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1 Introduction

The axion [1–4] is a hypothetical particle, the angular excitation of a proposed “Peccei-
Quinn” (PQ) field ϕ that would solve the strong CP problem [5–7] while providing a viable
dark matter candidate [8–10]. If PQ symmetry is restored in the early Universe (either during
or after inflation), it should be possible to make a definite prediction for the axion dark matter
density which would be produced cosmologically. However, the axion production is compli-
cated by topological structures (axionic strings) which appear in the axionic field [11], and so
far their dynamics have not been reliably simulated. Thus we currently lack a quantitative
determination of the efficiency of axion production in this scenario, and can therefore not yet
fix the relation between the axion dark matter density and the axion mass. This is unfortu-
nate. If we could fix this relation, it would make the axion dark-matter scenario predictive
and help axion search experiments [12–14] know in what frequency bandwidth to look.

The goal of this paper is to make some progress on developing the tools to study axion
production in the presence of axionic strings. We will not present a complete methodology
or reliable results, but we lay the groundwork for getting there by presenting an interesting
algorithmic advance. We start by reviewing the relevant physics of the axion field, and
clarifying the main problem. The axion field is a complex scalar ϕ which spontaneously
breaks a U(1) (phase) symmetry. The Lagrangian density is

− Lϕ1 = ∂µϕ
∗∂µϕ+

λ

8

(
2ϕ∗ϕ− f2

a

)2
, (1.1)

invariant under ϕ→ ϕeiθ, plus a small explicit breaking term, arising from QCD axions:

− L = −Lϕ1 + χ(T ) [1− cos (arg ϕ)] , (1.2)
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Figure 1. Illustration of the topological origin of strings. A series of points along the minimum of the
potential in field-space (leftmost) may be mapped onto by a series of points along a loop in position-
space (next-to-left). On a surface bounded by the coordinate-space loop, the set of points which map
onto A, B, etc. each form a curve (third-from-left) which must meet at a singularity in θA. By consid-
ering a family of surfaces, there must be a locus of such singular points forming a string (rightmost).

with fa ∼ 1011GeV the axion decay constant (the vacuum value for the ϕ field) and χ(T ) the
temperature-dependent topological susceptibility of QCD. The decay constant fa is a model
parameter, and χ(T ) is a calculable quantity in QCD, which is currently not well determined
at high temperature [15, 16]. We will not address the problem of finding χ(T ) here. Instead
we focus on the topological consequences of a spontaneously broken global U(1) symmetry,
which is also very weakly explicitly broken.

The ϕ field has heavy radial excitations with mass-squared m2
s ≡ λf2

a and nearly-
massless angular excitations with mass-squared m2

a = χ(T )/f2
a . At temperatures T � fa

and length scales r � f−1
a we can treat ϕ as a classical field and treat the radial excitations

as heavy, so the field is almost-everywhere on the “vacuum manifold” ϕ∗ϕ = 2f2
a . Then we

can write
√

2ϕ = fae
iθA , with θA = argϕ the “axion angle”; the potential energy is only very

weakly dependent on the value of θA through the symmetry breaking term, which at high
temperatures (roughly T > 1.5 GeV) can be ignored. The angle θA is only defined modulo 2π.
It is possible for the field to leave the vacuum manifold along a linelike defect, with θA varying
by 2π around any loop which circles the linelike defect in a positive sense (see figure 1).

Such a defect — essentially a vortex in the ϕ field — is called an axionic cosmic string,
and it is topologically stable; no local changes to the value of ϕ can cause it to disappear.
If PQ symmetry is restored in the early Universe, then θA starts out uncorrelated at widely
separated points and will generically begin with a dense network of these strings (the Kibble
mechanism for string production [17]). The strings evolve, straightening out, chopping off
loops, and otherwise reducing their density, arriving at a scaling solution [18] where the length
of string per unit volume scales with time t as t−2 up to logarithmic corrections (which we
will discuss).

Let us analyze the structure of a string in a little more detail. Consider a straight string
along the z axis; in polar (z, r, φ) coordinates the string equations of motion are solved by√

2ϕ = v(r)fae
iφ, with v(r) ' 1 for all r2 � 1/(λf2

a ); so θA = φ (up to a constant which we
can remove by our choice of x-axis). The string’s energy is dominated by the gradient energy
due to the space variation of θA:

T =
Energy

length
=

∫
r dr dφ

(
V (ϕ∗ϕ) +

1

2
∇ϕ∗∇ϕ

)
(1.3)

' π

∫
r dr

(
∂φϕ

∗

r

∂φϕ

r

)
' π

∫ H−1

1/ms

r dr
f2
a

r2
= πf2

a ln(ms/H) ≡ πf2
aκ , (1.4)
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where the integral over r is cut off at small r by the scale where v(r) 6= 1 (the string core),
and at large distances by the scale where the string is not alone in the Universe but its field
is modified by other strings or effects, which we took to be the Hubble scale H−1. We define
κ = ln(ms/H) = ln(fa

√
λ/H) as the ratio of these scales; typically fa ∼ 1011 GeV, while at

the relevant temperature range T ∼ 1 GeV the Hubble scale is H ∼ 10−18 GeV, so κ ∼ 70
(unless λ is orders of magnitude smaller than 1).

This logarithm, κ, controls several aspects of the strings’ dynamics. It controls the
string tension, as we just saw. More relevant, while the string tension is πκf2

a , the string’s
interactions with the long-range ϕ field scale as f2

a . Therefore the string’s long-range in-
teractions become less important, relative to the string evolution under tension, as κ gets
larger. The long-range interactions are responsible for energy radiation from the strings,
as well as for long-range, often attractive, interactions between strings. Since these effects
tend to deplete and straighten out the string network, the large-κ theory will have denser,
cuspier strings. Indeed, in the large κ limit the string behavior should go over to that of local
(Nambu-Goto) strings [19], which are known to have far denser string networks than axionic
networks with κ ∼ 6.

In our first paper on this subject [20], we simulated string networks, with and without
the potential-tilting term of eq. (1.2), in “field-only” classical lattice simulations where the
string cores arose naturally from treating both radial and angular components of the ϕ field.1

Therefore, the scales ms and H both had to be resolved on the lattice, which restricts the
ratio to be less than the number of points across the lattice N . Realistically N ≤ 211 in
3D simulations and N < 216 in 2D, which limited us to studying the range κ ≤ 6 in 3D
and 8 in 2D. We followed the string evolution through the regime where the potential tilt,
eq. (1.2), becomes important and even dominant. Domain walls develop and destroy the
string network [25], leaving behind axionic fluctuations whose density we seek to determine.
Over the κ range we could observe, we saw clearly that the density of strings depends strongly
on κ. We also found that the behavior of the system in 3+1 dimensions, in terms of string
density, energy density, and final axion number produced, is surprisingly similar to that in
2+1D, by which we mean 3+1D but with all fields constant along the z direction. Finally,
we found that the axion production rate was a surprisingly weak function of κ. Indeed, over
the range we studied, axion production actually decreased slightly as we raised κ.

Unfortunately, the physical value of κ ∼ 70 is an order of magnitude larger than we could
achieve with field-only methods. The density of strings is presumably much larger for κ = 70,
as predicted by one-scale models [26]. And we know the string tension scales linearly with κ,
as in eq. (1.4). It seems reasonable to expect that, as these denser networks of higher-energy
strings decay into axionic excitations, the final axion number density will be higher than in
the small-κ simulations (though we see no sign of this for the κ range we have been able to
study). But to verify this suspicion, and really learn the axion production efficiency, we need
to simulate axion production using this larger κ value. This paper will show how to do this
in full detail in 2+1 dimensions, and will argue for how to extend the methodology to 3+1
dimensions. The basic idea of the simulations is to implement the angular component θA of
the ϕ field on the lattice, while implementing string cores as additional explicit objects (not
restricted to the lattice) which interact appropriately with the lattice θA field. Conceptually
this is similar to the work of Dabholkar and Quashnock [19]; but their work was analytical and
did not present an algorithmic implementation for the lattice. In the next section, we explain

1There have been other field-only classical field theory simulations [21–24], with similar results but with
less dynamic range of κ values explored.
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the method for the 2+1 dimensional problem, by taking advantage of a dual electromagnetic
description. Section 3 presents the details of the lattice implementation. In section 4 we
explore the numerical results. These lead us to expect that the physics of 2+1D and 3+1D
become ever more different as the string cores get higher-tension. Therefore, while our results
are suggestive, we cannot interpret them too literally for the interesting 3+1D case. We close
by describing how our algorithm can be extended to 3+1 dimensions.

