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ABSTRACT  

Authors W.A.C. Nier-Jedrzejowicz 

Title; Four-variable Partial Wave Analysis of Trtp single 
pion production channels from threshold to 1700 rrIeV. 

This thesis describes reactions of positive 7 mesons 
at around 1 GeV/c momentum with protons in a bubble chamber, 

studied by the author. 
Bubble chamber film at 4 energies was analysed, and 

Data Summary Tapes were generated. Differential cross-
sections for elastic data were fitted, and accurate channel 

cross-sections were calculated. 

An energy-independent partial wave analysis of the 
major inelastic channels in this energy range,Trtprr°. and 

7tn was performed, using the generalised isobar model and 
the maximum likelihood method. Data were fitted at 9 centre 
of mass energies between 1.4 and 1.7 GeV; this included 2 
energies which had been processed by the author and which 
lay in the middle of the energy range. Extensive checks of 
the analysis programs were made and are described. Ambiguous 
solutions were found at every energy; continuum ambiguities 
are discussed, and a continuity analysis is described. Cross-
sections and Argand diagrams are presented for a continuous 
solution which shows clearly resonant behaviour in the 531, 
P33 and D33 waves. The behaviour of the important P31 wave 
is discussed. 

Calculations of contributions from incoherent one-pion-
exchange effects leading to I=2 TrTr states were added to the 

analysis programs. The data were re-fitted, giving results 

that do not differ seriously from those without one-pion-
exchange; kinematics projections in the 7tn channel are 
improved, some of the Argand diagrams become more continuous, 
no additional resonances are found, nor do any vanish. The 
parameters of the effective range potential used to describe 
the I=2 one-pion-exchange were found to be nearly constant 
over the energy range, and their significance is discussed. 

Resonance parameters and signs are presented, and 
compared with the results of other analyses, and with the 
predictions of symmetry schemes. 
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CHAPTER I  

Overview of thisrr *D Experiment 

I.1 Introduction  

This thesis describes the author's work in a p bubble 

chamber experiment with incident beam momenta of around 1 GeV/c. 

The experiment was already several years old when the author 

joined it - film had been taken in 3 separate runs, and theses 

and publications had been produced describing the'earlier 

'work. 	The author was in fact the last Ph.D. student to 

join the experiment. This first chapter of the thesis therefore 

describes the experiment as a whole and serves to put the 

author's work and the rest of the thesis into context. 

The original motivation for the work was the need to 

provide a high statistics bubble chamber experiment on 70i) 

interactions in the resonance region around 1.5 - 1.6 GeV 

centre of mass-energy. Recent interest in the predictions of 

various SU(6) schemes and Melosh transformations made partial 

wave analysis of this data all the more important. Analysis 

of the inelastic channels is particularly necessary since 

only they can give information on the signs of resonances. 

Only bubble chamber experiments can give full data on inelastic 

interactions at all angles, and the 3-body channels in -rcp at 

this energy take up nearly all the inelastic cross-section 

(see Fig. I.1). The majority of this thesis describes a partial 

wave analysis of 75-r°  and 71-7 /1 channels at 9 incident beam 

momenta. 

It must be stressed that this sort of analysis is vital 

if a good understanding of SU(6) is to be obtained. Theories 

extending from SU(6) to include the 4 or more quarks required 



Fig, I,11r#p cross-sections 
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to explain recent results will also be helped by such 

improvements in the understanding of SU(6). 

1.2 Historical Context 

From the time when it was realised in the mid-1960•s 

that the resonance regions in 715,  r p, K-p etc. concealed 

more than a very simple resonance structure, the need for 

high statistics experiments to examine these structures in 

detail was obvious. One such experiment was a collaboration 

between Imperial College and Westfield College - this took 

7C +p bubble chamber photographs at four incident momenta in 

the Saclay 81 cm. bubble chamber exposed to Ti+  mesons from 

the Rutherford Laboratory K1 beam line. Table I.1 gives 

details of this exposure. A number of papers and theses 

describing analysis of this data have been published (see 

refs. 1, 2, 3, 4,.5, 9, 12). At the same time a group from 

Oxford used the same experimental setup to make exposures 

at slightly lower beam momenta. Table I.2 gives details, 

and references 6, 7, 8 describe analysis of that data. 

The energy range of the Imperial College/Westfield 

College collaboration was extended upwards and downwards 

in 2 further sets of exposures taken in 1968 and 1970, and 

the collaboration was joined by Cambridge University in 1970. 

Both these exposures used the Rutherford Laboratory K9 beam 

line and the 1.5 m. British National Hydrogen Bubble Chamber. 

Table I.3 gives details of the second exposure, and references 

9, 10, 12 describe its analysis. Table I.4 gives details of 
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the third exposure; reference 11 describes some of the 

Cambridge processing at these energies. Chapters II and III of 

this thesis describe processing of the majority of the film 

at these energies through to the DST stage. Figure I.2 shows 

3 typical bubble chamber photographs from the third exposure. 

2.3 TrrrN Analyses  

As mentioned above, all this data was taken for use 

in partial wave analyses with high statistics at a number 

of closely spaced energies. The number of such n4p elastic 

analyses has been increasing steadily in recent years and 

their results together with those from other elastic channels 

are in general agreement with SU(6)theories. Problems still remain; 

see the Proceedings of the Oxford Conference on Baryōn 

Resonances for a recent summary (ref. 13), or Rosner (ref.14) 

for an older, but more detailed view of the field. The number of 

analyses of the inelastic channels is however still very 

small. Only 2 other groups have performed analyses on the 

same scale as the Imperial/Westfield one. The SLAC - LBL 

group collected data from various sources, including the 

Oxford data described above. Their publications (ref. 15) 

give their results together with the sources of their data 

and references to earlier analyses that used parts of that 

data. The Saclay group (ref. 16) used mostly their own data, 

but also some other data including that from Oxford. Saclay 

too give a list of earlier analyses of some of their data. 

Both groups analyse the p7r īr , nn m , and pif n°  final states. 

SLAG - LBL have a gap of 100 MeV in their centre of mass energy 

range, and Imperial/Westfield data was used to check their 

continuation across this gap (ref. 17). 



Figure I.2  Typical bubble chamber photographs 
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The Imperial/Westfield group has been analysing 7rp7t0  

and 71- n n data since 1972. We combine the ubiquitous Oxford 

data, 2 energies processed by the author (one in the SLAC - 

LBL gap), and the 4 energies from our first run to give 9 
energies with good statistics for a 4-variable maximum 

likelihood fit using the isobar model. Benefitting from our 

earlier experience and that of the other 2 groups we have 

checked and refined our basic fitting program, in particular 

by the addition of one-pion-exchange calculations. The 

techniques used and the results obtained are described in 

chapters IV to VII of this thesis. 
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Nominal beam Total no. No. of No. of No. of 
momentum of events 7T+p 7Tp .Tr  o -Vln 
MeV/c on DST events events events 

895 11856 4776 5946 1004 

945 15516  6712 7236 1272 

995 15151 710o 6517 1284 

1040 13704 6548 5714 1163 

Film taken in 1966 in the Saclay 80 cm, bubble chamber using 

the Rutherford K1 beam line. 
The nominal beam momenta were originally 905, 955, 1005, 1050 

MeV/c but were in fact called 895, 945, 995, 1040 from very 
early on. 

Details in ref. 1, see also refs. 2, 3, 5. 

Table I.1 Details of first I.C./W.C, film 

Nominal 
momentum 
MeV/c 

beam 	Total no. 
of events 
on DST 

No. 	of 
7C+p 
events 

No. of 
7r p.To 
events 

No. 	of 
7f7Tn 
events 

600 20536 19560 802 174 

650 4327 3980 274 72 

700 13705 11401 1911 383 

750  7765 5457 196o 331 

800 6568 3757 2336 426 

Film taken in 1966 in the Saclay 80 cm. bubble chamber using 
the Rutherford K1 beam line. 

Details from ref. 6, see also refs. 7, 8. 

Table I.2 Details of Oxford film 
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Nominal 
beam 
momentum 
MeV/c 

Total 
no, of 
events 
on DST 

No. of 
,r+p 
events . 

No. of 
i+p,r° 
events 

No. of 
,r,rn 
events 

Remarks 

1100 6341 2917 2443 576 
1200 9308 4363 3256 803 
1300 11716 5186 3822 1063 
1400 18319 8093 5903 2018 
1450  3397 1532 1091 376 Only Cambridge 

data on DST 
1500 8268 3684 2576 1046 Only Cambridge 

data on DST 

1550  Abandoned 
1600 Not processed 

Film taken in 1968 in the 1.5 m British National Bubble 
chamber using the Rutherford K9 beam line. 

Details in ref. 9, see also ref. 10 and Chapter .2 of 
this thesis. 

Table 1.3 Details of second I.C. /W. C. film 

Nominal Beam Total no. No. of No. of No. of 
momentum of events TT +P +p yo ,ren 

MeV/c on DST events events events 

800 7042 3916 2520 492 
850 9029 4009 4136 715 

115o 9669 465o 3627 827 
1250 17200 8036 6069 1482 

Film taken in 1970 in the 1.5 m British National Bubble 
chamber using the Rutherford K9 beam line. 

Details in this thesis, see also ref. 11 

Table I.4 Details of third I.C./W.C./Cambridge  
film 
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CHAPTER II  

Film taking. Measuring and Processing 
II.1 Introduction  

The film from the third data taking run described in Chapter 

I was divided equally between Cambridge, Imperial College and 

Westfield College. Reference 11 gives a general description of how 

the Cambridge film was processed. The Westfield film was measured 

at Westfield, but the measurements were processed at Imperial 

College, and all remeasurements of it were made and processed at 

Imperial College. The processing of all the Imperial College third 

run film was the author's responsibility, and when the Westfield 

College film was passed to Imperial College, its processing was 

also undertaken by the author. This chapter describes the steps 

taken to create Data Summary Tapes (D.S.T.'s) from this film. A.  

flow chart describing this processing is provided in Figure II.1. 

The conversion of our bubble chamber film to D.S.T.'s is well 

documented in earlier publications (refs. 1, 9, 12), so only those 

items that differed from earlier work or caused trouble are 

described here_ in detail. 

I1.2 Data Taking 

1I,2,1 The Film 

As mentioned in I.2, the film was taken in the British National 

1.5 metre bubble chamber, using the K9 beam line at Rutherford 
Laboratory. This line was designed primarily for higher energy KI 

beams, so there was considerable trouble in obtaining a suitable 

beam momentum and intensity, particularly at the 2 lower momenta 

in this run. Indeed, an extra yoke magnet was used at the beam 

entry point to swing the beam into the chamber. Furthermore, the 
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B.N.H.B.C. had been taken apart for tests with a track sensitive 

target just before this run (one or two interesting events found 

at the scanning stage were ascribed tot + interactions with neon). 

When the chamber was reassembled for normal use, a new magnetic 

field map was not taken, nor was the central field value measured. 

Because of the reassembling, new optical constants were determined 

for the film, and the magnetic field value was reassessed. 

II.2.2 Optical Constants  

The geometry programs (see Section II.3.2) require optical 

constants describing the layout of the bubble chamber and cameras. 

As the• bubble chamber was unlikely to have been reassembled in 

exactly its previous position, new optical constants were determined 

for this run, as follows. 

After each run in the bubble chamber, the 3 cameras are 

replaced by telescopes which measure the relative displacements 

of three fiducial marks on the back window of the bubble chamber 

with respect to three marks on the front window. This data and 

information on nominal positions of fiducial marks on front and 

back windows, cooling factors, and depth of the chamber, are input 

to program TELESCOPE (ref. 18). TELESCOPE uses these inputs to 

calculate, by a least squares fit, the co-ordinates and relative 

rotation of the back window with respect to the front window. The 

author made minor alterations to TELESCOPE and used it to calculate 

the co-ordinates and rotation for this run. 

The positions of 17 fiducial marks on all 3 views were 

measured on 300 frames each on 3 rolls of film taken during this 

run, and on 70 frames on a fourth roll. Program HPDEDT (ref. 18) 

was used to calculate from these measurements an average set of 



-24- 

fiducial measurement values with errors. This was done by a process 

of repeated calculation of mean values and rejection of poor 

measurements, controlled by an operator. 

Program ADDER (ref. 19)  was then used to calculate the optical 

constants for this run. The results from HPDEDT, the co-ordinates 

and rotation from TELESCOPE, and nominal values for other optical 

constants are input to ADDER. (For a full description of the optical 

constants, see the THRESH and GRIND write-ups, ref. 20). These 

numbers are used to calculate distances between nominal positions 

and measured positions of fiducial marks, ADDER then uses the CERN 

minimising program MINUIT (ref. 20) to minimise a function of these 

distances by varying a selected combination of the input numbers. 

At the end of its calculations, ADDER outputs optical constants 

ready for use in the geometry programs. 

It was feared that problems with holding the film flat in 

the cameras might necessitate the use of several different sets of 

optical constants for different rolls in this run, but after a few 

runs of ADDER, a set that was consistent for all the rolls was 

calculated. 

A valuable tool for checking optical constants lies in the 
use of the stretch function. For a variable X with standard deviation 

o-, the stretch function is defined to be 

Xfitted - Xmeasured 
SX  = 

For any normally distributed variable X, SX  should have a normal 

distribution with a mean of zero,- and a standard deviation of one. 

This was used to check the optical constants. 
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Events measured on the rolls used for determining optical 

constants were processed by the geometry and kinematics programs 

using the new optical constants and those from the second (1968) 

run. Events which fitted as elastic scatters with four constraints 

(i.e. 4C fits - those elastic events for which all measurements 

are accepted) were chosen, and stretch functions were plotted for 

the inverse of the momentum, the dip, and the azimuth of beam 

tracks and outgoing tracks. (The inverse of the momentum is used 

since this is normally distributed, whereas the momentum is not). 

Significant deviations from a zero mean indicate asymmetries due 

to incorrect values of the beam momentum (see Section II.2.3) or 

to incorrect optical constants. Deviations from a standard deviation 

close to one indicate wrong estimates of measurement errors. 

The stretch functions obtained using the new optical constants 

showed a significant improvement as compared to those from the 

values for the 1968 run. Several sets of new optical constants were 

tried; none gave ideal values and distributions, but this could not 

be expected in view of problems with the film (see Sections II.2.3 

and II.2.4). The set chosen gave good stretches in momentum and 

azimuth and worse but acceptable values in dip, which was the 

variable most affected by the film problems. Figure I1.3 shows the 

stretch functions for beam tracks at 850 MeV/c, and Table -I1.3 

gives the function values at all four momenta. Beam tracks are 

chosen since they are most sensitive to optical constant problems' 

and useful in checking the incident momentum (see Section I1.2.3). 

II.2.9 Beam momentum and magnetic field 

• The magnetic field in the bubble chamber was produced by the 

normal 1.5 m chamber magnet, and an additional magnet was used to 
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swing the beam into the chamber :t.  The field bends the tracks of 

charged particles in the chamber and so makes it possible to measure 

their momenta, but an accurate measurement requires a map of the 

field to be used together with a central field value. The central 

field value in the chamber was not directly measured, but a record 

of the currents in the magnets was kept, and from the properties of 

the magnets a central field value was calculated to within 0.1 Kgauss 

in 11 Kgauss. It was also necessary to check if the dismantling and 

reassembling of the chamber had seriously affected the field mapping. 

A few test runs of the kinematics and geometry programs were made, 

using the original field map and slightly differing central magnetic 

field values in steps of 0.03 Kgauss. Missing momenta and stretch 

functions for the beam momentum were plotted; they did not differ 

seriously. Runs with a field value of 11.05 Kgauss were slightly 

the best, and this was taken as the central field value. The stretch 

functions (Fig.II.3,Table II.3) are reasonable, so the old field map 

was taken to be sufficiently accurate. 

II,2.4 Film measuring 

The film from the 1970 run was stored for several years before 

it was measured. During this time the film emulsion dried out so 

that much of the film could not be measured on an automatic measuring 

machine (H.P.D.). Some of the film was kept close to an H.P.D. and 

was sprayed with oil when this broke down at one time. Both problems 

caused considerable difficulty when processing of the film in this 

t  Note. When this was set up, the beam momentum had to be rechecked. 

A part roll of film was taken, developed, measured, and processed 

by the kinematics programs in 24 hours. This gave an approximate 

value of the beam momentum, and made it possible to adjust the 

momentum to the required value. 
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state was entrusted to the author. 

The automated measuring process developed for this experiment 

(ref. 12) was found to be unusable for most of this film. Rolls 

not measured on the H.P.D., and those with a failure rate of over 

50% on the H.P.D. were measured on the moving stage conventional 

measuring machines at Imperial College, and on rough digitising 

tables at Westfield College. Parts of the film covered with oil 

could not be measured on the conventional machines either. A full 

printout for every event was produced by GRIND (see Section 11.3.2) 

and every event was checked by eye, at first by physicists, later 

by trained scanners under physicists' supervision. Successful fits 

were marked as such on the listing, and a remeasure list of bad 

measurements and failed measurements was made up by hand. All 

remeasuring was done on conventional machines at Imperial College, 

and the remeasures were checked in the same manner. No further full 

remeasure passes were made, since test passes showed that this 

would not significantly improve the numbers of events, mainly 

because of the poor quality of the film. The next sections describe 

the computer program processing of these measurements. 

II.3 Program Processing 

II.3.1 Pre-kinematics .programs 

Film measuring on the H.P.D., and on conventional measuring 

tables, is carried out in interaction with an on-line computer 

program. For H.P.D. measuring, the film must first be scanned and 

rough digitised, to create a list of what the H.P.D. must measure. 

This scanning and rough digitising was done in one pass of the 

film; as usual only events within a specified fiducial volume, and 

with beam tracks following the normal beam trajectory were accepted. 
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The rough digitisation data was then tidied and used to control 

H.P.D. measuring. Measurements from the H.P.D. are merged by 

the program SMOG (ref. 21) for input to THRESH. 

For conventional measurements the film was scanned and 

measured in one pass; events outside the fiducial volume or 

off-beam were again rejected. If the film had been tried on 

the H.P.D. and failed to measure well, or if it was being 

remeasured, the H.P.D. or remeasure lists were used. Remeasure 

lists described events that had failed on the first measure, 

and events that were seen during GRIND checking but had not 

been measured at all. The program BINDG (ref. 21) was used to 

reformat these measurements for input to THRESH. 

Westfield College measurements were originally punched 

to paper tape, then copied to magnetic tape in a format suitable 

for processing at. Westfield College. A program (STAPED) written 

by the author was used to edit these tapes at Imperial College; 

it removed bad measurements, inserted end-of-file marks, and 

referred suspect events to the operator for checking. The edited 

tape was then reformatted to I.C. format using a conversion 

program rewritten by the author. This program also printed 

information concerning these events that BINDG required. Output 

from this program and the printed information (roll number and 

measuring machine number) were then input to BINDG, giving a 

THRESH input tape. 

All this work, except for the creation of tapes by Westfield 

College, was done on the Imperial College High Energy Physics 

Group PDP10 computer. 
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II.3,2 Kinematics and Geometry Programs  

The CERN kinematics and geometry programs THRESH and 

GRIND (ref. 20) lay next in the program chain. At the earlier 

stages of the experiment they were run on the University of 

London Computing Centre (U.L.C.C.) CDC-6600 computer, which 

had served the group well at that time. By the time of this 

run it was considerably overloaded with work; jobs took up to 

a week to run, and there was a significant probability of 

tapes and printed output being lost. Our versions of THRESH 

and GRIND were therefore transferred onto the Rutherford 

Laboratory IBM 360/195 computer in 1973. Initially there were 
problems with program rewriting and compatibility between 

different computers; the author had to make changes in THRESH 

and GRIND subroutines when further problems were found during 

production runs. The programs then worked well and turnaround 

times went down to about one day on the new computer, but it 

was 6 months before all problems had been sorted out. 

The operations of THRESH and GRIND are well known, and 

their use in this experiment has been described in references 

1, 9 and 12, so only the following points relevant to the 

present work will be made. 

Optical Constants and Magnetic Field. The numbers whose 

values and calculation are described in section II.2 were used 

throughout for this run. Different bubble chamber fiducial 

marks were used for HPD measurements, for conventional 

measurements at Imperial College, and for conventional 

measurements made at Westfield College, so the lists of 

fiducial mark positions in the optical constants had to differ 
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accordingly. Beam track and secondary track profiles and 

stretch functions were plotted during processing to check 

for possible problems. 

GRIND beam block. GRIND allows the use of a beam block -  

a mean beam momentum, dip and azimuth at the point where the 

beam enters the bubble chamber, together with estimated errors 

on these, and rates of change as the beam moves through the 

chamber. These values are used for events with a badly 

measured beam track, and to swing beam measurements towards 

the mean values (unless the measurement is more than a defined 

number of standard deviations away from the mean). They are 

particularly useful for experiments with a high beam momentum, 

where it is difficult to get accurate measurements of the beam 

tracks because they are nearly straight. 

For the run being measured, the beam momenta were so low 

that beam tracks curved considerably and could be measured 

well, so the beam block would be most useful for events with 

a badly measured beam. Because the beam line was pushed to 

its lowest limits, and the extra magnet was used, the spread 

of momenta was wider than is normal. Swinging measured values 

towards the mean may have moved them too far from their true 

values, and replacing bad measurements with mean values could 

have given wrong results. It was therefore possible that the 

imposition of a beam block would not be justifiable. 

A beam block was calculated by the author for 0.85 GeV/c 

film, using only elastic events fitted with 4 constraints. 

A previous thesis (ref. 9) by Rob Stevens gives details of 

such calculations. GRIND was run with and without this 
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beam block, and the results showed that it would indeed be better 

not to use a beam block. It is better to lose a few events with 

badly measured beam tracks than to introduce events with an 

incorrect beam momentum and direction. This applies to all the 

momenta of this run, and GRIND was used throughout without a 

beam block. 

At the end of this stage in the processing, there exists 

a GRIND library Tape (G.L.T.) containing all possible hypotheses 

for each event that passed succesfully through THRESH and 

GRIND, and limited information on other measured events. There 

is also a GRIND output printed listing describing each event. 

This is the listing, mentioned in II.2.4, used for checking 

all measurements. Comments written on this listing either 

state which hypothesis is correct, or mark the event for 

remeasuring. 

II.3.3 Hypothesis Selection and D.S.T. Creation 

The Data Summary Tape (D.S.T.) at each momentum is made 

up by selecting the correct hypotheses from all G.L.T.'s at 

that momentum, changing their formats, and writing them all 

to the D.S.T. This is done by the CERN program SLICE (ref. 20). 

SLICE is provided with a deck of SLICE cards, one for each 

acceptable event hypothesis. It tidies these up, then compares 

them with the relevant G.L.T. and writes corresponding event 

hypotheses to the D.S.T. in a specified format. 

Production of SLICE cards, originally punched by hand 

from notes on GRIND listings, has been increasingly automated. 

For film from the second run of this experiment a special 
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version of program AUTO, described in references 9 and 12 was 
used to produce SLICE cards automatically, leaving the need 

for a much smaller amount of manual intervention. This version 

of AUTO ran only on the U.L.C.C. CDC computers, and used 

ionization information from H.P.D. measurements. A different 

version of AUTO was adapted for use on the R.H.E.L. IBM 

computer; this together with the lack of ionization information 

for conventionally measured film resulted in much less 

efficient decision-making, and in some cases wrong hypotheses 

were chosen. For the third run of film AUTO was therefore used 
only to produce SLICE cards for all hypotheses accepted by 

GRIND. 

These cards were not punched, but were written to a 

magnetic tape on thea IBM computer at R.H.E.L. A separate 

program, DSLICE, was developed by Simon Orebi Gann to display 

SLICE cards on-line on the Imperial College H.E.N.P. PDP10 

computer. DSLICE copied the card images off the tape onto a 

disk, then displayed all acceptable hypotheses for an event 

on a light-penning visual display unit, one event at a time. 
An operator used the light-pen to indicate the hypothesis 

that had been marked as correct on a GRIND listing, or to 

reject all hypotheses, At the end of a run, DSLICE wrote out 

the selected SLICE card images to tape. This method was faster 

and more convenient than punching SLICE cards by hand, or 

going through cards punched by a computer. 

The DSLICE output tape was sent back to R.H.E.L. and 

reformatted by another program SREAD. SLICE was then run with 

this tape of SLICE card images, and with the corresponding 

G.L.T. as inputs, producing a D.S.T. Up to this stage, the 

events from each separate roll of film, and from first 
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measures and remeasures were kept on separate files on the 

tapes. The separate D.S.T. files were now merged into one 

large file for all events at the given energy, and reformatted 

again into the final D.S.T. format. 

Before the D.S.T. could be used, it was necessary to 

check for duplicate events. An event may have been measured 

twice, or two SLICE cards may have been unintentionally 

selected for the same event, and it was necessary to remove 

these duplicates. A program, RED, written by the author 
checked the whole D.S.T. frame by frame. If two events on the 

same frame were less than 1 cm. apart in the bubble chamber, 

a warning was printed giving details of both. In some cases 

there were 2 genuine events close together but 5 to 10 

duplicate events were found per roll. These were removed by 

another program, REJ. 

Cambridge D.S.T.'s were changed to the Imperial College 

format, checked for duplicates too, and added to the  

data to give the final D.S.T.'s. 

II.4 Momenta other than 800 and 850 MeV/c  

As the 800 and 850 MeV/c D.S.T.'s were needed for the 

3-body partial wave analysis described further on, and indeed 

lay in the middle of its energy range, they were made up 

before the 1150 and 1250 D.S.T.'s . The program chain used on 

the 360 computer was developed on the 800 and 850 film, and 

then used on other film. It worked for that too, but it is 

worth making the following comments concerning these and other 

higher energy D.S.T.'s 
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1. The lr4p r EK channel, below threshold at 800 and 850 MeV/c 

is open at the higher energies. EK events were scanned and 

measured with no special problems. 

2. At 1.15 GeV/c, only 9 rolls of film had been taken instead 

of 12 as at the other energies of this run. Furthermore, 

Westfield College lost 2 of their rolls (the third was 

processed entirely at I.C.), so additional emphasis was placed 

on getting events at this energy through the I.C. processing 

chain. This was not helped by a bug on a conventional table 

used to remeasure this film - events measured by short people 

failed very frequently, whereas those measured by tall 

measurers had the usual pass rate. This was in no way channel-

dependent, and a third measure of some film confirmed this 

without significantly improving the statistics. 

3, The standard deviation on the dip stretch functions was 

slightly worse at 1.15 and 1.25 than at' ..8 and :. 85, but 

still within acceptable limits. This was seen by Imperial 

College and by Cambridge. See Table II.3. 

4, The I.C. remeasures at 1.4 GeV/c, mentioned in reference 9, 

were completed by the author and added to the 1.4 D.S.T. 

Of the remaining energies from the second run (table I.3), 

1,55 and 1.6 were abandoned because of proton contamination 

of the beam, though the film still exists. 1.5 was processed 

only by Cambridge, 1.45 was processed by Cambridge, Westfield 

(who had the largest part of the 1.45 film) measured this 

energy but did not process it. Imperial College measured and 
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processed part of the 1.45 film, then decided that it needed 

new optical constants. The author obtained and checked these 

in the same manner as is described in section II.2.2, but 

shortage of staff and lack of scanning tables prevented 

completion of processing. The present situation is therefore 

that only Cambridge D.S.T.'s exist at 1.45 and 1.5 GeV/c. 

II.5 Checking the D.S.T,s, 

Before the tapes are used for cross-section calculations 

and other physics analysis, their quality needs to be assessed. 

This section gives the numbers of events on the D.S.T.s and 

shows plots that allow the quality of the data to be checked. 

Most of these checks were made using the CERN program SUMX 

(ref. 20). 

The total numbers of events on the D.S.T.s , the numbers 

of events from each laboratory, and the numbers of events per 

roll of film measured at each laboratory, are shown in Table II.1. 

It can be seen that the effort to get as many events processed 

as possible at I.C. was successful. 

Figure II.2 shows beam track momentum, dip, and azimuth 

plots from the 850 MeV/c D.S.T., for 4-C elastic events. The 

momentum shows a wide spread about a well-defined peak; as 

described in II.3.2, I.C. and W.C. did not pull measurements 

in towards a mean value. Cambridge did pull theirs in, and 

rejected events that were too far to pull in reasonably. The 

beam dip and azimuth plots show the expected distributions. In 

order to obtain reliable results, particularly in the calculation 

of cross-sections, cuts were imposed to remove off-beam events. 
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The cuts used at 850 MeV/c are drawn in on Figure II.2, and 

Table II.2 gives the values of the cuts imposed at all four 

momenta. All the remaining plots and event numbers in this 

chapter and the next are for events within the cuts. 

Figure II.3 shows stretch functions at 850 MeV/c, and 

Table II.3 gives stretch function values for all four momenta. 

Table II.4 gives stretch functions separately for I.C.. W.C., 

and Cambridge measurements at 850 MeV/c. Stretches have 

already been discussed in connection with their use to check 

optical constants. The Imperial College optical constants 

had been calculated with the assumption that stretches on 

the dip would be worst because of film problems. The 

Cambridge optical constants were calculated to obtain the 

best balance between the three measurements, and the results 

in Table II.4 clearly reflect this difference in approaches. 

The stretches from the combined D.S.T.s are quite acceptable. 

Figures II.4 and II.5 show distributions of probabilities 

for elastic and 3-body events. These are essentially flat, 

with a peak at low probabilities. This is as expected, and 

has been discussed in previous theses (refs. 1, 9 and 12). 

1250 MeV/c data is used here, the distributions at the other 

momenta are similar. 

Figure II.6 shows the distribution of the coplanarity 

function 

p 	(p 	p ) 
i ~f pf 
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for 4-C events at 850 MeV/c. Momentum conservation demands 

that this be zero, otherwise the incident pion and outgoing 

particles would not lie in a single plane. It can be seen 

that this quantity is close to zero, and peaks at zero. 

These plots and tables show that the data has been 

well measured, and that no serious overall systematic 
problems exist. The numbers of events are sufficient for 

cross-section calculations. The problems with the I.C. film 

have been overcome; they made measuring it more difficult, 

but the data from it is trustworthy. 
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Momentum (MeV/c) 800 850 1150 1250 

Total number 
of events 

7042 9029. 9669 17200 

I.C. 

2970 
743 

3465 
990 

4795 
1598 

6327 
1582 

Number of events 
Events per roll 

WC. 

Number of events 1732 2798 1869 5545 
Events per roll 577 933 1869 1386 

Cambridge 

Number of events 2340 2766 3005 5328  
Events per roll 585 692 1002 1184 

Table II .1 

Numbers of events on D.S.T.s 



Nominal 
Momentum 
lab MeV/c 

lower momentum 
cut 

upper momentum 
cut 

Mean momentum 
within cuts 

lower dip 
cut (radians) 

upper dip cut 

mean dip X 
within cuts 

800 850 1150 1250 

766 818 1110 1214 

804 848 1170 1276 

785 833 1140 1246 

-.0420 -.0380 -.0180 -.0160 

.0400 .0440 .0220 .0240 

.0022 .0047 .0042 .0046 
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Table II .2 

Mean beam parameters and cuts imposed 



Laboratory I.C. W.C. Cambridge 

1/Plab  
Mean .055 -.068 .033 
Standard 
deviation 

0.921 0.739 1.116 

Dip 
Mean -.497 -.019 .020 
Standard 
deviation 

1.101 1.029 1.230 

Azimuth 
Mean -.118 .042 .127 
Standard 
deviation 

1.021 0.751 1.050 
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Nominal 800 850 1150 1250 
Momentum MeV/c 

1/Plab  
Mean -.051 .037 -.037 -,164 

Standard 
deviation 

dip 

1.079 0.996 0.998  0.981  

Mean -.207 -.231 -.201 -.091 

Standard 
deviation 

1.140 1.184 1.280 1.325 

Azimuth 
Mean -.060 -.006 .060 .091 

Standard 
deviation  

1.007 1.023 1.042 1.027 

Table II.3  

Beam stretch functions 

Table II.4 

850 MeV/c stretches at the different laboratories 
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CHAPTER III  

Cross-sections, Elastic Analysis and Dalitz Plots  

III.1 Introduction 

This chapter discusses the problems of separating 

different channels, and making channel-dependent corrections, 

then presents the calculated cross-sections in each channel. 

Corrections for scanning losses in the elastic channel are 

discussed in particular, and the elastic data is analysed 

in terms of a Legendre polynomial series. The elastic analysis 

provides values of the backward elastic differential cross-

sections, and these are discussed. Dalitz plots from the four 

D.S.T.s are also presented. 

