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Abstract

In particle physics model building discrete symmetries are often invoked for phenomeno-
logical reasons, like forbidding unwanted or dangerous couplings, or explaining and repro-
ducing the matrices of masses and mixings of fermions in flavour physics. While these
discrete symmetries do their phenomenological job, they are poorly motivated at a funda-
mental level in the context of field theory. Moreover, there are arguments suggesting that
discrete global symmetries are expected to be violated in consistent theories of quantum
gravity; therefore, any exact symmetry of the theory should be gauge. This motivates the
study of discrete gauge symmetries in string theory, which is one of the most promising
candidates for a complete theory of quantum gravity. The goal of this thesis is to study
different mechanisms that give rise to discrete gauge symmetries in string theory, specially
in compactifications to four dimensions, although we also explore several generalisations,
like compactifications to a number of dimensions different from four, or supercritical string
theories.

Resumen

A la hora de construir modelos de f́ısica de part́ıculas a menudo se emplean simetŕıas discre-
tas por razones fenomenológicas, como prohibir acoplos indeseados o peligrosos, o explicar
y reproducir las matrices de masa y de mezcla de los fermiones en f́ısica del sabor. Si bien
cumplen con su labor fenomenológica, desde el punto de vista de teoŕıa de campos, estas
simetŕıas discretas no están suficientemente motivadas a un nivel fundamental. Además,
hay indicios de que en una teoŕıa cuántica que incluye también gravedad las simetŕıas glob-
ales (continuas o discretas) son violadas, por lo que las simetŕıas exactas de la naturaleza
debeŕıan ser simetŕıas locales o gauge. Esto motiva el estudio de las simetŕıas gauge, en
especial las discretas, en Teoŕıa de Cuerdas, la cual es una de las propuestas más promete-
doras para una teoŕıa completa de gravedad cuántica. El objetivo de esta tesis es estudiar
diversos mecanismos que llevan a la aparición de simentŕıas gauge discretas en teoŕıa de
cuerdas, principalmente en compactificaciones a cuatro dimensiones, aunque también se
exploran diversas generalizaciones, como compactificaciones a dimensiones diferentes de
cuatro, o en teoŕıa de cuerdas supercŕıticas.
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1
Motivación

El Modelo Estándar de f́ısica de part́ıculas es uno de los mayores éxitos de la f́ısica del siglo
pasado. Describe las part́ıculas elementales y sus interacciones fuertes y electrodébiles en
un amplio rango de enerǵıas.

El Modelo Estándar es una teoŕıa cuántica de campos basada en un grupo gauge

GSM “ SUp3q ˆ SUp2qL ˆ Up1qY , (1.1)

donde SUp3q describe las interacciones fuertes a través de la Cromodinámica Cuántica, y
SUp2qL ˆ Up1qY describe las interacciones electrodébiles.

Los campos de materia forman tres generaciones de quarks y leptones, descritos por
espinores de Weyl de dos componentes, con estructurea electrodébil dada por

QiL “

ˆ

U iL
Di
L

˙

, U iR, Di
R, Li “

ˆ

νiL
EiL

˙

, EiR; i “ 1, 2, 3. (1.2)

Además, los quarks en QL transforman como tripletes de color, mientras que UR, DR

transforman como tripletes conjugados. los números cuánticos gauge de los fermiones del
Modelo Estándar se muestran en la tabla 1.1

Field SUp3q SUp2qL Up1qY

QiL 3 2 1/6

U iR 3̄ 1 2/3

Di
R 3̄ 1 -1/3

Li 1 2 -1/2

EiR 1 1 -1

H 1 2 1/2

Table 1.1: Números cuánticos gauge de los quarks, leptones y escalar de Higgs del Modelo
Estándar.

El modelo también incluye un campo escalar complejo H que transforma como un
doblete de SUp2qL, llamado el campo de Higgs, cuyo valor esperado en el vaćıo rompe el

1



2
Motivation

The Standard Model of particle physics is one of the greatest successes of last century
physics. It describes elementary particles and their strong and electroweak interactions in
a large range of energies.

The Standard Model is a quantum field theory based on a gauge group

GSM “ SUp3q ˆ SUp2qL ˆ Up1qY , (2.1)

with SUp3q describing strong interactions via Quantum Chromodynamics, and SUp2qLˆ
Up1qY describing electroweak interactions.

The matter fields form three generations of quarks and leptons, described as Weyl
2-component spinors, with the electroweak structure

QiL “

ˆ

U iL
Di
L

˙

, U iR, Di
R, Li “

ˆ

νiL
EiL

˙

, EiR; i “ 1, 2, 3. (2.2)

In addition, quarks in QL transform as colour triplets, while UR, DR transform as conju-
gate triplets. The gauge quantum numbers of the Standard Model fermions are shown in
table 2.1

Field SUp3q SUp2qL Up1qY

QiL 3 2 1/6

U iR 3̄ 1 2/3

Di
R 3̄ 1 -1/3

Li 1 2 -1/2

EiR 1 1 -1

H 1 2 1/2

Table 2.1: Gauge quantum numbers of Standard Model quarks, leptons and the Higgs
scalars.

The model also includes a complex scalar field H transforming as a SUp2qL doublet,
called the Higgs field, whose vacuum expectation value breaks the gauge group

xHy “

˜

0
v?
2

¸

ñ GSM Ñ SUp3q ˆ Up1qEM . (2.3)

11
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This vacuum expectation value generates masses for the W˘ and Z vector bosons and, at
the same time, produces the quark and lepton masses through the Yukawa couplings

LYuk “ Y ij
U Q

i
lU

j
RH

˚ ` Y ij
D Q

i
LD

j
RH ` Y

ij
L L

i
EjRH ` h.c. (2.4)

These interactions are the most general consistent with gauge invariance and renormaliz-
ability, and accidentally are invariant under the global symmetries related to the baryon
number B and the three generation lepton numbers Li.

The electric charge is given by

QEM “ T3 `QY , (2.5)

where T3 “ diag
`

1
2 ,´

1
2

˘

is an SUp2qL generator.

The validity of the Standard Model has been confirmed to great precision in a lot of
experiments, with one of the most recent successes being the discovery of a scalar particle
at the LHC which is compatible with the Standard Model Higgs Particle.

Despite all of its success, the Standard Model is far from being complete.

• Gravity. One of the most clear hints indicating that the Standard Model cannot
be the ultimate theory is that it does not include gravitational interactions, due to
the difficulties to reconcile them with Quantum Mechanics. Gravity implies that the
Standard Model should be considered as an effective theory, with a cutoff at most
at the Planck scale

Mp “
1

?
8πG

1{2
N

“ 1.2ˆ 1019 GeV, (2.6)

where GN is Newton’s constant.

• Neutrino masses. Another evidence which indicates that the Standard Model is
not complete is the masses of the neutrinos. It is a well established experimental fact
that neutrinos oscillate (see e.g. [1, 2]). The idea of neutrino oscillations was devel-
oped back in the 1960’s [3, 4, 5]; in particular, [4, 5] showed that flavour oscillations
arise if neutrinos are massive and mixed.

On the other hand, in the Standard Model described above, neutrinos are massless.
So one needs to extend the Standard Model to incorporate neutrino masses. The
usual extra ingredients are right-handed neutrinos and/or a high scale of lepton
number violation.

One possibility is to produce neutrino masses from Dirac mass terms, in analogy

with quark and charged lepton masses, with Yukawa couplings Y ij
ν L

i
νjRH

˚. This
mechanism preserves lepton number, but does not explain the smallness of observed
neutrino masses, or their essentially left-handed character.

If one accepts violation of lepton number at a relatively high scale M , one can
get effective Majorana mass terms for left-handed neutrinos at lower scales. In
particular, the dimension five Weinberg operator

hij
M
νiLν

j
LHH ` h.c., (2.7)
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produces left-handed neutrino Majorana masses of order

M ij
L “

hijxHy
2

M
(2.8)

upon electroweak symmetry breaking. For hij » 1, and M » 1014 ´ 1015 GeV, we
get neutrino masses of order ML » 0.01´0.1 eV, consistent with neutrino oscillation
experiments.

An implementation of the above idea is the seesaw mechanism [6, 7, 8]. The the-
ory includes right-handed neutrinos with a large Majorana mass MR, and Yukawa
couplings for left-handed neutrinos, leading to Dirac masses mD. Diagonalization of
the neutrino mass matrix leads to a predominantly left-handed neutrino eigenstate
with very small mass » m2

D{MR, and a predominantly right-handed eigenstate with
very large mass »MR.

• Electroweak hierarchy problem. The electroweak hierarchy problem is the ques-
tion of the origin of the hierarchy between the electroweak and the Plank scale. The
electroweak scale is fixed by the Standard Model Higgs vev v, which is related to
the squared mass of the Higgs µ2 by µ2 “ 2λv2, with λ being the quartic coupling
of the Higgs. The squared mass of the Higgs, which according to the experiments is
µ » 126 GeV, receives huge quadratically divergent quantum corrections that take
it to the cutoff scale of the theory,

δµ2 »
α

4π
Λ2
cutoff . (2.9)

For a theory with a finite physical cutoff, this correction is finite and generally huge.
One could choose the naked value of µ2 such that the renormalised value is of order
of (126 GeV)2, but for Λcutoff “ Mp this implies a fine-tuning with a precision of
10´34.

Therefore, we need to solve the question of maintaing a light Higgs with µ » 126
GeV to trigger electroweak symmetry breaking, given that its natural value would
be an ultraviolet scale of the theory.

A possible solution to the problem is low energy supersymmetry. The main idea is
to extend the Standard Model to include one extra partner for each SM field, related
by N “ 1 supersymmetry, a symmetry relating bosons and fermions (see e.g. [9] for
a review).The interactions of these new particles precisely cancel the quadratically
divergent corrections to the Higgs mass, stabilising the hierarchy. In addition, this
approach is perturbative and predictive, and it is possible to test it at the LHC.
Furthermore, supersymmetry is a key ingredient in string theory compactifications.

The minimal extension to the Standard Model that realizes supersymmetry is the
Minimal Supersymmetric Standard Model (MSSM), see e.g. chapter 2 of [10] for a
review. The spectrum includes a supersymmetric partner for all the Standard Model
fields, but it needs two Higgs doublets instead of one. The most general superpo-
tential consistent with gauge invariance and leading to dimension four operators is
given in 2.11.

One can easily construct SUSY versions of grand unified theories (see below for a
short review on grand unified theories) with a unification scale of MGUT „ 1016 GeV.
If in addition to gauge coupling unification, one also wants realistic mass spectra of
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the Higgs and SUSY particles, this can be done in the framework of the MSSM
coupled to the minimal supergravity model which relates many unknown quantities
of the MSSM in terms of a few basic parameters at the unification scale; this is the
so-called Constrained MSSM (CMSSM), see [11] for an early review and [12] for the
current status of the CMSSM after the first run of the LHC.

There are also non-minimal supersymmetric extensions, the simplest one being the
Next-to-Minimal Supersymmetric Standard Model (NMSSM), which adds an addi-
tional singlet chiral superfield to the MSSM (see [13] for a review).

Other solutions that have been proposed to solve the problem are: Dynamical gener-
ation by strongly coupled gauge sectors, e.g. technicolor [14, 15, 16, 17, 18]; lowering
the fundamental gravity scale, e.g. with extra dimensions, see [19, 20, 9] for reviews;
or even an anthropic approach [21, 22, 23].

• Grand Unified Theories. Grand unified theories (GUTs) propose that there is
an underlying gauge group GGUT , assumed to be simple in most cases, which is
broken spontaneously down to the Standard Model group at very high energies (see
[24, 25, 26] for some introduction to the subject). The SM gauge factors are unified
into a single gauge force, and the SM matter fields are unified into multiplets of
GGUT .

A consequence of the unification of the SM gauge groups into a simple group is
the unification of gauge coupling constants into a single one. Evidence for such
unification comes from the evolution of the SM gauge couplings to high energy
with the renormalization group equations. Assuming no further relevant degrees of
freedom at intermediate scales, the three couplings tend to join around 1015 GeV
into a single coupling αGUT ; if one only considers the matter content of the Standard
Model the joining is only in qualitative agreement with the experiment [27], but it
is enhanced sharply if one considers supersymmetric versions.

The different GUTs are classified in terms of the chosen GGUT , which has to be
at least of rank four, contain the SM group and admit complex representations to
accommodate a chiral fermion spectrum. Usual choices for GGUT are SUp5q [28, 29],
SOp10q [30, 31], or E6 [32].

• Dark matter It is an established fact that there is dark matter present in the
universe (see e.g. [33] for recent precise measurements of the Planck satellite). It
represents the 23% of the universe, while only 5% consists of ordinary atomic matter
and the remainder 72% is dark energy. Identifying the nature of this dark matter is
one of the open problems of modern physics.

A particular candidate for dark matter, which is being searched for very actively,
is a Weakly Interacting Massive Particle, or WIMP. In addition to the feeling of
gravity, these particles undergo weak interactions, but do not take part in strong
or electromagnetic interactions. The expected WIMP mass ranges from 1 GeV
to 10 TeV. To make an idea of how weakly interacting the WIMPs are, in [34] the
authors estimated the interaction rate of WIMPs with a standard 70 kg human body;
from the billions of WIMPs that pass through every second, the average number of
interactions ranges between approximately one per month for 60 GeV WIMPs and
one per minute for 10 GeV WIMPs.
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The relic density of WIMPs is given by

Ωχh
2 „ p3ˆ 10´26cm3{secq{xσvyann, (2.10)

where Ωχ is the fractional contribution of WIMPs to the energy density of the
Universe. An annihilation cross section xσvyann of weak interaction strength auto-
matically gives the right answer, near the value measured by WMAP [35]. This
coincidence is known as the “WIMP miracle”, and it is the reason for WIMPs to be
taken so seriously as dark matter candidates.

One of the best WIMP candidates is motivated by supersymmetry: the lightest neu-
tralino in the MSSM and its extensions [36]. However, other WIMP candidates arise
in a variety of theories beyond the Standard Model, like Kaluza-Klein excitations
of Standard Model fields which appear in models of universal extra dimensions [37],
a light scalar particle with a mass between 1 and 100 MeV [38, 39], heavy fourth
generation neutrinos [40, 41], etc. (see [42, 43] for reviews).

In addition to WIMPs, there many other candidates for dark matter. For instance,
axions [44], axinos [45, 46, 47], sterile neutrinos [48], Kaluza-Klein gravitons [49, 50,
51]... (see [52] for a review of different dark matter candidates).

Most of the models consider only one species. However, there are also studies that
attempt to extend the idea of Standard Model flavour to the dark sector, and consider
scenarios where dark matter is composed of multiples species [53, 54, 55, 56] or
unflavoured dark matter which is stabilised by requiring dark matter interactions
with the Standard Model fields to obey flavour conservation [57, 58] (see [59] for a
more detailed review on flavoured dark matter).

For more detailed reviews on the subject and the status of direct search experiments
see e.g. [60, 61].

• Others. Cosmological constant problem [62, 63, 64], strong CP problem and axions
[65, 66, 67, 68]...

One of the most promising candidates for a quantum theory that also includes gravity
is string theory (see [69, 70, 71, 72, 10] for some classical and more recent texts on string
theory), since besides being mathematically consistent, the graviton arises in a natural way.
In particular, there is a branch of string theory, called string phenomenology (see [10] for a
recent review of the field), that attempts to construct realistic models of particle physics,
including the different issues mentioned above. Within the framework of string theory one
can easily construct models with the gauge group and spectrum of the Standard Model
[73], Yukawa couplings [74, 75, 76, 77], neutrino masses [78, 79], supersymmetric extensions
of the Standard Model [80, 81, 82, 83], grand unified theories [84, 85, 86, 87, 88, 89, 90, 91],
etc.

However, let us focus in the low energy theories for a bit longer. Many theories of
physics beyond the Standard Model make use of discrete symmetries for phenomenological
reasons. For instance:

• Discrete symmetries are used in flavour physics (see [92] for a review in the subject)
to solve (at least partially) what is called the flavour puzzle, i.e. the origin of fermions
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masses and mixings, their hierarchies, and the difference of the flavour parameters
in the neutrino sector.

Let us consider the issue of neutrino masses and mixings. Before 2012, experimental
results determining the mixing angles and mass square differences [93, 94, 95, 96]
suggested that some special mixing patterns like Tri-Bimaximal (TB) [97, 98, 99,
100, 101] or Golden Ratio (GR) [102, 103, 104, 105] were good first approximations1.
The specific mixing patterns in leading order can be reproduced by a broken discrete
flavour symmetry based, for instance, on the A4 group for TB (for a review see [106]
and references therein) and the A5 group for GR (see e.g. [103, 104, 105]). This
changed after 2012, when new experimental results showed that θ13 « 0.15 and
sin2 θ23 is no longer maximal [107, 108, 109], which rule out the previous models at
leading order. However, this does not mean that discrete symmetries are no longer
useful; for instance, they can be combined with CP symmetry to obtain patterns
which are in agreement with the experimental results [110].

For more general implementations of discrete non-Abelian symmetries in the lepton
sector see e.g. [111, 112, 113, 114, 115] or [116, 117, 118, 119, 120] for reviews.

• In supersymmetric extensions of the Standard Model, discrete symmetries are in-
voked to get rid of unwanted operators. Let us focus on the Minimal Supersymmet-
ric Standard Model (MSSM), where discrete symmetries are unavoidable in order to
explain the observed proton stability.

Indeed, a crucial difference between the non-supersymmetric Standard Model and
the MSSM is that in the latter the most general dimension four effective Lagrangian
respects neither baryon- nor lepton-number conservation. The most general super-
potential consistent with gauge invariance and leading to dimension four operators
has the structure

WMSSM “ Y ij
U QiUjHu ` Y

ij
D QiDjHd ` Y

ij
L LiEjHd ` µHuHd

` λijkUiDjDk ` λ
ijk1QiDjLk ` λ

ijk”LiLjEk ` µ
i
RLiHu,

(2.11)

where we use a standard notation for quark, lepton and Higgs superfields.

The first line in (2.11) contains the usual Yukawa couplings and the µ-term, and
respects both baryon- and lepton-number; the UDD terms in the second line violate
baryon-number, whereas the rest violate lepton-number in one unit. If all the terms
in the second line were present and unsuppressed, the proton would decay with a
lifetime of minutes.

The simplest solution to avoid this problem is to assume some discrete symmetry.
For example, R-parity, which forbids all the couplings in the second line; or baryon
triality B3, first introduced in [121], which forbids the first term in the second line,
which violates baryon-number, while allows for the lepton-number violating terms
to be present. Although in this case the proton is still unstable and can decay, the
proton lifetime is long enough to be consistent with the experimental bounds.

It was mentioned earlier while discussing dark matter candidates that one of the
best WIMP candidates was motivated by supersymmetry. Let us elaborate this
point a bit more. For R-parity to forbid all the couplings in the second line in

1These models assume θ13 “ 0 and sin2 θ23 “ 1{2 at leading order.
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(2.11) the charges of the fields under it are such that Standard Model fields are even
and their supersymmetric partners are odd. Since R-charge has to be conserved,
a supersymmetric particle has to decay necessarily into another supersymmetric
particle. This decay continues until no other supersymmetric particles with lighter
mass exist in the spectrum. This particle is called the ‘lightest supersymmetric
particle’ (LSP), and it is the one thought to be the dark matter candidate. Depending
on the model, the LSP can be a neutralino, a gravitino, etc.

All the discrete symmetries mentioned above are introduced because of their phe-
nomenological relevance but, although they do their phenomenological job, their funda-
mental origin remains obscure. Therefore, one should investigate the nature of discrete
symmetries at a fundamental level.

There are diverse arguments suggesting that global symmetries, either continuous or
discrete, are violated by quantum gravitational effects, and hence cannot exist in any
consistent quantum theory including gravity (see [122, 123, 124] for early viewpoints, and
e.g. [125, 126] and references therein for more recent discussions).

In one hand, there are the usual arguments of black hole evaporation. Let us consider
a black hole with a given amount of charge under a global symmetry. When it evaporates,
it emits the same number of particles with a given charge and its opposite, in such a way
that the total emitted charge is zero. This process violates the global charge in as many
units as the black hole had initially.

This does not happen if the symmetry is a gauge symmetry. One way to see this is to
recall that an object charged under a gauge symmetry generates a gauge field; in the case
of black hole evaporation, this gauge field favours the emission of particles with charge of a
given sign, in such a way that the total emitted charge is not zero, and is of the same sign
that the charge the black hole had initially. Equivalently, the fact that there is a gauge
field means that the charge can be measured at infinite distance from the black hole; this,
together with the existence of charge conservation equations, implies that the total gauge
charge must be conserved, and therefore, it cannot be violated.

On the other hand, there are microscopic arguments in string theory [122]. The basic
idea is that a continuous symmetry will lead to a worldsheet current which should serve
as a vertex operator for a gauge boson.

Therefore, any symmetry in a consistent theory of quantum gravity, no matter whether
it is continuous or discrete, should have a gauge nature and be respected by such corrections
[127, 128, 129]. So one should study discrete gauge symmetries both in field theory (see
e.g. [130, 121, 131] for the Abelian case and [132, 133, 134, 135, 136, 137] for the non-
Abelian case) and in string theory (see e.g. [138, 139, 140, 141, 142, 143, 144, 145, 146,
147, 148, 149]).

2.1 Outline of the thesis

The goal of this thesis is to show how discrete gauge symmetries can be realized in the
context of string theory, and their embedding into the broken continuous gauge symme-
tries.
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In chapter 3 we present a review of discrete gauge symmetries in 4d field theory. In
section 3.1 we consider the case of an Abelian discrete symmetry, what the anomaly cancel-
lation conditions are and, since it will be useful in some of the string theory constructions
in later chapters, we review the possible anomaly-free discrete symmetries of the MSSM. In
section 3.2 we analyze one of the possible ways to study the realization of discrete symme-
tries in string theory, the BF couplings. Section 3.3 introduces a different but equivalent
way to study discrete symmetries, by considering them as arising from isometries of the
moduli space of the scalars in the theory, and is particularly useful to study non-Abelian
discrete symmetries.

In chapter 4 we apply the BF formulation of section 3.2 to models with intersecting
D-branes. First we review how this models are constructed, and how the BF couplings
arise in them. Subsequently we study two different classes of intersecting D-brane models
(sections 4.3 and 4.4); in both cases, after presenting the general characteristics of the
model, we consider specific cases giving rise to both the Standard Model and its super-
symmetric extension given by the MSSM, and analyze what the possible discrete gauge
symmetries that can be realized are. We also study D-brane instantons and how they
preserve the discrete gauge symmetries in section 4.5. Finally, we comment on Z2 discrete
gauge symmetries associated to the discrete K-theory charge cancellation conditions, and
suggest the intriguing possibility of identifying it with R-parity in explicit constructions
in section 4.6.

In chapter 5 we study the discrete gauge symmetries that arise in compacfications
with torsion cycles, making use of the ideas developed in section 3.3, both in the Abelian
(section 5.1) and non-Abelian case (sections 5.2 and 5.3 for a concrete example and the
general case, respectively).

Chapter 6 presents another type of string theory compactifications where the BF
formulation is useful to study the possible discrete gauge symmetries: string theory com-
pactifications in the presence of background fluxes. After a general review of how the
presence of background fluxes leads to 4d BF couplings (section 6.1), we study the ap-
pearance of discrete gauge symmetries when there is only one kind of flux, both for the
Abelian (section 6.2) and the non-Abelian case (section 6.3). Section 6.4 studies the cases
where several kind of background fluxes are present at the same time, and how one can
deal with the inconsistencies that arise when doing things naively. In section 6.5 we turn
to Zp valued domain walls, and their relation to string duality symmetries relating vacua
with different flux vacua. Section 6.6 provides a brief discussion of flux-induced discrete
gauge symmetries arising from Kaluza-Klein Up1q’s in compactifications with isometries.

Chapter 7 provides an analysis of discrete gauge symmetries coming from discrete
isometries of the compactification space rather than isometries of the moduli space of the
scalars of the theory. In section 7.1 we consider the case of compactifications on a twisted
torus to illustrate the main ideas; these ideas, together with the formalism of section
3.3, are applied to a more realistic construction based on magnetized D-branes in section
sec:magnetized. We also study non-perturbative instanton effects, and how they manage
to preserve the non-Abelian discrete gauge symmetry in section 7.4.

In chapter 8 we generalize the analysis to arbitrary number of dimensions (instead
of considering just compactifications to 4 dimensions like in the previous chapters) and
discrete symmetries arising as remnants of broken continuous gauge symmetries carried by
general antisymmetric tensor fields, rather that by standard 1-forms. In sections 8.1 and



2.1. OUTLINE OF THE THESIS 19

8.2 we present a generalization of the BF formulation of section 3.2 to D dimensions and
arbitrary p-forms. In the rest of the chapter we consider some string theory constructions
that make use of these ideas; in particular, section 8.3 provides an analysis of discrete
symmetries arising in compactifications to 6d in the presence of background fluxes, similar
to the 4d analysis in section 6.2, while section 8.4 considers the case of compactifications
with torsion cycles and section 8.5 studies the possibility of realising non-Abelian discrete
symmetries.

Chapter 9 presents a completely different, albeit related, topic. In the previous chapters
it was easy to see what the continuous group that was broken to the discrete subgroup
was; however, this embedding is not always possible. In this chapter we show that it is
possible if we consider extra space-time dimensions, using the supercritical string theories
that are explained in section A; the critical theory is obtained by closed string tachyon
condensation. After a simple warmup exercise (section 9.2), we present two different
ways to realize the embedding of discrete Abelian gauge symmetries, dubbed “quenched
rotations” (section 9.3) and “quenched translations” (section 9.4). Finally, in section 9.5
we apply the previous ideas to the non-Abelian case.

Finally, in chapter 10 we present the conclusion and some final remarks.
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3
Discrete gauge symmetries in 4d field theory

3.1 4d Abelian discrete gauge symmetries in field theory

3.1.1 Generalities

In field theory, discrete gauge symmetries appear when a continuous discrete gauge sym-
metry is broken to a discrete subgroup by some mechanism. The most simple example is
a Up1q gauge symmetry Higgsed down to a Zk subgroup when a scalar field with charge
k under the Up1q acquires a non-zero vev.

The basic action for a Zk discrete gauge symmetry is
ż

4d

1

2
pdφ` kA1q ^ ˚4d pdφ` kA1q “

ż

4d

1

2
|dφ` kA1|

2 . (3.1)

where the gauge field A1 is normalised such that the minimum electric charge is 1, and
φ is a scalar field (considered to be the phase of the Higgs field with charge k under the
Up1q) with a periodic identification

φ » φ` 1. (3.2)

This action is invariant under a gauge transformation of the form

A1 ÝÑ A1 ´ dλ, (3.3a)

φ ÝÑ φ` kλ. (3.3b)

The action (3.1) can be written in terms of the four dimensional dual fields to φ and
A1, given by B2 and V1, respectively, as [126]

ż

4d

1

2
pdV1 ` kB2q ^ ˚4d pdV1 ` kB2q “

ż

4d

1

2
|dV1 ` kB2|

2 (3.4)

where

dB2 “ ˚4ddφ, (3.5a)

dV1 “ ˚4ddA1. (3.5b)

This action is invariant under a gauge transformation of the form

B2 ÝÑ B2 ` dΛ1, (3.6a)

V1 ÝÑ V1 ´ kΛ1. (3.6b)

21
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It is also invariant under
V1 ÝÑ V1 ` dΞ0 (3.7)

for any 0-form Ξ0. This dual description makes manifest an emergent Zk discrete gauge
symmetry1.

Theories with discrete gauge symmetries have sets of (possibly massive) charged par-
ticle states, which often provide a practical way to identify the discrete gauge symmetry
in a given theory. In the case of the above Zk theory, charge n particles with worldline C
are described as insertions of the line operators

Oparticle „ e2πin
ş

C A1 . (3.8)

Their charge is conserved modulo k, since there are gauge invariant ‘instanton’ vertices
which create/annihilate sets of particles with total charge k,

e´2πiφe2πin
ş

C A1 “ e´2πiφOparticle(s), (3.9)

describing an insertion e´2πiφ at a point P , out of which a charge k set of particles
emerges along a worldline C (i.e. BC “ P ). In many realizations, the above operators are
induced in the 4d action by effects eSinst , on-perturbative in some suitable coupling, with
Sinst “ 2πiφ` . . . linear in the gauged axion. The overall Up1q charge of Oparticle(s) is thus
compensated by shifts of Sinst.

In addition, the theory contains Zk-charged strings, described as the insertion of op-
erators along a worldsheet Σ

Ostring „ e´2πip
ş

ΣB2 , (3.10)

where B2 is the 2-form dual to φ and p is defined modulo k. String charge is also conserved
modulo k, since there are operators describing strings of total charge k on worldsheets Σ
ending along a junction line L (BΣ “ L)

e´2πi
ş

L V1e2πik
ş

ΣB2 . (3.11)

A charge n particle defined by (3.8) suffers a Zk discrete gauge transformation, n Ñ
n ` np, when moved around the charge p string (3.10), i.e. its wavefunction picks up an
Aharonov-Bohm phase e2πinp

k . Conversely, a charge p string looped around a charge n
particle picks up a phase e2πinp

k . In more abstract terms, the amplitude associated to a
charge p string on a worldsheet Σ and a charge n particle on a worldline C contains an
Aharonov-Bohm phase

exp
”

2πi
np

k
LpΣ, Cq

ı

, (3.12)

where LpΣ, Cq is the so-called linking number of Σ and C.

These ingredients have a natural yet more involved generalization to the non-Abelian
case [132, 133, 134, 135, 136] (see [137] for a review).

Whether the Zk-charged particles and strings play the role of fundamental objects or
the associated codimension-2 topological defect depends on what theory we are consider-
ing, the ‘electric’ theory (3.1) or the ‘magnetic’ theory (3.4). In the ‘electric’ case, charged

1An important point, not manifest in the examples in [126], is that the emergent discrete symmetry
may differ from the original one. This is illustrated explicitly in the next section.
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particles are the fundamental objects and charged strings are the topological defects, while
in the ‘magnetic’ case, charged strings are the fundamental objects and charged particles
are the topological defects.

Since in 4d the most natural thing is to think of particles as the fundamental objects,
in the rest of this thesis we will consider this to be the case and make all the 4d analysis
taking this fact into account.

3.1.2 Discrete gauge symmetries and anomaly cancellation

Given a gauge theory with a continuous gauge group, anomaly cancellation conditions
strongly constrain the chiral fermion content of the theory. As shown in [130] there are
analogous constraint for discrete gauge symmetries. In this section we will review the
main results of [130].

Consider a ZN discrete gauge symmetry like the one in the previous section. Under
this symmetry, the light fermions ψi in the theory transform as

ψi ÝÑ exp
´

2πi
qi
N

¯

ψi. (3.13)

Let us consider now the original Up1q theory from which the ZN arises after the symmetry
breaking; the original Up1q charges of the fermions are necessarily of the form

qi `miN, qi,mi P Z . (3.14)

These are not the only fermions that contribute to the anomalies. One should also take
into account the contribution to the anomaly coming from fermions which became massive
when the symmetry broke. Let us denote by Qj the charge of such fermions2. There are
two types of masses fermions may acquire:

1. Pairs of different Weyl fermions Ψj
1 and Ψj

2 combine to get a mass. In this case,
their charges must obey

Qj1 `Q
j
2 “ pj , N, pj P Z . (3.15)

2. One fermion (singlet with respect to the rest of the gauge interactions) acquires a
Majorana mass. The charge of such a fermion χ has to obey

Qjχ “
1

2
p1j , p1j P Z . (3.16)

Cancellation of the Up1q3 anomaly requires that the ZN charges qj of the massless
fermions in the theory should verify

ÿ

i

pqiq
3 “ mN ` ηn

N3

8
, m, n P Z, (3.17)

where η “ 1, 0 for N “even, odd.

2It is convenient to scale the Up1q coupling so that the charges qi and Qj are integers



24 CHAPTER 3. DISCRETE GAUGE SYMMETRIES IN 4D FIELD THEORY

Cancellation of the ZN -graviton-graviton anomaly requires that the qi’s verify

ÿ

i

qi “ pN ` ηq
N

2
, p, q P Z, (3.18)

where η “ 1, 0 for N “even, odd.

In the case of mixed ZN and non-Abelian gauge anomalies (e.g. ZN ´SUpMq´SUpMq)
one obtains

ÿ

i

Tipqiq “
1

2
rN, r P Z, (3.19)

where Tj is the quadratic SUpMq Casimir corresponding to each given representation,
with the normalization being such that the Casimir of an M -plet is 1

2 .

3.1.3 Discrete gauge symmetries in the MSSM

The MSSM and models based on it are common extensions of the standard model, both
in field theory and string theory (see e.g. [74, 75, 80, 81, 82, 79, 77, 83] for some examples
in string theory). In this section we will review the possible anomaly free discrete gauge
symmetries that one can obtain in the MSSM, following [130, 121].

In [121] the possible ZN generation independent discrete symmetries of the MSSM
where classified in terms of the three generators R, L, A, given in table 3.1, where (Q,
U , D, L, E, NR, Hu, Hd) are the MSSM quark, lepton and Higgs superfields in standard
notation.

Q U D E L NR Hu Hd

R 0 -1 1 0 1 -1 1 -1
L 0 0 0 -1 1 1 0 0
A 0 0 -1 -1 0 1 0 1

Table 3.1: Generation independent generators of discrete ZN gauge symmetries in the MSSM

Defining

RN “ ei2πR{N , (3.20a)

LN “ ei2πL{N , (3.20b)

AN “ ei2πA{N , (3.20c)

a ZN generator may be written as

gN “ RmN ˆA
n
N ˆ L

p
N , m, n, p “ 0, 1, . . . , N ´ 1 (3.21)

This is the most general ZN symmetry allowing for the presence of all standard Yukawas
QUHu, QDHd, LEHd and, in the presence of right-handed neutrinos, LNRHu.

Further but equivalent discrete symmetries can be obtained by multiplying by some
power of a discrete subgroup of the hypercharge generator ei2πp6Y q{N , where 6Y is used to
make hypercharges integer.
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As discussed in [130, 121], the mixed ZN ˆSUp3q2, ZN ˆSUp2q2 and mixed gravita-
tional anomaly constraints yield

nNg “ 0 mod N (3.22)

pn` pqNg ´ nNd “ 0 mod N (3.23)

´Ngp5n` p´mq ` 2nND “ η
N

2
mod N (3.24)

where Ng is the number of generations, ND is the number of Higgs sets and η “ 0, 1 for
n “odd,even. In the presence of right-handed neutrinos, the mixed gravitational anomaly
gets simplified to

´ 4nNg ` 2nND “ η
N

2
mod N (3.25)

One necessary condition for the above symmetries to be discrete gauge symmetries
is anomaly cancellation. It is clear from the previous equations that, in the presence of
right-handed neutrinos, all RN are anomaly free. In particular, R2, which corresponds to
the usual R-parity is anomaly free.

HuHd UDD QDL LLE LHu LLHuHu QQQL UUDE

R2 x x x x
R3L3 x x x
L3 x x x x x x
R3L

2
3 x x x x x x

R2 ˆR3L3 x x x x x x

Table 3.2: Operators forbidden by the anomaly-free Z2 and Z3 symmetries

In the physical case Ng “ 3, in addition to R2, which is anomaly free even in the
absence of right-handed neutrinos, there are three anomaly-free Z3: L3, R3Lr and R3L

2
3.

The symmetry B3 “ R3L3, usually called baryon triality, was introduced in [121] and
it allows for dimension 4 operators violating lepton number, but not violating baryon
number, so the proton is sufficiently stable.

As shown in [150], there are additional Z9 and Z18 anomaly free discrete symmetries
involving the AN generators, as well as several Z6 involving just R6 and L6. However,
imposing the purely abelian condition of [121] and the absence of massive fractionally
charged states singles out R-parity R2 and baryon triality B3.

Table 3.2 displays the phenomenologically interesting couplings allowed or forbidden
by these discrete symmetries. The Z6 obtained by multiplying R2 and B3 is called hexality,
and forbids all dangerous couplings but allows for a µ-term and the Weinberg operator
LLHuHu (and hence left-handed and right-handed neutrino Majorana masses).

3.2 Discrete gauge symmetries and the BF formulation

3.2.1 The BF coupling

Recall that the 4d action for a Zk gauge discrete symmetry is

S “
ż

4d

1

2
pdφ` kA1q ^ ˚4d pdφ` kA1q . (3.26)
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It contains the terms

S Ą k

2

ż

4d
pdφ^ ˚4dA1 `A1 ^ ˚4ddφq “ k

ż

4d
A1 ^ ˚4ddφ, (3.27)

where the equality follows from the fact that α^ ˚β “ β ^ ˚α. If we define dB2 “ ˚4ddφ,
then (3.27) can be rewritten as

S Ą k

ż

4d
A1 ^ dB2. (3.28)

Integrating (3.28) by parts, we get

S Ą k

ż

4d
dA1 ^B2 “ k

ż

4d
B2 ^ F2, (3.29)

where F2 “ dA1.

Therefore, the order of the Zk discrete symmetry is encoded into the coefficient of
the BF coupling. This kind of couplings are ubiquitous in string theory. Hence, a way
of studying the possible gauge discrete symmetries of some 4d string theory model is to
analyze the coefficients of its BF couplings. Concrete examples can be found in chapter
4 for intersecting D-brane models and in chapter 6 for compactifications to 4d in the
presence of background fluxes.

3.2.2 Generalization of BF

The previous argument can easily be generalized to the case where we have multiple fields
of each type.

Consider a single scalar field φ and several 1-form gauge fields Ak1 in 4 dimensions.
The action is given by

ż

4d

n
ÿ

k“1

ˇ

ˇ

ˇ
dφ` qkA

k
1

ˇ

ˇ

ˇ

2
. (3.30)

This is gauge invariant under

Ak1 ÝÑ Ak1 ´ dλ
k, (3.31a)

φ ÝÑ φ`
ÿ

k

qkλ
k. (3.31b)

The corresponding BF coupling is

ż

4d

n
ÿ

k“1

qkB2 ^ F
k
2 (3.32)

where dB2 “ ˚4ddφ and F k2 “ dAk1.

The remnant discrete gauge symmetry is not manifest by inspection. Naively, it may
seem that each Up1qk factor leaves an unbroken Zqk . This is however not correct, since the
different Up1q factors couple simultaneously to a single 2-form field. Indeed, there is only
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one broken Up1q, given by a linear combination of the Up1qk, while an unbroken Up1qn´1

remains.

Let ~q “ pq1, . . . , qnq be the charge vector of φ under the Up1qk, k “ 1, . . . , n and let
Qk be the generator of Up1qk for k “ 1, . . . , n. The unbroken Up1qn´1 is generated by Qa,
a “ 1, . . . , n, which are given by linear combinations

A1 “

n
ÿ

k“1

ckaQk, cka P Z, (3.33)

with ~ca ¨ ~p “ 0. The only broken Up1q linear combination is the one orthogonal to all the
massless Up1q’s, namely it is given by

Q “
n
ÿ

k“1

qk
q
Qk, (3.34)

where the factor q “ gcdpqkq is included in order to keep the normalization such that
minimal charge is 1. Its BF couplings are

n
ÿ

k“1

pqkq
2

q
B2 ^ F2. (3.35)

The symmetry is therefore Zr with r “
ř

k
pqkq

2

q . The Zr structure follows from the
structure of charged particle states, which are created by operators

exp p´2πiφq exp

˜

i

ż

C

ÿ

k

qkA
k
1

¸

. (3.36)

This violates Qk charge conservation in qk units, and hence Q “
ř

k
qk
q Qk in r “

ř

k
pqkq

2

q
units.

The other possibility is to consider a single 1-form field made massive by coupling to
several scalar fields φk in 4 dimensions. The action is given by

ż

4d

m
ÿ

k“1

ˇ

ˇ

ˇ
dφk ` qkA1

ˇ

ˇ

ˇ

2
. (3.37)

This is gauge invariant under

A1 ÝÑ A1 ´ dλ, (3.38a)

φk ÝÑ φk ` qkλ. (3.38b)

The corresponding BF coupling is

ż

4d

m
ÿ

k“1

qkB
k
2 ^ F2, (3.39)

where dBk
2 “ ˚4ddφ

k and F2 “ dA1.

The potential A1 actually eats only one linear combination of the fields φk, while the
orthogonal linear combinations remain as massless scalar fields. Denoting q “ gcdpqjq, the



28 CHAPTER 3. DISCRETE GAUGE SYMMETRIES IN 4D FIELD THEORY

massive gauge symmetry leaves a remnant Zq gauge symmetry3. This follows from the
structure of Zq-charged particles, whose number can be violated by operators

exp
´

´2πiφk
¯

exp

ˆ

2πi

ż

C
qkA1

˙

. (3.40)

Each such vertex creates qk particles, so by Bezout’s lemma, there exists a set of vertices
which (minimally) violates their number in q units, making the particles Zq-valued.

In terms of the dual fields, the action for the theory dual to (3.30) is

ż

4d

m
ÿ

k“1

ˇ

ˇ

ˇ
dV k

1 ` qkB2

ˇ

ˇ

ˇ

2
, (3.41)

where dB2 “ ˚4ddφ and dV k
1 “ ˚4ddA

k
1, and it is gauge invariant under

B2 ÝÑ B2 ´ dΛ1, (3.42a)

V k
1 ÝÑ V k

1 ` qkΛ1, (3.42b)

in addition to the gauge transformations

V k
1 ÝÑ V k

1 ` dΞk0. (3.43)

On the other hand, the action for the theory dual to (3.37) is

ż

4d

ˇ

ˇ

ˇ

ˇ

ˇ

dV1 `

n
ÿ

k“1

qkB
k
2

ˇ

ˇ

ˇ

ˇ

ˇ

2

, (3.44)

were dBk
2 “ ˚4ddφ

k and dV1 “ ˚4ddA1, and it is gauge invariant under

Bk
2 ÝÑ Bk

2 ´ dΛk1, (3.45a)

V1 ÝÑ V1 `
ÿ

k

qkΛ
k
1, (3.45b)

in addition to the gauge transformation

V1 ÝÑ V1 ` dΞ0. (3.46)

Applying the same analysis to (3.41) and (3.44), it is easy to see that the emergent
gauge symmetry associated to the original Zq is a Zr, and vice versa. Hence, the discrete
part of the emergent gauge group in the dual description is different from the original one;
this is a novel feature as compared with the system in [126] and in section 3.1.

The fact that the original Zq (resp. Zr) and the emergent Zr (resp. Zq) gauge sym-
metries are different is not in contradiction with charge quantization of the dual charged
objects, i.e. the Zq (resp. Zr) strings and the Zr (resp. Zq) particles, because of the
presence of additional charges under the additional continuous gauge symmetries in the
system.

3Each of the scalars φk wants to be eaten by the potential A1 and break the Up1q into a Zqk subgroup;
therefore, the Zq discrete symmetry can be seen as a compromise solution, since it is the biggest subgroup
all of them can break the Up1q into.
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To finish the analysis, let us consider the case with several fields of each kind. The 4d
action is given by

ż

4d

m
ÿ

l“1

ˇ

ˇ

ˇ

ˇ

ˇ

dφl `
n
ÿ

k“1

plkA
k
1

ˇ

ˇ

ˇ

ˇ

ˇ

2

. (3.47)

This is gauge invariant under

Ak1 ÝÑ Ak1 ´ dλ
k, (3.48a)

φl ÝÑ φl `
n
ÿ

k“1

plkλ
k. (3.48b)

The corresponding BF couplings are

ż

4d

m
ÿ

l“1

n
ÿ

k“1

pklB
l
2 ^ F

k
2 , (3.49)

where dBl
2 “ ˚4ddφ

l and F k2 “ dAk1.

Let Qk be the generator of Up1qk, k “ 1, . . . , n, and consider a linear combination
Q “

ř

k c
kQk such that gcdpckq “ 1. Then the BF couplings for the field strength F2 of

the Up1q gauge symmetry generated by Q are

ż

4d

m
ÿ

l“1

˜

n
ÿ

k“1

plkc
k

¸

Bl
2 ^ F2 “

ż

4d

m
ÿ

l“1

qlB
l
2 ^ F2 (3.50)

where ql “
ř

k plkc
k. Hence, the Up1q generated by Q is broken to a Zq subgroup where

q “ gcdpqlq.

In general, it is not immediate to identify the surviving discrete gauge symmetry in the
case (3.47). In the literature this is usually done by ‘trial and error’, by scanning through
different integral linear combinations of the Up1q generators and looking at the greatest
common divisor of their couplings, as explained above. This is the approach taken in
[140], and used in chapter 4. A more systematic way of describing the surviving gauge
symmetries is presented in section 3.3. A generalization of this analysis to an arbitrary
number of dimensions can be found in chapter 8.

3.3 Discrete gauge symmetries from isometries of the mod-
uli space of scalars

In this chapter we will consider a different approach to the analysis of 4d discrete gauge
symmetries in field theory. Instead of looking at the BF couplings of the theory, we will
show that the possible discrete gauge symmetries can be inferred from the isometries of
the moduli space of the scalars in the theory charged under the continuous groups that
will be broken to a discrete subgroup.
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3.3.1 One Abelian discrete gauge symmetry

Let us recall that the basic action for a Zk discrete gauge symmetry is

ż

d4x pBµφ´ kAµq
2 , (3.51)

where the gauge field A1 is normalised such that the minimum electric charge is 1, and φ
is a scalar field (henceforth dubbed ‘axion’) with a periodic identification

φ » φ` 1. (3.52)

In the previous chapter we showed that we could dualise the above Lagrangian in terms
of a 2-form and a (magnetic) gauge potential, and study the discrete gauge symmetries
using the BF formulation. However, in this chapter, we will stick to the axion formulation.

Although this form is largely inspired by considering φ to be the phase of a Higgs field
with charge k under a broken Up1q gauge group, for the moment we will regard it just as
a scalar, whose moduli space (locally given by R) has a continuous isometry

φ ÝÑ φ` ε. (3.53)

The action (3.51 describes the gauging of this isometry by a Up1q,

Aµ ÝÑ Aµ ` Bµλ, (3.54a)

φ ÝÑ φ` kλ. (3.54b)

Before taking into account the periodicity (3.52), the value of k could be removed by
rescaling φ, and would not be relevant. The integer k is thus properly interpreted as the
winding number in the map between the S1 of Up1q gauge transformations e2πiα (with
α » α ` 1 due to charge quantization), and the S1 parametrized by the axion φ. The
fact that k is integer is a compatibility condition of the gauging by the Up1q with the
pre-existing discrete equivalence (3.52).

The gauging directly implements the field identification φ » φ` k. On the other hand
the discrete equivalence (3.52) corresponds to a ‘fractional’ 1{k Up1q gauge transformation,
namely a Zk gauge transformation.

This perspective displays the close relation of the discrete gauge symmetry with the
underlying field identification in the scalar manifold. More precisely, the discrete gauge
symmetry is the group of field identifications in the scalar manifold modulo those already
accounted for by the gauging. This intuition is the key to the non-Abelian generalization
in the coming sections.

3.3.2 The multiple Abelian case

Before moving onto the non-Abelian case, let us sharpen our intuitions in a slightly more
involved (yet Abelian) situation. Consider a theory with several U(1) gauge symmetries,
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labelled with an index α, and several axions φa, a “ 1, . . . , N . The generalization of
equation (3.51) is

L Ą
ÿ

α

`

Bµφ
a ´ k a

α Aαµ
˘

´

Bνφ
b ´ k b

α A
α
ν

¯

ηµνδab (3.55)

with integer k a
α P Z. We take Up1q generators normalized such that charges are integer

and axions have integer periodicity.

There is a systematic closed description of the surviving discrete gauge symmetry based
on our earlier intuitions. For that aim, we consider the space spanned by the scalars φa.
This is a torus TN which we regard as RN {Γ, with Γ the lattice of translations defined by
vectors of integer entries

Γ “ tpr1, . . . , rN q|ra P Zu. (3.56)

The Lagrangian (3.55) implies that Up1qα gauge transformations act as translations in RN
along the vectors ~kα

Aα ÝÑ Aα ` dλα, (3.57a)

φa ÝÑ φa `
ÿ

α

k a
α λα. (3.57b)

For simplicity, we focus on the case where the number of axions and Up1q gauge symmetries
is equal.4 Finite Up1q gauge transformations leaving all charged fields invariant (i.e. gauge
parameter λα “ 1) act as discrete translations in RN by the integer vectors ~kα, and
therefore span a sublattice Γ̂ Ă Γ,

Γ̂ “ x~k1, . . .~kNyZ “

#

ÿ

α

cα~kα|cα P Z

+

. (3.58)

Following our previous discussion for the single Abelian case, the discrete gauge symmetry
is given by the set of identifications in the space of scalars modulo those implemented by
the finite Up1q gauge symmetries, namely by the quotient

P “
Γ

Γ̂
. (3.59)

As we will now see these intuitions generalize to the non-Abelian case as well.

3.3.3 Non-Abelian discrete gauge symmetries and gaugings

While the construction introduced above describes the well-known case of Abelian discrete
gauge symmetries, it admits a natural generalization to the non-Abelian case. In the non-
Abelian version instead of a single field we will have a whole set of scalars (dubbed ‘non-
Abelian axions’) which span a manifold with non-commuting isometries. This more general
construction can also be regarded as a procedure to construct a Lagrangian formulation
for (at least certain) non-Abelian discrete gauge theories.

4Generalization is straightforward. If the number n of Up1q’s, is smaller than the number N of scalars,
we restrict to those scalars which actually shift: we consider the Rn Ă RN given by real linear combinations
of the vectors ~kα (assumed linearly independent for simplicity), and the sublattice Γn Ă Γ lying in this Rn,

and proceed as above with n playing the role of N . For ~kα not linearly independent, we just eliminate the
decoupled linear combinations of Up1q’s, and restart. Similarly if the number of Up1q gauge symmetries is
larger than the number of scalars to start with.
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3.3.3.1 The scalar manifold

LetM be the moduli space of N scalars φa, endowed with a metric Gabpφq with a set of (in
general non-Abelian) continuous isometries with Killing vector fields XA “ Xb

ABb. Under
infinitesimal space-time independent isometry transformations the scalars transform as

φb ÝÑ φb ` εAXb
A, (3.60)

and their kinetic term
ż

d4xGp~φqab Bµφ
aBµφb (3.61)

is invariant provided that pLXA Gqab “ 0. The Killing vector fields satisfy a Lie algebra

rXA, XBs “ f C
AB XC (3.62)

with f C
AB the structure constants and r , s the Lie Bracket.

Given the 4d Lagrangian (3.61) it is easy to guess how to implement a gauging analo-
gous to equation (3.55), see equation (3.71) below. Before doing that it is however useful
to consider the scalar manifold M and try to understand which kind of metrics Gabpφq
one may obtain in the case where all the fields φa are axions. This will allow in particu-
lar to rewrite (3.61) in a simpler form (namely equation (3.67) below) which we will use
extensively when reproducing non-Abelian discrete gauge symmetries from string theory
setups.

In order to characterize the metric Gab it is useful to describe the manifold M in
the language of group theory, as follows. Note that each Killing vector field describes a
flow within M, and so there is a natural action of the Lie group of isometries IsopMq
on the scalar manifold M. We may then consider that IsopMq acts transitively on M,5

and so identify M with the coset Kpz IsopMq, with Kp the stabilizer or little group of
an arbitrary point p PM. Therefore we may apply the usual procedure (see for instance
appendix A.4 of [151]) for building a Riemannian metric Gabpφq for M in terms of the
elements of IsopMq and Kp.

In general, the quotient Kpz IsopMq will not be a Lie group itself: for this it is necessary
that Kp is a normal subgroup of IsopMq. However, if M parametrizes the vevs of only
axion-like scalars, the choice ofM as a Lie group is quite natural. Indeed, for an ‘axionic
manifold’ M the number of independent shift symmetries at any point should equal the
dimension of M. This is automatically satisfied if M is a Lie group, since in this case
we can identify each axion with an element of the Lie algebra of the group M, while the
continuous shift symmetry corresponds to the one-parameter subgroup generated by such
Lie algebra element. Hence, in the following we will consider the case where our axionic
manifold M is a Lie group.6

In the case thatM is a Lie group we can systematically build an affine representation
of M acting on the plane RN`1, with N “ dimM. For this construction, familiar from

5If not, we may take the orbit Op created when IsopMq acts on a point p P M, and then restrict the
initial set of scalars φa to those that span Op.