2 The dual electromagnetic picture

The basic idea of our method is the following. At large distances r ∼ H−1 or r ∼ m−1
a the

θA field displays complicated dynamics which we need to solve nonperturbatively, via lattice
simulations. The field also contains topological defects. The cores of the defects involve very
short scales, as we have already emphasized. But the physics of these string cores is actually
very simple, and we understand it analytically. On short scales the string is very straight,
and in its local rest-frame the θA field varies around the string with the angular φ-coordinate,
up to corrections subleading in mar or Hr.

It is a waste of effort to try to simulate the microscopic behavior of the string core by
solving the field equations of motion. Instead we should “cut it out” from our lattice and “sew
back in” an explicit object which reproduces the string core’s behavior. The main challenge
is to incorporate correctly the physics of how the string influences θA in its environment, and
how the environment influences the string evolution. In this section we will show how to do
that — for the 2+1 dimensional theory.

2.1 2+1D string defects as electromagnetic charges

Consider the axion model in 2 space dimensions. For ease of presentation we will explain the
approach in flat, non-expanding space. It is straightforward to re-introduce Hubble drag and
to work in terms of conformal time.2 Except within a tiny distance r ∼ 1/ms of a string core,
the axion field is determined by θA alone; ignoring for now the symmetry-breaking potential
term, its Lagrangian and equation of motion are

− LθA =
f2
a

2
∂µθA∂

µθA , ∂µ∂
µθA = 0 . (2.1)

A “string” defect in 2+1 dimensions is a point (monopole) defect, with ∇θA diminishing as
1/r radiating out from the defect. This is the same falloff as the electric field of a charge in
2+1 dimensions. The potential between two strings also has the same − q1q2

2π ln(r) form as in
2+1D electromagnetism. Indeed, there is actually a perfect analogy between the axion field
and electromagnetism [27]. If we define

Fµν = −faεµνα∂αθA (2.2)

with Ei = Fi0 = F 0i and B = F12, so in components3

Ei = faεij∂jθA , B = fa∂tθA , (2.3)

2Axion number is set around T ∼ 1GeV, when the universe is radiation dominated and the number of
relativistic degrees of freedom g∗ is nearly constant. The Hubble parameter is H = ∂taH/aH = 1/2ttrue.
Conformal time tconf , henceforward just t, is dt = dttrue/aH . The temperature scales as T ∝ t−1 and the
metric scales as gµν ∝ t2ηµν . Therefore mass scales in these units grow with an extra t factor relative to the
physical mass. Our sign conventions are that ηµν = Diag [−1,+1,+1,+1] and ε0123 = 1 = −ε0123.

3Recall that in 2+1 dimensions, the magnetic field is a pseudoscalar (corresponding to Bz in 3+1D).
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Figure 2. The dual pictures: a moving string in terms of angles (left) and in terms of electromagnetic
fields (right).

then away from string cores these fields obey Maxwell’s equations,

∂µF
νµ = −faενµα∂µ∂αθA = 0 , (2.4)

εµνα∂
αFµν = −faεµναεµνβ∂α∂βθA = 2fa∂α∂

αθA = 0 , (2.5)

where the first holds by antisymmetry and the second requires the θA equation of motion.

The electric flux through a loop enclosing a positive-vorticity string is∮
Ein̂idx ≡

∮
εijEidxj =

∮
fa∂iθAdx

i = 2πfa (2.6)

so the strings act as electric charges of charge ±2πfa. Therefore axion field dynamics in
2+1D are equivalent to electrodynamics of particles with charge ±2πfa. If we include all
scales down to the string core scale, the electric charges’ mass arises entirely from the field
(self-)energy. But if we regulate the charges’ self-energies at a scale r0, then we can include
the effect of very small string cores by giving the charges masses, M = πf2

a ln(msr0), with
ms (again) the mass of the radial excitation or the inverse of the string core size. The
electromagnetic duality for a string of positive winding number is illustrated in figure 2.

2.2 Regulation by smeared charges

The duality to 2+1 dimensional electromagnetism suggests that string cores can be treated
as charged particles in a “particle-in-cell” approach [28]. To achieve a core size of ae−κ,
with a the lattice spacing and κ ∼ 70, we could choose to make the charges have mass
M = πf2

aκ. However, pointlike charges turn out to be problematic when interacting with a
lattice electromagnetic field. The highest wave-number k modes of the lattice show Lorentz-
violating unphysical behavior, and we must protect the point-charges from interacting with
them through a form-factor, which is achieved by smearing the charge into a ball. Alternately,
in the continuum we can view this as an explicit mechanism to regulate the UV contribution
to the string’s self-energy. The network dynamics will only be well represented on scales

– 5 –
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larger than the radius of this ball. We will do our best to add in any physics which is
disturbed by this ball, such as the interactions between strings when they get very close
together. But since the final axion number is dominated by long-wavelength excitations, the
regulation should not significantly impact our results for axion number generation.

We will show how to smear the charges in the continuum, and then find an implemen-
tation of the resulting equations on the lattice. The implementation we use will not be fully
covariant; the ball’s shape will not respond to Lorentz contraction and will respond instantly
to changes in the charge’s velocity, without retardation. These are minor problems in 2+1D
if the charges are heavy, because they will then be nonrelativistic and their accelerations will
be small.

To begin the implementation, we pick the charge distribution within the ball. Specif-
ically, for a positive-charge string at position y we choose the charge density at x to be
ρ(x) = fag(|x− y|) with∫

g(x) d2x = 2π

∫
rg(r) dr = 2π , g(r > r0) = 0 (2.7)

so the charge has compact support. We will also choose g(r) to go continuously to zero as
r → r0, so the charge density is continuous.4 We will also introduce

f(r) ≡
∫ ∞
r

r′g(r′) dr′ (2.8)

which is the charge fraction lying outside radius r. It obeys f(r > r0) = 0, f(0) = 1, and
df/dr = −rg(r).

For ease of presentation we will consider a single positive-charge string. The case of
many strings just involves a summation and± signs. The charge density modifies the Maxwell
equations;

∂µF
νµ(x) = Jν = fag(r)vν (2.9)

where ri = xi − yi is the vector from the charge’s location yi to the position of interest xi
and vν = (1, dyi/dt) = (1,−dri/dt).

We need to find a modified set of θA field dynamics and a modified relation between Fµν
and θA under which eq. (2.9) is satisfied. There are two reasons to prefer to work in terms
of θA. First, it is a more compact way of writing the physical degrees of freedom. Second,
the symmetry-breaking potential is only known in terms of θA. We will modify eq. (2.2) by
expressing it in terms of a “covariant” derivative of θA:

Fµν = −faεµναDαθA , DαθA = ∂αθA −Aα . (2.10)

We will discuss the physical interpretation of Aα in a moment. To ensure that Faraday’s law
still holds, we need to change the θA equation of motion:

0 = εµνα∂
αFµν = 2fa∂

αDαθA , (2.11)

which are the equations of motion arising from the Lagrangian

LθA = −f
2
a

2
DµθAD

µθA . (2.12)

4In our numerical implementation we use g(r) = 4(r20 − r2)r−4
0 Θ(r0 − r), so f(r < r0) = (1− r2/r20)2.

– 6 –
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Now we need to determine what choice for Aµ will ensure eq. (2.9) (Coulomb’s and
Ampere’s laws) are satisfied. We have

∂µF
νµ = −fa∂µενµαDαθA = Jν ⇒ ενµα∂µAα = g(r)vν . (2.13)

The correct choice for Aµ to make this work is

Ai = −εij
rj
r2
f(r) , A0 = εij

virj
r2

f(r) , or Aµ = εµνα
vνrα

r2
f(r) . (2.14)

Note that εµναv
νrα/r2 is the derivative of the θA field around an isolated string θ str

A . In other
words, our choice for Aµ(x) is Aµ(x) = f(r)∂µθ

str
A (x). Therefore

ενµα∂µAα = ενµα
(
f(r)∂µ∂αθ

str
A + [∂µf(r)]∂αθ

str
A

)
. (2.15)

The first term vanishes by antisymmetry/symmetry on the indices µ, α, while a little work
and the relation ∂rf(r) = −rg(r) confirms that the second term reproduces eq. (2.13).