III.2 Separation of channels 

The four reactions that contribute most to the cross- 

sections at our energies are - 

iltp + It') 

.r+p7o 

ir+ra+n 

} Ir+p7+7- 

3.1 
3.2 

3.3 

3.4 

The elastic events, 3.1, are used in the elastic analysis, 

and must be corrected for scanning losses. The inelastic 

events, 3.2, 3.3, are to be used in the 3-body analysis. 

It is therefore particularly important to separate these 

channels cleanly. Of the other channels, E K was identified 

by the decay of the E , and other neutral particle production 
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was identified by deciding whether missing mass squared was 

inconsistent with hypotheses 3.1 to 3.4. These 

channels contribute little to the cross-section, so 

misidentification would have a minimal effect. 

The channel 3.4 was immediately identified by the 

additional tracks. Channels 3.2 and 3.3 were initially 

separated by the kinematics programs, in cases of possible 

doubt the GRIND printout was compared with the film, and 

a decision was made on the basis of track ionisation. Only 

one or two events per roll could not be definitely identified 

in this way. Separation of channels 3.1 and 3.3 should be 

unambiguous on kinematic grounds; if an event could be a 

candidate for both channels, it was usually badly measured 

and was remeasured, otherwise the elastic hypothesis was 

accepted - earlier work in this experiment had shown that 

the elastic hypothesis was correct where it was possible 

(refs. 1, 9, 12). 

The most difficult separation is that of channels 3.1 

and 3.2. GRIND could usually make a choice on the basis of 

kinematics, doubtful events were checked, and remeasured if 

they had large errors, or assigned to the elastic channel. 

Figure III.1 shows a plot of missing mass squared (x-axis) 

versus missing energy, and projections for elastic events 

alone at 850 MeV/c. Figure III.2 shows plots of the same 

quantities for events assigned to channels 3.1 and 3.2. There 

is no evidence of contamination of either channel by the 

other. It should also be noted that the missing mass squared 

and energy (x-projection and y-projection respectively) in 

the elastic channel both peak close to zero. 
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The important channels therefore appear to be cleanly 

separated, so that accurate cross-sections can be calculated. 

III.3 Cross-section Calculations  

111 0.1 Total cross-sections  

In all film-taking runs for this experiment, there 

was some muon contamination of the beam. V. Tayler (ref. 2) 

estimated 5-8%, but no exact values were obtained. All cross-

sections have therefore been calculated by normalising to 

the total I+p cross-sections of Carter et al (ref. 22). The 

author fitted 30 points of the Carter et al data by Chebyshev 

polynomials using the Harwell program PEIIAD(ref. 23). Fits 

of increasing order were made until fitted values were the 

same to better than one part in 103  at three consecutive 

orders. Cross-sections from the 14th. order fit were then 

calculated at the mean momenta of the D.S.T.s, and the errors 

were taken to be those on the nearest Carter et al data 

point. These total cross-sections are given in Table III.1. 

III.3.2 Channel-dependent corrections  

Channel-dependent problems and differences in programs 

or in handling certain channels at the different institutions 

must be checked for, and corrected where necessary. Cambridge 

used RHEL kinematics programs, not the CERN ones, so program-

dependent faults could be checked by comparing Cambridge 

results with those of I.C. and W.C. Numbers of events before 

and after correction are given in Table III.1. There were no 
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significant differences between I.C. and W.C. event 

distributions in different channels, so I.C. and W.C. event 

numbers are given in one column, and Cambridge event numbers 

are given separately. The numbers of events in Tables III.1 

and II.2 show that about 90% of Cambridge events were within 

the beam cuts, compared with only about 50%  of the I.C. and 

W.C. events. This is a reflection of the fact that Cambridge 

pulled their measured quantities in towards mean values, 

whereas I.C. and W.C. did not. 

i) Elastic events 

Events where the pion scatters in nearly the forward 

direction, or where the reaction plane is approximately 

perpendicular to the plane of the bubble chamber cameras 

tend to be missed during scanning, and are difficult to 

measure. Corrections for these losses were made during the 

elastic analysis, described in Section IIIA. Inelastic 

channels are not significantly affected by such errors, so 

this correction is applied only in the elastic channel. 

ii) 3-body and multineutral channels 

Events whose final state contains a ,r+ and a p but 

whose missing mass (mm) is not compatible with zero may be 

badly measured elastics, lr+p °, Tr+pn°, or it +p multineutral 

events. Similarly, events with two ,r+  tracks may be 7 r+  n 

or n r multineutrals. Multineutral events are usually 

written ,r +p(mm) and ,r+,r +(mm) where (mm) represents the missing 

mass of the neutral particles. The separation of the ir +p, 

n+p °  and ,r♦un events has already been discussed; these are 

the largest channels, and the ones of major interest to this 



-5i- 

experiment. Errors in the multineutral and 'T +pn°  channels 
can only affect the major channels by a few percent, but 

are worth correcting so as to give corrected cross-sections 
in the multineutral and iT +p n°  channels. 

The uncorrected event numbers in Table III.1 show that 
Cambridge had fewer multineutral events than I.C. and W.C. 
An added complication lay in that Cambridge did not 

distinguish Tr pn°  events from Tr+p(mm). The differences between 

Cambridge and I.C./W.C. cannot be attributed entirely to 

statistical fluctuations; they are much too large, particularly 
in the ,r+p ° and Tr+p(mm) channels, and at the higher momenta. 

A detailed consideration of these channels is therefore 
necessary. 

Firstly, consider which events can be found in the 

multineutral channels, and where they would lie on a plot of 

missing mass. Genuine multineutral events should be assigned 

to this channel, and should cluster around multineutral 
masses,- the mass of 2, 3 or more fir °  mesons in their +p(mm) 
channel, or nor°, nyr°7r ° etc. in the rr + Tr+(mm) channel. zr+p 1r°, 

7+p n°  and Tr+  n n events should not be found in the multi-

neutral channel, unless very badly measured, however a few 

badly measured elastic events, whose missing mass is below 
that of a 7°, but is incompatible with zero may also be found 
in their +p(mm) channel. There may also be a background of 

very badly measured events, whose missing mass is not 

identifiable as any of the above, but which would mostly be 

badly measured multineutrals. The kinematic decision on 
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whether the missing mass can be that  of a single pion or 

neutron depends on estimated errors. If errors are 

underestimated, then some poorly measured 7+137T°  and 7+7+n  

events will be misidentified as multineutrals, whereas 

overestimated errors lead to genuine multineutral events 

being fitted as 3-body events. Underestimated errors will 

therefore give a large background in a missing mass plot, 

whereas overestimated errors will remove the peaks at 

multineutral masses, leaving only a background of badly 

measured events. 

Missing mass squared plots were made separately for 

I.C./W.C. events, and for Cambridge events, The I.C./w.C. 

Tf+p(mm) plots showed distinct peaks at masses of Tr°  Tr°, 
IToo7o and 47°, with very little background. The Cambridge 

plots, in contrast, showed-no peaks, only a very few 

scattered events, and in particular no n°  peak was seen. 

The ,r +,+(mm) plots at the two lower momenta showed only a 

small background, but at the upper momenta I.C./,4.C. showed 

a peak near the mass of nTP, whereas the Cambridge data 

showed no peak. These plots, and the fact that Cambridge 

pulled their measurements towards fitted values, led to the 

belief that the I.C./W.C. data was correct, and the Cambridge 

data needed correcting. The numbers of events in Table III.1 

have been corrected accordingly, and where events have been 

added to the Cambridge 7r+pn°, Tr+p(mm) and 7+ m+(mm) channels, 

they have been subtracted from the 7+pTr°  and r +n channels. 

At 800 MeV/c, the I.C./W.C. T+p(mm) channel contained a 

group of 9 events with missing mass very close to zero - these 
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were taken to be mis-assigned elastic events and were 

therefore added to the numbers of elastic events. 

Plots were also made of the cosine of the 71-  scattering 

angle in the 74.p(mm) channel. The distribution of events 

showed that they did not all come from one kinematic region. 

This adds to confidence in the assumption that the problems 

were due to an overestimate of the errors, which would not 

preferentially affect a special kinematic region, The careful 

checks and corrections made lead to confidence in the 

calculated ;Pp?, Tr+p(mm) and 7,r+(mm)  cross-sections. 

iii) 4-prongs 

Where ambiguities occured between #pTi+  Tr and 74.13;/.7-Y, 

the 4-C fit was always chosen. In the case of ambiguities 

between Tr
+

p Tr
+

T7 Y and 7+p TTr  Tr-Tr °, the hypothesis with the 

higher probability was chosen. At the two upper momenta, a 

higher proportion of I.C. and W.C. T+pTr+ Tr events failed 

than in other channels, so the numbers of events were 

corrected for this. 

iv) E K 

The earlier Imperial College runs had considerable. 

trouble with this channel. The version of GRIND used on the 

360 computer for the third run was much less troublesome, 

but a larger fraction of events failed in this channel than 

in others. A correction based on an estimate of this larger 

failure rate and on a comparison with Cambridge results has 

been applied. 



III.3,3 Cross-sections  

The last columns of Table III.1 give cross-sections 

calculated from the corrected numbers of events and from 

the total cross-sections. Errors are calculated as follows : 

A-  errors are assumed on the uncorrected numbers of events, 

they are scaled up to account for corrections, then these 

errors are combined with the errors on the total cross-sections 

and a Vg error on the total number of events to give the 

error on each calculated cross-section. 

Cross-sections for the p channel are shown in 

Figure III.3. Results from this thesis, from momenta 

previously analysed by our experiment, and from the Oxford 

experiment (refs. 6, 7, 8) are shown together with results 

from other experiments. Our statistics are good, so our 

errors are small compared to most earlier experiments. Figures  

111.6, II1,7 show cross-sections for Tr+plog  

Tr+Tr+n, Tr+p T Tr and Tr+p n°  respectively. Our 4*ID70  and Tr + 7+n 

results are in agreement with earlier work, and the errors 

are small. 7+pn0  results have larger errors because this is 

a small channel, and we had some trouble, as already 

discussed. The Oxford group originally doubled the number of 

4-prong events that they observed when they calculated their 

cross-sections. In Figure III.6 we have shown the values they 

later gave in reference 6, and these are in good agreement 

with ours. Figure III.8 compares our EK cross-sections with 

those of other experiments; our statistics are again small, 

but the agreement is reasonable. 



channel I.C. Cambridge Corrected Cross- 
and 	events 	number of 	section 
W. C. 	events 	(mb) 
events 

800 MeV/c 

Tr+p7r+Tr- 	 14 

850 MeV/c 

7r-hp 	 1254 

71+pmo 	1370 

71+7+n 	 235 

TT +pmm 	 26  6 

~+mm 	 4 

+p~+~r- 	 28 

~rtpir+ IT- MIR 	 1 

Total cross-section 16.62 * .18 

IT 	 1287 

7+pn° 	855 

nT 	n 	 179 

rr+pmm 	 18 

	

1180 	2651 * 53 	8.46 t .23 

	

802 	1657 i 40 	5.29 t .16 

	

142 	321 t 18 	1.02 ± .06 

	

8 	17 f 4 	0.05 t. 01 

1r+11+mm 	 3 	 6 	9 t 3 	0.03 t, 01 

	

16 	 30 ± 5 	0.10 t .02 

Total cross-section 14.95 f .18 

862 	2224 t 48 	7.40 t .21 

913 	2274 t 48 	7.57 t .21 

163 	398 t 20 	1.32 t .07 

 

+ 

8 	43 t 	7 	0.14 f.02 

5 	 9t 	3 	0.03t .01 

18 	 46 ± 	7 	0.15 t .02 

0 	 1 ± 	1 	.003 * .003 
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Table III.1,a 

Numbers of events and cross-sections at 800 and 850 MeV/c 



1150 MeV/c  

Trip 	1632 

7+p/i° 	1184 

70-7+n 	292 

n+p rl° 	17 

rtpmm 	36 

r+Tr+mm 	 32 

7+I) r+7- 	90 

7+p7+7-7r° 	6 

.f+plr+7-y 	1 

Ex 	 14 

	

1243 	3058 t 57 

	

975 	2124 t 46 

	

231 	502 t 22 

	

0 	 30 ± 	7  

7 

	

6 	 64 t 10  

T 

	

4 	 57 ± 10 

97 221 f 16 

4 10 ± 3 

1 2 t 1 

13 29 ± 6 

13.75 * .32 

9.55 t .25 
2.26 ± .10 

0.13 t .03 

0.29 t ..05 

0.26 * .05 

0.99 t .07 

0.04 ± .01 

-.009 t .004 

0.13 ± .03 

Total cross-section 27.42 t .18 
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Channel I.C. Cambridge Corrected Cross-section 
and 	events 	number 	(mb) 
W.C. 	of events 

events 

1250 MeV/c  

7r+p 	2530 	2248 	5051 ± 73 	15.55 ± .29 

7+p7° 	1883 	1749 	3479 ± 59 	10.71 ± .22 

7r+u+n 	443 	474 	841 t 29 	2.59 t .09 

Ir +pn° 	123 	0 	231 ± 21 	0.71 t .07 

Trtpmm 	 77 	23 	145 t 15 	0,45 ± ,05 

7+7r+11117 	98 	10 	184 ± 18 	0.57 ± .06 

n+p,r+.~- 

7+1)7+7-70 

g+p7r+7r-y 

1 ± 1 .003 ± .003 

3 
± 2 .009 ± .006 

83 ± 11 0.26 ± .03 

Total cross-section 32.46 t .46 

7+pm'+7r-17m 

Tr+7r+7r+7r-n 

Ex 	22 	39 

234 222 

13 11 

9 18 

0 1 

1 2 

	

473 f 22 	1.43 ± .07 

	

26 ± 5 	0.08 ± .02 

	

28 ± 5 	0.09 t .02 

Table III.1.b Numbers of events and cross-sections at 1150 
and 1250 MeV/c 
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1II.4 Elastic Analysis  

III.4.1 Elastic corrections  

The elastic interactions can be described by two angles= 

the polar angle a which is the deflection cf the scattered 

pion from the incident pion direction, and the azimuthal angle 

4), the orientation of the scattering plane relative to a 

fixed plane. Figure II1.9 shows the distributions of these 

quantities for elastic events at 850 MeV/c. As in all bubble 

chamber experiments of this sort, there is a depletion of 

events in two regions. Events with cose close to 1.0 are 

those where the pion scatters through a small angle. Such 

events are difficult to see and measure, since the pion 

direction changes only slightly, and the proton track is short. 

There is therefore a marked loss of events in this region. 

In an experiment such as ours, with an unpolarised beam 

and target, the distribution in 4) should be flat. Reactions 

whose scattering plane is approximately perpendicular to the 

plane of the bubble chamber cameras are however sometimes 

missed and are difficult to measure, because the outgoing 

tracks are overlaid, and the deflection of the beam track is 

again difficult to see. This is clearly seen on the 4) plot. 

The plot has been folded so that all 4) values lie between 0 

and 2, so only one depletion region is seen (the scale is 

marked in fractions of 7 from 0 to 0.5). 

The standard procedure for correcting for these losses 

was applied at all four energies. The data was divided into 
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40 cose bins, and fitted by a Legendre polynomial series 

of the form - 

N 
max 
C 	Bn Pn (cose) 	3.5 

n=0 

by minimising the chi-squared 

no. of bins 
X2 	= 

. 	i=1 
where 	Ne 	= experimental 

Nf1 
= number of 

Nf 
1 - N 1 
 e 

2 

of events in bin i 

bin i predicted by fit 

AN 
e 

number 

events in 

~e1 = error on Nel . Poisson statistics are 

assumed giving 	i 	11 ANe 	"'e 

The number of bins fitted was not 40; the purpose of 

the fit was to correct for forward losses, so the bins 

affected by the losses were not used in the fit. Cuts on 4) 

were also imposed, Table III.2 gives the values of the cuts 

on the folded q) and on cose . The order of fit was chosen 

such that the Fischer ratio 
2 _ 2 

xn xn-1 
F = 

x2/N.D.F. 

became small, and the chi-squared per number of degrees of 

freedom (x2/N.D.F.) did not become smaller when the order n 

was increased by 1. The fit order used at each energy is also 

given in Table I11.2 together with the x2 and N.D.F. The 

number of terms used in the Legendre series is one greater 

than the order because the first term is the zero order term. 

The fitted series was then integrated over the whole 

cose range to correct for the forward losses, and scaled up 

to the whole (Prange to give a corrected total number of 
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Momentum (MeV/c) 	785 	833 	1140 	1246 

Cos e range used -1. to .85 -1. to .80 -1. to .95 -1. to .95 

4) range used 	0. to .421r 0. to .447 0. to .427 0. to .427 

X
2 
	 33.9 	55.8 	38.1 	34.0 

N.D.F. 	30 	29 	32 	32 

Order of fit 	5 	6 	6 	6 

Table III .2 

Cuts and elastic fit parameters 
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elastic events. The corrected numbers are given in Table III.1. 

III.4.2 Elastic results  

The fitted series 3.5 was used to provide plots and 
tables of differential cross-sections. Figures III.1O.a to 

III.10.d show the fitted differential cross-sections at the 

four momenta, together with the data points used. Table III.3 

gives the experimental differential cross-section values 

used at the four momenta, and the extrapolated forward and 

backward values. %/N errors are also given. 

The Legendre polynomial series 3.5 can also be rewritten 
N max  

da _ 1 
 L 	A P (cos8) 

dSZ 	q2 	n n 
n=0 

where q is the incident pion momentum in the centre of mass 

system. The Legendre coefficients 	and and Ai/A0  are given in 

Table III.4. Ai/A0  are plotted in Figure III.11, which is 

Figure 3.5 of reference 9 with the new points added. Plots 
and tables of the differential cross-sections and Legendre 

coefficients at the other energies of this experiment can 

be found in the previous theses (refs. 1, 9, 11), some have 
also been published (refs. 3 and 11). 

Tripp (ref. 28) gives coefficients for the partial 

waves contributing to each Legendre coefficient. As several 

waves contribute to each coefficient, a full partial wave 

analysis is needed to analyse them properly, but a few general 

observations can be made, particularly on the higher 

coefficients which contain no contributions from the lowest 

3.6 
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cos a 785 833 1140 1246 

-1.0 0.006±.009* 0.049±.025* 1.803±.177* 2.422± .169* 

-.975 0.051±.025 0.076±.031 1.542±.163 2.073± .157 

-.925 0.139±.042 0.190±.049 0.988±.131 1.173±.118 

-.875 0.177±.047 0.291±.061 0.641±.105 1.007±.109 

-.825 0.139-4042 0;240±.055 0.503±.093 0.687±.090 

-.775 0.241±.055 0.139±.042 0.520-1.095 0.604±.085 

-.725 0.190±.049 0.303±.062 0.416±.085 0.569±.082 
-.675 0.190±.049 0.291±.061 0.468±.090 0.675+.089 

-.625 0.1391-.042 0.253±.057 0.624±.104 0.569±.082 

-.575 0.114±.038 0.303±.062 0.503±.093 0.663±.089 

-.525 0.127-.040 0.329±.064 0.606±.103 0.735±.093 
-.475 0.063±.028 0.114±.038 0.503±.093 0.687±.090 

-.425 0.127±.040 0.126±.040 0.572±.100 0.735±.093 

-.375 0.165±.046 0.051±.025 0.572±.100 0.900±.103 

-.325 0.013±.013 0.139±.042 0.451±.088 0.652±.088 

-.275 0.051±.025 0.101±.036 0.381±.081 0.628±.086 

-.225 0.089±.034 0.152±.044 0.295±.071 0.604±.085 

-.175 0.101±.036 0.089±.033 0.225±.062 0.533±.079 
-.125 0.076±.031 0.114±.038 0.200±.067 0.545±.080 

-.075 o.165±.046 0.051±.025 0.121±.046 0.403±.069 

-.025 0.203±.051 0.063±.028 0.156±.052 0.308±.060 
.025 0.190±.049 0.228±.054 0.225±.062 0.332±.063 
.075 0.266±.058 0.291±.061 0.364±.079 0.284±.058 
.125 0.418±.073 0.190±.049 0.381±.081 0.367±.066 

.175 0.393±.071 0.544±.083 0.485±.092 0.367±.066 

.225 0.570±.085 0.405±.072 0.572±.100 0.391±.068 

.275 0.6971-.094 0.569±.085 0.641±.105 0.545+.080 

.325 0.836±.103 0.556±.084 1.040±.134 0.545±.080 

.375 0.747±.097 0.658±.091 0.641±.105 i.o66±.112 

.425 0.887±.106 0.948±.110 1.178±.142 0.936±.105 

.475 1.241±.125 0.910±.107 1.300±.150 0.924±.105 

.525 1..241±.125 1.214±.124 1.404±.156 1.315±.125 

.575 1.507±.138 1.189±.123 1.490±.161 1.718±.142 

.625 1.558±.140 1.252±.126 2.339±.201  1.599±.138 

.675 1.419±.134 1.416±.134 2.183±.195 2.073±.157 

.725 1.723±.148 1.555±.140 2.305±.200 2.215±.162 

.775 1.824±.152 1.770±.150 3.136±.233 2.595±.175 

.825 2.141±.165 1.815±.151* 2.998±.228 3.803±.212 

.875 2.174±.166* 1.923±.156* 3.102±.232 3.815±.213 

.925 2.320±.171* 24023±.160* 3.899±.260 4.585±.233 

.975 2.471±.177* 2.115±.164* 4.617±.283* 5.645±.259* 

1.0 2.547±.180* 2.158±.165* 5.047±.296* 6.229±.272* 

* Extrapolated from polynomial fit 

Table III.3  Differential cross-sections in the c.m.s. 
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Beam 
momentum 
MeV/c 

785 833 1140 1246 

Coefficient 

Ao  0.669t.025 0.607t,071 1,101±.027 1.239±,022 

Al  1.121±.065 0.938±.196 1.3111.062 1.268t.052 

A1/A0  1.674±.097 1.5461.322 1.191±.056 1.0231.042 

A2  0.768±.094 0.740t.278 1.670t.085 1.983t.074 

A2/Ao  1.148t.141 1.219±.458 1.516t.078 1.600±.060 

A3  0.044±.103 0.111t.312 0.466t.105 0.8981.088 

A3/Ao  0.066±.154 0.1831.513 0.423±.095 0.725±.071 

A4  -0.220±.087 -0.2621.277 0.186±.119 0.633t.097 

A4/Ao  -0.329t.130 -0.432±.456 0,169±.108 0.511t.078 

A5  0.0481.052 0,005±,200 -0.156±.106 -0.262±.086 

A5/A0  0.071t.078 0.009±.330 -0.142t.096 -0.2121.069 

A6 0,019t,108 0,4681,097 0,471±,083 

A6/A O.031±.179 0.425±.088 0,380±.067 

Table III .4 

Elastic fit Legendre coefficients 
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Figure III.11 Elastic fit Legendre coefficients 
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waves. In the first place, the coefficients at the four new 

momenta are compatible with those previously determined. 

More coefficients were required at 800 and 850 MeV/c than 

at 895 and 945 MeV/c - this is somewhat surprising, there 

is no obvious explanation but it may be connected with the 

film problems or the worse statistics at the lower momenta. 

The larger errors on the 850 MeV/c coefficients support 

this suggestion. 

As the highest order coefficients are the simplest, 

we consider them in decreasing order. The fact that A7  and 

higher coefficients are unnecessary implies the absence of 

waves higher than L20. = F7. The rise in A6  is then presumably 

due to the increasing importance of F7, corresponding to 

the four-star AF37(1950) resonance; the F5F7  interference 

will also be rising at the upper momenta, approaching the 

A F35(1890) resonance. The negative values of A5  at the lower 

momenta would come from the D5F5  interference term, and the 

change in sign at the highest momentum is most likely due 

to increasing D3F7  and D5F7  terms. The rise in A4  at the 

upper momenta is most likely due to the increasing F5  

contribution, and the significantly negative A4  values near 

900 MeV/c are most likely due to a D3D5  contribution. A3  

starts off near zero, and the plateau between 900 and 1100 

MeV/c can contain significant contributions from P3D5, D3F5, 

P3D3,  S1F5  and P1D5  terms. These terms can only be unravelled 

by a partial wave analysis, but it is interesting to note 

that several terms involving D5  are important near 900 MeV/c. 

900 MeV/c corresponds to rather a low energy for the D5  wave, 

but it will be shown in the inelastic analysis that this wave 
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contributes singificantly at 895 MeV/c and 945 MeV/c; these 

elastic A3, A4  and A5  results give independent support to 

that claim. The rapid rise in A3  at the higher momenta can 

again be attributed to the interferences of other waves with 

increasing F5  and F7  contributions. A2, Al  and Ao  are 

singnificantly non-zero throughout the momentum range - one 

can say without examining all their contributions that this 

means several waves and their interferences are important. 

This discussion of the Legendre coefficients has been rather 

sketchy, but it is emphasised that only a partial wave 

analysis could extract reliable numerical results from the 

coefficients. 

III.4.3 Backward elastic cross-sections 

Figure II1.12 shows a plot of the backward elastic 

differential cross-sections determined by this experiment, 

and the Oxford experiment (ref. 6). Our results, and those 

of other bubble chamber experiments have tended to disagree 

seriously with counter experiment results, as for example 

Rothschild et al (ref. 27) whose results are given in Figure 

11I,12, particularly at lower momenta. The latest accurate 

counter experiment, that of the Bristol/RHEL/Southampton group 

showed figures with their preliminary results at the Oxford 

Conference (ref. 13). The backward results read off from the 

figures given in reference 13 are included in Figure 1I1.12. 

These are not very accurate, because they are preliminary 

results, and because it was difficult to read them off from 

the figure ( impossible between 700 and 800 MeV/c), but they 

are in better agreement with our results at the lower 
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Figure 1II.12  

Backward elastic differential cross-sections 
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momenta, up to 1100 MeV/c. Unfortunately, the Bristol/RHEL/ 

Southampton results above 1100 MeV/c are far lower than the 

Rothschild et al results. Our results at these momenta lie 

between those of the two counter experiments. It may of 

course be that the Bristol/RHEL/Southampton results above 

1100 MeV/c will be revised upwards in their final publication. 

Earlier work in our experiment showed no sign of losses 

in backward elastic events (ref. 1), and we continue to 

believe our results because serious differences between 

different counter experiments still exist unexplained. 

II1,5 Dalitz Plots  

Figures 1II.13 to II1.20 show Dalitz plots for + p7o  

and 77+n at our four momenta, together with their 

projections. Mass-squared of 41.p  or Tr+n is plotted along 

the x-axes, mass-squared of 7+.° or r+n+ is plotted along 

the y-axes. The phase-space area available increases rapidly 

with momentum. The 0(1230) is seen on all x-axis projections, 

and its reflection is also seen, particularly on the n+n 

projections, at the two higher momenta, The P meson is seen 

on the y-axis projections of the 7+p7°  plots at the two 

higher momenta. 
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Charter IV 4-Variable Fitting Formalism 

IV.1 Introduction 

We wish to use our rr+p ri 	r- and T +rrn data to obtain 

T-matrix elements describing the transition from the 

initial rr+p state to these final states. Each event needs 

6 kinematic variables to describe it. However when the 

target is unpolarised, and the data is split up into bins 

of approximately constant total energy, this is reduced 

to 4 variables per event. 

Our 4-variable fitting program was written by Rob 

Stevens, and in his thesis (ref. 9) he described the 

formalism used. The author's contribution has been in 

rechecking that program, adding more waves to the fitting, 

extending the fits from 4 to 9 energies, and adding 

calculations of one-pion-exchange contributions to the 

fits. The 0. P. E. work and its results are described in 

Chapter VII, the programs, their running, and the results 

without O. P. E. are described in Chapters V and VI. This 

chapter gives a recapitulation of the formalism more fully 

described by Rob Stevens, and contains an example of the 

formulae used the FF7 wave which the author added to the 

analysis. 

Further details, and comparisons between our formalism 

and others are given in Andy White's thesis, reference 10. 
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IV.2 trrrN Formalism 

IV.2.1 The Isobar Model  

The analysis of a 2-body to 3-body reactions 

can be considerably simplified if 2 of the.3 final state 

particles are assumed to produce a resonance which 

subsequently decays: 

This was first proposed by Lindebaum and Sternheimer 

(ref, 29). It had been seen from Dalitz plots that final 

states with a diparticle mass close to that of the 

P33 Nr{1236 MeV) resonance were favoured, and they 

proposed that these reactionsproceeded via production of 

this "isobar" and its subsequent decay. This only 

described one region of the Dalitz plot; present versions 

of the isobar model use several isobars, so that every 

event can be described in this way. 
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Symbolically: 

The model has a number of weaknesses. It assumes no 

direct 3-body decays, and no rescattering (such as a 

subsequent reaction between particles i and j above). The 

amplitudes constructed by the coherent sum over the three 

possible combinations do not exactly satisfy unitarity 

constraints. Various theoretical and practical improvements 

have been suggested, one is the addition of one-particle-

exchange contributions described in Chapter VII here. 

Nevertheless the model appears to be phenomenologically 

justified, and gives reasonable results. Various tests of 

its validity have been made, one by our group is described 

in Chapter V, and so far they justify its use. 

IV.2.2 Notation and Deler-Valladas Formalism  

The transition from the initialir+p state to the final 

rT11T2N state via a 2-body resonance R has to be parametrised 

in terms of 4 kinematic variables and the quantum numbers 

of the states involved. The Deler-Valladas formalism 

(ref. 30) chooses as its 4 independent variables 2 Dalitz 

plot masses w1, w2 and the polar angles of the incident 

pion9 , 	in a frame fixed with respect to the final state 

particles. All the angular dependence of the production 

and decay of the isobar is then taken out into functions 
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f(w1 ,w2,0 ,y ), whose form depends on the quantum numbers 

of the initial, intermediate, and final states, thus 

giving rise in a natural way to a partial wave series, 

each wave having different quantum numbers. 

The symbols we use are described in Table IV.1 and 

Figure IV.1; a description of the notation we use for 

partial waves is also necessary. Each partial wave is 

labelled by its isobar, L and L' (in spectroscopic notation 

- S, P, D, F etc.), 2I (twice its total I spin) and 2J 

(twice the total angular momentum). The isobars we consider 

and the parameters we use for them are:- 

4P33 	Mass = 1236, width = 120 MeV/c 

N*P11 	Mass = 1470, width = 195 MeV/c 

f meson Mass = 770, width = 146 MeV/c 

The following restrictions to combinations of J, L, f apply: 

In the initial state we have 

J 	=L± i 

in the intermediate state we have 

J = L' ± S 

when S = 2f  angular momentum conservation and parity 

conservation allow only L = L 

when S = 3/2, J = L+; L = L' , L' +2 are allowed 

when S = 3/2, J = L-i; L = L' , L' -2 are allowed 

Note also from Table IV.1 that 

/1 	n 	n 
S = j + s 

means that S = j for baryon resonances, but S = 1 ± 

for the 
f 
 meson. 
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Figure IV.1. 

J Total angular momentum 

Z 	Orbital angular momentum between incident pion and target 

Z~ 	Orbital angular momentum between isobar and bachelor 

j 	Total invariant spin of isobar 

1 	Orbital angular momentum of isobar decay particles 

s 	Spin of bachelor 
A A 

S Total spin of isobar and bachelor S = j + s 

note that for a pion bachelor s = 0 so S = j 

Mf Projection of nucleon spin on isobar direction in 

overall c.m.s. 

X 	Helicity of isobar 

V 	Projection of 1 on c.m.s. isobar direction 

m 	Projection of orbital angular momentum on z axis 

i'~f Projection of initial and final nucleon spin on z axis 

Table IV.la - Quantum Numbers 
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Total c.m.s. energy 
2 	2 

W1 'w2 Invariant mass2 of the N 2, N 1 systems 

wo 	Nominal mass of the resonance 

r ,~o Full width and nominal width of the resonance 

Relative c.m.s. momentum of incident state 

Momentum of decay particle from isobar, in isobar 

rest frame (k = 1 to 3) 	• 

qk 	Momentum of decay pion from isobar, in c.m.s. 

Qk 	c.m.s. momentum of recoil particle (bachelor) 

go 	Decay momentum of the isobar when its mass equals 

the nominal resonance mass. 

Polar angles of beam particle in fixed frame 

Angle between (Tr'2N) and nucleon (+ve) in c.m.s. 

2 	Angle between (rr'1N) and nucleon (+ve) in c.m.s. 

81 	Helicity decay angle to proton from r 2N, i.e. the 

angle between the N direction in the TT2N rest 

frame, and the direction of the (i2N) system in 

the overall c.m.s. 

