

Agents and Daemons, automating Data Quality Monitoring

operations

Luis I. Lopera, on behalf of the DQM Group

Los Andes University, Bogotá, Colombia

lilopera@cern.ch

Abstract. Since 2009 when the LHC came back to active service, the Data Quality Monitoring

(DQM) team was faced with the need to homogenize and automate operations across all the

different environments within which DQM is used. The main goal of automation is to reduce

the operator intervention at the minimum possible level, especially in the area of DQM files

management, where long-term archival presented the greatest challenges. Manually operated

procedures cannot cope with the constant increase in luminosity, datasets and uptime of the

CMS detector. Therefore a solid and reliable set of sophisticated scripts, the agents, has been

designed since the beginning to manage all DQM-related workflows. This allows to fully

exploiting all available resources in every condition, maximizing the performance and reducing

the latency in making data available for validation and certification. The agents can be easily

fine-tuned to adapt to current and future hardware constraints and proved to be flexible enough

to include unforeseen features, like an ad-hoc quota management and a real time sound alarm

system.

1. Introduction

In the IT operations world it is common for repetitive tasks to be automatic; furthermore, if such tasks

require 24/7 action, it is more than logical to have them automated. One motivation is the cost incurred

in hiring enough people with the right training and set of skills to cover the 24/7 schedule. Moreover,

as proven in the manufacturing industry, repetitive tasks cause the worker to occasionally make

mistakes due to boredom and other factors: these mistakes can reduce the system’s ability to provide

quick and accurate results. Designing programs that take care of the heavy load and relinquish the

operator to an oversight position alleviate both problems: it reduces the number of qualified personnel

required to look after the system and frees the operator of repetitive tasks, giving him/her the time to

focus on improving the system, thus putting his/her skills to a better use.

“Agents and Daemons” (A&D) emerges as a highly modular solution oriented to automate the

backstage operations that make Data Quality Monitoring (DQM) possible in CMS. It consists of a

sophisticated collection of scripts; which ensures that DQM’s data is presented, in a timely fashion, to

the collaboration’ shifters and subsystems’ experts.

This paper will show the design ideas of the system, focusing in particular on CMS and DQM data

workflows; a modular architecture is proposed for scalability, robustness and easy maintenance.

Figure 1 shows a schematic view of the data flow, from the detector to data certification.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052050 doi:10.1088/1742-6596/396/5/052050

Published under licence by IOP Publishing Ltd 1

2. Understanding CMS’s data flow[2]

Data in CMS is produced in different stages and with different purposes: on one side we have the

detector data and all the post processing that is required to provide the input to the analyses; on the

other, we have the simulation data used in conjunction with real data to reach valuable conclusions or

to validate new releases of the CMS reconstruction framework, CMSSW. For the scope of this paper

data processing is divided in two realms: online and offline. Online is all about detector readout and

real time monitoring; offline is where post processing, simulation and validation take place.

Figure 1. Graphic representation of CMS data and DQM data

2.1. Online Realm

Data in CMS starts at the detector readout, where the Level 1 Trigger (L1T) makes a first selection of

individual sensor states and, based on established criteria, decides to record the event. Then this event

is reconstructed in the filter farm where more complex objects are created and, based on these new

objects and the raw information coming from the sensors, the event is either discarded or sent to post

processing in Tier 0. This second decision state is called the High Level Trigger (HLT).

 The L1T and HLT systems are controlled by the data acquisition system (DAQ) of CMS that

provides the necessary infrastructure to process events at a rate of around 150 KHz out of which

300Hz are selected for physics analysis. The DAQ achieves this feat by running a large amount of

HLT processes in parallel. Events that have been reconstructed and selected are then sent to the

Storage Managers (SM), which is composed of 16 servers whose purpose is to build the stream of data

(stream) to send to Tier-0 for further offline processing. Other streams can be produced for internal

use, as for the DQM online-stream case.

A stream is defined in the HLT menu and it has 2 main characteristics: the list of trigger paths an

event must fire in order to be chosen, and the list of reconstructed objects that are going to be sent with

the event. There are two distinct classes of streams: calibration and physics. The former stores events

that are fired by the calibration routines of the sub-detectors; these are valuable to assess the state of

CASTOR

Job
Root
File

Job
Root
File

Job
Root
File

 SMPS

DQM Event Processor

5 Production
Servers

Data Flow:

SM

Online:

Offline:

AFS

• CMS Data.