6In general we would expect that a coset M that is not a Lie group but is nevertheless a parallelizable
manifold could also qualify as an axionic manifold. We are nevertheless unaware of any example of this
kind arising from a string compactification, and so this possibility will not be analyzed here.
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the description of twisted tori geometries, we first consider the affine plane RN`1 described
by vectors

~v “

ˆ

~φ
1

˙

, (3.63)

as well as a vector ~ε P RN that parametrizes an element of the Lie algebra ofM. Second,
we consider the adjoint representation of LiepMq, given by pad~εq

c
b “ εaf c

ab , and construct
the matrices

gp~εq “

ˆ

1
2 ad~ε ~ε

0 0

˙

, (3.64)

which provide a faithful pN ` 1q-dimensional linear representation of LiepMq Ă isopMq.
Taking the exponential map, we obtain

gp~εq “

ˆ

e
1
2

ad~ε 2 ad´1
~ε pe

1
2

ad~ε ´ Inˆnq~ε
0 1

˙

, (3.65)

where εa now parametrize arbitrarily large translations in M. Finally, we can build an
explicit expression for the metric Gabpφq in terms of the right-invariant 1-forms ηa, which
are defined as

pdg ¨ g´1qp~φq “ ηap~φq ta, (3.66)

with ta the generators of LiepMq. We then obtain that the metric for M is such that

ż

d4xGabp~φq B
µφaBµφ

b “

ż

d4x Pab ηa ¨ ηb, (3.67)

where Pab is the metric in the tangent space ofM, and so independent of φ, while ηa ¨ηb ”
ηµνηaµη

b
ν with ηµν the 4d Minkowski metric. Notice that this expression is automatically

invariant under continuous right-translations by group elements gp~φq Ñ gp~φqgp~εq, and so
it indeed respects the axionic shift symmetries.

A particularly relevant case to forthcoming applications is when LiepMq is a 2-step

nilpotent algebra (see [152] for a recent review). In this case we have that e
1
2

ad~ε “ 1` 1
2 ad~ε

and so equation (3.65) reduces to

gp~εq “

ˆ

1` 1
2 ad~ε ~ε
0 1

˙

. (3.68)

Then, applying equation (3.66) we obtain

ηaµ “ Bµφ
a `

1

2
f a
bc φ

b Bµφ
c, (3.69)

yielding a particularly simple expression for the right-invariant forms ηa and hence for the
metric in (3.67).

Since the above construction is general it is important to note that, unless LiepMq
is semi-simple, M will be a non-compact manifold which is unsuitable to describe the
moduli space of axionic-like scalars. We may however make this moduli space compact
by taking its quotient by a lattice Γ Ă M. This is in fact something quite common in
string theory, where moduli spaces are quotients of the form M̃ “M{Γ, with Γ a discrete
subgroup of IsopMq that takes into account the dualities of the theory. A well-known
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example is the 10d axio-dilaton coupling τ of type IIB theory, whose moduli space is not
Mτ “ SOp2qzSLp2,Rq but rather M̃τ “ SOp2qzSLp2,Rq{SLp2,Zq once S-duality has
been taken into account.7

Going back to the general case, if Γ is cocompact, namely if there is a subset X ĂM
such that the image of X under the action of Γ covers the entire M, then M̃ “ M {Γ
is compact. Finding such a lattice is in general a complicate task and its existence is
not guaranteed. However, if M is a nilpotent Lie group it is enough to require that the
structure constants are integer in some particular basis and that they satisfy f a

ab “ 0
[153]. For the time being we will assume that such cocompact Γ exists, but ignore its
effect until subsection 3.3.3.3.

3.3.3.2 The gauging

Let us now write a 4d Lagrangian describing a set of non-commuting U(1) gauge symme-
tries that gauge some of the isometries of M, ignoring the effect of the discrete lattice Γ.
To describe such gauging, instead of (3.60), we consider infinitesimal space-time dependent
isometry transformations

φb Ñ φb ` εApxqXb
A, (3.70)

where x represents the set of 4d coordinates. Invariance of the action under local trans-
formations becomes manifest once we introduce the corresponding set of gauge fields (see
e.g. [154]). We have the generalization of (3.55)

ż

d4xGabpφq
`

Bµφ
a ´ k a

α Aαµ
˘

´

Bνφ
b ´ k b

β A
β
ν

¯

ηµν , (3.71)

where the set of vector fields tkαu is similar to the above tXAu, but not necessarily identical
due to relative normalizations to be discussed in the next subsections. In order for this
action to be invariant under the infinitesimal isometry transformations (3.70), covariant
derivatives have to transform as

Bµφ
a ´ k a

α Aαµ ÝÑ pδab ` ε
ABbX

a
AqpBµφ

b ´ kα
bAαµq, (3.72)

which means that the gauge fields Aαµ transform as

k a
α Aαµ ÝÑ k a

α Aαµ `X
a
CBµε

C ` fCABX
a
CpX

´1qAb A
β
µk

b
β ε

B. (3.73)

As in the previous section, let us focus on the case where M is a Lie group. For
notational simplicity, we will assume that all the right isometries of M are gauged. It is
easy to see that the right-invariant 1-forms are now given by

pDg ¨ g´1qp~φq “ ηap~φqta, (3.74)

7As a slightly more involved example, we may reconsider the multiple Abelian case in subsection 3.3.2.
Before taking the quotient by the lattice (3.56), the scalar manifold is M “ RN and its isometry group
is the Euclidean group, IsopMq “ RN ¸OpNq. Since the action of IsopMq on M is transitive and the
little group of any point of M is OpNq, M can be identified with the quotient OpNqz IsopMq, which is
nothing but the group of translations in M. Finally, this space is made compact by taking the quotient
M̃ “M {Γ, with Γ a group of discrete translations.
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with
Dg “ dg ´ tak

a
αA

α
µ, (3.75)

and so are built by performing the replacement dg Ñ Dg everywhere. In terms of these
new 1-forms the action is still given by

ż

d4xPabηa ¨ ηb. (3.76)

As before, for the particular case of 2-step nilpotent groups things simplify and these
right-invariant 1-forms read

ηaµ “ Bµφ
a ´ k a

α Aαµ `
1

2
f a
bc φ

bpBµφ
c ´ k c

β A
β
µq, (3.77)

and so under a space-time dependent right-translation gp~φq Ñ gp~φqgp~εq gauge fields trans-
form as

k a
α Aαµta ÝÑ k a

α Aαµtagp~εq ` gp
~φqBµgp~εq. (3.78)

3.3.3.3 A simple example

The above construction provides the Lagrangian for a massive non-Abelian gauge sym-
metry, but it still does not reveal potential residual discrete gauge symmetry. To proceed
further and make the discussion concrete, we introduce here an example of scalar mani-
foldM and lattice Γ whose gauging leads to a non-Abelian discrete symmetry group. The
example is constructed using the Heisenberg group, M “ H3pRq, and will be realized in
several physical systems in coming chapters. In the next subsection we then extend the
discussion to the general case.

Thus, we consider the 3-dimensional Heisenberg group as generated by matrices of the
form

gp~εq “

¨

˚

˚

˝

1 0 0 ε1

0 1 0 ε2

´M
2 ε

2 M
2 ε

1 1 ε3

0 0 0 1

˛

‹

‹

‚

(3.79)

with M an integer. The associated Lie algebra is

rt1, t2s “Mt3, (3.80)

where t1, t2 and t3 are the elements of the algebra that generate the 1-dimensional sub-
groups parametrized by ε1, ε2 and ε3. The right-invariant 1-forms are given by equation
(3.69), which in this particular case corresponds to

η1
µ “ Bµφ

1, (3.81a)

η2
µ “ Bµφ

2, (3.81b)

η3
µ “ Bµφ

3 `
M

2
pφ1Bµφ

2 ´ φ2Bµφ
1q, (3.81c)

in terms of which the metric of M is given by the r.h.s. of
ż

d4xGabp~φq B
µφaBµφ

b “

ż

d4x Pab ηa ¨ ηb. (3.82)
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SinceM is non-compact, we take our axionic moduli space to be given by the compact
coset M̃ “ H3pRq{Γ where, for concreteness, we take the cocompact lattice Γ Ă H3pRq to
be generated by pφ1, φ2, φ3q “ pn1, n2, n3q with ni P Z, namely by the discrete transfor-
mations

Γp1, 0, 0q : φ1 Ñ φ1 ` 1, φ3 Ñ φ3 ´
M

2
φ2, (3.83a)

Γp0, 1, 0q : φ2 Ñ φ2 ` 1, φ3 Ñ φ3 `
M

2
φ1, (3.83b)

Γp0, 0, 1q : φ3 Ñ φ3 ` 1. (3.83c)

We can gauge the right isometries of M̃ following the general procedure described in
the previous subsection. Thus, we introduce a set of U(1) gauge bosons Aαµ, α “ 1, 2, 3,
and replace the right-invariant 1-forms (3.81) by their gauged counterparts eq. (3.77),
which in this particular case read

η1
µ “ Bµφ

1 ´ k1A
1
µ, (3.84a)

η2
µ “ Bµφ

2 ´ k2A
2
µ, (3.84b)

η3
µ “ Bµφ

3 ´ k3A
3
µ `

M

2

“

φ1pBµφ
2 ´ k2A

2
µq ´ φ

2pBµφ
1 ´ k1A

1
µq
‰

, (3.84c)

with kα P Z, α “ 1, 2, 3.

After the gauging, U(1) gauge transformations of the gauge bosons Aαµ

A1
µ ÝÑ A1

µ ` Bµλ
1, (3.85a)

A2
µ ÝÑ A2

µ ` Bµλ
2, (3.85b)

A3
µ ÝÑ A3

µ ` Bµλ
3 `

Mk1k2

2k3

`

λ2A1
µ ´ λ

1A2
µ

˘

`
M

2k3
pk2φ

1Bµλ
2 ´ k1φ

2Bµλ
1q,(3.85c)

induce non-trivial shifts on the scalars

φ1 ÝÑ φ1 ` k1λ
1, (3.85d)

φ2 ÝÑ φ2 ` k2λ
2, (3.85e)

φ3 ÝÑ φ3 `
M

2
pk2φ

1λ2 ´ k1φ
2λ1q ` k3λ

3. (3.85f)

Compatibility of these transformations with (3.83) then leads to a set of non-commuting
Zkα discrete gauge symmetries. Indeed, the gauge symmetry is given by the set of iden-
tifications (3.83) modulo these finite gauge transformations, in analogy with the Abelian
case. For instance, for k1 “ k2 “ k3 “ k P Z and M “ 1 we have that the discrete gauge
symmetry is given by P “ pZkˆZkq ¸ Zk, with generators T̃1, T̃2 and T̃3 satisfying

T̃ k1 “ T̃ k2 “ T̃ k3 “ 1, (3.86a)

T̃1T̃2 “ T̃3T̃2T̃1. (3.86b)

For k “ 2 this is isomorphic to the dihedral group, P » Dih4, whereas for k “ 3 the
discrete symmetry group is P » ∆p27q
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3.3.3.4 The discrete gauge symmetry

To obtain the non-Abelian discrete gauge symmetry group in the above example we have
closely followed a similar reasoning to the one that we used for Abelian discrete gauge
symmetries. Indeed, we have seen that gauge transformations span a lattice Γ̂ Ă M̃
and in order to gauge the left isometries of M̃ it is enough to specify such a lattice. As
in the Abelian case, the discrete gauge symmetry arises when we take into account the
group Γ of scalar field identifications; namely when we specify the periodicities of the
isometries generated by XA and compare them with those of the gauge transformations
(3.73), generated by kα. Thus, once Γ is taken into account, a non-trivial compatibility
condition for the gauging arises.

The discrete gauge symmetry of the theory is

P “
Γ

Γ̂
. (3.87)

Fields charged under the original U(1) symmetries end up in some representation of this
discrete gauge symmetry (whether they are massless fields or not).

3.4 A comment on discrete gauge symmetries and instan-
tons

One point we have not emphasised yet is that the continuous symmetries which are broken
to the discrete ones behave as exact global symmetries at the perturbative level. However,
they are violated by non-perturbative effects, in particular D-brane instantons [155, 78,
156] (see [157, 158, 10] for reviews. The existence of a gauged discrete subgroup implies
that it will be preserved by any such non-perturbative effect; we will illustrate this in
section 4.5 in the case of intersecting brane models for Abelian symmetries, and in section
7.4 for non-Abelian symmetries in the context of magnetised brane models.

One may think that, for practical purposes, instanton effects may be negligible, and
discrete gauge symmetries are irrelevant, since they are just part of the perturbatively
exact global symmetries. However, in many SM-like D-brane models, instanton effects are
often invoked to generate phenomenologically interesting (but perturbatively forbidden)
couplings, see e.g. [159, 160, 161, 77], and so must be non-negligible. Hence it is relevant
to ensure that other instantons do not induce dangerous coupling.
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4
Discrete gauge symmetries in intersecting D-brane

models

Intersecting D-brane models are one of the possible ways that realistic models of particle
physics. It consists of several stacks of D-branes, which contain the gauge group and
gauge bosons in their worldvolume, and matter fields arising in the intersections of two
such stacks. They have been extensively studied in the literature, see e.g. [162, 163, 164,
73, 165, 166, 167, 168, 169, 170, 74, 171, 172, 76, 140, 149].

In this chapter we present an analysis of the possible discrete gauge symmetries one can
realize in intersecting D-branes models, using the BF formalism we explained in section
3.2. We first review the construction of intersecting D-brane models, and how the BF
couplings arise in them. Subsequently, we consider two kinds of models, which differ in the
way the SUp2qL group of the Standard Model is generated, and study what the possible
discrete gauge symmetries in those theories are. We also study D-brane instantons, and
check that all instantons preserve the discrete gauge symmetries. Finally, we comment
on Z2 discrete gauge symmetries associated to the discrete K-theory charge cancellation
conditions, and suggest the intriguing possibility of identifying it with R-parity in explicit
constructions.

4.1 Introduction to intersecting brane models

4.1.1 Intersecting D6-branes in flat 10d space

4.1.1.1 Local geometry and spectrum

The basic configuration of intersecting D-branes leading to chiral 4d fermions at their
intersection corresponds to two stacks of D6-branes in flat 10d, intersecting over a 4d
subspace of their volumes. Consider flat 10d space, decomposed as M4ˆR2ˆR2ˆR2,
abd two stacks of D6-branes spanning M4 times a line in each of the three 2-planes. The
local geometry is fully defined by the three angles θi which define the rotation between
the two stacks of D6-branes. As discussed below, the chiral fermions are localized at the
intersection of teh brane volumes.

The appearance of chirality can be understood from the fact that the geometry of the
two D6-branes introduces a preferred orientation in the transverse 6d space; the rotation

39
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from the first to the second D6-brane defines an orientation by a 6d version of the ‘right-
hand rule’.

Consider a stack of N1 coincident D6-branes (denoted D611s) intersecting a second stack
of N2 D6-branes (denoted D612). The open string spectrum is the following:

• 6161: Strings stretching among the D61-branes produce 7d UpN1q gauge bosons,
three real adjoint scalars and fermion superpartners, propagating over the 7d world-
volume of the D61-branes.

• 6262: Strings stretching among the D62-branes produce 7d UpN2q gauge bosons,
three real adjoint scalars and fermion superpartners, propagating over the 7d world-
volume of the D62-branes.

• 6162+6261 Open strings between both kinds of D6-branes are naturalluy localized
at their intersection, to minimize their stretching, and lead to 4d chiral fermions in
the bi-fundamental representation pN1, N̄2q of UpN1qˆUpN2q, as well as scalar fields
in the same representation. For a detailed computation, see the next section.

Chirality of the sector of open strings stretching between the two D6-branes is consis-
tent with the fact that any continuous motion of the branes (preserving gauge symmetry)
maintains the existence of an intersection; this corresponds to the fact that chiral parti-
cles at the intersection do not become massive upon deforming their effective action in a
continuous fashion.

4.1.1.2 Open strings at D6-brane intersections

Consider open strings stretching between the D61 and D62-branes. the boundary condi-
tions for the coordinates along M4 are of the NN kind and lead to the oscillators αµn, ψµn`r.
For the directions where the branes form non-trivial angles, like in the px4, x5q two-plane,
we have boundary conditions

BσX
4|σ“0 “ 0 pcos θ1BσX

4 ` sin θ1BσX
5q|σ“l “ 0

BtX
5|σ“0 “ 0 p´ sin θ1BtX

4 ` cos θ1BtX
5q|σ“l “ 0 (4.1)

and similarly for the two remaining two-planes with angles θ2, θ3. Defining complex
coordinates Zi “ X2i`2 ` iX2i`3, i “ 1, 2, 3, the boundary conditions read

BσpReZiq|σ“0 “ 0 BtpImZ
iq|σ“0 “ 0

BσrRepeiθiZiqs|σ“l “ 0 BtrImpe
iθiZiqs|σ“l “ 0 (4.2)

Using mode expansion for these coordinates, these boundary conditions shift the os-
cillator modding by an amount ˘νi “ ˘θ{π. The oscillator operators, which are now
associated to complex coordinates, are αin´νi , ᾱ

ī
n`νi , ψ

i
n`r´νi , ψ̄

ī
n`r`νi , with r “ 1

2 , 0 in
the NS, R sectors. Also, the center of mass degrees of freedom for the bosonic coordi-
nates are frozen in these directions, so that the open strings are localized at the D6-brane
intersection.
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The states are localized at the 4d intersection and transform in the bifundamental
pN1, N̄2q1,´1 of the UpN1qˆUpN2q gauge factor, with the subindices denoting the Up1q1ˆ
Up1q2 charges. The antiparticles arise from the D62-D61 open string sector.

The light spectrum contains in the NS sector a set of light scalars with masses de-
pending on the θi (so they can be massive, massless or tachyonic), and in the R sector a
massless 4d chiral fermion. The chirality of the 4d fermion is due to the GSO projections,
and its handedness is determined by the orientation of the intersection. The masses of the
scalars are given by

α1
M2

2
“

1

2π
pθ1 ` θ2 ´ θ3q;

1

2π
pθ1 ´ θ2 ` θ3q

1

2π
p´θ1 ` θ2 ` θ3q; 1´

1

2π
pθ1 ` θ2 ` θ3q (4.3)

where θi P r´π, πs for i “ 1, 2, 3.

In the generic case, there is no supersymmetry invariant under the two stacks of branes,
and the open string configuration is non-supersymmetric. However, if θ1 ˘ θ2 ˘ θ3 “ 0
for some choice of signs, one of the scalars becomes massless, and the configuration is
4d N“ 1 supersymmetric. In the case that one of the angles vanishes, e.g. θ1 “ 0, and
θ2 ˘ θ3 “ 0, the system preserves 4d N“ 2 supersymmetry, while for θ1 “ θ2 “ θ3 “ 0 we
have 4d N=4 supersymmetry.

4.1.2 Four-dimensional models

In the configuration we studied in the previous section, we obtained 4d chiral fermions;
however, gauge interactions remain 7d and gravity interactions remain 10d, so one needs
to consider compactification of space time.

The general kind of configurations that will be considered are type IIA string theory on
a space time of the form M4ˆX6, where X6 is a compact Calabi-Yau manifold X6, so that
we have supersymmetry in the closed sector. In addition we introduce stacks (labelled by
an index a) of Na D6a-branes spanning 4d Minkowski and wrapped on 3-cycles Πa in X6.
Introduction of orientifold planes will be discussed in a later section.

Each D6-brane stack leads to a 4d gauge factor, while intersection between D6-brane
stacks lead to 4d charged chiral fermions. A novelty in compact models is that generically
two 3-cycles in a 6d space intersect several times, leading to replication of charged chiral
fermions. This is a natural mechanism to explain/reproduce the appearance of replicated
generations of chiral fermions in Nature.

4.1.2.1 Toroidal models

Many features of general compactifications with intersecting D-branes can be illustrated
in the simpler setup of toroidal compactifications.

Consider type IIA compactified on a factorized torus T6 “ T2ˆT2ˆT2, and stacks of
Na D6a-branes spanning 4d spacetime and wrapping a 1-cycle pnia,m

i
aq in the ith 2-torus;

namely, the D6a-brane wraps nia times along the horizontal direction and mi
a times along

the vertical direction in the ith two-torus. The 3-cycles Πa are the product of three 1-cycles
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in the three 2-tori of T6. Note that for each i, the integers pni,miq must be coprime;
otherwise, the system describes r D-branes with wrapping numbers pn{r,m{rq, where
r “ gcdpn,mq. There exists more general non-factorizable 3-cycles, that for simplicity will
not be considered here.

Near each intersection of D6-brane stacks, the configuration reduces to the intersecting
D6-branes in 10d flat spacetime. However, in this case, the angles are derived quantities.
For a rectangular T2 of radii R1, R2 along the horizontal and vertical directions, the angle
between the 1-cycles p1, 0q and pnia,m

i
aq is given by

tan θia “
mi
aR2

niaR1
(4.4)

The intersection number is given by the product of the number of intersections in each
2-torus, and reads

Iab “ pn
1
am

1
b ´m

1
an

1
bq ˆ pn

2
am

2
b ´m

2
an

2
bq ˆ pn

3
am

3
b ´m

3
an

3
bq (4.5)

It is useful to introduce the 3-homology class rΠas of the 3-cycle Πa. rΠas can be
thought of as a vector of RR charges of the corresponding D6-brane. The 1-homology
class of an pn,mq 1-cycle in a 2-torus is nras ` mrbs, with ras, rbs the basic homology
cycles in T2. For a 3-cycle with wrapping numbers we have

rΠas “ b
3
i“1pn

i
arais `m

i
arbisq (4.6)

The intersection number (4.5) is the homological intersection number, denoted Iab “
rΠas¨rΠbs. This result follows easily from rais¨rbjs “ δij and the linearity and antisymmetry
of the intersection pairing.

The multiplicities Na and the intersection numbers Iab are sufficient to compute the
gauge symmetry and chiral matter content of the 4d compactification. The closed string
sector is just a toroidal compactification, and produces 4d N“ 8 supergravity (this can
be reduced to 4d N“ 1 in more general orbifold or CY compactifications). There are also
different open string sectors:

• 6a6a Strings stretched among D6-branes in the ath stack produce 4d UpNaq gauge
bosons, 6 real adjoint scalars and 4 adjoint Majorana fermions, filling out a vector
multiplet of the 4d N“ 4 supersymmetry preserved by the corresponding brane.

• 6a6b+6b6a Strings streched between the ath and bth stack lead to Iab replicated
left-handed chiral fermions in the bi-fundamental representation pNa, N̄bq. Negative
intersecion numbers indicate a positive number of right-handed chiral fermions. Ad-
ditional light scalars may be present, with masses (4.3) in terms of angles fixed by
the wrapping numbers and the T2 moduli.

String theories with open string sectors must satisfy the condition of RR tadpole
cancellation, which amounts to requiring the total RR charge of D-branes to vanish. In
our setup, the vector of RR charges is encoded in the D6-brane 3-cycle homology class, so
the condition reads

rΠtots ”
ÿ

a

NarΠas “ 0 (4.7)
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In the toroidal setup, this condition becomes
ÿ

a

Nan
1
an

2
an

3
a “ 0,

ÿ

a

Nan
1
an

2
am

3
a “ 0, and permutations

ÿ

a

Nan
1
am

2
am

3
a “ 0, and permutations

ÿ

a

Nam
1
am

2
am

3
a “ 0, (4.8)

Since the total D6-brane charge adds up to zero, models without O6-planes implicitly
contain brane and antibrane charges; they are not symmetric, and may have potential
instabilities.

Cancellation of RR tadpoles in the underlying string configuration implies cancellation
of anomalies in the 4d effective theory.

• Cubic non-abelian anomalies
The SUpNaq

3 cubic anomaly is proportional to the number of fundamental minus
antifundamental representations of SUpNaq, hence it is proportional to

ř

b IabNb.
This vanishes as a consequence of RR tadpole cancellation: taking the intersection
of rΠtots with any rΠas one gets

0 “ rΠas ¨ rΠtots “ rΠas ¨
ÿ

b

NbrΠbs “
ÿ

b

NbIab (4.9)

• Mixed anomalies
The Up1qa´SUpNbq

2 mixed anomalies cancel involving a 4d Green-Schwarz mecha-
nism mediated by closed string RR fields. The triangle diagrams for Up1qa´SUpNbq

2

give a contribution which, even after using RR tadpole cancellation, is non-zero and
proportional to

Aab » NaIab (4.10)

The theory also contains contributions from Green-Schwarz diagrams, where the
gauge boson of Up1qa mixes with a 2-form which subsequently couples to two gauge
bosons of SUpNbq. The couplings arise from the KK reduction of the D6-brane
couplings Na

ş

D6a
C5 ^ TrFa and

ş

D6b
C3 ^ TrF 2

b in the Chern-Simons action. Let

tαku be a basis of 3-cycles and tβku its dual basis, i.e. αk ¨ β
l “ δlk. We define the

KK reduced 4d 2-forms ands scalar fields

Bk
2 “

ż

αk

C5, al “

ż

βl
C3, with BµB

k
νρ “ ´δ

klεµνρσB
σal (4.11)

where the 4d duality relation follows from the 10d duality between C5 and C3. The
KK reduced couplings read

Na

ż

D6a

C5 ^ TrFa Ñ NaQak

ż

4d
Bk

2 TrFa
ż

D6b

C3 ^ TrF 2
b Ñ qlB

ż

4d
alTrF 2

b (4.12)
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with Qak “ rΠas ¨ rαks, q
l
b “ rΠbs ¨ rβ

ls. One can check that the total amplitude is
proportional to

AGSab » ´IabNa (4.13)

leading to a cancellation between both kinds of contributions.

• Mixed gravitational anomalies
Mixed gravitational triangle anomalies cancel automatically since the sum of Up1qa
charges is Na

ř

b IabNb, which vanishes from (4.7).

4.1.2.2 Generalization beyond torus

One may take any compact 6-manifold as internal space; for instance, a Calabi-Yau three-
fold X6, which would lead to 4d N“ 2 supersymmetry in the closed string sector. One
should pick a set of 3-cycles Πa on which we wrap Na D6a-branes making sure they satisfy
the RR tadpole condition

ř

aNarΠas “ 0. If one is interested in preserving supersymme-
try, the 3-cycles should be special lagrangian of X6, which are defined by the conditions

J |Π “ 0, Impe´iφΩ3q|Π “ 0 for some fixed φ (4.14)

where J and Ω3 are the Calabi-Yau Kähler 2-form and holomorphic 3-form, and |Π denotes
the restriction to the 3-cycle.

The final open string spectrum, in the case of supersymmetric wrapped D6-branes,
arises in two kinds of sectors:

• 6a6a Leads to UpNaq vector multiplets of the 4d N“ 1 supersymmetry preserved
by the D6abrane. In addition, there may be b1pΠaq chiral multipletes in the adjoint,
where b1pΠaq is the first Betti number of Πa.

• 6a6b+6b6a It produces Iab chiral fermions in the representation pNa, N̄bq (plus light
scalars, with masses determined by the relative angles pθiqab, and which become
massless for supersymmetry preserving intersections). Here Iab “ rΠas ¨ rΠbs is the
topological intersection number of 3-cycles.

Since the chiral spectrum involves only purely topological data of the configuration, the
discussion of RR tadpole cancellation and anomaly cancellation can be borrowed directly
from the previous section.

4.1.3 Orientifold compactifications with intersecting D6-branes

RR tadpole cancellation implies that models without O6-planes are necessarily non-supersymmetric.
A putative fully supersymmetric configuration of D6-branes would be, as a whole, a BPS
state of type IIA on X6. For a BPS state, the tension is proportional to the RR charge,
and since the latter vanishes due to tadpole cancellation, so must the former; hence, the
only supersymmetric configuration is type IIA on X6, with no D6-branes at all. The way
out of this impasse is to introduce O6-planes, which have negative RR charge and tension,
and preserve the same supersymmetry as the D6-branes.
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Consider type IIA theory on a CY X6 and mod out the configuration by ΩRp´1qFL ,
where Ω is worldsheet orientation reversal, R is an antiholomorphic Z2 symmetry on X6,
acting as pz1, z2, z3q Ñ pz̄1, z̄2, z̄3q on local complex coordinates. The fixed points ofR form
an orientifold plane, the O6-plane, namely a subspace of spacetime where the orientation of
the string can flip. The p´1qFl operation, where FL is the number of left-moving spacetime
fermion number, is needed for the orientifold action to square to the identity operator.

The models also include Na D6a-branes wrapped on 3-cycles Πa, and their image D6a1-
branes on 3-cycles denoted by Πa1 . The D6-branes preserve the 4d N“ 1 supersymmetry
of the model if they preserve a common supersymmetry with the O6-planes, i.e. if their
local relative anbles with the O6-planes satisfy

θ1 ` θ2 ` θ3 “ 0 (4.15)

The RR tadpole cancellation conditions include contributions from D6-branes, image
D61-branes and O6-planes (with -4 units of D6-brane charge) and read

ÿ

a

NarΠas `
ÿ

a

NarΠa1s ´ 4rΠO6s “ 0 (4.16)

In models with no D6-brane coinciding with its image D61-brane, the light spectrum
in the different sector is:

• 6a6a+6a16a1 Contains UpNaq gauge bosons (plus possible additional adjoint fields).

• 6a6b+6b6a+6a16b1+6b16a1 Gives Iab chiral fermions in the representation pNa, N̄bq,
plus light (possibly massless) scalars.

• 6a6b1+6b16a+6a16b+6b6a1 Gives Iab1 chiral fermions in the representation pNa, Nbq,
plus light (possibly massless) scalars.

• 6a6a1+6a16a Contains nsym,a 4d chiral fermions in the representation a and nasym,a
in the a, with

nsym,a “
1

2
piaa1 ´ Ia,O6q, nasym,a “

1

2
piaa1 ` Ia,O6q (4.17)

where Ia,O6 “ rΠas ¨ rΠO6s is the number of aa1 intersections on top of O6-planes. In
addition, there are light (possibly massless scalars).

The RR tadpole condition (4.16) guarantees the cancellation of 4d anomalies of the
new chiral spectrum. Anomalous and non-anomalous Up1q1s may acquire masses from
their couplings to RR 2-form fields. The condition for a Up1q to remain massless is

ÿ

a

NapQak ´Qa1kqca “ 0 for all k (4.18)

In the orientifold case, there are in general mixed gravitational triangular anomalies,
which cancel via Green-Schwarz contributions arising from both D6-brane and O6-plane
worldvolume couplings.
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4.1.3.1 Toroidal orientifold models

We focus on factorized tori T6 “ T2ˆT2ˆT2, parametrized by zi “ xi ` iyi. We take
the orientifold action ΩRp´1qFL with R: zi Ñ z̄i, i.e. yi Ñ ´yi, leaving xi invariant.

There are two possible kinds of 2-tori compatible with this symmetry: rectangular
tori, defined by the periodicities zi „ zi ` R1, zi „ zi ` iR2; and tilted tori, defined by
the periodicities zi „ zi ` R1, zi „ zi ` R1 ` iR2{2. The orientofold action on pn,mq-
cycles is different in each case, with pn,mq Ñ pn,´mq for rectangular tori, and pn,mq Ñ
pn,´m ´ nq for tilted tori. In the latter case, one usually defines m̃ “ m ` n{2, so that
the orientifold acts as pn, m̃q Ñ pn,´m̃q. For simplicity, in this section only geometries
with three rectangular 2-tori will be considered.

For a geometry with three rectangular 2-tori, there are O6-planes spanning the 3-cycle
parametrized by xi and yi “ 0, iR2{2. There are thus 8 O6-planes along the 3-cycle with
wrapping numbers pni,miq “ p1, 0q, so their total homology class is rΠO6s “ 8ra1sra2sra3s.
The model contains stacks of NA D6a-branes with wrapping numbers pnia,m

i
aq and images

with wrapping numbers pnia,´m
i
aq. The RR tadpole conditions (4.16) read

ÿ

a

Nan
1
an

2
an

3
a “ 16

ÿ

a

Nan
1
am

2
am

3
a “ 0, and permutations (4.19)

The number of conditions is halved with respect to the number of conditions in the un-
orientifolded case (4.8) because the orientifold projection removes half of the components
of the RR fields. Equivalently, because branes and their orientifold images cancel each
other’s contributions, and thus the conditions are automatically fulfilled.

The spectrum of the orientifold theory is given by the general CY result above, with
intersection numbers given by (4.5).

In the presence of orientifold planes, there are additional discrete Z2-valued charges of
non-BPS branes, classified by K-theory. In compact models, global consistency requires
the cancellation of these discrete charges, leading to additional conditions. In the toroidal
orientifold case, there are conditions requiring the cancellation of Z2-valued charges of
D6-branes along p1, 0q ˆ p1, 0q ˆ p0, 1q and permutations; namely

ÿ

a

Nam
1
an

2
an

3
a P 2Z, and permutations (4.20)

4.2 Discrete gauge symmetries from BF couplings

4.2.1 General analysis

Consider type IIA compactified on a Calabi-Yau X6, with an orientifold action ΩRp´1qFL .
Here R is an antiholomorphic involution of X6, acting as zi Ñ ´zi on local complex
coordinates, so it introduces O6-planes. The compactification also contains stacks of NA

D6A-branes wrapped on 3-cyces ΠA (along with their orientifold images ΠA1). We do
not impose the supersymmetry conditions at this level since the analysis is essentially
topological, and it holds even in non-supersymmetric models.
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Let us introduce a basis of 3-cycles tαku, tβku, even and odd under the geometric
action R, with k “ 1, . . . , h2,1`1, and for simplicity, such that αk ¨βl “ δkl.

1 ‘ We expand
the wrapped cycles in this basis as

ΠA “
ÿ

k

´

rkAαk ` s
k
Aβk

¯

, (4.21a)

ΠA1 “
ÿ

k

´

rkaαk ´ s
k
Aβk

¯

. (4.21b)

The RR tadpole cancellation conditions are

ÿ

A

NArΠAs `
ÿ

A1

NArΠA1s ´ 4rΠO6s “ 0, (4.22)

where rΠO6s denotes the total homology class of the O6-planes (with the -4 from their RR
charge, assumed to be negative).2

The gauge group is given by ΠAUpNAq, and the spectrum of chiral matter is given by

ÿ

AB

IAB p A, Bq `
ÿ

AB1

p A, Bq `
ÿ

A

ˆ

IAA1 ` IA,O6

2
A `

IAA1 ´ IA,O6

2
A

˙

(4.23)

where IAB “ rΠAs ¨ rΠBs, IAB1 “ rΠAs ¨ rΠB1s and IA,O6 “ rΠAs ¨ rΠO6s are the relevant
intersection numbers giving the multiplicities.

The RR 5- and 3-form are intrinsically even and odd under the orientifold action,
respectively; therefore, the Kaluza-Klein reduction leads to the following basis of RR 2-
forms and their dual RR scalars

Bk “

ż

βk

C5, (4.24a)

ak “

ż

αk

C3, (4.24b)

with dBk “ ˚4ddak.

The Kaluza-Klein reduction of the D6-brane Chern-Simons action leads to the following
BF coupling

SBFA “
1

2

˜

ż

ΠA

C5 ^ trFA ´

ż

ΠA1

C5 ^ trFA

¸

“
ÿ

k

NAs
k
ABK ^ FA, (4.25)

where the factor of 1/2 is due to the orientifold action, and the relative minus sign of the
orientifold image contributions arises because FA1 “ ´FA. Also, the factor of NA arises
from the Up1qA trace quantization.

As discussed previously in chapter 3, the factor of NA implies the appearance of a
ZNA discrete gauge symmetry. This corresponds to the general fact that the actual gauge

1There is an alternative class of orientifold actions, satisfying αk ¨ βl “ 2δkl, which leads to very similar
physical results, but requires a careful tracking of factors of 2. See section 4.2.3 for more details.

2In addition, there are certain discrete K-theory charge cancellation conditions [173], which actually
play an interesting role, discussed in section 4.6.
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group on a stack of N D-branes is rSUpNq ˆ Up1qs{ZN , with the ZN corresponding to
the centre of SUpNq, i.e. the N -ality. Namely, the group element diagpα, . . . , αq with
α “ e2πi{N can be regarded as belonging to SUpNq or to the diagonal Up1q; the quotient
by ZN implies that the two possibilities should be regarded as completely equivalent. The
charges of fields under this ZN are given by their N -ality, and so this ZN does not imply
any selection rule beyond SUpNq gauge invariance; therefore, it is not very interesting by
itself.

It follows from the structure of the BF couplings (4.25) that an additional Zn discrete
gauge symmetry appears whenever the coefficients skA are multiples of n, for all k; more
precisely, when n “ gcdpskAq.

In general, one may be interested in discrete subgroups of Up1q linear combinations of
the form

Q “
ÿ

A

cAQA. (4.26)

In order to properly identify the discrete gauge symmetry from the BF coupling, the
quantization is fixed such that cA P Z, andgcdpcAq “ 1.

The BF couplings read

SBF “

˜

ÿ

A

cANAs
k
A

¸

Bk ^ F, (4.27)

where F is the field strength associated to the Q generator. So there is a Zn gauge
symmetry if p

ř

A cANAs
k
Aq P nZ for all k. This condition can be rewritten as

ÿ

A

cANArΠAs ¨ rαks “ 0 mod n, @k. (4.28)

Although it has been derived for the case where rαks ¨ rβls “ δkl, this expression for the
condition is also valid in cases where rαks¨rβls “ 2δkl for some subset of the k’s, see section
4.2.3.

Under a Up1qQ gauge transformation, the shift of the scalars ak, dual to the 2-forms
Bk, is given by

Aµ ÝÑ Aµ ` Bµλ, (4.29a)

ak ÝÑ ak `
ÿ

A

cANAs
k
Aλ. (4.29b)

In our quantizations, fields in the fundamental of SUpNAq have Up1qA charges qA “ 1,
while fields in the two-index symmetric or antisymmetric tensor representation have qA “ 2
(and the opposite charge for the conjugate representations). For a field with charges qA
under the Up1qA, its charge under the Zn is given by

ř

A cAqA mod n.

4.2.2 Toroidal orbifolds

In this section we particularise the above general analysis to the case of toroidal orien-
tifolds. This is also valid for orbifolds thereof, as long as the relevant D6-branes do not
wrap twisted cycles.
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Consider a T6, taken factorable for simplicity, with each pT2qi parametrised by xi,
yi, i “ 1, 2, 3, and denote rais, rbis the 1-cycles along its two independent 1-cycles, with
rais ¨ rbjs “ δij . The orientifold acts as xi Ñ xi, yi Ñ ´yi, and we take the action on
the 1-cycles to be rais Ñ rais, rbis Ñ ´rbis (other tilted actions are also possible, see next
section).

The basis of even and odd 3-cycles are

rα0s “ ra1sra2sra3s, rβ0s “ rb1srb2srb3s, (4.30a)

rα1s “ ra1srb2srb3s, rβ1s “ rb1sra2sra3s, (4.30b)

rα2s “ rb1sra2srb3s, rβ2s “ ra1srb2sra3s, (4.30c)

rα3s “ rb1srb2sra3s, rβ3s “ ra1sra2srb3s. (4.30d)

The coefficients skA are given by

s0
A “ m1

Am
2
Am

3
A, (4.31a)

s1
A “ mn

Am
2
An

3
A, (4.31b)

s2
A “ n1

Am
2
An

3
A, (4.31c)

s3
A “ n1

An
2
Am

3
A, (4.31d)

where pni,miq denote the wrapping numbers on the i-th torus with coordinates pxi, yiq.

4.2.3 Tilted orientifolds

Let us introduce a basis of 3-cycles tα̃ku, tβ̃ku, satisfying α̃k ¨β̃l “ δkl, before the orientifold
projection. Earlier in this chapter we have focused on the situation where α̃ Ñ α̃k and
β̃ Ñ ´β̃k, which were denoted αk and β. However, the orientifold projections is also
compatible with other possibilities, e.g. in which of a sunsets of k’s we have α̃k Ñ α̃k´ β̃k,
β̃k Ñ ´β̃k, or in which for a subset we have α̃k Ñ α̃k, β̃k Ñ ´β̃k ` α̃k. Since the latter
turns into the former by renaming α̃1 “ 2α̃ ´ β̃, β̃1 “ α̃, we will focus on the action
α̃Ñ α̃´ β̃, β̃ Ñ β̃ for concreteness. Also, for simplicity, we will assume that this happens
for all k.

This kind of situation is familiar in compactifications with tilted T2’s, so we dub them
‘tilted orientifolds’.

The cycles with definite parity under the orientifold action are given by αk “ 2α̃k´ β̃k,
βk “ β̃k, and αk ¨ βl “ 2δkl.

The 3-cycles wrapped by the D6A-branes and their images are

rΠAs “ rkAα̃k ` s
k
Aβ̃k “

1

2
rkAαk ` s̃

k
Aβk, (4.32a)

rΠA1s “ rkAα̃k ´ s
k
Aβ̃k “

1

2
rkAαk ´ s̃

k
Aβk, (4.32b)

where we have introduced s̃kA “ ska `
1
2r
k
A.
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We define the RR 2-forms and scalars as

Bk “

ż

βk

C5, (4.33a)

ak “

ż

αk

C3. (4.33b)

Notice that since αk “ 2α̃k ´ β̃, there is a factor of 2 in the duality relation.

The BF coupling read
NA

ÿ

k

s̃kABk ^ FA. (4.34)

Considering a Up1q linear combination Q “
ř

A cAQA, under a Up1q gauge transfor-
mation, the shift in the RR scalar is

Aµ ÝÑ Aµ ` Bµλ, (4.35a)

ak ÝÑ ak ` 2
ÿ

A

cANAs̃
k
Aλ, (4.35b)

where the factor of 2 (related to the one mentioned above) arises because αl “ 2α̃k ´ β̃;
this ensures the coefficient to be integer, even though the s̃ can be 1

2 mod Z.

Noting that rΠAs¨rαns “ ´2s̃kA, the condition for a Zn subgroup to remain as a discrete
gauge symmetry is given by the expression (4.28).

4.3 The Spp2q class

4.3.1 Generalities

In this class of models there are four stacks of D-branes, denoted a (baryonic), b (left),
c (right) and d (leptonic). They have N1 “ 3, Nb “ 1, Nc “ 1, Nd “ 1, but the
stack b is taken coincident with its orientifold image, so that the initial gauge group is
Up3qa ˆ Spp2qb ˆ Up1qc ˆ Up1qd.

The chiral fermion content reproduces the SM quark and leptons if the D6-brane
intersection numbers are given by3

Iab “ Iab˚ “ 3, (4.36a)

Iac “ Iac˚ “ ´3, (4.36b)

Idb “ Idb˚ “ ´3, (4.36c)

Icd “ ´Idc˚ “ ´3, (4.36d)

with the remaining intersections vanishing. As usual, negative intersection numbers denote
positive multiplicities of the conjugate representation. The spectrum of chiral fermions
is showed in table 4.1. It corresponds to the three SM quark-lepton generations. In
addition there are three right-handed neutrinos NR, whose presence is generic in this kind
of constructions.

3Here and in what follows, we use the notation A˚ for the orientifold image of the branes A.
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Intersection Matter fields Qq Qc Qd Y

pabq, pab˚q QL 3p3, 2q 1 0 0 1/6

pa, cq UR 3p3̄, 1q -1 1 0 -2/3

pac˚q DR 3p3̄, 1q -1 -1 0 1/3

pbdq, pbd˚q L 3p1, 2q 0 0 -1 -1/2

pcdq ER 3p1, 1q 0 -1 1 1

pcd˚q NR 3p1, 1q 0 1 1 0

Table 4.1: Standard model spectrum and Up1q charges in the realization in terms of
D6-branes with intersection numbers (4.36).

At the intersections there are also complex scalars with the same charge as the chi-
ral fermions [73]; in supersymmetric realizations, some of these scalars are massless and
complete the matter chiral multiplets, while in non-supersymmetric realizations they are
generally massive (their possible tachyonic character can be avoided by a judicious choice
of the complex structure moduli in concrete examples, see [73] for the toroidal case).

One linear combination of the three Up1q’s,

Y “
1

6
pQa ´ 3Qc ` 3Qdq , (4.37)

corresponds to the hypercharge generator; it is anomaly free, and should be required to
be massless, namely its BF coupling should vanish. In the language of section 4.2.1, we
have

sk1 ´ s
k
c ` s

k
d “ 0 for all k, (4.38)

where we have accounted for a factor of Na “ 3 in the ska term, and have recalled that
Nc “ Nd “ 1. Another one, p3Qa ´Qdq is anomalous, with the anomaly cancelled by the
Green-Schwarz mechanism, and becomes massive. The remaining orthogonal combination
Y 1 is anomaly free, and will become massive or not depending on the structure of the BF
couplings in the given model.

One can identify the generators discussed in section 3.1.3 as R “ ´Qc, L “ Qd and
Qa “ 3B, with B the baryon number. There is no analogue of the A generator in this
class of models due to the absence of a Up1qb associated to the electroweak group.

Depending on the structure of the BF couplings in the model, it is possible to realize
the following discrete symmetries:

• RN symmetries

Since R “ ´Qc, a RN symmetry will appear if skc P N Z for all k in the model.
In particular, the standard R-parity will appear if skc P 2Z for all k.

• Ln symmetries

Since L “ Qd, a LN symmetry will appear if skd P N Z for all k.
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• Baryon triality

This symmetry is realized as a combination B3 “ R3L3. This requires the con-
dition skc ` skd P 3Z for all k. It follows from (4.38) that this is equivalent to the
condition ska P 3Z for all k.

An equivalent derivation is that B3 can be related to the baryon number B by

B3 “
2

3
Y ´

1

3
B. (4.39)

In any SM-like D-brane model, baryon number is realized as Up1qa, and hence B3

arises from its Z9 subgroup. Due to the additional multiplicity of Na “ 3, this only
requires ska P 3Z for all k in the model.

• Other combinations may be studied analogously.

4.3.2 Non-supersymmetric example

Consider the class of non-supersymmetric SM-like models constructed in [78], based on a
toroidal orientifold like the ones described in section 4.2.2. Consider a set of SM branes
with wrapping numbers as shown in table 4.2. Here Ng, n

2
a, m

3
a, n

1
c , n

2
d, m

3
d are integers.

The brane b is mapped to itself under the orientifold action, so that the corresponding
gauge group is Spp2q, identified with SUp2ql. It is easy to check that these wrapping
numbers give rise to the spectrum of a SM with Ng quark/lepton generations.

Ni pn1,m1q pn2.m2q pn3,m3q

Na “ 3 p1, 0q pn2
a, 1q pNg,m

3
aq

Nb “ 1 p0, 1q p1, 0q p0,´1q

Nc “ 1 pn1
c , 1q p1, 0q p0, 1q

Nd “ 1 p1, 0q pn2
d,´Ngq p1,m3

dq

Table 4.2: D6-brane wrapping numbers giving rise to a SM spectrum.

The hypercharge remains massless as long as

n1
c “ n2

am
3
a ` n

2
dm

3
d. (4.40)

The other two linear combinations are generically massive.

RR tadpoles cancel in this model if

3m3
a “ Ngm

3
d. (4.41)

In addition one should add p3n2
aNg`n

2
d´16q D6-branes (or antibranes, depending on the

sign) along the orientifold plane. They have no intersection with the rest of the branes
and do not modify the discussion in any way.



4.3. THE SP p2q CLASS 53

The non-vanishing BF couplings are

F a ^ 3
`

NgB
2
2 ` n

2
am

3
aB

3
2

˘

, (4.42a)

F c ^ n1
cB

3
2 , (4.42b)

F d ^
`

´NgB
2
2 ` n

2
dm

3
dB

3
2

˘

, (4.42c)

where we have denoted Bp
2 , p “ 0, 1, 2, 3 the RR 2-forms.

This structure contains some of the discrete gauge symmetries discussed above:

• Baryon triality is quite generic. The Z9 required for matter parity appears automat-
ically for the physical case Ng “ 3 as long as n2

am
3
a P 3Z. More generally, a ZNg

discrete baryon symmetry will be present if n2
am

3
a P Ng Z.

• Since R “ ´Qc, the RN discrete symmetries (including R-parity) are naturally
generated with N “ n1

c .

• Since L “ Qd, a LNg discrete symmetry appears whenever n2
dm

3
d P Ng Z.

• The symmetry R3L
2
3 is a Z3 subgroup of the Up1q generated by Qc `Qd; therefore,

it is realized as a discrete gauge symmetry whenever n1
c ` n2

dm
3
d “ 3. This is still

compatible with (4.40); for instance, n1
c “ 1, n2

dm
3
d “ 2, n2

am
3
a “ ´1.

Some of these symmetries may be realized simultaneously, generating a larger discrete
gauge symmetry group. For example, hexality, being a product of R2 and B3, will appear
for n1

c “ 2 and n2
am

3
a P 3{Z. These conditions are still compatible with (4.40).

4.3.3 Supersymmetric example

Consider the MSSM-like model in [74] realized in an orientifold of T6 {pZ2ˆZ2q as in
[80]. The wrapping numbers pniα,m

i
αq of the different MSSM D6α-branes on the different

2-tori are shown in table 4.3 (ignoring the additional branes required for RR tadpole
cancellation), and the resulting spectrum and charge assignments are shown in table 4.4.
This corresponds to the intersection numbers (4.36) with a trivial relabelling dØ d˚. Note
that the Z2ˆZ2 orbifold truncates the gauge group on 2NA D6A-branes to UpNAq.

Nα pn1,m1q pn2.m2q pn3,m3q

Na “ 6 p1, 0q pNg, 1q pNg,´1q

Nb “ 2 p0, 1q p1, 0q p0,´1q

Nc “ 2 p0, 1q p0,´1q p1, 0q

Nd “ 2 p1, 0q pNg, 1q pNg,´1q

Table 4.3: D6-brane wrapping numbers giving rise to a SUp3qˆSUp2qˆSUp2qˆUp1qB´L
extension of the MSSM with Ng quark-lepton generations. The Z2ˆZ2 orbifold truncates
the gauge group on 2NA D6A-branes to UpNAq.
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Sector Matter fields SUp3q ˆ SUp2qL ˆ SUp2qR Qa Qd QB´L

pabq QL 3p3, 2, 1q 1 0 1/3

pacq QR 3p3̄, 2, 1q -1 0 -1/3

pdbq LL 3p1, 2, 1q 0 -1 -1

pdcq LR 3p1, 1, 2q 0 1 1

pbcq H p1, 2, 2q 0 0 0

Table 4.4: Left-right MSSM spectrum and Up1q charges obtained from table 4.3, for the
particular choice Ng “ 3. The B ´ L generator is defined as QB´L “

1
3Qa `Qd.

The BF couplings are

F a ^ 3Ng

`

B2
2 ´B

3
2

˘

, (4.43a)

F d ^ Ng

`

B2
2 ´B

3
2

˘

. (4.43b)

In this model Up1qB´L remains as a continuous gauge symmetry, generated by 1
3Qa`

Qd. Using a hypercharge shift, this means that Qc has no BF couplings. Therefore, it does
not make sense to discuss discrete RN symmetries which are contained in a continuous
symmetry.

On the other hand, the realization of B3 as a discrete gauge symmetry is automatic for
the physical case with Ng “ 3. Besides realising baryon triality in a nice and simple way in
an explicit MSSM-like D-brane model, this example shows an interesting link between this
symmetry and the number of generations. Note that, since Up1qB´L is also a symmetry
of the massless spectrum, R3L

2
3 also remains as a discrete gauge symmetry.

4.4 The Up2q class

4.4.1 Generalities

In this class of models the electroweak gauge group SUp2qL is contained in a Up2qb factor.
There are four stacks of D-branes, denoted a (baryonic), b (left), c (right) and d (leptonic).
They have N1 “ 3, Nb “ 2, Nc “ 1, Nd “ 1, and the initial gauge group is Up3qaˆUp2qbˆ
Up1qc ˆ Up1qd.

The main difference with respect to the Spp2q class is that now there is an extra
Up1q gauge boson; although this continuous symmetry is anomalous, it could lead to new
anomaly-free discrete ZN symmetries. The assignments of Qb are not family independent.
This follows from the structure of intersection numbers required to reproduce the (MS)SM
matter content, where the intersection numbers with the b branes and those with their
orientifold image b˚ (or the intersection numbers of the branes b with other branes or
their images) are different; for instance, in the concrete examples that will be studied,
Iab “ 1 but Iab˚ “ 2. Also, it should be noted that this class of models does not have
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a generalization to arbitrary number of generations Ng, since the latter is related to the
number of colours by anomaly cancellation [73].

As in the previous class of models, the hyper charge generator is given by

Y “
1

6
pQa ´ 3Qc ` 3Qdq. (4.44)

It is anomaly free, and should be required to be massless, i.e. its BF coupling should
vanish.

Let us now identify the discrete symmetries. The symmetry RN is associated to the
generator ´Qc, while LN is associated to the generator Qd. The presence of Up1qb allows
the realization of an axial symmetry, given by a generation-dependent version of the AN
symmetry in section 3.1.3. Up1qb also forbids the Yukawa couplings for some of the quark
families. Since the AN symmetry in section 3.1.3 was constructed to preserve Yukawa
couplings, we will try to realize a discrete symmetry which will correspond to AN for
those families with Yukawa couplings.

For instance, in the explicit realization shown in section 4.4.2, the generator of the AN
symmetry is given by

Ã “
1

2
pQa `Qb `Qc `Qdq . (4.45)

The above linear combination has non-integer coefficients, contrary to our quantization
(4.26), so some clarification is needed here.