Helicity decay angle to proton fromTr1N 

Table IV,1b - Kinematics 

qi 

1* k 
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Thus the ? meson isobar case requires this extra 

quantum number to specify the state completely; 2S is 

subscripted to the symbol Q  for i  waves. 

The notation used for waves is thus s— 

isobar 	L L' 2I 2J 

Since our experiment uses only-►r+p interactions, 

the total I spin is always 3/2, so in discussing our 

results alone, we often drop the 2I label. 

A choice of isobars must be made and maximum values 

for J, L, Lr must be decided when we consider possible 

waves for the analysis. We restrict ourselves to the three 

isobars described, and use a moments analysis to decide on 

a maximum value, for L and It', of F. The reasons for 

choosing these isobars are given in Rob Stevens' thesis, 

and section V.4.1 describes the use of the moments 

analysis. The waves we use are then those described in 

Table IV.2. They include the FF7 waves, previously not 

allowed for, but shown to be significant, at 1040 MeV/c 

and above, by the moments analysis. 

	

6SD1 	N* SS1 	41 SS1 	43  SD1 

	

APP1 	N# PP1 	41  PP1 	s 3  PP1 

	

LPP3 	 N# PP3 	41  PP3 	g 3  PP3 

	

4PF3 	 N* DD3 	41 DD3 	$ 3  PF3 

	

QDS3 	N* DD5 	41  DD5 	$ 3  DS3 

	

4DD3 	 N* FF5 	$1  FF5 	y 3  DD3 

	

4DD5 	 N* FF7 	Ý1  FF7 	$3  DD5 

	

6FP5 	 4 3  FP5 

	

4FF5 	3  FF5 

	

QFF7 	 i 3  FF7 
Table IV.2 List of Waves  



-93- 

We can now give the D-V expression for the transition: 

<rTIRI Tp,t incp)(17'2NITDIR> _ 
	1 

TT f 	J+4 TJ 	1 04w1) m ~l(01,~1,d,
r

) JLL 	4i 	 L f 
jl 

(4.1) 

T30. /1 wl) contains the dynamics of the 

interaction ; it will be discussed in the next section. 

The D-V expression for f, in our notation and with 

our choice of axes is :- 

fJLL' jQ, 
31 f 

,d1,e0) = (-1) [2L+11 

a 
G 	{ 1+(-1)L+m+1} (-1)7+2 

M * m 
•

f ' ' 

1,a>0 

x (Jj-al 	O)(zivm?Ii X)(ZJUf (m`uf )lim) 

x (1JMf*-XJ' -v)(J'-z (m-uf )ui JL(m=uf +ui )) 

x dm,-v(2)1° (e1) (i)V eimā e 	1  

YL+ui-Pf (0,0 (4.2) 

Two additional symbols have been introduced; 	is an 

index over J-14, J-4 for each J.S1 is the Stapp angle 

(ref. 31). At our energies it is close to zero, so the 

el'~f term will be ignored. 
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v 

The definition of P1 used here is:- 

Y1 (e ~If) = (-1rPi (e) 	/ 

The assumption of the isobar model is that each 

event can be described by the sum of this term and other 

similar ones, 

f̀ TLL' j1 (-e -L 	, 

for aTi1N isobar, and 

fJLL jl (0,307-,9  , 	) 
i f 

for a n; T7 isobar. 

We can simplify the general expressions for 

fµ  µ'J1 to 6 special cases, and the expressions for 
i f 

individual waves can then be obtained from these. This 

is a tedious operation, and open to error, though the 

final expressions can be checked for various properties 

they must have. As a first step towards automating this 

process, the 6 special cases were programmed by Simon 

Orebi Gann into the algebraic manipulation program REDUCE 

(ref. 32). This was then used to check our programmed 

expressions, and showed up one error. The second step, 

programming the general expression into REDUCE, has also 

been performed. The results were helpful when we made 

comparisons between our expressions and those from Saclay, 

and from the formalism used by SLAC-Berkeley (ref. 33). 

,L i'wf 
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Andy White (ref. 10) has shown that the formalisms of 

Saclay and SLAC-Berkeley lead to the same signs for all 

waves. However some of our choices for definitions of 

angles differed from those made by Saclay. The appendix 

on the isobar model in J. Dolbeau's thesis (ref. 34) has 

been found very helpful, since he gives a detailed 

description of sign conventions. Re-definition of our 

angles to agree with these conventions, and correction of 

a sign error made in transcribing expressions for even L, 

S = 3/2 waves, give us expressions which agree with those 

of Saclay, and nolonger have the sign problem in odd 

L N* and 	waves mentioned by Rob Stevens. 

The FF7 waves were not originally included in Rob 

Stevens' programs; the author added them later, using the 

original "by hand" methods to evaluate the expressions. A 

summary of this is given here as an example of such 

evaluations. 

The 6 special cases are 

For S = 3/2 (4 and 
f 3) 

I L~ = L+2 = J+3/2 

L = 

II 	L = J+ 

III L = L =J-'i 

IV Lr = L-2 = J-3/2 

.'. L = J-4 

For S = 	(N* ands 1) 

I L~ = L = 

II Lr = L = 

For the 3/24 (and ' 3) FF7 waves, case III, 3/2 applies. 



-96- 

For the 	N*(and 1) FF7 waves, case I, i applies; 

for convenience this wave is called NFF7 to distinguish 

it from the d FF7, or just FF7 wave. 

In every case there are 4 possible combinations of 

ands,. f 

AA i - Af = + , AA-5.  =Ac
f = - are non-spin-flip terms 

(NSF) 

µ i = ; = µ, • i = - = .../AT are spin-flip terms (SF) 

The 2 NSF cases are similar, , and so are the 2 SF 

cases, so expressions are evaluated for SF and NSF. 

The 3/2 case III simplified expression for f is:- 

1 	 1 	 1  
(2L+3)(L+1) 	 /L(L+1)(2t+1) 

(-1)m+1 pT+1 (0)b,(L+1)cos9+(-mL+(2L+3)(L+1-m)) 
m 	 e isin0~eim 

(-) j(L-m+1)(L+mt1) 

4(L+m)(L+m+1) 

YL (CA) NSF 

YL-i(p, ~) SF 

The sum over m is for all m values allowed for the 

given J-4, but several such terms contain at least one 

factor of zero. The non-zero terms are: 

FF7 NSF 

11-1 14 5isin@ + cose e
-2i~ 	

Y32 
8 m=-2 



NFF7 SF 

m=-2 

m = 0 
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m= 0 	8 J 7 Icos+ 3isine} Y3 

m = 2 	-$ 	cos&  + isin83 e2ig Y3 

FF7 SF 

cos& + 5isine( e-21a Y33 
21 

[ €cos0 + 3isin ej Y31 

cos& + isine? e2i‘ Y3 

m = 4-jJTI 	 cos& - isin J 	e l 	Y3 

One property that the f's must satisfy is 

(-~31-1:3 ~~ 9,ā, O, 	
d c os e GI cos e d 	= 

M/~ 	
J 

and this was used to check the correctness of the above 

expressions. 

Expressions for NFF7 are similarly derived and 

m = -2 

M = 0 

m = 2 

10 

-j 

16 

checked, they ares 

NFF7 NSF 

m=-2 	1 -8 14 

m = 0 	
8 

m = 2 	-8 Ff. 

(cos& - isine) Y32 	e-2i6 

(cose - isine) Y° 3 

(cos& - isin&) Y3 	e2iS 

(cos& - isin) Y-3 	e-21 ,C 

(cos 9-- isin&) Y31 
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m = 2 	(cose-- isine) Y3 e2" 

m = 4 	-Ti 	( cose- - isin&) Y3 e4i‘ 

These expressions are programmed into FORTRAN routines. 

e,gand the. YL values for an event are passed to these 

routines and they return the real and imaginary parts 

of the spin-flip and non-spin-flip terms. This coding 

of the expressions is also susceptible to error, Andy 

White has written a program to compare the results of 

calculations in the SLAC-Berkeley formalism with the 

results of these subroutines. REDUCE has also been 

helpful, since it can produce FORTRAN code as its 

outputs it was at this stage that an error in coding 

the NDD3 expressions was found. 

IV.2.3 Other Parametrisations  

Turning to the term TJjLLL1 (W,w) in expression 

4.1, we must choose a suitable parametrisation for this 

quantity to describe the dynamics of the interaction. 

We first separate it into 2 terms, 

TJj1LL/ (W,w) = AJj1LL' (W,w) Bj1(w) (4.3) 

where A represents the amplitude for the production of 

the resonance, and B the dynamics of its decay. We then 

use a relativistic Breit-Wigner formulation from 

Jackson (ref. 35) for B 

_ t_v i wo r7 
B jl(w) ~q~ 	2 2 	(Iklk Illi II z) (4.4) 

(wo-w )-iwo~' 
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The Clebsch-Gordan coefficient is for the combination 

of the I-spins of the isobar components (k,l) and allows 

comparison of different charge states of the same isobar. 

r is a mass-dependent width of the isobar. 

21+1 	
w)  r = o 

 (t; ) 	y(w0)  

"is a form factor, for baryon resonances we use the 

parametrisation of Rosenfeld and Glashow (ref. 36) 

-1 
(w) = w-1  (0.1225 + (12) 

for the 4  meson we use 

(w) = w-1 
 

For A we write 

AJj1LL/ (W,w) = XJj1LL/ (W) YL(gi) YL' (Qk) 

The XJj1LL/(W)  are the (complex) transition amplitudes 

that we wish to obtain from the data; they depend only on 

the total c.m.s. energy. The Y's are centrifugal barrier 

terms. Various parametrisations are possible for these; 

after tests described in Rob Stevens' thesis, the simplest 

power dependence one was chosen. 

AJj1LL' (W w) = XJj1LL̀  (W) ql Qk (IIZ1.1. 1 3/2 3/2) 
(4.5) 

The Clebsch-Gordan coefficient is for the combination 

of the I-spins of isobar and bachelor, to make X charge 

independent. 
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This completes the brief description of our 

parametrisation, as stated earlier more details are 

given in Rob Stevens' thesis (ref. 9). 

IV,2.4 Expressions for Cross-sections  

Using the expression 4.1, we have for the 

differential cross-section with respect to the 4 

Deler-Valladas variables: 

 

LT Jar: j L 
6 4 0  

w, c{wz I(uti@a 

   

(4.6) 

The sum over i denotes a summation over the 4 

isobars, and over the combinations71N,►T2N where both 

contribute to an isobar. Expressions for the terms 

involved have already been given, and a simplified 

notation can now be introduced. Let the single index/ 

replace (µi,t1,), and let the index n represent 

(Jj1LL' Si). Our purpose is to find values for the 

partial wave amplitudes Xn(W) in equation 4.5, so these 

will be written explicitly, but all remaining functional 

dependence and constants can be represented by the 

symbols I. Equation 4.6 can now be written more simply 

as 

d w'd wi ,1 cos 0 GL j 	'w 	 rh 	
(4.7) 

	 TLi j L 	

(Rif (ii IST 1L -i) )1T 	_ 4 w i I 	A3_4,0   -if,i  `wi 	
V7'iC 

by combining equations 4.3, 4.5 and 4.6] 



Q' nm a 	
Rnm Xn Xm 

(4.8) 
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We add another superscript, a, to the F s to specify a 

particular channel (lr'pr°  or ti T+n in our experiment) . 

Integrating 4.7 over phase space, we obtain the 

total cross-section for channel a 

where 

Rnm = 	(Fµ Fµ * d(phase space) 	(4.9) 

The Rnm  are what we call normalisation integrals, 

though strictly speaking they are normalisation integrals 

when n = m, and overlap integrals when n m. 

Since Xn  is a joint fit to several channels, 

equation 4.8 is not exact with finite statistics, but 

we can demand that it be exactly true for a sum over 

all channels being fitted. 

tot - Z Q-  a = 7 Ra  X X#  CT 	a 	a nm n m (4.10) 

tot i G, 	is the total 3-body cross-section being fitted. 

Equation 4.10 is used to scale the Xns correctly. 

For a particular Jj1LI; S (or n) transition 

a 	I2 c _ Za 	I Xn nn  
Ra   R X X 

Pq Pq P q 

tot  ( 4.11) 

Note that this is now independent of any scaling of Xn. 
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The T-matrix element for a transition is defined by 

0-. 	= 4 i 2 (o-+) (Ta (4.12) 

Taken on its own, this defines only the amplitude of Tn, 

the phase of Tn relative to other T's is that of the 

corresponding Xn. (Here 	is the wave number, A = 1/Q). 

With this definition, the Tl''s lie on an argand 

plot inside a circle of radius *, centred at (0,0). 

The total cross-section for a given JP is 

a X X 
JP 	; nmeJP R nm n m 	tot 

~ 	 Z. 2 Ra 
X X 	

0-
a pq Pq P q 

(4.13) 

For any one event i, the differential cross-section 

predicted by its measurements yi, and by a given set of 

X's iss- 

iF 
d-i 	 nmXnXmF 1 yi) Fµ 1(yi'1 	_tot XI 

X X#R 
PgPgPq 

(4.14) 

Note that the summation over channels in the 

denominator has been performed implicitly so that 

Rpq = āRpq. Note also that F2 i (yi) denotes the set of F s 

for event i in channel ai, with measurements (w1,w2,0,i) 

denoted by the vector yi. 

dw2idw2dcos®dC 
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IV.3 Maximum Likelihood Formalism 

We use the maximum likelihood method to obtain the 

partial wave amplitudes and relative phases Xn from our 

data. 

If one assumes a function G that describes the 

probability distribution of measurements of a quantity 

y, that function will in general depend on a number of 

parameters 9 . For example the function G may be a 
gaussian distribution, in which case the parameters 

will be the mean and standard deviation, and the 

measurement y will be a single measurement of the 

quantity whose distribution is being measured. 

For a given set of parameters e l, the predicted 

probability of a measurement y is 

e1(Y) 

and the predicted overall probability of N measurements is 

a~- 1 = l I Ge ( yi ) 
1=1 1 

Now take a different set of parameters for the 

theory, E)2.  The predicted overall probability of the N 

measurements will now be 

2 = (  Ge (yi) 
i=1 2 
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Tf of 2 is higher than f 1, then the set 9 2 predicts 

the distribution of the measurements yi better than does 6 1, 

and is therefore a more likely description of the 

measurements. This then is the maximum likelihood method: 

look for a set i9 that predicts the highest overall 

probability for the set of measurements yi. 

The usual definition of probability is such that 

the total probability of all possible measurements y is 

equal to one. 

i.e. 5'Ge (y) dy = 1 

In our case, the distribution of probabilities, G, 

is the differential cross-section 4.14 which describes. 

the relative probability of a given event lying somewhere 

in the 4-variable space. The parameters e are the set of 
partial wave amplitudes X, and the measurements yi are 

the set of variables mi for each event. 

We must therefore maximise the likelihood 

f` LT 	dcr(X,M1) 
	(4.15) i=1 	dwidw2dcos©d~ 

to obtain the set of X's that best describes our data. 

With the expression 4.14, the integral of the relative 

probability distribution comes to the total cross-section 

rather than unity: 
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TGQ() dy 2 	2 	dw1dw2dco s4 di = 0-Tot 

1dw2dcos0 dC 

Alternatively, the crTot term in 4.14 can be dropped, 

so that this integral does come to unity; this does not 

affect maximisation of the likelihood since c-Tot is a 

constant. 

The data to be fitted must be genuinely 

representative of the 4-parameter space, and there must 

be enough events to allow the construction of a 

meaningful likelihood, so a high statistics bubble 

chamber experiment which can detect all events with 

equal efficiency and provide a sufficient number of them 

is the best way to do this fitting. Apart from covering 

the 4-parameter space correctly, one must also correctly 

cover the channels being fitted; the numbers of events 

in different channels must be in the ratio of the channel 

cross-sections, as in our experiment, or normalisation 

expressions must be used to allow for different numbers 

of events per unit cross-section in different channels. 

The procedure for this is given in L. Miller's Ph.D. 

thesis (ref. 37). The likelihood expression quoted by 

Miller also contains a factor to force the X's to 

correctly predict the cross-section ratios in different 

channels. We do not do this; instead we compare the 

fitted ratio o  t 	t to the experimental ratio, pmm. 	
77+17 n  

and this gives us an additional check on the goodness 

of a fit. 



(4.17) = 	TT' 
f 	1=1 
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Combining the expressions 4.14 and 4.15, dropping 

the crTot factor as mentioned, we obtain the expression 

nm 	XnxmF,wal(yi) [F. 1(y1'J 
(4.16) 

PgXpXgRpq 

This is a correctly formulated likelihood, it can be 

fitted as it is, but it can be multiplied by any constant, 

since this does not affect minimisation. We have chosen to 

fit the differential cross-section with respect to Lorentz 

invariant phase space : der- 

The  likelihood written in equation 4.15 becomes 

and it has to be shown that this differs by only a constant 

from 4.15 (and hence 4.16), and what this constant is. 

The Jacobian relating Deler-Valladas variables to the 

Lorentz invariant phase space element at a constant c.m.s. 

energy W is 

-3(P)  
~ (w120122,cos9, ,d) 

1 (4.18) 
32W2 

d defines the rotation about the incident beam and can be 

integrated out in the case of an unpolarised beam. 
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4.17 can therefore be written 

N 
= TT 

i=1 
do- 
d4 

d4` 	2Tī'. (4.19) 
dw12dw22dcosedi 32W2  c1;1. 

So the function used in fitting, /  differs from 

4.16 by a constant factor : 

Tt- 

 

)N (4.20) 
16W 
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Chapter V Data Fitting and Results  

V.1 Introduction 

The formalism of Chapter IV has to be turned into 

computer programs. The F's and R's of equation 4.16 must 

be calculated, then the X's fitted. This chapter describes 

the programs.that start at the data on the D.S.T.'s and 

lead to energy-independent solutions. These solutions are 

then presented. Figure V.1 shows the sequence of programs 

used. 

Our top 4 energies had already been fitted but the 

results showed that a refit using more waves was needed, 

and we had not previously fitted the other 5 energies. We 

were therefore making a complete new set of fits, which 

gave us the chance to recheck the programs, and try some 

new techniques. The most significant difference from previous 

work was that we made many fits using all waves, up to some 

maximum, at each energy, and only then searched for a 

continuous 9-energy solution. Earlier workers started by 

fitting with many waves at each energy, then removed waves 

and refitted, searching for continuity, firstly at adjacent 

energies, finally coming to a continuous solution. This 

latter technique can lead to the removal of important waves, 

as happened with the SLAC-LBL solution A, and also with some 

of our earlier work. 



s into maxi-minis Combination of mini-D.S.T. 

V V 

T. I  SUMX - creation of mini-D.S • 

SUMX - decision on energy 

bins, and calculation of 
mean energy in each bin 

GROPE - evaluation of 

F's for each event 

Generation of starting 
values for fitting,either 
from results of earlier 
fits, or by generating 
random values with RANST 

INT - calculation 
of R's at chosen 
mean energies 

V 

DISK - copying 
of chosen F's 
onto a disk 
file 

MINEW - fitting X's using given F's, R's, 
and starting values. 
Calculation of errors 

V 

V 

Data on D.S.T.'s 

ALLCOM - comparisons of fits, search for similar fits 

CHI - search for most continuous combinations of 9 energy fits 
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Continuous solution/solutions' 

Figure V.1 The steps in finding a solution 
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V.2 Preparation of Data for Fitting 

We first used SUMX (q.v.) to selects'+prr°  and r'+n+n 

events from a D.S.T., within cuts on beam parameters. A 

special subroutine calculated the angles and effective 

masses needed for the evaluation of the Deler Valladas 

amplitudes for these events, another wrote them onto a mini 

D.S.T. 

By imposing wide cuts on beam momenta, and then 

merging several mini D.S.T.'s into one "maxi-mini" D.S.T. 

we obtained better statistics than in our earlier work. 

An additional cut, rejecting events with a GRIND fit 

probability of less than 1% was made at this stage. 

Figure V.2 shows histograms of the c.m.s. energies of 

events on the two maxi-minis used in the present work. In 

both cases, statistics of the topsbin were increased by 

the addition of events from our next higher energy. The 

data on the maxi-minis could then be divided into bins, 

each with a peak in the distribution and with a sufficient 

number of events to fit. The combining of the Oxford data 

with our data has led to more scatter about the peaks, 

but also to better statistics at the lower momenta, as can 

be seen from Table V.1 which summarises information on the 

bins chosen. The majority of events in the 800 and 850 MeV/c 

bins come from the author's work. Oxford data at 650 MeV/c 

was meagre; it was divided up between the 600 and 700 MeV/c 

bins. 

For each event, the data from the maxi-mini is used 

to calculate the Fµai values of equation 4.7. The channel . 



PLOT OF MAXI-MINI 1 CM ENERGIES 

NO. EVENTS 

1000.0- 

750.0 

500.0 

250.0 

I!1111!IIIIII 111 1  41- 111III I I!111(11IIIIIIIIIIIIII!IIII! 11111flI!IIIIIIif!lIIIf!IfIIIIIIIll 
010550 1.570 1.590 1.610 1.630 1.650 1.670 1.690 1.710 1.730 

NO. EVENTS 

I 

z 

400.0 

300.0 

200.0 

100.0 

0
1 .400

f(1111I1201If11(I401If111I160f111I1I 80!I!1I1I10I10!11 111 5201!(1I~514011!11II 6110111111I8110111111  

PLOT OF MAXI-MINI 2 CM ENERGIES 

Figure V.2  



Bin 
number 

Nominal 
lab. 
Beam 
momentum 
(MeV/c) 

Mean 
c.m. 
energy 
(GeV) 

Lower 
energy 
cut 

Upper 
energy 
cut 

Number 
of 
Oxford 

events 

Number 
of 
Oxford 

events 

Number 
of 
C/IC/WC 

events 

Number 
of 
C/IC/WC 

events 

Maximum 
J value 
used in 
fits 

IT+pit 
cross- 
section 

n+n+n  
cross-
section 

1 600 1.439 1.400 1.473 1206 27o 1 0 2 * .86±.05 ,19*,02 

2 700 1.495 1.473 1.512 1730 384 15 7 2 * 2.06±.09 .49±.05 

3 750 1.526 1.512 1.537  1669 284 256 53 2  * 3.70±.15 .70±,07 

4 800 1.550 1.537 1.564 1477 269 2388 459 2  * 5.14.16 .99t.06 

5 85o 1.577 1.564 1.598 937 149 3473 606 2 * . 7.38±.20 1.29±,07 

6 895 1.612 1.598 1.627 0 o 5547 915 2 10.22 ±,17 1,70±.06 

7 945 1.640 1.627 1.656 0 0 6693 1169 2 1o.66±.16 1,83±.06 

8 995 1.668 1.656 1.682 0 0 5973 1158 2 10.601..17 2.03±.06 

9 1040 1.692 1.682 1.708 0 0 5506 1095 2 10.501,18 2.101-.07 

* one  wave - the DD35 was used at these energies 

Table V.1 

Energy bins used in fitting 
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ai  determines which isobars will be used; on each maxi-mini 

all waves tn3 up to the chosen maximum combination of 

J, L, LI  are used, and for each wave eight numbers - the 

real and imaginary parts of the four/Li/At. combinations - 

are calculated. These calculations are performed by the 

program GROPE which contains subroutines to calculate the 

D-V f functions, the other components of F, and to combine 

these. GROPE writes a tape carrying the maxi-mini quantities, 

and the F's, for each event. 

The calculation of a likelihood requires the F's for 

all events in the given energy bin. Unfortunately, they 

cannot all be held in core simultaneously (e.g. 5,000 events, 

with 30 waves, each needing 8 numbers would take 9.6 x 106  

bytes storage, whereas the computer we use has a total 

memory of 2 Mbytes). We therefore store the numbers on a 

disk, which can be read more rapidly than a tape, and does 

not need to be rewound after each calculation of a 

likelihood. To avoid reading of unnecessary data, F's are 

copied to disk for only those waves that are to be fitted. 

The program DISK is given a list of the required isobar-

wave combinations, together with upper and lower c.m.s. 

energies. It reads a GROPE tape, selects events within the 

energy range, and copies the required F's and a channel 

flag for each event to a disk file. 
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V.3 Calculation of Normalisation Integrals  

In principle, the best method of obtaining the 

normalisation and overlap integrals is to perform the integral 

4.9 analytically. One would then be able to calculate the 

integrals at any c.m.s. energy by substituting that energy 

into the analytic expression and evaluating it. Unfortunately, 

the expressions are too complicated to permit this direct 

approach, and numerical integration must be used. Numerical 

integration over the four variables, using Simpson's rule 

integration on a computer, took impossibly long; an accuracy 

of 1% was never achieved. Since analytic integration over 

0 and / is relatively easy, this was performed, simplifying 

the problem to that of numerical integration over 2 variables. 

The integrals we originally used were obtained by Simpson 

integration on a computer over the other two variables. . 

The program used for this assumed that the integrals had 

converged when the fractional difference between the results 

of two successive steps was smaller than the required accuracy. 

The integrals were evaluated at the mean c.m.s. energy of 

each energy bin, and separate runs had to be made at each 

energy. 

Since orthogonality of the YrL functions means that 

waves of different JL (or equivalently JP) do not interfere, 

the program is written to calculate normalisations for 

different J values in different runs. For each J, the 

normalisations and overlaps for every L are programmed by 

coding the products of the D-V f functions, with the YL 

terms dropped as they are orthonormal. Expressions for the 
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remaining terms are coded separately, then the products are 

formed, and the program integrates over them. When the FF7 

waves were added to the analysis, the author also wrote 

the J=7/2 L=3 expressions into the integration program. 

An alternative technique for integration is provided 

by the Monte-Carlo method. Events are generated randomly 

with equal probability throughout phase space, each is 

analysed into Fµ terms by the same program as is used for 

the real events (GROPE), and the integral 4.9 is obtained 

by a summation over a large number of events. We used the 

CERN program FOWL (ref. 20); integration with a few ten 

thousand events was insufficient for accurate calculation 

of overlaps, but was considered sufficient for a check of 

the numerical integration program. The FF7 integrations 

by the two methods were indeed the same to within a few 

percent, but some other terms differed by factors of up to 

2. A check of the numerical integration program revealed 

no errors, and a rerun of FOWL with 200,000 events did not 

improve the situation. It was here that REDUCE was used to 

check the D-V expressions and showed an error in the NDD3 

subroutine (see section IV.2.2). With this corrected, the 

worst discrepancy went away, but others remained. In attempts 

to improve accuracy, the numerical integrator was run with 

4,000,000 steps (2,000 in each direction), and the Monte-Carlo 

with up to 700,000 events (this is in 4 directions, but the 

accuracy of an integration with N Monte-Carlo events is 

similar to that of a Simpson integration with N2  steps). 

These runs succeeded in using between 6o and 90 minutes 
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c.p. time each on the 360/195 computer, but the worst 

discrepancy was still about 60%. 

The disagreements were all in the overlap integrals 

Rnm(nnm), and in different ones at different energies. We 

concluded that the Monte-Carlo program had shown that the 

expressions in GROPE and in the numerical integrator were 

consistent, but that a more accurate integration method was 

needed for small off-diagonal terms. We therefore tried 

the Harwell integrating routine QB01A. Details of its use 

are given in reference 23; we used it to provide a Chebyshev 

polynomial integration instead of the Simpson integration. 

QB01A gave us integrals with a nominal accuracy of .01% 

and took 90 seconds instead of 90 minutes. As with the 

Simpson integration, this is not an exact value of the 

accuracy in both methods a further step may give a larger 

change than the previous one at which the integration 

stopped. However, Chebyshev polynomials have been studied 

in detail and shown to have excellent convergence properties 

(see for example ref. 41), so we believe that this is far 

less likely to occur with QB01A than with the Simpson 

integration, and we believe the integrals to be correct to 

.1%. The results obtained were closer to those of the 

Simpson method than those from FOWL, but neither was 

sufficiently accurate. 

In a recent paper (ref. 38) Y. Goradia presents a 

method, based on the SLAC-LBL formalism, for using overlap 

functions to simplify both the analytic integration over 
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two angles and the numerical integration. The checks described 

here confirm that a better integration method was required, 

but we are satisfied with our QB01A integrals and have not 

tried the overlap function method. 

V.4 Data Fitting 

V.4.1 Choice of Waves  

The partial wave series of equation 4.1 must be 

truncated after a finite number of terms. Too low a cutoff 

results in bad fits, but fitting with too many waves wastes 

time and can cause overparametrisation problems. The 14 

wave set used earlier gave acceptable results, but some waves 

exceeded the cross-sections predicted by elastic analyses, 

so a refit with more waves was undertaken, and a decision was 

needed as to the waves to be used in analysing the lower 

energies. Two questions arise - which should be the highest 

JL waves to use, and which waves in the range up to this 

combination should be fitted? 

A moments analysis was used to answer the first question. 

The use of the method of moments in our experiment has been 

described in references 1, 2 and 9-a  very brief description 
will be given here. 

The 	isobar production cross-section is expanded:- 
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d3 cr# 	 = 
2 	t-2— (0T1+c2?)Pn(cos& )Yō(e*. 04' ) 

dcos0d4 dcose 	q 	n f ~rr Ti 

1 (
en -c )Pn(cos9)Y2( e*,0*) F55; 11 22 

+ 	8 	Re cp, Pn(cose)R~.Y 	
3F 

ir-- 

2(6 ,y 
5ir 	,/n(n+1)1 

)(E: Re cn ,. P2 (cose) ReY (e , ī-? n 	2  

where 	e is the c.m.s. scattering angle 
e *,, measured in any L. rest frame with the z-axis 

in the production plane, describe the decay 

q is the incident momentum in the overall c.m.s. 

n labels the Legendre coefficient order 

* 
cn 	

RnLL J 
L Z* TJLL (w) TJ L L ( , ) 

MM 	

J~ LLL 

The notation here is similar to that of Chapter IV, but 
* 

the production angular momentum is denoted by L . The 

coefficient R is given by a combination of C-G coefficients, 

see ref, 9, or the paper by Roberts, ref. 42. As n increases 

the lowest wave contributing to Rn increases in J and L. 

Analysis of low terms is thus complicated, but few waves 

contribute to the highest non-zero terms, allowing one to 

decide which are the highest significant waves. This 

information is obtained from the data as follows. 

5T 	Jn(n+1) (n-1) (n+2) 
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The average value of any function f can be written 

<fi = ffd40`  
,J d r c~ +c(1. 

2 TT- 2 2 
q 

so that expressions for moments can be written 

1 1 Hki-cW  
K Pn(cose) Yō (G 	)  ? 

= ( 2n+1) 	4~" 	CP; 0 
T1 2 2j 

and similarly for 
‹:PnY2 > , < PnY2 >, < 131214> • 

SUMX is used to select A" events with cuts on M2(pTr ) 

and cos e<0, and to calculate the mean and error on the above 

moments. Figure V.3 shows the higher moments. (The cos& cut 

removes events in the region of interference between L1+# and 

ZS. 	y, ref. 43) 

Use of a different highest wave at each energy would 

have made continuity checks difficult, so the energy range 

was split into just three parts, each with a different 

highest wave. Moments with n=4 and above are compatible 

with zero up to 850 MeV/c. Examination of the R coefficients 

shows that DD5 and higher waves can therefore be neglected. 

DD3 waves would be the highest ones up to this energy, but 

ADD5, the largest 5/2 wave in Rob Stevens' analysis was 

also kept as a test of the validity of the technique. At 

1040 MeV/c n=6 is the highest significant term; this means 

that incident G waves and above are negligible. The R6 

coefficients show that only incident F7 and above waves 
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contribute to n=6, and that the direct contributions of FF7 

and FH7 are in the ratio -4.404 to 1.616, so the highest wave 

included at 1040 MeV/c was the FF7. This was also the highest 

wave at 995, again as a check. At 895 and 945 MeV/c, J=5/2 

was taken as the limit, giving FF5 as the highest wave, 

since incident (and hence outgoing) G waves were considered 

negligible. 

The second question, that of deciding which waves to 

keep was approached in a new manner. The usual technique is 

to make many trial fits, using their results to decide 

which waves should be rejected, and finally to come to a 

set of waves for use in the final fits. Much computer time 

is used to reject supposedly insignificant waves, yet if 

they are insignificant then leaving them in the fit should 

not affect it much, and the computer time can be used to 

make more fits with the full set of waves. This can fail, 

particularly if there are few events, if the small waves 

parametrise statistical fluctuations. In such a case, many 

solutions may be found, or solutions at adjacent energies 

may be very different. Test runs showed that neither of 

these happened, so the full refitting was done using all 

waves up to the maximum in each set. We therefore had a 

21-wave set up to 850 MeV/c, a 30-wave set at 895 and 945, 

and a 34-wave set at 995 and 1040 MeV/c. 