• DQM Histograms

• DQM Root Files

• DQM Zip Files

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052050 doi:10.1088/1742-6596/396/5/052050

2

the detector. The latter is the most important as it is the base for the physics analyses of the entire

collaboration.

These two classes of streams are exclusive by design: therefore DQM needs to have its own stream

definition with a suitable combination of the two types of events. Online DQM was entrusted with

monitoring not only the data state of the physics events but also the detector status and performance.

2.2. Offline Realm

Here DQM becomes a step of the different scenarios that the collaboration runs to produce official

data for all of its members to use in analysis and other activities. These scenarios are: express

reconstruction, prompt reconstruction, re-reconstruction, CMSSW release validation (using real data

and simulated data) and Monte Carlo production. These scenarios can be run at different LCG sites,

and from the DQM point of view a mechanism has to be provided in order to collect all the different

DQM results produced on each scenario.

3. From Event data to DQM data into the DQM GUI and beyond

The DQM step of the different data processing scenarios in CMS is a statistical analysis tool that uses

ROOT as the backbone to produce its data [3]. In particular, DQM uses histograms to save the data

into files that have to be registered in the DQM GUI index so that shifters or experts can use its

powerful features to determine the quality of the data.

The GUI’s index is the “database” where histograms are stored in an efficient way for quick

readout[3]; this special format is used to allow multiple users extract substantial amounts of

information in the form of histograms in hundreds of milliseconds. It is designed as a multiple-reader-

single-writer database: this choice influenced the design of A&D as it sets the pace of the interaction

between the files and the GUI.

3.1. Online Realm

In online DQM has several consumers running in parallel on a distributed system. These consumers

are also controlled by DAQ, but their functionality is slightly different from the filter units: among

other things, the output of each process is a DQM file per consumer containing histograms usually

associated to one specific detector. The input is provided by connecting to one of the streams available

in the SMs.

The DQM files are left on the server machines where the consumers run; due to legacy real time

constraints, the need to rapidly and indistinctively terminate DAQ processes and the instability of the

ever-evolving DQM analyzers’ code, files were written out with partial results at fixed-time intervals.

More recent and stable versions of the online consumer infrastructure [4], allow for the final file to be

actually saved at the end of the run. The idea of partial files being saved is nevertheless still in practice

to have a fall back solution in case of problems.

The first problem that A&D need to solve is how to distribute the files from the server machines to

the two instances of the online GUI without overwriting files with the same name and selecting the

correct version from a final root file or a temporary file. The second issue is how to transfer the files

from the online network to the general-purpose network (GPN) so that they can be properly archived.

Finally, due to hard disk space restrictions in the GUI servers, the index size has to be constrained and

a sample delete strategy is required.

An additional requirement, derived from the experience collected from the continuous running of

the experiment, suggested that audio alarms should sound when certain conditions are detected in a

selected list of histograms in the GUI.

3.2. Offline Realm:

In the offline realm DQM has three official data collection servers: in these servers DQM files,

produced in different LCG sites, need to be registered in order to be accessible by the GUI. Allowing

the GUI to accept and save files posted by a POST method using the HTTP protocol solved this

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052050 doi:10.1088/1742-6596/396/5/052050

3

problem. However the GUI does not automatically registers the files, as files for the same run/dataset

may come with only partial results. For example, in the express scenario, results need to be shown

before the entire run is processed: thus, partial files are sent from the harvesting process. This

presented a great load on the server, where multiple files from the same run/dataset could appear

within seconds from each other, wasting the time spent registering the first files as the new files would

replace the existing information. So, a smart selection was needed. Also, under certain circumstances,

the servers will receive different types of files belonging to the different scenarios: in this case an

order of registration needed to be established to prioritize, e.g., express data files over Monte Carlo

ones.

The offline servers have much better disks capacities than the online ones, so the index size is not

an issue. Nevertheless, it soon became clear that the amount of DQM files in the system would cause a

quick overflow of the disks. Therefore, one of the first issues is to deal with the version of the files,

making sure that when more than one version is available for registration, only the latest one is

registered to save time, and all the rest erased from the repository to save disk space.

Unfortunately the compress ratio between a DQM file and its equivalent size on the index is about

seven to one: this means that the amount of files on disk grows seven times faster than the index size.