So the electromagnetic theory with smeared charges with smearing charge density g(r)
is equivalent to the theory of angles with ∂µθA replaced by DµθA = ∂µθA − Aµ and Aµ given
in eq. (2.14). The relation between the charge density g(r) and the modifier function f(r) is
f(r) =

∫
r yg(y) dy or f ′(r) = −rg(r).

Now we turn to the string’s motion. The total Lagrangian for the system should be
L = Lstr +

∫
d3x LθA , with Lstr = −M

√
1− v2 the standard Lagrangian for a relativistic

massive point particle. Varying with respect to the string’s position, one finds

∂t

(
Mvi√
1− v2

)
= Fi , (2.16)

where the force arises from the dependence of LθA on the string’s location. We find the
expected Lorentz force law,

Fµ =

∫
d2x ρ(x)Fµν(x)vν (2.17)

with space component

Fi =

∫
d2x ρ(x) (Ei + εijvjB) = f2

a

∫
d2x g(|x− y|) (εijDjθA + εijvjDtθA) . (2.18)

The time component F0 determines how fast the string and the field exchange energy. The
form of eq. (2.17) ensures that F 0 = viFi as expected.

Let us pause to interpret these equations and in particular the role of Aµ. Far from a
string, Aµ = 0 and the equations of motion are as usual, ∂µ∂

µθA = 0. But near the center of
the charge ball, where f(r) ' 1, the Aµ term cancels ∂µθA provided that θA takes the form
of the field near a string core, θA = θ str

A . So the energy is minimized by having θA ' θ str
A in

the interior. In particular, this forces a singularity onto θA at r = 0; the energy is only finite
when θA possesses this singularity. In other words, when θA takes the cosmic-string form, the
gradient energies associated with its spacetime variation at distances r < r0 are cut off, and
associated instead with the explicit string mass.

We need to choose M such that it incorporates the energy in the string from all scales
r < r0, where the |DiθA|2 terms have been cut off. According to eq. (1.4), the string’s energy

(per length in 3+1D) is f2
aπ
∫ H−1

1/ms
dr/r. The θA field gradients will capture the f2

aπ
∫ H−1

r0
dr/r

– 7 –
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part of this energy, so the mass M is required to capture the rest: M = πf2
a

∫ r0
1/ms

dr/r =

πf2
a ln(r0ms). We can think of this as a matching condition that the charge-ball treatment

correctly captures the energy and inertia of the string.
When there are more than one string, each string responds to the θA field gradients

caused by the other strings’ presence, which induces inter-string interactions. Because the
analogy to the electromagnetic theory is exact, these interactions are the same as the electro-
magnetic forces between charge balls. Since the theory is relativistic and has radiation fields,
orbitally bound pairs of (oppositely-charged) strings tend to inspiral and annihilate. How-
ever, under the charge-ball description we have built, this inspiral will not proceed correctly.
While strings at separation R > 2r0 feel the usual Coulomb force between point charges,
~Fpt.chg = ±2πf2

a
~R/R2 (in the nonrelativistic limit), when the charges get close together, the

balls overlap and the strength of the interaction is reduced. It is important to re-introduce
the missing Coulombic interaction, lost due to the overlap of the charge balls. Otherwise,
the charges’ inspiral and annihilation will not proceed. Define h(R) as the fraction by which
the Coulomb interaction of overlapping balls is smaller than that between point charges:

h(R) =
|Fpt.chg| − |Fball.chg|

|Fpt.chg|
. (2.19)

Then we should add an explicit force between nearby charges, of magnitude h(R)Fpt.chg. This
procedure is not exact; it is only correct in the nonrelativistic limit. But this is actually a good
approximation for large M/f2

a , and in any case we only need to include the short-distance
interactions roughly to ensure that the inspiral and annihilation proceeds.

When the strings pass nearer still, the replacement of point charges with balls also
reduces their tendency to radiate, which requires an added radiation-reaction force. We
discuss this radiation-reaction force in more detail in appendix A. With both forces included,
we at least semi-quantitatively reproduce the physics of inspiral and annihilation.

Note however that if radiation is included by a radiation-reaction force rather than by
explicit interactions with the θA field, the radiated energy and any associated axion number
is lost to the system. This is a problem if our goal is to track the total energy in the θA field,
but not if our goal is to determine the number of axions. The strings’ mass-energy 2M is
liberated by the inspiral process at small separation, with equal energy released in each equal
logarithmic range of wave number. However, the axion number associated with an excitation
of energy E and wave-number k is nax = E/ωk ' E/k, which becomes insignificant at large
k. Therefore, from the point of view of tracking axion number in the 2+1D theory, it is not
important to account for radiation after a binary pair of strings becomes tightly bound.

3 Lattice implementation

Now we present an implementation of these particle-in-cell equations on the lattice. The
possibility of such an implementation is a key result of this paper. But readers who are not
interested in such details can skip this section. We define the field θA on the sites of a 2D
square lattice with spacing a, while the strings are taken to have continuous positions. Time
must also be discretized, with spacing δa, δ � 1. On each lattice link we define DiθA as

DiθA(x) = θA(x+ aî)− θA(x)−Ai(x) , (3.1)

and on the temporal link we define

D0θA(x, t) = θA(x, t+ δa)− θA(x, t)−A0(x, t) . (3.2)
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Figure 3. The angles φ(x, i, xs), left, and φ(x, xs, vs), right.

The standard meaning for these derivatives would include additional factors of 1/a and 1/δa.
Note that DiθA(x) really “lives” at x + aî/2 halfway along the link, while D0θA(x, t) really
“lives” at time (t+ δa/2). Also, the DµθA are only defined modulo 2π; we always take them5

in the interval [−π, π]. The field update rule is

D0θA(x, t) =
(t− δa/2)2

(t+ δa/2)2
D0θA(x, t− δa) (3.3)

+
t2δ2

(t+ δa/2)2

a2χ(T )

f2
a

sin θA +
∑
i=1,2

(
DiθA(x, t)−DiθA(x− aî, t)

) .
The factors of t2, (t± δa/2)2 incorporate Hubble expansion; the power 2 is because we are in
conformal time in a radiation dominated universe.6 We store θA(x, t) and D0θA and perform
this update by evaluating DiθA on each link. The lattice definition of Ai(x) is

Ai(x) =
∑

strings

±f(|x+ aî/2− xs|)φ(x, i, xs) ,

φ(x, i, xs) = atan
(x+ aî− xs)y
(x+ aî− xs)x

− atan
(x− xs)y
(x− xs)x

. (3.4)

That is, φ(x, i, xs) is the angle subtended by the link from x to x+ aî as seen by the string
at point xs, as illustrated in figure 3.

The angle φ(x, i, xs) is the geometrical interpretation of
∫ x+âi
x (−εijrj/r2)dx along the

length of the link. Note that we evaluate f(r) using the separation between the string’s
position xs and the center of the link. In practice we find Aµ by performing a single loop
over all strings with a nested loop over sites or links within a 2r0 × 2r0 box around each
string. Therefore the algorithm scales linearly with system volume — though the numerical
cost of finding Aµ scales as (r0/a)2 and dominates the numerical costs at early times when
there are still many strings.

5Numerically, we implement both as integers; θA ∈ [0, 229) are unsigned and DµθA ∈ [−228, 228) are signed,
with bit masks used to enforce periodicity.

6Using conformal coordinates has two other effects. First, χ(T )/f2
a = m2

a must be rescaled into conformal
coordinates. If χ(T ) ∝ T−n in physical units, then in conformal coordinates a2χ(T )/f2

a ∝ T−n−2 ∝ tn+2. We
return to this point at the start of section 4. Second, the string mass M = πκ = π ln(far0). Now fa is fixed
in physical units, but we keep r0 fixed in comoving lattice units. Therefore M should slowly increase with
time, t∂tM = π. The change over the physically interesting part of the evolution (roughly, t = t∗ to t = 3t∗)
is small, and we have neglected this effect in this explorative study.
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The value of A0(x, t) can be evaluated after we have determined how the string will
move between t and t+ δa. Defining the string velocity between times t and (t+ δa) as vs(t),
the value of A0(x, t) is

A0(x, t) =
∑

strings

±f(x− xs − δavs/2)φ(x, xs, vs) ,

φ(x, xs, vs) = atan
(x− xs − vsδa)y
(x− xs − vsδa)x

− atan
(x− xs)y
(x− xs)x

(3.5)

where φ is the angle change of the charge as it moves from xs to xs + vsδa, as seen from
the lattice site, also illustrated in figure 3. Again, this is the geometrical interpretation of∫ t+δa
t (εijvirj/r

2)dt. Here xs and vs are both evaluated at t, so g(r) uses the separation at
time t+ δa/2.