The quantization of equation (4.45) follows from the fact that any SM field arises from
a string with both endpoints on the branes a, b, c or d, so its charge under Qa`Qb`Qc`Qd
is even. The factor of 1{2 in (4.45)brings back the quantization to minimum unit charge.
However, one should note that other possible (potentially massive) states in the full theory,
arising from strings stretching between the SM and hidden branes, would have fractional
charge assignments under Ã. Namely, taking into account all fields in the string model, we
should normalise the combination as Qa`Qb`Qc`Qd, according to (4.26). Nevertheless,
a Z2N subgroup acts only as a ZN symmetry in the SM fields, identified with the generator
(4.45).

To study the appearance of diverse discrete gauge symmetries, we turn to concrete
explicit realizations of the model, in the toroidal setup for simplicity.

4.4.2 Non-supersymmetric example

A large number of three generation toriodal non-SUSY SM-like models were constructed
in [73]. In those models, the intersection numbers are given by

Iab “ 1, Iab˚ “ 2, (4.46a)

Iac “ ´3, Iac˚ “ ´3, (4.46b)

Ibd “ 0, Ibd˚ “ ´3, (4.46c)

Icd “ ´3, Icd˚ “ 3. (4.46d)

The wrapping numbers of the SM D6-branes in this family of models are given in table
4.5. The models are parametrised by a phase ε “ ˘1, four integers n2

a, n
1
b , n

1
c , n

2
d and a
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NA pn1
A,m

1
Aq pn2

A,m
2
Aq pn3

A,m
3
Aq

Na “ 3 p 1
β1 , 0q pn2

a, εβ
2q p1

ρ ,
1
2q

Nb “ 2 pn1
b ,´εβ

1q p 1
β2 , 0q p1, 3

2ρq

Nc “ 1 pn1
c , 3ρεβ

1q p 1
β2 , 0q p0, 1q

Nd “ 1 p 1
β1 , 0q pn2

d,´ε
β2

ρ q p1, 3
2ρq

Table 4.5: D6-brane wrapping numbers giving rise to a SM spectrum for the model with
intersection numbers (4.46).

Intersection Matter fields Qa Qb Qc Qd Y

pabq QL p3, 2q 1 -1 0 0 1/6

pab˚q qL 2p3, 2q 1 1 0 0 1/6

pacq UR 3p3̄, 1q -1 0 1 0 -2/3

pac˚q DR 3p3̄, 1q -1 0 -1 0 1/3

pbd˚q L 3p1, 2q 0 -1 0 -1 -1/2

pcdq ER 3p1, 1q 0 0 -1 1 1

pcd˚q NR 3p1, 1q 0 0 1 1 0

Table 4.6: Standard model spectrum and U(1) charges for the model with intersection
numbers (4.46).

parameter ρ “ 1, 1{3. In addition, βi “ 1, 1{2 depending on whether the corresponding
tori are tilted or not; the third torus is tilted for the whole class. The massless chiral
spectrum is shown in table 4.6.

Since there are tilted tori, the computation of the conditions for discrete gauge sym-
metries requires the results from section 4.2.3 (note that in table 4.5 the labels mi

A for
tilted tori actually denote the corresponding tilded quantities of section 4.2.3).

These models have up to four Up1q gauge fields, but generically three of hem acquire
Stückelberg masses due to the BF coupling. The masslessness of the hypercharge, gener-
ated by (4.44), requires the condition

n1
c “

β2

2β1

`

n2
a ` 3ρn2

d

˘

. (4.47)

Two of the three remaining Up1q’s are anomalous and massive, and the third one is
anomaly free and generically massive, although it may become massless for some choices
of wrapping numbers.
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The relevant BF couplings are

F a ^ 3

ˆ

1

ρ
B2

2 ` n
2
a

B3
2

2

˙

, (4.48a)

F b ^ 2

ˆ

´B1
2 ` 3ρn1

b

B3
2

2

˙

, (4.48b)

F c ^ 2n1
c

B3
2

2
, (4.48c)

F d ^

ˆ

´
1

ρ
B2

2 ` 3ρn2
d

B3
2

2

˙

, (4.48d)

where we have taken β1 “ β2 “ ε “ 1 to simplify the expressions, since no new interesting
possibilities appear by relaxing those conditions. The factor 1{2 multiplying B3

2 arises
because of the tilting of the third torus; on the other hand, this tilting simultaneously
leads to a factor of 2 in the actual shift of the RR scalar dual a3, as compared with the
coefficient of the FAB3

2 coupling.

The set of discrete gauge symmetries that can be realized is quite analogous to the
previous class of models, Spp2q, but now the symmetries cannot be generalized beyond
Ng “ 3:

• Barion triality is obtained for ρ “ 1{3 if n2
a P 3{Z.

• RN discrete symmetries with N even are naturally generated with N “ 2n1
c . In

particular, R-parity is automatically implemented in all models in this class.

• The L3 symmetry appears whenever ρ “ 1{3 and n2
d P 3Z.

• Hexality arises if n1
c “ 1, ρ “ 1{3 and n2

a P 3Z. These conditions are still consistent
with (4.47).

The combination Up1qÃ in (4.45), including the factor 1/2, has coupling F Ã^p´B1
2 `

. . .q. This means that there is no discrete gauge ÃN symmetry that can be realized. This
is in fact expected, since such symmetries are anomalous for N ă 9. Still, it might be
possible that such symmetries participate in some anomaly free combination, although
none were found in a preliminary search.

Note that there is a seemingly new Z2 symmetry coming from Up1qb. However, it is
just the centre of the SUp2qL group, and as already discussed in section 4.2.1, does not
lead to any useful discrete gauge symmetry.

4.4.3 Supersymmetric example

Consider the MSSM-like models in [167], realized in an orientifold of T6 {pZ2ˆZ2q in
[174, 77]. In those models, the intersection numbers are given by

Iab “ 1, Iab˚ “ 2, (4.49a)

Iac “ ´3, Iac˚ “ ´3, (4.49b)

Ibd “ ´1, Ibd˚ “ 2, (4.49c)

Icd “ 3, Icd˚ “ ´3. (4.49d)
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The wrapping numbers are shown in table 4.7 and the massless spectrum and Up1q
charges in table 4.8. It is easy to find additional branes so that all RR tadpoles cancel
[174]. Note that the Z2ˆZ2 orbifold truncates the gauge group on 2NA D6-branes to
UpNAq.

NA pn1
A,m

1
Aq pn2

A,m
2
Aq pn3

A,m
3
Aq

Na “ 6 p1, 0q p3, 1q p3,´1
2q

Nb “ 4 p1, 1q p1, 0q p1,´1
2q

Nc “ 2 p0, 1q p0,´1q p2, 0q

Nd “ 2 p1, 0q p3, 1q p3,´1
2q

Table 4.7: D6-brane wrapping numbers realising the intersection numbers in (4.49) and
giving rise to (a SUSY version of) the SM spectrum in table 4.8. The Z2ˆZ2 orbifold
truncates the gauge group on 2NA D6-branes to UpNAq.

Intersection Matter fields Qa Qb Qc Qd Y

pabq QL p3, 2q 1 -1 0 0 1/6

pab˚q qL 2p3, 2q 1 1 0 0 1/6

pacq UR 3p3̄, 1q -1 0 1 0 -2/3

pac˚q DR 3p3̄, 1q -1 0 -1 0 1/3

pbdq L p1, 2q 0 -1 0 1 -1/2

pbd˚q l 2p1, 2q 0 1 0 1 -1/2

pcdq NR 3p1, 1q 0 0 1 -1 0

pcd˚q ER 3p1, 1q 0 0 -1 -1 1

pbcq Hd p1, 2q 0 -1 1 0 -1/2

pbc˚q Hu p1, 2q 0 -1 -1 0 1/2

Table 4.8: Chiral spectrum spectrum and U(1) charges for the model with intersection
numbers (4.49).

In this example, there are two massive and two massless Up1q’s, including hypercharge
and B ´ L.
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The relevant BF couplings are

F a ^ 9

ˆ

B2
2 ´

B3
2

2

˙

, (4.50a)

F b ^ 2

ˆ

B1
2 ´

B3
2

2

˙

, (4.50b)

F d ^ 3

ˆ

B2
2 ´

B3
2

2

˙

. (4.50c)

Again, the third T2 is tilted, so the coefficients of the FAB3
2 coupling receives and addi-

tional factor of 2 upon dualization to a shift of the dual RR scalar; this effectively removes
the factors 1/2 accompanying B3

2 .

In this example, baryon triality B3 is automatic, and so is L3. Also, no new non-trivial
discrete gauge symmetries arise from the presence of a Up1qb gauge symmetry.

4.5 Discrete gauge symmetries and D-brane instanton ef-
fects

Type IIA compactifications have non-perturbative effects from D2-brane instantons on
3-cycles. Let us denote Πinst the 3-cycle wrapped by the instanton (and probably its
orientifold image, if it wraps a 3-cycle invariant under R). Such Πinst can be expanded in
terms of the 3-cycles tαku as

rΠinst.s “
ÿ

k

rkinstαk. (4.51)

In supersymmetric models, there are certain conditions for such instantons to contribute
to the superpotential; instantons not satisfying them contribute to other higher dimen-
sional operators, and are often neglected. However, here we are interested in showing
that all instantons respect the discrete gauge symmetries; hence we must not restrict to
super potential generating instantons, and not even to BPS instantons. We must consider
instantons in the most general possible class.

The non-perturbative contribution of the instanton to the 4d effective action contains
a piece

e´Scl “ e
´ V
gs
`ia

, (4.52)

where

a “

ż

Πinst.

C3 “
ÿ

k

rkinst.ak. (4.53)

Under a Up1q gauge transformation (4.29), the instanton exponential rotates by a
phase

ÿ

k

rkinst.

ÿ

A

caNAs
k
Aλ. (4.54)

As described in [155, 78, 156], this phase rotation is cancelled by the insertion, in the
complete instanton amplitude, of 4d fields charged under the Up1q symmetry. This effec-
tively leads to operators whose appearance was forbidden in perturbation theory. Now
in the presence of a discrete Zn symmetry, namely when the quantities p

ř

A caNAs
k
Aq are
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multiples of n for all k, the instanton exponential shift is a multiple of n, so the non-
perturbative effects preserve the Zn discrete subgroup. Conversely, the set of charged
operators required to cancel the phase rotation of e´Scl have Up1q charges adding up to
multiples of n.

It is interesting to provide an alternative microscopic view of the argument. The phase
shift (4.54) of the instanton exponent may be written as

ÿ

A

cANA

ÿ

k

rkinst.s
k
A “ ´

ÿ

A

cANArΠAs ¨ rΠinst.s ” ´rΠQs ¨ rΠinst.s, (4.55)

where in the first equality we have used

rΠAs ¨ rΠinsts “
ÿ

k

skAr
l
inst.rβks ¨ rαls “ ´

ÿ

k

rkinst.s
k
A, (4.56)

and in the second we have defined

rΠQs “
ÿ

A

cANArΠAs. (4.57)

The Zn discrete gauge symmetry implies that the intersection number of any instanton
with the homology class associated to the Up1q is multiple of n, as follows from (4.28).
This intersection number determines the number of instanton fermion modes charged
under Up1q, and therefore the amount of Up1q charge violation.

Let us finally remark on a complementary mechanism, already mentioned in [79], to
ensure that instantons preserve discrete (presumably gauge) Z2 symmetries. In models
where all instantons mapped to themselves under the orientifold action experience an Sp
type projection (i.e. γ2

Ω “ ´1 for open string with both endpoints on the instanton D-
brane), the instanton class expands in the basis αk as a linear combination with even
coefficients; in other words, the minimal instanton has worldvolume gauge group USpp2q,
and arises from two D-brane instantons on the covering space. Hence, the violation of any
Up1q symmetry by instantons automatically preserves a Z2 subgroup. A milder version
guaranteeing a Z2 subgroup of some Up1q, is that any instanton intersecting the class ΠQs

of the Up1q and invariant under the orientifold, is of USpp2q type. In the sext subsection
we develop the realization of such Z2 symmetries in a few examples, including a realization
of R-parity in an SM-like D-brane construction.

4.5.1 Z2 symmetries and R-parity from SP p2q instantons

As we mentioned above, it is possible to construct models in which a Z2 subgroup of
each Up1q is automatically preserved by instantons. This happens in compactificaitons
for which all D-brane instantons mapped to themselves under the orientifold action (in-
variant instantons for short) have USp worldvolume symmetry (rather than SO). More
specifically, a U91q inn the model with associated homology charge rΠQs is violated by a
D2-brane instanton (with Chan-Paton multiplicity k) on rΠinst.s by an amount

krΠQs ¨ prΠinst.s ´ rΠ
1
inst.sq P 2Z for non-invariant instantons, (4.58a)

krΠQs ¨ rΠinst.s P 2Z for invariant instantons, (4.58b)
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where the first line corresponds to an even quantity due to the contributions of branes
and images, while the second is an even quantity due to the USp character assumed for
invariant instantons.

An example of compactification realizing this mechanism is the T6{pZ2ˆZ2q orientifold
with positively charge O6-planes. In the usual choice with negative charge for all four kinds
of O6-planes, invariant D6-branes have USp-type orientifold projection, while invariant
instantons have SO-type projections; this is reversed in the case of positively charged
O6-planes. These models are necessarily non-supersymmetric, because RR-tadpole can-
cellation must be achieved by the introduction of anti-D6-branes; however, a more general
CY orientifold compactification may allow the realization of this mechanism in a super-
symmetric fashion.

These Z2 symmetries are actual gauge discrete symmetries of the theory. Recall from
chapter 3 that the Lagrangian description for a Zn gauge theory contains

1

2
pda´ nAq ^ ˚pda´ nAq, (4.59)

where the order of the symmetry is given by n, if the scalar a has a periodicity 2π, and
charges under A are integer.

In the above contest, in which all invariant instantons are of USp-type, instanton
numbers are effectively truncated to be even. The periodicity of the scalar a is halved to
π, so we must introduce a scalar a1 “ 2a, and write (4.59) as

1

2
pda´ nAq ^ ˚pda´ nAq “

1

8
pda1 ´ 2nAq ^ ˚pda1 ´ 2nAq. (4.60)

The latter expression shows that the actual gauge symmetry is Z2n. So, even for n “ 1
there is a Z2 discrete gauge symmetry associated to the restriction in the available instan-
ton numbers; models with only USp-type instanton provide a microscopic implementation
of the phenomenon in [175] (see also [176]).

Obtaining a Z2 subgroup of every single Up1q on the model may not be necessarily
appealing from a phenomenological point of view. For instance, they may prevent some
instantons from generating phenomenologically interesting couplings. So, it may be better
to consider models where a Z2 subgroup of some Up1q is preserved, because all invariant
instantons violating it have USp projection, whereas others, not violating the Up1q, may
have Op1q projections.

As an example, we consider a version of the model in table 4.3, embedded in a
T6{pZ2ˆZ2q orientifold; this requires doubling the number of D6-branes in each stack
to 2N to generate an UpNq symmetry. We make the usual choice of discrete torsion
corresponding to Hodge numbers ph1,1, h2,1q “ p51, 3q. As shown in [177], this choice
requires having an even number of negatively charged O6-planes, among the four kinds
present in the model. Instead of choosing all O6-planes to have negative charge (which is
the usual choice), we choose negatively charged O6-planes along ra1sra2sra3s, ra1srb2srb3s,
and positively charged O6-planes along rb1sra2sra3s and rb1srb2srb3s. This does not modify
the appearance of the SM spectrum from the visible branes, since the orientifold signs
only enter in the multiplicities of two-index tensor representations in AA1 sectors, which
are massless in the model, and would only change the set of hidden branes to cancel the
tadpole, which is ignored for simplicity.
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Consider the Up1qc gauge factor, which is associated to the RN generators. The only
invariant instanton intersection rΠcs is that wrapped on rb1srb2sra3s, and it has Sp orien-
tifold projection, due to the choice of O6-plane charge. Hence a Z2 subgroup of Up1qc,
which corresponds to R-parity, is automatically preserved by all D-brane instanton effects
in the model.

4.6 K-theory Z2 and R-parity

The K-theory constraints in orientifold models force some combinations of quantities to
be even [173]. Interestingly enough, these quantities arise as the coefficients of the BF
couplings in the model. Hence, in certain classes of construction, the K-theory constraints
imply the existence of an anomaly-free Z2 discrete gauge symmetry, which we denote K2.
In this section we will describe the conditions for its existent and its interplay with the
massless Up1q possibly present in the model.

Consider an orientifold with D6A-branes on a general Calabi-Yau orientifold, with
basis tαku, tβku of even and odd cycles, and assume for simplicity that αk ¨ βl “ δkl. The
K-theory constraints in the model have the structure

ÿ

A

NAcAk1 P 2Z, (4.61)

for all k1 in a subset of the odd cycles. This condition is not necessarily imposed to all
odd cycles. For instance, in orientifolds of T6 the K-theory constraints are

ÿ

a

Nam
1
An

2
an

3
a P 2Z, (4.62a)

ÿ

a

Nan
1
Am

2
an

3
a P 2Z, (4.62b)

ÿ

a

Nan
1
An

2
am

3
a P 2Z, (4.62c)

whereas there is no constraint on the combination
ř

ANAm
1
Am

2
am

3
a. So k1 labels the odd

cycles α1, α2, α3 but not α0.

Also, not all branes contribute, i.e. some cAk may be zero. For instance, the branes b,
c, in the model in table 4.3 have no contribution to the K-theory constraints. Labelling
with A1 those branes for which cA1k1 ‰ 0, the K-theory constraints read

ÿ

A1

NA1cA1k1 P 2Z . (4.63)

The BF couplings have a structure

ÿ

A

ÿ

k

NAcAkBk ^ FA “
ÿ

A1

ÿ

k1

NAcA1k1Bk1 ^ FA `
ÿ

A

ÿ

k2

NAcAk2Bk2 ^ FA (4.64)

where k runs over all odd cycles, and k1, k2 label those with or without associated K-
theory charge cancellation constraint. Note that in the first term, there are contributions
only from branes with label A1, i.e. participating in (4.63).
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Now assume that cA1k2 “ 0 for all A1. Even if this condition sounds strong, holds
even in the simplest semi-realistic intersecting D6-brane models in T6 orientifolds studied
in sections 4.3 and 4.4.

Under these assumptions, the diagonal combination of the Up1q1s contributing to the
K-theory charges

Qk “
ÿ

A1

QA1 (4.65)

has BF coupling
ÿ

A1

NA1cA1k1Bk1 ^ FA1 (4.66)

The K-theory constraint (4.63) implies the existence of a Z2 discrete gauge symmetry K2.

Since many models have massless Up1q1s, one must ensure that K2 is not just a sub-
group of these. We write the massless Up1q generator as

Q “
ÿ

A

raQA (4.67)

with rA P Z and gcdprAq “ 1, so that charges are integer with minimal charge one.
If rA “ odd for all A, then Q “ QKmod2, and K2 is just a subgroup of the massless
Up1q. Even if this seems non-generic, occurs in many SM-like D-brane models, where the
hypercharge generator is tipically of the form

6Y “ Qa ´ 3Qc ` 3Qd (4.68)

Since its coefficients are odd, in models where the branes a, c, d contribute to the K-theory
charges, the symmetry K2 is just a subgroup of hypercharge. This is the case in all the
models studied in sections 4.3 and 4.4.

There are several possible ways to relax the constraints on the BF cowlings of c. For
instance, the hypercharge combination may involve extra ‘hidden’ Up1q generators; this
however invokes symmetries beyond the visible MSSM-like sector. Another possibility
is to relax the condition cA1k2 “ 0 to cA1k2 P 2Z, and still have a Z2 symmetry from
(4.65); however this exploits additional even-ness requirements, beyond the genuinely K-
theoretical one. Since both possibilities are beyond the intended scope of this section, we
will not pursue them.
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5
Torsion p-forms and discrete gauge symmetries

In this chapter we will present an explicit string theory example of the ideas described in
section 3.3.

We will show that non-Abelian discrete gauge symmetries can arise from compactifica-
tions of p-form fields along torsion homology classes with non-trivial relations, extending
the observation for 5d theories in [138] (see also [178, 179]).

We will perform the dimensional reduction from 10d, and find a 4d Lagrangian realising
non-Abelian discrete gauge symmetries, typically discrete Heisenberg groups, in terms of
gaugings of non-Abelian axions.

This generalizes the relation between torsion homology and discrete symmetries ob-
served in the Abelian case in [141].

5.1 Abelian discrete gauge symmetries and torsion homol-
ogy

Before describing the non-Abelian case let us review the relation of Abelian discrete gauge
symmetries to torsion classes [141]. As mentioned in section 3.1, a practical way to identify
discrete gauge symmetries is to tag a set of Zk charged particles and Zk charged strings
inducing relative holonomies on each other via the Aharonov-Bohm phase (3.12), which
we reproduce here for convenience

exp
”

2πi
np

k
LpΣ, Cq

ı

, (5.1)

In string theory compactifications, we thus search for dynamical objects in the higher-
dimensional theory that lead to Aharonov-Bohm strings and particles in the 4d effective
theory.

5.1.1 Aharonov-Bohm strings and particles from torsion

A simple way to obtain Aharonov-Bohm strings and particles in type II vacua is to consider
D-branes or NS-branes wrapped on p-cycles of the compactification manifold, the inequiv-
alent possibilities being classified in terms of homology. In general, the homology group of

65
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a D-dimensional manifold XD consists of a free part, given by bp ” dimHrpXD,Rq copies
of Z, and a torsion part, given by a set of finite Zk groups,

HppXD,Zq “ H free
p pXD,Zq ‘ TorHppXD,Zq “ Zbp ‘pZk1 ‘ . . .‘ Zknq. (5.2)

It has been argued in [141] that 4d Aharonov-Bohm strings and particles arising from
a compactification in XD are associated to the torsion part of the corresponding homology
lattice. This is based on the observation that if we wrap a p-brane on a torsion p-cycle
πtor
p and a dual pD ´ pq-brane on a torsion pD ´ p ´ 1q-cycle πtor

D´p´1 then we will have
a 4d particle and string, respectively, that induce fractional holonomies on each other
proportional to the torsion linking number Lprπtor

p s, rπ
tor
D´p´1sq in the internal dimensions.

Such torsion linking number is one of the main topological invariants that can be defined
for the torsion homology classes of XD, and it univocally relates torsion classes of p-cycles
to torsion classes of pD ´ p´ 1q-cycles, such that

TorHppXD,Zq » TorHD´p´1pXD,Zq. (5.3)

Let us be more specific and consider M-theory compactified on a manifold X7 with G2

holonomy. Gauge symmetries in the 4d effective theory arise from the M-theory 3-form
A3 and are classified by elements of H2pX7,Zq. On the one hand, elements belonging
to the free part of H2pX7,Zq are in one-to-one correspondence with harmonic 2-forms in
X7 so, upon expanding A3 in such 2-forms, we obtain standard Up1q gauge symmetries
in the 4d effective theory. On the other hand, elements that belong to TorH2pX7,Zq
must correspond to discrete Zki gauge symmetries.1 This can be seen from the fact that
M2-branes wrapping torsion 2-cycles lead to Aharanov-Bohm particles in 4d, whereas
M5-branes wrapping the dual torsion 4-cycles (which exist because of eq.(5.3)) lead to 4d
Aharanov-Bohm strings.

Indeed, let us consider an M2-brane wrapping a Zk torsion 2-cycle πtor
2 and with

4d worldline C, as well as a 4d string with worldsheet Σ that arises from an M5-brane
wrapping a Zk torsion 4-cycle πtor

4 of X7. Following [141], one can see that the holonomy
that these two objects induce on each other is given by

1

2πi
log rholpΣ, Cqs

mod 1
“

ż

Cˆπtor
2

A3 “
1

k

ż

Dˆkπtor
2

F4 “
1

k

ż

DˆS3

δ5, (5.4a)

mod 1
“

ż

Σˆπtor
4

A6 “
1

k

ż

Bˆkπtor
4

F7 “
1

k

ż

BˆS5

δ8. (5.4b)

The upper chain of equalities represent the Aharanov-Bohm effect that a 4d string creates
on a 4d particle circling around it with a path C “ BD. Indeed, the M5-brane that becomes
a 4d string will create a flux F4 via backreaction, and we should integrate the corresponding
potential A3 on the M2-brane worldvolume C ˆ πtor

2 to compute the induced holonomy
on the 4d particle. The computation is then carried by applying Stokes’ theorem and by
noticing that because πtor

2 is k-torsion there is a 3-chain S3 such that BS3 “ kπtor
2 , and

that dF4 “ δ5 with δ5 a bump 5-form transverse to the M5-brane worldvolume Σ ˆ πtor
4 .

Similarly, the lower chain represents the holonomy created by the 4d particle on a 4d
string surrounding it with Σ “ BB, with now BS5 “ kπtor

4 and dF7 “ δ8. Notice that the

1If the manifold has discrete isometries, there can be in addition discrete gauge symmetries coming
from the metric, see chapter 7.
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integral of a bump function like δ5 or δ8 is always an integer, and so we end up with a
fractional holonomy of the form exp (2πi`{kq with ` P Z. One can see that the integer
` in equations (5.4a) and (5.4b) is the same integer mod k, since both quantities in the
r.h.s. are the definition of the torsion linking number Lprπtor

2 s, rπtor
4 sq multiplied by the 4d

linking number LpΣ, Cq of equation (5.1).

To summarize, one finds that the Aharanov-Bohm phase that an M2-brane and an
M5-brane wrapped on torsion cycles create on each other is given by

exp
“

2πiLprπtor
2 s, rπtor

4 sq ¨ LpΣ, Cq
‰

(5.5)

Comparing with eq.(5.1), we can identify Lprπtor
2 s, rπtor

4 sq “ np{k, and so the charges n
and p of the 4d objects correspond in the higher dimensional M-theory picture to choose
torsion cycles with appropriate linking numbers.

This M-theory picture allows to reinterpret the Abelian discrete gauge symmetries
that arise in type IIA compactifications with intersecting D6-branes [140]. Indeed, if the
G2 manifold X7 admits a weakly coupled type IIA limit with D6-branes, some of the
Up1q symmetries classified by H2pX7,Zq are downlifted to Up1q symmetries localized at
D6-branes. Massless 4d particles charged under such Up1q’s, which in type IIA are open
strings at the D6-brane intersections, correspond to M2-branes wrapping collapsed 2-cycles
of X7. The Up1q gauge symmetries that in M-theory are related to H free

2 pX7,Zq become in
type IIA D6-brane Up1q symmetries without any axion coupling, while those discrete gauge
symmetries related to TorH2pX7,Zq become D6-brane U(1)’s broken to Zk through axion
couplings. Consequently, massless 4d particles are charged under the unbroken Up1q’s if
they are M2-branes wrapped on non-torsional 2-cycles, while particles that only have Zk
charges correspond to M2-branes wrapping collapsed torsional 2-cycles of X7.

This M-theory perspective provides also a geometrization of the instanton contribution
structure (3.9), as follows. Consider a set of particles ψi with Zk charges, namely a set
of M2-branes wrapping torsion 2-cycles Di; whenever the total homology charge of the
combination is zero (in particular, the torsion classes add up to a trivial class), there exists
a 3-chain S connecting them (BS “

ř

iDi). An M2-brane wrapped on S would describe
an instanton effect on the 4d theory, but it contains open holes. A completely consistent
instanton can be obtained by glueing M2-branes on Di, emerging from the instanton from
the 4d perspective. This is precisely the dressed instanton structure (3.9) with O “

ś

i ψi.
Also, this is the M-theory picture of a D2-brane instanton with insertions of 4d charged
matter multiplets, observed in [155, 78, 156].

5.1.2 Torsion and dimensional reduction

Interestingly, this geometrical picture that relates torsion to discrete gauge symmetries can
also be made manifest by means of dimensional reduction [141]. For this, we need to asso-
ciate to each generator of TorHppXD,Zq a differential p-form which is also an eigenform
of the Laplacian, just like we do when we associate harmonic p-forms to the generators of
H free
p pXD,Zq. In the case of torsion groups, however, these eigenforms must have a non-

zero eigenvalue and in order to reproduce the topological information of TorHppXD,Zq
we must consider non-closed p-forms satisfying specific relations. More precisely, given
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the generators of TorHppXD,Zq and TorHD´p´1pXD,Zq we consider non-closed p- and
pD ´ p´ 1q-forms ωα and αβ such that [141]

dωα “ k β
α ββ, (5.6a)

dαβ “ p´1qD´pkβαω̃
α, (5.6b)

where ββ and ω̃α are exact eigenforms of the Laplacian which are trivial in de Rham coho-
mology but represent non-trivial elements of Hp`1pXD,Zq and HD´ppXD,Zq, respectively.

Moreover, k β
α P Z must be given by

Lprπtor
p,αs, rπ

tor,β
D´p´1sq “ pk

´1q β
α , (5.7)

so that it contains the topological information of the torsion cycles that these eigenforms
are related to. Finally, the integral of these forms satisfy

ż

XD
αρ ^ βσ “

ż

XD
ω̃ρ ^ ωσ “ δρσ (5.8)

Including this set of non-harmonic eigenforms when performing the dimensional reduc-
tion allows to reproduce the 4d Lagrangian for Abelian discrete gauge symmetries, and in
particular displays the gauging structure discussed in section 3.3.1. Indeed, taking again
the above example of M-theory on 7-manifolds, for each torsion 2-cycle we need to consider
an exact 3-form α3 and a non-closed 2-form ω2, with dω2 “ kβ3 and k P Z. Expanding
the M-theory 3-form A3 in such eigenforms we obtain

A3 “ φpxµq ^ β3 `A1px
µq ^ ω2 ` . . . (5.9)

namely, a 4d Up1q gauge boson A1 and a 4d scalar φ. One can check that the gauge
transformation (3.54) shifts A3 by the exact 3-form dpλω2q and so it indeed leaves any 4d
quantity invariant. In particular we have that

dA3 “ pdφ´ kA1q ^ β3 ` dA1px
µq ^ ω2 ` . . . (5.10)

and so the 4d Lagrangian (3.51) arises from the dimensional reduction of the 11d kinetic
term dA3^˚11dA3. These observations will be exploited and generalized in the next sub-
sections in the context of type IIB compactifications, in order to reproduce via dimensional
reduction the 4d Lagrangian of non-Abelian discrete gauge symmetries.

5.2 Non-Abelian discrete symmetries from torsion homol-
ogy

Torsion classes have appeared in an example in [138] as a source of discrete non-Abelian
gauge symmetries in 5d in the AdS/CFT setup (see also [178, 179]). In this subsection
we further explore and generalize this realization in the 4d setup, unveiling that the key
to non-Abelianity lies in the existence of wedge (or cup) product relations among torsion
classes. The corresponding dimensional reduction allows an elegant derivation of a general
class of 4d theories with non-Abelian discrete gauge symmetry.
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5.2.1 Non-Abelian strings and the Hanany-Witten effect

In order to describe the link between non-Abelian discrete gauge symmetries and torsion
let us consider the class of models given by type IIB compactifications to 6d. In a generic
6d manifold there are two independent torsion classes, corresponding to torsion 1-cycles
(and 4-cycles) and torsion 2-cycles (and 3-cycles)

TorH1pX6,Zq » TorH4pX6,Zq, (5.11a)

TorH2pX6,Zq » TorH3pX6,Zq. (5.11b)

The first class actually describes two different kinds of discrete gauge symmetries: one of
them associated to spontaneously broken Up1q symmetries that result from reducing the
RR 2-form C2 and the other to the spontaneously broken Up1q’s that result from reducing
the NSNS 2-form B2. In the latter case the 4d particles and strings charged under the
discrete gauge symmetry arise from fundamental strings wrapping torsion 1-cycles and
NSNS 5-branes wrapping torsion 4-cycles, respectively, while in the former case they arise
from D1 and D5-branes. On the other hand, the second class in (5.11) describes discrete
gauge symmetries associated to the RR 4-form C4, with charged particles and strings
arising from D3-branes wrapping torsion 3-cycles and 2-cycles, respectively.

As emphasized above, in compactifications with torsion classes the key to non-Abelianity
is encoded in the existence of relations between torsion elements. Let us be more specific
and consider the simple case where the torsion groups of X6 are given by

TorH1pX6,Zq “ TorH4pX6,Zq “ Zk, (5.12a)

TorH2pX6,Zq “ TorH3pX6,Zq “ Zk1 . (5.12b)

In general k ‰ k1 although their precise relation is not relevant for our momentary pur-
poses. Naively, considering general pp, qq-strings and 5-branes, the torsion 1-cycles would
seem to produce a ZkˆZk symmetry, while also considering D3-branes in torsion cycles
would add an extra Zk1 factor. This mere Abelian structure is however promoted to a
non-Abelian one if the corresponding classes have non-trivial relations. Indeed, if the tor-
sion 4-cycles dual to the 1-cycles intersect non-trivially along a torsion 2-cycle, there is
a non-trivial Hanany-Witten effect [180] between the 4d strings obtained from NS5 and
D5-branes wrapping the torsion 4-cycles. Crossing the strings in 4d leads to the creation
of D3-branes wrapped on the torsion 2-cycle at the intersection of the 4-cycles, namely
the creation of a 4d string associated to the RR 4-form. This 4d string creation effect is
associated to non-Abelian discrete symmetry groups [127, 132, 133, 134, 135, 137]. At the
level of the gauge holonomies that result from moving around the 4d strings, we have the
non-Abelian relation

T̃1T̃2 “ T̃3T̃2T̃1 (5.13)

among the generators T̃1, T̃2 of the two Zk’s and the generator T̃3 of Zk1 . This defines
a finite Heisenberg group (c.f. equation (3.86)). The same result can be obtained by
working out the non-Abelian transformations undergone by particles moving around 4d
strings, again by invoking the Hanany-Witten effect [138].

5.2.2 Dimensional reduction and four-dimensional effective action

Just like in the Abelian case, this microscopic description of a non-Abelian discrete gauge
symmetry should have a macroscopic counterpart via dimensional reduction. Indeed, we
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will show below how a 4d effective Lagrangian reproducing such non-Abelian symmetries
can be obtained by following the same procedure as in the Abelian case. Again, in order
to perform the dimensional reduction we need to consider a set of non-harmonic forms
satisfying (5.6), together with certain relations among them which are necessary for the
non-Abelian pattern to emerge, and are equivalent to the topological conditions which
allow for the Hanany-Witten effect. For simplicity, we will consider here the simple case
where the torsion classes of X6 are given by (5.12). The more general case can be worked
out in a similar way, as it is explicitly done in section 5.3.

More precisely, we consider a set of non-harmonic Laplacian eigenforms in X6

dγ1 “ kρ2, (5.14a)

dα3 “ k1ω̃4, (5.14b)

dρ̃4 “ kζ5, (5.14c)

dω2 “ k1β3, (5.14d)

with ρ2, ω̃4, ζ5 and β3 representing the generators of the torsion cohomology Poincaré dual
to (5.12), and such that

ż

X6

γ1 ^ ζ5 “

ż

X6

ρ2 ^ ρ̃4 “

ż

X6

α3 ^ β3 “

ż

X6

ω2 ^ ω̃4 “ 1 (5.15)

In these expressions k´1 and k1´1 are the torsion linking numbers between dual p- and
p5 ´ pq-cycles, with p “ 1, 3 respectively, and encode the monodromies which are felt
by an electric (magnetic) charge when moved in a closed loop around its dual magnetic
(electric) source. The fact that these torsion cycles have a non-trivial intersection pattern
as described above is expressed in terms of these dual forms as

ρ2 ^ ρ2 “Mω̃4, (5.16)

with M P Z, which can be integrated to2

ρ2 ^ γ1 “M 1 α3 M 1 P Z such that kM “ k1M 1 (5.17)

Let us then perform dimensional reduction of the type IIB supergravity action, taking
into account the relations that we have introduced above. The relevant part of the action
written in the 10d Einstein frame is

S10d “
1

4κ2
10

ż

d10x

„

p´GEq
1{2

ˆ

´Mij dB
i
2 ¨ dB

j
2 ´

1

2
pF5q

2

˙

`
εij
2
dC4 ^B

i
2 ^ dB

j
2



(5.18)
where B1

2 ” B2 and B2
2 ” C2 are respectively the NSNS and RR 2-form potentials,

F5 “ dC4 ´ C2 ^ dB2, the matrix Mij denotes the SO(2)zSL(2,Z) coset metric

Mij “
1

Im τ

ˆ

|τ |2 ´Re τ
´Re τ 1

˙

(5.19)

2In principle, instead of (5.17) one could have chosen the more general condition

ρ2 ^ γ1 “M 1α3 `M
2β3 M 1,M2

P Z

This choice however, corresponds to gauging also the magnetic degrees of freedom and it will not be
explored here.
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and τ “ C0 ` ie
´φ the complex axio-dilaton.

In order to dimensionally reduce this action, we expand the NSNS and RR 2-forms
and the RR 4-form potentials as3

Bi
2 “ biρ2 `A

i
1 ^ γ1, i “ 1, 2 (5.20a)

C4 “ b3ω̃4 `A
3
1 ^ α3 ` V

3
1 ^ β3 ` c2 ^ ω2, (5.20b)

obtaining several 4d vectors and scalars. The corresponding 10d field-strengths read

dBi
2 “ ηi ^ ρ2 ` dA

i
1 ^ γ1, i “ 1, 2 (5.21a)

F5 “ η3 ^ ω̃4 ´ F
3
2 ^ α3 ` F̃

3
2 ^ β3 ` dc2 ^ ω2, (5.21b)

where we have introduced the following 4d 1-form potentials

ηiµ ” Bµb
i ´ kAiµ, (5.22a)

η3
µ ” Bµb

3 ´ k1A3
µ ´Mb2η1

µ (5.22b)

and field-strengths

k1F 3
2 ” dη3 ´

εij
2
Mηi ^ ηj , (5.23a)

F̃ 3
2 ” dV 3

1 ` k
1c2, (5.23b)

and we have made use of the relations (5.16) and (5.17).

Substituting these expansions into equation (5.18) we get (up to total derivatives and
in 4d Planck mass units)

S4d “
1

4

ż

d4x

„

p´gq1{2
ˆ

´Mij N dAi1 ¨ dA
j
1 ´Mij T ηi ¨ ηj ´

R
2
pF 3

2 q
2

`QF 3
2 ¨ F̃

3
2 `
S
2
pF̃ 3

2 q
2 ´
G
2
pdc2q

2 ´
G´1

2
pη3q2

˙

´ η0 ^ dc2 ´ F̃
3
2 ^ F

3
2



,

(5.24)

where we have defined4

N ”

ż

X6

γ1 ^ ˚6γ1, (5.25a)

T ”
ż

X6

ρ2 ^ ˚6ρ2, (5.25b)

Q ”
ż

X6

α3 ^ ˚6β3, (5.25c)

R ”
ż

X6

α3 ^ ˚6α3, (5.25d)

S ”
ż

X6

β3 ^ ˚6β3, (5.25e)

G ”
ż

X6

ω2 ^ ˚6ω2. (5.25f)

3This expansion is the most general one if we assume an underlying orientifold structure, according to
which γ1 and ρ2 must be odd and ω2, ω̃4, α3 and β3 even forms under the orientifold action. We also
ignore 4d 2-forms resulting from Bi2, as they do not play any role in what follows.

4Note that idempotency of the hodge operator imply the non-trivial relation RS `Q2
“ ´1, so these

quantities are not all independent.
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Since we have not yet imposed the self-duality condition of the RR 5-form field-strength,
F5 “ ˚10F5, the 4d effective action (5.24) contains redundant degrees of freedom. Making
use of

F̃ 3
2 “ ´F

3
2 QS´1´ ˚4 F

3
2 S´1, (5.26a)

dc2 “ G´1 ˚4η
3, (5.26b)

we finally obtain

S4d “
1

4

ż

d4x

„

p´gq1{2
ˆ

´Mij T ηi ¨ ηj ´ G´1pη3q2

´Mij N dAi1 ¨ dA
j
1 ` S

´1pF 3
2 q

2

˙

`QS´1 F 3
2 ^ F

3
2

 (5.27)

From the first line of this equation and comparing to equation (3.76) we observe that the
4d axion-like scalars in this setup span a gauged scalar manifold with tangent space metric

Pab “ ´
1

4

ˆ

G´1 0
0 T Mij

˙

, (5.28)

right-invariant 1-forms given by the equations (3.84) upon the following identifications

φ1 “ b1, φ2 “ b2, φ3 “ b3 ´
M

2
b1b2, (5.29a)

k1 “ k2 “ k, k3 “ k1, (5.29b)

A1
µ

ˇ

ˇ

sec.3.3.3.3
“ A1

µ, A2
µ

ˇ

ˇ

sec.3.3.3.3
“ A2

µ, A3
µ

ˇ

ˇ

sec.3.3.3.3
“ A3

µ ´
M 1

2
pb1A2

µ ` b
2A1

µq,(5.29c)

and structure constants of the Heisenberg algebra H3. The example based on the Heisen-
berg manifold M̃ “ H3pRq{Γ discussed in section 3.3.3.3 is thus physically realized in a
large class of type IIB compactifications with torsional homology.

5.2.3 Non-Abelian discrete gauge symmetries

As the 4d effective action (5.27) is identical to the one analyzed in section 3.3.3.3, the
discrete gauge symmetries that one obtains from it can be directly extracted from the
discussion therein. It is however illustrative to reproduce the previous 4d discussion from
a 10d perspective. In the present context, the shift symmetries of the scalars b1, b2,
and b3 are inherited from the 10d gauge transformations of B2, C2 and C4. Indeed, at
the perturbative level we have that the 10d field strengths (5.21a) dB2, dC2 and F5 are
invariant under any of the following shifts

B2 ÝÑ B2 ` ε
1ρ2, , (5.30a)

C2 ÝÑ C2 ` ε
2ρ2, (5.30b)

C4 ÝÑ C4 ` ε
2ρ2 ^B2 ` ε

3ω̃4, (5.30c)

with ε1,2,3 P R. Hence, they are symmetries of the Lagrangian (5.18). Upon dimensional
reduction they become isometries of this axionic manifold, which at this level can be
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thought to be H3. On the other hand, one should impose the discrete identifications

C4 ÝÑ C4 ` ω̃4, (5.31a)

B2 ÝÑ B2 ` ρ2 (5.31b)

C2 ÝÑ C2 ` ρ2, C4 ÝÑ C4 ` ρ2 ^B2, (5.31c)

which in 4d become the discrete transformations

b1 ÝÑ b1 ` 1, (5.32a)

b2 ÝÑ b2 ` 1, b3 ÝÑ b3 `Mb1 (5.32b)

b3 ÝÑ b3 ` 1, (5.32c)

in agreement with equations (3.83) once we make use of the identifications (5.29). These
symmetries generate a non-Abelian discrete group Γ, so that the final axionic manifold
is M̃ “ H3 {Γ. The corresponding algebra generators satisfy equation (3.80) and the
symplectic Spp2,Zq » SLp2,Zq global structure of this algebra is in this context inherited
from the SLp2,Zq invariance of the 10d action.

Because of the torsion, the discrete shifts of B2, C2 and C4 above not only imply the
discrete transformations (5.32), but also discrete transformations of the 4d massive gauge
vectors Ai that must occur simultaneously with them

A1
µ ÝÑ A1

µ ` Bµλ
1, (5.33a)

A2
µ ÝÑ A2

µ ` Bµλ
2, A3

µ ÝÑ A3
µ `M

1kλ2A1
µ `M

1b1Bµλ
2, (5.33b)

A3
µ ÝÑ A3

µ ` Bµλ
3. (5.33c)

That is, we find that the discrete shifts of the scalars are gauged to

b1 ÝÑ b1 ` kλ1, (5.33d)

b2 ÝÑ b2 ` kλ2, b3 ÝÑ b3 `Mkb1λ2, (5.33e)

b3 ÝÑ b3 ` k1λ3. (5.33f)

Compatibility with the discrete transformations (5.32) leads to a sublattice Γ̂ Ă Γ, as in
equations (3.85).

As already discussed, the gauge symmetries of the action (5.27) for non-vanishing k and
k1 are then given by the quotient P “ Γ{Γ̂. It is insightful to work out the transformation
of charged fields under such discrete gauge group. For that aim, consider a 4d charged
particle ψpxq with integer charges qI under AI1, I “ 1, 2, 3. From a 10d perspective this
corresponds to a bound state of q0 D3-branes wrapping the torsion 3-cycle above, and
q1 fundamental strings and q2 D1-branes wrapping the torsion 1-cycle. The 4d covariant
derivative is given by

Dψpxq “
”

d` iqIÂ
I
1

ı

ψpxq (5.34)

with Âi1 “ k´1ηi, i “ 1, 2, and Â3
1 “ k1´1η3. In general, under a discrete gauge transforma-

tion (5.33) the field ψpxq will transform with a holonomy phase and a charge redefinition.
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Indeed, acting on (5.34) with (5.33) we obtain the following transformation properties
under the action of P

T̃1 : ψpxq ÝÑ exp
“

2πik´1q1

‰

ψpxq, (5.35a)

T̃2 : ψpxq ÝÑ exp
“

2πik´1q2

‰

U ψpxq, (5.35b)

T̃3 : ψpxq ÝÑ exp
“

2πik1´1q3

‰

ψpxq, (5.35c)

where U is the charge redefinition

U :

¨

˝

q1

q2

q3

˛

‚ ÝÑ

¨

˝

1 0 M 1

0 1 0
0 0 1

˛

‚

¨

˝

q1

q2

q3

˛

‚ (5.36)

The above monodromies can also be derived from a higher dimensional point of view,
by simply performing the discrete shifts (5.32) on the Chern-Simons actions of the corre-
sponding type IIB p-branes, and reading the induced charges before and after the shift.
Note that a particle with charge qI is indistinguishable from a particle with charge qi`kn

i

(or q3`k
1n3 for the case I “ 3) for ni P Z, and therefore represent the same physical state,

in agreement with the underlying discrete symmetry discussed above. Moreover, due to
the non-Abelian structure the basis of charge eigenstates of T̃1 and T̃2 are not compatible
with each other, and the two types of charges cannot be simultaneously measured.

5.2.4 A simple example revisited

In order to illustrate the usefulness of the above results let us consider the simple setup
of [138], consisting on a set of N fractional D3-branes at a C3 {Z3 singularity on type II
string theory. In the large N limit this setup backreacts to string theory on AdS5ˆS5 {Z3,
dual to a certain supersymmetric SU(N)3 gauge theory with bifundamental matter. The
SCFT has a ∆p27q discrete symmetry, which can be obtained from torsion homology in
the 5d AdS dual, as described in [138]. Alternatively, we can make use of the results of the
previous subsection for torsion p-forms in order to make explicit the non-Abelian discrete
gauge symmetry directly from dimensional reduction of the backreacted setup.

Indeed, in this case the torsion homology of S5 {Z3ˆS1 corresponds to equations (5.12)
with k “ k1 “ 3 and M “ M 1 “ 1 in equation (5.16). Charged particles in the 4d theory
are thus labeled by three fractional charges 1

N pq1, q2, q3q, with qI defined mod 3.

In particular, the three types of bifundamental fields described in [138] correspond to
states ψrpxq, r “ 1, 2, 3 with pq1, q2, q3q “ pr´ 1, 0, 1q. These are 4d particles which result
from wrapping a D3-brane in the torsion 3-cycle and 0, 1 or 2 fundamental strings in the
torsion 1-cycle. From our previous results, we obtain that the three generators of discrete
symmetries act in these states as

T̃1 : pψ1, ψ2, ψ3q ÝÑ pψ1, ξψ2, ξ
2ψ3q, (5.37a)

T̃2 : pψ1, ψ2, ψ3q ÝÑ pψ2, ψ3, ψ1q, (5.37b)

T̃3 : pψ1, ψ2, ψ3q ÝÑ pξψ1, ξψ2, ξψ3q, (5.37c)

with ξ “ e2πi{3N , in complete agreement with the results of [138].
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5.3 Non-Abelian discrete symmetries from torsion forms:
general case

We have explored in section 5.2 the structure of non-Abelian discrete gauge symmetries
from the perspective of dimensional reduction, for the simplest case with torsion groups
(5.12). In this section we perform dimensional reduction of the type IIB action for the
more general case with arbitrary torsion homology groups (5.11). Thus, we introduce a set
of non-harmonic eigenforms associated to the generators of the torsion homology groups
with

dγα1 “ kαβρ
β
2 , (5.38a)

dρ̃4,β “ kαβζ5,α, (5.38b)

dαα3 “ k
1α
β ω̃

β
4 , (5.38c)

dω2,β “ k
1α
ββ3,α, (5.38d)

and
ż

X6

γα1 ^ ζ5,β “

ż

X6

ρα2 ^ ρ̃4,β “

ż

X6

αα3 ^ β3,β “

ż

X6

ω2,β ^ ω̃
α
4 “ δαβ (5.39)

In these expressions k´1 and k1´1 are the linking matrices between dual p- and p5 ´ pq-
cycles, with p “ 1, 3 respectively.

We recast the torsion cycle intersection pattern in terms of these dual forms as

γα1 ^ γ
β
1 “ 0, (5.40a)

ρα2 ^ γ
β
1 “ A

αβ
γ α

γ
3 , (5.40b)

ρα2 ^ ρ
β
2 “ K

αβ
γ ω̃

γ
4 , (5.40c)

where consistency with the exterior derivative requires

Aαrβγ kδsα “ 0, (5.41a)

kαβ Kδβγ “ k
1β
γ Aδαβ . (5.41b)

We proceed now to perform dimensional reduction of the type IIB supergravity action
(5.18), taking into account these relations. Following the same reasoning than in section
5.2, we expand the NSNS and RR 2-forms and the RR 4-form as

Bi
2 “ biαρ

α
2 `A

i
1,α ^ γ

α
1 , i “ 1, 2, (5.42a)

C4 “ b3αω̃
α
4 `A

3
1,α ^ α

α
3 ` V

3,α
1 ^ β3,α ` c

α
2 ^ ω2,α (5.42b)

The corresponding 10d field-strengths read

dBi
2 “ ηiα ^ ρ

α
2 ` dA

i
1,α ^ γ

α
1 , i “ 1, 2, (5.43a)

F5 “ η3
β ^ ω̃

γ
4 ´ F

3
2,α ^ α

α
3 ` F̃

3,α
2 ^ β3,α ` dc

α
2 ^ ω2,α, (5.43b)
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where now

ηiα ” dbiα ´ k
β
αA

i
1,β, (5.44a)

η3
α ” db3α ´ k

1β
αA

3
1,β ´Kγρα b2γη1

ρ, (5.44b)

and

k
1α
βF

3
2,α ” dη3

β ´
εij
2
Kραβ η

i
α ^ η

j
ρ, (5.45a)

F̃ 3,α
2 ” dV 3,α

1 ` k
1α
βc
β
2 . (5.45b)

Substituting into equation (5.18) and making use of the relations (5.41) we get

S4d “
1

4

ż

d4x

„

p´gq1{2
ˆ

´Mij Nαβ dAi1,α ¨ dA
j
1,β ´Mij T αβ ηiα ¨ η

j
β

´
Rαβ

2
F 3

2,α ¨ F
3
2,β `Qαβ F 3

2,α ¨ F̃
3,β
2 `

Sαβ
2
F̃ 3,α

2 ¨ F̃ 3,β
2 ´

Gαβ
2
dcα2 ¨ dc

β
2

´
pG´1qαβ

2
η3
α ¨ η

3
β

˙

´ η3
α ^ dc

α
2 ´ F̃

3,α
2 ^ F 3

2,α



(5.46)

where

Nαβ ”

ż

X6

γα1 ^ ˚6γ
β
1 , (5.47a)

T αβ ”
ż

X6

ρα2 ^ ˚6ρ
β
2 , (5.47b)

Qαβ ”
ż

X6

αα3 ^ ˚6β3,β, (5.47c)

Rαβ ”
ż

X6

αα3 ^ ˚6α
β
3 , (5.47d)

Sαβ ”
ż

X6

β3,α ^ ˚6β3,β, (5.47e)

Qαβ ”
ż

X6

ω2,α ^ ˚6ω2,β, (5.47f)

and

Rαβ Sβγ `Qαβ Qβγ “ ´δαγ , (5.48a)

Sαβ Qβγ ´Qβα Sβγ “ 0. (5.48b)

The self-duality condition of the RR 5-form field-strength, F5 “ ˚10F5, implies

F̃ 3,α
2 “ ´F 3

2,β QβγpS´1qγα ´ ˚4F
3
2,βpS´1qβα, (5.49a)

dcα2 “ pG´1qαβ ˚4 η
3
β, (5.49b)

so we finally obtain

S4d “
1

4

ż

d4x
“

p´gq1{2
`

´Mij T αβ ηiα ¨ η
j
β ´ pG

´1qαβη3
α ¨ η

3
β

´Mij Nαβ F i2,α ¨ F
j
2,β ` pS

´1qαβF 3
2,α ¨ F

3
2,β

˘

`QαγpS´1qγβF 3
2,α ^ F

3
2,β

‰

.