For comparisons with the results of Saclay (ref. 16) 

we used an 8 wave set:- 

d SDI, PP1, PP3,•DS3, DD3 

~1 SS1, PP1 

y 3 Ds3 
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These were the only J=i and J=3/2 n +p waves in the 

SLAC-LBL solution B (ref. 15) Saclay used them in comparisons 

with SLAC-LBL r+pro  results, we also found them sufficient 

for comparisons of our Tr+pro  results with Saclay at c.m.e. 

1.585 GeV. 

V.4.2 Likelihood calculation and fitting routines  

Given a list of waves together with a set of X's, with 

a file containing F's and a table of R's, one can calculate 

the likelihood &.. The programmed function that does this is 

the heart of the whole system of programs. It is used by a 

fitting routine which searches for a best value of 1.by 

trying various values of the X's. Some details of the 

likelihood calculating function must therefore depend on 

the nature of the fitting routines used. 

We use the VA series of minimising routines from the 

Harwell subroutine library (ref. 23); some of these operate 

on knowledge of the function value alone, others also 

require gradients, or gradients and second differentials. 

Our function was written to provide either a value of J 

alone, or . and its gradients with respect to amplitudes 

and phases of the X's. Rob Stevens used VA01AD and VAO6AD; 

the results given in his thesis (ref. 9) were obtained by 

VA06AD. We at first avoided the use of VA09AD; in a report 

on its performance (ref. 39) its author wrote that it was 

in many ways better than VAO1AD and VA06AD, but that it 

could not always be guaranteed to find a minimum. It was 

however easier to calculate errors on parameters with VA09AD 

so after VA06AD had found a given minimum, a refit with 

VA09AD was used to obtain errors. 
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Further runs with the 14 wave set showed that VA09AD 

did find the same minima as VA06AD. Reference 39 also 

showed that as the number of parameters being fitted is 

increased, VA09AD becomes much superior to VA06AD. When 

we began to refit our data with all waves, we again compared 

the two. Four fits to the 750 MeV/c data set with 21 waves 

were made, each starting at a random set of parameters, 

using VA06AD with a loose convergence criterion. The results 

were compared with those of 24 similar runs using VA09AD 

with standard convergence criteria. Of the VA06AD runs, 

three took about 2800 function calls to minimise, and came 

to essentially the same minimum, with parameters differing 

by about 10%. Three of the VA09AD runs came to this same 

minimum - they took about 350 function calls each, and 

their fitted parameters differed by less than .01%. The 

fourth VA06AD run took 2550 calls to come to a different 

minimum, similar in some waves to a minimum found by two 

VA09AD runs, though owing to the loose convergence criterion 

it was not possible to determine if this was exactly the 

same minimum. 

It became evident that for more waves we would have 

to use VA09AD. It has the further advantages of requiring 

less core storage than VA06AD, and of being very similar 

in use to VA1OAD which calculates gradients numerically 

instead of taking analytic ones from the likelihood 

calculating function. This meant that a short run of VA1OAD 

could easily be made to check the analytic expressions for 

gradients. 
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To simplify calculations and avoid the use of numbers 

too large for the computer to handle, we worked with the 

logarithm of j. We used minimising routines to find maxima 

of L , so we chose to minimise minus the log likelihood. 
We therefore rewrite equation 4.16: 

L = 

N 

- 	XnXm Fnai(yi) CF,';.aai(yi)J *3 

i=1 	nm 

+ N ln I. XpX; Rpg3 
pq 

(5-1) 

Our results are presented as the amplitudes and phases 

of T-matrix elements, so the programs used amplitudes and 

phases of the X's as fitting parameters. A maximum 

likelihood solution is independent of the choice of physical 

parameters, so real and imaginary parts could also have been 

used. In order to test if this made minimising easier, 

particularly in the case of poorly determined phases, the 

author wrote a new version of the likelihood and gradient 

calculating function in terms of real and imaginary parts. 

Test runs showed that this gave the same minima as the 

amplitude and phase version but actually took longer to 

minimise, so we returned to the amplitude and phase version. 

The considerable effort required to write this new 

version was not wasted though; it checked out the original 

version, and highlighted the importance of using double 

precision arithmetic. 
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FORTRAN Real variables on IBM System 360 computers 

are stored in 32 bits of memory. This is sufficiently 

accurate if relatively few operations are performed on 

some number, as in calculations of angles and masses for 

D-V analysis. Calculations involving many operations can 

however suffer serious loss in accuracy, so calculations 

of likelihoods and their gradients, which depend on many 

operations for each of up to 8,000 events, have to use 

double precision (64 bit) Real variables. If single precision 

is used, a minimiser may spend many iterations fruitlessly 

trying to improve on a minimum as a result of rounding 

errors. Double precision arithmetic on 360 computers is 

exactly the same as single precision arithmetic, so there 

is no loss of speed, only more memory is required. Complex 

double precision arithmetic does require subroutine calls 

and is therefore slower. Thus the real and imaginary parts 

version, which used complex double precision arithmetic, 

was slowed down relative to the amplitude and phase version, 

and any gains due to easier minimisation were lost. 

While comparisons were being made between the two 

versions, it was noticed that some sines and cosines in 
the amplitude and phase version were being stored as single 

precision numbers. When these were changed to double 

precision VA09AD was found to minimise in some 20 iterations 

fewer than previously. 

A recent addition to the CERN minimising program 

MINUIT (ref. 20) allows the user to plot contours of the 

function being fitted with respect to changes in two fitting 

parameters, and we wanted to try this. As the contour 
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plotting facility was available only with a single precision 

version of MINUIT, we used a single precision likelihood. 

MINUIT was completely unable to find a minimum, because 

single precision work makes minimising difficult as 

mentioned above, and because its minimising algorithms 

are too simple-minded. To obtain contours, MINUIT uses 

subroutine MIGRAD to calculate an estimated covariance 

matrix, but MIGRAD was unable to obtain a positive definite 

covariance matrix. A brief description of VA09AD which uses 

a similar, but more sophisticated minimising algorithm will 

help to explain the problem. 

VA09AD uses a quasi-Newton minimising algorithm. The 

parameters at iteration number (k+1) are derived from those 

at iteration number k byt- 

Xk+1 = Xk - °k  gk 

where Xk  is the vector of parameters X at step k 

gk  is the vector of gradients ax  at step k, 

in the function L 

oc is a scalar, chosen by VA09AD, such that 

the reduction in L at step (k+1) should be 

about the same as the reduction at step k 

Hk  is the estimated covariance matrix at step k, 

Hk = G-1, 
2  

G being the matrix of second derivatives āXiaXj 

VA09AD represents G by 

G = LD LT  

where L is a lower triangular matrix and D is a diagonal matrix. 
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The approximation to G can then be kept positive definite by 

ensuring that dii, the elements of D, are all positive. This 

then avoids the problem encountered by MIGRAD. VA09AD starts 

with the assumption that G is a unit diagonal matrix, then 

updates its estimate of G during minimisation. The value of 

ac at the first step is obtained from an estimate of the 

likely reduction in L, supplied by the user. Minimisation 

stops when it satisfies the convergence criterion:- 

Xk+1 - Xk  < Fn  for all n, 

Fn  being the accuracy required by the user on the parameter 

Xn. Reference 39 gives full details of VA09AD, and reference 

40 gives useful maximum likelihood formalism details. 

Minimisations involving all waves and about 8,000 

events spend up to 10 hours in the computer, and it is very 

wasteful to lose the results of a minimisation job that 

fails during execution because of computer troubles. In 

addition to checking and changing the likelihood calculating 

function, the author therefore rewrote VA09AD to store the 

vector X and the matrix H. The program could then be 

restarted with little trouble after any failure, and the 

final H could be kept for use in error calculations. 

V.4.3 Performing the 'fits  

Starting from a given set of parameters X, VA09AD 

will search for a minimum of L corresponding to a new set 

X which describes the data better than does the starting 

set. If an approximate solution is known, it can be used 

to provide starting values. Such an approximate solution 
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is available in the case of a refit with a few waves changed, 

or if a solution at one energy is used as a starting point 

at another energy - a continuation fit. If no a priori 

knowledge is assumed, or if a very different solution is 

expected, random values are used for X - a random start. 

In the work described here random starts and continuity 

runs were both made. 

The most convenient situation would be if all fitting 

runs at one energy found the same minimum, which should be 

a physically meaningful description of the interaction, and 

similar to solutions at neighbouring energies. It is more 

usual though to find several minima at each energy, and 

a suitable strategy for dealing with this must be adopted. 

We can first note that a global minimum is wanted - 

one that is a minimum in relation to the whole parameter 

space, and whose presence can be detected in other regions 

of parameter space. Local minima are not useful, their 

existence can only be detected locally, they are found 

only if the minimiser happens to come close to them, so 

they are unlikely to be found by another fit starting from 

a different set of X's. Secondly, minima very different 

from the physically required one may be found, either 

because the minimiser has not "seen" enough of the parameter 

space to find the global minimum, or because there are not 

enough events in the data sample to distinguish the correct 

minimum clearly from the others. These minima can be 

rejected on the basis of continuity checks. Thirdly the 

required minimum may itself be ill-defined, and consist 
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of a number of minimum points lying close together in the 

parameter space. 

What sort of runs should be made to identify these 

minima, and how many? We had the advantage of knowing what 

other workers had done, and with what results. The strategy 

usually adopted had been that of generating many random 

sets of values for the X's, and using all of them, or a 

selected subset as starting points for full fitting runs. 

SLAC-LBL generated 2000 sets at each energy, calculated 

the likelihood for each set (using only 600 events), and 

kept 10-20 sets that gave the best likelihood at each 

energy. They then used these for their initial fits.. 

Saclay performed 10-20 fits from unselected random starts 

at their highest energies, but scaled any amplitude that 

violated unitarity, and they claim that this makes their 

method equivalent to an enormous number of starting 

values. In our earlier work, Rob Stevens generated about 

150 random starts at 895 and 945 MeV/c, and used the 

dozen or so with the best likelihoods as starting points 

for full minimisations. At 995 MeV/c, 50 random sets 

were generated, and the best 3 were used. The results of 

Rob Stevens' fits gave unique minima at the three energies, 

and continuity was used to obtain a 1040 MeV/c solution. 

SLAC-LBL and Saclay obtained more than one minimum, then 

removed or added waves and refitted until they obtained 

unique and continuous solutions. 

As already mentioned, we decided not to remove small 

waves; instead of this we made random starts at all energies, 
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and followed these up with a few continuation runs. The idea 

of starting from those random starts that had the lowest 

minus log likelihoods did not appear to be worth pursuing, 

indeed if one starts too close to a minimum, the minimiser 

will have trouble in examining the parameter space and 

finding exactly where the minimum is. A case can even be 

made for starting at the random sets with the worst 

likelihoods, as these are bound to be far from minima, 

getting a good view of the parameter space, and having a 

better chance of finding global minima. We eventually 

decided to generate random starts with amplitudes linearly 

distributed between 0. and 100. and phases between 0. and 

2rr, using them without any prior checks or scaling. The 

first steps made by a minimiser are essentially random, so 

in effect the minimiser makes a random search for us, 

starting at the arbitrary point given to it, and deciding 

on a point from which to minimise properly. Given that 

the first 50 steps are nearly random, 20 random start jobs 

are equivalent to 1,000 individually tested random sets, 

but the information thus gained is used in further 

minimisation. 

A random start job can take up to 60 minutes computer 

c.p. time, and stay in the computer for up to 10 hours. We 

wished to perform enough random fits to examine the 

probability distribution of minima at each energy without 

wasting computer time. Local minima and those with a small 

probability of being found could then be rejected, and the 

others kept for use in a continuity search. We decided to 

perform at least 20 random start runs at each energy. If a 
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minimum is found only once in 20 runs and if 	errors are 

used on the probability distributions of minima, then that 

minimum has a probability of 5005%. Minima found by only 

one run were rejected because of this low probability, and 

also because they had been found only once and could have 

been local minima. 

To check this technique, we made additional random 

starts at ?50 MeV/c, bringing the total to 60 random starts. 

The numbers of minima found, and the relative probability 

of finding them, as the total number of runs increases, are 

shown in Table V.2. It can be seen that the assumption of 

TN errors is justified, and also that 10 runs do not suffice 

to find all acceptable minima, whereas beyond 20 runs we 

are only improving statistics, unnecessary once we know 

which minima to retain. 

Table V.3 summarises the runs made at each energy; 

random starts and continuation runs. 20 or 21 random starts 

were made at each energy except at 750 MeV/c, where the 

number was extended to 60 for the above test, and at 

1040 MeV/c where a larger number of low probability minima 

was found. At this energy 35 random starts were made, and 

all minima found 2 or more times were kept - this represents 

an upper probability, within errors, of 9.75%, close to the 

10% (within errors) limit imposed at the other energies. 

The question of which minima were the same had to be 

examined in some detail. To begin with, our likelihood function, 
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Solution Random starts 
which found 
this solution 

%probability of finding given 
solution as predicted by the 
first n runs 

n=10 n=20 n=30 n=40 n=50 n=60 

1,2,4,5,8,9, 
11,12,15,16, 

1 18, 29,30 ,39, 60±25 551'17 43±12 35±9  36±8 40±8 
41,46,48,50, 
51,52,53,54, 
55,58 

3,10,20,22,23, 
24,31,32,36, 

2  37,38,40,42, 20±14 15±9  20*8  30±9 34±8 33±7 
43,44,47,49, 
56,57,60 

3 6,14,19,26,34, 10±10 15±9 13±'7 15±6 14±5 13±5 
35,45,59 

4  7,33 10±10 5±5 3±3 5±4 41'2 3*2 

5 13,17,27,28 - 10±7 13±7 10±5 8±4 6±3 

6 21 - - 3±3 3±3 2±2 2±'2 

7 25 - - 3±3 3±3 2±2 2±2 

Table V.2 	Probabilities of finding different  

minima at 750 MeV/c  
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Mean 
c.m. 
energy 
(GeV) 

Number of 
random 
starts 

Number of 
continuation 
runs 

Number of 
solutions 
found by 
2 or more 
runs 

1.439 20 1 2 

1.495 20 3 2  

1.526 21 3 5 

1.526* 60 3 6  

1.550 20 1 4 

1.577 20 2 5 

1.612 21 0 3 

1.640 20 2 5 

1.668 20 2 4 

1.692 35 2 8 

* Two lines are given for 1.526, the second gives the result 
of the increased number of runs, made to check statistics. 

Table V.'3  

Summary of fitting runs 
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equation 4.16, is scale-independent; if all the amplitudes of 

the X's are multiplied by the same scale factor A, the value 

of 4.16 is unchanged. Similarly, if all phases are changed by 

the same angle O, the likelihood is again unchanged. There are 

therefore two redundant parameters which could be removed by 

the fixing of the amplitude and phase of one wave. This method 

was not used though, because it leads to slower minimisation. 

The VA minimisers can cope with this redundant parametrisation, 

and do find minima, but with this arbitrary scale and phase. 

To simplify comparisons, the parameters were so scaled and 

rotated at the end of each fitting run as to make the amplitude 

and phase of the 4 SD1 wave equal to 1.0 and 0.0. 

The program ALLCOM was then used to compare the minima 

found by all fitting runs at a given energy. Two levels of 

similarity between minima were observed. Some sets of minima 

were the same to 1 part in 103  in all parameters; these are the 

ones identified as being the same in tables V.2 and V.3. Groups 

of minima similar at the 20% level in the larger waves were 

also found, but they are identified as separate minima in the 

tables, and further discussion of them is left to Chapter VI. 

V.4,4 Error Calculations 

Once a minimum has been found, errors on the parameters 

can be calculated. The minimising technique of VA09AD helps in 

this, because it provides an approximate second derivative 

matrix, as described in V.4.2. 
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Given a maximum with parameters X. , Xjax, Xkax.... 

and covariance matrix H, it can be shown (see for instance 

ref. 40) that :- 

(xi - Xmax )(X, - Xjax)> 
= Hu 

This is only true for a properly constructed log 

likelihood function. If terms that penalise undesirable 

results are included in the function to be maximised, then 

the equation is no longer true. Our likelihood function is 

not constrained, so no such problems are encountered. 

From the definition of the standard deviation on a 

parameter Xis 

A Xi = 	(Xi - X~ax)2 , we have 

 

VA09AD estimates the second derivative matrix 

G =   	2L  
~xipx~ 

 

= H
-i 

   

The exact second derivative matrix would be impossible 

to invert, because of the two redundant parameters (see end 

of V.4.3). Fortunately the approximate value of G saved by 

VA09AD at the end of a fitting run can be inverted, giving 

an approximate H, and hence approximate values for the standard 

deviations which we quote as the errors on the parameters. 

Errors obtained from values of G calculated by different random 



-136- 

starts that came to the same minimum varied by up to 20%. A 

number of fitting runs were also made with different waves 

fixed, and errors were calculated on the free waves. This is 

the correct technique as the matrix G thus obtained is no 

longer singular, but it was not found to make much difference; 

the errors were seen to lie within the 20% range of the 

approximate method. The method of calculating approximate 

errors is therefore satisfactory, and gives error estimates 

within 20% of the correct values. 

Errors on T-matrix elements are obtained directly from 

the errors on the fitting parameters, since the fractional 

errors on the X amplitudes and the T amplitudes are the same, 

and the absolute errors on the X phases and the T phases are 

the same. 

Other errors, in_particular those on Q- , the inelastic 

cross-section in a given JP state, were also calculated from 

the covariance matrix. Given a function Y of the fitting 

parameters, the best estimate of Y is 

YB  = Y(Xmax) 

To first order in (Xi  - Xmax) 

Y - YB 	[ f (x1 _xax) 

so that 

<.(Y  - YB) 2i = 	ex. 
d 	((Xi  - Xi

ax) (X  . - XJaxy,  
1 
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giving the error formula 

jEZ  aY - 	
I 	4)Xi ~X H1 

The redundant parametrisation must again be given 

considerations the expression 4.13 for 0=I contains the 

scaling condition 4.10, necessary because of the scale 

invariance. In the same way as we calculate approximate 

errors on the fitting parameters, we ignore the effects of 

this scaling and calculate errors on 4.13 unscaled; 

0- JP = EE 	Ra 
X 

X* 
 a nm eJP 	n m 

The error formula is applied to this, then(); and 

Q Es Jp are scaled down. Comparisons of results from different 

random starts again show a variation of about 20% in the errors. 

V.5 Results  

V.5.1 Ability to reproduce Monte Carlo data.  

Before turning to the real data, we describe a test of 

the programs using Monte Carlo data. The test was a relatively 

simple one, designed to check if the chain of fitting programs 

was working. 6 sets of Monte Carlo events were generated 

according to the old 14 wave solution at 895 MeV/c. The 

statistics were comparable to the original data, each set 

contained 6000 Tr +p rr° events and 1007 rr+rr n events. These were 

passed through the GROPE and DISK programs, then fitted 

starting at the original 14 wave solution. Figure V.4 is an 
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FIG V.4 

Parameters used to generate 6 sets 

of Monte Carlo data (in rings) ,and 

results of fits to the 6 data sets. 
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Argand diagram showing T-matrix elements for the original 

14 waves and the results of the fits. It is clear that the 

programs pass this test, as the solutions obtained do 

reproduce the original parameters within acceptable errors. 

V.5.2 Reproduction of the experimental data 

Figures V.5.a to V.5.1 show histogrammed projections 

of the data at each energy together with a curve showing the 

results of the fit to that data. The fit results were 

obtained by generating about 100,000 Monte Carlo events at 

each energy in each channel, binning the required kinematic 

quantities, then drawing a smooth curve through the results. 

6 projections in each channel at each energy were calculated. 

In the Tr Prr°  channel these are the squared masses of the +170, 

Tr+p,Tr°p combinations, the cosine of the Deler-Valladas U 
angle, the Deler-Valladas 	angle, and (t( , the positive 

value of the 4-momentum squared transfer from the incident 

proton to the outgoing proton. In the Tr+Tr+n channel the 

corresponding quantities are the squared masses of rri7 and 

the two possiblezr+n combinations, cosines , 	/r, and (t! 

from the incident proton to the outgoing neutron. As the two 

pions in this channel are indistinguishable, it is a common 

practice to combine the two possible TT+n mass combinations 

in one plot, and to enter each event twice in the angle plots 

making these symmetrical about 0. We have followed this 

practice, so there is only one -en mass squared plot at each 

energy. 
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n ǹ°  MASS 

.50 	.40 	.50 	.40 

SQUARED GeV°  

1 0 	1.2 	1.4 	1.6 	1.8 	2.0 	2.2 	2.4 	2 6 

n°p MASS SQUARED GeV°  

.00 

30C 

250- 

200- 

150- 

100- 

50- 

1.0 1.2 1.4 1.6 1.6 2.0 2.2 2.4 2.6 

n'p MASS SQUARED GeV2  

25 

2 

15 

00 

It 
0.2 	0.4 

I FROM 

0.6 	0.5 	1.0 	1.2 	1.4 

p TO p (GeV/c)2  

N
U
M
B
E
R
  
O
F  

E
V
E
N
T
S
 

N
U
M
B
E
R
 
O
F
 

N
U
M
B
E
R
  
O
F
  
E
V
E
N
T
S
 

42 	 

30- 

20- 

14- 

10- 

70- 	 

6C- 

SO- 

COS D-Ve n'n'n CHANNEL 

4D - 

30 - 

11

50- 

	I 	1 	t 

20 - 

10 - 

I 	1 	I 

1 0 	-1.0-0.8 -0.6 -0.4 -0.2 	0.0 0.2 	0.4 	0.6 	0.6 	1 0 	0.0 	0.2 	0.4 0.6 0.5 1.0 	1.2 	1.4 

D-V0/11 	n'n'n CHANNEL 	Itl 	FROM p TO n (GeV/c)2  

1 	1 	1 	1 	1 	1 	1 	1_ 	1 

-1.0 -0.5 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.6 

-148- 

10C 	 

140-

120- 

100- 

so-

60- 

4d-

20- 

16r 	 

140- 

120- 

100- 

80- 

60- 

40- 

2o- 

142 	 

12C- 

252 

 

60- 

40- 

20- 

 

2 	1 

 

I 	i 	I 	1 	1 	1 	I 	I 	I 	.1 . l 	,  

-1.0.0.a -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1 0 	-1.0-1.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.6 1 0 

COS D-Ve n p̀n°  CHANNEL 	D-V0/n n'pn°  CHANNEL 

.00 .10 .20 .30 .40 .53 .60 10 1.2 1.4 1.6 1.4 2.0 2.2 2.4 24 

n ǹ'  MASS SQUARED GeV 2 	n`n MASS SQUARED GeV2  

FIG V.5.i 	1040 MeV/c PROJECTIONS 



16c 	 

14C- 

120- 

 

Eo- 

40- 

20- 

1 0 	1.2 	1.4 	1.6 	1.6 	2.0 	2.2 	2.4 	2 6 	1 0 	1.2 	1.4 	1.6 	1.6 	2.0 	2.2 	2.6 	2 6 
.6 ,  

.10 	.20 	.30 	.40 	.50 

16c 	 

140- 

120-

100- 

60- 

60- 

40- 

20- 

.00 .60 

30 

no-

NO-

HO-

100- 

50- 

23c 

I 	1111 

I  
.00 	.40 	.30 

SQUARED GeV2  

\ill  
.60 	1 0 	1.2 	1.4 	1.6 	1.6 

n'n MASS SQUARED GeV2  

6c 	 

vo- 

60-

50- 

40- 

30-

20- 

10. 

.00 	.10 	.20 

n'n'  MASS 

0.0 2.2 	2.6 	2 6 

N
U
M
B
E
R
 O
F
 E
V
E
N
T
S
 

N
U
M
B
E
R
 
O
F
 E
V
E
N
T
S
 

N
U
M
B
E
R
  
O
F  
E
V
E
N
T
S
 

N
U
M
B
E
R
 O
F 

-14.9- 

n'n°  MASS SQUARED GeV2 	n°p MASS SQUARED GeV2 	n'p MASS SQUARED GeV2  

60- 

40- 

20- 

1 0 	-1.0-0.8 -0.6 -0.4 -0.2 0.0 
1. 	1 	1 	1  

-1.0-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.6 0.2 0.4 0.6 0.6 1 0 	0.0 	0.2 	0.4 	0.6 	0.6 	1.0 
	

1.2 1.4 

COS D-Ve n'pn°  CHANNEL 	D-Vm/n n'pn°  CHANNEL 	Itl FROM p TO p (GeV/c)2  

2ti 

1^r 

, 	1111111 	I 	1 	1 	 , 	1 	1  

-1.0 -0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.6 1 0 	-1.0 -0.6 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.6 

COS D-Ve n'n'n CHANNEL 	D-Vo/n n'n'n CHANNEL 

N 

1 0 	0.0 

ItI FROM 

2.2 1.4 

p TO n (GeV/c)2  

FIG V.5.j 	1040 MeV/c PROJECTIONS,FROM ANOTHER SOLUTION 



-150- 

The next chapter describes how one solution was chosen 

at each energy, the fitted values shown here were obtained 

from the solutions thus chosen, but to show that the other 

solutions also represented the data well, figure V.5.j shows 

plots made using a different 1040 solution, they are all but 

identical to the first 1040 figure. 

Looking at the plots in detail, and taking the ir +piro  

channel first, one sees that all the projections are well 

fitted. Both4+  and0++ peaks are clearly represented, as 

are details such as the shoulder at -around i  =rr/3, particularly 

clear at the lower energies. The i-r+T +n channel is not 

reproduced quite so well. This can be partly explained by 

the much smaller numbers of rr+rr+n events but deserves careful 

examination. Comparison of the data at adjacent energies 

shows that some details in the plots are due to statistical 

fluctuations which one does not expect to be fitted. Any 

structure that can only be fitted at the expense of a 

deterioration in the rr7pr° channel fits will remain unfitted 

because their+prro  channel has a much higher weight. Taking 

the plots in turn, one first sees that thea+.R+  mass squared 

plots show a good fit at some energies, but at other energies 

they exhibit an enhancement at low mass squared, followed by 

a dip, neither of which exist in the data. Therr+n mass 

squared plots are well reproduced at all energies, with the 

.42 +  reflection also fitted at the higher energies where it 

is seen. Cos() is generally well represented, though a little 

too flat, but 	is worse, with the rise at low and high 

values very poorly followed at some energies. These angular 

distribution problems occur when peripheral events are not 

• 
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fitted, since:- 

cos / sin Q = cos e*  

where cose is the outgoing nucleon production angle in the 

c.m.s. system and is small in peripheral interactions. The 

effect can be shown clearly by plotting t, the invariant 

4-momentum squared transfer from the incident proton to the 

outgoing nucleon, since this is small in peripheral interactions. 

Plots of [tl (t is always negative invr►N reactions) do indeed 

show a general failure to fit such peripheral interactions in 

the7r+i+n channel. Chapter VII describes a refit with OPE 

effects allowed for to give a better description of thetr+rr+n 

peripheral events and of then'+n+  mass distributions. This 

effect is not very serious, and overall the plots show that 

the data was well fitted. 

Figure V.6.a shows the total fitted rrrrN cross-section in 

each JP state, calculated from equation 4.15. The crosses with 

error bars are our fitted values, error bars are omitted if 

they are smaller that the crosses. Unitarity limits calculated 

from elastic partial wave analyses are also shown in the 

figure. Our values are again those from the fits chosen on the 

basis of continuity. The numerical values and errors are also 

presented in table V.4. 

Let it be stressed again that the fits were in no way 

constrained to be similar to the elastic predictions, as was 

the case with the SLAC-LPL and Saclay analyses. Our results 

do generally follow the elastic predictions, and because they 

are obtained independently, this gives mutual credibility to 

the two sorts of analysis. As is discussed in the next chapter, 
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Figure V,6.b Enlarged P31 cross-sections 
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Plab MeV/c 	S31 	P31 	P33 	D33 	D35 	F35 	F37 

600 	0.270 	0.276 	0.093 	0.403 	0.008 

t.056 	±.053 	±.061 	±.098 	t.o04 

700 	0.681 	0.342 	0.627 	0.865 	0.036 

t.130 	t.083 	t.098 	t.183 	±.017 

750 	1.188 	0.521 	1.355 	1.183 	0.153 

±.216 	t.112 	t.259 	t.275 	t.047 

800 	1.788 	0.401 	1.310 	2.402 	0.231 

±.152 	t.122 	±.289 	±.358 	±.054 

850 	2.560 	0.292 	2,655 	2.853 	0,311 

±.259 	t.o67 	±.474 	±,563 	±,096 

895 	3.897 	0.739 	2.998 	2.643 	1.578 	0.065 

t.699 	t.125 	±.506 	t.464 	t.304 	±.023 

945 	3.494 •0.918 	2.622 	3.417 	1.585 	0.454 

t.452 	t.132 	t.379 	t.415 	±,279 	t.045 

995 	1.882 	0.859 	4.549 	3.442 	0.577 	0.981 	0.340 

±.338 	±.131 	t.882 	*.597 	±.128 	t.162 	t.o6o 

1040 	1.911 	1.619 	4.104 	1.891 	0.534 	1.240 	1.300 

±.313 	±.241 	±.528 	±.186 	±.116 	±.149 	t.119 

Table V.4 

nrN cross-sections in different waves 
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our top energy is the most difficult to tie in with the rest 

- this would really require analysis of our higher momenta. 

The S31(1650) and D33(1670) peaks are clearly seen, as is the 

tail of the r35(1890). 

The P31 wave shows interesting structure, it is shown 

on an enlarged scale in figure V.6.b. There is a clear bump 

around 1.53, seen also by the Saclay analysis at a slightly 

higher energy. Another structure is visible at around 1.65, 

but this is rather discontinuous at the top energy. This will 

be discussed again in the next chapter, and in chapter VII 

in relation to the OPE results. 

The P33 shows a strong rise around 1.68 GeV, exceeding 

the elastic prediction limits as did the SLAC-LBL analysis; 

these results strongly support the P33(1690). The structure 

at lower energies in P33 is interesting, but insufficient to 

give definite support to the PP3(1560) proposed by Saclay 

(ref. 34). In D33 there is again some interesting but 

inconclusive detail at the lower energies. The sudden jump 

in D35 cross-section at the sixth energy is partly due to 

the fact that only the D35 wave was fitted at the lower 
energies; the moments analysis did not suggest any need for 

more, but thelot here suggests ggests that ~~ Taf D35 and 5) D35 waves 

may be non-trivial at the lower energies. Even so, there is 

undeniably a bump in D35 around 1.63 GeV. The r37 wave was 

fitted only at the two highest momenta, so no firm conclusions 

can be drawn. The individual waves will be discussed again 

when the Argand diagrams are presented in the next chapter. 



Figure V.7 	Fitted IT 	n cross-sections 
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Figure V.7 shows our fitted zr+?+n  cross-sections. It is 

a major point of this analysis that in fitting the I=3/2 waves 

alone, we do fit the IT  +n+n channel and expect our results to 

be far closer to the data than the other two major analyses 

which only predict values for this channel. The results of 

our fit, marked as crosses with broken error bars do indeed 

follow measured values accurately. This too has been achieved 

without constraining the fits in any way. 

v.6 Validity of the Isobar Model  

Is the isobar model valid? An experiment can only 

answer such a question by showing whether or not its results 

are consistent with the original assumptions. If there are 

inconsistencies then their extent must be examined, and 

interpreted as being within experimental error, or as 

demanding refinements of the model, or major changes to it, 

or even its rejection. Whether or not a model or theory is 

true is a different questions science advances by improving 

or disproving theories rather than proving them, and 

discussion of the question lies outside the scope of this 

thesis. 

The explication of the results of this work has reached 

a point when this specific question of isobar model self-

consistency can be conveniently discussed. The projections 

and cross-sections just presented provide the material for 

this discussion; details of a search for continuity, not an 

isobar model question in itself can be left till later. Figure 

V.6 shows that all the J=1/2 and 3/2 waves start from low 
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cross-sections at 1.4 GeV and rise simultaneously. This 

indicates that the rise in totally+p- wryly' cross-section in 

this region is due to some effect in all the waves, rather 

than to additional waves opening and providing more cross-

section. The isobar model is consistent with this: if rrlr N 

production proceeds via an intermediate isobar, it can only 

occur at energies at which an isobar can be produced and can 

exist for long enough to travel away from the bachelor 

particle and decay independently. In their+p case, this can 

begin to occur with the production of the d P33(1236) isobar 

which together with a pion requires a centre of mass energy 

1370 MeV, although this is only approximate because of the 

width of the isobar, and because of the need for kinetic 

energy to allow it to travel away from the bachelor. This 

isobar behaviour would affect all waves a4 is indeed seen 

in figure V.6. It is worth noting that the threshold for 

direct one pion production is 1213 MeV, but that as figure 

I.1 shows, the actual threshold is a little below 1400 MeV. 