We will scale out the overall f2
a factor and write M = πκ a pure number. The string’s

trajectory is determined by

xs(t+ δa) = xs(t) + δavs(t) , (3.6)

Mvs(t)√
1− v2

s(t)
=

(
t− δa/2
t+ δa/2

)2 Mvs(t− δa)√
1− v2

s(t− δa)
+

(
t

t+ δa/2

)2

δa(FE(t) + FB(t)) , (3.7)

±Fi,E(t) =
∑
x,j

εijg(|x+ aĵ/2− xs|)DjθA(x) , (3.8)

±2Fi,B(t) =
(t− δa/2)2

δt2

∑
x,j

εijvs,j(t− δa)g(|x− xs + vs(t− δt)/2|)D0θA(x, t− δa)

+
(t+ δa/2)2

δt2

∑
x,j

εijvs,j(t)g(|x− xs − vs(t)/2|)D0θA(x, t) . (3.9)

The two components of the force are the electric force, from space gradients of θA, and the
magnetic force, from its time derivatives. The one subtlety is that vs,ig(. . .) in the last line
depends on the final velocity, which we don’t know until we have computed it. The update
is therefore implicit. We handle this by making an initial guess for vs(t) based on a linear
trajectory, using it to evaluate the final magnetic force term, and iteratively re-substituting
the determined vs to recompute the magnetic force. The iteration converges by a factor of
δ/M ∼ 10−3 per repetition. A0(x, t) and therefore θA(x, t+ δa) are only evaluated after vs(t)
has been found.

To include the explicit forces between strings with separation R < 2r0, we sort strings
into boxes 2r0 on a side and search for nearby strings by comparing all string pairs in the
same or neighboring (direct or diagonal) boxes. This approach keeps the algorithm linear in
system volume. For each nearby string pair, we apply an inter-string force of ±2πh(R)Ri/R

2,
with h(R) defined in eq. (2.19). When strings pass even closer, with separation ∼ vsr0, the
radiative energy losses are not fully included, and we include a radiative reaction force, as
motivated in appendix A. Lastly, we assume that any pair of strings which get closer than
a distance rmin � a will annihilate, and rather than following their final inspiral we remove
them from the simulation. When annihilating a pair of strings, we add a contribution to
eq. (3.5) where φ(x, xs, vs) is the angle difference, as seen from the lattice site, between the
two strings which will annihilate. This is the same as incorporating the shifts to the θA fields
which would occur from sliding one string on top of the other before removing them from the

– 10 –



J
C
A
P
0
5
(
2
0
1
6
)
0
0
5

simulation. This prevents an unphysical “kick” to the fields when the strings annihilate and
is especially important when the annihilating strings happen to be very close to a lattice site.

Our choice for initial condition is to draw θA ∈ [0, 2π] randomly at each lattice site, and
then to apply a few steps of checkerboard nearest-neighbor smearing.7 We identify vortices
in the θA field using the algorithm presented in our previous paper [20], and place a string at
the center of each square with such a vortex. Both D0θA and vs for all strings are initialized
to zero, and this initial condition is assumed to apply at a time ti ≥ 0. The specifics of the
initial conditions should not be too important since the network should converge towards a
scaling solution; we discuss this more in appendix B.

It is possible for the θA field to have a vortex which is not associated with a string, or
for a string to be far from any corresponding vortex or opposite-sign string. In each case
this would reflect a misidentification of where strings should be based on the θA field; either
a string is missing, or an extra string was included. That is, such errors occur when there
is a failure in our initial conditions to make the strings and θA-field vortices coincide. This
occurs, at a low rate, if we use 0 or 1 checkerboard smearings; it is exceedingly rare when we
use more. We handle it by occasionally identifying these “missing” or “orphan” strings, and
inserting or deleting them. All errors are caught at early times, and this operation should be
interpreted as part of the initial condition setting algorithm.

4 Numerical results in 2+1 dimensions

It is necessary in any lattice study to ensure that the lattice regulation is not influencing
the results. Therefore the first thing to check is that the (unphysical) parameters of the
lattice setup do not influence results at sufficiently large scales and late times. The relevant
parameters are δ, rmin, r0/a, and the specifics of our initial conditions choice. We leave
the details of these checks to appendix B. Instead we check first what the scaling solution
looks like, without the tilted potential but for different values of M . Then we solve for axion
production in the case where eq. (1.2) is present and χ(T ) ∝ T−7, close to the value expected
from instanton liquid models [29]. That means that the physical axion mass scales with
conformal time as ma,phys ∝ t7/2; but the conformal mass (the oscillation rate of the field in
terms of conformal time) scales as one more power, mat∗ = (t/t∗)

9/2 (which defines the scale
t∗ where the mass starts to play a role).

As we will see, there is a complication. For the case where the axion mass turns on with
time, the string pairs cease annihilating and instead stay in tightly bound but surprisingly
long-lived “atoms.” In the end, we will have to make analytical estimates for the late-time
axion production from these pairs, and cut them out from the simulation, to get the final
axion number produced.

4.1 Scaling solution

First we look at string networks without tilting the potential, that is, keeping ma = 0. Our
goal is to see that the scaling solution exists, and to find the scaling of string density and
velocity with M .

To do so we perform simulations at a range of masses from M = 10 to M = 600. As
initial conditions we use 2 checkerboard smearing steps and an initial time ti between 20 and

7One checkerboard step is to replace θA(x) on all “odd-checkerboard” sites with the average θA value of the
4 nearest neighbors, defined as the unit-circle projected position of the centroid of the neighbor-θA positions
on the unit circle. The next checkerboard update changes the even-checkerboard sites.
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Figure 4. Density of strings (left) and mean kinetic energy in strings (right) as a function of the
string mass M , at time t = 1024 in lattice units. The red line on the left shows (M + 15)3/2 behavior.

60, with larger values for larger M so that the string density starts near its scaling limit. We
read out the string density at a final time t = 1024a (t = 2048a for the largest M value).
Other parameters are set as described in appendix B.

Figure 4 shows the dependence of the string density and string velocity (plotted as
Mv2/2) on M . In our first paper [20] we make a parametric argument that Mv2 should be
nearly M independent, and that the string density should scale as M1. We see that the first
prediction is broadly correct. However, for the smallest M values, much of the string’s energy
resides in gradients in the θA field which are not included in the value of M . Therefore it is
(M + π ln(rsep/r0))v2, and not Mv2, which should be approximately constant. Here rsep is
the mean inter-string separation. This explains why the smallest M values do not follow the
expected trend. But for large M values, where the scaling argument should be more secure,
the behavior is as expected.

On the other hand, the string density definitely does not scale linearly with the string
mass M . Instead it rises as a larger power, roughly M3/2. The red curve in the figure
illustrates (M + 15)3/2 behavior, with 15 ∼ π ln(rsep/r0). This is clearly a much better fit
than a straight line. We believe that this difference is because the argument in [20] assumed
that the most numerous strings are those which have not become bound into tight orbital
pairs. It estimated the density of such strings based on the time scale for two strings to get
close to each other, and then simply assumed that they will quickly annihilate. But we show
in appendix A that this is not so; the time it takes a bound pair of strings to inspiral and
annihilate is tinspiral ∼ RM3/2. Assuming R ∼ tM−1/2 as in the scaling solution in [20], the
inspiral time is ∼ tM , long compared to the system age. Therefore the inspiral process takes
much longer than the process for strings to find each other, and most strings at any time are
those which have bound off in pairs and are inspiraling, not strings “at large” as we assumed
in [20]. This behavior is clear on visual inspection of the location of strings in a simulation:
as an example, we plot the string locations for part of the volume of an M = 400 run at
t = 1024a in figure 5. Tightly bound string pairs obey a Virial relation, Mv2 = π, as shown
in the appendix. And indeed, in the inset of figure 4 it appears that Mv2/2 asymptotes to
∼ 1.4, somewhat below but in reasonable agreement with this relation.
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Figure 5. Location of positive (black triangles) and negative (red squares) strings in space: left, for
an M = 400 simulation with no axion mass (untilted potential), and right, for an M = 200 simulation
with a tilted potential at time t = 3t∗. On the left, most strings are in associated pairs; at right, they
all are, and the pairs are tighter.