(5.50)
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The gauge symmetries of this effective action are

A1
1,α ÝÑ A1

1,α ` dλ
1
α, (5.51a)

A1
2,α ÝÑ A2

1,α ` dλ
2
α, A3

1,α ÝÑ A3
1,α `Aδβα k

γ
δpA

1
1,βλ

2
γ ` b

1
δdλ

2
βq, (5.51b)

A3
1,α ÝÑ A3

1,α ` dλ
3
α, (5.51c)

with the discrete shifts of the scalars being gauged to

b1β ÝÑ b1β ` k
α
βλ

1
α, (5.51d)

b2β ÝÑ b2β ` k
α
βλ

2
α, b3α ÝÑ b3α `Kβδα kαβλ2

αb
1
δ , (5.51e)

b3β ÝÑ b3β ` k
1α
βλ

3
α. (5.51f)

These correspond to a set of non-commuting discrete ZrIβ gauge symmetries, where rIβ is

the lower integer for which pk´1qα
βriβ (or pk1´1qα

βr3
β in the case of I “ 3) is an integer.

We can also work out the transformation of charged fields under these discrete gauge
transformations. For that aim, we consider a 4d charged particle ψpxq with integer charges
qαI . The 4d covariant derivative is given by

Dψpxq “
”

d` iqαI Â
I
1,α

ı

ψpxq (5.52)

with Âi1,α “ pk´1q
β
α ηiβ, i “ 1, 2 and Â3

1,α “ pk1´1q
β
α η3

β. Acting on (5.52) with (5.51)
we obtain the following transformation properties under the discrete gauge symmetry
generators

T̃ γ1 : ψpxq Ñ exp
”

2πipk´1q
γ
δ q

δ
1

ı

ψpxq, (5.53a)

T̃ γ2 : ψpxq Ñ exp
”

2πipk´1q
γ
δ q

δ
2

ı

U ψpxq, (5.53b)

T̃ γ3 : ψpxq Ñ exp
”

2πipk1´1q
γ
δ q

δ
3

ı

ψpxq, (5.53c)

where U is the charge redefinition

U :

¨

˝

qα1
qα2
qα3

˛

‚ Ñ

¨

˝

δαβ 0 Aγαβ
0 δαβ 0

0 0 δαβ

˛

‚

¨

˚

˝

qβ1
qβ2
qβ3

˛

‹

‚

. (5.54)
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6
Discrete gauge symmetries in flux compactifications

String theory compactifications with non-trivial background fluxes have been the subject of
extensive explorations (see e.g. [10, 181, 182, 183] for reviews). The presence of non-trivial
background fluxes gives rise to interesting physics; for instance, changes in supersymmet-
ric conditions [184, 185, 186, 187, 188, 189], appearance of flux-induced supersymmetry
breaking soft terms, [190, 191, 192, 193], closed string moduli stabilization in type IIA
[194, 195, 196, 82] and type IIB [197, 198, 199, 200, 201], open string moduli stabilization
by open and closed string fluxes [202, 203, 204, 186, 205], moduli stabilization in M-theory
[206, 207, 208], and in the heterotic theory [209, 210, 211, 212, 213, 214, 215, 216], etc.

Even if we just consider the theory at topological level, the presence of non-trivial
background fluxes modifies the brane wrappings by the Freed-Witen consistency conditions
(or their dual versions) [217, 218].

Most of the studies mentioned about flux-induced modifications of brane wrappings
have focused on 4d space-time filling branes (used for model building), and brane instan-
tons. In this chapter we will consider wrapped branes with nontrivial topological interplay
from fluxes, focusing on general 4d defects (strings, particles, domain walls), whose topo-
logical charges turn out to be conserved only modulo an integer p, related to the flux
quanta.

Let us consider first 4d strings and particles. As we saw in chapter 3, strings and par-
ticles with Zp-valued charges are related to the existence of Zp discrete gauge symmetries.
In this chapter they are given by branes wrapped on Z-valued homological cycles; these
branes can however decay in sets of p due to the effect of fluxes (dubbed ‘flux catalysis’).
This is ultimately related to the fact that homology is in general not the right mathemat-
ical tool to classify brane charges. For instance, D-brane charges must be classified by
K-theory (in the absence of fluxes), or twisted K-theory (in the presence of NSNS 3-form
flux) [219].

In general, the mathematical tool classifying D-brane charges in the presence of RR
fluxes (or including NS5-branes and fundamental strings) has not been determined. Our
analysis can thus be regarded as a physical classification of stable objects and their decay
processes in certain 4d flux compactifications (in analogy with the physical derivation
of twisted K-theory in [218]), and hence a computation of the groups of brane charges,
regardless of their underlying mathematical definition (see e.g. [220, 221, 222, 223, 224,
225, 226] for earlier discussions in this vein). In this respect, one relevant conclusion of
our analysis is that these groups can be non-Abelian.

Let us now turn to Zp valued domain walls. Domain walls from wrapped branes
separate vacua differing in their background fluxes, the fact that they are Zp valued means
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that they can decay in sets of p by nucleation of a string loop. Therefore, our analysis
provides a physical derivation of certain Zp-valued flux quantization conditions. This goes
beyond the naive characterization of fluxes as integer cohomology classes, and is related to
the fact that integer cohomology is not the right mathematical tool to classify p-form fluxes
in string theory (see [227] for a partially more complete definition, in terms of K-theory
classes).

In this chapter, we will focus on type II compactifications with non-trivial background
fluxes. Some aspects of Zp strings in compactifications with fluxes have been considered
in [228] for type IIB (with NSNS and RR 3-form flux) and in [229] for the heterotic (with
gauge fluxes). Also, we focus on compactifications with p-form fluxes, and do not introduce
geometric or non-geometric fluxes

In section 6.1 we explain how discrete symmetries arise in string compactifications
with non-trivial background fluxes. In section 6.2 we apply those ideas to 4d type II
compactifications, in the case with only one kind of background flux has been turned
on, focusing on Abelian groups of the form Zk. A generalization to non-Abelian discrete
symmetries, while keeping only one kind of background flux, is presented in section 6.3.
The possibility of having several kinds of fluxes at the same time, together with the possible
inconsistencies that naively may arise and how they are avoided, is studied in section 6.4.
In section 6.5 we turn to Zp-valued domain walls, and their relation to string duality
symmetries relating vacua with different flux quanta. Finally, in section 6.6 we study
gaugings by KK gauge bosons from continuous Up1q isometries in the compactification
space in the presence of background fluxes, using the ideas of flux catalysis.

6.1 Flux catalysis

We showed in chapter 3 that the existence of a Zp discrete symmetry can be identified by
the prince of BF cou[lings in the 4d theory. In type II models with non-trivial background
fluxes these 4d BF couplings arise from the Kaluza-Klein reduction of the 10d Chern-
Simons couplings, which are of the form

ż

10d
H3 ^ Fp ^ C7´p, (6.1a)

ż

10d
B2 ^ Fp ^ F8´p. (6.1b)

Here B2 and H3 denote the NSNS 2-form potential and its field strength, whereas Cn and
Fn`1 denote the RR n-form potential and its field strength, with n even or odd for type
IIA or IIB theories, respectively.

The Zp discrete gauge symmetry will prove a useful tool to classify branes in the sys-
tems. The Zp valued particles and strings charged under the discrete gauge symmetry are
given by branes wrapped on homologically non-trivial Z-valued cycles, yet they can decay
in sets of p, due to processes allowed by the presence of fluxes (dubbed ‘flux catalysis’).
Prototypes of such processes are the decay of D-branes ending on a higher-dimensional
brane with non-trivial NSNS flux along its worldvolume [218], due to the Freed-Witten
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consistency condition1, or the decay of fundamental strings on a Dp-brane with non-trivial
p-form flux along its worldvolume (as in the baryon vertex in [230]).

One may think that the charge carried by the instantonic object sources a flux which
is left behind after the day, such that the p charged objects do not decay to the vacuum.
We emphasise that in the present 4d case the decay of p charged objects is to the vacuum
of the theory, with no flux left behind. This is particularly clear in the language of 4d
field theory, where the field theory operators describing the instantonic decays have no
long range effect [126]. We do not consider other setups, in other space-time dimensions
(actually, other codimensionalities of the Zp charged branes) where there is some left-over
flux which demands a combined classification of D-branes and fluxes [222]

In the rest of this chapter Fn will denote the n-form that has a non-trivial flux and
F̂n will denote an n-form that is obtained from the reduction of some higher form.

6.2 Abelian discrete gauge symmetries from flux catalysis
in type II

In this section we will study the possible discrete gauge symmetries that can arise in type
II compactifications with only one type of background fluxes.

6.2.1 Flux catalysis in type IIA

6.2.1.1 Massive type IIA

Consider massive type IIA string theory with mass parameter F 0 “ p0 compactified on a
Calabi-Yau X6. The Chern-Simons couplings (6.1b) contain a term leading to a 4d BF
coupling as follows

ż

10d
F 0B2 ^ F8 ÝÑ p

ż

4d
B2 ^ F̂2 (6.2)

where we have defined

F̂2 “

ż

X6

F8. (6.3)

The theory automatically has a Zp discrete gauge symmetry.

The Zp-charged particles are D6-branes wrapped on X6, which can be annihilated in
sets of p by an instanton given by an NS5-brane wrapped on X6.

The Zp-charged strings correspond to fundamental strings (F1s), and can be annihi-
lated in sets of p by a string junction given by the object charged magnetically under
C7, namely a D0-brane. Indeed, as shown in [231], a D0-brane in the presence of a mass
parameter p must be dressed with p fundamental strings.

1Actually [217] considered the case of torsion H3, and the physical picture for general H3 appeared in
[218]. Still, we stick to the widely used term FW anomaly / consistency conditions, even for non-torsion
H3.
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6.2.1.2 Type IIA with F2 flux

Consider type IIA string theory with 2-form flux F 2 compactified on a Calabi-Yau X6. It
is convenient to introduce a basis of 2-cycles tΠku and dual 4-cycles tγlu with Πk ¨Γl “ δkl.
Let us define

ż

Πk

F 2 “ pk. (6.4)

There is a term in the 10d Chern-Simons couplings (6.1b) producing a 4d BF coupling

ż

10d
B2 ^ F 2 ^ F6 ÝÑ

ÿ

k

pk

ż

4d
B2 ^ F̂

k
2 (6.5)

where we have defined

F̂ k2 “

ż

Γk

F6. (6.6)

The theory has a Zq discrete gauge symmetry with q “
ř

k
p2
k
p , where p “ gcdppkq.

Particles charged under this symmetry with minimal charge correspond to a D4-brane
wrapped on

ř

k nkΓk with integers nk satisfying
ř

k nkpk “ p, which always exist by
Bezout’s lemma; the relevant instanton that annihilates them is given by an NS5-brane
wrapped on X6. Indeed, due to the Freed-Witten anomaly induced by F 2, the NS5-brane
must emit sets of pk D4-branes wrapped on Γk, for all k. Since a brane wrapped on Γk
has charge +1 under Qk, the charge violation for a combination Qa “

ř

k c
a
kQk is

ř

k c
a
kpk.

This vanishes for massless Up1q’s, whereas Q “
ř

k
pk
p Qk is violated in q units.

The Zq-charged strings are fundamental strings, and are annihilated in sets of q by a
string junction given by a D2-brane wrapped on the 2-cycle Π “

ř

k
pk
p Πk. Indeed, a D2-

brane on Πk can annihilate fundamental strings in sets of pk, which would violate the Zq
symmetry, since in general pk is not a multiple of q. However, such D2-brane is not gauge
invariant, since it also carries monopole charge under some unbroken Up1q’s (concretely,
any linear combination involving Qk). But the linear combination Π “

ř

k
pk
p Πk is gauge

invariant, since it has no monopole charge, and emits q fundamental strings, in agreement
with the Zq symmetry.

6.2.1.3 Type IIA with F4 flux

Consider type IIA string theory with 4-form flux F 4 for the field strength of the RR 3-form
compactified on a Calabi-Yau X6. It is convenient to introduce a basis of 2-cycles tΠku

and dual 4-cycles tγlu with Πk ¨ Γl “ δkl. Let us define

ż

Γk

F 4 “ pk. (6.7)

There is a term in the 10d Chern-Simons couplings (6.1b) producing a 4d BF coupling

ż

10d
B2 ^ F 4 ^ F4 ÝÑ

ÿ

k

pk

ż

4d
B2 ^ F̂

k
2 (6.8)
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where we have defined

F̂ k2 “

ż

Πk

F4. (6.9)

The theory has a Zq discrete gauge symmetry with q “
ř

k
p2
k
p , where p “ gcdppkq.

Particles charged under this symmetry with minimal charge correspond to a D2-brane
wrapped on

ř

k nkΠk with integers nk satisfying
ř

k nkpk “ p, which always exist by
Bezout’s lemma; the relevant instanton that annihilates them is given by an NS5-brane
wrapped on X6. Indeed, due to the Freed-Witten anomaly induced by F 4, the NS5-brane
must emit sets of pk D4-branes wrapped on Πk, for all k. Since a brane wrapped on Πk

has charge +1 under Qk, the charge violation for a combination Qa “
ř

k c
a
kQk is

ř

k c
a
kpk.

This vanishes for massless Up1q’s, whereas Q “
ř

k
pk
p Qk is violated in q units.

The Zq-charged strings are fundamental strings, and are annihilated in sets of q by a
string junction given by a D4-brane wrapped on the 4-cycle Γ “

ř

k
pk
p Γk. Indeed, a D4-

brane on Γk can annihilate fundamental strings in sets of pk, which would violate the Zq
symmetry, since in general pk is not a multiple of q. However, such D4-brane is not gauge
invariant, since it also carries monopole charge under some unbroken Up1q’s (concretely,
any linear combination involving Qk). But the linear combination Γ “

ř

k
pk
p Γk is gauge

invariant, since it has no monopole charge, and emits q fundamental strings, in agreement
with the Zq symmetry.

6.2.1.4 Type IIA with F6 flux (Freund-Robin)

Consider type IIA string theory compactified on a Calabi-Yau X6 with p units of F 6 flux on
it (for instance, as in the Freund-Robin compactifications, ubiquitous in the AdS4/CFT3

correspondence initiated by [232]). The Chern-Simons couplings (6.1b) contain a term
leading to a 4d BF coupling as follows

ż

10d
B2 ^ F2 ^ F 6 ÝÑ p

ż

4d
B2 ^ F2. (6.10)

The theory automatically has a Zp discrete gauge symmetry.

The Zp-charged particles are D0-branes, which can be annihilated in sets of p by an
instanton given by an NS5-brane wrapped on X6.

The Zp-charged strings correspond to fundamental strings, which can be annihilated
in sets of p by an instanton given by a D6-brane wrapped on X6 (this is analogous to the
AdS4/CFT3 version of the baryon in [230]).

6.2.1.5 Type IIA with NSNS flux

Consider type IIA theory compactified on a Calabi-Yau X6 with NSNS 3-form flux H3.
We introduce a symplectic basis of 3-cycles tαku, tβlu with αk ¨ βl “ δkl. Let us define

ż

αk

H3 “ pk,

ż

βk

H3 “ p1k. (6.11)
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There are 4d couplings arising from the reduction of the 10d Chern-Simons term (6.1a)

ż

10d
H3 ^ F2 ^ C5 ÝÑ

ÿ

k

ż

4d

´

pkB̂k ´ p
1
kB̂

1
k

¯

^ F2 (6.12)

where we have defined
ż

βk

C5 “ B̂k,

ż

αk

C5 “ B̂1k. (6.13)

The theory has a Zp discrete gauge symmetry with p “ gcdpPk, p
1
kq.

The Zp-charged particles are D0-branes. The Freed-Witten anomaly induced by H3

dictates that a D2-brane wrapped on αk (resp. βk) has to be dressed with pk (reps. p1k)
D0-branes; therefore exactly p D0-branes can be annihilated by an instanton given by a D2-
brane wrapped on

ř

kpnkαk`mkβkq, with integers nk, mk, satisfying
ř

kpnkpk`mkp
1
kq “ p,

which always exist by Bezout’s lemma.

The Zp-charged strings with minimal charge corresponds to a D4-brane wrapping the
linear combination 3-cycle 2

Π “
ÿ

k

ˆ

pk
p
βk ´

p1k
p
αk

˙

(6.14)

which is free from Freed-Witten inconsistencies,
ş

ΠH3 “ 0. The string junction annihi-
lating p charged strings is a D6-brane wrapped on X6; due to its Freed-Witten anomaly
it emits D4-branes in the total class

ř

k ppkrβks ´ p
1
krαksq, namely p minimally charged

strings.

6.2.2 Flux catalysis in type IIB

6.2.2.1 Type IIB with NSNS 3-form flux

Consider type IIB compactified in a Calaby-Yau X6 with NSNS 3-form flux H3. Without
loss of generality, we introduce a symplectic basis of 3-cycles tαku, tβlu such that there is
flux only on the α cycles and define

ż

αk

H3 “ pk. (6.15)

There are 4d couplings arising from the reduction of the 10d Chern-Simons term (6.1a)

ż

10d
H3 ^ C2 ^ F5 ÝÑ

ÿ

k

pk

ż

4d
C2 ^ F̂

k
2 (6.16)

where we have defined
ż

βk

F5 “ F̂ k2 . (6.17)

The theory has a Zq discrete gauge symmetry with q “
ř

k
p2
k
p , where p “ gcdppkq.

2D4-branes wrapped on linear combinations of 3-cycles with Freed-Witten inconsistencies have D2-
branes attached, and they correspond to the strings bounding domain walls discussed in section 6.5.
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Particles charged under this symmetry with minimal charge correspond to a D3-brane
wrapped on

ř

k nkβk with integers nk satisfying
ř

k nkpk “ p, which always exist by
Bezout’s lemma; the relevant instanton that annihilates them is given by a D5-brane
wrapped on X6. Indeed, due to the Freed-Witten anomaly induced by H3, the D5-brane
must emit sets of pk D3-branes wrapped on βk, for all k. Since a brane wrapped on βk
has charge +1 under Qk, the charge violation for a combination Qa “

ř

k c
a
kQk is

ř

k c
a
kpk.

This vanishes for massless Up1q’s, whereas Q “
ř

k
pk
p Qk is violated in q units.

The Zq-charged strings are D1-branes, and are annihilated in sets of q by a string
junction given by a D3-brane wrapped on the 3-cycle α “

ř

k
pk
p αk. Indeed, a D3-brane on

αk can annihilate fundamental strings in sets of pk, which would violate the Zq symmetry,
since in general pk is not a multiple of q. However, such D3-brane is not gauge invariant,
since it also carries monopole charge under some unbroken Up1q’s (concretely, any linear
combination involving Qk). But the linear combination α “

ř

k
pk
p αk is gauge invariant,

since it has no monopole charge, and emits q fundamental strings, in agreement with the
Zq symmetry.

6.2.2.2 Type IIB with RR 3-form flux

Consider type IIB compactified in a Calaby-Yau X6 with RR 3-form flux F 3. Without
loss of generality, we introduce a symplectic basis of 3-cycles tαku, tβlu such that there is
flux only on the α cycles and define

ż

αk

F 3 “ pk. (6.18)

There are 4d couplings arising from the reduction of the 10d Chern-Simons term (6.1a)
ż

10d
B2 ^ F 3 ^ F5 ÝÑ

ÿ

k

pk

ż

4d
B2 ^ F̂

k
2 (6.19)

where we have defined
ż

βk

F5 “ F̂ k2 . (6.20)

The theory has a Zq discrete gauge symmetry with q “
ř

k
p2
k
p , where p “ gcdppkq.

Particles charged under this symmetry with minimal charge correspond to a D3-brane
wrapped on

ř

k nkβk with integers nk satisfying
ř

k nkpk “ p, which always exist by
Bezout’s lemma; the relevant instanton that annihilates them is given by a NS5-brane
wrapped on X6. Indeed, due to the Freed-Witten anomaly induced by F 3, the NS5-brane
must emit sets of pk D3-branes wrapped on βk, for all k. Since a brane wrapped on βk
has charge +1 under Qk, the charge violation for a combination Qa “

ř

k c
a
kQk is

ř

k c
a
kpk.

This vanishes for massless Up1q’s, whereas Q “
ř

k
pk
p Qk is violated in q units.

The Zq-charged strings are fundamental strings, and are annihilated in sets of q by a
string junction given by a D3-brane wrapped on the 3-cycle α “

ř

k
pk
p αk. Indeed, a D3-

brane on αk can annihilate fundamental strings in sets of pk, which would violate the Zq
symmetry, since in general pk is not a multiple of q. However, such D3-brane is not gauge
invariant, since it also carries monopole charge under some unbroken Up1q’s (concretely,
any linear combination involving Qk). But the linear combination α “

ř

k
pk
p αk is gauge

invariant, since it has no monopole charge, and emits q fundamental strings, in agreement
with the Zq symmetry.
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6.2.2.3 Comment on type IIB with 3-form fluxes

The two setups discussed above can be obtained from each other by replacing H3 Ø F3

and C2 Ø B2 in the couplings, and D5 Ø NS5 and D1 Ø F1 in the wrapped branes, as
expected from S-duality.

In fact, acting with transformations in the 10d SLp2,Zq duality group, we can obtain
configurations with combined NSNS and RR 3-form fluxes, albeit a restricted class. In
particular, since the starting configurations have zero contribution to the D3-brane tadpole
ş

X6
F 3^H3, and this is SLp2.Zq invariant, this strategy cannot reach configurations with

non-zero D3-brane tadpole. General flux configurations and the role of the tadpole will
be discussed in section 6.4.

6.3 Non-Abelian discrete gauge symmetries from flux catal-
ysis

When fluxes coexist, there can be several Zp factors, which may be non-commuting, re-
sulting in a non-Abelian discrete gauge symmetry3. In field theoretical grounds, the
non-Abelianity implies that strings associated to non-commuting elements g and h, when
crossing each other, produce a new string stretching between them, associated to the
commutator c “ ghg´1h´1.

Microscopically, these strings appear by the Hanany-Witten brane creation effects
[180], discussed in appendix C. Although the strings created in the crossing are finite in
extent, the theory must also contain stable infinite strings associated to the generators c,
which therefore describe genuine elements of the discrete symmetry group of the theory.

Non-Abelian discrete symmetries and brane/string creation effects have been realized
in cases with discrete symmetries that arise from p-forms on torsion cohomology classes
in [138, 143]. We will now show that the non-Abelianity for discrete symmetries can also
arise from flux catalysis.

We will consider models with two Zp symmetries, with charged strings given by D4-
branes on two 3-cycles of X6, which upon crossing produce fundamental strings sitting at
the 3-cycle intersection points in X6 and stretching in 4d4.

Wrapped D4-branes playing the role of Zp-charged have appeared in section 6.2.1.5.
However, the structure of Chern-Simons terms is such that it leads to the gauging of only
one Up1q, and cannot accommodate two independent generators. To overcome this point,
we will consider geometries with non-trivial 1-cycles, which allow a richer set of gauge
bosons and Chern-Simons couplings. Such geometries include not only T6 and K3 ˆ T2,
but more general cases beyond the Calabi-Yau realm, for instance certain twisted tori, or
general T2 bundles over a base B4 (such as those which appeared in [233] in the heterotic
context). For simplicity, we will have in mind a product B4ˆT2, keeping B4 arbitrary,
since we are not particularly interested in supersymmetry.

3See [132, 133, 134, 135, 136, 137] for early field theory literature, and [138, 143] for string realizations
in type II and [139, 145] in heterotic orbifolds

4Or similarly for other D-branes intersecting at points in X6, e.g. D3- and D5-branes on 2- and 4-cycles,
respectively.
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Note that it should be possible to obtain non-Abelian discrete gauge symmetries with-
out resorting to 1-cycles if one admits extra sources of gauging, like torsion homology
classes or the presence of additional fluxes (e.g. geometric or non-geometric). However, in
this section we will stick to pure flux catalysis and allow for 1-cycles.

Consider type IIA string theory compactified in X6 “ B4ˆT2. Let us introduce the
T2 two 1-cycles a and b, and two dual basis tΠku and tΠ1ku of 2-cycles in B4 such that
Πk ¨Π

1
l “ δkl. We introduce fluxes for the RR 2-form field strength, with flux quanta given

by
ż

Πk

F 2 “ pk. (6.21)

In the presence of this background, the 10d Chern-Simons term (6.1a) descends to 4d BF
couplings as

ż

10d
F 2 ^H3 ^ C5 ÝÑ

ż

4d

˜

ÿ

k

pkB̂k ^ F̂
a
2 ´

ÿ

k

pkB̂
1
k ^ F̂

b
2

¸

(6.22)

where we have defined the 4d forms
ż

a
H3 “ F̂ a2 ,

ż

b
H3 “ F̂ b2 , (6.23a)

ż

Π1kˆb
C5 “ B̂k,

ż

Π1kˆa
C5 “ B̂1k. (6.23b)

If we define p “ gcdppkq, then we obtain the following Zp discrete gauge symmetries:

• The first term in the right-hand side of (6.22) gives rise to a Zp discrete gauge
symmetry. The Zp charged particles are fundamental strings winding around the
a 1-cycle, and annihilate on an instantons given by a D2-brane wrapped on the
3-cycles Π1k ˆ b. The Zp charged strings are D4-branes wrapped on the 3-cycle
∆ “

ř

k
pk
p Π1kˆb, and annihilate on a string junction given by a NS5-brane wrapped

on the 5-cycle bˆ B4.

• The second term in the right-hand side of (6.22) gives rise to a Zp discrete gauge
symmetry. The Zp charged particles are fundamental strings winding around the
b 1-cycle, and annihilate on an instantons given by a D2-brane wrapped on the
3-cycles Π1k ˆ a. The Zp charged strings are D4-branes wrapped on the 3-cycle
∆1 “

ř

k
pk
p Π1kˆa, and annihilate on a string junction given by a NS5-brane wrapped

on the 5-cycle aˆ B4.

Crossing two 4d strings minimally charged under the two Zp factors produces r fun-
damental strings, with

r “ ∆ ¨∆1 “
ÿ

k,l

pkpl
p2

Π1k ¨Π
1
l. (6.24)

The symmetry is a discrete Heisenberg group generated by elements T , T 1, and a central
element C, with relations

T p “ T 1p “ 1, TT 1 “ CrT 1T. (6.25)
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In principle, the element C contains a finite order piece, since fundamental strings carry
discrete charges, as follows from a further 4d BF coupling from the 10d Chern-Simons
term

ż

10d
B2 ^ F 2 ^ F6 ÝÑ

ÿ

k

ż

4d
pkB2 ^ F̂

k
2 (6.26)

where B2 is the NSNS 2-form and we have defined

ż

Π1kˆaˆb
F6 “ F̂ k2 . (6.27)

This configuration leads to a Zq discrete gauge symmetry with q “
ř

k
p2
k
p . This suggest

the relation Cq “ 1 in addition to (6.25).

However, C is actually slightly more subtle and involves the continuous part of the
group. Indeed, the above group relations imply

T 1 “ T pT 1 “ CprT 1T p “ CprT 1 (6.28)

which, if C involves just the discrete part of the symmetry, would require pr “ 0 mod q,
which is not true in general. The point becomes clearer in the physical interpretation of
(6.28). Consider crossing one 4d string associated to T 1 with p 4d strings associated to T ,
leading to the creation of pr fundamental strings. Since the set of p T -strings is trivial,
we would expect the set of pr fundamental strings to be so. Physically, one can indeed
annihilate the fundamental strings in sets of p, by using combinations of D2-branes on
Πk (each annihilating pk strings). However, as noted in section 6.2.1.2, such D2-branes
carry non-trivial monopole charge under the unbroken Up1q’s. Hence, the central element
C contains not only the discrete gauge transformation associated to the fundamental
strings, but also a (dual) gauge transformation of the unbroken Up1q’s.

6.4 Combining fluxes

The simultaneous presence of several kinds of fluxes in a compactification is often required
by the equations of motion, and inconsistent configurations of Zp valued wrapped branes
may naively arise. However, since string theory is a consistent microscopic theory, such
configurations should not be possible. In the following sections we will discuss some of
these incompatibilities arising when combining several types of fluxes and the mechanisms
by which string theory avoids such configurations in consistent flux compactifications.

6.4.1 NSNS and RR fluxes

Let us consider first combinations of NSNS and RR fluxes. In particular, we will focus
in type IIB compactifications with simultaneous NSNS and RR 3-form fluxes, which are
a popular setup for moduli stabilization; for other type IIA or IIB with NSNS and RR
fluxes, similar lessons will apply.

Type IIB compactifications with NSNS or RR 3-form flux were studied in section 6.2.2.
We will consider the same setup but, for simplicity, we will restrict to the case with only
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one 3-cycle α and its dual β (i.e. α ¨β “ 1). Let us introduce NSNS and RR 3-form fluxes
such that

ż

α
F 3 “ p,

ż

β
H3 “ p. (6.29)

The 10d Chern-Simons couplings (6.1) contain the terms

ż

10d
F 3 ^B2 ^ F5,

ż

10d
H3 ^ C2 ^ F5, (6.30)

which, after performing dimensional reduction, produce the following 4d BF coupling

ż

4d

´

pB2 ^ F̂2 ´ p
1C2 ^ F̂

1
2

¯

(6.31)

where we have defined the 4d field strengths

ż

β
F2 “ F̂2,

ż

α
F5 “ F̂ 12. (6.32)

Let us now combine equation (6.31) with the results from section 6.2.2:

• The first BF coupling in equation (6.31) leads to a Zp discrete gauge symmetry. The
Zp-charged particles are D3-branes wrapped on β and are annihilated by an instanton
given by an NS5-brane wrapped on X6. The Zp-charged strings are fundamental
strings which are annihilated by a string junction given by a D3-brane wrapped on
α.

• The second BF coupling in equation (6.31) leads to a Zp1 discrete gauge symmetry.
The Zp1-charged particles are D3-branes wrapped on α and are annihilated by an
instanton given by an D5-brane wrapped on X6. The Zp1-charged strings are D1-
branes which are annihilated by a string junction given by a D3-brane wrapped on
β.

This naive combination leads to some puzzles, as follows. Charged particles under the
Zp symmetry play the role of string junctions under the Zp1 and vice versa. Microscopically,
the reason is that D3-branes on β have a Freed-Witten anomaly and emit D-strings with
Zp1 charge and conversely, D3-branes on α emit fundamental strings with Zp charge. This
naively allows configurations where pp1 Zp1-charged strings annihilate on p Zp-charged
particles that annihilate on an instanton; or conversely, pp1 Zp-charged strings annihilate
on p1 Zp1-charged particles that annihilate on an instanton. However, such configurations
must be inconsistent, as the boundary of a string cannot have a boundary itself.

This problem can be rephrased in the following way. Recall from section 3.1 that
string junctions are “magnetic monopoles” of the broken Up1q gauge symmetries. The
double role of Zp electrically charged particles playing as Zp1 string junctions reflects an
underlying simultaneous gauging of a gauge boson and its magnetic dual. This follows
from the 4d electric-magnetic duality between F̂2 and F̂ 12 that arises from the 10d self-
duality of the RR 4-form. Such gaugings are inconsistent already on purely 4d grounds:
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if we denote φ the 4d scalar dual to the 2-form B2, the BF couplings (6.31) imply the
gauge transformations

A1 Ñ A1 ` dλ, φÑ φ` pλ; (6.33a)

C2 Ñ C2 ` dΣ1, A1 Ñ A1 ` p
1Σ1. (6.33b)

However, it is not possible to write a consistent Lagrangian that respects both transfor-
mations and the relation F̂2 “ ˚4F̂

1
2. In physical terms, (6.33a) describes the gauge boson

A1 becoming massive by eating up the scalar φ, while (6.33b) describes the 2-form C2 be-
coming massive by eating the presumed massless gauge boson A1, which is in fact massive
and therefore contains too many degrees of freedom.5

The above discussion does not imply that type IIB vacua with NSNS and RR fluxes are
inconsistent, but rather that string theory must include ingredients to circumvent these
problems.

The combination of NSNS and RR fluxes contributes to the RR tadpole conditions.
In the type IIB case we study above, there is a tadpole of D3-brane charge given by

Nflux “

ż

X6

F 3 ^H3 “ pp1. (6.34)

It turns out that the extra ingredients required to cancel the tadpole precisely solve the
above inconsistencies. We consider two possibilities:

• Orientifold planes. The above tadpole can be cancelled by introducing O3-planes,
as often done in the context of moduli stabilization. Their effect on the fields relevant
to the discrete symmetries is drastic, since they are all projected out and no remnant
discrete symmetry is left. The above problems are solved by removing degrees of
freedom and rendering the structures trivial.

• Anti-branes. Another possibility is to introduce D̄3- (or D3-)branes. They modify
the above discussion because their overall worldvolume Up1q couples to the relevant
2-forms through the D̄3-brane Chern-Simons couplings. Denoting respectively by f2

and f 12 the field strength of the overall Up1q and its 4d dual on a stack of pp1 branes,
we have the coupling

´

ż

4d
pp1

`

C2 ^ f2 `B2 ^ f
1
2

˘

. (6.35)

The appearance of new degrees of freedom solves the problems, and leads to non-
trivial discrete gauge symmetries as follows. Let us denote by Qrβs and Qrαs the

electric and magnetic generators that correspond to D̂2 and D̂12 in equation (6.31),
respectively; and by QUp1qe and QUp1qm the electric and magnetic generators of the
D̄3-brane Up1q, corresponding to the field strengths f 12 and f2 in equation (6.35). And
NS5-brane instanton violates these Up1q charges by ∆Qrβs “ p and ∆QUp1qe “ ´pp

1,

5This problem has also been pointed out in the supergravity literature, in the context of embedding
tensor formalism (see e.g. [234]). In that case, consistency of the theory requires the embedding tensor
to satisfy a quadratic constraint which ensures that the gauging can be turned into a purely electric one
in a suitable symplectic frame. In the above discussion we are dealing with genuinely electric/magnetic
gaugings, which cannot be rotated into electric ones and which therefore lead to inconsistencies in the 4d
theory.
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while a D5-brane instanton gives ∆Qrαs “ ´p
1 and ∆QUp1qm “ ´pp

1. Now consider
the linear combinations

Q1 “ pQrβs ´QUp1qe , Q2 “ p1Qrαs `QUp1qm . (6.36)

The magnetic dual of Q1 is pQrαs ´ QUp1qm , which is preserved by all instantons.
Hence, the monopoles of Q1 do to decay, and can play the role of junctions for the
strings. These are associated to the discrete subgroup Zp2´pp1 Ă Up1qQ1 , preserved
by the NS5-brane instantons. Similarly Up1qQ2 leads to a discrete Zp12`pp1 symmetry.

6.4.2 Purely RR fluxes and symplectic rotations

Not all combinations of fluxes lead to tadpole contributions. Consider a type IIA com-
pactification on a Calabi-Yau X6 with p1 units of F 0 and p units of F 6. According to the
results of section 6.2.1 one would have the following discrete gauge symmetries:

• F 0 gives rise to a Zp1 discrete gauge symmetry. The Zp1-charged particles arise from
D6-branes wrapped on X6 and are annihilated by an instanton given by a NS5-brane
wrapped on X6. The Zp1-charged strings are fundamental strings, and are annihilated
by a string junction given by a D0-brane.

• F 6 gives rise to a Zp discrete gauge symmetry. The Zp-charged particles correspond
to D0-branes and are annihilated by an instanton given by a NS5-brane wrapped on
X6. The Zp1-charged strings are fundamental strings, and are annihilated by a string
junction given by a D6-brane wrapped on X6.

Naively, the system suffers from the troubles of the previous section, since Zp1-charged
particles are also junctions for Zp-charged strings, and vice versa. However, in this case,
the combination of F 0 and F 6 fluxes does not contribute to the RR tadpole and no extra
ingredients can come to the rescue.

The main difference of this configuration compared to the one in the previous section, is
that both Zp- and Zp1-charged strings are given by fundamental strings, and the instantons
are given in both cases by a NS5-brane wrapping the whole X6. This implies that there is
only one scalar that is being gauged by the gauge potential. This can be seen more clearly
by looking to the Chern-Simons terms. The 10d Chern-Simons terms (6.1b) contain

ż

10d

`

F 0B2 ^ F8 ` F 6 ^B2 ^ F2

˘

(6.37)

which lead to the 4d couplings

ż

4d

´

p1B2 ^ F̂
1
2 ` pB2 ^ F2

¯

, (6.38)

where we have defined

F̂ 12 “

ż

X6

F8, (6.39)

which corresponds to the 4d dual of F2.
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The 4d couplings (6.38) describe a gauging by a combination of the electric and mag-
netic gauge potentials, which can be turned into a purely electric one by a 4d electric-
magnetic symplectic transformation. Extracting r “ gcdpp, p1q we have

ż

4d
rB2 ^

ˆ

p1

r
F̂ 12 `

p

r
F̂2

˙

sympl.
ÝÑ

ż

4d
rB2 ^ f2 (6.40)

where f2 is the field strength associated to the combination Q “
p1

r Qe `
p
rQm of the

electric and magnetic generators. There is a Zr discrete gauge symmetry, matching the
annihilation/creation processes as follows. An NS5-brane instanton annihilates p1 D6-

and p D0-branes, namely r sets of the basic unit of Q-charge (p
1

r D6- and p
r D0-branes).

Similarly, Zr charged strings are fundamental strings that can annihilate in sets of p1 on a
D0-brane junction of in sets of p on a wrapped D6-brane junction, and are hence conserved
modulo r.

Similar conclusions apply to other combinations of type IIA RR fluxes. The above
discussion is straightforward in the mirror IIB setup, in which all RR fluxes map into
3-form flux. In particular, 4d electric-magnetic symplectic transformations are simply
changes in the symplectic basis of 3-cycles α and β in the IIB picture.

6.5 Strings and unstable domain walls

In the previous section we saw that the orientifold in supersymmetric flux compactifica-
tions generically projects out all flux-induced BF couplings and therefore also 4d strings
endings on string junctions. However, there is another set of discrete (Zp valued) brane
wrappings in supersymmetric flux compactifications which usually survive the orientifold
projection, namely 4d strings with domain walls attached to them. Nucleation of such 4d
strings render some of the domain walls in the flux compactification ustable6 and vacua
separated by the wall, which would naively be different, are actually identical up to discrete
identifications. In this section we will describe these 4d objects from a microscopical point
of view, starting with a simple illustrative example to make the main ideas manifest, with
similar phenomena in more general flux compactifications being discussed subsequently.

6.5.1 F2 flux quantization in massive IIA

Let us consider massive IIA string theory compactified on a 6d manifold with mass param-
eter F 0 “ p. In addition to the Zp-valued fundamental strings discussed in section 6.2.1.1,
the system admits also a set of 4d strings arising from NS5-branes wrapped on 4-cycles.
The Freed-Witten anomaly on the NS5-brane forces these strings to have domain walls
attached to them, given by p D6-branes wrapped on the same 4-cycle and ending on the
NS5-brane. Therefore, p such D6-brane domain walls are unstable against nucleation of a
string loop, as depicted in figure 6.1.

From standard arguments [235], two vacua separated by a single domain wall differ
in one unit of RR flux F 2 along the 2-cycle dual to the wrapped 4-cycle. The above

6In this section, the term “unstable” is used in a merely topological sense, and does not imply any
dynamical content.
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Figure 6.1: a) A 4d domain wall obtained by p D6-branes wrapped on a -cycle in a Calabi-
Yau compactification of massive type IIA theory. It separates two regions of 4d space-time
which differ by p units of RR F2 flux on the dual 2-cycle. b)The domain wall is unstable by
nucleation of holes bounded by strings, realized as one NS5-brane wrapped on the 4-cycle.
The two vacua with differing flux must be equivalent.

instability of a set of p domain walls therefore indicate that vacua differing p units of F 2

along the 2-cycle are actually equivalent. Using the argument for different 2-cycles, this
implies the quantization condition

pk ”

ż

Πk

F 2 P pZ for any Πk P H2pX6,Zq, (6.41)

so the flux is Zp-valued, rather than Z-valued. This deviation from the cohomological
classification of RR fields should be a generalization (suitable for the presence of 0-form
flux) of the K-theory classification of RR fields [227].

From the point of view of effective supergravity, these equivalences follow from simple
underlying axion-like field identifications. In the above example, the introduction of F 0 “

p in type IIA theory implies the presence of a Chern-Simons coupling in the definition of
the physical RR 2-form (see e.g. [72])

F̃2 “ dC1 ` F 2 ` pB2. (6.42)

When crossing a domain wall through a hole bounded by a 4d string, as in figure 6.1b,
the axion φk “

ş

Πk
B2 experiences a monodromy φk Ñ φk ` 1 and a shift in the F 2 flux,

pk Ñ pk ´ p. According to equation (6.42), these two effects cancel each other in the
sense that the physical field strength F̃2 is left invariant, which implies that both vacua
are equivalent.

Unstable domain walls typically arise in theories on which a discrete gauge symmetry
G is spontaneously broken to a subgroup H (see e.g. [137] for a review). This description
encompasses our example by considering the group G “ Z of monodromies generated by
the 4d strings, which is broken by F 0 to a subgroup H “ Zp. Strings with monodromies
a P G{H which lay in the broken generators of G cannot be stable and have domain walls.
Those are therefore classified by the cosets aH, so that different strings can bound the
same domain wall only if they belong to the same coset. In cases where G contains several
factors, these properties lead to an interesting interplay between the different types of 4d
strings and domain walls, as we will show in the following section for more general IIA
flux vacua.
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6.5.2 Zp-valued domain walls in IIA flux vacua

In a fully consistent flux compactification the equations of motion typically demand differ-
ent kinds of fluxes to be simultaneously switched on. Unstable domain walls, like those in
the previous section, can produce intricate identifications of seemingly flux backgrounds.

The supergravity argument explained above can easily be extended to arbitrary flux
backgrounds. The complete set of physical field strengths that appear in the 10d type IIA
supergravity action is

H3 “ dB2 `H3, F̃p “ dCp´1 ´H3 ^ Cp´3 `
`

FeB2
˘

p
, (6.43)

where F “ F 0 ` F 2 ` F 4 ` F 6 and p¨qp selects the p-form component of a polyform.

In the absence of 1-cycles, the axion-like fields of the compactification come from
dimensionally reducing B2 along the 2-cycles and C3 along the 3-cycles of the compact
manifold. Strings in 4d are thus given by NS5-branes wrapping 4-cycles and D4-branes
wrapping 3-cycles, as those induce the correct monodromy for the corresponding axions.
In the presence of general flux backgrounds, these objects develop Freed-Witten anomalies,
that are cancelled by attaching domain walls. From equation (6.43) it is straightforward
to work out the axion like identifications induced by the flux background and to interpret
them in terms of unstable domain walls. To linear order in the shifts, we obtain the
structure of unstable domain walls summarised in table 6.1.

Domain wall String Rank

type cycle type cycle

D2 ´ NS5 rΓ4s P H4pX6,Zq
ş

Γ4
F 4

D4 rΠ2s P H2pX6,Zq NS5 rΓ4s P H4pX6,Zq
ş

Γ4
F 2 ^ π2

D6 rΓ14s P H4pX6,Zq NS5 rΓ4s P H4pX6,Zq
ş

Γ4
F 0π4

D2 ´ D4 rα3s P H3pX6,Zq
ş

α3
H3

Table 6.1: Domain walls in flux compactifications and the type of 4d strings that can
nucleate in the presence of fluxes. The last column denotes the number of domain walls
that are needed to nucleate a hole bounded by a string.

Having multiple types of domain walls and strings allows for new phenomena that were
not present un the example of the previous section.

• Hole collisions. If a domain wall can decay via nucleation of different strings,
there can be collisions of different type of holes [137]. This is the case of D2-brane
domain walls in type IIA compactifications with F 4 and H3 fluxes, as they can decay
via nucleation of 4d strings from NS5-branes wrapping a 4-cycle or from D4-branes
wrapping a 3-cycle (see table 6.1). The collision of the corresponding holes leads to
a configuration with a single hole, crossed by a new 4d string, as shown in figure
6.2. Such string is a NS5/D4 bound state with cancelled Freed-Witten anomalies
and therefore has no domain wall attached. In terms of the M-theory upping, the
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Figure 6.2: Collision of holes in unstable D2-brane domain walls in 4d compactifications
with F 4 and H3 fluxes.

new 4d string corresponds to a single M5-brane wrapping a linear combination of
4-cycles such that the total G4 flux on it cancels.

• Hanany-Witten effect for strings bounded with walls. In theories where the
unstable domain walls are associated to the spontaneous breaking of a non-Abelian
discrete symmetry groupG to a subgroupH, there is an interesting interplay between
the 4d strings attached to domain walls of this section and the 4d strings that were
discussed in section 6.2. Consider two 4d strings with non-commutaive monodromies
a and b associated to two broken generators of G, and therefore with attache domain
walls. If the commutator c “ a´1b´1ab lies in H, then the crossing of the two
strings leads to the creation of a new streched 4d string with monodromy c with
no domain wall attached. This situation arises in type IIA flux compactification
without orientifold planes. To be more precise, consider a compactification with H3

flux on two Hodge dual 3-cycles α3 and β3. From table 6.1 we see that a D4-brane
wrapped on α3 leads to a 4d string with

ş

α3H3 D2-brane domain walls attached,
and a similar argument holds for a D4-brane wrapped on β3. By the Hanany-Witen
effect, crossing these 4d strings results in a stretched fundamental string with no
domain wall attached, see figure 6.3.

6.5.3 Type IIB SLp2,Zq from unstable domain walls

Consider a generic type IIB compactification on a Calabi-Yau X6 with NSNS and RR
3-form fluxes. For simplicity we will restrict to a single 3-cycle α3 and its Hodge dual β3

with general fluxes
ż

α3

H3 “ N,

ż

β3

H3 “M, (6.44a)

ż

α3

F 3 “ N 1,

ż

β3

F 3 “M 1. (6.44b)

A D7-brane wrapping X6 leads to a 4d string with k “ gcdpN,Mq domain walls
attached. They consist of D5-branes wrapped on the class 1

k pM rα3s ´N rβ3sq and are re-
quired in order to cancel the H3-induced Freed-Witten anomaly on the D7-branes. Hence,
a set of of k such domain walls can decay by nucleation of a 4d string.
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Figure 6.3: In compactifications with H3 fluxes, crossing of 4d strings (wrapped D4-
branes) with attached domain walls (D2-branes) produces 4d strings with no domain wall
(F1s).

As one crosses the domain wall, the complex axion-dilaton and the 3-form fluxes ex-
perience a SLp2,Zq transformation

τ Ñ τ ` 1, N 1 Ñ N 1 `N, M 1 ÑM 1 `M. (6.45)

This can be extended to the entire type IIB SLp2,Zq duality group by considering (sets
of) 4d strings arising from pp, qq 7-branes wrapped on X6 and domain walls arising from
general bound states of D5- and NS5-branes wrapped on 3-cycles. Hence, unstable domain
walls encode the existence of non-trivial dualities in string theory.

Crossing these unstable domain walls leaves always invariant the contribution of the
3-form fluxes to the RR 4-form tadpole

Nflux ”

ż

X6

H3 ^ F 3 “ NM 1 ´N 1M, (6.46)

and therefore the number of O3-planes, D3-branes or other sources required for tadpole
cancellation.

However, this is not true in general for the case of stable domain walls, which change
the flux background in a way that cannot be undone by a SLp2,Zq transformation7. For
instance, a domain wall given by one D5-brane on α3 shifts the F 3 flux in β3 by one unit.
The change in the 3-form flux contribution to the RR tadpoles is compensated by the
appearance of N spacetime filling D3-brane on one side of the domain wall, which are
microscopically required by a Freed-Witten anomaly on the D5-brane domain wall.

6.6 Flux catalysis and continuous isometries

In the previous sections we have focused on 4d Up1q gauge bosons arising from higher
dimensional p-form gauge potentials. In this section we briefly consider gaugings by KK

7See e.g. [236] for an explicit discussion.
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gauge bosons from continuous Up1q isometries in the compactification space. These do
not arise in CY threefold compactifications, but may be present in other spaces.

6.6.1 A gauging by KK gauge bosons

Consider e.g. type IIB string theory compactified on a space X6, which for simplicity we
take B4 ˆ T2. Let x4, . . . , x7 denote (local) coordinates on B4, and x8, x9 coordinates on
T2 (normalized with periodicity 1). We introduce p units NSNS 3-form flux with one leg
along x9 and two legs on a 2-cycle Σ2 on B4 (locally along e.g. x6, x7),

ż

Σ2ˆpS1q9

H3 “ p. (6.47)

This flux breaks the KK Up1q associated to x9 because the 2-form gauge potential for such
H3 is not translationally invariant, as it can be written

B2 “ p x9 dx6dx7. (6.48)

Upon dimensional reduction, there is a gauging of the scalar φ “
ş

Σ2
B2, since a translation

in x9 shifts the value of φ. Namely

A1 Ñ A1 ` dλ , φÑ φ` pλ (6.49)

This gauging defines a discrete Zp gauge symmetry from a discrete isometry (analogous
to the gauging in magnetized D-branes in section 7.3 where we make use of the formal-
ism developed in section 3.3). The gauging should be manifest as a BF coupling upon
dimensional reduction, although we will not need this result.

The particles that are charged under this discrete symmetry are states with KK mo-
mentum along x9, and can annihilate in sets of p on a fundamental string wrapped on
Σ2 (and localized in x9, hence violating momentum conservation). The 4d Zp-charged
strings are NS5-branes on the 4-cycle dual to Σ2 in X6, namely along x4, x5, x8, x9. The
junction annihilating p strings is the KK monopole associated to x9, namely a Taub-NUT
(TN) geometry with isometry direction x9, and base R3 in the non-compact 4d space,
see first three rows in table 6.2. Microscopically, the TN geometry can be shown to emit
p NS5-branes as follows. In the absence of the TN, H3 “ p dx6dx7dx9, but when the
TN is present dx9 is not well-defined and must be promoted to ρ1 ” dx9 ` ~v ¨ d~x, where
~x “ px1, x2, x3q, and ~v is the Dirac monopole potential. This 1-form is not closed, but
rather dρ1 “ ω2, where ω2 is a harmonic 2-form supported on the TN center. The Bianchi
identity becomes

dH3 “ pω2 dx
6dx7. (6.50)

This source term induces a FW-like inconsistency, which must be cancelled by extra sources
for H3. These are p NS5-branes along e.g. x0, x1, x4, x5, x8, x9, ending on the TN location
in x1 at a four-dimensional boundary along x0, x4, x5, x8 (notice that the x9 direction
shrinks at the TN center).

The above argument is dual to a standard FW argument, as follows. T-duality along
x8 gives a type IIA configuration consisting of a TN geometry along x0, x4, . . . , x8 (with
S1 fiber along x9), with H3 „ p dx6dx7dx9 and NS5-branes along x0, x1, x4, x5, x8, x9. We
can now perform a lift to M-theory by introducing a new direction denoted by x91 , and
shrink x9 to get back to type IIA (a 9-9’ flip). After this process, we end up with a
D6-brane along x0, x4, . . . , x8, x91 , with NSNS 3-form flux H3 „ p dx6dx7dx91 inducing a
FW anomaly, cancelled by D4-branes along x0, x1, x4, x5, x8.
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NS5 0 1 ˆ ˆ 4 5 ˆ ˆ 8 9
H3 ˆ ˆ ˆ ˆ ˆ ˆ 6 7 ˆ 9
TN 0 ˆ ˆ ˆ 4 5 6 7 8 b

D5 0 ˆ 2 ˆ 4 5 6 7 ˆ ˆ

F3 ˆ ˆ ˆ ˆ ˆ ˆ ˆ 7 8 9
TN 0 ˆ ˆ ˆ 4 5 6 b 8 9

D3 0 ˆ ˆ 3 4 5 ˆ ˆ ˆ ˆ

Table 6.2: Relative geometry of the objects and fluxes involved in the realization of a non-Abelian
discrete gauge symmetry. A number (resp. a cross) denotes that the corresponding brane or flux
extends (or does not extend) along the corresponding direction. The circled cross indicates the
isometric direction for Taub-NUT geometries producing line operators for string decays. In the top
two triplets, the first row is the object producing the Zp-charged string, while the second and third
to the flux and junction catalyzing its decay. The last line describes the D3-branes corresponding
to the 4d strings created upon crossing the NS5- and D5-branes.