Another way to check the consistency of the isobar 

model, adopted by Keith Barnham, was first described at the 

1976 Oxford Conference (ref. 13). The parametrisation 

described in IV.2.3 assumes that the complex transition 

amplitudes X are a function only of total c.m.s. energy; 

this cannot be exactly true as it leads to violation of 

unitarity constraints in the isobar subenergies (refs..0 

and 45). As there is considerable theoretical doubt as to 

the size of correction required (ref. 46), a fit in different 

regions of the Dalitz plot can be used to determine 

experimentally how much the X's vary. Figure V.8.a shows 
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Figure V,8,a 895 MeV/c Dalitz plot - regions fitted 

Symbol Isobar Partial 
Wave 

1 A'Ir 5031 
2 A'Ir PP31 
3 A'Ir PP33 
5 A'Ir 0533 
6 tm DD33 G 
7 A'Ir 003S 
9 A'Ir FF3S 
A Pn (1470)'Ir 5531 
B Pn (1470)'Ir PP31 
C Pn (1470)'Ir PP33 
G PI N 5531 
H PI N PP3I 
I PI N PP33 

S 
HeR.! 

6 fl N 
C 3 2 9 

J PI N 0033 
M P3 N 5031 
N P3 N PP31 
0 P3 N PP33 
Q P3 N DS33 
R P3 N 0033 

Figure V,8,b 19 wave fit to whole Dalitz plot data 
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Figure V.8.c  19 wave fit to region A events 

Figure V. 8. c:  19 wave fit to region C events 
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the regions fitted on the Dalitz plot, figure V.8.b shows, on 

an Argand plot, a fit to all the data at 895 MeV/c, using the 

19 largest waves. Figures V.8.c and V.8.d show fits in regions 

A and C, with bars to show how far each wave has moved from 

the whole plot fit. Most of the shifts are of a size similar 

to the errors (see Chapter VI), the results were discussed in 

detail in ref. 13, and the following conclusions were drawn. 

Firstly, as the isobar model relates halves A and B by isospin 

Clebsch Gordan coefficients, they will differ from the overall 

fit because of direct 3-body production. and statistical 

fluctuations; the fit shows that neither effect is serious. 
Secondly, C does not contain the regions of interference 

between the isobars, which provide most information on relative 

phases, and should show the largest changes in X. In fact, the 

changes are not much greater than those in region A, with the 

? waves moving most. This test shows that the assumption of X 

values being constant over the Dalitz plot is a good 

approximation. 

The projections in figure V.5 have also shown that the 

model is capable of providing a good description of the data. 

Solutions at adjacent energies are similar, as one expects 

from a meaningful physical model, but not from fits with a 

technique that is purely an attempt to describe data numerically. 

We have therefore shown that the isobar model is valid, 

and sufficient with present statistics. Improvements are worth 

making, both by including 3-body unitarity calculations, and 

OPE effects, but they will not radically change our results. 



-162- 

CHAPTER VI  

Obtaining a 9-Energy Solution. 

VI.1 Introduction  

When isobar analyses of i1TN final states were started, 

one of the hopes for them was that they would overcome the 

problem of ambiguous solutions encountered in elastic partial 

wave analyses. Theoretical work on continuum ambiguities and 

practical experience have shown that this was a forlorn hope. 

Some ambiguity may perhaps be blamed on insufficient 

statistics, but attempts to obtain a unique solution 

separately at each energy can lead to the removal of 

significant waves. We therefore pursued our aim of making 

at least 20 random starts at each energy without removing 

waves, and now show how we chose between the various 

solutions listed in table V.3. 

VI.2 Comparing different solutions at one energy 

A decision to retain only those solutions found by more 

than one run had already been made, but this still left 

192,000 possible 9-energy combinations of solutions. An 

attempt was therefore made to reject more solutions at each 

energy. No constraints had been imposed on the ratio of 

cross-sections in the two channels, so solutions with 

unacceptable values could be rejected. The x2  value 
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X
2 

 
(fitted ratio - experimental ratio)2  

(error on fitted ratio - experimental ratio)2  

was calculated for every solution. All of the 31 solutions 

found below 945 MeV/c had x2  values below 1.0, and of 38 

solutions at the top 3 energies, there were 9 with x2 

values over 1.0, the largest being 1.8. No solution was 

rejected on this basis; as Figure V.7 showed, the fitted 

7 7h cross-sections were consistent with the experimental 

values, so this test only showed that the minimiser worked 

well, and that we had included sufficient waves to give a 

good parametrisation of the 1r+1T+n  channel. 

Another possible reason for rejecting a solution would 

be an unacceptably low likelihood value. A range of reasonable 

likelihood values should be established, and fits lying below 

this could be rejected. This can be simplified if likelihoods 

at different energies are converted to some number which can 

be compared at different energies and whose acceptable range 

can be determined by a Monte Carlo test. 

Looking at the negative log likelihood function used 

in minimisation 

N 	dal 
L = -ln 	_ 	2 	-in 	a 

i=events 	dp 	tot (VI.1) 

one can see that at a minimum this allows one. to obtain the 

mean (geometric mean)likelihood per event 
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da 
= exp N = 	dp 

an 	
tot 	 (VI.2 ) 

N is the number of events at the given energy, 
a
tot is the 

total TrTrN cross-section at that energy, and p is the Lorentz 

invariant phase space. 

Now in the case of Gaussian statistics and a uniform 

distribution of events over phase space one would have:- 

da mean _ 	a tot  
d(phase space) 	phase space volume 

 

_ 	atot 	atot = m 	phase space volume/ 

 

1 
• phase space volume 

(vI.3) 

and one would have 

m.(phase space volume) = 1 	(VI.4) 

The phase space volume p w at a given energy W can be 

obtained by integrating equation 4.18 

P w - z~~2 dw
12dw22dcos® d d a 

32W 

 ( (W-m 7) 2- (mTr+mN ) 2 
l 
[(W_mN)2_LmTr2 

1 32w` 	J 

(vI.5) 

Using VI,3 one can calculate a reduced mean likelihood g r 

r m' pw (v2.6) 
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where m  and 	are given by VI.2 and VI.5 respectively. 

As stated above, this would be exactly equal to unity only 

under special circumstances. In our case, statistics are 

not Gaussian, in particular the number of events at each 

energy does not have a Gaussian distribution with momentum. 

This would tend to lower the value of r, particularly at 

600 and 700 MeV/c where we have added the 650 MeV/c events. 
On the other hand, the distribution of events in phase 

space is also non-uniform, and this would tend to increase l r. 

Figure VI.1 shows the range of values of 1 r  at each 

energy. The range of values obtained by fitting the 6 Monte 

Carlo data sets mentioned in V.5.1 is also shown. These 6 
data sets are merely statistically distinct event samples 

generated from the same hypothesis, and the spread in their 

values gives an indication of the spread of acceptable 

likelihood values expected from statistics alone. The mean 

value of r  does vary from energy to energy, in particular 

it is low at 600 and 700 MeV/c for the reason given above. 

All the values are close to 1, which means that the use of 

the reduced mean likelihood is a useful tool, and also that 

our likelihood function has been correctly formulated and 

programmed. The spread of values at each energy is very 

small, in fact the spread of the Monte Carlo values is 

larger than the spread in any of the real data values, so 
no solution can be rejected on this basis. 

These tests show that the minimiser worked admirably, 

and did not provide any poor solutions. The number of solutions 

could also have been reduced by combining those solutions at 

each energy which were similar in the larger waves (see end 
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of V.4.3), but the question of which solution to choose, or 

how to average them, was so awkward that all were kept to 

allow a continuity search to choose between them. 

VI.3 Ambiguities and Continuity 

VI.3.1 Discrete ambiguities and the continuum ambiguity 

It was shown in the previous section that at every 

energy there exist several solutions which describe the 

data equally well. We first repeat those reasons for 

finding ambiguous solutions that were mentioned in Chapter 

V. The first and easiest to deal with were local minima 

which were removed by rejecting solutions found only once. 

Secondly some ambiguous solutions may be due to the minimiser 

never having reached a correct region of parameter space, 

though it is likely that such solutions would have been 

identified by the tests just described. Thirdly there are 

cases where a minimum splits into several minima because 

of poor statistics; these are not easily distinguished 

from continuum ambiguities, which will be described next, 

and can be treated like them. 

Apart from these ambiguities connected with the 

practical details of minimisation, there exists the continuum 

ambiguity. Theoretical examination of an ideal model-

independent, energy-independent partial wave analysis has 

shown that there must exist a continuum of solutions that 

all describe the data at one energy equally well, if that 
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energy is above the inelastic threshold (references 47, 48). 

A very good recent examination of the continuum ambiguity 

in the case of elastic p phase shift analysis is given by 

the work of Atkinson et al in reference 49. They take the 

results of a partial wave analysis and generate an "ambiguity 

patch" in the Argand diagram around every T-matrix element. 

These ambiguity patches show how far the T-matrix elements 

can change while still describing the experimental 

observables as well as the original solution does. 

A cutoff in the partial wave series reduces the 

continuum ambiguity to a number of discrete ambiguities, 

and if the number of partial waves is decreased, the number 

of discrete solutions also falls. Unfortunately the solutions 

are still distributed over the ambiguity patch, and a unique 

solution obtained by cutting down the number of waves may 

lie to one side of a patch and be different from solutions 

at adjacent energies. Analyses which attempt to obtain a 

unique solution at each energy in this manner may therefore 

give discontinuous behaviour in their Argand diagrams. 

The same theoretical work has also revealed the 

existence of discrete ambiguities. These are however either 

trivial (a rotation by 7r of all waves), or else they lead 

to very discontinuous behaviour from energy to energy. 

They can therefore be rejected on the basis of continuity 

requirements. We use a continuity test to do this and 

indeed to choose just one solution at each energy. 
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VI.3.2 Continuity 

We have so far used two models - the isobar model, and 

the assumption that a cutoff after a finite number of waves 

can be made. The theory and justification of both have been 

discussed. Some further assumption about the behaviour of 

the solutions must be made to permit a unique choice of 

solution at each energy. The model used in this analysis is 

that of continuity. A fairly smooth background behaviour, 

with Breit-Wigner resonances in some waves, is assumed, This 

is compatible with the isobar model, it is required by 

duality, and is in agreeement with theoretical interpretation 

of partial wave analysis results. We therefore searched for 

that combination of solutions at 9 energies which would give 

the best continuity. 

This is certainly a justifiable way to reject truly 

discrete ambiguities, and those solutions that may be due 

to a failure by the minimiser to find the right part of the 

parameter space; indeed the two sorts of ambiguity may 

really be the same. Its use to choose between different 

solutions in the same ambiguity patch needs some discussion here, 

A three point scale, similar to that of reference 48 can 

be used to relate the possible results of using continuity 

to the extent of the continuum ambiguity. 

a/ The ambiguities are small, so resonance structure 

is stable. 

b/ The ambiguities are big enough to affect resonance 

parameters to some extent. 

c/ The ambiguities are large and resonances may be lost. 
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The work of Atkinson et a1 in reference 49 shows that 

in Tr+p Tr +p large resonances are not seriously affected; 

they lie somewhere between a/ and b/. Smaller resonances 

behave like b/, and two resonances with masses near 2000MeV 

fall under c/. No such analysis has been performed on 

Tip ,rnr N results, but the practical results of our work 

could be used to give some idea of the extent of continuum 

ambiguities, and the work of reference 49 can provide us 

with guidelines. Their continuum patches were small at some 

energies, and indeed they found no continuum ambiguity at 

one energy. They used continuity arguments to claim that 

this reduced the acceptable extent of ambiguity at adjacent 

energies. We also find that the extent of ambiguity varies 

from energy to energy, so that some energies constrain the 

range of acceptable solutions at adjacent anergies. 

Since the extent of ambiguities varies from energy to 

energy, it will also vary over the range of energies 

included in one energy bin during fitting. This means that 

a fit to experimental data in an energy bin should find 

solutions only in that ambiguity patch which is common to 

all energies in the bin. We therefore claim that theoretical 

calculations of the extent of ambiguities are likely to be 

overestimated, since they calculate the ambiguity only at 

the nominal energy of a bin, and take no account of variations 

with energy. This will be offset to some extent by the 

errors on a T-matrix element, which increase as the width 

of the energy bin increases. It may well be worth investigating 

what the optimum width of an energy bin should be to give 
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the best balance between the size of errors and the extent 

of the continuum ambiguity. In this analysis we use 

normalisation constants calculated at the mean c.m. energy 

of each bin, so we do not fully exploit the spread in 

energies. Nevertheless, the events used in each bin do cover 

a range of energies. The effect due to a spread in 

energies can be neglected only in those cases where the 

size and shape of the ambiguity patch are very slowly 

varying functions of energy, or where the spread in energy 

is very small. 

Returning to the three point scale, we concluded that 

large resonances are safe, that smaller ones may have ill-

defined parameters or may even not be seen, though the 

extent of continuum ambiguities may be overestimated. 

Small resonances may be lost because of the size of errors 

even if the continuum ambiguity is small. It is therefore 

important to analyse as many channels as possible, since 

a small resonance may be more clearly seen in one channel 

than in others: inelastic analyses in general are therefore 

important, ours for example provides new detailed 

information on resonances seen in the n p} n N41* (1470)1)11 

channel. 

In view of the nature of the continuum ambiguity, the 

use of continuity to choose one solution at each energy is 

justifiable; it rejects discrete ambiguities, and the most 

continuous path through the ambiguity patches is as good as 

any other. It is also safer to fit with more than the minimum 
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required number of waves, and then to use continuity to 

select one solution at each energy, than to force uniqueness 

at each energy by cutting down the number of waves during 

fitting, as was done in previous analyses of our data and 

in other analyses. 

VI.4 Using Continuity to choose a 9-energy Solution 

VI,4.1 The continuity search formalism 

To check the relative continuity of each possible 

combination, we first needed to define a method for tying 

together the solutions at different energies. The solution 

at any one energy gives the relative phases of the 

' different waves at that energy, but not the overall phase. 

This overall phase from one energy to the next is usually 

taken from elastic analyses. Phases can be tied directly 

to those of an elastic analysis, but this relies totally 

on the success of the elastic analysis. Phases can also be 

related to the elastic phases via a K matrix analysis, 

but this is a lengthy process, useful if one solution has 

been chosen at each energy, but not suitable for continuity 

comparisons between many different solutions. We have 

preferred to tie to a Breit-Wigner using well-established 

resonances. This reduces our dependence on any one elastic 

analysis, but increases our dependence on the knowledge of 

resonance parameters, so we tried more then one resonance, 

and various values for their masses and widths, 
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Writing a relativistic Breit-Wigner expression - 

2 2 

	

x (MM_E 	) 	x 
+ i 	 

1 + ,M2-E2>2 	1 +M 
 

M
2-E2>2 

	

Mr 	Mr 

one sees that T has the phase 

= tan-1  MT  

• M2-E2  

In the above xe  = elastic partial width 

xr  = inelastic partial width in channel r 

M = resonance mass 

r = resonance width 

E = c.m.s. energy of the system 

Given M and r, the phase of the chosen wave can be 

calculated at energy E. The B-W formula holds good to about 

2 widths from resonance mass, which is sufficient for our 

energy range. We fix the overall phase of each solution by 

rotating that solution so that the phase of the chosen wave 

is that predicted by the B-W at the energy of that solution. 

The 9 separate solutions comprising each combination 

can thus be tied together for the purposes of continuity 

comparisons. To perform these we construct a chi-squared 

function. Taking the Argand diagram for one wave, as shown 

in Figure VI.2 

Mr 
T = M

2-E2  - iMr 
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2 	
_ 

Xwave 
(8,9) 
E 

(i,])=1,2 
1i. 

' 
VI .7 

alit 

where liJ are distances between 

successive pairs of points, and 

SI.. are the errors on these 
10 

distances. Figure VI.2 

T1, T2, T3... represent 

T-matrix elements at 

energies 1, 2, 3... 
112, 123... represent 
distances between 

successive pairs of points 

An overall X2  can then be calculated by summing xwave 

for all significant waves 

2 	= E 	2 
X  combination waves X wave VI.8 

The use of straight lines for the distances between 

points on the Argand diagram is unrealistic; the B-W predicts 

a circle, so some curved line would be a better approximation, 

particularly for points that lie far apart. The number of 

path length elements to be calculated is nearly 31 millions 

192,000(combinations) x 20 (waves) x 8 (pairs of points). The 

program is to be run many times, so a path whose chi-squared 

can be calculated quickly is required. An approximately spiral 

path, whose chi-squared calculation needs no subroutine calls 

is suitable. 
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Given points T1  and T2  defined by amplitudes and phases 

(A1,0 1) and (A2,02), the length of a spiral path between 

them is approximately 

1 	= 1(A+A2 )(e 2-0 12 	1  1) 
VI.9 

Some care is needed in the evaluation of e2 - 1  it 

should be the smallest angle between T1  and T2, for example 

a value of 3500  must be replaced by 100. 

The error on 112, in terms of errors on amplitudes 

and phases is given by 

6112  2 6Al2+6A22  + "1 1.62
2  

112 	(A1+A2)2 	(e1-0 2 )2  
VI.10 

so the chi-squared contribution from one pair of points in 

one wave is 

       

-1 

 

        

2 	- 
x wave,12 

 

SA12+SA22 + Se12+6e 22  

  

VI.11 

       

 

(A1+A2 ) 2 	(61-62 ) 2  ,  

 

    

and by substituting VI.11 in VI.? and hence VI.8 we calculate 

a x2  for every 9-energy combination. This provides us with 

a x2  distribution, with a minimum value provided by the 

preferred combination of solutions. The waves used in 

calculating this x2  were those 21 waves that we fitted at 

all 9 energies, with the exception of the N*DD3 which was 

compatible with zero at most energies. This gives 20 waves, 

with 8 path segments in each wave, and an amplitude and phase 

part to each segment - 320 degrees of freedom in the x2. As 

we use 20 waves, the dependence on any one wave is not very 
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large. In particular, there will not be any marked tendency 

to smooth out resonance effects in any one wave as would 

happen if only a few waves were used. There is still a bias 

against narrow resonances, but our spacing of 30-50 MeV 

between c.m.s. energies makes it difficult to see such 

detailed structure. 

We also calculate the confidence level CL corresponding 

to the x2  values. This is the probability of X2  exceeding 

its observed value if the values were distributed according 

to the x2  distribution function 

CL= 
X observed 

where PND  is the x2  probability distribution function for 

ND degrees of freedom. 

VI.4.2 Performing the continuity search 

The above formalism was turned into the program CHI. 

This read the solutions at each energy, and the mass and 

width of a resonance in a given wave, then calculated a X2 

for every 9-energy combination, and printed a list of the 

100 best combinations. To provide a means of identifying 

the different solutions at each energy, they were numbered 

in the order in which they were read, and these numbers 

are used in Tables VI.1, VI.4 and VI.5. 

Table VI.1 shows the results of the first CHI run, 

tied to the LDS33 wave with a mass of 1.67 GeV and width 

I dX2 PND (X2) 
2 
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0.2 GeV, which are the nominal parameters given by the 

Particle Data Group tables (ref. 50). The first 20 

combinations are shown. The spread in x2  was rather small; 

this could have been due to some solutions at certain 

energies being similar, or to CHI being insensitive to 

differences between solutions at a given energy. We felt 

that this should be checked before more CHI runs were made. 

In order to make this test independent of CHI and the 

calculated errors we used a separate program RANCON. 

At each energy RANCOM compared all solutions checking 

each wave in turn to determine whether T-matrix amplitudes 

and phases were the same within specified limits. Waves 

with an amplitude smaller than the amplitude limit were 

not checked at all. The limits used at each energy are 

given in Table VI.2; they were wide both in amplitude so 

that small waves were ignored, and in phase because some 

of the waves were known to have large phase errors. Solutions 

that were the same within these limits were considered to 

be sufficiently similar for it not to matter which was 

picked by CHI. As RANCOM was used merely as a double-check 

on CHI, and not to examine the continuum ambiguity, no 

great importance should be attached to these limits. 

The results in Table VI.1 were reexamined in the light 

of these comparisons. Solutions 1, 2 and 3 at 945 MeV/c 

were similar according to RANCOM, but solution 1 at 101OMeV/c 

was not the same as solution 8. This alternative solution 

was larger in the tSD1, tDS3 and p 3SD1 amplitudes, and 
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Momentum 
(MeV/c) 

600 700 750 800 850 895 945 995 1040 X2  C.L.% 

Combination 
number 

1 1 2 2 3 3 1 3 1 8 312.7 6o.4 
2 1 2 2 3 3 1 3 1 1* 315.7 55.8 
3 1 2 2 3 3 1 1 1 8 316.1 55.0 
4 1 2 2 3 3 1 1 1 1* 319.1 50.4 
5 1 2 2 3 3 1 2 1 8 322.0 45.8 
6 1 2 2 3 3 1 2 1 1* 324.9 41.3 
7 3 2 2 3 3 1 3 1 8 326.2 39.3 
8 1 2 2 3 3 1 3 1 7 326.5  39. o 
9 3 2 2  3 3 1 3 1 1*  329.2  35.0 
10 3 2 2 3 3 1 1 1 8 329.7 34.3 
11 1 2 2 3 3 1 1 1 7 329.9 34.0 
12 1 2 3* 3 3 1 3 1 8 332.6 30.3 
13 3 2 2 3 3 1 1 1 1* 332.6  30.2 
14 1 2 2 3 1 3 3 1 8 333.9 28.6 
15 1 2 2 3 1 1 4* 1 8 334.0 28.4 
16 1 1* 3* 3 3 1 3 1 8 334.9 27.2 
17 1 2 3* 3 3 1 3 1 1*  335.5 26.5 
18 3 2 2 3 3 1 2 1 8 335.5  26.4 
19 1 2 2 3 3 1 2 1 7 335.7 26.2 
20 1 2 3* 3 3 1 1 1 8 336.0 25.9 

The columns show the 9 momenta, and the solutions picked 
in each combination at each momentum. (The numbers identify 
different solutions at each energy as described in the text. 

Any solution that differs from the first one at that energy 
according to RANCOM is marked with an asterisk.) 

Table VI.1 

The 20 best combinations found by CHI 
when tied to tDS33 with Mass=1.67 GeV, 
Width=0.20 GeV, 
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Momentum bin (MeV/c) Amplitude limit Phase limit 
(radians) 

600 0.05 1.2 

700 0.05 1.2 

750 0.06 1.2 

800 0.08 1.2 

850 0.08 1.2 

895 0.1 1.2 

945 0.1 1.2 

995 0.1 1.2 

1040 0.1 1.2 

Table VI,2  Limits allowed on T-matrix element 

amplitudes and phases in program RANCOM 
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smaller in several others. It is not surprising that such 

a problem should arise at 1040 MeV/c since it is tied only 

from the lower energy side, and therefore less constrained; 

solutions at higher energies should help to resolve this 

problem. Fortunately the difference is not great, and 

disappears after the 0.P.E. refits described in the next 

chapter. We also examined Table VI.1 looking for the first 

combination that differed significantly from the best one 

at two energies. This was found to be the sixteenth 

combination, with a x2  of 334.9, corresponding to a confidence 
level of 27%; it differed from the best solutions at 700 

and 750 MeV/c. 

The best CHI combination could have been best merely 

because it contained solutions with the largest errors. 

In such a case the next best combinations would have been 

those containing solutions with the next largest errors 

rather than those most similar to the best combination. 

As RANCOM was independent of the calculated errors, it 

showed that the size of the errors was not an overriding 

factor in CHI, and a check of the errors on various 

solutions confirmed this: errors on different solutions 

at the same energy were not very different. 

RANCOM also found three cases where several solutions, 

each found only once and therefore excluded from the first 

CHI runs, were similar within the defined limits. These 

could have been cases of poor statistics splitting up a 

minimum, and not local minima, so they were added to the 



-181- 

set of minima used by CHI. At the same time solutions found 

only once but by starting from another energy solution 

(continuation runs) were also added to the CHI input. These 

solutions could not be treated on a par with random starts, 

and were unlikely to be local minima. This increased the 

number of combinations in CHI to 691,200; as none of the 

solutions added at this stage were chosen by later runs of 

CHI it seems to have been an unnecessary precaution. 

These tests showed that CHI did behave as required, 

and further runs were than made. Table VI.3 shows the x2 

for the best combination obtained by tying to oSD31 and 

DS33 resonances with a range of masses and widths. These 
two resonances were chosen because they are large, well-

established, and cover our range of energies. The same 

combination comes out with the best x 2  over the whole range 

tested for both waves. x2  values tend to improve with 

increasing mass and width because both effects bring the 

different energies closer together on the Argand diagram 

thus decreasing the path lengths. Table VI.4 shows the 

results of tying to a variety of known or suspected 

resonances. In each case the best and second best combinations 

are shown and for a waves the first combination that differed 

from the best at 2 energies is included. For each combination 

the table gives the x2  , confidence level and the position 

of the combination in the list of best combinations for 

that run of CHI. Solutions that are outside the RANCOM 

limits when compared to the corresponding energy solution 

in combination 1-2-2-3-3-1-3-1-8 are marked with an asterisk. 
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It is particularly interesting to note that tying to 

suspected PP1 and PP3 resonances in or gives the same 

best answer as tDS3 and tSD1. This gives support to 

belief in resonances in these waves. Tying to resonances 

in N*, p.  and p 312  gives some differences from the best 

answer, probably because there is more background in 

these channels. Table VI.5 shows the results of running 

CHI using more or fewer than the standard 20 waves in 

computing the x2. The results here are also similar or 

identical to the best combination, showing that the choice 

of waves here was not critical. 

The results of these tests, as shown in Tables VI.1, 

VI.3, VI.4 and VI.5 show that combination 122331318 is 

the preferred one. It is chosen by all parameter combinations 

in Table VI.3, and all the o waves in Table VI.4. In Table 

VI.5, the combinations are the same as it, or differ at 

only one energy. The first combinations differing at two 

energies, shown for the o waves in Table VI.4, lie some way 

down the CHI table. This 9-energy solution is the end result 

of the whole partial wave analysis, of the preceding data 

analysis, and of the subsequent continuity analysis. It 

provides new information on N*PP11(1470)7  waves, and 

additional information on other 741.1) induced final states. 

The single energy solutions in it were used to generate the 

Monte Carlo projections and the cross-section plots of 

Chapter V. (The alternative 1040 MeV/c solution was used to 

generate the additional 1040 MeV/c Monte Carlo plots in 

Figure V.5.j. These differ little from Figure V.5.i, showing 

that the two solutions describe the data equally well). 
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Mass 

Widt 	1.50 1.58 1.65 1.72 1.8o 

0.03 315.24 320.71 333.51 310.97 310.50 

0.08 312.48 315.46 319.05 311.73 310.56 

0.14 311.69 313.42 314.42 311.71 310.65 

•0.20 311.40 312.43 312.73 311.49 310.71 

0 .35 311.05 311.35 311.35 311.04 310.73 

o .45 310.91 311.05 311.03 310.83 310.69 

Best x2 tying to ASD1 with 
various masses and widths 

Mass 

Widt' 	1.52 	1.60 	1.67 	1.74 	1.82 

Best x2  tying to ADS3 with various masses and widths 
* = normal second best path is no longer second best 

Table VI.3 



Wave tied to 
& parameters, 
mass & width 
(GeV) 

Solutions picked at 
each .energy. Numbers 
and asterisks used 

as in Table VI.1 

Position 
in CHI 
table 

x2  C.L.% 

oDS3 

1.67, 0.2 

122331318 

122331311* 

1 

2 

312.7 

315.7 

60.4 

55.8 

11*3*331318 16 334.9 27.2 

oSD1 122331318 1 314.4 57.8 

1.65, 0.14 122331311* 2 315.6 56.0 

11*3*331318 4 317.0 53.7. 

APP1 122331318 1 350.1 11.9 

1.65, 0.09 122331118 2 351.9 10.6 

11*3*331318 6 355.6  8.4 

APP3 122331318 1 304.2 73.5 
1.69, 0.25 122331118 2 305.1 71.7 

11*3*331318 18 328.5 36.0 

N*SS1 11*4*332*118 1 424.5 0.0 
1.65, 0.14 11*4*332*111* 2 424.7 0.0 

N*PP1 123*33118 1 432.9 0.0 
1.65, 0.09 123*331311* 2 434.1 0.0 
N*PP3 11*4*331311* 1 281.2 94.2 

1.69, 0.25 122331311* 2 281.8 93.9 

p1SS1 31*1*331318 1 291.1 87.6 

1.65, 0.14 11*1*331318 2 292.9 85.9 

p 3DS3 11*2331111* 1 340.2 21.0 

1.67, 0.20 23*2331111* 2 345.5 15.7 
t 	 
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Table VI .4 

Results of CHI tied to various waves 



Solutions picked 
at each energy. 
Numbers and 
asterisks used 
as in Table VI.1 

Waves used in 
computing x2 

Position in 
CHI table 

x2  C.L. (%) 

20 waves 
(21 wave set 122331318 1 312.7 60.4 

except N*DD3) 122331311* 2 315.7 55.8 

14 waves 
(21 wave set 122331311* 1 193.4 93.2 
except APF3, 322331311* 2 194.3 92.5 

	

N*DD3, 	p1PP3, 

	

p1DD3, 	p3SD1, 

	

p3PP3, 	p3PF3) 

15 waves 
(21 wave set 122331311* 1 194.3 98.6 

except APF3, 122331111* 2 195.0 98.5 
N*SS1, 	p1PP3, 
p3SD1, 	p3PP1, 
p3PF3) 

16 waves 
(21 wave set 122331318 1 229.2 88,5 

except APF3, 122331118 2 230,4 87.4 
N*SS1, N*DD3, 
p3ssl,  p3PF3) 

21 waves 

121#321317 1 314.6 79.3 (complete 21 
wave set) 121#311317 2 316,0 77.7 
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Table VI,S  

Results of running CHI tied to EDS1, using 

various numbers of waves  
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We now turn to Argand plots of this 9-energy solution. 

VI.5 Results, Argand Diagrams and discussion  

Figure VI.3.a shows Argand plots of the SD31 and 

A DS33 T-matrix elements for the 9-energy solution, tied to 

a Breit-Wigner in ISD31, using the resonance parameters 

of Table VI.4. Points are marked by the symbols 1 to 9 for 

the nine energy bins starting at the lowest. Errors on 

amplitudes and phases are shown unless they are as small 

as the symbol. Figure VI.3.b shows the same waves, after 

tying to a resonance in ADS33, using the resonance parameters 

of Table VI.4. Overall behaviour in the two pairs of plots 

is similar, except for the lowest energies, and there is 

a relative rotation of 50° between the VI.3.a and VI.3.b 

plots. The DS33 resonance is wider than the SD31, so it 

gives a better coverage of our energy range and we have 

chosen to tie to it in producing our Argand plots for the 

other waves. Tying to the DS33 makes it lie at +90°  at 

1670 MeV, and moves the tSD31 resonance position 50°  off 

-90°  at its nominal mass. These are the two best-established 

resonances in our energy range, but their masses are not 

well-determined, so we have rotated all our final Argand 

plots by -25°, so that the two waves lie equally far from 

-F  90°  at their nominal resonance masses. 

Table VI.6 gives T-matrix element amplitudes and phases, 

with errors, with the phases fixed according to the above 

prescription. Figure VI.4 shows corresponding Argand 

diagrams for waves with T-matrix elements greater than or 
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Figure VI.3.a  

ASD31 and ADS33 waves tied to a ASD31 resonance with 

M=1650 McV,r=140 MeV 

Figure VI.3.b  

aSD31 and ADS33 waves tied to a tDS33 resonance with 

M=1670 MeV,F=200 MeV 
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close to 0.1. Errors are informative, but can be confusing, 

so they have been omitted from these plotss Argand diagrams, 

with error bars, for all waves are shown in Appendix A. 

Our signs are those of the "baryon first" convention, with 

other definitions as used by Saclay. Details of these 

conventions are given by Dolbeau in his thesis (ref. 34), 

and in other Saclay papers (ref. 16). These conventions 

agree with those of SLAC-LBL; we have checked them against 

the SLAC-LBL report (ref. 33) and against our own programs, 

as described in Andy White's thesis (ref. 10). However to 

make comparisons with theory easier, we have additionally 

rotated all waves through 180°  to agree with the convention 

of Hey et al (ref. 51). 