The situation here is loosely analogous to what we expect in 3+1 dimensions. Strings
which have not bound off into pairs are analogous to long strings, and the tightly bound
pairs are like string loops. For small M , radiation and inter-string attraction are important,
and string loops decay rapidly via radiation — or pairs spiral in quickly in 2+1 dimensions.
But for large M , radiation is inefficient, and loops can persist for a long time. Therefore the
relative importance of loops (bound pairs in 2+1D) increases with increasing M .

4.2 Axion production

Next we turn to axion production. Following our previous work [20], we take χ(T ) to vary
with temperature as χ(T ) ∝ T−7, in which case the sin θA term in eq. (3.3) should scale with
conformal time as t9. We define t∗ as the time such that mat∗ = 1, and we evaluate axion
number at late time and match it to the adiabatic behavior under Hubble expansion (scaling
out fa factors):

nax =
1

2

∫
d3k

(2π)3

(√
k2 +m2

a〈θ2
A〉+

〈(∂tθA)2〉√
k2 +m2

a

)

' Kt∗
t2

for t� t∗ . (4.1)

As a baseline, the value of K for the case where θA is uniform and we average over the possible
angle choices is K = 16. Our fields-only simulations implied K ' 9, valid in 2+1D for the
small κ ∼ 8 we could achieve. In 3+1D with κ ∼ 6, fields-only simulations gave K ' 8.

It appears straightforward to determine K as a function of M in our 2+1D simulations.
There is one problem, however. The axion number should be measured at late times when
all strings have annihilated and the fluctuations in the θA field are perturbative. This is the
condition that nax be an adiabatic invariant, which we rely on to relate the determined value
to the value later in the history of the Universe. This works fine for small values of M .
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Figure 6. String density (left) and mean string velocity (right) as the effects of ma and the associated
domain walls come to be felt. The string velocity increases, and for small M the string density falls;
but for large M the string density rises relative to the expected t−2 behavior which would occur in
the absence of ma (that is, if the potential did not tilt).

Indeed, in our fields-only study, we found that the strings annihilate away by around t = 3t∗.
But for larger values of M which we can now study, such as the value M ' π ln(fa/H) ∼ 200
which we argue is physically reasonable, the strings actually don’t annihilate away, or at least
they do so over a very long time scale. We illustrate this in figure 6, which shows the string
density (left) and string velocity (right) as a function of t/t∗, for a number of choices of M .
We have multiplied the string density by a factor of t2 to account for its scaling behavior,
and by a factor of (M + 15)−3/2 to scale out the M -dependence found in the last subsection.
The figure shows that, at a time around t ' 1.8t∗ (somewhat larger for larger M), the strings
start to feel the added force from domain walls and pick up speed. This causes them to bind
off into much tighter string pairs. For small M values, the strings then annihilate. But for
large M , the density of strings actually falls more slowly than it would in the absence of a
potential for θA. That is, tilting the potential so the strings attract each other more strongly
actually reduces their tendency to annihilate. Therefore the curves in the figure, which are
scaled by t2 to compensate for the scaling behavior, rise. We show that the strings are in tight
pairs in the right image in figure 5, which shows part of a simulation for M = 200 at t = 3t∗.

The tilting of the potential causes domain walls which draw the strings together and
cause the increase in string velocity. But it also raises the minimum frequency of isolated ax-
ion oscillations. This creates a mismatch between the low orbital frequency of the string pair
and the higher minimum oscillation frequency of radiated axions, which can prevent dipole
radiation. Instead the orbital pair can only radiate at very high, and therefore inefficient,
multipole number. For large values M ∼ 200 which are relevant phenomenologically, we
cannot carry out a simulation long enough for all of the string pairs to annihilate. Therefore
we must find some procedure to estimate the axion number which will result when the string
pairs eventually do annihilate.

Let us investigate the evolution of a bound string pair in this regime, neglecting radiation
and scattering with any other axions present. We will also ignore the center of mass motion
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of a string pair, which is smaller than the relative motion and which redshifts away. The
potential between the strings is well approximated by

V (r) = 8mar − 2πE1(mr) (4.2)

with 8ma the domain wall tension and E1(mr) =
∫∞
r e−mxdx/x the potential for a screened

Coulomb interaction. We have verified this form numerically for static strings at fixed sepa-
ration and mar0 � 1. To simplify, we will neglect the Yukawa-like part of the potential and
approximate this as V (r) = 8mar. Under a linear potential of this form, the Virial relation
between potential and kinetic energies reads

〈V (r)〉 = 2〈Mv2〉 , (4.3)

where v is the velocity of a string with respect to the center of mass (half the relative
velocity), so Mv2 is the total kinetic energy of the pair. The energy evolves adiabatically as
the axion mass ma rises and as Hubble damping depletes the kinetic energy. In our comoving
coordinates,

dE

dt
=
dV

dt
+
d(Mv2)

dt
=

dma

madt
〈V 〉 − 4

t
〈Mv2〉 =

(
2

3

dma

madt
− 4

3t

)
E . (4.4)

We used that radiation-era Hubble damping gives dv/dt = −2v/t in conformal coordinates,
and in the last step we used the Virial relation. For comparison, the energy in long-wavelength
axionic fluctuations is scaling like

dEax.fluct

dt
=

(
dma

madt
− 2

t

)
Eax.fluct , (4.5)

where the first term is from the adiabatic growth of the axion mass and the second term is
from Hubble drag. Using dma/dt = 9ma/2t, we find that the energy in string pairs shrinks
relative to already-produced axions as

Epairs

Eax,fluct
∝ t−5/6 , (4.6)

so the string pairs grow less important with time. Therefore, the longer it takes for them to
radiate away their energy into axions, the smaller the produced axion number becomes.

We cannot follow the evolution past when maa > 1, and our description starts to break
down when mar0 > 1. We reach slightly larger times by reducing r0 near the end of the
simulation to keep mar0 ≤ 1, but we do not dare go beyond r0 = 2a for reasons discussed in
the appendix. So we need some technique to estimate how much of the energy in the strings
will convert into axion number. Our idea is to evolve the system as long as possible, and
then to remove the strings and domain walls from the simulation in a way which leaves some
of their energy behind, to capture the axion number which they would have produced. We
have tried two approaches:

1. When maa = 1/2 we remove all strings from the simulation and replace values of θA
close to π with smaller values as follows: for θA(x) ∈ [π/2, π] we apply θA → π − θA,
and for θA(x) ∈ [−π,−π/2] we apply θA → −π− θA. This keeps θA continuous and does
not change (∇θA)2, though it reduces the potential energy and destroys all topological
objects (which is the goal). We then evolve the fields until maa ≥ 1 so the further
evolution is completely adiabatic, and measure axion number.
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Figure 7. Illustration of how θA varies through a domain wall, and how each of our wall-chopping
procedures work. The dotted line indicates periodicity, θA = −π and θA = π are equivalent.

2. We remove strings as above, but we remove the domain walls in a way which eliminates
most of the energy they contain. We leave θA untouched in the range [−π/4, π/4]; in the
range [π/4, π/2] we apply θA → π/2−θA (and similar for negative values), and wherever
sin(θA) < 0 we replace θA with zero. This “cuts out” the cores of the domain walls in
a way which does not introduce any discontinuities in the θA field. This approach is
almost the same as removing the strings and domain walls entirely, on the assumption
that they will not produce any axions.

The first approach converts most of the domain-wall energy into axions, while the second
removes most of the domain-wall energy. They are illustrated in figure 7.