6.6.2 Engineering a non-Abelian discrete gauge symmetry

The above ingredients allow to engineer a non-Abelian discrete gauge symmetry, in a
system with NSNS and RR 3-form fluxes. Consider for simplicity a T6 compactification
(although the construction may generalize e.g. to torus bundles), parametrized by coor-
dinates x4, . . . , x9, and introduce 3-form fluxes H3 „ p dx6dx7dx9 and F 3 „ p dx7dx8dx9,
with the same number of flux quanta for simplicity. As in the previous section, H3

breaks the KK Up1qx9 down to Zp (with charged strings given by NS5-branes wrapped on
x4, x5, x8, x9, and annihilating on a suitable TN, see first three rows in table 6.2). By S-
duality, F 3 breaks the KK Up1qx8 down to Zp (with charged strings played by D5-branes
wrapped on x4, x5, x6, x7, and annihilating on a different TN, see middle three rows in
table 6.2). As in section 6.3, the two Zp factors are non-commuting, because crossing the
corresponding 4d strings produces a new string, given by a D3-brane wrapped on x4, x5,
by the HW effect. The resulting symmetry is a discrete Heisenberg group, with relations
Ap “ Bp “ 1, AB “ CBA, and Cp “ 1. The non-Abelianity is analogous to that of section
5.2 (see also [138] for an early 5d realization), with the difference that in the present case
the two Zp factors arise from flux catalysis, rather than from torsion (co)homology. The
relation Cp “ 1 follows because the D3-brane 4d strings are associated to a Zp discrete
symmetry induced by the 3-form fluxes (in a way different from section 6.2.2, since it
requires the presence of non-trivial 1-cycles) through the following Chern-Simons term

ż

10d
C4 ^ pF3 ^H3 ` F 3 ^H3q Ñ

ż

4d
p B̂2 ^ pF̂2 ` F̂

1
2q, (6.51)

with B̂2 “
ş

x4x5 C4, and 4d Up1q field strengths F̂2 “
ş

x8 F3 and F̂ 12 “
ş

x9 H3.



7
Discrete symmetries from discrete isometries.

An important feature of Kaluza-Klein compactifications is that isometries of the compact-
ification manifold produce gauge symmetries in the lower theory. While this is familiar
for continuous isometries, it also holds for discrete isometries, suggesting a natural source
for (possibly non-Abelian) discrete gauge symmetries.

In section 3.3 we described discrete gauge symmetries in terms of gaugings of isometries
of the moduli space of the scalars of the theory. While this mechanism is seemingly different
from the one mentioned above, we will show that the latter nicely fits within the framework
of section 3.3.

A general analysis of the mechanism is beyond the scope of this thesis; to illustrate the
main ideas, in section 7.1 we will focus on the particular simple case of compactifications
on twisted tori. Their realization in terms of gaugings allows to describe the discrete gauge
symmetry in the language of gauging of non-Abelian axions of section 3.3. In section 7.2
we discuss the action of discrete symmetries of twisted tori on Kaluza-Klein modes.

As a specific and more realistic example, in section 7.3 we present a model of magne-
tized D-branes. The continuous isometries of the compactification space are broken to a
discrete (non-Abelian) subgroup by the nontrivial flux in the branes. After considering the
simpler case of a magnetized T2 (section 7.3.1) to illustrate the main ideas, we generalize
those ideas to the case of a magnetized T6 in section 7.3.2 and apply them to a specific
model in section 7.3.3.

Finally, in section 7.4, we study non-perturbative instanton effects, and how they
manage to preserve the non-Abelian discrete gauge symmetry, using the constructions
presented in section 7.3 for concreteness.

7.1 Non-Abelian discrete symmetries from discrete isome-
tries of the twisted torus

Prototypical examples of compactification spaces with discrete isometries are twisted tori.
For simplicity we focus on the case of a twisted torus pT3qM (where M denotes the first
Chern class of the S1 fibration over the base T2). This space and its symmetries can be
neatly displayed by the following coset construction (see e.g. [237, 238]). Consider the set
H3pRq of upper triangular matrices

gpx, y, zq “

¨

˝

1 x z ` xy
2

0 1 y
0 0 1

˛

‚, x, y, z P R (7.1)
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which forms a non-compact Heisenberg group under multiplication

gpx, y, zqgpx1, y1, z1q “ gpx` x1, y ` y1, z ` z1 `
1

2
pxy1 ´ x1yqq (7.2)

A basis of e.g. right-invariant forms ηx “ dx, ηy “ dy, ηz “ dz ´ 1
2pydx´ xdyq allows

the introduction of a metric ds2 “ pηxq2 ` pηyq2 ` pηzq2 with an isometry group defined
by right multiplication, and therefore given by H3pRq itself. More precisely, we have that
the Killing vectors of this metric are given by the left-invariant vectors of H3pRq, a simple
basis for them being

Xx
L “ Bx ´

1
2yBz,gpx, y, zq Ñ gpx` λx, y, z ´

1
2yλxq, (7.3a)

Xy
LsBy `

1
2xBz,gpx, y, zq Ñ gpx, y ` λy, z `

1
2xλyq, (7.3b)

Xz
L “ Bz,gpx, y, zq Ñ gpx, y, z ` λzq, (7.3c)

where we have also specified the continuous isometries generated upon exponentiation of
such Lie algebra elements.

The twisted torus is obtained as a left coset pT3qM “ H3pRq{H3pMq of the non-
compact space H3pRq by the infinite discrete subgroup Γ̂ “ H3pMq with elements of the
form

¨

˝

1 Mnx Mnz
0 1 Mny
0 0 1

˛

‚, nx, ny, nz P Z (7.4)

In other words, by imposing the identifications

gpx, y, zq „ gpx`M,y, z ´ M
2 yq „ gpx, y `M, z ` M

2 xq „ gpx, y, z `Mq. (7.5)

As the metric is made of right-invariant forms, pT3qM has a well-defined quotient metric.
On the other hand, some of the isometries of the parent space H3pMq are broken in
pT3qM . The quotient enjoys a continuous U(1) isometry along the S1 fiber, generated by
the invariant Killing vector Xz

L “ Xz
R “ Bz. However, the other two vectors Xx

L and Xy
L

are not right-invariant, and so the corresponding continuous isometries disappear. Indeed,
one can see that the action of Xx

L and Xy
L is in general different for different points of

H3pMq which are identified under (7.5). For instance,

eλxX
x
L : gpx, y, zq Ñ gpx` λx, y, z ´

1
2yλxq, (7.6a)

eλxX
x
L : gpx, y `M, z ` M

2 xq Ñ gpx` λx, y `M, z ` M
2 x´

1
2py `Mqλxq (7.6b)

„ gpx` λx, y, z ´
1
2yλx `Mλxq,

and so these two actions are the same only if λx P Z. A similar statement holds for the
parameter λy in (7.3b). Hence, one finds that the identifications (7.5) break two of the
continuous isometries of the parent H3pRq, preserving only the discrete order-M actions
generated by

eX
x
L : gpx, y, zq Ñ gpx` 1, y, z ´ 1

2yq,

eX
y
L : gpx, y, zq Ñ gpx, y ` 1, z ` 1

2xq.
(7.7)
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Just like Xx
L and Xy

L, these generators do not commute, but rather produce an element of
the U(1) generated by Xz

L, and realize a discrete Heisenberg group P “ HM “ H3pM “

1q{H3pMq. This discrete non-Abelian isometry group produces a discrete non-Abelian
gauge symmetry HM in the lower-dimensional theory1.

The above construction is a particular case of a more general setup (see e.g. [239, 240]).
Given a non-compact group G, the metric constructed with right-invariant forms has
G itself as its isometry group (by right multiplication). In taking the coset G{H by a
subgroup H, some of these isometries may survive (in continuous or discrete versions).
In general, H is not a normal subgroup of G, so G{H is not a group, and cannot be the
isometry group. To identify the correct isometry group, note that a point g1 in G{H is, at
the level of G, an equivalence class of points of the form g2 “ g1γ, with γ P H. An isometry
R in G, mapping such g1 and g2 to g1R and g2R, is an isometry in G{H if the images are
in the same equivalence class, namely if g2R “ g1Rγ

1 for some γ1 P H. This requires R
to satisfy R´1γR “ γ1, namely conjugation by R should leave H invariant (although not
necessarily pointwise). Those transformations form the so-called normalizer group NH of
H, and define the maximal subgroup of G such that H is normal in NH . Since H acts
trivially on G{H, the actual isometry group of G{H is NH{H.

It is easy to show that in the twisted torus the group NH3pMq{H3pMq corresponds to
the one identified above, namely HMˆ U(1). The simplicity of the twisted torus allows to
explicitly compute interesting restrictions imposed by the discrete symmetry on couplings
of the lower-dimensional theory, as analyzed in detail in section 7.2.

It is natural to ask if, besides the above higher-dimensional description, there is a lower-
dimensional description of the discrete gauge symmetry in terms of gauging of suitable
scalars. Indeed, it is familiar that compactification on a twisted torus can alternatively be
viewed as a compactification on T3 with metric fluxes, which can be described in terms
of gauging a Heisenberg algebra [241]. The qualitative structure of the gauging is already
manifest in the twisted torus metric, with gxz „ y and gyz „ x, as follows. A gauge
transformation of the KK gauge boson V x

µ „ gxµ along the circle parametrized by y (i.e.
a translation in y) shifts the vev of the scalar φ „ gxz, and similarly for the KK gauge
boson along x and the scalar gyz. The integer M arises as the ratio of winding numbers
of the map between full translations in the geometric circles, and the induced shifts in the
scalar manifold. The non-Abelian structure of the isometries of the scalar manifold makes
the resulting discrete gauge symmetry non-Abelian.

7.2 KK modes and Yukawas in twisted tori

We have seen in in the previous sections that non-Abelian discrete isometries of the twisted
torus pT2qM “ H3pRq{H3pMq lead to non-Abelian discrete gauge symmetries in the com-
pactified effective theory. Thus, we expect the presence of powerful selection rules in this
setup for the couplings of KK modes. In this section we work out such selection rules
for the three-point couplings, this time exploiting the underlying group structure of the
twisted torus.

1Note that although the twisted torus geometry has torsion cycles, the discrete gauge symmetry from
discrete isometries is associated to components of the metric, and not to p-forms reduced on torsion classes,
in contrast with the previous section.



102 CHAPTER 7. DISCRETE SYMMETRIES FROM DISCRETE ISOMETRIES.

In more general terms, for a compactification on a group manifold G{Γ, where G
is a Lie group and Γ Ă G a cocompact lattice, we expect 4d KK particles to arrange
in irreducible unitary representations of the discrete isometry group P of G{Γ. Such
representations can be explicitly worked out from the irreducible representations of G
that are invariant under Γ. In physical terms, the components of these (generically infinite
dimensional) representations correspond to wavefunctions of the particles in the 4d theory.
The Clebsch-Gordan decomposition of the tensor product of two representations (namely,
the operator product expansion, OPE) then allows the computation of superpotential
couplings in the 4d effective theory, relating overlaps of n wavefunctions to overlaps of two
wavefunctions. Since the Γ-invariant irreducible representations of G are also arranged in
finite dimensional irreducible representations of the discrete symmetry group P, the OPE
must satisfy the set of selection rules associated to the discrete charge conservation.

In what follows we illustrate this procedure with the twisted torus compactification of
section 7.1, for which G “ H3pRq is the Heisenberg group.

7.2.1 KK wavefunctions in twisted tori

The irreducible unitary representations of the Heisenberg group can be worked out starting
from eq. (3.79), for instance by means of Kirillov’s orbit method (see e.g. Appendix D
of [242] for details). In general, irreducible representations πpgq of non-Abelian groups
are not simple functions, but rather operators acting on a Hilbert space of functions
up~sq P L2pRppπqq with ppπq P N. For the case of the 3-dimensional Heisenberg group the
complete set of irreducible unitary representations is given by

πkp~φqupsq “ exp

„

2πik

ˆ

φ3 `
M

2
φ1φ2 ` φ2s

˙

ups`Mφ1q , upsq P L2pRq

πk1,k2p
~φq “ exp

“

2πi
`

k1φ
1 ` k2φ

2
˘‰

.

(7.8)

Γ-invariant irreducible representations can be constructed by taking sums over the lattice
Γ

Bpgq ”
ÿ

γPΓ

πpγgqupsq (7.9)

For the particular case of the Heisenberg group the complete procedure was carried out
in [242]. Taking complex coordinates, z “ φ1`Uφ2, and imposing Bpgq to be eigenstates
of the Laplacian (namely, of the quadratic Casimir invariant of H3pRq), we obtain

BM
k,n,δpz, φ

3q “ ΨkM
n,δ pzq exp

`

2πikφ3
˘

, (7.10a)

Bkpzq “ exp

„

2πi
Impkzq

ImpUq



, (7.10b)

where k ” ´k2 ` Ūk1, with k1,2 P N. We have defined

ΨN
n,δpzq ” p2π|N |q

1
4

ÿ

sPZ
ψn

„

a

2π|N |

ˆ

δ

N
` s`

Impzq

ImpUq

˙

exp

„

2πiNRepzq

ˆ

δ

N
` s`

Impzq

ImpUq

˙

(7.11)



7.2. KK MODES AND YUKAWAS IN TWISTED TORI 103

with n P N, δ P ZN and ψnpxq the Hermite functions given by

ψnpxq ”
1

?
n!2nπ1{2

Hnpxqe
´x2{2 (7.12)

where Hnpxq are the standard Hermite polynomials.

7.2.2 Yukawa couplings for KK modes

We are particularly interested in 4d particles with wavefunctions of the type (7.10) as
those carry a non-zero KK momentum along the fiber of the twisted torus and therefore
see the non-Abelian nature of the gauging. In the language of magnetized D-branes these
correspond to particles with non-trivial charge k under the gauge symmetry of the D-
brane. In such magnetized brane language, n denotes the Landau level and δ runs over
the degeneracy of the corresponding Landau level (namely, it is a flavour index).

For any given set of states (7.10) with fixed k and δ (namely, for any given Γ-invariant
representation of G with non-vanishing central charge) the ground state n “ 0 (i.e., the
highest weight of the representation) can be expressed in terms of Jacobi theta functions
as

BM
k,0,δpz, φ

3q “ p2π|kM |q
1
4 ϑ

„ δ
kM

0



pkMz; kMUq exp

„

iπkM
z Impzq

ImpUq
` 2πikφ3



(7.13)

One may easily check that (7.13) transforms under the generators of the gauge lattice Γ̂
as

φ1 Ñ φ1 `
1

M
, φ3 Ñ φ3 ´

φ2

2
, BM

k,0,δ Ñ ωδBM
k,0,δ, (7.14a)

φ2 Ñ φ2 `
1

M
, φ3 Ñ φ3 `

φ1

2
, BM

k,0,δ Ñ BM
k,0,δ`k, (7.14b)

φ3 Ñ φ3 `
1

M
, BM

k,0,δ Ñ ωkBM
k,0,δ, (7.14c)

with ω ” expp2πi{Mq. As we saw in section 7.1, these are the generators of the dis-
crete gauge symmetry P “ Γ{Γ1 for the level k. For instance, for k “ 1 we have
P “ pZM ˆZM q ¸ ZM , and in the particular case of M “ 3, P “ ∆p27q.

Let us now focus on the OPE of irreducible representations. For for zero-th Landau
levels (7.13) the OPE can be easily worked out from the following relation between theta
functions [75]

ϑ

„ δ1
N1

0



pN1z1; N1Uqϑ

„ δ2
N2

0



pN2z2; N2Uq “

“
ÿ

mPZN1`N2

ϑ

„ δ1`δ2`N1m
N1`N2

0



pN1z1 `N2z2; pN1 `N2qUq

¨ ϑ

„N2δ1´N1δ2`N1N2m
N1N2pN1`N2q

0



pN1N2pz1 ´ z2q; N1N2pN1 `N2qUq,

(7.15)
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which leads to,

ΨN1
0,δ1
pz1qΨ

N2
0,δ2
pz2q “

ÿ

mPZN1`N2

ΨN1`N2
0,δ1`δ2`N1m

ˆ

N1z1 `N2z2

N1 `N2

˙

Ψ
N1N2pN1`N2q

0,N2δ1´N1δ2`N1N2m

ˆ

z1 ´ z2

N1 `N2

˙

.

(7.16)

Setting z1 “ z2 “ z, M1 “ M2 “ M and multiplying in both sides of this equation by
e2πipk`jqφ3

we obtain

BM
k, 0, δ1pz, φ

3qBM
j, 0, δ2pz, φ

3q “
ÿ

mPZMpk`jq

BM
k`j, 0, δ1`δ2`kmM pz, φ

3qΨ
kjpk`jqM3

0,Mpjδ1´kδ2`kjmMq
p0q

(7.17)
This OPE can be used to compute superpotential couplings which only involve 4d KK
modes with zero-th Landau level. For instance, we see from the above expansion that, up
to an overall normalization factor, 3-particle couplings are given by

Ypk,0,δ1qpj,0,δ2qph,0,δ3q » ΨkjhM3

0,Mpjδ3´hδ2q
p0q (7.18)

together with the selection rules,

h “ k ` j, (7.19a)

δ3 ´ δ1 ´ δ2

kM
P ZhM . (7.19b)

Let us now generalize equation (7.17) to KK particles with higher Landau level. The
key observation is that higher Landau levels can be obtained by acting with the creation
operators on the lowest Landau level (namely, by acting with the lowering operator on the
highest weight of the corresponding irreducible representation). The Heisenberg algebra
has only one creation operator. This is given by

a: ” 2
B

Bz
´ πNz̄ (7.20)

Indeed, from eq. (7.10) one may check that

a:ΨN
n,δ “ i

a

4π|N |pn` 1qΨN
n`1,δ (7.21)

Acting with this operator an arbitrary number of times on both sides of eq. (7.16) and
performing some algebra, we obtain

ΨN1
n,δ1
pz1qΨ

N2
p,δ2
pz2q “

d

p´1qn`p

pN1 `N2q
n`p`1

ÿ

mPZN1`N2

n
ÿ

`“0

p
ÿ

s“0

p´1qs
b

Nn`s´`
1 Np``´s

2

¨

„ˆ

n
`

˙ˆ

p
s

˙ˆ

n` p´ `´ s
n´ `

˙ˆ

`` s
`

˙

1
2

¨ΨN1`N2
n`p´`´s, δ1`δ2`N1m

ˆ

N1z1 `N2z2

N1 `N2

˙

¨Ψ
N1N2pN1`N2q

``s,N2δ1´N1δ2`N1N2m

ˆ

z1 ´ z2

N1 `N2

˙

.

(7.22)
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Setting z1 “ z2 “ z, M1 “ M2 “ M and multiplying in both sides of the equation by
e2πipk`jqφ3

), as we did before, we obtain the OPE for the complete set of KK modes of the
4d theory

BM
k,n, δ1pz, φ

3qBM
j, p, δ2pz, φ

3q “

d

p´1qn`p

pk ` jqn`p`1M

ÿ

mPZMpk`jq

n
ÿ

`“0

p
ÿ

s“0

p´1qs
a

kn`s´`jp``´s

¨

„ˆ

n
`

˙ˆ

p
s

˙ˆ

n` p´ `´ s
n´ `

˙ˆ

`` s
`

˙

1
2

¨BM
k`j, n`p´`´s, δ1`δ2`kmM pz, φ

3qΨ
kjM3pk`jq
``s,Mpjδ1´kδ2`kjmMq

p0q.

(7.23)

From this expression we easily read the 3-particle couplings for arbitrary KK modes in
the 4d theory. Up to combinatorial and overall numeric factors, these are given by

Ypk,n,δ1qpj,p,δ2qph,q,δ3q „ ΨkjhM3

n`p´q,Mpjδ3´hδ2q
p0q, (7.24)

together with the selection rules (7.19) and

q P t0, 1, . . . , n` pu. (7.25)

7.3 Magnetized branes and discrete flavor symmetries

In this section we discuss the appearance of non-Abelian discrete symmetries in magne-
tized toroidal compactifications, focusing on magnetized D-brane systems, although similar
conclusions hold for analogous heterotic models and T-dual intersecting brane models (for
review of these constructions, see [10] and references therein). These symmetries are anal-
ogous to those in the twisted torus in the previous section, since dimensional reduction of
the latter on the S1 fiber produces a T2 compactification with a constant magnetic field
for the KK gauge boson.

We start our analysis with the case of magnetized T2, to make the main ideas manifest,
and also to allow contact with the earlier geometric discussion for twisted tori; subsequently
we move on and analyze the more involved system of magnetized T6 compactifications.
For the latter, and via dimensional reduction of the 10d type I supergravity action, we
will make direct contact with the formalism of section 3.3.3.

7.3.1 Non-Abelian discrete symmetries and Yukawa couplings in mag-

netized T2

As a warm up, let us consider a T2 compactification with a Up1q gauge field background

A1 “ πM pxdy ´ ydxq, (7.26)

so that

F2 “ 2πMdx^ dy (7.27)



106 CHAPTER 7. DISCRETE SYMMETRIES FROM DISCRETE ISOMETRIES.

Before introducing F2 the translations generated by Bx and By are clearly symmetries
of the system. When introducing a non-vanishing F2, even if constant along T2, they are
no longer so, since A1 depends explicitly on its coordinates x, y

A1px` λx, yq “ A1px, yq ` λxdχx, χx “ πMy, (7.28a)

A1px, y ` λyq “ A1px, yq ` λydχy, χy “ ´πMx. (7.28b)

Hence, if we want to leave our system unchanged, with every translation we need to perform
a gauge transformation that compensates the change in A1. Acting on a wavefunction of
charge q, this means that we need to perform the operations

ψpx, yq ÝÑ e´iqλxχxψpx` λx, yq “ eqλxXxψpx, yq, (7.29a)

ψpx, yq ÝÑ e´iqλyχyψpx, y ` λyq “ eqλyXyψpx, yq, (7.29b)

instead of plain translations. The above are generated by the operators Xx, Xy, defined
as (we also introduce the generator of gauge transformations XQ)

Xx “ Bx ´ iπMy, (7.30a)

Xy “ By ` iπMx, (7.30b)

XQ “ 2πi. (7.30c)

These are the analogues of the left-invariant vectors of the twisted torus. Indeed, they
satisfy the Heisenberg algebra rXx, Xys “MXQ, which exponentiates to the group

gpεx, εy, εQq “ exp
´ εx
M
Xx `

εy
M
Xy `

εQ
M
XQ

¯

gpε1x, ε
1
y, ε

1
Qqgpεx, εy, εQq “ g

ˆ

εx ` ε
1
x, εy ` ε

1
y, εQ ` ε

1
Q `

ε1xεy
2
´
εxε

1
y

2

˙ (7.31)

Again, the continuous version of this group is not a symmetry of our system. The point is
that since the two-torus is compact, we need to impose well-defined boundary conditions
on our charged particles, namely

ψpx` 1, yq “ eiqχxψpx, yq, (7.32a)

ψpx, y ` 1q “ eiqχyψpx, yq. (7.32b)

In order to be actual symmetries of the system, the actions of Xx, Xy and XQ must be
compatible with the above identifications. This is automatic for XQ, but not for Xx and
Xy, since

eiqλxXxψpx, y ` 1q “ eiqχyeqλxXxψpx, yq ðñ eiqλxM “ 1 (7.33)

which is only true if λxqM P Z. Similarly, we obtain that λyqM P Z and so, for particles
of minimal charge q “ 1 the symmetry corresponds only to a set of discrete elements
together with the gauge transformations generated by XQ, namely

P “ tgpnx, ny, εQq | nx, ny “ 0, . . . ,M ´ 1; εQ P Ru “ HM ˆ Up1q. (7.34)

Notice that in order to arrive to the above conclusion it was not necessary to know the
precise form of the wavefunctions in a magnetized torus. This is to be expected because
(7.34) is a symmetry group of the background, and not of its fluctuations. Nevertheless
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such symmetry group should have a well-defined action on the magnetized torus wave-
functions, which should transform as a particular representation under the discrete group
HM . Indeed, by solving for the q “ 1 wavefunctions of a magnetized T2 one finds (see,
e.g., [75])

ψj,M pz, Uq “ eiπMz Im z{ ImU ¨ ϑ

„

j
M
0



pMz,MUq (7.35)

where U stands for the complex structure and z “ x` Uy the complex coordinate of the
T2, j P Z mod M is a family index and ϑ is the Jacobi theta function

ϑ

„

r
p



pν, Uq “
ÿ

lPZ
eπipr`lq

2U e2πipr`lqpν`pq (7.36)

One can now check that the action of the symmetry group (7.34) on this set is given by

gpnx, ny, εQqψ
j,M pz, Uq “ e

2πi
M
pεQ`nxny{2qe2πinxj

M ψj`ny ,M pz, Uq (7.37)

with nx, ny and εQ taken as in (7.34). Notice that acting on the vector of functions

Ψ “

¨

˚

˝

ψ0,M

...
ψM´1,M

˛

‹

‚

(7.38)

the action of g preserves the norm
ř

j |ψ
j |2 and corresponds to an element of UpMq. In

particular, the discrete parameters nx, ny that generate the group HM are mapped to the
’t Hooft clock and shift M ˆM matrices

Pp1, 0, 0q ÝÑ T̃x ”

¨

˚

˚

˝

1
ω

. . .
ωM´1

˛

‹

‹

‚

, (7.39a)

Pp0, 1, 0q ÝÑ T̃y ”

¨

˚

˚

˝

1
1

1
1

˛

‹

‹

‚

, (7.39b)

with ω the M -th root of unity. Hence, via its action on wavefunctions, the discrete gauge
group HM is embedded into a non-Abelian discrete subgroup of SUpMq.

The above system can be equivalently described as gaugings of a T2 compactification
(see [241] for a heterotic description, and [243] for a D-brane/F-theory setup). In fact, the
gauging structure is already manifest in (7.26), as follows. A gauge transformation of the
KK gauge boson V x

µ „ gxµ along the circle parametrized by y (i.e. a translation in y) shifts
the vev of the Wilson line scalar ξx „ Ax, and similarly for the KK gauge boson along x
and the Wilson line scalar along y. The integer M arises as the ratio of winding numbers
of the map between full translations in the geometric circles and the induced shifts in
the Wilson line scalars. The non-Abelian structure is manifest in the above Heisenberg
algebra, which corresponds to the gauging algebra (3.80). In this respect, the appearance
of the discrete Heisenberg group gauge symmetry in the compactified theory fits within
the general perspective in section 3.3.3. Note that such picture implies that performing
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translations along the coordinates x and y should be equivalent to performing shifts in the
corresponding axion scalars, which for the gauging associated to magnetization are the T2

Wilson lines. Indeed, in the presence of Wilson lines the wavefunction (7.35) generalizes
to

ψj,M pz ` ξ, Uq “ eiπMpz`ξq Impz`ξq{ ImU ¨ ϑ

„

j
M
0



pMpz ` ξq,MUq (7.40)

with ξ “ ´ξy ` Uξx, and so a translation in T2 can be traded for a change in the Wilson
line, and viceversa, in agreement with the gauging picture. This qualitative description
can be fleshed out by performing the dimensional reduction of the Up1q theory on a
magnetized T2, as we analyze in the next section for the more complete case of magnetized
T6 compactifications.

Before that, we pause to emphasize the effect of these non-Abelian discrete gauge sym-
metries at the level of the 4d effective action, in particular as selection rules for charged
matter Yukawa couplings. For simplicity, we consider the case where all charged matter
fields involved have equal range M , and transform under the discrete Heisenberg group
with the clock and shift matrices (7.39). Further possibilities, with different field multi-
plicities and transformations, are illustrated by the example in section 7.3.3. Hence our
present case involves couplings

λijk Φab
i Φbc

j Φca
k (7.41)

where i, j, k “ 1, . . . ,M are family indices, and a, b, c are Chan-Paton gauge indices. Since
the massless 4d fields Φi have an internal wavefunction (7.35), they also transform with
the matrices (7.39). The constraints imposed by the symmetry are

λijk “ 0 if i` j ` k ‰ 0 mod M, (7.42a)

λijk “ λi`1,j`1,k`1. (7.42b)

These selection rules were obtained by explicit computation in [75, 74] for magnetized
and intersecting brane models, respectively; they were suspected to arise from a discrete
symmetry in [244] (see also [245]). Our analysis shows that this is not an accidental
symmetry but rather a discrete gauge symmetry present in the model.

7.3.2 Dimensional reduction and non-Abelian discrete symmetries

Let us now generalize the above simple picture and consider N magnetized D9-branes on
a T6 “ pT2q1 ˆ pT2q2 ˆ pT2q3 orientifold compactification with O9 and O5-planes (the
conclusions hold for any system leading to the same 4d theory, in particular T-duals with
lower-dimensional intersecting/magnetized branes). The 10d effective action for this setup
can be suitably described in terms of the type I supergravity action

S10d “
1

2κ2

ż

d10xp´Gq1{2
„

e´2φpR` 4BµφB
µφq ´

1

4
|F̃3|

2 ´
1

4
|F̃7|

2 ´ e´φ trp|F2|
2q



(7.43)
where we have doubled the degrees of freedom of F̃3 by introducing a dual 7-form field-
strength F̃7 “ ´ ˚ F̃3, with

F̃3 “ dC2 ´ ω3, (7.44a)

F̃7 “ dC6 ´
1

12
ω7, (7.44b)
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and ω3 and ω7 respectively the 3- and 7-dimensional Chern-Simons forms

ω3 “ trV

„

A^ dA´
2i

3
A^A^A



, (7.45a)

ω7 “ trV

„

A^ dA^ dA^ dA´
4i

3
A^A^A^ dA^ dA´

´
6

5
A^A^A^A^A^ dA`

4i

7
A^A^A^A^A^A^A



.

(7.45b)

In order to achieve a chiral 4d compactification we magnetize the D9-branes by considering
a background for the Yang-Mills field strength F2 of the form

F2 “

3
ÿ

r“1

πi

ImU r

¨

˚

˚

˚

˚

˝

mra
nra

INa
mrb
nrb

INb
mrc
nrc

INc
. . .

˛

‹

‹

‹

‹

‚

dzr ^ dz̄r, (7.46)

where zr “ dxr `U rdyr is the complexified coordinate of pT2qr, U
r its complex structure

and nrα,m
r
α P Z the D9-brane ‘magnetic numbers’, with Nα “ n1

αn
2
αn

3
α, N “

ř

αNα.

Upon dimensional reduction, and focusing on ‘diagonal’ geometric moduli, the 4d
effective theory contains 7`3N complex scalars: 3 complex structure moduli Up, 3 Kähler
moduli T p, 1 axio-dilaton S and 3N complex Wilson lines ξpα, that can be defined as
[246, 247]

T p “

ż

pT2qp

C2 ` ie
´φJ, (7.47a)

S “

ż

T6
C6 ` ie

´φVol6, (7.47b)

ξpα “ ´ξ
p
α,y ` U

pξpα,x, (7.47c)

with J the Kähler form of T6, and Vol6 “ J3{3! its volume form. The scalars ξpα,x and
ξpα,y are the real Wilson lines along the two 1-cycles of pT2qp, with periodicity r0, 2{nrαq.

2

There are in addition 6`N Up1q gauge bosons in the 4d effective theory: 6 Up1q gauge
bosons coming from the isometries of the T6, that we shall represent by V x,p

µ and V y,p
µ ,

and N Up1q gauge bosons from the Cartan generators of the D9-brane UpNq gauge group,
denoted by Aαµ in what follows.

The kinetic terms for the 4d scalars can be obtained by dimensionally reducing the

2A different (yet common) convention in the literature for the normalization of the Wilson line scalars
is such that ξpα,x, ξ

p
α,y lay on the interval r0, 1{npαq.
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10d action (7.43) on the above background (see also [241]), resulting in3

L4d “
1

pS ´ S̄q2

ˇ

ˇ

ˇ

ˇ

ˇ

DS ´
1

2

3
ÿ

p“1

ÿ

α

cpα
`

ξpx,αDξ
p
y,α ´ ξ

p
y,αDξ

p
x,α

˘

ˇ

ˇ

ˇ

ˇ

ˇ

2

`

3
ÿ

p“1

„

1

pUp ´ Ūpq2
|BUp|2 `

1

pT p ´ T̄ pq2

ˇ

ˇ

ˇ

ˇ

ˇ

DT p `
1

2

ÿ

α

c0
α

`

ξpx,αDξ
p
y,α ´ ξ

p
y,αDξ

p
x,α

˘

ˇ

ˇ

ˇ

ˇ

ˇ

2

`
1

Up ´ Ūp

ÿ

α

c0
α

T p ´ T̄ p

ˇ

ˇ´Dξpy,α ` U
pDξpx,α

ˇ

ˇ

2


,

(7.48)

where we have defined the following covariant derivatives

DµS “ BµS `
ÿ

α

d0
αA

α
µ, (7.49a)

DµT
p “ BµT

p ´
ÿ

α

dpαA
α
µ, (7.49b)

Dµξ
p
x,α “ Bµξ

p
x,α `

mp
α

npα
V y,p
µ , (7.49c)

Dµξ
p
y,α “ Bµξ

p
y,α ´

mp
α

npα
V x,p
µ . (7.49d)

Notice that the coefficients of this expression

c0
α “ n1

αn
2
αn

3
α , c1

α “ n1
αm

2
αm

3
α , c2

α “ m1
αn

2
αm

3
α , c3

α “ m1
αm

2
αn

3
α,

d0
α “ m1

αm
2
αm

3
α , d1

α “ m1
αn

2
αn

3
α , d2

α “ n1
αm

2
αn

3
α , d3

α “ n1
αn

2
αm

3
α, (7.50)

measure the D9-, D5-, D3/D3 and D7/D7-brane charges of our system, induced on the
stack of N D9-branes by the magnetization.

In order to make contact with our general discussion of section 3.3.3, let us analyze
the symmetries of the axion-like scalars within (7.48). Due to the shift symmetries of the
RR potentials in 10d, the real scalars φ0 ” Re S and φr ” Re T r behave as axions in the
4d effective theory with shift symmetries

φP ÝÑ φP ` εP P “ 0, 1, 2, 3, (7.51)

and discrete identifications

φP » φP ` 1 P “ 0, 1, 2, 3. (7.52)

The same occurs for the Wilson line scalars ξrα,x and ξrα,y, for whom 4d shift symmetries

descend from 10d YM gauge invariance. Setting momentarily dPα “ 0, we see that in order
to have a symmetry of the action (7.48) a shift in the Wilson lines should be accompanied
with a shift in the above RR axions. More precisely we have that

ξpα,x Ñ ξpα,x ` ε
p
α,x, φ0 Ñ φ0 ` 1

2c
p
αξ

p
y,αε

p
α,x, φp Ñ φp ´

1

2
c0
αξ

p
y,αε

p
α,x, (7.53a)

ξpα,y Ñ ξpα,y ` ε
p
α,y, φ0 Ñ φ0 ´ 1

2c
p
αξ

p
x,αε

p
α,y, φp Ñ φp `

1

2
c0
αξ

p
x,αε

p
α,y, (7.53b)

3We have taken the magnetization to be actually along the vector representation of SOp2Nq, so that
sums over α in equation (7.48) and following expressions do not run over the orientifold brane images.
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leave (7.48) invariant. We thus have the discrete identifications

ξpα,x » ξpα,x `
2

npα
, φ0 » φ0 ` cpα

ξpy,α
npα
, φp » φp ´ c0

α

ξpy,α
npα

, (7.54a)

ξpα,y » ξpα,y `
2

npα
, φ0 » φ0 ´ cpα

ξpx,α
npα
, φp » φp ` c0

α

ξpx,α
npα

. (7.54b)

Switching the coefficients dPα back on, the action (7.48) can be rewritten in the form
(3.71). In particular, it can be written as a gauged non-Abelian scalar manifold with
action (3.76), right-invariant 1-forms (c.f. equations (3.77))

ηφ
p

µ “ Bµφ
p `

1

2

ÿ

α

´

´2dpαA
α
µ ` c

0
αξ

p
x,αη

ξpy,α
µ ´ c0

αξ
p
y,αη

ξpx,α
µ

¯

, (7.55a)

ηφ
0

µ “ Bµφ
0 `

1

2

ÿ

α

«

2d0
αA

α
µ ´

3
ÿ

p“1

´

cpαξ
p
x,αη

ξpy,α
µ ´ cpαξ

p
y,αη

ξpx,α
µ

¯

ff

, (7.55b)

η
ξpx,α
µ “ Bµξ

p
x,α `

mp
α

npα
V y,p
µ , (7.55c)

η
ξpy,α
µ “ Bµξ

p
y,α ´

mp
α

npα
V x,p
µ , (7.55d)

tangent space metric

Pab “

¨

˚

˚

˝

Pφpφp 0 0 0
0 Pφ0φ0 0 0
0 0 Pξpx,αξpx,α Pξpx,αξpy,α
0 0 Pξpy,αξpx,α Pξpy,αξpy,α

˛

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

1
pT p´T̄ pq2

0 0 0

0 1
pS´S̄q2

0 0

0 0 c0α|U
p|2

pUp´ŪpqpT p´T̄ pq
´

c0αpU
p`Ūpq

pUp´ŪpqpT p´T̄ pq

0 0 ´
c0αpU

p`Ūpq
pUp´ŪpqpT p´T̄ pq

c0α
pUp´ŪpqpT p´T̄ pq

˛

‹

‹

‹

‹

‚

,

(7.56)

and algebra of shift symmetries

rtxpα , typαs “ c0
αtφp ´ c

p
αtφ0 , (7.57)

where txpα , typα , tφp and tφ0 denote the generators of shifts of the axion-like scalars ξpx,α,
ξpy,α, φp and φ0, respectively.

From these expressions we observe that the coefficients cPα (i.e., the D9- and D5-brane
charges our our model) determine the structure constants of the non-Abelian algebra in
the axionic manifold pφP , ξpx,α, ξ

p
y,αq. On the other hand the coefficients dPα (the D3/D3 and

D7/D7 charges) specify the set of D-brane Up1q’s that become massive and the embedding
of their gauge lattice into the lattice of scalar shifts. Indeed, as one can check from (7.49),
the linear combinations of D9-brane Up1q gauge symmetries

QP “
ÿ

α

dPαQ
α, P “ 0, 1, 2, 3, (7.58)
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are spontaneously broken to discrete gauge symmetries by eating the RR scalars φP , as it is
familiar from the generalized Green-Schwarz mechanism in magnetized D9-brane compact-
ifications. Similarly, the Up1q Kaluza-Klein isometries V x,p

µ and V y,p
µ are spontaneously

broken to discrete isometries by eating Wilson line scalars.

From (7.55) one can check that under the Up1q gauge transformations the above axion-
like scalars shift according to

Qα Xp Y p

Aαµ Ñ Aαµ ` Bµλ
1 V x,p

µ Ñ V x,p
µ ` Bµλ

2 V y,p
µ Ñ V y,p

µ ` Bµλ
3

φ0 Ñ φ0 ´ d0
αλ

1 φ0 Ñ φ0 ´
ř

α d
0
αξ

p
x,αλ2 φ0 Ñ φ0 ´

ř

α d
0
αξ

p
y,αλ3

φp Ñ φp ` dpαλ1 φp Ñ φp `
ř

α d
p
αξ

p
x,αλ2 φp Ñ φp `

ř

α d
p
αξ

p
y,αλ3

ξpy,α Ñ ξpy,α `
mpα
npα
λ2 ξpx,α Ñ ξpx,α ´

mpα
npα
λ3

Aαµ Ñ Aαµ ` ξ
p
x,αBµλ

2 Aαµ Ñ Aαµ ` ξ
p
y,αBµλ

3

(7.59)

This in turn implies that these gauge generators satisfy the gauge algebra [243]

rXp, Y ps “ ´
mp
α

npα
Qα. (7.60)

The discrete identifications (7.52) and (7.54) are mapped via the above shifts to the discrete
gauge symmetry group of the theory, which can be embedded in the continuous Lie group
that arises from (7.60). Rather than describing the most general case, in what follows
we illustrate the type of discrete gauge symmetries that one may obtain by analyzing a
semi-realistic example.

7.3.3 An example: flavour symmetries in a MSSM-like model

We can illustrate the application of the above general ideas by considering the MSSM-like
model of [168, 74, 75] and its global realization in terms of an orientifold of T6 {pZ2ˆZ2q

[80]. The model consists of two stacks of magnetized D9-branes (stacks a and d), and
two stacks of D5-branes (stacks b and c). The wrapping and magnetization numbers are
summarized in table 7.1.

If brane b is not on top of the orientifold plane, the gauge group is SUp3q ˆ SUp2qL ˆ
Up1qY ˆUp1qB´LˆZ3.4 The two Up1q factors are related to the diagonal Up1q generators
of the three stacks a, c and d as

QY “
1

6
pQa ´ 3Qc ` 3Qdq, (7.61a)

QB´L “
Qa
3
`Qd, (7.61b)

4At other particular points of the moduli space, the continuous part of the gauge group can be enhanced
to the maximal SUp4q ˆ SUp2qL ˆ SUp2qR gauge symmetry of this model. See [74] for details.
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Nα pn1
α,m

1
αq pn2

α,m
2
αq pn3

α,m
3
αq

Na “ 3 p1, 0q p3, 1q p3,´1q

Nb “ 1 p0, 1q p1, 0q p0,´1q

Nc “ 1 p0, 1q p0,´1q p1, 0q

Nd “ 1 p1, 0q p3,´1q p3, 1q

Table 7.1: Wrapping and magnetization numbers of the T-dual model to that of [168, 74]
with D5 and magnetized D9-branes.

whereas the remaining orthogonal combination of U(1)’s,

QZ3 “ 3Qa ´Qd, (7.61c)

is anomalous and is spontaneously broken to a discrete Z3 gauge symmetry [140].5 Indeed,
observe from table 7.1 that the magnetization on the D9-branes induce non-trivial D7/D7
charges

d2
a “ d3

d “ 3, d3
a “ d2

d “ ´3 (7.62)

so that from equation (7.55) we observe that 3Up1qa´Up1qd becomes massive by combining
with the linear combination of RR axions φ2 ´ φ3.

Sector Field SUp3q ˆ SUp2qL QY QB´L QZ3

ab QL 3p3,2q 1/6 1/3 3

ac UR 3p3̄,1q -2/3 -1/3 -3

ac˚ DR 3p3̄,1q 1/3 -1/3 -3

db L 3p1,2q -1/2 -1 1

dc NR 3p1,1q 0 1 -1

dc˚ ER 3p1,1q 1 1 -1

bc Hu p1,2q 1/2 0 0

bc Hd p1, 2̄q -1/2 0 0

Table 7.2: Chiral spectrum, Higgs sector and charges of the model in table 7.1.

The chiral spectrum of the model is summarized in table 7.2, and is exactly that
of the MSSM with three generations of quarks and leptons and one vector-like pair of
Higgses. As it has been noticed in [140], the Z3 discrete gauge symmetry of this model
is equivalent to baryon triality [130], up to U(1)B´L and U(1)Y transformations. In
particular dimension five proton decay operators QLQLQLL and URERURDR vanish to

5More precisely, the anomalous Up1q is broken to a Z9 discrete gauge symmetry, but a Z3 Ă Z9 subgroup
actually corresponds to the center of SUp3q. Hence, the only non-trivial discrete symmetry is Z9 {Z3 » Z3.
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all orders in perturbation theory and, according to the discussion in section 7.4, also at
the non-perturbative level.6

Besides this Z3 discrete gauge symmetry, there are additional discrete gauge symme-
tries in this model that come from the isometries of T2ˆT2ˆT2 and act non-trivially on
the flavour indices of the MSSM fields. Indeed, following our discussion in the previous
section, we observe that the four translational symmetries of the second and third 2-tori
are gauged and spontaneously broken down to Z3 discrete gauge symmetries. Together
with the above flavour-universal discrete symmetry, these symmetries form a non-Abelian
discrete gauge symmetry algebra

rX2
Z3
, Y 2

Z3
s “ ´rX3

Z3
, Y 3

Z3
s “ ´

QZ3

3
` . . . (7.63)

where the dots in the r.h.s denote possible additional continuous U(1) generators. The
four discrete isometry generators act on the MSSM fields as

e
X2

Z3 :Xk
R Ñ e´

2πik
3 Xk

R, (7.64a)

e
X3

Z3 :Xk
L Ñ e

2πik
3 Xk

L, (7.64b)

e
Y 2
Z3 :pX1

R, X
2
R, X

3
Rq Ñ pX2

R, X
3
R, X

1
Rq, (7.64c)

e
Y 3
Z3 :pX1

L, X
2
L, X

3
Lq Ñ pX3

L, X
1
L, X

2
Lq, (7.64d)

where k “ 1, 2, 3 denotes the three generations of MSSM fields and XR and XL denote
collectively the right-handed and the left-handed MSSM fields, respectively. The resulting
finite discrete symmetry group can be thought as two copies of ∆p27q acting respectively
on the left or the right-handed MSSM fields and sharing a common flavour-universal center
that contains QZ3 .

The most interesting implications of flavour symmetries are the constraints they impose
on the flavour structure of the couplings and, more particularly, on Yukawa couplings. In
order to describe the structure of Yukawa couplings imposed by the non-Abelian discrete
symmetry in this particular model, let us write them schematically as

3
ÿ

i,j“1

YijX
i
LX

j
RH (7.65)

where Yij are holomorphic functions of the complex structure and the complex Wilson
line scalars. In general, under a discrete gauge transformation the MSSM fields transform
as in (7.64), so that Yij will also transform accordingly such that the sum (7.65) remains
invariant under discrete symmetry transformations. This, together with the fact that Yij
are holomorphic functions, leads to a set of constraints on the structure of the couplings.
For the particular case at hand, we find that

Y11

Y21
“
Y12

Y22
“
Y13

Y23
,

Y21

Y31
“
Y22

Y32
“
Y23

Y33
,

Y31

Y11
“
Y32

Y12
“
Y33

Y13
, (7.66a)

Y11

Y12
“
Y21

Y22
“
Y31

Y32
,

Y12

Y13
“
Y22

Y23
“
Y32

Y33
,

Y13

Y11
“
Y23

Y21
“
Y33

Y31
. (7.66b)

6Baryon or lepton violating operators with dimension less than five are forbidden in this model because
of the continuous U(1)B´L gauge symmetry.
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The details on the derivation of these relations can be found in appendix F. These relations
imply that Yukawa couplings in this model have the structure

pYijq “

¨

˝

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3

˛

‚ (7.67)

with ai and bi, i “ 1, 2, 3, holomorphic functions of the moduli. Intuitively, the fields
Xi
L and Xj

R in (7.65) are triplets under two different non-Abelian factors (albeit with
a common center) associated to two different internal T2’s; their transformations must
cancel against those of Yij , which must be made up of two objects ai and bj , transforming
as conjugate triplets under the two factors.

The above result is in agreement with what was found in [74, 75] from a direct compu-
tation and in particular implies that the Yukawa matrices of this model have rank one. As
we have already mentioned, discrete gauge symmetries are exact symmetries of the theory
so this rank one structure will be preserved in the complete non-perturbative formulation
of the model. In particular, for this model the rank one texture should survive through
the instanton effects mentioned in [76]. Indeed, as we discuss in detail later on, and in
analogy with the Abelian case, non-perturbative effects will in general induce couplings
that violate the underlying continuous symmetries, but are invariant under the discrete
gauge symmetry. This results in a very much constrained flavor structure also for those
non-perturbative couplings.

7.3.4 Kähler potential and holomorphic variables

In the previous section we have made use of the holomorphic dependence of superpotential
Yukawa couplings on the complex structure and complexified Wilson lines in order to
obtain the selection rules that the discrete gauge symmetry imposes on them. As we will
see in the next section, holomorphicity of the superpotential is also a key ingredient in
deriving analogous rules for non-perturbatively induced superpotential couplings. Note
however that, while the complex structure and Wilson lines transform holomorphically
under the transformations (7.59), the complex axio-dilaton and Kähler scalars defined
in eq.(7.47) in general transform non-holomorphically. Thus, the latter are not the right
variables in terms of which the superpotential and gauge kinetic functions are holomorphic
quantities.

A simple method to obtain the suitable variables consists on expressing the 4d effective
action (7.48) in terms of the second derivatives of a Kähler potential

L4d “ ´
ÿ

i,j

Kij̄BM
iBM̄ j . (7.68)

Indeed, after some algebra we find that the following Kähler potential

K “´

3
ÿ

p“1

«

logpUp ´ Ūpq ` log

˜

T̂ p ´
¯̂
T p ´

1

2

ÿ

α

c0
α

pξpα ´ ξ̄
p
αq

2

Up ´ Ūp

¸ff

´ log

˜

Ŝ ´
¯̂
S `

1

2

ÿ

α

3
ÿ

p“1

cpα
pξpα ´ ξ̄

p
αq

2

Up ´ Ūp

¸ (7.69)
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correctly reproduces equation (7.48),7 where the redefined fields Ŝ and T̂ p are given by8

Ŝ “ S ´
1

2

ÿ

α

3
ÿ

p“1

cpα
ξpα Im ξpα
ImUp

, (7.70a)

T̂ p “ T p `
1

2

ÿ

α

c0
α

ξpα Im ξpα
ImUp

. (7.70b)

In particular, the discrete identifications (7.52) and (7.54) in terms of these variables
now correspond to the holomorphic identifications (see also [242])

Ŝ » Ŝ ` 1, (7.71a)

T̂ p » T̂ p ` 1, (7.71b)

ξpα » ξpα `
2

npα
, (7.71c)

ξpα » ξpα `
2Up

npα
Ŝ » Ŝ ´

cpα
npα

ˆ

2ξpα `
Up

npα

˙

T̂ p » T̂ p `
c0
α

npα

ˆ

2ξpα `
Up

npα

˙

. (7.71d)

these holomorphic variables will be useful when we discuss instanton effects in next section.

7.4 Instantons and non-Abelian symmetries

As we have seen in the previous section, the presence of non-Abelian discrete gauge symme-
tries in D-brane and other string theory models directly constrain the structure of Yukawa
couplings at the perturbative level. A natural question is then if such discrete symmetries
also affect those couplings that are generated at the non-perturbative level, in particular
by instanton effects in 4d chiral compactifications. The purpose of this section is to show
that this is indeed the case, and that most of the intuition that holds for instanton effects
in compactifications with discrete Abelian symmetries generalizes to the non-Abelian case.

Let us recall the structure of instanton induced couplings in 4d chiral D-brane models,
which is typically of the form

Φ1Φ2 . . .ΦN A e´Sinst. (7.72)

where

Sinst. “ 2πpg´1
s V ` iφq (7.73)

7In fact, the above Kähler potential leads to an extra term in the kinetic term of the complex Wilson
line scalars that is not present in equation (7.48)

Kξ
p
αξ̄
p
α
“ ´

1

Up ´ Ūp

ÿ

α

ˆ

c0α
T p ´ T̄ p

´
cpα

S ´ S̄

˙

.

This terms perfectly agrees with the CFT result obtained in [171]. From this point of view, this extra term
comes from the trp|F2|

4
q term that we have neglected in equation (7.43).

8Similarly, matter fields are also redefined by the Wilson line scalars. This redefinition can be seen for
instance from the perturbative Yukawa couplings [242]. The latter carry an exponential prefactor which
depends non-holomorphically on the Wilson line scalars, and that it is absorbed into a redefinition of the
bifundamental fields.
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is the complexification of the D-instanton volume and Φi are 4d chiral open string modes.
Finally, the prefactor A is a non-trivial function of the open and closed string moduli
of the compactification, excluding those closed string moduli that enter into D-instanton
actions Sinst..

The open string operator Φ1Φ2 . . .ΦN is non-trivially charged under a Up1q gauge
symmetry arising from a bulk D-brane, symmetry that becomes massive by eating the
axionic closed string modulus φ. Both this term and expp´Sinst.q are not invariant under
such Up1q gauge transformations and the corresponding shift in φ, but their product is, so
that (7.72) is an allowed operator. In case that the massive Up1q symmetry is not totally
broken but a Zk subgroup remains, then expp´Sinst.q is invariant under the action of such
Zk subgroup, and so must be Φ1 . . .ΦN , so that not all operators can be generated in the
effective theory [140].

Let us now turn to the non-Abelian case. As we have seen in section 7.3, when
considering discrete symmetries in D-brane models we may not only focus on axions φ
arising from the closed string sector, but also on open string axions ξα. Hence, in order
to check the transformation properties of each of the factors in (7.72) under non-Abelian
transformations we need to consider the prefactor A and its dependence on those open
string axions that enter into the definition of the non-Abelian symmetry.

The prefactor A is oftentimes difficult to obtain, but it can be explicitly computed in
examples like toroidal compactifications with magnetized and/or intersecting D-branes.9

For instance, let us consider two magnetized D9-branes on an orientifold of T6 “ pT2q1 ˆ

pT2q2ˆpT2q3 with magnetic numbers pnra,m
r
aq and pnrb ,m

r
bq as in (7.46), and an Euclidean

D1-brane wrapping pT2qp’s. If this E1-brane has the appropriate zero mode structure and
assuming that dra “ ´d

r
b “ N , a superpotential coupling like (7.72) will be generated for

the open string fields Φab
i that transforms in the bifundamental of Up1qa ˆ Up1qb. More

precisely we will have something of the form

e´Sinst.
ÿ

α

Φα1 . . .ΦαN A
1
α1
. . .A1αN , (7.74)

where each of the factors Aαi arises from a three-point function of open string chiral fields,
namely two fermionic zero modes of the E1-brane and a 4d chiral multiplet Φab

αi . Since T6

is factorized, such three-point functions are given by the product of three functions of the
form

A1δijk “ eiπMξ Im ξ{ ImU ¨ ϑ

„

δijk
0



pMξ,MUq (7.75)

one for each factor pT2qr r “ 1, 2, 3, where for simplicity we have omitted the label r of
the T2 in all these quantities. Here U “ U r is the complex structure modulus of such T2

and ξ is a linear combination of complex open string moduli in pT2qr. Namely,

Mξ “ pIbcξa ` Icaξbq{d (7.76a)

M “ IabIbcIca{d
2 (7.76b)

with ξα “ ξrα defined as in (7.47) and Iab “ Irab ” nram
r
b ´n

r
bm

r
a the number of zero modes

that arise in the sector ab from pT2qr. Similarly, one can define Ica “ Irca and Ibc “ Irbc as

9This also applies to elliptically fibered Calabi-Yau compactifications where the interaction between
open string chiral fields is localized at the elliptic fiber [169].
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the zero modes of the E1-brane charged under U(1)a and U(1)b, respectively, arising from
pT2qr. Finally, d “ g.c.d.pIab, Ibc, Icaq and we have that

δijk “
i

Iab
`

j

Ica
`

k

Ibc
, (7.77)

where i, j, k label the chiral zero modes at each D-brane sector. In particular, the index
i labels 4d chiral fields Φα in (7.74) and j, k the charged zero modes of the E1-instanton
that couple to them.

