F3) • F4 + L

[
x

y

(
1 − y

1 − x

)]
F1 • (F2 • (F3 • F4))

+ L

[
x

y
(1 − y)

]
(F1(•F2 • F3)) • F4 + L

[
x

(
1 − y

1 − x

)]
F1((•F2 • F3) • F4),

x =
τ21

τ41
, y =

τ31

τ41
. (40)

The function Q5[F1, F2, F3, F4, F5](x, y, z) is written by means of the sum of product of functions
F1, F2, F3, F4, F5 of 14 terms corresponding the different ways to insert parenthesis:

{(((F1 • F2) • F3) • F4) • F5, ((F1 • F2) • F3)(•F4 • F5), (F1 • F2)((•F3 • F4) • F5),
((F1 • F2) • (F3 • F4)) • F5, (F1 • (F2 • F3)) • F4) • F5, (F1 • (F2 • F3)) • (F4 • F5),
(F1 • ((F2 • F3) • F4)) • F5, F1 • (((F2 • F3) • F4) • F5), (F1 • (F2 • (F3 • F4)) • F5,

F1 • ((F2 • (F3 • F4)) • F5), F1 • (F2((•F3 • F4) • F5)), (F1 • F2) • (F3 • (F4 • F5)),
F1 • (F2 • (F3 • (F4 • F5))), F1 • ((F2 • F3) • (F4 • F5))}. (41)

For correlation functions of the higher order this procedure can be continued. There exists
conjecture that every correlation function Pn[F1, . . . , Fn] can be represented in the form

Pn[F1, . . . , Fn](τi) = P [On(F1, . . . , Fn)(τi)]. (42)

The functions On(F1, . . . , Fn)(τi) define mappings of the algebra of functions on the Dp-brane
onto itself. For example, the role of the mappings On we can see, for example, in the case O3.
The homotopy properties of the mapping

O3[F1, F2, F3](x) : [0, 1] × C∞(M)×3 → C∞M (43)

is ensured by the equation (39) and by the properties of the Rogers dilogarithm L(x):

L(x) + L(1 − x) = 0, L(0) = 0, L(1) = 1. (44)

The mapping (43) connecting of the products (F1 •F2) •F3 and F • (F3 •F3), corresponding by
two different ways to stay the parenthesis in the product F1•F2•F3 is the homotopy equivalence.
The mapping O3(m) defines the A3 homotopy associative structure on the nonassociative algebra
C∞(M). It is obvious that homotopies On[F1, . . . , Fn] play the same role for higher product as
O3[F1, F2, F3] for F1 • F2 • F3.

The concepts of the homotopy spaces and the strong homotopy algebras are due to Sta-
sheff [12], where it is shown that a topological space has homotopy type of a loop space if and
only if it is strong homotopy associative one. The strong homotopy algebras has been found
at number of the unexpected places: in the topological conformal field theory, in Morse theory.
The “nonassociative manifold” is defined by means of a strong homotopy algebra of functions
on them.

5 Charges of Dp-branes

Soon after Polshinski’s identification of Dp-branes as nonperturbative objects in the perturbative
string theory that carry R-R charge, Witten [2] suggest that the D-branes charges should take
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the values in a K-theory of the spacetime. The groups K0(M), K1(M) are associated with
Dp-branes in IIA, IIB string theory, respectively. The presence of the B field introduces the
corrections in evaluation of the charges. The charges of the Dp-branes in the topological case
are dependent on the cohomolgy class [H] ∈ H3(M, Z) of the strength H = dB.

Let Kj(M, EH) = Kj(C0(M, EH)), j = 0, 1, denotes K•-groups of C∗-algebra C0(M, EH)
generated by the continuous sections vanishing on the infinity of the unique local trivial gauge
bundle EH whose structure depends on Dixmier–Douady invariant [H].

It is destinguished three cases:

1. [H] = 0, (B = 0, H = 0) [2].

EH is the gauge bundle with fibre Cn and gauge group AutCn = U(n).

2. [H] = 0, (B �= 0, H = 0) [15].

EH is the gauge bundle with fibre Mn(C), the matrix algebra of n × n dimension and the
gauge group AutMn(C) = SU(n)/Zn. In this case C0(M, EH) is called by the Azumaya
algebra.

3. [H] �= 0, (B �= 0, H �= 0) [15].

EH is the gauge bundle with fibre K, algebra of compact operators in a Hilbert space
and the gauge group AutK = lim

n→∞SU(n)/Zm. In this case C0(K, EH) is called by the
Rosenberg algebra.

In the bosonic string theory the physical interpretation of K-theory classes is less clear then in
type II superstring theory, since the branes carry no conserved charges and, likely, are unstable.
Conjecture is that these K-theory classes of the algebra of functions on the Dp-branes label
unequivalent unstable Dp-brane configurations.
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