We can say something about which procedure is correct by seeing how the produced
axion number depends on the time tcut when the string-cutting is performed. We do this
by varying the scale tcut when the cutting is performed, holding everything else fixed. We
improve the sensitivity by correlating the statistical errors, using the same random number
seeds, so each tcut choice is applied to the same network simulations. The results are shown
in figure 8, where we have used 1/ma(tcut)t∗ as the x-axis. This is roughly the inverse of the
number of times the axion field oscillates and it indicates how adiabatic the axion oscillations
have become. To get closer to 0 in this variable requires tightening the lattice spacing, linearly
in this variable. We also plot what happens when we change the lattice spacing, or more
precisely, when we vary t∗/a, keeping ma(tcut)a fixed. This tests the same physics, but
with added contamination of lattice-spacing (finite r0/t∗) artifacts at the largest values. The
axion-number estimates from the two string-cutting methods move towards each other as we
postpone the cutting, albeit very slowly. It appears that the first/second method converge
from above/below, in which case we can use them as upper and lower systematic-error limits
on the actual axion production. The sensitivity to the string-cutting procedure is modest,
representing ∼ 15% of the axion production. But it will dominate over statistical errors and
it limits our ability to extract a final axion number density.

Finally, we explore the M dependence of the axion number production. Figure 9 shows
our results, which indicate a roughly linear rise with M in the axion production efficiency.
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Figure 8. Axion production efficiency for M = 200 as a function of when the strings/walls are cut
from the simulation. The upper (black) points are cutting procedure 1, the lower (red) points are
procedure 2. Left: t∗/a = 600, varying the time tcut when the strings are cut. Right: varying the
lattice spacing t∗/a, always cutting at maa = 1/2.

Figure 9. M dependence of axion number production efficiency K. Upper (lower) curves are the
first (second) string-cutting procedure described in the text, and represent upper (lower) bounds on
the systematic error, due to the longevity of orbiting string pairs.
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For the physically relevant value M ' 200, we find K ∈ [17, 20]. The inclusion of large
string tension has roughly doubled the axion production efficiency, relative to the results
from fields-only simulations.

We postpone an interpretation of these results to the discussion section.

5 Extension to 3+1 dimensions

Suppose that we have an algorithm for evolving a Nambu-Goto string in 3+1 dimensions.
Several such algorithms already exist [30–34]. We will require an algorithm which describes
the string as a series of straight segments (or equivalently as a series of neighboring points, in
which case we take the segments to be the line segments connecting these points). Our goal
is to present an algorithm for implementing the interactions between these string segments
and the axion field.

Consider a string with affine parameter σ. The location and velocity of the string are
yi(σ, t) and vi(σ, t) = ∂tyi(σ, t) with v0 = 1, vi · y′i = 0, where y′i ≡ dyi/dσ. The latter is a
gauge choice, that the velocity is at right angles to the string’s extension. The action for the
string and the θA field around it have been nicely discussed by Dabholkar and Quashnock [19].
The string core should obey a Nambu-Goto action plus an interaction with the θA field as
follows. If we define the dual Kalb-Ramond [35, 36] field strength

Hµνα = +faεµναβ∂
βθA (5.1)

then H feels a current from the string,

∂µH
µαβ = jαβ , jµν(x) = −2πfa

∫
dσδ3(x− y(σ))(vµy

′
ν − y′µvν) , (5.2)

with y′ = dy/dσ. That is, just as in the 2+1 dimensional case, the string is responsible for
a δ-function contribution to the curl in ∂µθA which lies along the string’s extension. We will
again smear out the exact location of the Kalb-Ramond current,

jµν(x)→ −fa
2

∫
dσg3(x− yi(σ))(vµy

′
ν − y′µvν) , (5.3)

where
∫
r2g3(r)dr = 1 so

∫
d3x g3(x) = 4π. Again we define f3(r) =

∫∞
r g3(r1)r2

1dr1, which
varies from 1 at small r to 0 for r > r0, and then revert to the θA-field description. The
derivative of the θA field should be modified to a covariant derivative

LθA = −f
2
a

2
DµθAD

µθA , DµθA(x) = ∂µθA(x)−Aµ(x) , (5.4)

Aµ(x) =

∫
dσεµναβ

vνrαy
′
β

2r3
f3(r) (5.5)

with ri = xi − yi(σ). The force per unit σ acting on the string is

dFµ(y) =
f2
a

2

∫
d3x g3(r)εµναβvνy

′
βDαθA (5.6)

which must be incorporated into the string’s equation of motion. The usual equation of
motion [37], defining

ε ≡ µ

√
(y′)2

1− (∂ty)2
, (5.7)
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is modified to
(H + ∂t)(ε∂tyi) = ∂σ(µ2ε−1y′i) + dFi . (5.8)

Here µ = πf2
aκ is the string tension, which plays the role of M in the 2+1 dimensional theory.

Again eq. (5.6) automatically ensures that ∂tε = dF 0 = vidFi, and eq. (5.8) becomes

∂2
t yi = −H∂tyi +

µ2

ε
∂σ(ε−1y′i) +

(δij − vivj)
ε

dFj . (5.9)

The (δij−vivj) term is the usual relativistic reduction of the acceleration along the direction
of motion.

The special case in which θA is z-independent and all strings stretch strictly in the z-
direction is equivalent to the 2+1D smeared-charge theory we previously presented, after
identifying g(r) = 1

2

∫
dzg3(

√
r2 + z2).

The lattice implementation is as follows. The string must be considered as a series of
short segments. The b’th segment has a basepoint yib and an extent sib = yib+1 − yib, which
plays the role of y′. Eq. (5.6) for a string segment is found by summing over all links close
to a segment, using r in g3(r) as the distance from the center of the link to the center of the
string segment and replacing y′b with sb. And

Aµ(x) =
∑
b

f3(r)
φ(x, yb, sb, µ)

2
. (5.10)

Here r is evaluated as the distance between the midpoint of the string segment and the
midpoint of the lattice link for µ = i, and as the distance from the lattice point to the middle
of the string segment halfway between time t and t+ δa for the µ = 0 case. And φ is a solid
angle which is determined as follows. For µ = j it is the solid angle swept out by the string
segment as one changes perspective by sliding along the lattice link. Equivalently, it is the
solid angle, as seen from the base point x of the link, of the parallelogram with corners ~yb,
~yb+1, ~yb+1 − aĵ, and ~yb − aĵ. For µ = 0 it is the solid angle swept out by the motion of the
string segment from time t to time t+ δa, as seen from the lattice site.

It is clear that the lattice part of the update can be accomplished without much more
difficulty than in the 2+1D case (though of course 3+1D simulations will be much more
expensive numerically). It is not clear to us how best to implement eq. (5.9), but we believe
that it should be possible to modify known Nambu-Goto algorithms to incorporate the force
term. Nor is it clear to us, at present, whether it will be necessary to include explicit
short-range inter-string interactions and radiation-reaction effects like the ones we used in
the 2+1D theory. It is also necessary to keep track of when string segments intersect, since
global strings are generally expected to intercommute [38].

6 Discussion

Axions present a well motivated dark matter candidate. With the additional assumption
that PQ symmetry is restored in the early Universe, the model should be predictive in the
sense that there should be a clean relation between the axion mass and the axion dark matter
abundance.

The main stumbling block to finding this relation is the efficiency of axion production.
This is hard to determine because it depends on the behavior of axionic strings, and the
string dynamics are sensitive to the string tension, which varies logarithmically with the ratio
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fa/H. In nature (assuming axions exist) the ratio is ∼ 1030, while in fields-only numerical
simulations it is ≤ 103.

We have presented a new algorithm for solving this problem, by treating the string
cores as additional explicit objects in a simulation of the axion field. We have presented,
implemented, and studied this method in 2+1 dimensional space, and we have shown how it
could be extended to 3+1 dimensions.

The axionic string networks in 2+1 dimensions are sensitive to the logarithm κ ≡
ln(fa/H), with the density of strings rising roughly as κ3/2 and the axion production increas-
ing linearly with κ. Unfortunately, the physics of the strings which leads to this behavior
does not look very much like the string network dynamics we would expect in 3+1 dimen-
sions. The strings bind into long-lived orbital pairs, which are actually longer-lived and more
numerous when the potential “tilts” than for the case with no explicit U(1) symmetry break-
ing. The longevity of these systems is partly because it is difficult to radiate massive axion
excitations, and partly because they are nonrelativistic.

In 3+1 dimensions, we expect that increasing κ will lead to a denser string network which
will produce more loops. Also, since strings radiate less efficiently, the loops can be longer-
lived. But the motion of a string in 3+1 dimensions is generically relativistic, due to string
tension effects. So 3+1D string loops should radiate much more effectively than the bound
string pairs of the 2+1D system. As the explicit symmetry breaking becomes important, the
long strings should strongly attract each other and annihilate or fragment into loops. So at,
say, t = 3t∗, we expect 3+1D simulations to contain axions and small string loops.