It is easy to see that (7.75) is not a holomorphic function of the open string mod-
uli ξα of the compactification. However, one may absorb the non-holomorphic prefactor
exppiπMξ Im ξ{ ImUq into the definition of the instanton classical action Sinst. and the
chiral fields Φα. Indeed, as first pointed out in [242], the whole expression (7.74) can be
rewritten as

e´Ŝinst.
ÿ

α

Φ̂α1 . . . Φ̂αN Aα1 . . .AαN , (7.78)

where Ŝinst. is a linear function of the holomorphic variables Ŝ, T̂ r defined in (7.70), Φ̂α are
the redefined 4d chiral fields of [242] and the prefactors Aα are now holomorphic functions
of the moduli. In the example at hand we have that Ŝinst. “ T̂ p, and that (7.75) gets
replaced by

Aδijk “ ϑ

„

δijk
0



pMξ,MUq. (7.79)

One can now check how the non-perturbative coupling transforms under the discrete
gauge symmetry, and in particular under discrete Wilson line shifts. On the one hand we
have

ξ ÝÑ ξ `
1

M
, (7.80a)

Aδijk ÝÑ Aδijk e
2πiδijk . (7.80b)

If Iab “ Ibc “ Ica “ d then (7.80) corresponds to the third identification in (7.71), under
which the other holomorphic variables do not transform. In particular Ŝinst. remains
invariant and since the product of A’s saturates all possible values j, k for the charged
instanton zero modes we obtain the transformation

e´Ŝinst. Aα1 . . .AαN ÝÑ e´Ŝinst. Aα1 . . .AαN e
2πi

ř

i
αi
Iab , (7.81)

which means this term is invariant only if the flavour indices αi add up to a multiple of
Iab, or in other words if

ÿ

i

αi “ 0 mod Iab, (7.82)

in analogy with the selection rules for perturbative Yukawa couplings.

On the other hand we have the shift

ξ ÝÑ ξ `
U

M
, (7.83a)

Aδijk ÝÑ Aδijk`1{M e´πiU{Me´2πiξ, (7.83b)
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that can be partially compensated by a simultaneous shift of the form

Ŝinst. ÝÑ Ŝinst. ` 2ξ ` U (7.84)

as follows from the last identification in (7.71). Hence the product in the right hand
side of (7.81) remains invariant under (7.83) except for a shift in the zero mode indices
pi, j, kq Ñ pi` i0, j ` j0, k ` k0q such that

i0IbcIca ` j0IabIbc ` k0IcaIab “ d2 (7.85)

which is always possible. Notice that Aδijk only depends on the value of the l.h.s. of (7.85),
so given a prefactor Aαi in (7.78) there is a unique image Aα1i under the shift (7.85). We
then we have that the second transformation acts as

e´Ŝinst. Aα1 . . .AαN ÝÑ e´Ŝinst. Aα11 . . .Aα1N , (7.86)

and as a permutation of the chiral fields Φαi and instanton zero modes. Hence, if the
operator (7.78) is not invariant under this shift, the whole instanton amplitude should be
a sum of operators of this form invariant under (7.86).

7.4.1 An example

Let us consider an example used in section 5 of [74], namely the case where there is only
one T2 and Iab “ Ibc “ Ica “ 3. There we have that

Aδ111 “ ϑ

„

0
0



p3ξ, 3Uq “ Aδ222 “ Aδ333 ” A, (7.87a)

Aδ132 “ ϑ

„

1{3
0



p3ξ, 3Uq “ Aδ213 “ Aδ321 ” B, (7.87b)

Aδ123 “ ϑ

„

´1{3
0



p3ξ, 3Uq “ Aδ231 “ Aδ312 ” C, (7.87c)

all the other couplings vanishing. This induces a coupling of the form

e´Ŝinst.

”

ABC
´

Φ̂3
1 ` Φ̂3

2 ` Φ̂3
3

¯

` pA3 `B3 ` C3qΦ̂1Φ̂2Φ̂3

ı

, (7.88)

which is indeed invariant under the discrete shifts (7.80) and (7.83), acting as

ξ Ñ ξ `
1

3
,AÑ A, B Ñ e2πi{3B, C Ñ e´2πi{3C, (7.89a)

ξ Ñ ξ `
U

3
,AÑ B Ñ C Ñ A, (7.89b)

Notice however that none of the terms of (7.88) is invariant individually. Interestingly, for
ξ “ 0 we have that A “ 0 and B “ ´C, so (7.88) vanishes identically at that point.
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8
Discrete gauge symmetries from higher forms

The structure in chapter 3 is the only one available in four dimensions. However, in higher
dimensions there are gauge symmetries carried by higher-rank antisymmetric tensors, and
it is reasonable to exploit them to generate discrete Zp gauge symmetries. Conversely,
higher dimensions allow the existence of Zp charged objects with higher worldvolume
dimensionality.

The most straightforward possibility is to consider a 1-form gauge field and a pD´ 2q-
form gauge field in D dimensions, coupling through a BD´2^F2; this is a trivial addition
of dimensions, in which the 4d Zp string is extended to real codimension-2 pD´ 3q-brane.

In this chapter we will generalize the analysis done in section 3.2 in order to explore
Zp discrete gauge symmetries whose underlying continuous symmetry involves genuine
higher-rank antisymmetric tensors, in any dual picture.

Subsequently, we present explicit constructions in string theory where we can apply
this analysis. In section 8.3 we study higher-rank Zp symmetries in string theory flux
compactifications, and for concreteness we present a similar analysis to that of sections
6.1 and 6.2 but in 6d instead of 4d. In section 8.4 we study the possibility of realising
higher-rank Zp symmetries in string theory compactifications with torsion. Finally, in
section 8.5 we consider the non-Abelian case.

8.1 Field theory of higher-rank Abelian Zp gauge symme-
tries

Consider a theory in D dimensions, with a r-form field Ar and a pr ´ 1q-form field φr´1,
with gauge invariance1

Ar ÝÑ dλr´1, (8.1a)

φr´1 ÝÑ φr´1 ` kλr´1. (8.1b)

The notation is chosen to recover the familiar one for r “ 1 (3.3). The gauge invariant
action, which generalizes (3.1) is

ż

MD

1

2
pdφr´1 ` kArq ^ ˚D pdφr´1 ` kArq “

ż

MD

1

2
|dφr´1 ` kAr|

2 . (8.2)

1These theories have been considered e.g. in [248] (see also [249, 250]). As in there, we consider the
gauge symmetries to be compact, namely there is charge stabilization for the extended objects to which
they couple. As in the 4d case, stabilization is such that the minimal charge is unity.
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Note that in this theory both fields are gauge fields since, in addition to (8.1), (8.2) is
invariant under

φr´1 ÝÑ φr´1 ` dσr´2. (8.3)

In the above Lagrangian, the field Ar eats up the field φr´1 and becomes massive. This
is consistent with the counting of degrees of freedom of antisymmetric tensor gauge fields
under the SOpD ´ 2q and SOpD ´ 1q little groups for massless and massive particles:

ˆ

D ´ 2

r

˙

`

ˆ

D ´ 2

r ´ 1

˙

“

ˆ

D ´ 1

r

˙

. (8.4)

The gauge symmetry of Ar is broken spontaneously, but a discrete Zk symmetry remains.
This is a higher-rank analogue of the Higgsing of a Up1q gauge group by eating up the
phase of a charge-k scalar.

The action (8.2) can be written in terms of the D dimensional dual fields to φr´1 and
Ar, given by a pD ´ r ´ 1q-form gauge potential BD´r´1 and a pD ´ r ´ 2q-form gauge
potential VD´r´2, respectively, as

ż

MD

1

2
pdVD´r´2 ` kBD´r´1q ^ ˚D pdVD´r´2 ` kBD´r´1q

“

ż

MD

1

2
|dVD´r´2 ` kBD´r´1|

2 (8.5)

where

dBD´r´1 “ ˚Ddφr´1, (8.6a)

dVD´r´2 “ ˚DdAr. (8.6b)

This action is invariant under a gauge transformation of the form

BD´r´1 ÝÑ BD´r´1 ` dΛD´r´2, (8.7a)

VD´r´2 ÝÑ VD´r´2 ´ kΛD´r´2, (8.7b)

and it is also invariant under

VD´r´2 ÝÑ VD´r´2 ` dΞD´r´3. (8.8)

This dual description makes manifest an emergent Zk discrete gauge symmetry, and as in
chapter 3, it may differ from the original one.

In the case of the above Zk theory, the analogues of charge n particles with worldline C
in 4d are pr´ 1q-branes with worldvolume Lr and charge n under Ar which are described
as insertions of the operators

Opr´1q-brane(s) „ e2πin
ş

Lr
Ar . (8.9)

Their charge is conserved modulo k, since there are gauge invariant generalized junctions
which create/annihilate sets of pr ´ 1q-branes with total charge k,

e
´2πi

ş

Pr´1
φr´1

e2πin
ş

Lr
Ar “ e

´2πi
ş

Pr´1
φr´1 Opr´1q-brane(s), (8.10)
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where Pr´1 “ BLr.

In addition, the theory contains the analogue of 4d Zk-charged strings, namely Zk-
charged pD ´ r ´ 2q-branes described as the insertion of operators along a worldvolume
ΣD´r´1

OpD´r´2qbrane(s) „ e
´2πi

ş

ΣD´r´1
BD´r´1

, (8.11)

where BD´r´1 is the pD´r´1q-form dual to φr´1 and p is defined modulo k. pD´r´2q-
brane charge is also conserved modulo k, since there are operators describing pD´ r´ 2q-
branes of total charge k on worldvolumes ΣD´r´1 ending along a generalized junction
CD´r´2 (BΣD´r´1 “ CD´r´2)

e
´2πi

ş

CD´r´2
VD´r´2

e
2πik

ş

ΣD´r´1
BD´r´1

. (8.12)

By standard arguments, the quantum amplitude of a process involving a (minimally
charged) pr´1q-brane with worldvolume Σr, and a (minimally charged) pD´ r´2q-brane
with worldvolume ∆D´r´1 receives a phase

exp
”

2πi
np

k
LpΣr,∆D´r´1q

ı

, (8.13)

where LpΣr,∆D´r´1q is the so-called linking number of Σr and ∆D´r´1 in D dimensions
(the number of times Σr surrounds ∆D´r´1 or vice versa).

As opposed to the 4d case, where the most natural thing is to think of particles as the
fundamental objects, we have no reason to consider only the pr´1q-branes as fundamental
objects and the pD´ r´2q-branes as the associated topological defects, and not the other
way around. Therefore, we will take a democratic approach and treat both cases equally.

8.2 Higher-rank Abelian Zp gauge symmetries and BF cou-
plings

8.2.1 The BF coupling

Recall that the D-dimensional action for a Zk gauge discrete symmetry coming from a
r-form gauge potential is

S “
ż

MD

1

2
pdφr´1 ` kArq ^ ˚D pdφr´1 ` kArq . (8.14)

It contains the terms

S Ą k

2

ż

MD

pdφr´1 ^ ˚DAr `Ar ^ ˚Ddφr´1q “ k

ż

MD

Ar ^ ˚Ddφr´1, (8.15)

where the equality follows from the fact that α ^ ˚β “ β ^ ˚α. If we define dBD´r´1 “

˚Ddφr´1, then (8.15) can be rewritten as

S Ą k

ż

MD

Ar ^ dBD´r´1. (8.16)
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Integrating (8.16) by parts, we get

S Ą k

ż

MD

dAr ^BD´r´1 “ k

ż

MD

Fr`1 ^BD´r´1, (8.17)

where Fr`1 “ dAr.

The same analysis can be done starting with the dual theory. Recall that the action
is given by

S 1 “
ż

MD

1

2
pdVD´r´2 ` kBD´r´1q ^ ˚D pdVD´r´2 ` kBD´r´1q . (8.18)

It contains the terms

S 1 Ą k

2

ż

MD

pdVD´r´2 ^ ˚DBD´r´1 `BD´r´1 ^ ˚DdVD´r´2q

“ k

ż

MD

BD´r´1 ^ ˚DdVD´r´2, (8.19)

where the equality follows from the fact that α ^ ˚β “ β ^ ˚α. If we define dAr “
˚DdVD´r´2, then (8.15) can be rewritten as

S 1 Ą k

ż

MD

BD´r´1 ^ dAr. (8.20)

Integrating (8.16) by parts, we get

S 1 Ą k

ż

MD

dBD´r´1 ^Ar “ k

ż

MD

HD´r ^Ar, (8.21)

where HD´r “ dBD´r´1.

Looking at the couplings (8.17) and (8.21), we see that both of them involve the
forms Ar and BD´r´1 under which the fundamental objects and the associated topological
defects are charged; they differ in which form the exterior differential operator d is acting
on. Therefore, and in order to be consistent with the 4d analysis, we will consider that the
fundamental objects correspond to those who are charged under the form which is being
acted on by the exterior differential operator d.

8.2.2 Generalization for multiple antisymmetric tensors

The previous argument can easily be generalized to the case where we have multiple fields
of each type.

Consider a single pr ´ 1q-form field φr´1 and several r-form gauge fields Akr in D
dimensions. The action is given by

ż

MD

n
ÿ

k“1

ˇ

ˇ

ˇ
dφr´1 ` qkA

k
r

ˇ

ˇ

ˇ

2
. (8.22)
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This is gauge invariant under

Akr ÝÑ Akr ´ dλ
k
r´1, (8.23a)

φr´1 ÝÑ φr´1 `
ÿ

k

qkλ
k
r´1. (8.23b)

and
φr´1 ÝÑ φr´1 ` dξr´2. (8.24)

The corresponding BF couplings are

ż

MD

n
ÿ

k“1

qkBD´r´1 ^ F
k
r`1 (8.25)

where dBD´r´1 “ ˚Ddφr´1 and F kr`1 “ dAkr .

The remnant discrete gauge symmetry is not manifest by inspection. Naively, it may
seem that each continuous gauge symmetry is broken into a Zqk subgroup. This is however
not correct, since the different continuous gauge symmetries couple simultaneously to a
single r ´ 1-form field. Indeed, there is only one broken linear combination of them, while
the orthogonal n´ 1 linear combinations remain unbroken.

Let ~q “ pq1, . . . , qnq be the charge vector of φr´1 under the continuous gauge symme-
tries and let Qk be the generator of the continuous gauge symmetry corresponding to the
r-form gauge potential Akr , for k “ 1, . . . , n. The unbroken part of the continuous gauge
symmetry is generated by Qa, a “ 1, . . . , n, which are given by linear combinations

A1 “

n
ÿ

k“1

ckaQk, cka P Z, (8.26)

with ~ca ¨ ~p “ 0. The only broken linear combination is the one orthogonal to all the
previous ones, namely it is given by

Q “
n
ÿ

k“1

qk
q
Qk, (8.27)

where the factor q “ gcdpqkq is included in order to keep the stabilization such that
minimal charge is 1. Its BF couplings are

n
ÿ

k“1

pqkq
2

q
BD´r´1 ^ Fr`1. (8.28)

The symmetry is therefore Zr with r “
ř

k
pqkq

2

q . The Zr structure follows from the
structure of charged pr ´ 1q-brane states, which are created by operators

exp

˜

´2πi

ż

Pr´1

φr´1

¸

exp

˜

2πi

ż

Lr

ÿ

k

qkA
k
r

¸

. (8.29)

This violates Qk charge conservation in qk units, and hence Q “
ř

k
qk
q Qk in r “

ř

k
pqkq

2

q
units.
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Let us now consider the theory dual to (8.22). The action is given by

ż

MD

m
ÿ

k“1

ˇ

ˇ

ˇ
dV k

D´r´2 ` qkBD´r´1

ˇ

ˇ

ˇ

2
, (8.30)

where dBD´r´1 “ ˚Ddφr´1 and dV k
D´r´2 “ ˚DdA

k
r , and it is gauge invariant under

BD´r´1 ÝÑ BD´r´1 ´ dΛD´r´2, (8.31a)

V k
D´r´2 ÝÑ V k

D´r´2 ` qkΛD´r´2, (8.31b)

in addition to the gauge transformations

V k
D´r´2 ÝÑ V k

D´r´2 ` dΞkD´r´3. (8.32)

The action (8.30) corresponds to a single pD´ r´ 1q-form field made massive by coupling
to several pD ´ r ´ 2q-form fields.

The corresponding BF couplings are

ż

MD

m
ÿ

k“1

qkA
k
r ^HD´r, (8.33)

where dAkr “ ˚DdV
k
D´r´2 and HD´r “ dBD´r´1.

The potential BD´r´1 actually eats only one linear combination of the fields V k
D´r´2,

while the orthogonal linear combinations remain as massless pD ´ r ´ 2q-form fields. De-
noting q “ gcdpqjq, the massive gauge symmetry leaves a remnant Zq gauge symmetry.
This follows from the structure of Zq-charged pD ´ r ´ 2q-branes, whose number can be
violated by operators

exp

˜

´2πi

ż

CD´r´2

V k
D´r´2

¸

exp

˜

2πi

ż

ΣD´r´1

kBD´r´1

¸

. (8.34)

Each such vertex creates qk pD´ r´2q-branes, so by Bezout’s lemma, there exists a set of
vertices which (minimally) violates their number in q units, making the pD´r´2q-branes
Zq-valued. In addition, the theory enjoys the continuous gauge invariance associated to
the orthogonal combinations of the V k

D´r´2’s.

From this analysis it follows that the emergent gauge symmetry associated to the
original Zq is a Zr, and vice versa. Hence, the discrete part of the emergent gauge group
in the dual description is different from the original one.

The fact that the original Zq (resp. Zr) and the emergent Zr (resp. Zq) gauge sym-
metries are different is not in contradiction with charge stabilization of the dual charged
objects, because of the presence of additional charges under the additional continuous
gauge symmetries in the system.

To finish the analysis, let us consider the case with several fields of each kind. The
D-dimensional action is given by

ż

MD

m
ÿ

l“1

ˇ

ˇ

ˇ

ˇ

ˇ

dφlr´1 `

n
ÿ

k“1

plkA
k
r

ˇ

ˇ

ˇ

ˇ

ˇ

2

. (8.35)
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This is gauge invariant under

Akr ÝÑ Akr ´ dλ
k
r´1, (8.36a)

φlr´1 ÝÑ φlr´1 `

n
ÿ

k“1

plkλ
k
r´1, (8.36b)

and
φlr´1 ÝÑ φlr´1 ` dξ

l
r´2. (8.37)

The corresponding BF couplings are

ż

MD

m
ÿ

l“1

n
ÿ

k“1

pklB
l
D´r´1 ^ F

k
r`1, (8.38)

where dBl
D´r´1 “ ˚Ddφ

l
r´1 and F kr`1 “ dAkr .

Let Qk be the generator of the symmetry corresponding to the r-form gauge potential
Akr , k “ 1, . . . , n, and consider a linear combination Q “

ř

k c
kQk such that gcdpckq “ 1.

Then the BF couplings for the field strength Fr`1 of the gauge symmetry generated by
Q are

ż

MD

m
ÿ

l“1

˜

n
ÿ

k“1

plkc
k

¸

Bl
D´r´1 ^ Fr`1 “

ż

4d

m
ÿ

l“1

qlB
l
D´r´1 ^ Fr`1, (8.39)

where ql “
ř

k plkc
k. Hence, the symmetry generated by Q is broken to a Zq subgroup

where q “ gcdpqlq.

8.3 Flux catalysis in 6d

8.3.1 Generalities

In this section we will study how higher-rank Zp discrete gauge symmetries can be realized
in compactifications of string theory in the presence of background fluxes. For concreteness
we will focus in compactifications from 10d to 6d, and will carry on an analysis analogue
to the one in section 6.1, while applying the results of section 8.2.

As in section 6.1, the 10d Chern-Simons couplings we will consider are
ż

10d
B2 ^ Fp ^ F8´p, (8.40a)

ż

10d
H3 ^ Fp ^ C7´p. (8.40b)

Here B2 and H3 denote the NSNS 2-form potential and its field strength, whereas Cn and
Fn`1 denote the RR n-form potential and its field strength, with n even or odd for type
IIA or IIB theories, respectively.

In what follows, Fn will denote the n-form that has a non-trivial flux, and F̂n will
denote an n-form that is obtained from the reduction of some higher form.

Since we are not particularly interested in supersymmetry, we take the compactification
space X4 to be compact manifold of real dimension 4.
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8.3.2 Type IIA compactifications

8.3.2.1 Massive type IIA

Consider massive type IIA theory with mass parameter F 0 “ p compactified on a real
dimension 4 space X4.There are two 10d Chern-Simons couplings (8.40) that lead to the
6d terms we are interested in.

ż

10d
B2 ^ F 0 ^ F8 (8.41a)

ż

10d
H3 ^ F 0 ^ C7 (8.41b)

The Chern-Simons coupling (8.41a) produces a 6d BF coupling

ż

10d
B2 ^ F 0 ^ F8 ÝÑ p

ż

6d
B2 ^ F̂4 (8.42)

where

F̂4 “

ż

X4

F8. (8.43)

The theory automatically has a Zp discrete gauge symmetry. The Zp-charged funda-
mental objects are 2-branes given by D6-branes wrapped on X4, which are annihilated
in sets of p by a 2-brane junction given by a NS5-brane wrapped on X4. The associ-
ated topological defects are Zp-charged 1-branes given by fundamental strings, which are
annihilated in sets of p by a 1-brane junction given by a D0-brane.

Let us study now the dual theory. The Chern-Simons coupling (8.41b) gives rise to a
6d BF coupling

ż

10d
H3 ^ F 0 ^ C7 ÝÑ p

ż

6d
H3 ^ Ĉ3 (8.44)

where

Ĉ3 “

ż

X4

C7. (8.45)

The theory automatically has a Zp discrete gauge symmetry. The Zp-charged funda-
mental objects are 1-branes given by fundamental strings, which are annihilated in sets
of p by a 1-brane junction given by a D0-brane. The associated topological defects are
Zp-charged 2-branes given by D6-branes wrapped on X4, which are annihilated in sets of
p by a 2-brane junction given by a NS5-brane wrapped on X4.

In this case, both the original theory and its dual give rise to the same discrete gauge
symmetry.
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8.3.2.2 Type IIA with 2-form flux

Consider type IIA compactifications on a real dimension 4 space X4 with 2-form flux F 2.
Let us introduce an adapted symplectic basis of 2-cycles tαku, tβku, with αk ¨ βl “ δkl,
such that there is flux only in the α cycles, and define

ż

αk

F 2 “ pk (8.46)

There are two 10d Chern-Simons couplings (8.40) that lead to the 6d terms we are
interested in.

ż

10d
B2 ^ F 2 ^ F6 (8.47a)

ż

10d
H3 ^ F 2 ^ C5 (8.47b)

The 10d Chern-Simons coupling (8.47a) produces the 6d couplings

ż

10d
B2 ^ F 2 ^ F6 ÝÑ

ÿ

k

ż

6d
pkB2 ^ F̂

k
4 (8.48)

where

F̂ k4 “

ż

βk

F6. (8.49)

There is a Zq discrete gauge symmetry, where q “
ř

k
p2
k
p , with p “ gcdppkq. The Zq-

charged fundamental objects are 2-branes, the one with minimal charge being a D4-brane
wrapped on a 2-cycle

ř

k nkβk, where the nk are integers satisfying
ř

nkpk “ p, which
always exist by Bezout’s lemma; they are annihilated in sets of q by a 2-brane junction
given by a NS5-brane wrapped on X4. The associated topological defects are Zq-charged
1-branes given by fundamental strings, which are annihilated in sets of q by a 1-brane
junction given by a D2-brane on a 2-cycle

ř

k
pk
p αk.

Let us study now the dual theory. The 10d Chern-Simons coupling (8.47b) gives rise
to the 6d couplings

ż

10d
H3 ^ F 2 ^ C5 ÝÑ

ÿ

k

ż

6d
pkH3 ^ Ĉ

k
3 . (8.50)

where

Ĉk3 “

ż

βk

C5. (8.51)

There is a Zp discrete gauge symmetry, where p “ gcdppkq. The Zp-charged funda-
mental objects are 1-branes given by fundamental strings, which are annihilated in sets of
p by a 1-brane junction given by a D2-brane wrapped on a 2-cycle

ř

k nkαk, where the nk
are integers satisfying

ř

k nkpk “ p. The associated topological defects are Zp-charged 2-
branes, the one with minimal charge being a D4-brane wrapped on a 2-cycle

ř

k
pk
p βk, and

they can be annihilated in sets of p by a 2-brane junction given by a NS5-brane wrapped
on X4.
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8.3.2.3 Type IIA with 4-form flux

Consider type IIA compactifications on a real dimension 4 space X4 with p units of F 4

flux on it. There are two 10d Chern-Simons couplings (8.40) that lead to the 6d terms we
are interested in.

ż

10d
B2 ^ F 4 ^ F4 (8.52a)

ż

10d
H3 ^ F 4 ^ C3 (8.52b)

The Chern-Simons coupling (8.52a) produces a 6d BF coupling

ż

10d
B2 ^ F 4 ^ F4 ÝÑ p

ż

6d
B2 ^ F4. (8.53)

The theory automatically has a Zp discrete gauge symmetry. The Zp-charged funda-
mental objects are 2-branes given by D2-branes, which are annihilated in sets of p by a
2-brane junction given by a NS5-brane wrapped on X4. The associated topological defects
are Zp-charged 1-branes given by fundamental strings, which are annihilated in sets of p
by a 1-brane junction given by a D4-brane wrapped on X4.

Let us study now the dual theory. The Chern-Simons couplings (8.52b) gives rise to a
6d BF coupling

ż

10d
H3 ^ F 4 ^ C3 ÝÑ p

ż

6d
H3 ^ C3. (8.54)

The theory automatically has a Zp discrete gauge symmetry. The Zp-charged funda-
mental objects are 1-branes given by fundamental strings, which are annihilated in sets of
p by a 1-brane junction given by a D4-brane wrapped on X4. The associated topological
defects are Zp-charged 2-branes given by D2-branes, which are annihilated in sets of p by
a 2-brane junction given by a NS5-brane wrapped on X4.

In this case, both the original theory and its dual give rise to the same discrete gauge
symmetry.

The M-theory version of this system is interesting, and arise naturally in the context of
AdS7/CFT4 correspondence. Compactification of M-theory on a 4-manifold down to D “
7, with p units ofG4 4-form flux produces a 7d coupling p

ş

7dG4^C3. The corresponding Zp
discrete gauge symmetry has appeared in [251]. M2-branes correspond to the two kinds if
Zp topological defects, hence M2-branes pick up Zp phases when surrounding each other, in
a higher dimensional analogy of anyons in D “ 3. This interesting behaviour is presumably
linked to the elusive system of coincident M5-branes underlying this gauge/gravity duality.

8.3.2.4 Type IIA with NSNS flux

Consider type IIA compactifications on a real dimension 4 space X4 with NSNS 3-form
flux H3. Let us introduce a basis of 3-cycles tΓiu and a dual basis of 1-cycles tγiu such
that γi ¨ Γj “ δij . Let us define

pi “

ż

Γi

H3. (8.55)
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There are three 10d Chern-Simons couplings (8.40) that lead to the 6d terms we are
interested in.

ż

10d
H3 ^ F2 ^ C5, (8.56a)

ż

10d
H3 ^ C1 ^ F6, (8.56b)

ż

10d
H3 ^ F4 ^ C3. (8.56c)

Let us start with (8.56a). The 6d couplings it leads to are

ż

10d
H3 ^ F2 ^ C5 ÝÑ

4
ÿ

i“1

ż

6d
piF2 ^ Ĉ

i
4 (8.57)

where

Ĉi4 “

ż

γi

C5. (8.58)

There is a Zp discrete symmetry, where p “ gcdppiq. The Zp-charged fundamental
objects are particles given by D0-branes, which can be annihilated in sets of p by an
instanton given by a D2-brane wrapped on a 3-cycle

ř

i niΓi, where the ni are integers
satisfying

ř

i nipi “ p. The associated topological defects are Z´p-charged 3-branes, the
one with minimal charge being a D4-brane wrapped on a 1-cycle

ř

i
pi
p γi, and they can be

annihilated in sets of p by a 3-brane junction given by a D6-brane wrapped on X4.

Let us study now the dual theory. The 10d Chern-Simons coupling (8.56b) gives rise
to the 6d couplings

ż

10d
H3 ^ C1 ^ F6 ÝÑ

4
ÿ

i“1

ż

6d
piC1 ^ F̂

i
5 (8.59)

where

F̂ i5 “

ż

γi

F6. (8.60)

There is a Zq discrete gauge symmetry, where q “
ř

i
p2
i
p , with p “ gcdppiq. The Zq-

charged fundamental objects are 3-branes, the one with minimal charge being a D4-brane
wrapped on 1-cycle

ř

i niγi, where the ni are integers satisfying
ř

i nipi “ p, and they
can be annihilated in sets of q by a D6-brane wrapped on X4. The associated topological
defects are Zq-charged particles given by D0-branes, which can be annihilated in sets of q
by an instanton given by a D2-brane wrapped on a 3-cycle

ř

i
pi
p Γi.

In this type of compactifications there is another pair of discrete gauge symmetries
that can be obtained.

The 10d Chern-Simons couplings (8.56c) leads to 6d terms

ż

10d
H3 ^ F4 ^ C3 ÝÑ

4
ÿ

i“1

ż

6d
piF4 ^ Ĉ

i
2 (8.61)
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where

Ĉi2 “

ż

γi

C3. (8.62)

There is a Zp discrete symmetry, where p “ gcdppiq. The fundamental objects are Zp-
charged 2-branes given by D2-branes, which can be annihilated in sets of p by a 2-brane
junction given by a D4-brane wrapped on a 3-cycle

ř

i niΓi, where the ni are integers
satisfying

ř

i nipi “ p. The associated topological defects are Zp-charged 1-branes, the
one with minimal charge being a D2-brane wrapped on a 1-cycle

ř

i
pi
p γi, and they can be

annihilated in sets of p by a 1-brane junction given by a D4-brane wrapped on X4.

However, (8.56c) also leads to the dual case, with 6d coupling

ż

10d
H3 ^ F4 ^ C3 ÝÑ

4
ÿ

i“1

ż

6d
piF̂

i
3 ^ C3 (8.63)

where

F̂ i3 “

ż

γi

F4. (8.64)

There is a Zq discrete gauge symmetry, where q “
ř

i
p2
i
p , with p “ gcdppiq. The Zq-

charged fundamental objects are 1-branes, the one with minimal charge being a D2-brane
wrapped on a 1-cycle

ř

i niγi, where the ni are integers satisfying
ř

i nipi “ p, and they
can be annihilated in sets of q by a string junction given by a D4-brane wrapped on X4.
The associated topological defects are Zq-charged 2-branes given by D2-branes, which can
be annihilated in sets of q by a 2-brane junction given by a D4-brane wrapped on a 3-cycle
ř

i
pi
p Γi.

8.3.3 Type IIB compactifications

8.3.3.1 Type IIB with 1-form flux

Consider type IIB compactifications on a real dimension 4 space X4 with NSNS 3-form
flux H3. Let us introduce a basis of 3-cycles tΓiu and a dual basis of 1-cycles tγiu such
that γi ¨ Γj “ δij . Let us define

pi “

ż

αi

F 1. (8.65)

There are two 10d Chern-Simons couplings (8.40) that lead to the 6d terms we are
interested in.

ż

10d
B2 ^ F 1 ^ F7, (8.66a)

ż

10d
H3 ^ F 1 ^ C6. (8.66b)

The 10d Chern-Simons coupling (8.66a) leads to 6d terms

ż

10d
B2 ^ F 1 ^ F7 ÝÑ

ÿ

i

ż

6d
piB2 ^ F̂

i
4 (8.67)
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where

F̂ i4 “

ż

Γi

F7. (8.68)

There is a Zq discrete gauge symmetry, where q “
ř

i
p2
i
p , with p “ gcdppiq. The Zq-

charged fundamental objects are 2-branes, the one with minimal charge being a D5-brane
wrapped on 3-cycle

ř

i niΓi, where the ni are integers satisfying
ř

i nipi “ p, and they can
be annihilated in sets of q by a 2-brane junction given by a NS5-brane wrapped on X4.
The associated topological defects are Zq-charged 1-branes given by fundamental strings,
which can be annihilated in sets of q by a 1-brane junction given by a D1-brane wrapped
on a 1-cycle

ř

i
pi
p γi.

Let us study the dual theory. The 10d Chern-Simons coupling (8.66b) leads to 6d
terms

ż

10d
H3 ^ F 1 ^ C6 ÝÑ

4
ÿ

i“1

ż

6d
piH3 ^ Ĉ

i
3 (8.69)

where

Ĉi3 “

ż

Γi

C6. (8.70)

There is a Zp discrete symmetry, where p “ gcdppiq. The Zp-charged fundamental
objects are 1-branes given by fundamental strings, which can be annihilated in sets of p
by a 1-brane junction given by a D1-brane wrapped on a 1-cycle

ř

i niγi, where the ni
are integers satisfying

ř

i nipi “ p. The associated topological defects are Zp-charged 2-
branes, the one with minimal charge being a D5-brane wrapped on a 3-cycle

ř

i
pi
p Γi, and

they can be annihilated in sets of p by a 2-brane junction given by a NS5-brane wrapped
on X4.

8.3.3.2 Type IIB with NSNS flux

Consider type IIB compactifications on a real dimension 4 space X4 with NSNS 3-form
flux H3. Let us introduce a basis of 3-cycles tΓiu and a dual basis of 1-cycles tγiu such
that γi ¨ Γj “ δij . Let us define

pi “

ż

Γi

H3. (8.71)

There are two 10d Chern-Simons couplings (8.40) that lead to the 6d terms we are
interested in.

ż

10d
H3 ^ C2 ^ F5, (8.72a)

ż

10d
H3 ^ C4 ^ F3. (8.72b)

Let us start with (8.72a). The 6d terms it leads to are

ż

10d
H3 ^ C2 ^ F5 ÝÑ

4
ÿ

i“1

ż

6d
piC2 ^ F̂

i
4 (8.73)
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where

F̂ i4 “

ż

γi

F5. (8.74)

There is a Zq discrete gauge symmetry, where q “
ř

i
p2
i
p , with p “ gcdppiq. The Zq-

charged fundamental objects are 2-branes, the one with minimal charge being a D3-brane
wrapped on a 1-cycle

ř

i niγi, where the ni are integers satisfying
ř

i nipi “ p, and they
can be annihilated in sets of q by a 2-brane junction given by a D5-brane wrapped on X4.
The associated topological defects are Zq-charged 1-branes given by D1-branes, which can
be annihilated in sets of p by a 1-brane junction given by a D3-brane wrapped on a 3-cycle
ř

i
pi
p Γi.

Let us study now the dual theory. The 10d Chern-Simons coupling (8.72b) leads to 6d
terms

ż

10d
H3 ^ C4 ^ F3 ÝÑ

4
ÿ

i“1

ż

6d
piĈ

i
3 ^ F3 (8.75)

where

Ĉi3 “

ż

γi

C4. (8.76)

There is a Zp discrete symmetry, where p “ gcdppiq. The Zp-charged fundamental
objects are 1-branes given by D1-branes, which can be annihilated in sets of p by a 1-
brane junction given by a D3-brane wrapped on a 3-cycle

ř

i niΓi, where the ni are integers
satisfying

ř

i nipi “ p. The associated topological defects are Zp-charged 2-branes, the
one with minimal charge being a D3-brane wrapped on a 1-cycle

ř

i
pi
p γi, and they can be

annihilated in sets of p by a 2-brane junction given by a D5-brane wrapped on X4.

In this type of compactifications there is another pair of discrete gauge symmetries
that can be obtained.

The 10d Chern-Simons coupling (8.72a) also leads to the 6d terms

ż

10d
H3 ^ C2 ^ F5 ÝÑ

4
ÿ

i“1

ż

6d
piĈ

i
1 ^ F5 (8.77)

where

Ĉi1 “

ż

γi

C2. (8.78)

There is a Zp discrete symmetry, where p “ gcdppiq. The Zp-charged fundamental
objects are 3-branes given by D3-branes, which can be annihilated in sets of p by a 3-
brane junction given by a D5-brane wrapped on a 3-cycle

ř

i niΓi, where the ni are integers
satisfying

ř

i nipi “ p. The associated topological defects are Zp-charged particles, the
one with minimal charge being a D1-brane wrapped on a 1-cycle

ř

i
pi
p γi, and they can be

annihilated in sets of p by an instanton given by a D3-brane wrapped on X4.

Let us study the dual theory. The 10d Chern-Simons couplings (8.72b) also leads to
6d terms

ż

10d
H3 ^ C4 ^ F3 ÝÑ

4
ÿ

i“1

ż

6d
piC4 ^ F̂

i
2 (8.79)
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where

F̂ i2 “

ż

γi

F3. (8.80)

There is a Zq discrete gauge symmetry, where q “
ř

i
p2
i
p , with p “ gcdppiq. The Zq-

charged fundamental objects are particles, the one with minimal charge being a D1-brane
wrapped on a 1-cycle

ř

i niγi, where the ni are integers satisfying
ř

i nipi “ p, and they
can be annihilated in sets of q by an instanton given by a D3-brane wrapped on X4. The
associated topological defects are Zq-charged 3-branes given by D3-branes, which can be
annihilated in sets of p by a 3-brane junction given by a D5-brane wrapped on a 3-cycle
ř

i
pi
p Γi.

8.3.3.3 Type IIB with RR 3-form flux

Consider type IIB compactifications on a real dimension 4 space X4 with NSNS 3-form
flux H3. Let us introduce a basis of 3-cycles tΓiu and a dual basis of 1-cycles tγiu such
that γi ¨ Γj “ δij . Let us define

pi “

ż

Γi

F 3. (8.81)

There are two 10d Chern-Simons couplings (8.40) that lead to the 6d terms we are
interested in.

ż

10d
B2 ^ F 3 ^ F5, (8.82a)

ż

10d
H3 ^ F 3 ^ C4. (8.82b)

The 10d Chern-Simons coupling (8.82a) leads to the 6d terms

ż

10d
B2 ^ F 3 ^ F5 ÝÑ

4
ÿ

i“1

ż

6d
piB2 ^ F̂

i
4 (8.83)

where

F̂ i4 “

ż

γi

F5. (8.84)

There is a Zq discrete gauge symmetry, where q “
ř

i
p2
i
p , with p “ gcdppiq. The Zq-

charged fundamental objects are 2-branes, the one with minimal charge being a D3-brane
wrapped on a 1-cycle

ř

i niγi, where the ni are integers satisfying
ř

i nipi “ p, and they
can be annihilated in sets of q by a 2-brane junction given by a NS5-brane wrapped on X4.
The associated topological defects are Zq-charged 1-branes given by fundamental strings,
which can be annihilated in sets of q by a 1-brane junction given by a D3-brane wrapped
on a 3-cycle

ř

i
pi
p Γi.

Let us study now the dual theory. The 10d Chern-Simons coupling (8.82b) leads to
the 6d terms

ż

10d
H3 ^ F 3 ^ C4 ÝÑ

4
ÿ

i“1

ż

6d
piH3 ^ Ĉ

i
3 (8.85)
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where

Ĉi3 “

ż

γi

C4. (8.86)

There is a Zp discrete symmetry, where p “ gcdppiq. The Zp-charged fundamental
objects are 1-branes given by fundamental strings, which can be annihilated in sets of
p by a string junction given by a D3-brane wrapped on a 3-cycle

ř

i niΓi, where the ni
are integers satisfying

ř

i nipi “ p. The associated topological defects are Zp-charged 2-
branes, the one with minimal charge being a D3-brane wrapped on a 1-cycle

ř

i
pi
p γi, and

they can be annihilated in sets of p by a 2-brane junction given by a NS5-brane wrapped
on X4.

In this type of compactifications there is another pair of discrete gauge symmetries
that can be obtained.

The 10d Chern-Simons coupling (8.82a) also leads to the 6d terms

ż

10d
B2 ^ F 3 ^ F5 ÝÑ

4
ÿ

i“1

ż

6d
piB̂

i
1 ^ F5 (8.87)

where

B̂i
1 “

ż

γi

B2. (8.88)

There is a Zp discrete symmetry, where p “ gcdppiq. The Zp-charged fundamental
objects are 3-branes given by D3-branes, which can be annihilated in sets of p by a 3-brane
junction given by a NS5-brane wrapped on a 3-cycle

ř

i niΓi, where the ni are integers
satisfying

ř

i nipi “ p. The associated topological defects are Zp-charged particles, the
one with minimal charge being a fundamental string wrapped on a 1-cycle

ř

i
pi
p γi, and

they can be annihilated in sets of p by an instanton given by a D3-brane wrapped on X4.

Let us study now the dual theory. The 10d Chern-Simons coupling (8.82b) also leads
to the 6d terms

ż

10d
H3 ^ F 3 ^ C4 ÝÑ

4
ÿ

i“1

ż

6d
piF̂

i
2 ^ C4 (8.89)

where

F̂ i2 “

ż

γi

H3. (8.90)

There is a Zq discrete gauge symmetry, where q “
ř

i
p2
i
p , with p “ gcdppiq. The

Zq-charged fundamental objects are particles, the one with minimal charge being a funda-
mental string wrapped on a 1-cycle

ř

i niγi, where the ni are integers satisfying
ř

i nipi “ p,
and they can be annihilated in sets of q by an instanton given by a D3-brane wrapped on
X4. The associated topological defects are Zq-charged 3-branes given by D3-branes, which
can be annihilated in sets of q by a 3-brane junction given by a NS5-brane wrapped on a
3-cycle

ř

i
pi
p Γi.
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8.4 Higher-rank Zp symmetries in string compactifications
with torsion

Discrete gauge symmetries associated to higher-rank forms are briefly mentioned in [227],
although related to torsion in homology or K-theory. This very formal discussion can be
made very explicit following [141], at least for torsion homology. To show that compactifi-
cations with torsion homology can produce higher-rank discrete symmetries, we consider a
simple illustrative example. Consider M-theory on a 4-manifold with torsion 1-cycles (and
their dual 2-cycles), H1pX4,Zq “ H2pX4,Zq “ Zp. We focus on the sector of M2-branes on
1-cycles – 7d strings – and M5-branes on 2-cycles – 7d 3-branes – (there is another sector
of M2-branes on 2-cycles and M5-branes on 1-cycles, which can be discussed similarly).
Following [141], we introduce the Poincaré dual torsion 2- and 3-forms αtor

2 , ω̃tor
3 , satisfying

the relations

dωtor
1 “ pαtor

2 , (8.91a)

dβtor
2 “ p ω̃tor

3 , (8.91b)

where ωtor
1 and βtor

2 are globally well-defined 1- and 2-forms. The torsion 2- and 3-forms
αtor

2 and ω̃tor
3 are thus trivial in de Rham cohomology, but not in the Z-valued cohomology,

i.e. H2pX4 Rq “ H3pX4,Rq “ H, H2pX4 Zq “ H3pX4,Zq “ Zp. The torsion linking number
is encoded in the intersection pairing

ż

X4

αtor
2 ^ βtor

2 “

ż

X4

ωtor
1 ^ ω̃tor

2 “ 1. (8.92)

These forms are assumed to be eigenstates of the Laplacian [141], corresponding to massive
modes; they can be usefully exploited to describe dimensional reduction of the antisym-
metric tensor fields, in particular, the M-theory 3- and 6-forms

C3 “ φ1 ^ α
tor
2 ` A2 ^ ω

tor
1 , C6 “ B4 ^ β

tor
2 ` V3 ^ ω̃

tor
3 . (8.93a)

The corresponding field strengths contain the structures

dC3 “ pdφ1 ` pA2q ^ α
tor
2 ` . . . , (8.94a)

dC6 “ pdV 3` pB4q ^ ω̃
tor
3 ` . . . , (8.94b)

which (modulo a trivial sign redefinition) imply the gauge invariances (8.1), (8.7). Ac-
cordingly, the 11d kinetic term for G4 “ dC3 (and its dual) lead to 7d actions with the
structure (8.2), (8.5). The dimensional reduction we have just sketched thus relates the
underlying torsion homology with the Zp gauge theory lagrangians of section 8.1.

8.5 The non-abelian case

In 4d, the non-abelian character can be detected by letting two strings (with charges given
by non-commuting group elements a, b) cross, and watching the appearance of an stretched
string (with charge given by the commutator c “ aba´1b´1). In string theory realizations,
this follows from brane creation processes when the underlying branes are crossed [180].

In general dimension D, we can look for similar effects, the only difference being that
the objects have richer dimensionality. Consider the following table, which describes the
geometry of two branes (denoted 1 and 2) which cross and lead to the creation of brane 3
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Brane 1

d1
hkkikkj

´ ¨ ¨ ¨´

d2
hkkikkj

´ ¨ ¨ ¨´

d3
hkkikkj

ˆ ¨ ¨ ¨ˆ ˆ

Brane 2 ´ ¨ ¨ ¨´ ˆ ¨ ¨ ¨ ˆ ´ ¨ ¨ ¨ ´ ˆ

Brane 3 ´ ¨ ¨ ¨´ ˆ ¨ ¨ ¨ ˆ ˆ ¨ ¨ ¨ ˆ ´

The symbols ´ and ˆ denote that the brane spans or does not span the corresponding
dimension, and obviously d1 ` d2 ` d3 ` 1 “ D. The last entry corresponds to the single
overall transverse dimensions to branes 1 and 2, on which the crossing proceeds, and along
which the created brane 3 stretches.

As a concrete example, involving discrete gauge symmetries arising from torsion ho-
mology c.f. section 8.4, consider type IIB compactified on a 5-manifold with a Zp torsion
3-cycle, self-intersecting over the dual Zp torsion 1-cycle (the AdS5 ˆ S5 {Z3 geometry in
[138] is a realization for p “ 3). The theory contains 5d 2-branes arising from NS5-branes
on the torsion 3-cycle, a further set of 5d 2-branes from D5-branes on the torsion 3-cycle,
and a set of 5d 2-branes from D3-branes on the torsion 1-cycle. The crossing of NS5- and
D5-branes produces D3-branes [180], leading to the above 2-brane crossing effect (with
d1 “ 2, d2 “ d3 “ 1 in the above table); the resulting discrete group is non-abelian, and is
given by a ∆27 (for general Zp torsion, a discrete Heisenberg group [143], see also [178]).

One can similarly construct more exotic examples, in which the non-abelian symmetry
group elements are associated to objects of different dimensionality. For instance, consider
type IIA compactified on the same geometry as above, i.e. a 5-manifold with torsion 3-
and 1-cycles. The theory contains 5d 2-branes from NS5-branes on the torsion 3-cycle, a
set of 5d 1-branes from D4-branes on the torsion 3-cycle, and a further set of 5d 1-branes
from D2-branes on the torsion 1-cycle. The crossing of NS5- and D4-branes produces
D2-branes; in 5d the process corresponds to crossing a 2-brane with a 1-brane, with the
creation of another kind of 1-brane (hence we have d1 “ 1, d2 “ 2, d3 “ 1). The resulting
discrete Heisenberg symmetry group is exotic, since its elements are associated to objects
of different dimensionality. A similar phenomenon already occurs in the (abelian) context
of D-brane charge classification by K-theory, where in certain examples the charges in a
K-theory group correspond to branes in cohomology classes of different degree (e.g. [227]
quotes the example of RP7, where the torsion cohomology is Z2‘Z2‘Z2, with the torsion
K-theory is Z8).

Similar examples could be worked out involving branes whose charges are Z-valued in
(co)homology, but which are actually torsion due to the presence of background fluxes.
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Discrete gauge symmetries from closed string

tachyon condensation

9.1 Introduction

In the previous chapters, it was always possible to embed the discrete gauge symmetries
into continuous ones, which were broken to the discrete subgroup by the gauging of (or
Higgsing by) scalars of the theory, with the prototypical example being a Zn discrete
symmetries coming from Up1q groups on D-branes, which are broken by 4d Stückelberg
couplings. The fact that discrete gauge symmetries arise from broken continuous ones
is very useful for several reasons. For instance, it helps to make contact with the 4d
field theory description, and to construct charged particles and other topological defects
[126], like in sections 6.1, where the branes giving rise to the charged particles and strings
wrap cycles related to those on which the forms that give rise to the gauge potential
forms are wrapped. It is also practical in purely field theoretical setups, to study anomaly
cancellation conditions [130, 121, 252, 253].

One important point one should take into account is that the mass acquired by the
gauge bosons of the broken continuous groups is of the order of the string scale. However,
from the 4d effective theory point of view these continuous symmetries can be considered
as a useful device to understand better the discrete gauge symmetries; in exchange, the
price one has to pay is to ‘integrate in’ degrees of freedom of the string scale sector which
are relevant to the topology of the symmetry breaking and the charged objects.

However, in string theory, both in 10d and in compactifications, there are discrete gauge
symmetries that cannot be embedded into continuous groups. The prototypical example
would be discrete gauge symmetries arising from large isometries of the compactification
space, i.e. isometries that cannot be connected to the identity in a continuous way. The
goal of this chapter is to show that the embedding is actually possible, if one integrates in
a suitable sector of stringy physics.

The ’suitable sector’ one needs to consider will be provided by extra space-time dimen-
sions, where we will be able to promote the discrete gauge symmetry into a continuous one.
This will require us to make use of the supercritical string theories described in appendix
A (see [254, 255, 256, 257, 258] for more detailed discussions).

While in the previous chapters the continuous gauge symmetry was broken to a discrete
subgroup by some gauging/Higgsing mechanism, in the present case this mechanism is
replaced by the condensation of the closed string tachyon which is present in the spectrum

139
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of all supercritical theories. This process will quench the extra dimensions allowing as to
recover the critical theory (as shown in appendix A), while breaking the continuous group
to a discrete subgroup.

This closed string tachyon condensation involves string scale physics; however, this
also happened in the case of continuous symmetries broken by some gauging/Higgsing
mechanism. In fact, as in the latter case, since the effects of the tachyon condensation
with respect to the symmetry and its breaking are topological, they can be analyzed
reliably.

Associated to a discrete gauge symmetry there are discretely charged topological de-
fects. In the case of discrete gauge symmetries arising from closed string tachyon con-
densation, they can be constructed as solitons of the closed string tachyon field. This is
reminiscent of the construction of D-branes as solitons of open string tachyons, and its
connection to K-theory. The nature of these topological defects as well as the underlying
mathematical structures classifying them are beyond the scope of this thesis, and will not
be considered here.

The rest of this chapter is organised as follows. In section 9.2, as a warmup exercise,
we will consider an analogous realization of discrete symmetries, in the more familiar open
strain setup, given by a Z2 symmetry in type I arising from a continuous Up1q broken by
open string tachyon condensation. In section 9.3, we present a mechanism to embed Zn
discrete symmetries into continuous ones that act on the extra dimensions as rotations,
which we dub ‘quenched rotations’, and how to construct Zn-charged topological defects
as closed string tachyon solitions. In section 9.4 we present a more general method of
embedding discrete symmetries into continuous groups, which we dub ‘quenched transla-
tions’; the continuous group acts as a translation in a compact S1 supercritical dimension,
along which the theory picks up a Zn holonomy. Section 9.5 contains a generalization to
non-Abelian discrete symmetries, and present a explicit example of a discrete Heisenberg
group.

9.2 A warmup exercise: a type I Z2 symmetry from open
string tachyon condensation

In this section we present an analogous implementation in the context of open string
tachyon condensation. We use it in 10d type I theory to derive a discrete Z2 gauge sym-
metry from a continuous one (see [259] for a similar phenomenon in type IIB orientifolds).

Recall that in 10d type I theory there exist several Z2 charged non-BPS branes [219].

In particular we focus on the D7- and D0-branes (denoted by xD7- and xD0-branes in what
follows), which pick up a ´1 when moved around each other [219, 260]. Hence, they
correspond to a Z2 charged particle and the dual codimension-2 Z2 charged defect (the
10d analogue of 4d Z2 string), associated to a Z2 discrete gauge symmetry. Since the
xD0-brane is a spinor under the SOp32q perturbative type I gauge symmetry [261, 262],
the Z2 can be defined as acting as ´1 on spinors and leaving tensors invariant.