A careful examination of these Argand diagrams will 

provide information on resonance parameters and signs. The 

best method of obtaining this information is to perform a 

K-matrix analysis; SLAC-LBL and Saclay have described how 

they did this (references 15, 16) after performing their 

partial wave analyses. Our Imperial College/Westfield College 

collaboration has an independent K-matrix analysis program 

written by Steve Glickman but this has not yet been used. 

In the meantime, a search by eye for circles on the Argand 

diagrams and for corresponding bumps on the a JP  plots can 

provide the same information. The results of such a search 

are described here, but the search is repeated in greater 

detail after the refit with One Pion Exchange, described 

in the next chapter. 

Taking the waves in order of JP, and starting with the 

S31 wave, one immediately sees the well-known 0(1650) 
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resonance. This shows up as a very clear bump in the QJP 

plot, and as a large clear resonant loop in ASD31. It is 

obviously a good wave for tying to in CHI. Clear resonance 

structure is also seen in p1SS31. though it is not as smooth 

as the A wave. Signs are unambiguous in both cases, thea 

resonates in the lower half of the Argand circle and pl  in 

the upper half; this is the first clear determination of 

the p 1SS31 sign. The mass of the resonance is not at 90°  

(see earlier note about rotating the Argand diagrams), and 

does not agree exactly between the Argand diagrams and the 

Q JP  plot. These are common problems, and are reasons for 

using K-matrix analyses. N*SS31 and p3SD31 show smaller 

amplitudes, there are indications of an anti-clockwise loop 

in N*SS31 but a sign cannot be determined. The P31 wave has 

small cross-section, and is difficult to interpret. It will 

be discussed in detail in the next chapter, but it is worth 

noting that the confused behaviour at our energies could be 

due either to the presence of more than one resonance, or to 

rapidly moving backgrounds. The enlarged cross-section plot 

for this wave, Figure V.6.b, showed bumps at energies 3 and 

7, and all four PP31 Argand plots show interesting behaviour 

at these energies. 

The P33 wave is large, particularly at the top two 

energies where its cross-section exceeds the predictions of 

elastic analyses. APP33 and N*PP33 show clearly resonant 

behaviour, piPP33 and P3PP33 are much smaller, but show 

anti-clockwise motion. We clearly confirm the  P33(1690) 

resonance given only one star in the 1976 Particle Data 

Group Tables (ref. 50), its sign is positive in both APP33 
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and N*PP33; ours is the first analysis to show the latter 

wave and its sign. There is considerable structure at the 

lower energies in the cross-section plot and in the tPP33 

Argand diagram; a lot of background variation would be 

needed to explain this, so it could be due to further 

resonant behaviour at these lower energies. The PF33 waves 

are small. 

Of the D33 waves, ADS33 shows a clearly resonant loop, 

but as it was used to tie the phases of all the Argand 

plots, only its amplitude needs to be considered. The 

amplitude at energy 4 is larger than at the adjacent 

energies, but consideration of the errors shows that there 

is no discrepancy. The p 3DS33 wave is also large, but less 

continuous. The DD33 waves are all smaller than the DS33 

waves - they are confused, but show an overall tendency to 

anti-clockwise motion. 

In D35, only the tDD35 wave merits showing here; it 

exhibits a clear counter-clockwise rotation, with points 6 

and 7 larger and somewhat displaced. The same energies are 

also larger in the QJP  plot, but it is difficult to draw 

any conclusions from this behaviour. 

Finally, the F waves - these are small and are not 

shown here, but only in Appendix A. More energies must be 

analysed before any conclusions can be drawn from the 

behaviour of these waves. 



-191— 

0.0 	 0.5 	- 5 	 0.0 	 0.5 
RECT) 	 RE(T) 

Figure VI.4. a 

(details at foot of Fig.VI.4.e) 
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Figure VI.4.b  

(details at foot of Fig.VI.4.e) 
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Figure VI.4.c 

(details at foot of Fig.VI.4.e) 
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Figure VI.4.d  

(details at foot of Fig.VI.4.e) 
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Figure VI.4.e  

Argand diagrams for most continuous solution,tied 

to a DS33 with M=1670 MeV,r=200 MeV,rotated by 135°  
(see text) 

Points 1-9 denote solutions at the following energies 
(in GeV) 

1 - 1.439 
2 - 	1.495 
3 - 	1.526 
4 -. 1.551 

5 1.577 
6 - 1.612 
7 - 1.64o 

8 - 	1.668 
9 - 	1.693 
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Amplitudes and phases of T-matrix elements 
Waves Energies in GeV 

1 1.439 1.495 1.526 1.551 	1.577 1.612 1.640 1.668 1 	1.693 

DELTA SD31 , 

AMPLITUDE 0.042 0.079 0.035 0.186 	0.246 0.347 	0.364 0.278 j 0.174 
& ERROR 	0.012 	0.019 0.020 0.021 	0.025 0.059 	0.042 	0.048 	0.034 

PHASE 	-0.39 	-1.68 -1.87 -2.71 	-2.08 -1.32 	;-1.15 	-0.88 	-0.19 
a ERROR 	; 	0.54 0.28 0.61 0.24 	0.44 0.24 	! 	0.21 	i 	0.23 	0.30 

DELTA PP31  

AMPLITUDE 0.070 0.061 0.120 0.077 	-0.072 0.125 	0.134 	0.144 	0.163 
& ERROR 	j 0.013, 0.017 0.032 0.029 	0.027 	0.030 	0.027 	i ,0 .028 	0.039 

PHASE 2.43 -3.58 -3.64 -3.48 	0.73 	-4.34 	1.27 	! 	1.42 	1.94 
a ERROR 0.55 0.42 0.28 0.30 	0.61 	0.37 	0.27 	; 	0.32 	0.32 

DELTA PP33 

AMPLITUDE 0.059 0.062 0.141 0.165 	0.253 	'0.216 	10.220 	10.340 0.267 
& ERROR 	-.017 0.018 0.033 0.019 	0.028 	0.035 	10.033 	;0.069 0.030 

PHASE 	1.25 -4.11 -4.75 -5.00 	-5.19 	-4.33: 	1.70 	! 	1.79 2.71 
a ERROR 	0.59 0.40 0.25 0.26 0.42 	0.29: 	0.23 10.20 0.21 

i 	 

DELTA PF33 

AMPLITUDE 0.016 0.013 0.026 0.020 	0.072 
I 

0.066 	;0.05Q 10.017 0.092 
a ERROR 	 0.005 	0.008 0.012 0.006 	

1
0.011 0.016 0.015 	;0.015; 	0.019 

PHASE 	j 	0.08 	-1.26 -0.12 -2.68 -0.89 	-0.22 -0.05 	-0.87 	0.01 
& ERROR 	! 	0.62 	0.63 0.54 0.58 0.43 	' 	0.37 	0.35 	', 	0.80 0.27 

DELTA DS33 

AMPLITUDE 	10.085 .0.119 0.145 0.194 0.129 	0.109 	10.118 	0.125 	0.057 
a ERROR 	10.016 	0.020 0.029 0.022 0.025 	0.026 	10.024 	0.027 	0.023 

PHASE 	1-0.00 	0.11 0.19 0.28 0.40 	0.62 	' 	0.85 	1.11! 	1.36 
& ERROR 	0.57 	0.29 0.26 0.26 0.48 	; 	0.29 	0.27 	0.27 	0.43 

r I 	i 
DELTA DD33 

AMPLITUDE 0.041 	0.034 0.100 0.067 0.067 	0.062 	0.121 	;0.132 	0.060 
& ERROR 	10.012 	0.013 0.024 0.012 0.020 	0.023 	0.020 	:0.034: 	0.034 

PHASE 1.53 	1.40 -4.47 -5.65 0.67 	f 	1.70 	1.41 	1 	1.95; 	2.88 
& ERROR 0.55 	0.37 0.28 0.34 0.48 	0.38 	'; 	0.25 	0.28; 	0.56 	, 

Table VI .6 
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1.439 11.495 1.526 1.551 1.57711.612 1.640.668 ;1 1.6931 

DELTA DD35 

AMPLITUDE 0.009 0.022 0.047 0.061 	0.075 	0.155 0.178 	'0.118 0.095 
a ERROR 0.005 0.010 0.013 0.014 • 	0.023 	0.028 0.026 :0.022 0.014 

PHASE -0.22 -3.60 -3.70 -4.09 -3.91 	-3.29 -3.29 	-3.47 	-2.14 
& ERROR 0.60 0.40 0.31 	0.26 0.46 	0.24 0.21: 	0.25 	0.26 

DELTA FP35 

AMPLITUDE - - - - - 	;0.012 	0.022 	0.056 	0.032 
a ERROR - - - - - 0.011 	0.013 	0.016 	0.018 

PHASE - - - - - -4.31 	-3.49 	-2.57 	-0.76 
& ERROR - - - - - 0.75 	0.44 	0.30 	0.44 

DELTA FF35 
i 

AMPLITUDE - - - - - 	10.024 	0.030 0.050 	0.141 
& ERROR - - - - - 	10.013 	0.012 0.025 	0.020 

PHASE - - - - - 	1-2.98 	-4.05 	0.13 ' 	-3.16 
& ERROR - - - - - 	; 	0.57 	0.44 	0.40 	0.22 	, 

DELTA FF37 ' 

AMPLITUDE - - - 	- - 	- 	- 0.072' 	0.119 
& ERROR - - - 	- - 	- 	- 0.014 	; 	0.018 

PHASE - - - 	- - 	- 	- 1.88! 	-2.49 
& ERROR - - - 	- - 	I 	- 	- 0.29! 	0.26 

N* 	5531 

AMPLITUDE 0.057 0.075 0.080 	0.077 0.015 0.021 	0.039 0.142 	0.124 
a ERROR 0.012 0.013 0.018 	0.012 0.013 '0.016 	0.021 0.027 	0.032 

PHASE 0.11 -0.53 1.10 	-4.85 0.12 -2.20 	-0.15 0.06 	; 	1.01 
& ERROR 0.56 	i 0.28 0.29 	0.30 1.02 1.07 0.41 	0.27 	I 	0.29 

N* 	PP31  

AMPLITUDE 0.014 0.049 0.043 i 	0.039 0.143 0.189 	0.192 	,0.235 	; 	0.271 
& ERROR 0.008 0.019 0.016 	 0.016 1 	0.027 0.035 	0.025 	j0.041' 	0.030 

PHASE 3.53 1.77 -0.93 I -2.67 2.01 2.57 	2.69 	2.92 	3.42 
& ERROR 0.87 0.38 0.44 

	
0.42 0.47 	0.25 , 	0.21 	

~ 	
0.22 	0.22 

N* 	PP33  

AMPLITUDE 0.024 	0.071 0.075 	0.108 0.142 	1 0.164 0.162 0.146 	0.178 	' 
& ERROR 	0.006 	0.011 0.015 	0.012 0.014 	X0.028 0.021 0.027 	0.024 

PHASE 	5.72 	-0.03 0.29: 	0.43 0.55 	1.11 	1.27 	1.55 	2.13 
& ERROR 	0.58 	0.27 0.27; 	0.25 0.44 	i 	0.25 	0.21 	0.21 	0.21 
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1.439 1.495 1.526 1.551 1.577 1.612 1.640 1.668 1.693 

N* 	DD33 

AMPLITUDE 0.010 0.019 0.023 0.033 0.025 0.025 0.033 0.034 0.041 
& ERROR 0.005 0.006 0.008 0.009 0.011 0.010 0.011 0.011 0.018 

PHASE -1.22 -3.67 -1.82 -0.88 -2.92 -1.92 -0.23 -0.06 0.97 
& ERROR 0.74 0.46 0.44 0.35 0.63 0.49 0.35 0.48 0.41 

N* 	DD35 

AMPLITUDE - - - - - 0.018 0.013 0.013 0.009 
& ERROR - - - - - 0.008 0.008 0.009 0.018 

PHASE - - - - - 0.97 -1.47 -0.35 -1.09 
& ERROR - - - - - 0.55 0.78 0.82 1.30 

N* 	FF35 

AMPLITUDE - - - - - 0.011 0.027 0.008 0.032 
& ERROR - - - - - 0.007 0.011 0.012 0.016 

PHASE - - - - - 1.92 3.24 3.95 4.08 
& ERROR - - - - - 0.92 0.37 1.15 0.38 

N* 	FF37 

AMPLITUDE - - - - - - - 0.012 0.031 
& ERROR - - - - - - - 0.009 0.010 

PHASE - - - - - - - 1.82 3.43 
& ERROR - - - - - - - 0.75 0.44 

RHO1 	SS31 

..AMPLITUDE 0.081 0.133 0.210 0.189 0.275 0.312 0.293 0.127 0.257 
& ERROR 0.019 0.032 0.037 0.020 0.036 0.057 0.041 0.042 0.044 

PHASE -0.52 0.56 0.55 0.04 0.18 0.85 0.87 1.42 2.21 
& ERROR 0.54 0.27 0.26 0.24 0.42 0.25 0.21 0.24 0.22 

RHO1 	PP31 

AMPLITUDE 0.054 0.047 0.117 0.069 0.006 0.085 0.128 0.052 0.136 
& ERROR 0.013 0.018 0.028 0.036 0.024 0.032 0.028 0.032 0.031 

PHASE 3.01 1.45 3.09 1.74 2.58 4.33 4.25 3.81 4.65 
& ERROR 0.58 0.51 0.34 0.44 5.99 0.49 0.31 0.57 0.34 

iRHO1 	PP33 

AMPLITUDE 0.022 0.025 0.033 0.052 0.041 0.055 0.049 0.054 0.019 
& ERROR 0.011 0.013 0.015 0.021 0.016 0.017 0.015 0.021 0.016 

PHASE 5.09 -1.33 -0.01 0.85 -1.96 -1.07 0.13 2.44 2.41 
& ERROR 0.69 0.47 0.54 0.31 1 	0.45 0.41 0.38 0.28 1.17 
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1.439 1.495 1.526 1.551 1.577 1.6121.640 1.668 1.6931 
RHO1 	DD33 

AMPLITUDE 0.018 0.024 0.038 0.044 0.075 0.041 	0.078 	0.025 0.053 
& ERROR 0.008 0.010 0.012 0.011 0.014 0.017 	0.015 	'0.016 0.019 

PHASE -1.22 0.42 -0.98 -1.52 -0.80 ' -0.30 	0.12 	-1.62 1.42 
& ERROR 0.80 0.57 0.39 0.39 0.44 0.46: 	0.30 	! 	0.66 	0.40 

RHO1 	DD35 

AMPLITUDE - - - - - 0.028 	0.021 	10.033 	0.044 
& ERROR - - - - - 0.014 	0.011 	10.010 	0.013 

PHASE - - - - - 0.37 	0.08 	-2.41 	-2.79 
& ERROR - - - - - 0.47 	0.59 	0.42 	0.43 

RHO1 	FF35 

AMPLITUDE - - - - - 	0.004 0.036 0.029 	0.023 
& ERROR - - - - - 	0.011 0.007 	0.013 	0.013 

PHASE - - - - - 	-0.01 3.97 	i 	5.04 	1.20 
& ERROR - - - - - 	2.30 0.35 0.57 	̀ 	0.56 

RHO1 	FF37 

AMPLITUDE - - - - - - - 	0.016 	.;0.036 
& ERROR - - - - - - - 	0.009 	.0.014 

PHASE - - - - - - - 	4.88 	; 	'4.59 
& ERROR - - - - - - 	- 	0.79 	0.33 

. 

RHO3 	SD31 

AMPLITUDE 0.001 0.016 0.084 0.025 0.033 0.032 	0.024 0.075 	0.085 
& ERROR 0.007 0.018 0.028 0.015 0.020 0.027 	0.020 0.034 	0.032 

PHASE 1.96 -3.37 -2.96 -5.46 0.96 -0.51 	0.36 -1.32 	-2.15 
& ERROR 9.71 0.71 0.32 0.76 0.81 0.82 	0.93 0.46 	0.37 

RHO3 	PP31 

AMPLITUDE 0.091 0.027 0.083 0.083 0.004 0.128 	0.116 0.070 	0.086 
& ERROR 0.018 0.015 0.030 0.028 0.027 0.040 	0.025 0.031 	0.025 

PHASE 0.05 0.10 1.08 -1.51 -3.76 -2.72 	-2.25 -2.99 	j 	2.25 
& ERROR 0.56 0.84 0.37 0.39 5.74 0.30 	0.28 0.37 	0.43 

RHO3 	PP33 

AMPLITUDE 0.033 0.054 0.040 0.086 0.083 0.042! 	0.010 0.053 	;0.038 
& ERROR 0.015 0.017 0.018 0.022 0.021 0.022 	0.020 0.026 	;0.019 

PHASE -0.80 -4.07 -4.52 -0.34 -0.40 1.30! 	=0.30 0.42 	i-3.10' 
& ERROR 0.73 0.39 0.48 0.33 0.57 0.55 	1.89 0.44 	1 	0.51. 

i 
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1.439 1.495.1.526 1.551 ;1.577 1.612 1.640 1.668 1.693 
RHO3 	PF33 1 

AMPLITUDE 0.010 0.023 	0.027 0.040 	0.017 0.053 	0.032 0.035 0.087 
& ERROR 0.006 0.005 	0.010 0.012 	0.012 0.011 	0.013 0.016 0.020 

PHASE -1.90 0.05 	-4.54 -3.40 	-3.32 1.66 	-4.25 2.13 2.73 
& ERROR 0.71 0.50 0.47 0.31 	1.00 0.32 	0.43 0.40 0.24 

RHO3 	DS33  

AMPLITUDE 0.020 0.081 0.077 0.054 	;0.130 0.136 	0.187 	'0.228 0.151 
& ERROR 0.007 0.025 0.019 0.017 	0.021 0.034 	0.027 0.051 0.023 

PHASE 0.64 0.58 1.12 -0.06 	j-0.65 	-0.30 	 -0.30 0.57 0.63 
& ERROR 0.72 0.30 0.28 0.41 	0.49 0.24 	j 	0.21 0.21 0.23 

RHO3 	DD33 

AMPLITUDE 0.022 0.058 0.029 0.080 	,'0.111 0.139 	0.094 0.072 	0.153 
& ERROR 0.007 0.014 0.010 0.010 	10.009 0.023 	;0.019 0.019 	;0.021 

i 

PHASE -0.13 -1.19 0.03 -0.67 	1-1.05 -0.55 	-0.56'  -0.81 	1 -0.06 
1 & ERROR 0.69 0.33 0.60 0.32 	j 	0.54 0.27 	0.24' 0.31 	0.22 

RHO3 	DD35  

AMPLITUDE - - - - 	- 0.022 	0.022 0.009 	0.009 
& ERROR - - 	- - 	j 	- 0.015 	0.016 0.013 	0.017 

PHASE - - 	- - 	- -3.75 	-2.09 -1.22 0.77 
& ERROR - - 	- - - 0.83 	0.63 1.59 1.76 

RHO3 	FP35 

AMPLITUDE - - 	- - - 0.016 0.059 0.104 0.079 
& ERROR - - 	- -  - 	0.010 0.014 0.019 0.016 

PHASE - - - - - 	-1.72 -2.65 -2.38 -2.07 
& ERROR - - - - - 	1.01 0.26 0.23 0.25 

RHO3 	FF35  

AMPLITUDE - - - - 	j 	- 0.009 0.036 0.017 	0.009 

& ERROR - - - - 	- 0.011 	0.008 0.015 	0.014 

PHASE - - - - 	- -2.95 	-3.44 1.44 	-3.31 

& ERROR - - - - 	- 1.50 	0.37 0.86 	1.34 

RHO3 	FF37 

AMPLITUDE - - 	- 	- 	- - 	- 0.031 	0.078 

j 	& ERROR - - 	- 	- 	- - 	- 0.012 	10.015 

PHASE - - 	- 	- 	- - 	- 	- -0.79 	1.77 

& ERROR - - 	- 	- 	- - 	- 0.46 	0.25 
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CHAPTER VII  

ONE PION EXCHANGE EFFECTS AND FINAL RESULTS  

VII.1 Introduction 

A number of possible isobar model problems have been 

mentioned in previous chapters. The results of fitting our 

data with an isobar model alone, presented in chapters V and 

VI are satisfactory, particularly in that direct three body 

production is minimal and three body unitarity corrections 

are of the same size as our errors. It is nevertheless worth 

examining other effects not allowed for so far. Two sich 

effects are well-known and were added to our isobar model 

analysis. The first is an S-wave I=2 Tr1T state (ref. 52). 

The Oxford analysis included this as an isobar (ref. 7) and 

Saclay used it as an additional isobar in analysing their 

Tr *T n data at their highest energy (ref.16). The other effect 

is that of peripheral processes, which generally become more 

important at higher energies, and can be allowed for either 

by the inclusion of higher partial waves, or by the addition 

of t-channel exchange effects to the analysis programs. The 

SLAC-LBL paper(ref.15a) points out that this may be needed 

and their data has been recently refitted by D.E. Novoseller 

(refs, 53,54) with an isobar model plus t-channel exchange. 

The standard isobar model picture of aTrp interaction, 

used at low energies, is the s-channel resonances plus 

background one presented in Chapter IV 



s-channel 

> 	 

-202- 

An alternative picture, more commonly used at higher 

energies, typically 5 GeV/c incident momentum and above, is 

the t-channel exchange one 

P ~c 
t-channel 

According to duality, the two pictures are equivalent, so 

arbitrary combinations of the two in one fit can involve 

double counting, and care must be taken when using both. At 

our energies, only the Tr± +n channel shows a failure to fit 

peripheral events. Only those t-channel effects that lead to 

an I=2 TM state, not allowed for in our isobar model, 

contribute to this channel, so no double counting problems 

arise. This chapter describes a re-analysis of our data with 

t-channel effects used to describe the I=2 final state, and 

to allow for peripheral processes. This is not primarily a 

TrTr analysis of our data, as was the work of ref. 11, the main 

interest lies in improvements to the s-channel analysis; 

nevertheless the I=2 results are also interesting. 

The formalism, analysis and results of the refit are 

described in the same order as was used to describe the main 
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analysis in Chapters IV, V, VI. A detailed discussion of 

the results follows, and the chapter ends with some concluding 

remarks on the whole analysis. 

VII.2 Formalism of I=2 nr  effects 

VII.2.1 Formalism of 1=2 Tr Tr  

The isobar model describes the reaction 1+2 - a+b+c, 

in terms of an (ab) isobar or resonance, such that a and b 

undergo a reaction unaffected by c. A summation is then 

performed over possible isobars. 

In the case where a and b are both pions, the (ab) 

system can have isospin 0, 1 or 2, and the results of Tr7r 

scattering analyses can be used to find suitable 

parametrisations for each case. The I=1 state is most 

amenable to isobar model analysis; it is dominated by the 

p-wave p meson , which SLAC-LBL, Saclay, and our own analysis 

treat as one of the isobars, The I=0 case is more difficult; 

the wide enhancement at about 640 MeV may or may not be a 

resonance - SLAC-LBL and Saclay treat it as such, we do not 

need to consider it as I=0 is not accessible in p 	TrITN. 

The 1=2 case is the worst, it is an exotic state, Trmr analyses 
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show that it is a repulsive interaction. A good recent 

analysis of this state, that of Hoogland et al, reference 55, 

shows clearly that there is no resonance at our energies. 

(There has however been recent interest in possible exotic 

meson resonances at higher energies._). Some allowance for the 

I=2 interaction should be made, particularly in analyses of 

the u+r +n final state. SLAC-LBL and earlier isobar analyses 

of our data ignored I=2. Both the Oxford analysis (ref. 7) 

and Saclay's analysis of n+,r+n at their top energy included 

an s-wave I=2 wn isobar. This is better than making no 

allowance at all, but is clearly not in the spirit of the 

isobar model; some other picture that allows a close encounter 

between the pions without requiring them to form an I=2 

isobar is preferable. Two possibilities would be direct 

three body decay followed by an interaction between the pions, 

or a final state interaction between two pions after an isobar 

decay, but the isobar model assumes, apparently correctly, 

that direct three-body decay, and rescattering are negligible 

at our level of accuracy. The third kind favoured by us, 

describes the interaction in terms of one pion exchange 

(O.P.E.). This is the t-channel exchange model normally used 

in Iry analyses such as that of Hoogland et al., it is normally 

used at energies higher than ours. At energies close to ours, 

R.D. Baker analysed data from our collaboration at 1.4 and 

1.5 GeV/c, using t-channel exchange (refs. lia and iib). 

D.E. Novoseller has also refitted the SLAC-LBL results using 

their isobar model with the addition of t-channel exchange 

effects (refs. 53 and 54) . 
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rtyr 

Figure VII.1 t-channel diagram 

The reaction, as shown in Figure VII.1 is described by 

a product of two vertex functions, and a propagator. We use 

the Goebel Chew-Low formula (refs. 56, 57) 

G(t)  T 	=  7rN÷r7rN 	
T

NN (t_µ2) 
T 

 7r7H-7r1r 
7.1 

t is the 4 momentum squared transfer from the proton to the 

outgoing neutron (always negative) 

Pis the pion mass 

	 is the pion propagator, G(t) being a function to 
(t-u2) 

mr analyses attempt to isolate T7 r7r4.7r,r and study it in 

detail. Ours is primarily an isobar model analysis, so an 

uncomplicated parametrisation of T-71,41x7 is sufficient. We 

follow the parametrisation of Wolf (refs. 58 and 59). 

As described in Chapter IV, the likelihood function 

is calculated in terms of dp 
 the differential cross-section 

with respect to invariant phase space p. The 5 variables 

commonly used in O.P.E. analyses are 

allow for corrections to it 
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m277 the squared mass of the dipion system in its centre 

of mass frame 

t 	the 4-momentum squared transfer from incident to 

outgoing nucleon 

cose, cp the polar and azimuthal angles defining the mr 

system; in an s-wave 77 state, there is a uniform 

distribution of probability over cose and 0, so they 

will be integrated out 

a 	a rotation about the incident beam direction, which 

can also be integrated out in the case of an 

unpolarised beam and target 

da will therefore be obtained in terms of these 
dp 
variables. 

We can write 

a(m2Tyr,t,cose,$,a) 

dm2 dt dcosedcbda 	a(p ) 

The Jacobian is given by 

a(m277,t,cose,c,a) 	32 m
p plab mITIT 

3(p) 	 q~r~r 

(For a derivation, see for instance reference 62, Page 119). 

The new variables are 

mp 	= proton mass 

plab = laboratory momentum of incident pion 

q~n 	= momentum of one pion in the dipion centre of mass 

system 

q77 can be calculated from m m . It will be useful to define 

the function that gives the squared momentum of a particle 

in the centre of mass system of 2 particles. If a system of 

total mass m3 consists of 2 particles masses m1, m2, then 

the squared momentum of particles 1 or 2 is given by 

da __ 
dp 

d5a 7.2 

7.3 



f 
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P2(m12,m22,m32) = 4 	4 m1 +m2 -m3 -2(m12m22+m12m32+m22m32) 

4m32  
7.4 

q can now be written 
Tf Tr 

q

1

~ = P(u2 	,u2 	,m2~~) 7.4a 

Integrating over the angles in the differential cross-

section one gets - 

d  

dm2~
7
dt 1 

d5a . dcosed0a 

dm2 dt dcosed0a 

 

d5 a  

dm277dt dcosedq5da 

(because the function is independent of cose,(p,a) 

1 	d2a 	d5Q 
I a . 	

87r2 dm2 
77
dt 	dm2

77
dtcosed0a 

Combining 7.5, 7.2 and 7.3 gives 

da 	 4 	mpplabmTrTr 	d2a  _ 
dp 	q77 	dm2 dt 

TrTr 

Using the expression 7.1, and including a flux 

factor, one gets 

dm TrTrdt 	plab p 	(t-u 2 )

2  
d
2 

2 
0 	a. 32 m2 	ITNNTr"t) ~2 	G2(t) 	ITTrTr,TrTr(m~~,t) I 2 	7.7 

This is the formula used by Wolf in reference 59, equation 21. 

We use the DUrr-Pilkuhn form factor (ref. 60) giving 

	

ITNNTr(t) 2 = -t 	N2 g2 Tr
2g2 	 7. 8 1 	+ R

2 2 

1 + RN qNt 	NNTr 

the off-mass-shell pion momentum, in the (pt) rest qNt is 

frame 

qN is the on-mass-shell pion momentum , in the (pTr) rest 

frame 

7.5 

7,6 
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Equation 7.4 can be used for both these 

qNt = P(t,m2P,m2n) 

qN = P(112,m2P,m2n) 

7.4b 

7,4c 

Wolf obtained values for RN and G(t) by fitting O.P.E. 

cross-sections to experimental data; he found G(t)=1 (i.e. 

no correction) and RN=2.86f.08GeV-1, 

g2NN Tr is the NN Tr coupling constant = 29.2 for TT+ and 

Tr, for Tr° it is 14.6. In the rest of this derivation, we 

shall use expressions fort r+, and introduce corrections for 

7+70 at the end. 

For the second vertex function we again follow Wolf 

and write 

u1(g7tR77 )

uIT           	q  Q +  +"(m T + T +) TR >1 T

2
TT 	2 	?

TT 	TTT T 	TT T T 
 7.9 

This is equation 16 of reference 59, written for 7+1T+i 7+7+ 

Wolf found R
77 

= 0 	, so the u1 terms cancel. 

The s-wave dominates in I=2 at our energies, so we 

write 

a +~+ (m~+~+) = 	42 	si 2 2 sin 6o
k 

7,10 

2 
k is the pion wave number (=q ), and ōo is the L=0, I=2 

phase shift. 
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Continuing with simple parametrisations, we take an 

effective range expansion ford 
02 

(see for example ref. 61 ) 

k cot dot = - 
a 

+ 2rok2 
	7.11 

with a = scattering length, ro = effective range; these are 

the parameters to be fitted in analysing the O.P.E. contribution 

to the final state. The Oxford analysis used the same expression, 

but fixed the values of a and ro (ref. 7). For 7r+7r°, a Clebsch- 

Gordan coefficient of 	is introduced 

Combining 7.10 and 7.11 gives 

1 + cot20-1 = 47r(g2 +(2r q2 - 1)2) 
1 7.12 

777 0 77r a 7T 7r 	 2 
.7r7r 

All these expressions can now be combined to evaluate da 
dp 

da = 42 mD Plab m7rTr 	_t 	1t8.18g2N 	7r2.29.2q~ 	  m2 0 (q )
• 

dp 	
gTrTr 	47r3 p2 	m2 

 m
2p 1+8.18g2Nt 	(t-u2)2 	7r7r 7r7 7r7r 

c 
11' 
 +70 = 2 d~+~+ 

2 
29.2m3

7r7r 	(-t) 	1+8.18q 
	

c(g77;r0,a) 7d 
plab p (t-u2)2 	1+8.18g2

Nt 

= X (m
77

,t) 
	

a(g7r7r;ro,a) 

7.13a 

7.13b 

For each event, X can be calculated before fitting; 

6 is a function of q„ which can also be calculated before 

fitting, and of ro, a which are fitting parameters. If the 

mass differences between 7+7° and between p, n are ignored, 

then the same expressions hold for 7r+p lP, except that X must 

be multiplied by 1/4, because of the factors of 2 in g2NNn 

and Q 
Tr7r 

The total I=2 O.P.E. contribution to the 7+Tr+n cross-

section is given by 
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aI=2(7+7+n) = 
tmax 

tmin 

2 
max 

( 2p) 2 

2 

2 o  dm2~r,rdt 7.14 
dm 7T7dt 

This is just the integral over the Chew-Low plot. Again the 

,+p p cross-section is a quarter of this. 

VII.2.2 Inclusion in Likelihood Calculations 

The likelihtod function in Chapter IV was constructed 

from the s-channel cross-section expressions 

II 	d a 

 

(equation 4.15) 

 

events dw12dw22dcosedt 

This was normalised by dividing the likelihood for 

each event by the total cross-section. It was also expressed 

in terms of Lorentz invariant phase space p, so that the 

likelihood contribution from one event i is given by 

dP i = d1a( X,Y.) 	1 	 7.15 

dp 	atot(X) 

Yi is the vector of measurements describing the event. 

X is the vector of fitting parameters, describing the 

s-channel waves, so 7.15 can be written 

of i = d4a(waves) 	1  
dp 	6tot(waves) 

7.16a 

Now that an O.P.E. contribution has been added, this must be 

written 

= d 	4a(waves and O.P.E.) . 	1 
dp 	atot(waves and O.P.E.) 

Since the 1=2 effect is small, we ignore overlaps, and use 

an incoherent sum of the two effects. 

7.17 

i = 	d4a(waves) + d4a(O.P.E.) . 	1  
dp 	dp 	atot(waves)

+otot(O.P.E.) 