It is possible that these loops will be long-lived, as their ability to radiate away their
energy may be sufficiently suppressed because of the axion mass. So consider the case where
they lose no energy to radiation of axions. In this case their energy density dilutes under
Hubble expansion as a−3, like matter. But the axions dilute like a−3ma, and ma ∝ T−7/2 ∝
a7/2 so long as the axion mass remains temperature dependent. Then the energy stored in
string loops dilutes away relative to already-produced axions as t−7/2, a much stronger power
than eq. (4.6). Relative to our 2+1D simulations, any long-lived string structures should not
play much of a role in 3+1 dimensions. Radiation from strings might still be important in
3+1D, even more important than in 2+1D, because of another difference. In 2+1D, almost
all of a string’s energy is always lost in the “final inspiral” to very short-wavelength axions
with essentially no axion number. In 3+1D, cusps, bends, and waves along strings can turn
string tension into axions, and a bigger fraction of the string network’s energy may go into
long-wavelength radiation.

For completeness we will update our results on the implied axion mass from [20], as-
suming that the axion production efficiency in 2+1D is the right one for the physical case
of 3+1D. Taking the production efficiency to be K = 19 (between the upper and lower esti-
mates for M = 200 in figure 9), and applying eq. (5.1)–(5.5) of [20], we find T∗ = 1.72GeV,
fa = 1.6 × 1011GeV, and ma = 36µeV. However, our discussion of the differences between
the 2+1D and 3+1D cases gives us little confidence that the axion production efficiency in
2+1D is the same as in 3+1D. It is not even clear to us whether to expect the 3+1D axion
production to be larger or smaller. What we have learned is that increasing the string ten-
sion really does increase axion production. But the above results can only serve as a crude
guideline, not a real calculation.

It should be clear that 3+1 dimensional simulations, with strings as explicit objects
which couple to θA fields, are needed. We have presented a nearly-complete algorithm for
performing such simulations. The numerical effort to study the 3+1 dimensional problem
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will be much (∼ 103×) larger than what was required here, but all of the results in this paper
were generated in a few weeks on a single laptop, so 3+1D studies should be feasible.
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A Charge inspiral

In the main text we need to know how efficiently a pair of vortices lose energy when they
become bound to each other. This is equivalent to asking how an isolated, bound pair of
electric charges in 2+1 dimensional electrodynamics radiates away energy. This is important
both for understanding what to expect when charges get close together, and for adding
explicit radiation when the charges are very close and we must incorporate radiation explicitly
to account for its suppression due to a form-factor arising from the way we spread the charge
into a ball. Unfortunately, there is no Larmor formula for radiated power in 2+1 dimensional
electrodynamics, nor is there an Abraham-Lorentz expression for the radiation-reaction force.
The reason is that Huygens’ principle does not apply in 2+1 dimensions; the 4-vector field
due to a charge is not determined by the 4-currents on the backwards light-cone of the field
point, but by all 4-currents inside the light-cone.

We will first solve for the motion ignoring radiation and relativistic corrections. We
will use this solution to determine the radiated power, and use it to determine how the
charges must inspiral. For simplicity we will only solve for the case of a nearly-circular orbit.
We find that the orbital velocity is constant and the charges follow an exponential spiral.
Throughout, we scale out the irrelevant overall factors of fa.

Consider two charges with q = ±2π and charge separation R, so they are each r = R/2
away from the common center of mass. They each have mass M and an attractive force
of strength 2π/R acts between them. Therefore, neglecting radiation reaction, they should
follow circular orbits with velocity and frequency

π

r
= F =

Mv2

r
⇒ v =

√
π/M , ω = v/r =

√
π/Mr . (A.1)

To find the associated radiation power, we consider the 2+1D theory as the same as the 3+1D
theory with infinite line charges. We need to compute the far-field Liénard-Wiechert potential
arising from the current-per-length of each charge. The charges have opposite current-per-
length, each 2πv, so the Aφ potential at a distance d� 1/ω from the charge pair is

Aφ(d) =
2× 2πv

4π
Re

∫ ∞
−∞

d`√
d2 + `2

eiv
√
d2+`2/re−iωt (A.2)

where ` is the distance along the (fictitious) 3’rd direction. The phase factor here is just the re-
tarded phase e−iω(t−D) with the source distance D =

√
d2 + `2. Expanding in large d, we find

Aφ(d) = vRe

∫ ∞
−∞

d`

d
e−iωt+ivd/re

iv`2

2dr =
v

d
Re ei...

√
2πdr

v
= cos(. . .)

√
2πvr

d
. (A.3)
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The wave number is k = ω = v/r and B = kA. The power carried away by the wave is

P = 2πd
E2 +B2

2
= 2πdB2 = πdk2A2

φ,peak (A.4)

where the lost 2 is the average of the cos2. Substituting,

P =
πdv2

r2

2πvr

d
=

2π2v3

r
. (A.5)

This power is to be compared to the potential

V =
q2

2π
ln(2r) = 2π ln(2r) . (A.6)

Here 2r = R is the separation of the charges. The value of r must evolve such that the power
is the time derivative of the potential:

2π2v3

r
=
dV

dt
=

2π

r

dr

dt
. (A.7)

We can then find vr = dr/dt and the time for the inspiral to complete:

dr

dt
= −πv3 , tinspiral =

r

dr/dt
=

r

πv3
=
rM3/2

π5/2
=
RM3/2

2π5/2
. (A.8)

The angle of the inspiral is fixed,

sin θinspiral ≡
−vr
vφ

=
πv3

v
=
π2

M
=
π

κ
. (A.9)

We have tested this description against the actual behavior of our code, for pairs of charges
alone in a large box at separations r > r0 but r � Na the lattice size, and found good
agreement.

Note that the inspiral process gives rise to an equal amount of energy in each logarithmic
interval in frequency. Almost all of the charges’ energy is released into extremely short
wavelength fields, which carry very little axion number per unit energy. Therefore, once the
charge separation has become smaller than the resolution scale of a simulation, it is safe to
ignore the axion number produced by the subsequent inspiral, even though the energy release
represents most of the energy present in the strings.

We have not solved for the case of a highly noncircular orbit, but we performed nu-
merical experiments which suggest that the radiation-reaction force near the charges’ closest
passage is

Frad.react. ' −
π3

Mr
v̂ , (A.10)

which for the case of circular motion coincides with F = −π2|v|~v/r as one would guess from
eq. (A.5) (remembering that half the power is radiated from each charge). When the charges
are far from closest approach, we find that the reactive force falls below the above estimate.

Generally the radiation-reaction force arises automatically from the coupling between
the charges and the electromagnetic (θA) field. But in our lattice implementation we replace
point charges with finite-sized charge balls. Any radiation with wavelength satisfying kr0 ≤ 1
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is suppressed, since the current Qv is replaced by v
∫
y ρ(y)ei

~k·~y. Phase cancellation in this
integral results in a form-factor suppressing the coupling to the radiative part of the θA field.
Therefore we need to add a radiation-reactive force explicitly whenever the charges get so
close that this effect suppresses their radiation. Failing to do so results in charges which
stop inspiraling once they get sufficiently close. It is not necessary to include this effect with
high precision, since it primarily affects strings which are about to annihilate; but we should
include it to ensure that the annihilation really occurs. We do so by applying a reactive
force equal to eq. (A.10) times f(2vR/r0), a crude estimate of the squared form factor. We
could estimate the form-factor more accurately, but we have not done so because eq. (A.10)
is already only an estimate.

The efficiency of radiation changes fundamentally if the axion mass is turned on. In
this case, for an axion mass ma, the radiation is suppressed whenever ω < ma, which for a
circular orbit is when r < v/ma or mar < v. This is different from mar < 1, the criterion that
the potential is significantly changed from the log form. For large M , radiation is suppressed
even for charges far too close together for any “domain wall”-like behavior in their interaction
energy. We have not found a good way to compute the radiated power in this case, but nu-
merical experiments show that the suppression is severe and radiative energy loss essentially
does not happen. We believe that this is a peculiarity of the 2+1D approximation which
should be much less severe in 3+1D, where the string velocities will always be relativistic.