The amount of root files being kept around, even if unique, had also to be controlled in order no to fill

the disks with root files, subtracting precious space to the index.

Since the GUI provides access to the files stored in the repository for download, a balance was

needed between free disk space and files kept around for user download. Also, some users preferred to

access the DQM files through AFS, therefore, a strategy was also needed in order to keep a reasonable

amount of files there since the space available is very limited.

Finally, all the root files needed to be sent to CASTOR for permanent storage on tape. But sending

each individual file turns out to be inefficient in terms of tape usage and file allocation: therefore, they

needed to be bunched together into zip archives and then sent for permanent storage.

4. Agents and Daemons: a modular solution

The main problem in the data flow is how to move the DQM files around in a safe way that provides a

certain level of tracking and allows for robust manipulation.

The answer to the challenge consists of two parts: the first part was to derive specific tasks so that

each A&D module would be in charge of exclusively that one. The second part was to sort them into

processing chains so that a clear flow of the information was achieved and it was easy to assess the

current status of the system.

4.1. What makes an agent and what makes a daemon

Due to the modularity of the system, the per-task division, and the condition to run permanently, the

difference between an agent and a daemon relies on the Unix definition of daemon: a daemon is a

process that is forever running and is detached from any control terminal. On the contrary, an agent is

a process that runs one cycle of operation and then exits: therefore agents are usually run by a cron

job.

As it is presented later in this section, most modules are daemons, and only two were designed as

agents. This disparity comes from requirements like AFS credentials which were only safely

renewable through the “acron” interface, or by function specification, where it came in the form of a

short lived watch dog.

Python was the language of choice to implement the modules due to its widespread use in CMS

and the facilities that it provides: readability in the form of compact code writing which makes code

revision among peers a lot easier and its object oriented approach, which makes it a very powerful

scripting and application development tool.

To standardize construction as much as possible, each A&D module consists of a combination of

the following elements: a drop-box (input directory), a series of output directories and some

configurable parameters set by command line or by configuration file. From the program structure

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052050 doi:10.1088/1742-6596/396/5/052050

4

point of view, each module has an endless loop with a try…catch block that only quits on a

KeyBoardInterrupt[1] exception and a sleep time at the end of the cycle.

In case of errors, the sleep time is enforced and the loop is attempted once more. This approach is

valuable since it takes care of temporal problems, which, once solved, allow the system to resume

operations without the need to restart its components. Other types of problems are handled internally

by the module design. If the problems are in the module itself, the module undergoes a serious

revision and an update is installed after thorough testing in a lab installation.

4.2. Tale tales, the Info files go to work

The average size of a typical DQM file is around 200MB: this makes it impractical to repeatedly move

it around as it increases the chances of corrupting the file in unrecoverable ways; this also applies for

the zip archives made out of compilation of several DQM root files. Also, there’s the need of keeping

track of some metadata that can be preserved forever and be used to keep track of which files have

been processed by the system. The solution to both problems is the info file; it is a simple string

representation of a python dictionary object containing the metadata information for the file it is

associated to. In the case of the DQM root files the metadata .dqminfo file has the following structure:

Figure 2. DQM Info file structure

{ 'check': 'VERIFY: Good to go',

 'class': 'offline_data',

 'dataset': '/Commissioning/Run2010B-Nov4ReReco_v1/DQM',

 'era': 'Run2010',

 'filepat':

'OfflineData/Run2010/Commissioning/0001473xx/DQM_V%04d_R000147390__Commiss

ioning__Run2010B-Nov4ReReco_v1__DQM.root',

 'import':

'/dqmdata/offline/uploads/0001/DQM_V0001_R000147390__Commissioning__Run201

0B-Nov4ReReco_v1__DQM.root',

 'md5sum': '1fb9a119768f0b0c50c9ced73ebc46ce',

 'origin':

'/dqmdata/offline/uploads/0001/DQM_V0001_R000147390__Commissioning__Run201

0B-Nov4ReReco_v1__DQM.root.origin',

 'path':

'OfflineData/Run2010/Commissioning/0001473xx/DQM_V0001_R000147390__Commiss

ioning__Run2010B-Nov4ReReco_v1__DQM.root',

 'primds': 'Commissioning',

 'procds': 'Run2010B-Nov4ReReco_v1',

 'runnr': 147390,

 'size': 64975210

 'tier': 'DQM',

 'time': 1289552517,

 'version': 1,

 'xpath': '/Full/Path/DQM_V0001_R000147390__Commissioning__Run2010B-

Nov4ReReco_v1__DQM.root',

 'zippath':