7.16b 
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1.  
The normalisation by a tot(X) in 7.15 is required  

because a change of scale in the amplitudes of X caused a 

corresponding change in the differential (and hence also the 

total) cross-section. This scaling was permitted in the 

minimisation for the reasons given at the end of V.4.3, so 

in effect 7,16a should be written with a scaling factor taken 

out of both numerator and denominator. 

= s.d4a(waves)' . 1 7.18 
dp S.otot(waves)' 

The primed values are the true ones, and the unprimed ones 

are the calculated ones so that 

atot
(experimental) = a

tot
(waves)' = s 6tot(waves) 

• 	
s = a

tot(waves) 

  

7.19a 
atot

(experimental) 

Now that the total cross-section is to include an O.P.E. 

component, the expression for s must be rewritten. The O.P.E. 

cross-section is obtained from equation 7.14 which has no 

such scale factor, so now 

atot
(experimental) = a

tot
(waves)?  + a

tot
(O.P.E.) = s tot(waves) 

+ 
atot(

O.P.E.) 

S .  • S = atot
(waves) 

atot
(experimental) - a

tot
(O.P.E.) 7.19b 

This scale factor must be allowed for in equation 7.17 

x i = ` d46(waves)' + d4a(O.P.E.) 	1  

dp 	dp 
	

tot 
	tatot

(O.P.E.) 

The primes are to indicate that the true values, not the 

scaled ones should be used. As the likelihood function uses 
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the scaled values, we write 

d~ i = 	s 
ea(waves) + d4a(O.P.E.) 	1  

dp 	dp 	
s tot(waves) + atot(O.P.E.) 

7.20 
 , = d4a(waves) + s d4a(O.P.E.) 	1  

dp 	dp 	atot(waves) + satot(O.P.E.) 

This then is the expression to be evaluated for each 

event. The "waves" terms are the same as those used for the 

non-O.P.E. analysis: they are the numerator and denominator 

of the original likelihood function 4.17, The O.P.E. terms 

are calculated from equations 7.13 and 7.14, the scale term 

from equation 7.19b. 
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VII.3 Performing the Fits 

VII.'3.1 Programming the likelihood function 

The new version of the likelihood function had to be 

turned into a new Fortran function, and other changes in the 

fitting procedure were needed. Equation 7.20, written in more 

detail to show these requirements is - 

II 	t (waves)s  X Q(q;a,r 1 	77o)i 
i=events 

atot(
waves +  atot(O.P.E.) 

7.21 

This form of the likelihood requires no changes at all 

to the s-channel expressions already programmed. The scope 

for possible errors is thus much reduced which is very 

important. Only the additional terms and the derivatives 

required changes to the programs. The following changes were 

made to the programs described in Chapter V. 

i) X and q 71.71. were calculated for each event by the program 

DISK and added to the set of numbers passed to the fitting 

program. q77  is given by equation 7.4a. X comprises the 

expression given by equation 7.13a; that part of t(O.P.E.) 

which does not depend on the fitting parameters a, ro. The 

same expression was used for '7t 7r+n events and for *pyo  

events. For IT ° events it was then multiplied by . This 

factor was first put in incorrectly as and many unsuccessful 

test runs were made before the error was discovered. The 

Jacobian (equation 7.3) was also omitted, and this was not 

corrected until after random starts had been made at the top 

4 energies. 

ii) a and ro  were 2 additional fitting parameters used by 

VA09AD. The calls to VA09AD were changed accordingly, and 

expressions for differentials with respect to these variables 
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had to be evaluated. Differentials with respect to all other 

variables also had to be rewritten to allow for the extra 

terms. The new expressions were checked by making comparisons 

with numerical gradients calculated by VA1OAD; an obscure 

error was eventually traced to the use of a single precision 

variable where double precision was needed. 

iii) The I=2 vn cross-section a( g77;a,r0 )  was calculated for 

each event using the value of q77 for that event and values 

of a, ro  provided by the minimiser at that step. 
da(a,r ) 

iv) The integral 	dtot(0.P.E.)  - 1 — 2 — ° dm2  dt  
dm dt 

lT7r 

had to be calculated at every minimisation step, using the 

values of a and ro  provided at that step. The differentials 

of Qtot(0.P.E.) with respect to a and ro  were also needed 

in the gradient calculations. Two methods of calculating 

these integrals were considered. The integral, and its 

differentials, could be evaluated by a numerical integration 

at each minimisation step. Alternatively, the integral could 

be evaluated for a set of values of a and ro, providing a 

grid of o(a,ro) values. This grid could be evaluated 

separately from the fitting program, which could then read 

it in, obtaining a values by interpolation, and approximating 

differentials by differences between adjacent grid points. 

The use of a grid would need less computer time than 

exact calculations at each step, so this was tried first. 
da(a,r ) 

Monte Carlo events were generated, and 	o 	was 
dm2ii7rdt 

calculated for 50  (evenly spaced) a values and 50  ro  

values for each event. The normalised sums over 50,000 events 

at each point provided a grid allowing ro  values between 0 
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and 4+0 fermis, and a values between -10 and 10 fermis. 

This was found to be inaccurate near the origin, even when 

the number of Monte Carlo events was increased to 300,000 

so a second grid for use close to the origin was calculated, 

and then a third even finer one. Each grid had 50 x 50 steps, 

but even three grids were found to be inaccurate, and the use 

of more grids or larger grids would have required too much 

computer storage. The linear interpolation was replaced by 

the calculation of a paraboloid on five grid points around 

the required position, so that the integral and its 

differentials could be interpolated on the paraboloid. When 

this too was found to be insufficiently accurate, the grids 

were recalculated using a simple numerical integrator, but 

still without success. 

The accuracy of the integrals was then questioned, 

and as in the case of the normalisation integrals (section 

V.3), QB01A was tried. This gave better results and took only 

between i  and i second for each integral, so that it was 

possible to evaluate the integral, and its differentials, 

exactly at each minimisation step. The use of a grid was 

abandoned, and the integral, with its differentials, was 

calculated by 3 calls to 001A at each step although this 

took more computing time. 

As Q  (0.P.E.) was being calculated using the Tr  # ,r+n 

expressions, it was multiplied by to allow for the 

additional Tr+p ° cross-section, giving atot(O.P.E.). 

v) Once atot(O.P.E.) had been calculated, the scale 

s atot(waves) 
(equation 7.19b) 

  

atot(experimental) - atot(0.P.E.) 
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could be evaluated. This could cause trouble if the minimiser 

tried large values of a and ro, making 6tot(O.P.E.) 
> 

a  tot(experimental), as a negative scale would be meaningless. 

While a grid was being used to evaluate Qtot (O.P.E.) it was 

also necessary to use only values within the grid limits, so 

attempts were made to limit the values of a and ro  by 

giving extremely steep gradients at the boundaries of the 

grid. We also tried to limit the range of a and ro  by 

minimising their arc tangents, normalised to the allowed 

range, so that the minimisation variables could tend to 

infinity without a and ro  exceeding their limits. The use 

of QB01A allowed us to dispense with limits on a and ro. 

We instead set s=1.O if it became negative. In cases where 

the minimiser tried this once and then went back to sensible 

values it did not matter, whereas if the minimiser stayed at 

large values of a and ro, the fit "blew up" and was 

discarded, but this only happened in a few cases. 

vi) Once all the additional terms were calculated, the new 

expression (7.21) for the likelihood was evaluated. 

vii) At the end of a minimisation run, the O.P.E. parameters 

and cross-sections were printed out in addition to the 

s-channel cross-sections and parameters. a and ro  were 

measured in GeV-1  in the expression 7.12 (because q mr  is 

measured in GeV/c), but were output in fermis. 

VII.3.2 Data fitting and error calculations  

The original programs, with the changes described 

above, and the original normalisation constants were used 

to refit our data. Twenty successful random starts had been 
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made at each of the top four energies before the missing 

Jacobian was noticed. Although these runs were not correct, 

the I=2 O.P.E. cross-section accounts for only about 3% of 

the total cross-section at these energies, so their 

qualitative results were of some use. They showed that 

minima came in groups as in the fits without 0.P.E., that 

there were fewer different solutions, and that these solutions 

were distinctly similar to non-O.P.E. solutions. A further 

10 random starts at 895 MeV/c and 5 at 945 MeV/0, with the 

Jacobian corrected, confirmed this. The remaining fits were 

therefore made by starting at every non-O.P.E. solution 

found by more than one run and refitting them with 0.P.E. 

allowed for. A few refits starting from the incorrect O.P.E. 

runs were also made. 

In the random starts, the waves were given the same 

random starting values as for the corresponding non-O.P.E. 

random starts. Although O.P.E. solutions were similar to 

non-O.P.E. solutions, it was not always the case that 

corresponding 0.P.E. and non-O.P.E. random starts came to 

the same solutions. The parameters a and rip  were given 

random starting values in the ranges -1. to 1. and 0. to 

10. fermis respectively. The runs starting from non-O.P.E. 

solutions were given starting values of a = 0.1fm, ro  = 2.Ofm, 

as these were approximately the values found by the random 

starts. 

At 895 MeV/c and 945 MeV/c, where correct random 

starts and continuation runs were made, the same minima were 

found by both types of run. This justified the use of 
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continuation runs alone at the other energies, which saved 

a lot of computer time. The total number of minima was 

smaller than in the non-O.P.E. case because different 

continuation runs sometimes came to the same solutions. This 

gave us confidence that the addition of the 0.P.E. term was 

improving the quality of the fit. 

All runs made at 600 MeV/c failed because they tried 

to fit with very large values of ro, which caused them to 

"blow up" as described earlier. The projections shown in 

Figure V.5.a had shown no loss of peripheral events, so the 

I=2 0.P.E. contribution at this energy is small, and evidently 

too small to allow a determination of the parameters. 

The error calculations also followed the methods used 

for the non-O.P.E. analysis. Errors on the wave parameters, 

and on 	were calculated as before. Errors on a , ro, and 

a(O.P.E.) were calculated, using the error formula given in 
V.4.4, from the relevant terms in the inverted second 

derivative matrix. Some care with units was again needed. 

VII.3.3 Reproduction of experimental data 

Figures VII.2.a to VII.2.i show projections 

corresponding to those of V.5.a to V.5.i. The 0.P.E. 

solutions chosen by CHI at each energy are used. At 600 MeV/c 

there was no 0.P.E. solution, but CHI chose a different 

non-O.P.E. solution to that previously used, so its 

projections are included here (this solution was similar to 

the one previously chosen, within RANCOM limits). It is 

immediately obvious that the 7 #7♦n channel is better fitted 
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than before. The Deler-Vallades angles are in general better 

reproduced, and Itl has the correct forward peak. The mass 

squared plots fore n+  are also improved. The7r+p o 

projections are very little different; there are slight 

improvements in a few places, such as in at 1040 MeV/c. 

The improved reproduction of the experimental data 

vindicates the use of the t-channel I=2 effect to describe 

peripheral effects, its other results are described later. 

The use of 0.P.E. to describe p production was also 

investigated, and some fitting programs with it were run, 

but it was found to be unnecessary, as the projections show. 

VII.4 Continuity search and results  

VII.4.1 Continuity search and s-channel results 

Compared to the non-O.P.E. analysis there were fewer 

solutions, log likelihoods were higher (typically by 20 units), 

and the 7+r+n cross-sections were equally good. No attempts 

were made to remove solutions before the continuity analysis 

which was again used to choose one solution at each energy. 

The same programs were used as in the non-O.P.E. case, O.P.E. 

parameters were not used, and at 600 MeV/c the non-O.P.E. 
solutions were used because there were no acceptable 0.P.E. 

refits. RANCOM was used with the same limits as before to 

check which solutions were similar, then various runs of CHI 

were made. After some preliminary runs and a check of the 

plots and Argand diagrams, a preferred mass and width were 

chosen for the LD33 resonance. Details are given in VII.5.1, 

the values were M = 1650 MeV, r = 16o MeV. 



-229- 

Table VII,1 shows the results of a CHI run tied to 
a DS33 with these preferred parameters; the best 20 

combinations are shown as before. The x2  values here are 
lower than in the non-O.P.E. analysis, which means that the 

best combinations are now more continuous. The first 7 

combinations are all the same within RANCOM limits; there 

is no problem of a competing solution at 1040 MeV/c. The 

first combination to differ significantly from the best one 

is number 39 (shown in Table VII.3). Table VII.2 shows the 

results of CHI runs tied to various masses and widths in 

the ASD31 and oDS33 waves; combination 222111211, the best 

in Table VII.1, is best through the whole range. x2 changes 

only slowly with these parameters; as before x2 tends to fall 

with increasing mass or width. 

In Chapter VI, the results of a few runs of CHI tied 

to waves other than ASD31 and oDS33 were shown. The CHI 

results were better after the refit with 0.P.E., so a lot 

of runs tied to other waves were made, Table VII.3.a shows 

the results of tying to various Am waves, the best two 
combinations are shown together with the first one that 

differs at two energies according to RANCOM. Of 9 waves, 8 

choose combination 222111211 as the best, and 5 give a 

confidence level above 80%. In 7 of the 9 waves, the first 

very different solution lies beyond position 30 in the CHI 

list. These results speak for themselves - the 4Trwaves are 

continuous and show a strong preference for combination 

222111211. Table VII.3.b shows the results of tying to six 

N#Tr waves, these generally show much poorer results than 

the MTr waves, so the first different combination is not shown. 
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Combination 600 700 
number 

750 800 850 895 945 995 1040 X2  C.L.% 

1 2 2 2 1 1 1 2 1 1 278.2 95,6 
2 2 2 2 1 1 1 2 1 8 279.6 95.0 
3 2 2 2 1 1 2 2 1 1 283.1 93.2 
4 2 2 2 1 1 2 2 1 8 284.6 92.3 
5 2 2 2 1 2 1 2 1 1 286.2 91.3 
6 2 2 2 1 2 1 2 1 8 287.7 90.2 
7 1 2 2 1 1 1 2 1 1 291.1 87.6 
8 1 1* 2 1 1 1 2 1 1 292.1 86.7 
9 1 2 2 1 1 1 2 1 8 292.5 86.3 

10 2 2 2 1 2 2 2 1 1 292.7 86.1 

11 1 1* 2 1 1 1 2 1 8 293.5 85.3 
12 2 2 2 1 2 2 2 1 8 294.2 84.7 

13 1 2 2 1 1 2 2 1 1 296.0 82.8 
14 1 1* 2 1 1 2 2 1 1 297.0 81.7 
15 1 2 2 1 1 2 2 1 8 297.5  81.2 
16 1 1* 2 1 1 2 2 1 8 298.5 80.1 

17 1 2 2 1 2 1 2 1 1 299.1 79.3 

18 1 1* 2 1 2 1 2 1 1 300.1 78.1 
19 2 2 2 1 1 1 2 1 10* 300.5 77.7 

20 1 2 2 1 2 1 2 1 8 300.6 77.6 

The columns show the 9 momenta, and the solutions picked at 
each momentum, (The numbers identify different solutions at 
each energy as described in Chapter VI. Any solution that 
differs from the first one at that energy according to RANCOM 
is marked with an asterisk.) 

Table VII.1 

The 20 best combinations found by CHI 
tied to o DS33 with Mass=1.65 GeV, 
Width=0.20 GeV 



Mass (GeV) 
Width 	1.58 1.61 1.65 1.72 

0.08 294.28 295.19 294.52 286.35 

0.14 290.28 290.48 289.77 286.42 

0.16 289.56 289.64 289.00 286.37 

0.20 288.50 288.47 287.96 286.24 
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Best x2tying to ASD1 with various masses and widths 

Mass (GeV) 
Width 	1.60 1.65 1.67 1.74 

0.13 286.90 282.15 279.36 266.14 

0.16 282.00 278.18 275.84 266.24 

0.20 277.61 274.64 272.86 266.14 

0.27 272.90 270.90 269.78 265.71 

Best x2tying to ADS3 with various masses and widths 

Table VII.2  
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The N*PP3 wave is quite exceptional, with a mass of 1690 

and a width of 250 MeV it gives a confidence level of 100% 

(to 3 significant figures). It has, admittedly, been noted 

that x2  tends to fall with rising mass and width, and the 

mass and width here are the highest of any tried. Even after 

allowing for this, the x2  is exceptionally low, as if the 

N*Tr decay of the iPP3 resonance were exceptionally clean, 

and this is discussed in Section VII .5.3. N*DD3 also gives 

an acceptable x2 , it was not one of the 20 waves originally 

used in CHI, so a special run with it included was made. 

The other waves give much larger x2  values, because they 

are small, or have large backgrounds. Table VII.3.0 shows 

the results of tying to pN waves. Only p iSS31 and P 1DD33 

give good x2  values, the other waves give very poor values, 

though several choose combinations similar to 222111211. 

These poor x2  values, even when the preferred combination 

is found, suggest large backgrounds or other problems in pN 

waves. All our energies lie below the p production threshold 

(1711 MeV) so problems could be expected. Finally Table VII.4 

shows the results of using more or fewer than 20 waves in 

the calculation of x2  , the best combinations are similar to 

the preferred one within RANCOM limits, or differ at only 

one energy, 

Combination 222111211 was used to produce Argand 

diagrams and 
a 
 plots, as in Chapter VI, except that the 

Argand diagrams were tied to ā LDS33 of mass 1650 MeV, and 

width 160 MeV, and they were not rotated by -25°. Figure 

VII,3 shows Argand diagrams, without errors, for the larger 



-233-  

Wave tied, 
mass and width 
in GeV 

Solutions picked at 
each energy. Numbers 
and asterisks as in 
Table VII.1 

Position 
in CHI 
table 

X2  
C.L.; 

tSD1 222111211 1 289,8 88.7 
1.65, 0.14 222112211 2 291.7 87.0 

11*211121 10* 59 334.4 27.6 
iPP1 222112211 1 324.3 42.1 
1.525, 0.04 11*2112211 2 324.6 41.7 

11*211221 10* 31 356.3 7.9 
APP1 222111211 1 309.3 65.6 
1.68, 	0.06 222112211 2 309,9 64,6 

11*211121 10* 34 344.1 17.0 
oPP3 222111211 1 298.2 80.4 
1.60, 	0.08 222112211 2 300.1 78.2 

11*211121 10* 38 332.0 31.0 

oPP3 222111211 1 281.6 94.1 
1,69, 	0.25 222112211 2 284.2 92.6 

11*211121 10* 36 315.2 56.6 

APF3 222111211 1 348.3 13.2 
1.69, 0.25 222121211 2 350.3 11.8 

221*111212* 45 393.4 0.3 
tDS3 222111211 1 278.2 95.6 
1.65, 	0.16 222111218 2 279.6 95.0 

11*211121 10* 39 314.4 57.8 
,DD3 11*2111218 1 271.9 97.6 
1.65, 0,16 11*2112218 2 274.6 96,9 

222111211 15 297.1 81.6 
11*2111.212* 19 302.0 75.8 

QDD5 222111211 1 334.6 27.8 
1.64, 0.04 222111218 2 335.6  26.6 

2221111*12* 24 368.0 3.3 

Table VII.3.a 

Results of CHI runs tied to various o waves 



Solutions picked at 
each energy. Numbers 
and asterisks as in 
Table VII.1 

Wave tied, 
mass & width 
in GeV 

Position 
in CHI 
table 

C.L.% 
X2  

2221253*2*2* 1 494.6 0.0 

2221254*2*2* 2 495.7 0.0 
11*2112211 1 404.7 0.1 
11*2112218 2 • 406.4 0.1 

12211222* 10* 1 390.3 0.4 
12211122* 10* 2 391.5 0.4  

222111211 1 277.8 95.7 
222111218 2 283.4 93.1 
222111211 1 234.7 100. 
222111218 2 240.4 100. 

222126211 1 348.9 30.2 
222126218 2 353.4 24.6 

N*SS1 
1.65, 0.14 
N*PP1 
1.525, 0.04 

N*PP1 
1.68, 0.08 
N*PP3 
1.60, 0.08 

N*PP3 
1.69, 0.25 

N*DD3 
1.65, o.16 
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Table VII.3.b 

Results of CHI runs tied to various 
N* waves 



Solutions picked at 
each energy. Numbers 
and asterisks as in 
Table VII.1 

Wave tied, 
mass & width 
in GeV 

C.L.% Position 
in CHI 
table 

x2  

p1SS1 
1.65, 0.14 

piPP1 

1.525, 0.04 

piPP1 
1.68, 0.08 

p1PP3 

1,69, 0.25 

p1DD3. 

1.65, 0.16 

222111211 
222111218 

222115211 
222112211 

222115218 

222112218 

221*2121*2*1 

121*2121*2*1 

222111211 

222111218 

1 	278.1 	95.6 
2 	279.1 	95.2 

1 	366.8 	3.6 

2 	371.0 	2.6 

1 	428.0 	0.0 
2 	433.2 	0.0 

1 	584.0 	0.0 

2 	586.9 	0.0 

1 	305.5 	71.1 

2 	311.8 	61.8 

1224*23*4*12* 

1224*23*4*1 10* 

2221154*2*7* 
1.525, 

p 3PP1 

1.68, 

0.04 

0.08 

221*1154*2*7* 

221*111211 

121*111211 

P
3
PP3 11*2115213* 

1.69, 0.25 31*2115213* 

p3DS3 11*21213*2*7* 
1.65, 0.16 11*21214*2*7* 

p3DD3 11*2111211 

1.65, 0.16 11*2321211 

1 	598.2 	0.0 
2 	598.4 	0.0 

1 	458.9 	0.0 
2 	467.1 	0.0 

1 	445.6 	0.0 
2 	454.2 	0.0 

1 	592.7 	0.0 
2 	602.0 	0.0 

1 	406.0 	0.1 

2 	408.2 	0.1 

1 	394.5 	0.3 

2 	396.9 	0.2 

P
3
SD1 

1.65, 0.14 

p3PP1 
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Table VII. '3, c  

Results of CHI runs tied to various p waves 



Solutions picked at 

each energy. Numbers 

and asterisks used 
as in Table VII.1 

Position 
in CHI 
table 

X2  C. L.,% 

11*2111211 1 187.5 96.4 
11*2112211 2 187.6 96.3 

11*2111218 1 192.0 99.0 
11*2112218 2 192.3 99.0 

11*2111211 1 215.1 97.0 
11*2111218 2 215.5 96.9• 

222111211 1 278.2 95.6 
222111218 2 279.6 95.0 

222111218 1. 313.9 80.2 
2221111*18 2 314.9 79.0 

Waves used 
in computing 

X2  

14 waves 
(21 wave set 
except o PF3, 

N*DD3, p iPP3 , 
piDD3, p 3SD1, 
p3PP3, p 3PF3) 

15 waves 
(21 wave set 

except o PF3, 

N*SS1, p 1PP3, 

p 3SD1, p 3PP1, 

p 3PF3) 

16 waves 

(21 wave set 

except o PF3, 

N*SS1, N*DD3, 
p 3SS1, p 3PF3) 

20 waves 
(21 wave set 
except N*DD3) 

21 waves 

(complete 21 

wave set) 
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Table VII .4 

Results of running CHI tied to MDS3, 
using various numbers of waves 
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waves. Table VII,5 gives T-matrix element amplitudes and 

phases with errors for all waves; Argand diagrams for all 

waves, with errors, are shown in Appendix B. Figure VII.4 

shows 
a 

plots, Figure VII.5 shows 	for the P31 wave 

enlarged, with elastic predictions and upper and lower 

limits. The 
a 

values are given, with errors, in Table VII.6. 

As in the non-O.P.E. analysis, the Argand diagrams 

show clear resonance structure in tSD31, p 1SS31, iPP33, 

N*PP33 and ADS33. These waves are, if anything, more 

continuous than in the non-O.P.E. analysis, and no other 

waves become as significant, In the S waves P1SS31 in 

particular becomes more continuous, whereas N*SS31 and 

p 3SD31 become smaller. In P31, APP31 remains confused, the 

higher energies move by almost ir/2 relative to the non-O.P.E. 

Argand diagrams, and points 3 and 7 are rather discontinuous. 

N*PP31 becomes smaller, and shows an anticlockwise loop, 

with discontinuous behaviour at energies 3 and 7 again. p1PP31 

is larger, and shows approximately anticlockwise behaviour 

except for energy 2. p 3PP31 is a distorted version of the 

same motions as without O.P.E. All this structure is 

interesting, and would need very rapid background motion to 

explain it alone,, but it is not in itself enough to locate 

any resonances, Of the P33 waves,A PP33 becomes more 

continuous, and N*PP33 changes little. p1PP33 and P3PP33 

remain confused with a tendency to anticlockwise motion at 

the higher energies. In D33, P3DS33 becomes smaller, but 

retains an anticlockwise motion, and the other waves become 

somewhat larger and more continuous. ADS33, the wave tied to, 
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Figure VII.3.a  

(details at foot of Fig.VII.3.e) 
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Figure VII.3.b  
(details at foot of Fig.VII.3.e) 
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Figure VII .3 . c  

(details at foot of Fig.VII.3.e) 
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0., 

0.0 

Figure VII.3.d  

(details at foot of Fig.VII.3.e) 
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I 	I 	I 	I 	I 	I 	I 	.5 0.0 	 0.5 
RECT) 

Figure VII.3.e  

Argand diagrams for most continuous solution,tied 

to A DS33 with M=1650 MeV,r=160 MeV,rotated by 1P0°  
(see text) 

Points 1-9 denote solutions at the following energies 
(in GeV) 

1 - 	1.439 
2 - 	1.495 
3 - 	1.526 
4 - 1.551 

5 - 1.577 
6 - 1.612 
7 - 1.640 
8 - 1.668 

9 - 	1.693 
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Amplitudes and phases of T-matrix elements after O.P.E. refit 

Waves 	'1.439 

Energies 

1,495 	1.526 

in GeV 

1.551 	1.577 1.612 

l 

 

1.64011.668 

~ 

1.693 

DELTA SD311 

AMPLITUDE 0.050 0.091 0.140 0.193 	0.267 0.337 0.327 	0.244 0.184 
8 ERROR 	! 0.021 0.018 0.031 0.025 0.031 0.063 	0.044 	0.028 0.028 

PHASE 1.11 1.32 3.52 -2.26 -1.95 -1.20 	-0.87 	-0.59 -0.25 
& ERROR 0.29 0.29 0.27 0.26 0.25 0.23 	0.20 	i 	0.22 0.31 

DELTA PP31 

AMPLITUDE 	1 0.072 0.103 0.181 0.047 0.065 0.122 	0.175 0.142 0.170 
& ERROR `; 0.028 0.022 0.037 0.026. 0.026 0.055 	0.031 0.028 0.040 

PHASE 	; 3.14 3.22 3.04 -3.35 -3.71 -3.69-3.15 -3.72 -2.86 
& ERROR 0.31 0.29 0.27 0.41 0.41 0.46 	0.23 0.33 0.27 

DELTA PP33 

AMPLITUDE 0.063 0.093 0.057 0.146 	0.253 0.241 	10.266 0.334 0.305 
& ERROR 0.025 0.020 0.028 0.022 	0.032 0.043 	10.039 0.042 0.030 

PHASE 1.89 2.60 1.34 -4.98 	-4.77 -4.24 -3.65 -3.67 -3.02 
& ERROR 0.33 0.31 0.42 0.25 	0.24 0.31 	0.21 0.20 0.20 

DELTA PF33 

AMPLITUDE 0.008 0.019 0.023 0.020 	0.048 0.041 	0.050 0.063 0.071 
& ERROR 0.005 0.009 0.015 0.008 	0.012 	0.019 0.015 0.016 0.018 

PHASE 0.15 -0.20 1.63 	-2.41 	-0.88 	-0.48 0.01 -0.20 0.31 
& ERROR 0.74 0.48 0.66 0.68 	0.29 	0.45 0.35 0.30 0.33 

DELTA DS33 

AMPLITUDE 0.074 0.101 0.146 	0.165 0.152 0.154 	0.200 0.141 0.128 
& ERROR 0.025 0.019 0.027 	0.030 	0.026 0.037 	1 0.031 0.025 0.023 

PHASE 0.38 0.50 0.59 	0.69 	0.84 1.13 	1.45 1.79 2.07 	j 
1 	& ERROR 0.27 0.32 0.27 	0.26 	0.28 + 0.27 0.21 0.24 0.23 

0.014 0.051 

DELTA DD33  

0.062 	0.064 	0.054 	0.045 	0.088 0.148 0.124 i AMPLITUDE 
i 	& ERROR 0.010 0.011 0.019 	0.016 0.016 0.018 	10.020 0.028 0.036 

+ I i 
PHASE 3.48 3.73 1.22 	 -4.78' -4.67 -3.78-3.30 -2.95 -2.60 
& ERROR 0.61 0.34 0.35 	0.35 	10.44 	0.62 	' 	0.26 	; 0.22 0.24 

Table VII. 5  
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11.43911.495 1.526:1.551 1.577 1.612 1.64011.66811.693': 
DELTA DD35 

AMPLITUDE ; 	0.030 	0.046 0.033 	10.048 	0.056 0.085 0.188 	0.043 0.079 
& ERROR 0.011 	1 0.012 0.012 	10.013 	 0.017 0.033  0.028 	0.020 	. 0.017 

PHASE 1.69 	i 	2.32 2.70 	!-3.49 	-3.37 -2.85 
j 
-2.68 	-2.34 	-1.73 

& ERROR 0.30 	0.30 	i 	0.36 	1 	0.29 	~ 	0.26 0.31 0.20 	0.34 	0.24 

DELTA FP35 1 	j 

AMPLITUDE - 	i 	- 	- 	- 	- 0.005 0.029 	0.062 	0.014 
& ERROR - 	- 	- 	- 	- 0.012 0.013 0.015 0.014 

PHASE - 	i 	- 	- 	- - -3.27 -2.39 -1.78 -0.55 	̀. 
& ERROR - 	1 	- 	- 	- - 2.00 0.41 0.28 , 	1.06 

DELTA FF35 

AMPLITUDE - 	- 	- 	- 	j 	- 0.111 0.081 0.108 	0.118 
a ERROR - 	- 	- 	- 	- 0.0251 0.016 0.018 	0.028 

PHASE - 	- 	- 	- 	- -2.82 -2.20 -2.48 	-2.27 
& ERROR - 	- 	- 	- 	- 0.27 0.23 0.22 	0.24 

_DELTA FF37  

AMPLITUDE - 	- 	- 	- - - 	j - 0.068 0.127 
& ERROR ! 	- 	- 	- 	- - -  - 0.015 0.024 

PHASE - 	j 	- 	- 	I -3.54 -2.23 
& ERROR - 	- 	- 	- 	! 	- - 	1 - 	0.28 0.25 

N* 	SS31  

AMPLITUDE 0.062 	0.068 0.021 	'0.025 	10.019 0.0361 0.072 	0.038 0.102 
& ERROR 0.023 	0.015 0.015 	;0.014 	0.017 0.017, 0.018 	0.027 0.022 

PHASE 1.22 	! 	1.11 1.98 	0.74 	-4.02 -3.911 0.76 	-0.17 1.64 
a ERROR i 	0.28 	! 	0.31 0.71 	0.59 	+ 	0.61 0.50! 0.27 	0.67 0.31 

T 

N* 	PP31 

AMPLITUDE 0.015 	0.012 	0.081 	1 0.037 	; 0.060 0.090 ! 0.089 0.139 0.158 
& ERROR 0.010 	

! 
0.013 	0.024 (0 .012 	1 0.020 0.021 ! 0.020 1 	0.031 0.028 

PHASE ! 	4.30 5.42 3.95 j 	2.71 	1 	2.62 2.85 3.63 1 	3.23 4.05 
& ERROR 1 	0.66 	! 	0.92 0.31 	! 	0.57 	! 	0.36 0.42 0.26 i 	0.25 0.24 

I I 

N* 	PP33 
1 	

1 

AMPLITUDE 1 0.024 	0.051 	0.056 	0.101 	0.129 0.150 0.146 	1 0.191 	0.183 
& ERROR i 	0.010 0.011 	: 0.014 	0.014 	0.016 0.030 0.022 ; 0.023 	0.023 

PHASE + 	6.53 6.77 	6.57 i 	0.68 	0.94 1.271 1.87 1 	1.73 	2.42 
& ERROR I 	0.34 0.28 	1 	0.28 	1 	0.26 	! 	0.25 0.25; 0.20 	; 	0.20 	0.21 
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1.43911.495 1.526 	1.551'1.577 1.612 1.640 1.668;1.693 
N* 	DD33 

 f 
AMPLITUDE 	0.011 0.015 ('0.028 0.018 	0.010 0.046 0.039 0.061 ;0.051 
& ERROR 	0.007 0.006 0.009 	0.008 	.0.011 0.011 0.012 0.014 ;0.013 