B Checks and tests

Our numerical implementation contains several parameters, such as δ, r0/a, rmin, and the
initial time ti and amount of smearing used in the initial conditions. We have to ensure
that there is some range for each parameter where we get continuum-like behavior, and
determine at what time scale we achieve the scaling solution for the defect network. Our
goal is results for the final axion number produced with few-percent systematic sensitivity to
our implementation.

Let us start with δ and rmin, the temporal step and the separation at which strings are
taken to annihilate. Physically we want the limit where both go to zero, but numerically this
is impractical. The bare minimum value for δ is set by the smaller of the Courant condition
for the lattice field update, δ2 < 1/2, and the Courant condition8 for the last steps of the
inspiral of annihilating strings, δ2 < Mr2

min/π. Also, our radiation-reaction method ceases to
be energy-reducing when the separation approaches rmin unless δ2 < Mr2

min/(2π). It is less
clear what the requirements on rmin are. The larger the value of rmin, the more violent the
process of removing two strings becomes; we also lose some radiation from the final inspiral
if rmin > vr0.

We investigate rmin first. We fix δ = 1/20 to be small, and consider M = 200 (corre-
sponding to κ = 64, around the physical value), 10 passes of checkerboard field smearing in
the initial conditions, ti = 0, and r0 = 4a, which we will later see is more than sufficient. We
then consider the density of strings and the energy components in the θA field (without any
tilt to the potential) for several values of rmin.

8By the Courant condition we mean the δ-value beyond which some lattice mode or some pairing of strings
will undergo oscillatory growth rather than stable evolution. Violating the condition for strings makes it
difficult or impossible for pairs to annihilate; violating it for the fields leads to exponentially growing energy
and fluctuations.
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Figure 10. The dependence of vortex number (left) and scaled energy densities (right) on the cutoff
separation where strings are taken to annihilate. The largest values show clear deviation, but for
rmin = 0.15a and smaller the differences are negligible.

The results are shown in figure 10. We used the same random number seed for each rmin

value, so the fluctuations in different curves are highly correlated and it is easier to see small
differences over statistical noise. We plot the number of vortices in the θA field, rather than
the number of strings, because once the strings get closer than ∼ a/2 the associated vortices
disappear, but different rmin values will consider the string pair to still exist for different
lengths of time as they inspiral. Therefore the number of vortices avoids a trivial reason for
the string counts to differ. We also compare the energy content in (DiθA)2 (gradient energy)
and (D0θA)2 (kinetic energy). It is clear from the figure that too large a value of rmin causes
strings to annihilate too soon, lowering the string density and also reducing the amount of
field energy radiated before the strings annihilate. On the other hand, smaller values clearly
approach a good limit. We will use rmin = 0.1, since smaller values increase numerical cost
without any clear benefit.

Fixing to rmin = 0.1, we now consider δ, the temporal spacing. The results are shown in
figure 11. Except for the coarsest temporal spacings, the value of δ is strikingly unimportant.
This is good, as numerical cost scales as 1/δ. We conservatively choose δ = 1/6 for all other
studies, which should keep time-step errors below 1%.

Next consider the string core radius r0. For r0/a too small the strings do not have a
smooth interaction with the lattice θA fields. The gradient energy associated with a string will
have a short-distance contribution which is not translation-invariant, but depends on where
the string sits with respect to the lattice. We can investigate this directly by considering
lattices with two strings exactly halfway across the lattice from each other. We move around
their exact location with respect to the lattice sites, evolving the lattice fields dissipatively
to find the minimal-energy configuration for a given string location. The result is shown in
figure 12, which shows how the energy varies as the string is moved along a path through
the lattice. Values r0/a ∼ 1 show strong position dependence, which can interfere with the
string’s dynamics. In the units of the plot, a typical string kinetic energy is 2; so the energy
variation through the lattice can trap slower-moving strings so they stick near the center of
a lattice cell, rather than moving smoothly. For larger values r0 ≥ 3, the energy is a very
weak function of the exact location on the lattice. For r0 = 4a the variation is invisible in
the figure. For r0 = 2a it is accidentally small for this path.
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Figure 11. The dependence of string number (left) and scaled kinetic energy density (right) on the
temporal spacing δ, shown as a percent change for identical initial conditions between the results with
a given δ and the results with δ = 1/20. Both are within 1% for δ = 1/6 or smaller. Gradient energy
shows less sensitivity than kinetic energy.

Path A

Path B

Path C

Figure 12. Left: a path through a lattice cell, in three steps. Right: how the string tension (the
energy in the θA field gradients) varies as the string is moved along the path, for several values of the
charge-smearing parameter r0. Small values r0 < 1.6a give rise to strong position dependence in the
string’s energy.

As another probe of the impact of r0, we evolve a lattice with only two strings of opposite
charge, initially placed in a circular or elliptical orbit. This is a nice example of how orbital
inspiral occurs, and a test of our short-distance force and radiation additions. It also lets us
see how r0 affects string dynamics. Figure 13 shows the coordinate-space track of one from
a pair of inspiraling strings, evolved using several values of r0. The figure shows that, for the
smallest choice of r0 = 2a, the charges interact with the lattice in a way which occasionally,
abruptly, gives the system a net center-of-mass motion. This is clearly an artifact. Based on
the figure, we consider r0 = 3a to be the minimal acceptable value. Since the numerical cost
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Figure 13. The path of one from a pair of orbiting, inspiraling strings, initially in a circular orbit (left)
or an elliptical orbit (right). The different curves are for different choices of r0, the charge-smearing
radius. The values r0/a = 8 (black), 4 (blue), and 3 (green) are in good agreement; however, for 2
(red) the charges bounce off of inhomogeneities in their potential with respect to lattice position, and
the center of mass of the system takes on a net motion.

Figure 14. Dependence of axion production on r0 choice. For small r0 the strings get stuck and are
overdense, and axion production is large. For r0 > 2 there is a plateau, though the production falls
slowly with increasing r0.

to update the strings rises as r2
0 and since larger values make it more difficult to achieve the

small lattice-spacing limit, we will fix to this value in the following. The figure also illustrates
that elliptical orbits rapidly precess, which is expected for a 1/r force law or ln(1/r) potential.

As another cross-check on the role of r0, we also compute the axion number produced,
for the M = 200 case, as a function of the r0 value chosen. The result is plotted in figure 14.
The procedure is as described in the main text, and as in the main text, we try two different
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Figure 15. Dependence of scaled string density on the initial string density, determined by the
number of smearing steps and the initial time ti.

ways of addressing the strings which persist until late in the simulation: removing them
but leaving most of the energy in the domain walls connecting them, or removing them and
removing most energy in the domain walls. These are indicated with black and red points
respectively. The figure shows that, below r0 = 2a, the axion production rises steeply. For
larger values it falls gradually with increasing r0. Presumably this arises from effects where
the charged balls are not much smaller than the scale of structure, or because large charged
balls do not feel the right force strength when the domain walls become thin. If we make a
linear extrapolation of the r0 ≥ 3a data to r0 = 0, we find about a 10% increase in the axion
production efficiency K. We will treat this as a systematic error in the main text.

Finally, there is the amount of smearing we perform initially, which sets the initial
density of strings, and the starting time ti. These parameters can only affect how quickly
the network approaches scaling; at sufficiently late times we should converge onto the same
statistical ensemble of networks, possibly modulo short-range axionic fluctuations which carry
little axion number. To study this issue we performed a series of simulations of string
networks, using ti = 0 with various numbers of initial checkerboard smearings and using
2 initial checkerboard steps with various values of ti.

Figure 15 shows how the string density, scaled by a factor of t2/4 to coincide with the
scaling density ξ as defined in the literature,9 depends on the number of smearing steps and
on the initial time ti. If ti = 0 then the initial density is too low for any amount of smearing,
including zero. But with an appropriate choice of ti, we can reach the scaling solution rather
quickly. In every case the scaling solution is reached by the end of the simulation; the final
curves differ from each other by roughly the statistical errorbars (not shown for clarity),
and we have checked that the string density does not change significantly if we continue the
simulation to a larger time.

9ξ is defined as the string energy density, scaled by the string tension and the system age to form a
dimensionless quantity. The factor of 4 is because it is conventional to use time and not confrmal time; in the
radiation era there is a factor of 2 in the inter-relation. Since our strings are nonrelativistic, the number of
strings is essentially the same as the string energy divided by the tension.
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