'OfflineData/Run2010/Commissioning/DQM_Offline_Run2010_Commissioning_R0001

473xx_S0002.zip',

 'zippat':

'OfflineData/Run2010/Commissioning/DQM_Offline_Run2010_Commissioning_R0001

473xx_S%04d.zip'

}

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052050 doi:10.1088/1742-6596/396/5/052050

5

In the case of the .zinfo files, used for the zip archives, the file contains the following elements:

Figure 3. .zinfo file structure.

These info files are created in the same location where their corresponding root files or zip files are

located; they are then hard linked into the input or output folders of the different modules. In the case

of the dqminfo file the information is created once and never updated throughout the chain: this makes

this file suitable to be handled in parallel chains as long as no modification is made to the content to

guaranty consistency. The zinfo file is modified by each client, forcing it to be part only of a serial

chain. The current state of the A&D does not account for thread or multi-process safety for writing

these files.

4.3. The processing chains

Once the modularity of each task is established and the mechanism to arrange the sequence of tasks is

in place, all that is needed is to define the agents and arrange them in their proper order to complete

the desired action.

Currently four processing chains are defined. The first one is the online chain, which takes care of

collecting the files from the consumer servers and putting them in a shared location on NFS; from here

the receive daemon takes over and assigns the correct version numbers to the files and puts them in the

drop box of three Import daemons which will register the files in three independent instances of the

GUI: two production and one backup server. Associated with this chain are the Sound Alarm daemon

and the delete daemon. They have no interaction with the root files, but they do have interaction with

the GUI index: therefore they follow the standard daemon design.

The next chain is the Online-Offline one. This chain involves the production Online GUI that is

accessible from the GPN and its root file download interface; it simply downloads the new root files

directly to the offline repository and creates its respective dqminfo files from fake metadata as some of

the information is not available. The reason is that these files will skip registration but need to be

zipped and later erased; therefore the fake metadata files are necessary.

The offline chain starts when the receive daemon picks the files from the upload directory, put

them in the repository with their respective info files and finally send the info file to the drop box of

the import daemon and the zip daemon. The import daemon registers the file into the index following

the constraints mention before about versioning and priority. The subsequent version control daemon

ensures that only the latest version for each file is kept. The root file control quota daemon enforces

specific quotas, based on the data type, thus controlling the amount of disk space used by the

repository. This chain has a helper daemon called the IndexMerge daemon: it only comes into play

when massive updates to the index are required, in which case a series of smaller indexes are prepared

offline and then are interlaced with the normal registration procedure to allow the update and the new

information to work concurrently.

Finally the zipping chain starts when the receive daemon from the offline chain puts a dqminfo file

in the zip agent dropbox. The zip agent will append the files to the proper archive until it reaches at

{

 'frozen': 1290158144.5512209,

 'stime': 1290158995,

 'tries': 0,

 'vtime': 1290185504.1519611,

 'vtries': 1,

 'zactions': 1,

 'zmtime': 1289552524.626848,

 'zpath':

'OfflineData/Run2010/Commissioning/DQM_Offline_Run2010_Commissioning_R0001

473xx_S0002.zip'

}

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052050 doi:10.1088/1742-6596/396/5/052050

6

least 1.8GB in size. During this period the zinfo file is available for the next agent who will check if

the file is ready for transfer, either because it has reached the 1.8GB size or because it has been

without modification for more than a week. Once the file is ready to be moved, it is frozen by setting

the timestamp in the frozen field of the zinfo file, and passed to the next agent which copies the file to

CASTOR. Once the copy is complete the next agent ensures that the file has been properly copied to

tape, and then it puts it in the dropbox of the clean agent that removes the archive from disk.

Table 1. Brief module description

A/D Name Description

A visDQMAfsSync Syncs partially the offline repository with a folder on

AFS, run by acron.

D visDQMCreateInfoDaemon Keeps watching on a directory and creates dqminfo

files for ROOT files that do not have them. Then it

puts them in the zip agent drop box for archival.

D visDQMDeleteDaemon Deletes runs/datasets based on queue files from the

GUI index.

D visDQMImportDaemon Adds ROOT files to the index.