Naively, this type I Z2 symmetry cannot be described as a discrete remnant of a broken
continuous gauge symmetry. However, this can be achieved by regarding type I theory
as the endpoint of open string tachyon condensation, starting from a configuration with
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additional D9-D9 brane pairs [263]; this is natural given the construction of non-BPS
branes in terms of brane-antibrane pairs.

Consider e.g. the case of two extra D9-D9 brane pairs. The gauge symmetry is
enhanced to SOp34q ˆ SOp2q, and there is a complex tachyon in the bifundamental, i.e.
a vector of SOp34q with SOp2q » Up1q charge `1 (and ´1 for the conjugate scalar)1. On

the other hand, the xD0-brane can be shown2 to transform as a chiral bi-spinor, namely a
chiral SOp34q spinor with Up1q charge `1

2 , and an opposite-chirality SOp34q spinor with
Up1q charge ´1

2 . Tachyon condensation imposes the breaking

SOp34q ˆ SOp2q Ñ SOp32q ˆ SOp2q1 ˆ SOp2q
xT y
ÝÑ SOp32q ˆ SOp2qdiag (9.1)

The intermediate step just displays the two SOp2q symmetries most relevant in the final
breaking.

The phenomenon is very similar to a Higgs mechanism, with the proviso that the diag-
onal subgroup actually disappears from the theory (this is analogous to the disappearance
of the diagonal Up1q in the annihilation of spacetime filling brane-antibrane pairs, see e.g.
[264] for discussions). The anti-diagonal combination Up1qanti of SOp2q1 ˆ SOp2q, gener-
ated by Qanti “ QSOp2q ´ QSOp2q1 , is Higgsed down by the tachyon, which carries charge
`2, thereby leaving a remnant Z2 discrete gauge symmetry. The Z2 charged particles are
the xD0-brane states, which transform as a chiral SOp32q spinor with Up1qanti charge `1.

The main lesson is that this Z2 symmetry of 10d type I theory3 can be derived as an
unbroken discrete symmetry of a continuous gauge symmetry, by regarding the theory as
the endpoint of (open string) tachyon condensation. The ‘parent’ theory includes extra
degrees of freedom on which the continuous symmetry acts, and which disappear upon
tachyon condensation.

9.3 Quenched rotations

In general, discrete symmetries cannot be regarded as a discrete subgroup of a continuous
group action on the theory. This happens for instance for discrete large isometries in
compactifications, namely discrete isometries associated to large diffeomorphisms of the
geometry. In compactifications, discrete isometries of the internal space become discrete
gauge symmetries of the lower-dimensional theory. Hence, discrete gauge symmetries from
large isometries cannot in principle be regarded as unbroken remnants of some continuous
gauge symmetry.

In this section we actually show that even such discrete symmetries can be embedded
into continuous groups, which however act on extra dimensions in a supercritical exten-
sion of the theory. The continuous orbits come out of the critical spacetime slice, and

1For future convenience, we mention that in models with n extra D9-D9 pairs, there are massless
fermions transforming under SOp32 ` nq ˆ SOpnq as follows [263]: one set of chiral spinors in the repre-

sentation p , 1q ` p1, q, and one opposite-chirality spinor in the p , q.
2This follows from the quantization of the fermion zero modes in xD0-D9 and xD0-D9 sectors, and

restricting onto states invariant under the worldvolume Op1q gauge symmetry.
3Incidentally, other Z2 charged branes can be associated to discrete Z2 subgroups of continuous symme-

tries, albeit associated not to gauge bosons but to higher RR p-forms, when described as K-theory valued
objects [227].
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are quenched by a closed string tachyon condensation process, which thus breaks the con-
tinuous symmetry, yet preserves the discrete one. The appearance of extra dimensions is
very intuitive in extending discrete isometries to a continuous action, since these symme-
tries are related to properties of the metric; still our constructions apply to fairly general
discrete symmetries.

9.3.1 Spacetime parity

The prototypical example of large diffeormorphisms is that of orientation reversing actions,
for instance, spacetime parity. Consider the action

px0, x1, . . . , x2n´1q ÝÑ px0,´x1, . . . ,´x2n´1q (9.2)

in 2n-dimensional Minkowski space-time. Since it has determinant ´1, it lies in a compo-
nent of the Lorentz group disconnected from the identity. For simplicity, we will focus on
the action

px0, x1, . . . , , x2n´2, x2n´1q ÝÑ px0, x1, . . . , x2n´2,´x2n´1q, (9.3)

which only reverses the orientation of x2n´1, that lies in the same component disconnected
from the identity.

This Z2 symmetry is easily embedded in a continuous symmetry by adding one extra
dimension x2n and considering the SOp2q rotations in the plane px2n´1, x2nq. This is easily
implemented in string theory, for instance, using the supercritical bosonic string.4

Consider the supercritical bosonic string theory from section A.1 with one extra dimen-
sion denoted by x26, with the appropriate timeline linear dilation. The theory is invariant
under SOp2q rotations in the px25, x26q 2-plane plane. We can connect this theory with
the critical 26d bosonic theory by a closed string tachyon profile

T pX`, X26q “
µ2

2α1
exppβX`qpX26q2. (9.4)

At X` Ñ ´8 the tachyon vanishes and we have a 27d theory with a continuous
SOp2q rotational invariance in the 2-plane px25, x26q. At X` Ñ 8, the onset of the
tachyon truncates the dynamics to the slice X26 “ 0, breaking the SOp2q symmetry
to the Z2 subgroup X25 Ñ ´X25. Hence the Z2 parity symmetry can be regarded as
a discrete subgroup of a continuous higher dimensional rotation group, broken by the
tachyon condensation removing the extra dimension.

The analogy of this breaking with a Higgs mechanism can be emphasized by using
polar coordinates, W “ X25 ` iX26 “ |W |eiθ. Then X26 „W ´W and

T „ pX26q2 „W 2 ´ 2WW `W
2
„ e2iθ ´ 2` e´2iθ. (9.5)

The tachyon background implies vevs only for modes of even charge under the Up1q sym-
metry, hence a Z2 symmetry remains. This description will be useful for the construction
of Z2 charged defects in section 9.3.3.

Finally, note that although this construction embeds the discrete group into a contin-
uous one, there is no actual 26d SOp2q gauge boson.

4Supercritical superstrings cannot be used since they are not parity invariant, due to chiral fermions or
Chern-Simons couplings; however, parity can be combined with other actions to give symmetries of those
theories, see section 9.4.4.5
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9.3.2 A heterotic Z2 from closed tachyon condensation

In the 10d SOp32q heterotic string, the gauge group is actually Spinp32q{Z2, and there is
a Z2 symmetry under which the (massive) spinor states are odd, while fields in the adjoint
are even5. We now propose a realization of this Z2 symmetry as a discrete remnant of
a continuous Up1q symmetry, exploiting the supercritical heterotic strings introduced in
section A.2.

For that purpose, it suffices to focus on the case of D “ 12, i.e. two extra dimensions,
denoted x10, x11. We complexify the extra worldsheet fields into a complex scalar Z ”

X10 ` iX11, and a complex fermion Λ “ λ33 ` iλ34. We consider the Up1q action

Z Ñ eiαZ , Λ Ñ e´iαΛ (9.6)

namely, the anti-diagonal

SOp2qanti Ă SOp2qrot ˆ SOp2qgauge Ă SOp2qrot ˆ SOp2` 32q. (9.7)

Consider now the tachyon background (A.18) producing the SOp32q heterotic

T 33pXq „ eβX
`

X10, T 34pXq „ eβX
`

X11 Ñ T pXq „ eβX
`

Z, (9.8)

which we have recast in terms of a holomorphic complex tachyon T ” T 33`iT 34. The order
parameter BZT transforms in the bifundamental of SOp2qrotˆSOp2qgauge, and breaks the
SOp2qrotˆSOp34q symmetry down to SOp32q (times a diagonal factor which ‘disappears’).
The anti-diagonal SOp2qanti, generated by Qanti “ QSOp2qgauge

´QSOp2qrot
, is broken by a

charge `2 the tachyon background. To show that there is an unbroken Z2 acting as ´1
on the SOp32q spinors, it suffices to show that they descend from states with SOp2qanti

charge ˘1. Indeed, they descend from the massive groundstates in the g2 twisted (and
g1-untwisted) sector, which has λa, ψm fermion zero modes; the states transform as a
SOp34q ˆ SOp2qrot bi-spinor, hence have SOp2qanti charge ˘1, and descend to Z2 odd
SOp32q spinors. Note that the discussion parallels that of the type I Z2 in section 9.2 (as
suggested by the duality proposed in [254]).

A slightly unsatisfactory aspect of the construction is that there are actually no gauge
bosons associated to the SOpnqrot group. This could be achieved by curving the geometry
of the extra dimensions in the radial direction, with the angular coordinates asymptoting
to a finite size Sn´1. Its SOpnq isometry group would then produce an SOpnq gauge
symmetry (in 11d). Although the geometric curvature will render the worldsheet theory
non-solvable, we expect basic intuitions of the flat space case to extend to the curved
situation, in what concerns the relevant topology of symmetry breaking. In any event, we
will eventually turn to a more general construction, with physical gauge bosons, in section
9.4.

5Recall that the Z2 by which Spinp32q is quotiented prevents the presence of states in the vector
representation; also notice that this is not the Z2 discrete gauge symmetry we are interested in.



144
CHAPTER 9. DISCRETE GAUGE SYMMETRIES FROM CLOSED STRING TACHYON

CONDENSATION

9.3.3 Topological defects from closed tachyon condensation

In the embedding of a discrete symmetry into a continuous one acting on extra dimensions,
all relevant degrees of freedom are eventually removed by the closed string tachyon con-
densation. We may therefore ask what we gain by such construction. The answer is that,
in analogy with open string tachyon condensation, certain branes of the final theory can
be constructed as solitons of the tachyon field. Since our focus is on aspects related to Zn
discrete gauge symmetries, in this section we describe the tachyon profiles corresponding
to the codimension-2 Zn charged defects (real codimension-2 objects around which the
theory is transformed by a discrete Zn holonomy, e.g. the 4d Zn strings).

However, we cannot refrain from pointing out that in the setup from section 9.3.2, the
basic symmetries and their breaking are precisely as in type I theory with extra brane-
antibrane pairs. In particular, this suggests a classification of topological brane charges
in 10d heterotic in terms of a KO-theory (dovetailing heterotic/type I duality), in this
case associated a pair of bundles SOp32` nq ˆ SOpnq (namely, the gauge bundle and the
normal bundle of the 10d slice in the supercritical p10`nq-dimensional spacetime), which
annihilate via closed string tachyon condensation.

Focusing back on the construction of Zn defects, let us consider again the analysis of
parity in the bosonic theory in section 9.3.1. This Z2 symmetry is embedded into a Up1q
rotating the 2-plane px25, x26q. The critical vacuum is recovered by a tachyon background
T „ pImwq2 c.f. (9.5), with w ” x25`ix26 “ |w|eiθ, whose zero cuts out the slice sin θ “ 0.
In order to describe a Z2 defect transverse to another 2-plane, e.g. px23, x24q, we write
z ” x23 ` ix24 “ |z|eiϕ and consider a closed string tachyon background vanishing at the
locus sin θ1 “ 0, with θ1 “ θ ´ 1

2ϕ. The remaining spacetime is still critical, with a new
angular coordinate in px23, x24q given by ϕ1 „ ϕ` 1

2θ. A rotation α in ϕ1 (keeping θ1 fixed
at the tachyon minimum) is secretly a rotation δφ “ α, δθ “ α{2; hence, a full 2π rotation
results in a π rotation in θ, i.e. a Z2 parity operation.

9.4 Discrete gauge symmetries as quenched translations

The set of discrete symmetries amenable to the quenched rotation construction in the
previous section is limited. In this section we present a far more universal embedding of
discrete symmetries into continuous ones, which are realized as continuous translations in
an extra (supercritical) S1 dimension. The extra S1 is subsequently eaten up by closed
string tachyon condensation, which breaks the KK Up1q symmetry down to the discrete
subgroup. The basic strategy is to use periodic tachyon profiles, c.f. (A.5) to yield
condensation processes which are well-defined on S1. As mentioned at the end of section
A.1, we do not mind giving up exact solvability of the worldsheet CFT, and rely on
the main lesson that condensation truncates dynamics to the vanishing locus of the 2d
potential energy6.

6This is analogous to the applications of open string tachyon condensation in annihilation processes,
even if they are not exactly solvable BCFTs.
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9.4.1 The mapping torus

The basic ingredient in the construction is the mapping torus, whose construction we il-
lustrate in fairly general terms. Although we apply it in the string theory setup, most
of the construction can be carried out in the quantum field theory framework7; the ulti-
mate removal of the extra dimensions by tachyon condensation is however more genuinely
stringy.

Consider an N -dimensional theory on a spacetime XN , and let Θ be the generator of
a discrete gauge symmetry Zn. We consider extending the theory to XN ˆI, where I is a
one-dimensional interval8 parametrized by a coordinate 0 ď y ď 2πR. We subsequently
glue the theories at y “ 0 and y “ 2πR, but up to the action of Θ. The final configuration
is the theory on XN non-trivially fibered over S1. The fibration is locally XN ˆR, but
there is a non-trivial discrete holonomy implementing the action of Θ. For example, if Θ
is a discrete large isometry, the (purely geometric) glueing is

px, y “ 0q » pΘpxq, y “ 2πRq. (9.9)

Returning to the general situation, the extra dimension produces a KK Up1q gauge
boson from the N -dimensional viewpoint. The orbit of the associated translational vector
field By clearly contains the discrete Zn transformations, which are thus embedded as a

discrete subgroup ZN Ă Up1q. States of the theory XN transforming with phase e2πi p
n

under the discrete symmetry generator Θ extend as states with fractional momentum p{n
(mod Z) along S1. We note that the minimal Up1q charge unit is 1{n.

In the supercritical string theory construction, the extra dimension is removed by a
tachyon profile with periodicity 2πR, which truncates the theory to the slice Y “ 0 (mod
2πR). For instance, in the bosonic string theory, we sketchily write9

T „ µ2
“

1´ cos
`

Y
R

˘ ‰

“ 2µ2 sin2
`

Y
2R

˘

, (9.10)

and similarly in other supercritical string theories. Concretely, we use the heterotic
HO`pnq theory (since the HO`pnq { breaks translational invariance in the extra dimen-
sions) and take T „ sinp Y2Rq, as in the LHS of (A.14); for type II extended as supercritical
type 0 orbifold, we take T „ sinp Y2RqX

1, obtained from (A.22) by renaming X Ñ Y and
taking a suitable k1 Ñ 0 limit.

Since the periodic tachyon profile only excites components of integer KK momentum,
it mimics a breaking of the Up1q symmetry by fields of integer charge. Normalizing the
minimal charge to `1, the breaking is implemented by fields of charge n. Hence, the
continuous symmetry is broken to a discrete Zn symmetry in the slice y “ 0, i.e. to the
Zn of the original theory at XN .

7Incidentally, the mapping torus (a.k.a. cylinder) is widely used in the study of global anomalies
[265, 266, 267]. It would be interesting to explore possible connections with our physical realization.

8This is easily implemented in the supercritical bosonic and heterotic HO`pnq theories; for the super-
critical type 0 orbifolds decaying to type II we must add another extra dimension, which can be kept
non-compact; for the HO`pnq { theory, the orbifolding breaks the translational invariance and there is no
actual continuous KK gauge symmetry, so we do not consider it here.

9Note that the radius R can be kept arbitrary; for instance, the operator can be made marginal by
turning on a lightlike dependence and adjusting the β coefficient appropriately.
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9.4.2 Sum over disconnected theories

There is an alternative orbifold description of the above construction (hence, particularly
well-suited for string theory), as follows. We start with the theory extended to a trivial
product XN ˆpS1q1, with pS1q1 a circle of length 2πnR, parametrized by a coordinate
y1. Subsequently, we mod out by the discrete action Θ on XN , accompanied by a shift
y1 Ñ y1 ` 2πR. The unit cell under this action is an S1 of length 2πR, along which the
theory is twisted by the action of Θ, as in the previous section. Similarly, we consider a
tachyon profile with periodicity 2πR.

We may regard the quotient theory on S1 as the set of Zn invariant configurations10

in the parent theory on XN ˆpS1q1. In this description, states with charge p under Θ have
integer KK momentum along pS1q1, while the tachyon profile has KK momentum multiple
of n.

This viewpoint leads to an interesting interplay with the description of discrete gauge
symmetries as a ‘sum over disconnected theories’ [176], (see appendix D for a review). This
‘sum over theories’ prescription is reproduced by the tachyon condensation on the orbifold
of the theory on XN ˆpS1q1, as follows. There is a tachyon profile with n zeroes, located
at y1 “ 0, 2πR, . . . , 2πRpn ´ 1q in pS1q1. Tachyon condensation produces n disconnected
copies of the theory on XN differing by the action of Θk, k “ 0, . . . , n ´ 1. These copies
correspond to the different ‘theories’ which coexist in the superposition (which in this
language, is nothing but restricting to orbifold invariant amplitudes).

9.4.3 Topological Zn defects and quenched fluxbranes

A basic property of theories with discrete Zn gauge symmetries is the existence of Zn
charged defects, real codimension-2 objects around which the theory is transformed by a
discrete Zn holonomy. This non-trivial behaviour of the theory around the S1 surrounding
the Zn defect, is identical to the fibration over S1 in the mapping torus in the previous
sections. This may be regarded as an underlying reason for the universality of the mapping
torus construction, which applies to fairly general discrete symmetries (as opposed to those
in section 9.3). In this section we use this relation to construct tachyon condensation
profiles which produce the Zn charged defects of the theory, generalizing section 9.3.3 to
the more universal mapping torus setup.

The construction is very reminiscent of the fluxbranes11 in [269, 270, 271, 272] explained
in section B.

The Zn defects can be constructed by using the same strategy in dimensional quench-
ing, rather than in dimensional reduction. We start with the mapping torus of XN
fibered over a S1 parametrized by y, c.f. section 9.4.1. We choose a 2-plane px8, x9q,
or z ” x8` ix9 ” reiϕ. Finally, we turn on a closed string tachyon profile (9.10), but now
depending on y1 “ y`ϕR, to remove one extra S1 dimension. The resulting configuration

10In orbifold language, this corresponds to restricting to the untwisted sector. Twisted states stretching
between different zero loci of the tachyon will disappear in the process of tachyon condensation, so they
can be ignored in the discussion.

11We use the term ‘fluxbrane’ in the original sense of extended solutions with non-trivial (compactly
supported) magnetic fields in their transverse dimensions, rather than in the recent use as branes carrying
worldvolume magnetic flux [268].
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contains a Zn defect at the origin of the 2-plane, since a rotation in ϕ1 results in a Zn
holonomy. Note that the disappearance the KK gauge bosons in dimensional quenching
(as compared with dimensional reduction, recall section A.4), implies that there is no
actual magnetic flux on the 2-plane, yet there is a non-trivial holonomy, as required to
describe a Zn charged object. We refer to these Zn defects as ‘quenched fluxbranes’.

Note that in contrast with actual fluxbranes, we do not require quenched fluxbranes
to solve the equations of motion of the spacetime effective theory. Instead, we use the
construction to characterize the relevant topology describing Zn defects.

The construction makes manifest that Zn defects are conserved modulo n. Indeed, n
Zn defects correspond to a fluxbrane with trivial monodromy: going around it once implies
moving n times around S1 in the mapping torus. The configuration can be trivialized by
a coordinate reparametrization.

9.4.4 Examples

9.4.4.1 Spacetime parity revisited

As an example, consider the realization of a spacetime Z2 parity in e.g. the bosonic
theory. Differently from section 9.3.1, the 27d supercritical geometry has the dimension
x25 fibered non-trivially along an extra S1 parametrized by y, forming a Möbius strip.
In this non-orientable geometry, spacetime parity is a Z2 subgroup of a continuous KK
Up1q. The symmetry breaking is triggered by closed string tachyon condensation. The Z2

defects of the 26d theory, regions around which spacetime parity flips, can be constructed
as quenched fluxbranes with a tachyon condensate (9.10), with the replacement Y Ñ Y 1 “
Y ´Rϕ, where ϕ is the angle in the 2-plane transverse to the defect.

9.4.4.2 Z2 symmetries of heterotic theories

We can easily implement the mapping torus construction to realize continuous versions of
certain discrete symmetries of 10d heterotic theories. In order to have an extra (trans-
lational invariant) S1, rather than an orbifold, we exploit the HO`p1q theory c.f. section
A.2. For instance, we can propose a different Up1q embedding12 of the Z2 symmetry of
the 10d SOp32q theory of section 9.3.2, as follows. To reproduce the Z2 holonomy along
the S1, the supercritical HO`p1q theory should have an Z2 Wilson line introducing a ´1
phase on SOp32q spinors, e.g.

A “ 1
R diagp iσ2, 0, . . . , 0q Ñ exp

´

1
2

ż

S1
iσ2 dy

¯

“ ´1 (9.11)

where the factor 1
2 corresponds to the charge of spinors.

Consider a second example, given by the Z2 symmetry exchanging the two E8’s in the
10d E8 ˆ E8 heterotic, i.e. an outer automorphism. The gauge nature of this symmetry,

12Incidentally, the same discrete symmetry may have different supercritical embeddings into continuous
symmetries. This is similar to embedding the same Zn symmetry into different continuous Up1q groups,
in fixed dimension.
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argued in [273], can be made manifest using the mapping torus construction in the su-
percritical E8 ˆ E8 theory mentioned in section A.2. In this case, we must introduce a
permutation Wilson line along the S1, similar to those in CHL strings in lower dimensional
compactifications [274, 275] (see also [276, 85, 84] for permutation Wilson lines in toroidal
orbifolds).

9.4.4.3 Discrete isometries of T2

We now give new examples, based on the discrete isometries of T2 in section E. To prevent
a notational clash, we use β » β ` 2π to parametrize the supercritical S1.

The construction of the mapping torus for T2 is basically an orbifold of T3 “ T2ˆS1,
by a rotation in T2 and a simultaneous shift in S1. They are described by free worldsheet
CFTs and are familiar in orbifold constructions (in critical strings), see e.g. [277]. Instead,
we recast the construction in a language which will admit an easy generalization to CYs
in projective spaces. In order to exploit the power of complex geometry, let us extend S1

to C˚ ” C´t0u, by introducing a variable w “ |w|eiβ (which can eventually be fixed to
|w| “ 1 to retract onto S1). The mapping torus is associated to an elliptic fibration over
C˚, with constant τ parameter on the fiber, and suitable SLp2,Zq monodromies around
the origin. It turns out that holomorphic fibrations suffice for our purposes. Indeed, the
constant τ holomorphic fibrations discussed in the context of F-theory [278, 279], can be
readily adapt to the present (non-compact) setup.

Consider a Weierstrass fibration over a complex plane w

y2 “ x3 ` fpwqx` gpwq (9.12)

Our base space is non-compact, so we do not fix the degrees of the polynomials f , g. From
(E.2), a constant τ fibration is achieved by [278]

fpwq “ αφpwq2, (9.13a)

gpwq “ φpwq3, (9.13b)

with φpzq some polynomial. The value of τ is encoded in α.

In order to describe the Z2 in table E, which exists for generic values of τ , we simply
choose φpwq “ w, and have

y2 “ x3 ` αw2x` w3. (9.14)

Moving along S1 (namely, w Ñ eiδβw), the coordinates transform as x Ñ eiδβx, y Ñ
e3iδβ{2y. The holonomy along S1 is xÑ x, y Ñ ´y, precisely the desired Z2 action.

The construction of Z2 defects is now straightforward. We simply introduce a complex
coordinate z for the two real transverse dimensions, and consider the configuration ob-
tained from (9.14) by the replacement w Ñ w` z. Note that two Z2 strings are described
by a fibration with φ “ w2, which can be made trivial by a reparametrization,

y2 “ x3 ` αw4 x ` w6 ÝÑ y12 “ x13 ` αx1 ` 1, (9.15)

with y “ w3y, x “ w2x.
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A similar discussion can be carried out for the remaining holomorphic Zn actions in
section E. Skipping further details, we simply quote the relevant fibrations:

Z4 :y2 “ x3 ` wx, (9.16a)

Z6 :y2 “ x3 ` w, (9.16b)

Z3 :y2 “ x3 ` w2. (9.16c)

These fibrations differ slightly from those in [279], because the latter describe crystallo-
graphic actions on global geometries. We note that the local behavior of their fibrations
around fixed points on the base is equivalent to ours, modulo reparametrizations describing
creation/annihilation of n Zn defects.

9.4.4.4 Discrete isometries in CYs: the quintic

The above strategy generalizes easily to more general CYs, as we illustrate for the quintic
X6 “ P5r5s. Recall its expression (E.3) at the Fermat point,

z5
1 ` z

5
2 ` z

5
3 ` z

5
4 ` z

5
5 “ 0. (9.17)

We simply focus on the Z5 generated by z1 Ñ e2πi{5z1, with z2, . . . , z5 invariant. The
fibration associated to the mapping torus can be written

w z5
1 ` z

5
2 ` z

5
3 ` z

5
4 ` z

5
5 “ 0. (9.18)

Setting w “ eiδy, moving along the S1 gives w Ñ eiδyw and z1 Ñ e´iδy{5z1, so that
completing the circle implements the desired Z5 monodromy. The construction of Z5

strings in the 4d theory amounts to a reinterpretation of w in terms of the transverse
coordinates, as in the previous section.

Note the important point that motion in w does not correspond to changing the moduli
of X6. Recall that complex structure moduli are described by deformations of the defining
equation corresponding to monomials

ś

ipziq
ni ’s with ni ă 4. This means that as one

moves around the string there is no physical scalar which is shifting. This is fine because
the monodromy is not part of a continuous gauge symmetry acting on any scalar of the
4d theory (as it disappears from the theory in the tachyon condensation).

These discrete isometries are relevant, since they often correspond to discrete R-
symmetries of the 4d effective theory. The discussion of possible applications of our tools
to phenomenologically interesting discrete R-symmetries is beyond the scope of this thesis.

9.4.4.5 Antiholomorphic Z2 and CP as a gauge symmetry

A final class of discrete isometries of CY compactifications are given by antiholomorphic Z2

actions, e.g. zi Ñ zi, which are large isometries of the CY spaces with defining equations
with real coefficients. These are orientation-reversing, and hence are not symmetries of
the superstrings, but can be actual symmetries if combined with an extra action. For
instance, their combination with 4d parity gives a discrete symmetry, which in heterotic
compactifications corresponds to a CP transformation [280]. Applying the mapping torus
construction to this Z2 symmetry (i.e. combining ingredients of the previous section
and section 9.4.4.1) results in a description of CP as a discrete gauge symmetry explicitly
embedded in a (supercritical) Up1q symmetry. This is a new twist in the history of realizing
CP as a gauge symmetry, see e.g. [273, 281].
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9.4.4.6 Zn symmetries already in Up1q groups

Although we have focused on discrete symmetries from (large) isometries, the constructions
can be applied to general Zn discrete symmetries, even those embedded in continuous Up1q
factors already in the critical string theory (see [140, 142, 143, 144, 282, 149, 148] for such
symmetries in string setups). Focusing on the 4d setup for concreteness, recall from section
3.1 that the key ingredient is a Up1q group with potential A1, acting on a real periodic
scalar φ » φ` 1 as

A1 ÝÑ A1 ` dλ, (9.19a)

φ ÝÑ φ` nλ. (9.19b)

The Up1q is broken, with φ turning into the longitudinal component of the massive gauge
boson. But there is an unbroken Zn, preserved even by non-perturbative effects. For
instance, gauge invariance forces the amplitude of an instanton at a point P to be dressed
as

e´2πiφ expp2πin

ż

L
A1q (9.20)

which describes the emission of electrically charged particles of total charge n (i.e. pre-
serving the Zn) along semi-infinite worldlines L starting at P .

Let us now consider embedding this Zn symmetry as a mapping torus construction
in a supercritical extension of the theory. Along the extra S1 there is a non-trivial Up1q
transformation (integrating to the Zn generator) and a corresponding shift φÑ φ` 1. In
other words there is one unit of flux for the field strength 1-form F1 “ dφ

ż

S1
F1 “ 1. (9.21)

Notice that the mapping torus of length 2πR and the n-cover circle of length 2πnR (c.f.
section 9.4.2) provide a physical realization of the two S1’s in section 3.3.1 associated to
the periodicity of φ and of the Up1q.

Fields with charge q under the Zn have S1 boundary conditions twisted by e2πi q{n,
hence have KK momenta k ` q{n, with k P Z, and so carry charge under the KK Up1q.
This piece allows to recover (9.20) in this picture, as follows. The operator e´2πiφ at
a point in the S1 (and at point P in the critical spacetime) picks up phase rotations
under translation, i.e. under a KK Up1q transformation, which must be cancelled by those
insertions of KK modes, with total KK momentum 1, e.g. n states of minimal Zn charge.

The discussion in the previous paragraph has a nice string theory realization in the
context of Zn symmetries arising from the Up1q gauge groups on D-branes. In particular
we focus on D6-brane models c.f. [140], where A1 is the gauge field on D6-branes, φ is
the integral of the RR 3-form C3 over some 3-cycle Σ3, and the instanton is an euclidean
D2-brane on Σ3. The non-trivial shift of φ, namely the flux (9.21), corresponds to a 4-form
field strength flux

ż

Σ3ˆS1
F4 “ 1 (9.22)

The D2-brane instanton on Σ3 is not consistent by itself, but must emit particles with one
unit of total KK momentum. This is more clear in the T-dual picture, which contains a
D3-brane on Σ3 ˆ S1 with one unit of F3 flux over Σ3, which must emit a fundamental
string with one unit of winding charge [219].
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9.5 The non-Abelian case

In this section we will generalize the above ideas to the non-Abelian case. First we will
show an intuitive generalization of the mapping torus construction in section 9.4.1, and
present an explicit example of how it works for a discrete Heisenberg group. Afterwards,
we will present a more formal description of the method in terms of cosets; subsequently,
we will apply this general framework description, which has a broad applicability, to the
discrete Heisenberg group.

9.5.1 Mapping torus generalization

Consider an N -dimensional theory XN with a discrete gauge symmetry group Γ (in general,
not realized as a subgroup of a broken continuous symmetry). We would like to add
extra dimensions in a supercritical extension of the theory, such that Γ is embedded in a
continuous non-abelian group G.

A possibility is that G is an isometry group acting on the extra dimensional space
Y, as g : y Ñ gpyq. We may consider the trivial product XN ˆY and quotient by the
simultaneous action of the subgroup Γ on the theory XN and the space Y, namely γ :
px, yq Ñ pγpxq, γpyqq, for γ P Γ. If the action of G on Y leaves no fixed points, the
quotient generalizes the mapping torus construction in section 9.4.2, in the sense that
non-trivial loops in the quotient define circles along which the theory XN is twisted by
the action of an element of Γ. Subsequently turning on a non-trivial tachyon background
invariant under Γ (and hence with zeroes of the worldsheet potential related by Γ) would
truncate the theory back to the critical theory XN with the desired symmetry breaking.

A simple example of this construction is obtained by considering Y to be the group
manifold G itself, with action given by e.g. right multiplication; but any other Y on
which G acts transitively suffices. A more important and subtle point is that the action
of G on Y defined above does not descend in general to a globally well-defined action in
the quotient. However, if Γ is a normal subgroup13 of G, then a globally well defined
action in the quotient can be constructed (see section 9.5.2). Unfortunately, a normal
discrete subgroup of a path-connected Lie group G necessarily belongs to the center of
G, and is therefore abelian. Hence, we cannot embed the non-abelian discrete symmetry
in a continuous isometry/symmetry acting on the extra dimensions, broken by tachyon
condensation when truncating to the critical theory.

Configurations with local group actions, which are however not symmetries of the
system have appeared in the context of discrete gauge symmetries in [143]. They describe
a non-abelian continuous symmetry which is broken and has become massive by gauging a
set of scalars. This broken continuous symmetry may have an unbroken discrete subgroup,
which manifests as a discrete gauge symmetry of the theory. This perspective is useful
to deal with the non-abelian discrete symmetry Γ of the theory XN , and its embedding
into a continuous group G acting on the quotient pXN ˆYq{Γ. This construction provides
an embedding of Γ into a continuous symmetry which is broken and made massive by a
process of gauging. The tachyon condensation would then truncate the gauged theory to
the critical spacetime slice, triggering no additional symmetry breaking. Note that the

13Recall that a group N is a normal subgroup of G, written N ŸG, if g´1ng P N for all n P N , g P G.
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construction in section 9.4.4.6 can be regarded as a particular realization of this idea in
the abelian case.

9.5.1.1 Discrete Heisenberg group from supercritical magnetized tori

It is easy to provide concrete examples of this realization; in this section we present
an embedding of a discrete Heisenberg group in terms of a supercritical extension with
magnetized T2, in a setup close to [143].

Consider the theory XN to have a Up1q gauge symmetry and a discrete gauge symmetry,
generated by two order-n elements A, B (with An “ Bn “ 1) which commute to an element
of Up1q, that is AB “ CBA with C P Up1q (note that C is required to be of order n as
well). This is a discrete Heisenberg group, which we denote by Hn. We assume that Hn

is not embedded into any continuous (massive or not) symmetry of XN .

Consider now a supercritical extension of the theory with two extra dimensions (two
plus two for type 0 extensions of type II models), which parametrize a T2 (for simplic-
ity taken square with unit length coordinates x, y). In analogy with the mapping torus
construction, we specify that the theory XN picks up the action of the generators A, B,
as one moves along the two fundamental cycles of T2. This embeds the two discrete gen-
erators into continuous translational Up1q actions, the would-be KK gauge symmetries
of the theory. These symmetries are however broken, even before the process of tachyon
condensation. To see this, note that moving around the whole T2 results in an action
ABA´1B´1 “ C, namely there is a circulation of the Up1q gauge potential. This implies
that there is a non-trivial Up1q magnetic field (with n units of flux [143]) on the T2. Al-
though the field strength can be taken constant and the configuration seems translational
invariant, the gauge potential can be written

A “ πnpxdy ´ ydxq, (9.23)

so that translations in x imply a change in the Wilson line of A along y, and viceversa.
This can be regarded as an action of the Kaluza-Klein Up1q’s on the Wilson line scalars,
which define a gauging that breaks the continuous symmetry and makes the Kaluza-Klein
gauge bosons massive [143, 148]. There is however an unbroken Hn ¸ Up1q symmetry,
corresponding to the original group of XN .

We may subsequently turn on a non-trivial periodic tachyon profile to remove the
extra dimensions, and truncate the dynamics to the origin. For instance, we may take the
supercritical heterotic theory HO`p2q with T 33 „ sinpπxq, T 34 „ sinpπyq. We emphasize
that the tachyon background does not lead to any additional breaking of the symmetry.
It should be straightforward to find other examples of non-Abelian discrete symmetries
embedded in continuous massive symmetries.

9.5.2 General framework

Consider a theoryM, with a (right-acting) discrete symmetry group Γ, which we want to
embed as part of a supercritical theory. We also have a group G with a normal subgroup
N . As a first step in the construction, we build the trivial fiber bundle E ” GˆM, with
canonical projection map onto the first factor πpg,mq “ g. There is a canonical action A
of G, so that for each g1 P G, Apg1q : pg,mq Ñ pg1g,mq.
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We now pick a homomorphism φ : N Ñ Γ and for each n P N consider the action
Fn : pg,mq Ñ png,m ¨ φpg´1ngqq. We quotient E “ G ˆM by the equivalence relation
e1 „ e2 if Fnpe1q “ e2 for some n P N . The quotient, denoted by E{F , has a natural
projection π1 onto G{N with preimageM, so the configuration is a non-trivial fiber bundle
over G{N . Furthermore, thanks to the normality of N , the action Apgq descends to a well-
defined action in the quotient (namely, the images under Apgq of F -equivalent points are
F -equivalent).

The topology of the bundle is specified by the holonomies around non-trivial loops in
G{N . Consider a one-parameter curve gptq in G, with t P r0, 1s, going from the identity
to some n P N , namely gp0q “ 1, gp1q “ n. This descends to a closed loop in G{N , with
a non-trivial action on the fiber M. In particular, a point of E{F with representative
pg,mq P E comes back as the point png,mq P E, which is in the class of pg,m ¨φpg´1n´1gqq
in E{F . Namely, the fiber suffers a monodromy given by an element in φpNq “ Γ, the
discrete symmetry group. The construction succeeds in embedding this symmetry as part
of the continuous group G acting on the coset G{N . Notice however, that the continuous
group may act as a non-trivial shift of scalars, resulting in a gauging which makes the
symmetry massive.

The last step would be to introduce a tachyon restricting the dynamics to the identity
class in G{N . This is difficult to describe in general, but can be worked out in detail in
examples.

9.5.2.1 The Heisenberg group

We now describe a particular example, which eventually corresponds to the Heisenberg
group in section 9.5.1.1. This illustrates some of the ingredients ultimately leading to
massive continuous symmetries.

We take G to be the Heisenberg group H3pRq and introduce the normal subgroup N ,
which has a normal subgroup NN , i.e. NN Ÿ N Ÿ G. They are defined by the sets of
matrices of the form

G “

¨

˝

1 x z ` xy
2

0 1 y
0 0 1

˛

‚, (9.24a)

N “

¨

˝

1 nx hz `
nxny

2
0 1 ny
0 0 1

˛

‚, (9.24b)

NN “

¨

˝

1 nx nz `
nxny

2
0 1 ny
0 0 1

˛

‚, (9.24c)

with x, y, z, hz P R, nx, ny, nz P Z. The quotients are G{N » T2, N{NN » Up1q.

We consider a theory M with a symmetry Hn ¸ Up1q, with Hn a discrete Heisenberg
group. The action of N on this theory (the homomorphism φ above) includes a Up1q
gauge transformation with parameter e2πihz . Incidentally, note that the homomorphism
φ has a non-trivial kernel, given by NN . We now take the product GˆM, and quotient
by the equivalence relation pg, e2πiθq „ phg,m ¨ φpg´1hgq, e2πiphz`θqq, where the last entry
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describes the gauge Up1q fiber, and m represents other sectors of the M on which φ
acts. The resulting quotient space is a non-trivial fiber bundle over T2. The non-trivial
glueing is manifest in the identifications px ` 1, y, z ` y

2 q, px, y ` 1, z ´ x
2 q, so the Up1q

fiber transforms as e2πiz Ñ e2πizeiπy under x Ñ x ` 1, and as e2πiz Ñ e2πize´iπx under
y Ñ y ` 1. A connection on this bundle must satisfy Apx ` 1, yq “ Apx, yq ´ πdy,
Apx, y`1q “ Apx, yq`πdx, which imply that the solutions carry a nonzero magnetic flux.

The action of G does not correspond to a true symmetry of the background, as follows.
On G ˆM, it takes pg, e2πiθq to pg1g, e2πiθq. To find the action on the quotient, we take
without loss of generality g “ px, y, 0q and g1 “ pa, b, cq, and have

pg1g, e2πiθq “
`

x` a, y ` b, c`
1

2
pay ´ bxq, e2πiθeπip´2c`bx´ay`pa`xqy´pb`yqxq

˘

. (9.25)

It maps fibers at different points, and also acts by moving along the fiber, i.e. translations
plus gauge transformations, as usual in the magnetized torus. The true symmetries are
given by the transformations Apnq for n P N , which are precisely Hn ¸ Up1q, recovering
the results in [143, 148].
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Conclusions

In this work we have explored different ways Abelian and non-Abelian discrete gauge
symmetries can be realized in the context of string theory. We have also discussed how
the discrete gauge symmetries can be embedded into continuous groups.

In chapter 3 we have reviewed discrete gauge symmetries in 4d field theory. We have
analyzed two different but equivalent ways to study discrete gauge symmetries, the BF
formulation and discrete symmetries as gaugings of isometries of the moduli space of the
scalars in the theory.

In chapter 4 we have studied how to realize discrete gauge symmetries in intersecting
D-brane models. We have shown that in semi-realistic (MS)SM type II orientifold con-
structions (sections 4.3 and 4.4) discrete gauge symmetries arise in a natural way, in the
form of Zn subgroups of continuous Up1q’s of the models. The list of the possible discrete
gauge symmetries is limited, and it agrees with the anomaly-free classification of discrete
gauge symmetries in [121]. In particular, we can easily get:

• The discrete groups RN , which arise as subgroups of Up1qB´L, with R2 being R-
parity.

• The baryon triality Z3 generated by B3 “ R3L3.

• The lepton triality L3.

• The R3L
2
3 symmetry.

All these symmetries forbid proton decay through dimension four operators, but only
R-parity and baryon triality allow for neutrino Majorana masses, which makes them phe-
nomenologically preferred.

We have also explored the realization of the Z2 R-parity from different sources, like
the existence of instanton sectors with minimal instanton number 2 (section 4.5), and
constraints from cancellation of K-theory charge (section 4.6).

In chapter 5 we extend the realization in [141, 138] of discrete gauge symmetries from
NSNS and RR p-form fields in compactifications with torsion homology. In particular,
we have shown that dimensional reduction of type IIB supergravity on a manifold with
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torsion produces the 4d Lagrangian for non-Abelian discrete gauge symmetries constructed
in section 3.3.

In chapter 6 we have studied wrapped branes in the presence of non-trivial background
fluxes. While they are wrapped on homologically non-trivial Z-valued cycles, there are
flux-induced topological effects associated to the Freed-Witten anomaly that render their
physical charges Zp valued rather than Z-valued, indicating that homology is not the
right mathematical tool to classify brane charges. It was already known that D-brane
charges must be classified by K-theory (in the absence of fluxes), or twisted K-theory
(in the presence of NSNS 3-form flux); since we also consider the presence of RR p-form
fluxes, the groups that are obtained can be considered a generalization of twisted K-theory,
and their physical construction provides an interesting way to explore the mathematical
formulation of such groups.

We have shown in sections 6.1 and 6.2 that in the cases with only one kind of back-
ground fluxes, for Zp-charged particles and strings there is an underlying Zp discrete gauge
symmetry that arises from the 10d Chern-Simons couplings. He have also constructed sys-
tems where the discrete group classifying brane charges is non-Abelian in section 6.3.

We have also discussed Zp-valued domain walls (section 6.5) and their relation to string
duality symmetries relating vacua with different flux quanta.

In chapter 7 we have considered discrete symmetries arising from discrete isometries
of the compactification manifold, exemplified by twisted tori compactifications (sections
7.1 and 7.2).

As an application of these ideas to semi-realistic models, we have focused on magnetized
D-brane models (section 7.3), where the continuous isometries of the compactification
manifold are broken into a non-Abelian discrete subgroup by the presence of the magnetic
fluxes. These discrete groups typically have a Heisenberg-like structure, with generators
associated to discrete isometries of the torus geometry, commuting to discrete symmetries
generated by the D-brane Up1q’s. The symmetry has been derived microscopically by
analyzing charged matter wave functions, and from dimensional reduction.

We have also shown that these symmetries imply powerful selection rule on the Yukawa
couplings of charged matter fields, including those observed in [74, 75] (and their inter-
pretation in [244, 245]), which are thus exact even at the non-perturbative level (section
7.4).

In chapter 8 we have considered discrete gauge symmetries remaining from broken
continuous gauge symmetries carried by general antisymmetric tensor fields in arbitrary
dimensions. We have described the field theory for these general Zp gauge theories, gen-
eralising the analysis in chapter 3. In section 3.3 we saw that the language of gaugings in
supergravity is an elegant way to describe 1-form gauge symmetries broken by scalars; it
would be interesting to develop such a description of the higher-rank case.

We have also studied several Abelian and non-Abelian realizations in string theory,
for instance, in compactifications with torsion cycles, or in compactifications with non-
trivial background fluxes using the mechanism of flux catalysis explained in chapter 6. In
particular, we have generalized the 4d analysis of section 6.2 to the 6d case.



157

In chapter 9 we have shown how genuinely discrete gauge symmetries in string theory
can be embedded into continuous symmetries, by extending the theories beyond the critical
dimension and using the closed string tachyon condensation. We have discussed several
different examples of such symmetries and embeddings.

We have presented two different ways to realize the embedding, dubbed ‘quenched
rotations’ (section 9.3) and ‘quenched translations’ (section 9.4). We have also shown
that the stabilization of discrete gauge symmetries as quenched translations allows us to
make contact with the alternative description of discrete gauge symmetries as a sum over
disconnected theories [176].

We have also discussed several aspects of how the realization of discrete gauge sym-
metries as quenched translations can be generalized to non-Abelian discrete symmetries,
and worked out the case of a discrete Heisenberg group; we have seen that we usually
require an additional gauging mechanism to break the continuous group into the discrete
subgroup.

All these embedding of discrete symmetries into continuous ones would be pointless if
we would not gain anything from them. In fact, one of the main results of this chapter
is that we can construct charged topological defects as closed string tachyon solitons.
This is reminiscent of the stabilization of D-branes as open string tachyon solitons, and
K-theory. However in our case the underlying mathematical structures of closed string
tachyon condensation and its topological solitons are not well known; therefore, one line of
investigation that should be pursued is the clarification of such structures. One of the first
steps would be to construct objects that are already known in string theory as solitons of
closed string tachyons, in analogy with D-branes as open string tachyon solitons. There
has been recent work in this direction showing that heterotic NS5-branes can be obtained
from closed string tachyon condensation [283].
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11
Conclusiones

En esta tesis hemos explorado distintas maneras en las que simetrÃas gauge discretas
abelianas y no abelianas pueden realizarse en el contexto de teoŕıa de cuerdas. También
hemos discutido cómo las simetŕıas gauge discretas pueden encajarse en grupos continuos.

En el caṕıtulo 3 hemos repasado las simetŕıas gauge discretas en teoŕıa de campos en
cuatro dimensiones. Hemos analizado dos maneras diferentes pero equivalente de estudiar
las simetr’ias gauge discretas, la formulación BF y simetŕıas discretas provenientes de
gaugings de las isometŕıas del espacio de moduli de los escalares de la teoŕıa.

En el caṕıtulo 4 hemos estudiado cómo obtener simetŕıas gauge discretas en mode-
los de D-branas intersecantes. Hemos mostrado que en construcciones semi-realistas de
orientifolds de supercuerdas de tipo II que dan lugar al Modelo Estándar o a su versión
mı́nimamente supersimétrica (secciones 4.3 y 4.4), las simetŕıas gauge discretas surgen de
manera natural, en la forma de subgrupos Zn de los Up1q continuos de los modelos. La
lista de posibles simetŕıas gauge discretas es limitada, y está de acuerdo con la clasificación
de simetŕıas gauge discretas libres de anomaĺıas en [121]. Más concretamente, podemos
obtener fácilmente simetrás como estas:

• Los grupos discretos RN , que surgen como subgrupos de Up1qB´L, con R2 siendo
paridad R.

• La trialidad bariónica Z3 generada por B3 “ R3L3.

• La trialidad leptónica L3.

• La simetŕıa R3L
2
3.

Todas estas simetŕıas proh́ıben la desintegración del protón a través de operadores de
dimensión cuatro, pero solo la paridad R y la trialidad bariónica permiten masas de
neutrino de tipo Majorana, por lo que son las opciones preferidas desde el punto de vista
fenomenológico.

También hemos explorado la posibilidad de obtener el Z2 de paridad R a partir de
distintas fuentes, como la existencia de sectors de instantones con un número de instantón
mı́nimo igual a dos (sección 4.5), y restricciones que provienen de la cancelación de cargas
de teoŕıa K (sección 4.6).
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En el caṕıtulo 5 hemos extendido la obtención de simetŕıas gauge discretas a partir
de campos de p-forma NSNS y RR en compactifications con homoloǵıa de torsión en
[141, 138]. En particular, hemos mostrado que reducción dimensional de supergravedad
tipo IIB en una variedad con torsión produce el lagrangiano en cuatro dimensiones para
simetŕıas discretas no abelianas constrúıdo en la sección 3.3.

En el caṕıtulo 6 hemos estudiado branas enrolladas en la presencia de flujos de fondo
no triviales. Aunque están enrolladas en ciclos Z valuados homologicamente no triviales,
existen efectos topológicos inducidos por los flujos asociados a la anomaĺıa de Freed-Witten
que vuelven sus cargas f́ısicas Zp valuadas en vez de Z valuadas, indicando que homoloǵıa
no es la herramienta matemática adecuada para clasificar las cargas de las branas. Ya se
sab́ıa de antes que las cargas de D-brana han de clasificarse usando teoŕıa K (en ausencia
de flujos), o de teoŕıa K retorcida (en la presencia de flujo de 3-forma NSNS); puesto que
nosotros también consideramos la presencia de flujos de p-forma RR, los grupos obtenidos
pueden considerarse como una generalización de teoŕıa K retorcida, y su cosntrucción
f́ısica proporciona una manera interesante de explorar la formulación matemática de tales
grupos.

En las secciones 6.1 y 6.2 hemos mostrado que en casos con un solo tipo de flujos de
fondo, para part́ıculas y cuerdas con cargas Zp valuadas existe una simetŕıa Zp subya-
cente que emerge de los acoplos de Chern-Simons en diez dimensiones. También hemos
constrúıdo sistemas donde el grupo discreto que clasifica las cargas de las branas es no
abeliano en la sección 6.3.

También hemos discutido sobre paredes de dominio Zp valuadas (sección 6.5) y su
relación con simetŕıas de dualidad en teoŕıa de cuerdas relaciionando vaćıos con distintos
cuantos de flujo.

En el cap’itulo 7 hemos considerado las simetŕıas discertas que surgen de isometŕıas
discretas de la variedad de compactificación, ejemplificándolo con el caso de compactifica-
tiones en toros retorcidos (secciones 7.1 y 7.2).

Como una aplicación de estas ideas a modelos semi-realistas, nos hemos centrado
en modelos de D-branas magnetizadas (sección 7.3), donde las isometŕıas continuas del
espacio de compactificación están rotas a un subgrupo discreto no abeliano por la presencia
de flujos magnéticos. Estos grupos discretos tienen t́ıpicamente una estructura de tipo
Heisenberg, con generadores asociados a isometŕıas discretas de la geometŕıa del toro,
conmutando a isometŕıas discretas generadas por los Up1q de las D-branas. La simetŕıa ha
sido dervidada microscópicamente analizando las funciones de onda de la materoa cargada,
y a partir de reducción dimensional.

También hemos mostrado que estas simetŕıas implican poderosas reglas de selección
en los acoplos de Yukawa de los campos de materia cargados, incluyendo los observados
en [74, 75] (y su interpretación en [244, 245]), que son por lo tanto exactos incluso a nivel
no perturbativo (sección 7.4).

En el caṕıtulo 8 hemos considerado simetŕıas gauge discretas que quedan como rema-
nentes de simetr’́ıas gauge continuas rotas asociadas a campos tensoriales antisimétricos
generales en un número arbitrario de dimensiones. Hemos descrito la teoŕıa de campos
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para estas teoŕıas gauge Zp generales, generalizando el análisis del caṕıtulo 3. Seŕıa intere-
sante el poder desarrollar una descripción de estas simetŕıas discretas asocaidas a tensores
de alto rango análoga a la elegante descripción de simetŕıas gauge asociadas a 1-formas
rotas por escalares en el lenguaje de gaugings en supergraviedad de la sección 3.3.

También hemos estudiado diversas maneras de obtener estas simetŕıas, tanto abelianas
como no abelianas, en teoŕıa de cuerdas, por ejemplo, en compactificaciones con ciclos
de torsión, o en compactifications con flujos de fondo no triviales usando el mecanismo
de catálisis de flujo (flux catalysis) explicado en el caṕıtulo 6. Concretamente, hemos
generalizado el análisis en cuatro dimensiones de la sección 6.2 al caso de seis dimensiones.

En el caṕıtulo 9 hemos mostrado cómo simetŕıas gauge discretas auténticas pueden ser
encajadas en simetŕıas continuas, extendiendo las teoŕıas más allá de la dimensión cŕıtica
y usando condensación de taquiones de cuerda serrada. Hemos discutido diversos ejemplos
de tales simetŕıas y encajes.

Hemos presentado dos maneras diferentes de llevar a cabo el encaje, denominadas
‘quenched rotations’ (section 9.3) y ‘quenched translations’ (section 9.4). También hemos
mostrado que la obtención de simetŕıas gauge discretas a través de ‘quenched translations’
nos permite conectar con la descripción alternativa de simetŕıas gauge discretas como una
suma sobre teoŕıas inconexas [176].

También hemos discutido diversos aspectos sobre cómo la obtenci
on de simetŕıas gauge discretas a través de ‘quenched translations’ se piede generar a
simetŕıas discretas no abelianas, y hemos estudiado el caso particular de un grupo de
Heisenberg discreto; hemos visto que generalmente se requiere un mecanismo de gauging
extra para romper el grupo continuo al subgrupo discreto.