D visDQMIndexMergeDaemon Not shown in the chains, is a helper daemon. It is

useful to merge partial indexes with the main index,

coordinating with the import daemon.

D visDQMOnlineSyncDaemon Downloads ROOT files from the online GUI into the

offline root repository.

D visDQMReceiveDaemon It picks up files from the upload directory, checks the

naming conventions, and creates dqminfo files.

D visDQMRootFileQuotaControl Keeps ROOT files’ repository disk under control.

D visDQMVerControlDaemon Removes older version of ROOT files, only keeping

the latest available.

D visDQMZipCastorStager Stages zip archives in castor for permanent storage

D visDQMZipCastorVerifier Verifies that the archives have been copied correctly.

D visDQMZipDaemon Creates zip archives with the ROOT files.

D visDQMZipFreezeDaemon Prevents new info being added to an archive, and

marks it as ready for transfer to castor.

A aliveCheck(2).sh Ensures that all A&D are running.

D fileCollector2.py Collects files from producer machines an upload to

the online receive daemon dropbox.

D producerFileCleaner.py It keeps the disk usage of a local repository of the

producer machines under control.

A daily-offline Among other things it removes the zip archives from

the zipped repository that have been successfully

transferred to castor.

5. Identified Problems and Future updates

As expected, when the complexity of the system grew, a few problems where encountered. The most

current and upstanding problem is a stopping issue that causes index corruption when the delete,

merge and index daemons are stacked on top of each other waiting to carry out some work on the

index. All write operations to the index are done by an independent executable that is called form the

daemons: it is possible that at least one of the stacked daemons is able to fire a writing job over the

index without the previous writing job actually finished as, by design, the writing jobs are not

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052050 doi:10.1088/1742-6596/396/5/052050

7

interrupted when the daemon exits. As mentioned before, the index is designed for one single writer,

but this is not fully enforced: the simultaneous write operation triggered by the stopping procedure

could cause the index to overwrite the internal data pointer tables, making them invalid: as a result

entire sections of data become unreachable by the GUI.

As new tools are being developed, it has become even more clear that there is a high level of code

reuse throughout the A&D system: therefore a new architecture has been proposed where each module

becomes a thread in a multithreaded program and all recurrent code is put in to a service framework,

starting with a writer service to serialize write request to the index, avoiding the stopping issue

described earlier.

Finally, the greatest advantage of the proposed architecture is that it can be configured using

python configuration files, in the same way as the DQM GUI does, reducing the complexity of

management scripts and allowing the customization of parameters, based on the environment, to be

stored in one single place.

6. Conclusions

The A&D system has proven to be a reliable way to automate routine system operations. Furthermore

the metadata info files mechanism has proven to be a reliable and successful way to keep track of what

has been done; it also saves enough information that allows doing pre-selection before actually

downloading full archives from CASTOR. It also has proven to be an easy way to distribute the

system over multiple servers.

Corrupted indexes have been reconstructed with information available on disk and files stored in

CASTOR: so far we have not suffered an unrecoverable data loss scenario.

The system architecture proved to be flexible enough to run in four different offline servers plus the

online simply adapting the proper configuration files.

Operator intervention has been greatly reduced and, in case of problems, the system provides

enough information to easily pin point them; once they are fixed, it resumes activity without any

inconveniences.

The system has undergone major hardware upgrades twice and, in both occasions, operations were

resumed within seconds of finalizing the copy of the repository: this meant very small downtime

(measured in minutes) to move from the old server to the new one.

One of the great advantages of the system is that to maintain the running system or make new

modules and modifications, only a good understanding of python and a good familiarity with file

management at an operating system level are needed. No additional skills are required, e.g. database

management or complicated replication models. This makes this an ideal tool when the human

resource is scarse, and hard to come by.

References

[1] Python documentation http://docs.python.org/release/2.6.8/

[2] CMS Collaboration 1994 CERN/LHCC 94-38 Technical proposal (Geneva, Switzerland)

[3] CMS data quality monitoring web service

L Tuura et al 2010 J. Phys.: Conf. Ser. 219 072055 doi:10.1088/1742-6596/219/7/072055

[4] CMS Online Data Quality Monitoring: Real-Time Event Processing Infrastructure Srecko

Morovic for the CMS DQM Group

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052050 doi:10.1088/1742-6596/396/5/052050

8