Todos estos encajes de simetŕıas discretas en continuas no tendŕıan sentido si no
fuéramos capaces de beneficiarnos de algún modo. Uno de los principales resultados de
este caṕıtulo es que podemos construir defectos topológicos cargados como solitones de
taquiones de cuerda cerrada. Esto evoca la realización de D-branas como solitiones de
taquiones de cuerda abierta, y teoŕıa K. Sin embargo, en nuestro caso las estructuras
matemáticas subyacentes de la condensación de taquiones de cuerda cerrada y sus soli-
tiones topológicos no son conocidas plenamente; por lo tanto, una ĺınea de investigación
a seguir seŕıa la clarificación de dichas estructuras. Uno de los posibles primeros pasos
seŕıa construir objetos que ya se conocen en teoŕıa de cuerdas a través de condensación de
taquiones de cuerda cerrada, en analog’́ıa con las D-branas y la condensación de taquiones
de cuerda abierta. Trabajos recientes en este sentido has conseguido obtener las NS5-
branas heteróticas a partir de condensaciones de cuerda cerrada [283].
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A
Supercritical string theories

The 26d bosonic string theory, 10d type II, type I, type 0 and heterotic string theories,
are the so-called critical string theories; in the conformal field theory language, it means
that the number of dimensions of those theories is such that the total central charge is
zero, with the matter central charge being given by

cmatter “ D “ 26, (A.1a)

cmatter “
3

2
D “ 15, (A.1b)

for the bosonic and superstring theories, respectively.

If one introduces a linear background for the dilation,

φ “ φ0 ` VµX
µ, (A.2)

the expression for the matter central charge is given by

cmatter “ D ` 6α1VµV
µ, (A.3a)

cmatter “
3

2
D ` 6α1VµV

µ, (A.3b)

for the bosonic and superstring theories, respectively. Therefore, with an appropriate
dilaton background we can get theories with a number of dimensions different from the
critical one (26 for bosonic and 10 for superstring theory). These theories are called non-
critical and were first considered in [284]. They are separated into subcritial string theories
if the number of dimensions is lower than the critical one, and supercritical string theories
if it is higher.

In chapter 9 we will use supercritical string theories to be able to embed discrete
symmetries into continuous ones, so let us review them here1.

Supercritical string theories are defined by generalising the worldsheet content of the
26d bosonic string, or 10d superstring, to D dimensions (with extra changes for supercrit-
ical heterotics), and introducing an appropriate linear dilaton background, which we take
to be timelike (i.e. choose coordinates such that Vµ “ 0 for µ ‰ 0) to produce supercritical
theories rather than subcritical ones.

1For a more detailed analysis of supercritical string theories see [254, 255, 256, 257, 258].
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As usual, consistent theories must fulfil the requirement of modular invariance, with
leads to different supercritical theories, discussed below. The pattern of GSO-like pro-
jections (when required) determines the space-time spectrum, in particular massless2 and
tachyonic fields. An important aspect of all these theories is that closed string tachyons
are ubiquitous.

Unlike open string tachyons, closed string instabilities are less understood (see e.g.
[285, 286, 287, 288, 289, 290] for some discussions). Fortunately, there is a quite precise
description of the different effects of closed string tachyon condensation in supercritical
strings, which is even quantitative for light like tachyon profiles [255, 256, 257, 258]3. In
particular, they have been shown to trigger a reduction in the number of dimensions [256],
dubbed ‘dimension quenching’ [258].

The standard 26d bosonic string theory, the 10d SOp32q heterotic, and the 10d type
0 and type II superstrings can be regarded as the endpoint of closed string tachyon con-
densation of suitable supercritical string theories.

A.1 Supercritical bosonic strings

The supercritical bosonic string in D-dimensional space-time is defined by D worldsheet
bosons XM , M “ 0, . . . , D ´ 11, and an appropriate timeline linear dilaton. As in the
familiar 26d theory, the light spectrum contains a (real) closed string tachyon T pXq, abad
massless graviton, 2-form and dilaton fields, GMN , BMN , φ.

The modular invariant partition function for the supercritical bosonic string in D
dimensions is

Zpτq “
p4π2α1τ2q

´D´2
2

|η|2pD´2q
. (A.4)

Since the tachyon vertex operator is the identity, a tachyon background couples as a
world sheet potential. Tachyon condensation can be followed quantitatively for specific
‘light-like’ profiles, in which the tachyon T pXq depends on the direction X`. It describes
the dynamics close to the boundary of an expanding bubble interpolating between two
vacua: the ‘parent’ with no tachyon and the endpoint of tachyon condensation.

We will focus on tachyon profiles describing the disappearance of space-time dimen-
sions, see [256] for additional details. To remove e.g. one dimension Y ” XD´1, we deform
the worldsheet action by a superposition of conformal operators

T pX`, Y q “ µ2
0 exp

`

βX`
˘

´ µ2
k cos pkY q exp

`

βkX
`
˘

. (A.5)

The parameters µ0, µk are tuned to achieve a stationary (yet not stable, in this bosonic
case) endpoint, while β and βk are fixed to make the operators marginal, i.e. to satisfy
the tachyon space-time equations of motion

BµBµT ´ 2V µBµT `
4

α1
T “ 0. (A.6)

2Since the dilaton background breaks Poincaré invariance, one should be careful in talking about the
mass. We follow the convention in [254] of meaning the mass term arising in the equations of motion of
the space-time field.

3For other works on light-like tachyon condensation, see [291, 292, 293].
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The theory simplifies in the limit k Ñ 0 (i.e. the wavelength of the tachyon k´1 is long
compared to the string scale) while keeping fixed α1k2µ2

k ” µ2 and µ12 ” µ2
0 ´ µ2

k. The
tachyon profile becomes

T pX`, Y q “
µ2

2α1
exp

`

βX`
˘

Y 2 ` T0pX
`q, (A.7)

where we have defined

T0pX
`q “

µ2X`

α1q
?

2
exp

`

βX`
˘

` µ12 exp
`

βX`
˘

, (A.8)

with

qβ “
2
?

2

α1
. (A.9)

The operator T0pX
`q should be thought as of representing tachyon condensation along

a lightlike direction in D ´ 1 space-time dimensions. Then, the second term in (A.8)
represents a mode exppβX`q of the tachyon with amplitude µ12, which can be fine-tuned
to zero by setting µ12 to vanish. The meaning of the first term in (A.8) is less transparent;
however, it can be shown [256] that this term is precisely cancelled by the quantum
effective potential generated upon integrating out the Y field. Therefore, the tachyon
profile essentially becomes

T pX`, Y q “
µ2

2α1
exp

`

βX`
˘

Y 2. (A.10)

At X` Ñ ´8 we have the parent bosonic theory in D dimensions and vanishing
tachyon profile, while at X` Ñ8 the strings are pinned at Y “ 0, so space-time effectively
loses one dimension. The quantum correction produced when we integrate out the world
sheet field Y at late X` readjusts the metric and dilaton background, correctly accounting
for the change in central charge [256].

The bottom line is that the dimension Y disappears via closed string tachyon conden-
sation. It is straightforward to generalize to the disappearance of several dimensions, and
in particular to decay down to the familiar 26d bosonic string theory.

The general lesson about closed string tachyon condensation is the reduction of space-
time dimensions onto the locus of the vanishing tachyon. This lesson can be applied to
more general tachyon profiles even if the corresponding worldsheet theory is not exactly
solvable; in other words, the quadratic profile (A.10) is a local approximation for any
tachyon profile sufficiently near a simple zero, around which the background is otherwise
trivial (except for the linear dilaton). From this perspective, the trigonometric profile
(A.5) would lead to a periodic array of zeroes, and the purpose of the k Ñ 0 limits to
decouple them and extract an isolated zero.

A.2 Supercritical heterotic strings

In this section we will review the supercritical heterotics strings in D “ 10`n dimensions,
dubbed HO`pnq and HO`pnq{ in [254]. In both, the world sheet theory generalizes the
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10d SOp32q heterotic in its fermionic formulation. There are D (left- and right-moving)
bosons XM , M “ 0, . . . , D ´ 1, and D right-moving fermions ψ̃M , all in the vector repre-
sentation of the SOp1, D ´ 1q space-time Lorentz group. In addition, there are p32 ` nq
left-moving fermions, which we split as λ1, a “ 1, . . . , 32 and χm, m “ 1, . . . , n (the latter
are required to cancel the 2d gravitational anomaly). Finally, a timelike linear dilaton is
introduced to achieve the correct matter central charges. The two theories differ in their
GSO projections, and their properties are discussed separately in the following.

A.2.1 HO`pnq theory

In the HO`pnq theory there are two GSO-like projections, which can be described as
orbifolds by the Z2 actions g1, g2 in table A.1. The GSO g1 acts on the 32 left-moving
fermions as in the 10d SOp32q heterotic string, while g2 is an extension of the standard
GSO projection in the right-moving sector (as recovered by ‘forgetting’ the ψ̃m, χm).

Field g1 g2

Xµ + +

Xm + +

ψ̃µ + +

ψ̃m + -

λa - +

χm + -

Table A.1: Charge assignments for the GSO projections in the HO`pnq theory. For con-
venience we use indices µ “ 0, . . . , 9, and m “ 10, . . . , D ´ 1. Note that the index m for
the χs labels their multiplicity, but it is not a Lorentz index.

The symmetry is SOp1, 9`nqX,ψ̃ˆSOpnqχˆSOp32qλ. Tachyonic and massless states
arise only in the g1-untwisted sector, and are as follows

Sector State D-dim. field Comment

Unt. χm
´ 1

2

|0y Ñ Tm Tachyons

αM´1 ψ̃
N
´ 1

2

|0y Ñ GMN , BMN , φ graviton, 2-form, dilaton

λa
´ 1

2

λb
´ 1

2

ψ̃M
´ 1

2

|0y Ñ AabM SOp32q gauge bosons

g2-twist. αM´1 |spinory Ñ ΨM
α Rarita-Schwinger + Dirac

λa
´ 1

2

λb
´ 1

2

|spinory Ñ λabα Spinor in adj. of SOp32q

The tachyons Tm are singlets under the SOp32q gauge group. The spinor groundstates
arise from fermion zero modes for ψ̃M , χm, and have fixed overall chirality under SOp1, 9`
nq ˆ SOpnq.
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Since the actions of g1 and g2 commute with each other, the partition function factorizes
in these two sectors. A bosonic piece which does not see the world sheet symmetries also
factors out. In other words, the partition functions has a structure Z “ ZCM ˆ ZX ˆ
Zψ̃,χ ˆ Zλ, and is given by
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1

4
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(A.11)

This theory is related to the 10d SOp32q heterotic theory by (light-like) closed string
tachyon condensation quenching the n extra dimensions. In this case, the tachyon back-
ground couples as a worldsheet superpotential

∆L2d “ ´
1

2π

ż

dθ`
ÿ

m

Λm TmpXq (A.12)

where Tm are functions of the p0, 1q superfieldsXM`iθ`ψ̃M , and we have Fermi superfields
Λm “ χm ` θ`Fm, with Fm being auxiliary fields (see e.g. [294]). Using the kinetic term
to integrate out the latter, the extra terms in components are a worldsheet potential for
the worldsheet bosons and Yukawa couplings for worldsheet fermions

Lpot „
ÿ

m

pTmpXq q2, (A.13a)

LYuk „ BMT
mpXqχm ψ̃M (A.13b)

To describe the disappearance of all dimensions Xm, we consider a profile for the tachyons,
sketchily given by

TmpX`, Xq “ µ2
k sinpkXmq exppβkX

`q Ñ TmpX`, Xq “ µ2Xm exppβkX
`q

The LHS describes the deformation by exponential operators (taken marginal by tuning
βk), while the RHS describes the configuration after a k Ñ 0 limit, similar to the earlier one
in section A.1. At X` Ñ ´8 we have the theory in D dimensions and vanishing tachyon
profile, while at X` Ñ8 the dynamics truncates to the slice Xm “ 0, since all the extra
worldsheet fields are made massive by (A.13). The endpoint of tachyon condensation is
the 10d supersymmetric SOp32q heterotic string theory4. It is worth noting that from
the spacetime perspective, the 10d fermions arise as zero modes of the p10` nqd fermions
coupled to the tachyon kink.

A.2.2 HO`pnq{ theory

In the HO`pnq{ theory, the GSO projection is given by the action g1 in table A.2. All
left-moving fermions λ, χ are on equal footing, so they are collectively denoted λa, a “
1, . . . , 32` n.

4Actually, a BPS state in this 10d theory, c.f. [256]
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Field g1 g2

Xµ + +

Xm + -

ψ̃µ - +

ψ̃m - -

λa - -

Table A.2: Charge assignments for the GSO projections in the HO`pnq{ theory. For
convenience we use indices µ “ 0, . . . , 9, and m “ 10, . . . , D ´ 1.

The symmetry is SOp1, 9 ` nqX,ψ̃ ˆ SOp32 ` nqλ. Light states arise only in the g1-
untwisted sector, and are as follows

Sector State D-dim. field Comment

g1-untwisted λa
´ 1

2

|0y Ñ T a Tachyons

αM´1 ψ̃
N
´ 1

2

|0y Ñ GMN , BMN , φ graviton, 2-form, dilaton

λa
´ 1

2

λb
´1{2 ψ̃

N
´ 1

2

|0y Ñ AabM SOp32` nq gauge bosons

The tachyons T a transform in the vector representation of the SOp32` nq gauge group.

The modular invariant partition function factorizes as Z “ ZCM ˆ ZX ˆ Zψ̃,λ, and is
given by
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(A.14)

The above theory has no space-time fermions, so it is not a supercritical extension of
the supersymmetric SOp32q heterotic. However, the latter is related to a Z2 orbifold of
the HO`pnq{ theory, defined by the element g2 in table A.2.

The original HO`pnq{ spectrum is the g2-untwisted sector, so it propagates in D di-
mensions, and must be projected onto g2-invariant states. In particular, the tachyons T a,
as well as the ‘mixed tensors’ Gmµ, Bmµ, are forced to vanish at the fixed locus Xm “ 0.
The only additional massless states arise from the g1g2-twisted sector, and correspond to
the following 10d massless fields localized at the fixed locus Xm “ 0
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State 10d field Comment

αµ´1|spinory Ñ ψµα Gravitino+dilatino

λa
´ 1

2

λb
´ 1

2

|spinory Ñ χabα chiral fermion in p , 1q

λa
´ 1

2

αm
´ 1

2

|spinor1y Ñ χ 9α opp. ch. fermion in p , q

αm
´ 1

2

αn
´ 1

2

|spinory Ñ χmnα chiral fermion in p1, q

The spinor groundstate arises from the fermion zero modes of ψ̃µ, and the 10d chirality is
fixed by the GSO projection. The representations of the fermions is under the SOp32`nq
gauge group and the SOpnqrot rotational group in the coordinates Xm. Regarding the
latter as some kind of gauge group, the fermion content motivated ref. [254] to propose a
duality with type I with n D9-D̄9 brane pairs.

The modular invariant partition function is given by
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(A.15)

This orbifold configuration relates to the 10d SOp32q heterotic theory by (light-like)
tachyon condensation. The tachyon background couples as a worldsheet superpotential

∆L2d “ ´
1

2π

ż

dθ`
ÿ

a

Λa T apXq (A.16)

(with Fermi superfields Λa “ λa`θ`F a), and the 2d scalar potential and fermion couplings
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are given by

Lpot „
ÿ

a

pT apXq q2, (A.17a)

LYuk „ BMT
apXqλa ψ̃M (A.17b)

The removal of the dimensions Xm, m “ 10, . . . , D´ 1, requires a profile for the tachyons
T a“23`m, i.e. a “ 33, . . . , 32` n, sketchily

T 23`mpX`, Xq “ µ2
k sinpkXmq exppβkX

`q Ñ T 23`mpX`, Xq “ µ2Xm exppβkX
`q

before and after the familiar k Ñ 0 limit. Note that we must restrict to tachyon profiles
invariant under the orbifold Z2 symmetry Xm Ñ ´Xm, T a Ñ ´T a.

At X` Ñ ´8 we have the parent orbifold configuration with D dimensions and
vanishing tachyon, while at X` Ñ 8 the dynamics truncates to the slice Xm “ 0. The
endpoint of tachyon condensation is the 10d supersymmetric SOp32q heterotic theory5.

A.3 Supercritical type 0 strings and decay to type II

In this section we describe 10d type II theories as the endpoint of closed string tachyon
condensation in some supercritical theory. Supercritical type II theories exist, but only
in dimensions D “ 8p ` 2 (because of the specific structure of their modular invariant
partition function). Fortunately, a more generic extension can be obtained by considering
supercritical type 0 theories in D “ 10`2p dimensions, and performing a suitable orbifold
to relate them to the 10d type II theories [256], as we now review.

The supercritical type 0 theories in D dimensions are described by D worldsheet bosons
XM , and left and right fermions ψM , ψ̃M , with M “ 0, . . . , D´ 1, and the usual timelike
linear dilaton background. There is a GSO projection, associated to p´1qFw , where Fw is
total worldsheet fermion number, with two choices that correspond to the type 0A or 0B
theories, as in the critical type 0 theories.

The spacetime spectrum contains a real tachyon T pXq given by the groundstate in
the NSNS sector. The massless NSNS sector contains the D-dimensional graviton, 2-form
and dilaton. In the RR sector, the states are the tensor products of left and right (non-
chiral) spinor groundstates, decomposing as a bunch of p-forms (different in the 0A and
0B theories).

The modular invariant partition function for the supercritical type 0A/B in D “ 10`n
dimensions is given by

Z0pτq “
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2
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(A.18)

The tachyon couples as a worldsheet superpotential,

∆L “ i

2π

ż

dθ`dθ´T pXq, (A.19)

5Actually, a BPS state in this 10d theory, c.f. [256]
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where T pXq depends on the p1, 1q superfields XM ` iθ´ψM ` iθ`ψ̃M ` iθ´θ`FM (see e.g.
[294]). Upon integrating out the auxiliary fields FM , the terms in components describe a
worldsheet potential and Yukawa couplings

Lpot „ B
MT pXqBMT pXq, (A.20a)

LYuk „ BMBNT pXq ψ̃MψN (A.20b)

Condensation of this tachyon can produce dimension quenching in type 0 theories, but
cannot connect down to 10d type II theories. In order to achieve the latter, we must
instead consider a Z2 quotient of the above supercritical configuration.

In particular, we focus on even dimensions D “ 10 ` 2p, and split the extra 2p coor-
dinates in two sets, denoted by Xm, X

1m. For such even D, there is a global symmetry
on the worldsheet, corresponding to left-moving worldsheet fermion number p´1qFLw (i.e.
under which ψM are odd and ψ̃M are even). In the critical D “ 10 case, orbifolding by
p´1qFLw produces the 10d type II theories (since this projection combines with the type
0 GSO to produce independent left and right GSO projections). In the supercritical case,
modular invariance requires to mod out by g ” p´1qFLw ¨ R, where R is the spacetime
Z2 action X

1m Ñ ´X
1m, Xm Ñ Xm. The g-untwisted sector corresponds to the (Z2 pro-

jected) old NSNS and RR sectors, and describe fields in D “ 10`2p dimensions, while the
twisted sectors are NS-R and R-NS sectors localized at X

1m “ 0, i.e. in 10`p dimensions.
The NSNS and RR sectors contain bosonic fields, whereas the NS-R and R-NS sectors
contain fermion fields. The choices of 0A or 0B as starting point determine the IIA or IIB
- like projections in this twisted sector.

Focusing on the supercritical type 0B, the massless fields correspond to p10 ` pq-
dimensional vector-spinor fields ψMα , where M runs through D “ 10`2p coordinates, and
α denotes a bi-spinor of SOp1, 9 ` pq ˆ SOppq, with an overall chirality projection (i.e.
the decomposition of an SOp1, 9 ` 2pq chiral spinor). The vector-spinor field splits as a
gravitino and a Weyl spinor, as usual.

The modular invariant partition function for the supercritical type 0A/B in D “ 10`n
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dimensions orbifolded by the Z2 defined above is given by
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ˇ

ˇ

ˇ

ˇ
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ˇ

ˇ

ˇ
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„
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1{2


ˇ

ˇ

ˇ
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ˇ

ˇ

ˇ

ϑ

„

0

0


ˇ

ˇ

ˇ

ˇ

n˙*

.

(A.21)

These supercritical non-compact orbifolds can be connected with 10d type II theories
by closed string tachyon condensation. The local worldsheet coupling to the tachyon
background is still given by (A.19) and (A.20). The superpotential must be Z2-odd, so
the tachyon is a superposition of marginal operators with sine dependence on X 1m’s. For
instance, choosing a sine dependence also on Xm, and taking two extra dimensions for
simplicity, we have

T “ µ exppβX`qµk,k1 sinpkXq sinpk1X 1q. (A.22)

In the familiar k Ñ 0 limit, we have the tachyon profile T „ XX 1, or in general (setting
some constants equal for simplicity)

T “ µ exppβX`q

p
ÿ

m“1

XmX 1m. (A.23)

This removes the coordinates Xm, X
1m and produces a 10d superstring theory at Xm “

X
1m “ 0. It contains NSNS, NSR, RNS and RR sectors with a type II GSO projection,

i.e. we recover the 10d type II theories. In particular, notice that the tachyon vanishes at
X “ X 1 “ 0 and does not give any dynamical mode after condensation.

A.4 Dimensional reduction vs dimension quenching

We conclude the discussion several conceptual remarks: Dimension quenching is drasti-
cally different from Kaluza-Klein dimensional reduction. From the spacetime viewpoint,
dimension quenching causes the extra dimensions to completely disappear from the theory.
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In particular, there remain no towers of extra-dimensional momentum modes. Even at
the level of massless modes, its effect on spacetime bosons differs from a truncation to the
zero mode sector; for instance, mixed components Gµm disappear completely (whereas
they can survive in KK dimensional reduction). However, it is important to emphasize
that, dimension quenching does behave like dimensional reduction for massless spacetime
fermions; indeed, the 10d spinors arise from zero modes of the higher-dimensional Dirac
operator coupled to the tachyon background [254].

Hence, from the spacetime perspective, the natural order parameter measuring the
tachyon background is the derived quantity coupling to the spacetime fermions, namely
BmT

a in heterotic, c.f. (A.13), and BmBnT in type 0/II, c.f. (A.20). The symmetry break-
ing pattern is mostly encoded in the quantum numbers of this quantity. For instance, in
section A.2 the background BmT

a breaks the SOp32 ` nq ˆ SOpnq gauge and rotational
symmetries down to SOp32q (times a diagonal SOpnqdiag). Similarly, in section A.3 the
background BmBnT breaks the SOpnq ˆ SOpnq rotational symmetries (seemingly with a
left-over diagonal SOpnqdiag). Although the diagonal symmetries SOpnqdiag would seem
unbroken from a Higgsing perspective in spacetime, the microscopic worldsheet computa-
tion shows that they actually disappear.
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B
Fluxbranes

In this section we will review some basic concepts on fluxbranes. See [271, 272] for more
detailed discussions.

B.1 The IIA F7-brane

Consider M-theory on an space X11 “M10ˆR “M8ˆR2ˆR (flat space) with metric

ds2
11 “ ηµνdx

µdxν ` dr2 ` r2dφ2 ` dx2
10 (B.1)

where the xµ, µ “ 0, . . . , 7 parametrize M8, r, φ parametrize R2 and x10 parametrizes R.

We will perform a Kaluza-Klein reduction from 11 to 10 dimensions involving the
following shift identification:

x10 „ x10 ` 2πn1R (B.2a)

φ „ φ` 2πn2 ` 2πn1BR
2. (B.2b)

In other words, the dimensional reduction is performed along orbits of the Killing vector
q “ Bx10 `BRBφ. As usual R “ gs

Ms
is the ratio of the string coupling to the string mass,

and B will be identified with the strength of the magnetic field at the origin (r “ 0).

In order to perform the Kaluza-Klein reduction it is convenient to introduce the co-
ordinate φ̃ “ φ ´ BRx10 which is canonically identified and constant along orbits of q,

x10 „ x10 ` 2πn1R (B.3a)

φ̃ „ φ̃` 2πn2. (B.3b)

In terms of φ̃ the eleven dimensional metric is

ds2
11 “ ηµνdx

µdxν ` dr2 ` r2pdφ̃`BRdx10q
2 ` dx2

10. (B.4)

The Kaluza-Klein ansatz metric is

ds2
11 “ e

4Φ
3 pdx11 `RAρdx

ρq2 ` e´
2Φ
3 ds2

10 (B.5)

where Φ and A are the ten dimensional dilaton and RR 1-form, respectively, and xρ “
txµ, r, φ̃u.
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Comparing (B.4) and (B.5) one gets

ds2
10 “

?
Λpηµνdx

µdxν ` dr2q `
r2dφ̃2

?
Λ

(B.6a)

Aφ̃ “
Br2

Λ
(B.6b)

e
4Φ
3 “ Λ (B.6c)

Λ ” 1`B2R2r2. (B.6d)

The solution describes a 8-dimensional Poincaré invariant configuration of non-vanishing
RR 1-form field strength flux turned on in the pr, φ̃q plane. The total magnetic flux is

ż

R2
F “

2π

R2B
(B.7)

where

F “ dA “
2Br

p1`B2R2r2q2
dr ^ dφ̃ (B.8)

Since the flux is given by
ş

BprqdS, and dS “ rdr^dφ̃, Bprq “ 2B{p1`B2R2r2q2 and
Bp0q “ 2B.1

Near the origin the metric is smooth and has small curvature, and the RR field strength
is approximately constant. At large r, the fluxbrane induces strong coupling, since the
radius of compactification (coefficient of dx2

10) grows like r.

B.2 Lower dimensional F-branes

We will now construct fluxbranes with non-vanishing flux for the 2k-form F ^ . . .^F , the
Fp9´ 2kq-branes.

We first write the 11-dimensional metric as

ds2
11 “ dx2

10 `

k
ÿ

i“1

pdr2
i ` r

2
i dφ

2
i q ` ηµνdx

µdxν (B.9)

where ri, φi are coordinates in the ith R2 and the xµ parametrize M10´2k.

We will perform a Kaluza-Klein reduction from 11 to 10 dimensions involving the
following shift identification:

x10 „ x10 ` 2πn0R (B.10a)

φi „ φi ` 2πni ` 2πn0BiR
2. (B.10b)

Defining the adapted coordinates

φ̃i “ φi ´BiRx10 (B.11)

1Is this right?
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the metric becomes

ds2
11 “ ηµνdx

µdxν `
k
ÿ

i“1

´

dr2
i ` r

2
i pdφ̃i `BiRdx10q

2
¯

` dx2
10. (B.12)

Comparing this expression with (B.5) we obtain

e
4Φ
3 “ λ (B.13a)

Aφ̃i “
Bir

2
i

1`R62
řk
j“1B

2
j r

2
j

(B.13b)

ds2
10 “

?
Λ

˜

ηµνdx
µdxν “

k
ÿ

i“1

pdr2
i ` r

2
i dφ̃

2
i q

¸

´
R2

?
Λ

˜

k
ÿ

i“1

Bir
2
i dφ̃i

¸2

(B.13c)

Λ ” 1`R2
k
ÿ

i“1

B2
i r

2
i (B.13d)

The solution describes a p10´ 2kq-dimensional Poincaré invariant object with nonzero
F k flux in the transverse R2k, a Fp9´ 2kq-brane.

As in the previous section, the dilaton blows up away from the core of the fluxbrane.

B.3 IIAØ0A duality

For B “ 2
R2 one has a 4π rotation in (B.2), which is equivalent to no rotation at all.

Therefore IIA with this critical magnetic field is dual to the IIA vacuum.

For B “ 1
R2 “

M2
s

g2
s

the rotation in (B.2) has no effect on bosons but gives a minus sign

for fermions. According to [295] it is conjetured that M-theory compactification on S1

with twisted fermion boundary conditions is the 0A string theory at half string coupling;
and it has been conjectured in [269] that

IIApB, gsq Ø 0ApB ´
M2
s

g2
s

,
gs
2
q (B.14)

Therefore we obtained a duality between IIA theory with B “ 1
R2 and 0A string theory

with no flux.

B.4 F7ØIIA cone duality

The circle used in section B.1 to reduce from 11d to 10d is not unique. The above
IIAØ0A duality can be viewed as different choices of this circle. In both cases the circle
lies in the torus parametrised by x11 and the angle φ, but they differ by a modular
transformation. Therefore we can obtain more general alternate IIA descriptions on the
theory transforming the torus (B.3) by a SLp2,Zq transformation

x̂10 “ ax10 ` bRφ̃, (B.15a)

φ̂ “
c

R
x10 ` dφ̃, (B.15b)
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identified as

x̂10 „ x̂10 ` 2πn1R, (B.16a)

φ̂ „ φ̂` 2πn2, (B.16b)

where a, b, c, d P Z obey ad´ bc “ 1.

The flat 11-dimensional metric (B.4) becomes

ds2
11 “ ηµνdx

µdxν ` dr2` r2ppa´ bBR2qdφ̂` pdBR´s
c

R
dx̂2

11` pd dx̂10´ bRdφ̂q
2. (B.17)

Consider the case

BR2 “
1

N
(B.18)

with N P Z. Then choosing

a “ 1, b “ N ´ 1, c “ 1, d “ N, (B.19)

reduces (B.17) to

ds2
11 “ ηµνdx

µdxν ` dr2 `
r2

N2
dφ̂2 ` pNdx̂10 ´ pN ´ 1qRdφ̂q2. (B.20)

This corresponds to an orbifold flat 10-dimensional space, with orbifold action generated
by

z Ñ e2πiBR2
z (B.21)

where z “ reiφ. The string coupling is gs “ pNRMpq
3
2 . There is also a flat Up1q connection

Aφ “
N´1
N .

One can consider a more general case defined by

BR2 “
m

N
(B.22)

with m P Z. Then we can take

c “ m, d “ N, Na´mb “ 1. (B.23)

Since there are infinite many a, b satisfying this relation, we will choose the smallest b that
reduces (B.17) to

ds2
11 “ ηµνdx

µdxν ` dr2 `
r2

N2
dφ̂2 ` pNdx̂10 ´ bRdφ̂q

2. (B.24)

This differs from (B.20) only in the flat connection.

Therefore a F7-brane is dual to IIA on a flat cone with RR flux at the origin.

In a completely analogous way, it can be shown that the Fp9 ´ 2kq-branes are dual,
for suitable Bi, to Ck {ZN orbifold singularities.



C
Freed-Witten and Hanany-Witten effects

In this appendix we collect the main brane topological effects used in the text.

C.1 Freed-Witten effects

Many string theory compactifications include D-branes wrapped on cycles in the internal
space. One of the possible questions that one may ask is what the possible cycles which
can be wrapped by D-branes are, for the theory to be consistent.

One condition which must be satisfied is that the field theory on the D-brane must be
consistent. For instance, it must be anomaly free. This puts restrictions on the possible
cycles on which “free D-branes” (i.e. D-branes with no other branes ending on them) can
wrap

In [217] D. Freed and E. Witten showed that a D-brane cannot wrap a sub manifold
which in turn supports some units of NSNS three-form flux, since that configuration is
anomalous, and therefore inconsistent.

Nevertheless, let us assume that we do have such a D-brane. Let W 1 be the cycle
wrapped by it, and let rHs|W 1 be the class of the NSNS three-form flux on it. It was
shown in [218] by Maldacena, Moore and Seiberg that the anomaly can be cancelled if one
also considers D-branes ending on the first on a cycle W ĂW 1 such that

PDpW ĂW 1q “W3pW 1q ` rHs|W 1 , (C.1)

where PDpW Ă W 1q denotes the Poincaré dual of W in W and W3pW 1q is the integral
Stiefel-Whitney class1 of T W .

This argument can be generalized to D-branes wrapping cycles which support RR
p-form fluxes.

The different versions of this effect that will be useful throughout the text are the
following:

• FW1. A Dp-brane with worldvolume Sp`1 with homologically non-trivial H3|S must
emit Dpp ´ 2q-branes on the Poincaré dual class [218] (morally, along directions of
Sp`1 transverse to H3|S).

1This class is a torsion class, and it is included for completeness. In this thesis, when we only consider
flux compactifications with no torsion; therefore, this term can be ignored.
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• FW2. An NS5-brane with worldvolume S6 with homologically non-trivial F p|S
emits Dp6´ pq-branes spanning the Poincaré dual class. This follows by considering
FW1 for D5-branes with H3 emitting D3-branes, S-dualizing to NS5-branes with F 3

emitting D3-branes, and T-dualizing to general F p.

• FW3. A Dp-brane with worldvolume S with homologically non-trivial F p emits F1s
along the Poincaré dual class [219]. This follows by considering FW1 for D3-branes
with H3 emitting D1-branes, S-dualizing to D3-branes with F 3 emitting F1s, and
T-dualizing to general Dp-branes with F p.

C.2 Hanany-Witten or brane creation effects

The Hanany-Witten effect is a process in superstring theory in which a p-brane and a
q-brane crossing each other along one dimension produce (or annihilate) an r-brane ex-
tending along the dimension where the crossing took place and the dimensions shared by
both the p-brane and the q-brane. It was first proposed in [180] by A. Hanany and E.
Witten, where they considered the crossing of a D5-brane and a NS5-brane producing a
D3-brane, and give several arguments to support their claim.

Using T-duality and S-duality the result of [180] can be generalized to other types of
p-branes. The versions of this effect that will be used throughout the main text are:

• HW1. An NS5-brane along directions x0, x1, x2, x3, x4, x5 and a Dpp ` 3q-brane
along directions x0, x1, . . . , xp, x6, x7, x8, with p ď 5 can be crossed in the direction
x9 leading to the creation of a Dpp` 1q-brane along x0, x1, . . . , xp, x9 (see figure C.1
for the p “ 5 case). This effect follows from [180] by T-duality (and coordinate
relabeling).

Figure C.1: Brane creation effect by crossing D8-branes and NS5-branes.

• HW2. A Dp-brane along x0, . . . , xp and a Dp8´pq-brane along x0, xp`1, . . . , x8 can
be crossed in x9 leading to the creation of F1s in the directions x0, x9 (see figure
C.2 for the p “ 0 and p “ 8 cases). This follows by considering HW1 for creation
of D1-branes from NS5- and D3-brane crossing, S-dualizing to the creation of F1s
from D5- and D3-brane crossing, and T-duality to general p.
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Figure C.2: Brane creation effect by crossing D8- and D0-branes.

C.3 Remarks

We conclude by mentioning that the FW and HW effects are related, as follows (see figures
C.1, C.2). In the HW effect, we regard one of the branes as a source of flux, which the
second brane (compactified by closing it at infinity) picks up in the form of FW anomaly,
or not, depending on whether we are before or after the HW crossing. The HW brane
creation is required to cancel this FW anomaly, conversely the FW consistency condition
is required to explain the HW brane creation.
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D
Sum over disconnected theories

Discrete gauge symmetries can be described as a ‘sum over disconnected theories’ [176].
In this appendix we will describe them, in the 4d avatar described in appendix A of that
reference.

Consider a 4d gauge theory, with a non-perturbative sector restricted to instantons
numbers multiple of n. The theory can be described as a sum over n disconnected theories
(with unconstrained instanton sector) with rotating θ angle, θk “ θ` 2π kn . Schematically,
an amplitude mediated by instanton number p configurations reads

ÿ

pPZ

1

n

n´1
ÿ

k“1

xout|p. . .q expripθ ` 2π
k

n
ps|iny “

“
ÿ

pPZ

«

1

n

n´1
ÿ

k“1

exp

ˆ

2πi
kp

n

˙

¸

xout|p. . .q exppiθpq|iny

“
ÿ

pPnZ
xout|p. . .qeiθp|iny.

(D.1)

The projection operator in the second expression reflects the existence of a Zn discrete
symmetry, rotating the θ angle; pictorially, mapping the kth disconnected theory to the
pk ` 1qth one. The construction admits a straightforward generalization to other field
theories or string models.
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E
Some examples of discrete isometries

In chapter 9 we will study different methods to embed discrete gauge symmetries com-
ing from discrete isometries corresponding to large diffeomorphisms. In this appendix
we gather a few standard yet illustrative examples of such isometries in compact mani-
folds. We first review the case T2, and move on to the quintic. Extension to other CY
hypersurfaces is straightforward.

E.1 Discrete isometries of T2

The 2-torus can be described as a quotient R2 {Γ of the 2-plane by a lattice Γ of transla-
tions. Beyond the Up1q2 continuous isometry group, there are possible discrete isometries
from crystallographic symmetries of Γ, which correspond to large diffeomorphisms. Intro-
ducing a complex coordinate z with periodicities z » z` 1, z » z` τ , these isometries are
subgroups of the SLp2,Zq modular group, leaving the lattice invariant (possibly for some
specific choice of τ). An alternative description of T2 is via the Weierstrass equation

y2 “ x3 ` fx` g. (E.1)

The coordinates x, y relate to z by the so-called ‘uniformization mapping’. Here f, g are
complex constants, in terms of which the j-function of the complex structure parameter
τ is

jpτq “
2p24 fq3

27g2 ` 4f3
. (E.2)

The discrete symmetries, and the values of the complex structure modulus at which they
hold, are familiar from the construction of toroidal orbifolds. They are
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Symmetry τ Generator f , g Weierstrass Generators SLp2,Zq

Z2 arbitr. z Ñ ´z arbitr. y2 “ x3 ` fx` g
xÑ x,
y Ñ ´y

¨

˝

´1 0

0 ´1

˛

‚

Z4 τ “ i z Ñ e2πi{4z g “ 0 y2 “ x3 ´ x
xÑ ´x,
y Ñ iy

¨

˝

0 ´1

1 0

˛

‚

Z6 τ “ eπi{3 z Ñ e2πi{6z f “ 0 y2 “ x3 ` 1
xÑ e2πi{3x,
y Ñ ´y

¨

˝

1 1

´1 0

˛

‚

Z2 τ1 “ 1 z Ñ z real y2 “ x3 ` fx` g
xÑ x
y Ñ y

¨

˝

1 0

0 ´1

˛

‚

Z2 τ1 “
1
2 z Ñ z real y2 “ x3 ` fx` g

xÑ x
y Ñ y

¨

˝

1 0

1 ´1

˛

‚

Here we have applied certain rescalings to simplify the Weierstrass equation for Z4 and
Z6. Note that, by squaring the Z6 generator, there is a Z3 symmetry for τ “ eπi{3. Finally,
the last two entries correspond to orientation-reversing actions, and they are actually not
in SLp2,Zq.

E.2 Discrete isometries of the quintic

Consider the quintic CY X6 “ P5r5s at the Fermat point, i.e. the hypersurface with
defining equation

z5
1 ` z

5
2 ` z

5
3 ` z

5
4 ` z

5
5 “ 0 (E.3)

This has a discrete symmetry group pZ5q
4 ˆ S5. The S5 is the group of permutations of 5

elements, the homogeneous coordinates zi. The Z5’s are generated by independent phase
rotations zi Ñ e2πi{5zi, with the removal of an overall phase rotation which is part of the
projective action to define the ambient P5.

In addition, there is an antiholomorphic action

zi Ñ zi (E.4)

These actions, and their products, have been extensively exploited in the literature.



F
Details on the derivation of (7.66)

In order to obtain the set of constraints that the discrete symmetry imposes on the holo-
morphic Yukawa couplings Yij it is important to recall that if fpξq is a holomorphic function
of ξ with domain on C and is invariant under some discrete lattice Γ then fpξq is actually
independent of ξ. Knowing how Yij transform under the isometry generators, we can then
build holomorphic invariants of tX2

Z3
, Y 2

Z3
u and/or tX3

Z3
, Y 3

Z3
u that are independent of the

corresponding complex Wilson line scalars and that satisfy particular relations.

Let us first illustrate the procedure on a similar model with only two generations of
fields transforming as

X2
Z3

:Xk
R Ñ e´iπkXk

R, Y 2
Z3

:pX1
R, X

2
Rq Ñ pX2

R, X
1
Rq, (F.1a)

X3
Z3

:Xk
L Ñ eiπkXk

L, Y 3
Z3

:pX1
L, X

2
Lq Ñ pX2

L, X
1
Lq, (F.1b)

with k “ 1, 2. Yukawa couplings are of the form

Y “

ˆ

Y11 Y12

Y21 Y22

˙

(F.2)

Taking into account the above transformations of the fields, we observe that the following
function

A ”
Y11

Y21
´
Y12

Y22
(F.3)

is invariant under X3
Z3

and pY 3
Z3
q2, so that a is independent of the complex Wilson line

scalar ξ3. Moreover, under Y 3
Z3

it transforms as

AÑ ´A (F.4)

but since acting with Y 3
Z3

is equivalent to performing a shift in ξ3, this means that a has
to be identically zero. We have therefore shown that

Y11

Y21
“
Y12

Y22
(F.5)

For the three generation model of section 7.3.3 the proof follows the same logic. For
instance, let us consider the following functions

A ” ´
Y11

Y21
`
Y12

Y22
`
Y13

Y23
, (F.6a)

B ”
Y11

Y21
´
Y12

Y22
`
Y13

Y23
, (F.6b)

C ”
Y11

Y21
`
Y12

Y22
´
Y13

Y23
, (F.6c)
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invariant under X3
Z3

and pY 3
Z3
q3 and therefore independent of the complex Wilson line

scalar ξ3. Under Y 3
Z3

they transform as

AÑ B Ñ C Ñ A (F.7)

and therefore we must have A “ B “ C, from which the first relation in (7.66) follows.
The other relations in (7.66) are proven similarly.
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[10] L. E. Ibáñez and Á. M. Uranga, String theory and particle physics: An
introduction to string phenomenology. Cambridge University Press, 2012.

[11] G. L. Kane, C. Kolda, L. Roszkowski, and J. D. Wells, Study of Constrained
Minimal Supersymmetry, Phys. Rev. D 49 (1994) 6173–6210. [arXiv:
hep-ph/9312272].

[12] O. Buchmueller, R. Cavanaugh, A. De Roeck, M. J. Dolan, J. R. Ellis, H. Flacher,
S. Heinemeyer, G. Isidori, J. Marrouche, D. Mart́ınez Santos, K. A. Olive,
S. Rogerson, F. J. Ronga, K. J. de Vries, and G. Weiglein, The CMSSM and
NUHM1 after LHC Run 1, . [arXiv: hep-ph/1312.5250].

[13] M. Maniatis, The next-to-Minimal Supersymmetric extension of the Standard
Model, Int. J. Mod. Phys A 25 (2010) 3505–3602. [arXiv: hep-ph/0906.0777].

[14] S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976)
974–996.

[15] S. Weinberg, Implications of dynamical symmetry breaking: An addendum, Phys.
Rev. D 19 (1979) 1277–1280.

[16] L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam
theory, Phys. Rev. D 20 (1979) 2619–2625.

189



190 BIBLIOGRAPHY

[17] S. Dimopoulos and L. Susskind, Mass without scalars, Nucl. Phys. B 155 (1979)
237–252.

[18] E. Eichten and K. Lane, Dynamical breaking of weak interaction symmetries, Phys.
Lett. B 90 (1980) 125–130.

[19] G. Gabadadze, ICTP lectures on large extra dimensions, . [arXiv: hep-th/0308112].

[20] H.-C. Cheng, TASI lectures. introduction to extra dimensions, . [arXiv:
hep-th/1003.1162].

[21] S. Weinberg, Anthropic bound on the cosmological constant, Phys. Rev. Lett. 59
(1987) 2607.

[22] C. J. Hogan, Why the universe is just so, Rev. Mod. Phys. 72 (2000) 1149–1161.

[23] J. Donoghue, The fine-tunning problems of particle physics and anthropic
mechanisms, in Universe or Multiverse (B. Carr, ed.), pp. 231–246. Cambridge
University Press, 2007.

[24] P. Langacker, Grand Unified Theories and proton decay, Phys. Rept. 72 (1981) 185.

[25] G. G. Ross, Unified field theories, Rept. Prog. Phys. 44 (1981) 655–718.

[26] G. G. Ross, Grand Unified Theories, vol. 60 of Frontiers in Physics.
Benjamin/Cummings, 1985.

[27] H. Georgi and S. L. Glashow, Unity of all elementary particle forces, Phys. Rev.
Lett. 32 (1974) 438–441.

[28] J. Pati and A. Salam, Unified lepton-hadron symmetry and gauge theory of basic
interactions, Phys. Rev. D 8 (1973) 1240–1251.

[29] H. Georgi, H. Quinn, and S. Weinberg, Hierarchy of interactions in unified gauge
theories, Phys. Rev. Lett. 33 (1974) 451–454.

[30] H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals
Phys. 93 (1975) 193–266.

[31] H. Georgi and D. V. Nanopoulos, Ordinary predictions from grand principles:
t-quark mass in O(10), Nucl. Phys. B 155 (1979) 52.

[32] F. Gursey, P. Ramond, and P. Sikivie, A universal gauge theory model based on e6,
Phys. Lett. B 60 (1976) 177.

[33] Planck Collaboration, P. A. R. Ade et al., Planck 2013 results. XVI. cosmological
parameters, . [arXiv: astro-ph.CO/1303.5076].

[34] K. Freese and C. Savage, Dark Matter collisions with the human body, . [arXiv:
astro-ph.CO/1204.1339].

[35] E. Komatsu et al. (WMAP Collaboration), Seven-Year Wilkinson Microwave
Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys.
J. Suppl. 192 (2011) 18. [arXiv: astro-ph.CO/1001.4538].



BIBLIOGRAPHY 191

[36] G. Jungman, M. Kamionkowski, and K. Griest, Supersymmetric dark matter, Phys.
Rept. 267 (1996) 195–373. [arXiv: hep-ph/9506380].

[37] K. Agashe and G. Servant, Warped unification, proton stability and dark matter,
Phys. Rev. Lett. 93 (2004) 231805. [arXiv: hep-ph/0403143].

[38] C. Boehm, T. A. Ensslin, and J. Silk, Can annihilating dark matter be lighter than
a few GeVs?, J. Phys. G 30 (2004) 279–286. [arXiv: astro-ph/0208458].

[39] C. Boehm and P. Fayet, Scalar dark matter candidates, Nucl. Phys. B 683 (2004)
219–263. [arXiv: hep-ph/0305261].

[40] P. Roy, Scenarios and signals of very heavy neutrinos, in Bangalore 1994,
Non-accelerator particle physics, pp. 225–237, 1995.

[41] K. Kainulainen and K. A. Olive, Astrophysical and cosmological constraints on
neutrino masses, Springer Tracts Mod. Phys. 190 (2003) 53–74. [arXiv:
hep-ph/0206163].

[42] L. Bergstrom, Non-baryonic dark matter - Observational evidence and detection
methods, Rept. Prog. Phys. 63 (2000) 793. [arXiv: hep-ph/0002126].

[43] G. Bertone, D. Hooper, and J. Silk, Particle dark matter: evidence, candidates and
constraints, Phys. Rept. 405 (2005) 279–390. [arXiv: hep-ph/0404175].

[44] L. J. Rosenberg and K. A. van Bibber, Searches for invisible axions, Phys. Rept.
325 (2000) 1–39.

[45] K. Rajagopal, M. S. Turner, and F. Wilczek, Cosmological implications of axinos,
Nucl. Phys. B 358 (1991) 447–470.

[46] L. Covi, J. E. Kim, and L. Roszkowski, Axinos as cold dark matter, Phys. Rev.
Lett. 82 (1999) 4180–4183. [arXiv: hep-ph/9905212].

[47] L. Covi, H.-B. Kim, J. E. Kim, and L. Roszkowski, Axinos as dark matter, JHEP
0105 (2001) 033. [arXiv: hep-ph/0101009].

[48] C. Boehm, P. Fayet, and J. Silk, Light and heavy dark matter particles, Phys. Rev.
D 69 (2004) 101302. [arXiv: hep-ph/0311143].

[49] J. L. Feng, A. Rajamaran, and F. Takayama, Superweakly-interacting massive
particles, Phys. Rev. Lett. 91 (2003) 011302. [arXiv: hep-ph/0302215].

[50] J. L. Feng, A. Rajamaran, and F. Takayama, SuperWIMP dark matter signals
from the early universe, Phys. Rev. D 68 (2003) 063504. [arXiv: hep-ph/0306024].

[51] J. L. Feng, A. Rajamaran, and F. Takayama, Graviton cosmology in universal
extra dimensions, Phys. Rev. D 68 (2003) 085018. [arXiv: hep-ph/0307385].

[52] G. Bertone, ed., Particle dark matter: observations, models and searches.
Cambridge University Press, 2010.

[53] K. M. Zurek, Multi-component dark matter, Phys. Rev. D 79 (2009) 115002.
[arXiv: hep-ph/0811.4429].



192 BIBLIOGRAPHY

[54] M. V. Medvedev, Self-interacting dark matter with flavor mixing, . [arXiv:
astro-ph/0010616].

[55] D. P. Finkbeiner and N. Weiner, Exticing dark matter and the INTEGRAL/SPI
5qq keV signal, Phys. Rev. D 76 (2007) 083519. [arXiv: astro-ph/0702587].

[56] J. Dan, K. Andrey, L. Randall, and M. Reece, Double-disk dark matter, Phys. Dark
Univ. 2 (2013) 139–156. [arXiv: astro-ph.CO/1303.1521].

[57] K. Hashimoto and H. Okada, Lepton flavor model and decaying dark matter in the
binary icosahedral group symmetry, . [arXiv: hep-ph/1110.3640].

[58] Y. Kajiyama, H. Okada, and T. Toma, A light scalar dark matter for CoGeNT and
DAMA in d6 flavor symmetric model, . [arXiv: hep-ph/1109.2722].

[59] J. Kile, Flavored dark matter: a review, . [arXiv: hep-ph/1308.0584].

[60] K. Freese, M. Lisanti, and C. Savage, Annual modulation of dark matter: a review,
. [arXiv: astro-ph.CO/1209.3339].

[61] E. Del Nobile, Halo-independent comparision of direct dark matter detection data:
a review, Adcances in High Energy Physics 2014 (2014) 604914. [arXiv:
hep-ph/1404.4130].

[62] S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1–23.

[63] S. M. Carroll, The cosmological constant, Living Rev. Rel. 4 (2001) 1.

[64] J. Polchinski, The cosmological constant and the string landscape, . [arXiv:
hep-th/0603249].

[65] R. Peccei and H. Quinn, CP conservation in the presence of instantons, Phys. Rev.
Lett. 28 (1977) 1440–1443.

[66] R. Peccei and H. Quinn, Constraints imposed by CP conservation in the presence
of instantons, Phys. Rev. D 16 (1977) 1791–1797.

[67] S. Weinberg, A new light boson?, Phys. Rev. Lett. 20 (1978) 223–226.

[68] F. Wilczek, Problem of strong p and t invariance in the presence of instantons,
Phys. Rev. Lett. 40 (1978) 279–282.

[69] M. B. Green, J. H. Schwarz, and E. Witten, Superstring theory, vol. 1. Cambridge
University Press, 1987.

[70] M. B. Green, J. H. Schwarz, and E. Witten, Superstring theory, vol. 2. Cambridge
University Press, 1987.

[71] J. Polchinski, String Theory, vol. 1. Cambridge University Press, 1998.

[72] J. Polchinski, String Theory, vol. 2. Cambridge University Press, 1998.
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[82] P. G. Cámara, A. Font, and L. E. Ibáñez, Fluxes, moduli fixing and MSSM-like
vacua in a simple IIA orientifold, JHEP 0509 (2005) 013. [arXiv: hep-th/0506066].

[83] O. Lebedev, H. P. Nilles, S. Raby, S. Ramos-Sánchez, M. Ratz, P. K. S.
Vaudrevange, and A. Wingerter, The heterotic road to the MSSM with R parity,
Phys. Rev. D 77 (2008) 046013. [arXiv: hep-th/0708.2691].
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[121] L. E. Ibáñez and G. G. Ross, Discrete gauge symmetries and the origin of baryon
and lepton number conservation in supersymmetric versions of the standard model,
Nucl. Phys. B 368 (1992) 3–37.

[122] T. Banks and L. J. Dixon, Constraints on string vacua with space-time
supersymmetry, Nucl. Phys. B 307 (1988) 93–108.

[123] L. F. Abbott and M. B. Wise, Wormholes and global symmetries, Nucl. Phys. B
325 (1989) 387.

[124] S. R. Coleman and K.-M. Lee, Wormholes made without massless matter fields,
Nucl. Phys. B 329 (1990) 387.



196 BIBLIOGRAPHY

[125] R. Kallosh, A. Linde, D. Linde, and L. Susskind, Gravity and global symmetries,
Phys. Rev. D 52 (1995) 912–935. [arXiv: hep-th/9802069].

[126] T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys.
Rev. D 83 (2011) 084019. [arXiv: hep-th/1011.5120].

[127] M. G. Alford and F. Wilczek, Aharonov-Bohm interaction of cosmic strings with
matter, Phys. Rev. Lett. 62 (1989) 1071.

[128] L. M. Krauss and F. Wilczek, Discrete gauge symmetry in continuum theories,
Phys. Rev. Lett. 62 (1989) 1221.

[129] J. Preskill and L. M. Krauss, Local discrete symmetry and quantum mechanical
hair, Nucl. Phys. B 341 (1990) 50–100.
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