PHASE 	-0.81 -1.31 4.03 	-1.57 	'-2.25 -0.63 0.75 0.45 	° 1.26 
& ERROR 	0.41 0.56 0.59 	0.98 	i 	0.46 0.43 0.30 0.27 0.27 

N* 	DD35 
I ' 

AMPLITUDE 	- - - 	- 	1 	- 0.012 0.052 0.031 •0.067 
& ERROR 	- - - 	- 	- 0.009 0.010 0.010 0.013 

PHASE 	-  - - 	- 	- -1.26 -0.78 -0.72 -0.51 
& ERROR 	- - - 	- 	- 0.94 0.26 0.40 0.24 

N* 	FF35 
i 

AMPLITUDE 	- - - - 	- 0.027 0.011 0.022 0.007 
& ERROR 	- - - - 	- 0.009 0.010 0.008 '0.008 

PHASE 	-  - - - - 3.64 4.61 5.44 5.84 
& ERROR 	- i 	- - - - 0.37 0.75 0.50 	' 1.92 

N* 	FF37  

AMPLITUDE - Ī 	- - - 	- - - 0.028 0.045 
& ERROR 	- j 	- - - 	- - - 0.010 0.010 

PHASE 	- 1 	- - - 	- - - 1.72 1 	2.62 
& ERROR 	- - - - 	- - - 0.42 0.38 	I 

RHO1 	SS31 

AMPLITUDE 0.114 0.121 0.122 0.193 	0.242 0.326 0.313 0.312 0.301 
& ERROR 0.049 0.026 0.030 0.029 	'0.034 0.051 0.044 0.043 0.048 

PHASE 0.84 1.22 5.84 0.29 	0.39 0.97 1.24 1.62 ! 	2.14 
& ERROR 0.28 0.29 0.34 0.31 	0.24 0.24 0.20 0.20 0.21 

RHO1 	PP31 
; 

AMPLITUDE 0.014 0.103 0.047 0.091 	0.057 0.085 0.105 0.220 :0.178 
& ERROR 0.013 0.027 0.035 0.035 	0.024 0.030 0.025 0.040 ;0.028 

PHASE 2.50 2.95 6.65 1.57 	j 	1.77 4.02 4.32 4.24 ̀: 	4.81 
& ERROR 0.80 0.29 0.55 0.44 	, 	0.40 0.41 0.29 0.21 0.24 	, 

IRHO1 	PP33  

AMPLITUDE 0.028 F0.054 0.038 0.034 	?0.017 0.030 0.042 0.078 '0.060 
& ERROR 0.013 0.016 	0.015 0.021 	10.014 0.024 0.018 0.020 '0.021 

PHASE 5.35 ? 	6.22 	7.79 2.09 	I-1.25 -0.96 1.76 3.19 i 	3.84 
& ERROR 	0.38 0.33 	0.47 0.69 	i 	0.78 0.67 0.33 0.29 ' 	0.35 
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.439 1.495 111.526 1.551 1.577 1.612 1.640 1.668 1.693 

RHO1 	DD33 ~ 

AMPLITUDE 	0.018 	0.033 	0.032 0.039 	0.092 0.062 0.137 0.101 	0.119 
& ERROR 	0.007: 	0.006 	0.013 0.012 	0.013 0.018 0.019 0.017 	0.017 

PHASE 	-0.18' 	0.63 	4.26 -1.29 	-0.54 	0.13 0.66 	0.78 	1.49 
& ERROR 	0.47 	0.37 	0.47 0.53 	0.28 	0.33 0.22 	0.26 	0.28 

1 RHO1 	DD35  

AMPLITUDE - - - - 	- 	0.041 '0.028 	0.040 	0.047 
t 	& ERROR 	- - 	- - 	- 	0.011 0.012 	0.011 	0.011 

PHASE 	- - - - 	- 	-0.19 -1.07 	-2.17 	-1.89 
& ERROR 	- 	- - - 	- 	0.39 0.40 	0.36 	0.31 

1RHO1 	FF35  

( AMPLITUDE - 	- 	- - 	- 	10.038 0.030 	0.010 	0.009 
& ERROR 	- 	- 	- - 	-. 	.0.012 0.008 	0.012 	0.011 

1 	PHASE 	- 	- 	~ 	- - 	- 	1.87 5.03 	2.91 	4.98 
& ERROR 	- 	- 	- - 	- 	l 	0.32 0.37 	; 	1.02 	1.20 

Ī 
I 

RHO1 	FF37  

;AMPLITUDE - 	- - - 	- 	- - 	0.017 	0.021 
& ERROR - 	- - 	- 	- 	- - 0.009 	0.009 

PHASE - 	- 	- 	- 	- 	- - 5.06 	5.18 
& ERROR - 	- 	- 	- 	- 	; 	- - 	0.65 	0.55 

RHO3 	SD31 

AMPLITUDE 0.018 	0.064 	0.035 	0.013 0.038 	0.013 0.040 	10.040 	0.064 
& ERROR 	0.012 0.018 	0.018 	0.024 	0.018 	0.018 0.023 	10.025 	0.028 

PHASE 	-1.64 4.12 4.02 	'-0.93 	-4.55 	! 	0.31 2.20 	-2.04 	-1.80 
& ERROR 	0.78 0.29 0.57 	1.45 	0.54 	i 	1.99 0.48 	! 	0.63 	0.53 

RHO3 	PP31 

AMPLITUDE 0.064 	0.041 0.119 	0.072 0.030 	0.077 0.102 0.056 0.099 
& ERROR 	0.019 0.016 0.034 	0.027 	10.019 	'0.035 0.024 0.024 0.026 

PHASE 	0.37 1.06 3.15 	-0.80 	-0.17 	1-1.28 -0.72 -0.15 1.21 
& ERROR 	0.30 0.52 0.29 	! 	0.48 	0.70 	1 	0.46 0.28 	10.42 0.37 

1 
RHO3 	PP33 

1 

AMPLITUDE 	0.024 0.036 0.063 	0.070 	0.102 	10.018 0.032 0.022 0.051 
& ERROR 	0.016 0.021 0.020 	0.021 	0.021 	10.019 0.017 0.019 0.018 

PHASE 	-1.11 3.93 1.74 	I-0.01 	0.16 	'-3.44 0.56 0.63 2.74 
& ERROR 	0.66 0.48 	0.47 	0.50 	0.31 	

1 	
1.44 0.53 	1 	0.75 0.3 
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1  
1.4391.4951.526 1.551 1..5771.61211.640 1.66811.6931 

R1-103_ 	PF33 	i j 

!AMPLITUDE 	10.008 	,0.004 	; 0.031 0.031 0.036 10.035 0.031 i0.054 A.100 
& ERROR 	10.006 	10.010 	0.008 0.012 0.015 10.013 0.015 10.016 10.014 

PHASE 	' 	2.67 	l-0.56 	1.01 -3.02 -2.41 -4.11 	2.11 1-3.66 1-3.02 
: 	& 	ERROR 	0.97 	1 	1.20 	! 	0.46 0.44 0.33 0.47 	0.36 1 	0.36 ! 	0.26 	'; 

1RHO3 	DS33  

(AMPLITUDE ; 0.050 	'0.068 	 0.017 0.073 	' 0.125 0.106 	0.066 10.018 '0.051 
& ERROR 	0.019 	!0.017 	'0.020 0.016 0.023 0.027 1  0.018 i0.026 0.022 

PHASE 	' 	1.35 	1 	1.74 	j 	0.90 0.13 	1 -0.06 0.65 i 	0.51 0.34 0.75 
& ERROR 	' 	0.27 	0.29 	1 	1.04 0.50 	; 0.24 0.29' 	0.28 0.90 0.34 

!RHO3 	DD33 
• 

;AMPLITUDE 0.020 	! 0.012 	!0.040 0.087 0.108 0:110 	0.098 '0.100 0.118 
& ERROR 	0.007 	0.010 	0.015 0.017 	; 0.015 0.027 	0.019 0.017 ;0.020 

PHASE 	++ 	0.57 	1  -1.66 	6.33 -0.25 -0.43 -0.181 	-0.01 1 	0.67 ; 	0.89 
& ERROR 	0.59 i 	0.97 	0.43 0.31' 0.29 0.29 	0.24 1 	0.24 0.24 

! 

I RHO3 	DD35 
i 

- 	- 	- 
- 	- 	- 

j 	- 	- 	i 	- 

1 	- 	- 	1 	- 

- 
- 

- 
- 

i 

j 

- 	0.024 	0.030 	0.045 	0.034 
- 	0.014 j 	0.015 	0.014 	0.015 

- 	-0.13 	0.48 	-0.55i-0.51 
- 	0.71 	0.49 	0.40 	1 	0.41 

;AMPLITUDE 
1 	& ERROR 

PHASE 
& ERROR 

1RH03 	FP35 
f 

- 
- 

- 
- 

I 
- 	- 
- 	- 

- 	- 
- 	- 

- 
- 

- 
- 

1 
- 	10.050 
- 	1' 0.016 

- 	-0.56 
- 	1 	0.34 

0.041 
0.013 

-0.21 
0.34 

j 	1 

	

0.029 	10.022 

	

0.013 	!0.013 

	

-0.03 	-0.58 

	

0.40 	; 	0.56 

1AMPLITUDE 
& ERROR 	; 

PHASE 
& ERROR 

RHO3 	FF35 

- 
- 

- 
- 

- 
- 

- 
- 

- 
 - 

1 	- 
! 	- 

- 
- 

- 
- 

- 	i0.024 	0.026 
- 	10.014 	1 	0.006 

{ - 	0.61 	-3.83 
- 	1 	0.51 	0.51 

0.019 
0.013 

2.22 
0.53 

0.038 
'0.021 

-2.84 
, 	0.39 

'AMPLITUDE 	', 
j 	& ERROR 

PHASE 	j 
& ERROR 	1 

j 
RHO3 	FF37 

- 
- 

 - 
- 

- 
- 

- 
- 

1 	- 
j 	- 

- 
i 	- 

- 
- 

- 
- 

- 	- 
- 	- 

- 	- 
- 	1 	- 

- 
- 

- 
- 

	

0.023 	0.033 

	

0.012 	0.018 

	

1.54 	{ 	2.23 

	

0.58 	i 	0.57 

AMPLITUDE 
& ERROR 

PHASE 
& ERROR 
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Figure VII.! 7.714 cross-sections in different waves 
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Waves 

Energy \ S31 P31 P33 D33 D35 	F35 	F37 I=2 

o.464 0.203 0.139 0.161 0.083 
1.439 ±,185 t.068 t.052 t.068 3.030 

0.662 0.470 0.701 0.391 o.i64 0.161 
1.495 

t.122 ±.117 t.162 *.086 t.o43 ±.035 
0.841 1.097 0.848 1.241 0.076 0.297 1.526 
±.164 t.242 ±.187 t.234 t.027 t.040 

1.619 0.471 1.368 2.240 0.145 0.289 
1.551 t,223 ±.144 t.391 ±.360 ±.038 t.039 

2.553 0.250 2.384 3.018 0.174 0.293 
1.577 t.307 t.o65 t.440 t.417 *.048 t.048 

3.979 0.394 3.238 2.423 0.520 1.023 0.342 1,612 
t.651 t,157  ±.520 ±,572 ±.201 t.152 ±.044 

3.434 0.587 2.757 3.142 1.849 0.462 0.258 1.640 t.483 3.124 t.44o ±.467 t.324 t.078 t.o44 

2.634 0.924 5.041 2.415 0.181 0.738 0.410 0.287 1.668 
t.326 t.146 t.674 t.294 t.o47 t.111 t.057 t.o47 

2,149W 0.931 4.675 2.152 0.423 0.724 1,224 0.323 
1.693 

t.237 ±.153 t.516 ±.279 t.085 t.15i t.168 ±.057 

Table VII .6 
a 	values after 0.P.E. refit 
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shows a very clear resonance structure, and oDD33, p 1DD33, 

p3DD33 show a clearer anticlockwise movement. IDD35 becomes 

smaller, but still shows a large amplitude near 1640 MeV. 

though now only in one energy, None of the other waves show 

any noteworthy changes. 

The CHI results, the projections, and the Argand 

diagrams have all improved with the 0.P.E. refit, 

Improvements in the results after the refit can be 

attributed to the allowance for 0.P.E., but some differences 

between the two sets of Argands can be explained in terms 

of the continuum ambiguity. The fact that these differences 

are mostly small suggests that the continuum ambiguity is 

not a serious problem. These improvements inspire confidence 

in the value of the anlaysis with 0.P.E., but before the 

waves are discussed in detail in conjunction with the 

plots, the 0.P.E. results should be examined to check if 

they too make sense. 

VII.4.2 I=2 TrTr results  

Table VII.6 and Figure VII.6 show the fitted values 

of the cross-section contribution from I=2 0.P.E. to the 

+p nTrN cross-section, The values used are those from the 

fit chosen by CHI at each energy, No meaningful 0.P.E. fits 

were obtained at 600 MeV/c, apparently because the O.P.E. 

cross-section is close to zero. The cross-section at 700 MeV/c 

is half that at the higher energies, where the cross-section 

is constant within the errors. The total Tr +p} TrTr N cross-

section is rising in our energy range, so the I=2 O.P.E. 
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1.5 	1.6 	1.7 

CME GeV 

Figure VII.6  1=2 O.P.E. contributions to 
rr+p  -} TrTrN cross-sections 
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effect becomes less significant at our highest energies. 

The fitted values of the parameters a , ro are given 

in Table VII.7. In the effective range expression, the 

parameters are taken to be energy-independent; if the 

parametrisation is meaningful then the fitted values should 

be similar at the different energies. Table VII.7 shows that 

ro varies from energy to energy, but not systematically and 

has large errors; this is consistent with ro being a poorly 

determined constant. The scattering length, a, is better 

determined. In mr analyses, the scattering lengths alt 

( = angular momentum, I = isospin of given TrIT state) are 

defined by 

a2 = 	Lim 	dt 
m2 44,2 	 7.22 

Tr ~ 	+ 	q 2£+1 

see for example reference 63. The symbols are all as defined 

earlier in this chapter. 

In our case £=0, qmr= k, so comparison of 7.22 with 7.11 

shows that 

a = -a2 
0 

7.23 

Figure VII.7 shows our values of a compared with other 

experimental values, and with the theoretical prediction of 

Weinberg. The experimental values and theoretical predictions 

are discussed in references 63 and 64, the original references 

for each value shown on the figure are numbered in the figure. 

Most experimental values are larger than the theoretical 



Centre of mass 

Energy (GeV) 

Effective range 

ro  (fermis) 

Scattering length 

a (fermis) 

1.495 

1.526 

1.551 

1.577 

1.612 

1.64o 

1.668 

1.693 

1.10 
*2.64 

-1.24 

±1.46 

-0.60 
t1.04 

2.45 

±1.31 

1.02 

±1.11 

3.93 
±1.52 

-1.18 
±0.88 

0.83 

-1.0 

.179 
t.o44 

.291 
±.054 

.254 

±•033 

.167 

t.028 

.207 
t.036 

.123 

t.023 

.248 

t.043 

.186 
±.o34 

Weighted mean 

	

0.77 	.208 

	

±1.41 	±.037 
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Table VII.?  

Fitted values of a, ro  at each energy, 

and mean values 
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This expt. 	Other values 

g 

d 

     

     

     

     

     

   

i 

   

   

   

    

    

     

     

a r X Weinberg 

e 

f 

a 
fm 
.30 

.25 

.20 

.15 

.10 

.05 

.00 
1.50 	1.55 	1.60 	1.65 	1.70 

CME GeV 

I=2 77 scattering lengths 

A range of values derived from Weinberg's current algebra 
model (ref. 68), and corrections to it is shown. The value 
marked 'a' is also a theoretical calculation by Morgan and 
Shaw (ref. 614a) quoted in ref. 64. 

The remaining values are experimental determinations 

b - ref. 67a, Cohen et al 

c - ref. 66, Losty et al 

d - ref. 67b, Villet et al 

e - ref. 67b, as d but with one suspect value removed by them 

f - calculated by Morgan (ref. 64b) from the results of 

Hoogland (ref. 55) 

g - ref. 65, Prukop et al 

Figure VII.7  

I=2 77 scattering length values 
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prediction, as are ours. Our values are consistent with the 

assumption of a constant value, and they are consistent with 

or-slightly larger than the other experimental values. Table 

VII.7 also shows a strong correlation between a and ro t 

a increases as ro  decreases. 

Mean values with standard deviations of a and ro  are 

given at the foot of Table VII.7. The numbers of events at 

different energies varied, so in calculating these means, 

the value at each energy was given a weight, obtained by 

multiplying the number of Tr+ T#n events at that energy by 

the fraction of ,rtlrtn  cross-section taken by I=2 O.P.E. The 

weights were calculated from the Tr
+,r
+n channel alone because 

it takes 4/5 of our 1=2 O.P.E. cross-section. These mean 

values were used to calculate the phase shift SZ for ,rTr masses 

up to 700 MeV, shown in Table VII.8 and Figure VII.8. The 

figure also shows sō calculated by other experiments. At 

the higher77 masses, the effective range potential approximation 

is insufficiently accurate, but we had no need to fit events 

with mu,r  > 500 MeV, so this does not matter. 

As we have few low ,r+Tr+  mass events, and the I=2 O.P.E. 

was introduced primarily to improve the partial wave analysis, 

these results are very satisfying. The parameter values at 

different energies are sufficiently consistent to show that 

they are meaningful, and not just fitting random fluctuations 

of the data. The scattering length is consistent with that 

obtained by other analyses, and as it was obtained in a 

different way, it supports the results of those analyses. The 

1=2 O.P.E. part of the analysis was successful, and adds to 



m nn (MeV) sot  (degrees) 

280 -0.7 t 0.1 

300 -3.3 t 0,6 

350 -6.5 t  1.4 

400 -9.o t  2.3 

450 -11.2 t 3.5 

500 -13.5 t 4.8 

550 -15.8 t  6.6 

600 -18.1 t 8.8 

65o 	-20.6 t 11.5 

700 	-23.2 t 14.9 

-257- 

Table VII .8 

s-wave I=2 phase shift calculated from 
mean a and ro  
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rnm, MeV 
300 	400 	500 	600 	700 	800 

x Hoogland et al ref.5 5 

Losty et al ref.66 

Prukop et al ref.65 

Baker ref.11 

The central continuous line gives the phase shift calculated 
from the effective range potential formula using our mean 
values of a and ro. The upper and lower curves show one 
standard deviation errors. 

Figure VII.8  

I=2 S-wave phase shifts, 2 
0 
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confidence in the overall results of the analysis. 

VII.5 Discussion of partial wave analysis results  

VII.5.1 Discussion of the results of this analysis  

The results without O.P.E. were sensible, and the refit 

with O.P.E. has improved the projections, given better 

continuity, and provided a satisfactory description of the 

I=2 ,r,r state. There remains the task of examining both sets 

of Argand diagrams and &JP  plots to produce a list of 

resonance parameters. That list can then be compared with 

the results of other analyses and with theory. 

Our K -matrix program, already mentioned, was written 

when 4-variable maximum likelihood solutions were only 

available at four energies. (These were the results presented 

by Rob Stevens in his thesis, reference 9,) It was found 

that four energies were not enough for a K-matrix fit, and 

also that more waves were needed in the analysis. The author 

of this thesis therefore concentrated on analysing 

more energies, using more waves, and including an O.P.E. 

contribution. The K-matrix program should now be used on the 

results, but as this has not yet been done, resonance 

parameters had to be found by eye. 

The cy
JP  plots, Figures V.6.a, V.6.b, VII.4 and VII.5 

were searched for bumps, and Breit-Wigner shapes were drawn 

in by hand in places where bumps coincided with rapid 
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movement in the Argand diagrams. As an extra check, a linear 

background was estimated in each 
QJP 

 plot, the plots were 

redrawn with this background subtracted, and Breit-Wigners 

were drawn in again. Masses were also estimated from the 

Argand diagrams. Although QJP  plots from the non-O.P.E. 

analysis were examined together with the O.P.E. analysis QJP  

plots, the Breit-Wigners were drawn on the O.P.E. plots as 

the O.P.E. analysis results were more continuous. Estimated 

masses and widths are given in Table VII.9 - where more than 

one resonance is indicated in a wave, the first is marked 

with a prime, the second with two primes. 

A good resonance candidate should be visible in the 

cross-section plots and in the Argand diagrams, and it should 

be visible in the non-O.P.E. and the 0.P.E. analyses. If 

tying to the resonance in CHI gives the preferred combination 

or a similar one and a good x2 , that is additional evidence 

in its favour. If the resonance mass lies at the same energy 

in different decay channels on the Argand diagrams, that too 

gives it support. To distinguish obvious resonances from less 

certain or possible ones, a star rating system (the more stars 

the better) is used. Four stars are given to resonances seen 

clearly in 0.P.E. and non-O.P.E., in QJP  plots and in Argand 

diagrams, but only if the resonance parameters are well 

determined. Good resonances whose parameters are not so well 

determined because different methods give different values, 

or because they are near the top of our energy range, are 

given three stars. Resonances whose parameters are poorly 

determined are given two stars, and resonances whose existence 

is possible, but open to serious doubt, are given one star. 
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In addition to resonance masses and widths, we can 

obtain fractional widths xr  and coupling signs from the Argand 

diagrams, A relativistic Breit-Wigner (discussed in section 

VI.3.2) in an inelastic channel r describes a circle of 

diameter i  xexr  on the Argand diagram. A set of Argand 

diagrams with errors drawn in were produced, using a diameter 

of 13cm. so that circles could then be drawn in easily by 

use of a template. Table VII.10 gives the diameters of circles 

for every wave where they could be drawn. The sign in each wave 

is given with the diameter; circles lying above the origin 

are given a positive sign, circles below the origin a 

negative sign. Uncertain signs are followed by a question 

mark, and indeterminate signs are represented by a question 

mark alone. 

A discussion of the considerations that went into the 

making of Tables VII.9 and VII.10 is presented here; 

comparison with other experiments and considerations of theory 

come in the next sections. 

Both 
QJP 

 plots show one clear peak in S31, between 1612 

and 1640 MeV, closer to 1612. The SD31 and piSS31 Argand 

diagrams show anti-clockwise loops with fast motion before 

energy 6 and maximum amplitude at energies 6 and 7. These are 

typical indications of a clear Breit-Wigner resonance, with 

little background, just above energy 6. The resonance width 

can also be easily determined from the 
aJP 

 plots. This 

resonance therefore appears in Table VII.9 with four stars. 
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The poor determination of. phases at the low energies does 

not affect the resonance parameters. Both these waves give 

the preferred combination and a very good x2  when tied to CHI. 

N*SS31 and p3SD31 are much smaller; they are not 

particularly useful in determining resonance parameters, 

nor can too many conclusions be drawn in the N*SS31 due to 

the change after the O.P.E. refit. Diameters of estimated 

circles,in all 4 waves are given, with signs, in Table VII.10. 

This analysis gives the clearest determination yet of the 

P1SS31 sign. The signs of N*SS31 and p3SD31 are reasonably 

well determined in the O.P.E. fits, but the non-O.P.E. fits 

do not confirm these signs, so they are given question marks. 

The S31 wave in our energy range is almost an analyst's dream: 

one strong peak, a clear signal in two isobar modes, 

agreement between EJP  plots and Argand diagrams, and between 

the non-O.P.E. and O.P.E. analyses. Unfortunately, no other 

wave has all these desirable properties. 

1L 

This wave has a small cross-section throughout our 

energy range, but shows interesting structure, so enlarged 

cross-section plots were given in Figures V.6.a and VII.5. 

Both plots show a peak at energy 3, and all Argand diagrams 

show rapid motion at point 3. This effect looks like a 

narrow resonance, its estimated parameters are given in 

Table VII.9. Runs of CHI tied to this resonance gave 

solutions similar to the preferred combination, except in 

P3, and surprisingly good x2  values considering how narrow 
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the suggested resonance is. The p 1PP31 CHI run gave the third 

best x2  of all the p waves. The Argand diagrams do however 

look confused, so a x2  test was made to compare the 

hypotheses of a Breit-Wigner resonance and of an appromimately 

linear background. (The O.P.E. fit 
EJP 

 values were used.) 

A Breit-Wigner fit to the cross-section requires three 

parameters; mass, width, and an overall scale. The scale was 

allowed for by a parameter that defined the total 77N P31 

cross-section at the resonance mass. The cross-sections at 

the first five energies were used in a x2  fit, so that there 

were two degrees of freedom. The best fit was obtained with 

Mass = 1523 MeV, Width = 40 MeV, cross-section at resonance 

mass = 0.94 mb. This gave a value 

x2/N.D.F. = 2.3/2 

A straight line fit was then made to the same five 

points, and this gave a minimum x2  value of 

X2/N.D.F. = 16.5/3 

This test shows that a Breit-Wigner describes the cross-

sections far better than a linear background, and that the 

parameter values estimated by eye, given in Table VII.9 are 

fairly well-determined. The resonance is therefore given 

three stars in Table VII.9. 

Above this resonance energy, the cross-section falls, 

then rises again. The top point in the non-O.P.E. plot shows 

the discontinuous behaviour discussed in Chapter V. The rise 

in cross-sections, together with anti-clockwise motion on 
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the Argand diagrams in energies 6 to 9 is indicative of a 

second resonance near the top of our energy range. Circles 

drawn on the Argand diagrams support this resonance, but 

CHI runs tied to such a possible resonance only gave good 

results in the oPP31 wave.. We cannot be sure of the meaning 

of this effect until higher energies are analysed; it could 

be the tail of a wide P31 resonance at a higher energy, so 

it is tentatively put in Table VII.9 with one star. 

1112 

Both iPP33 and N*PP33 show clearly resonant Argand 

diagrams. The 	plots show large cross-sections, indeed 

they considerably exceed the elastic predictions at the top 

two energies. Attempts to draw a single circle in each 

Argand diagram met with some difficulty, and a single Breit-

Wigner drawn in the 
QJP 

 plots disagreed with the cross-section 

at energy 7 in both 
ajP 

 plots. The data is much better 

described by two resonances, one near 1600 MeV, the other 

near 1700 MeV. A K-matrix analysis should be performed to 

check this suggestion of two resonances, but there is 

considerable theoretical support for the suggestion, as will 

be discussed in Section VII.5.3. On the basis of the Argand 

diagrams and 	plots alone, the lower resonance deserves 

only one star, but because of the theoretical support it is 

given two stars in Table VII.9. The inclusion of this lower 

mass resonance affects the estimate of the higher one's width, 

and this together with its proximity to the top of our energy 

range allow the higher mass resonance only three stars though 

it is clearly seen. 
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CHI runs tied to both resonances in APP33 and N*PP33 gave 

very good x2  values, our analysis was clearly right to include 

the N* isobar. The p channels are much smaller, though both 

show clockwise motion in the upper energies. The APF33 Argand 

diagram (see Figure VII.9) has small. amplitudes but it shows 

very clear anti-clockwise motion, and a CHI run tied to it 

gave the preferred combination and a reasonable x2  . Two 

circles were drawn on the Argand diagram, though one may have 

been sufficient - this is noted in Table VII.10. The PP33 

second resonance circle lay to the left of the origin, and 

the tPF33 circle lay to the right, so their signs could not 

be determined, but it was very clear that the two waves have 

the opposite sign; the theoretical consequences of this will 

be discussed later. Two circles were also drawn on the P
3
PF33 

Argand diagram. p3PP33 was difficult to fit circles to, 

whereas p1PP33 showed two circles, Table VII.10 includes 

comments about the difficulties. To clarify the conclusions 

about 2 resonances and relative signs, Figure VII.9 shows 

enlarged sections of the relevant Argand diagrams. 

This wave is clearly resonant, the ADS33 wave was 

used to fix the overall phase at each energy in the Argand 

diagrams. The QJP  plots show a wide peak; the non-O.P.E. 

plot is discontinuous at the last energy as in other waves. 

The p3DS33 wave becomes smaller after the O.P.E. refit as 

was the case with N*SS31. The tDD33 wave becomes more 

continuous after the refit; it gave good results in the CHI 

run tied to it. P1DD33 becomes larger and is also a good 

wave to use in CHI. P3DD33 looks more continuous after the 

refit, and gives the best x2  of the admittedly poor x2 
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Figure VII.9  Enlarged sections of P33 Argand diagrams 
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values given by the p3  waves. 

The width of the cross-section peak, and the dips in 

both 6JP  plots at energy 6 make it difficult to determine 

the mass of this resonance. The CHI runs with a variety of 

masses and widths showed little sensitivity to changes in 

these parameters, so the mass was eventually taken from the 

oDS33 Argand diagram where the maximum amplitude was 

apparently between energies 6 and 7. Because of these problems, 
the resonance is given only three stars. The dip in 

QJP 
 at 

energy 6 is worthy of comment because it is seen in both 
QJP 

plots, particularly as the Argand diagrams are consistent 

with a loop at energy 7, and a second smaller one between 

energies 4 and 5. The dip may be due to a statistical 

fluctuation, though it would be surprising to see such a 

fluctuation looking so similar in both the non-O.P.E. and 

the O.P.E. results. It could be due to the introduction of 

more waves at energy 6, but other waves could then be 

expected to see a similar dip, and none do. It could even 

possibly indicate a second resonance close to the the three-

star one. We have therefore made a note about the dip in 

Table VII.9. 

231 

This wave is small at all energies except 6 and 7 in 

the non-O.P.E. solution; in the O.P.E. solution the cross-

section becomes even larger at energy 7, and at energy 6 

it falls but is still larger than at the other energies. 

The tDD35 was. fitted at all energies and D35 was introduced 
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in the other isobars at energy 6, but the sudden rise in cross-

section can only be partly attributed to the additional waves, 

as they are small, and the increase in amplitude occurs in 

tDD35, At energy 8, the cross-section again falls to its value 

at energy 5, showing that the additional waves have little 

effect, though this fall may be due, at least in part, to the 

introduction of F37 waves at energy 8. It is worth recalling 

that our elastic Legendre coefficients also showed considerable 

D35 structure. 
Statistical fluctuations alone are unlikely to explain 

this effect, because it is seen to some extent in two energies 

in the non-O.P.E. fit and in the O.P.E. refit. It is also 

most unlikely that a background change alone could produce 

this large cross-section. The N*(1520)7 production threshold 

lies close to these energies (at 1660 MeV) so threshold 

effects could be invoked to explain the sudden rise in cross-

section. A CHI run tied to a possible LDD35 resonance chose 

the preferred combination, and gave an acceptable x2, so the 

existence of a resonance is clearly possible. A narrow 

resonance, with one star, is given in Table VII.9, but a 

threshold effect combined with a large background may be able 

to explain this effect. A refit of our data with an additional 

N#(1520) isobar would be helpful here. 

Eli 

This wave was used at energies 6, 7, 8, 9; the Argand 

plots are small. An unexpectedly high cross-section seen at 

energy 6 in the Q.P.E. refit is presumably due to statistical 

fluctuation, because it is seen at only one energy, and only 

in the refit. Apart from this one point, the 6JP  plots show a 

fairly steady rise in cross-section consistent with their 



Resonance Mass 
(GeV) 

Width 
(GeV) 

S31 1620 120 

P31' 1520 50 

P31" 1680 90 

P33' 1620 90 

P33" 1680 150 

D33 1650 16o 

D35 164o 4o 

May be the tail 
of a higher mass 
resonance 

** 

*#* 

*** 	May be split 

* 

Rating 	Comments 
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Table VII.9  

Resonance parameters and 

ratings 
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Wave 
	Sign, XeXr 	 Comments 

("Poor" means a wave where it 
was difficult to draw a circle 
to fit several points) 

e SD31 
A PP31' 
APP31" 
A PP33' 
A PP33" 
A PF33' 
A PF33" 
ADS33 
ADD33 
ADD35 
N*SS31 
N*PP31' 
N*PP31" 
N*PP33' 
N*PP33" 
N*DD33 
p1SS31 
p1PP31' 
p1PP31" 
p1PP33' 
p1PP33" 
p1DD33 
p 3SD31 
p 3PP31' 
p 3PP31" 
p 3PP33' 
p 3PP 33" 
p3PF33' 
p3PF33" 
p3DS33 
p3DD33  

-..17 
+?.06 
+?.08 
+ .11 

?.12 
-?.03 
+ .03 
+ .09 
+ .08 
- .06 
+?.05 
-?.05 
- .06 
+ .08 
+ .08 
+?.04 
+ .19 
?.06 

- .08 
?.03 
?.04 

+ .08 
?.04 
?.08 
?.08 
?.05 

+?.03 
?.03 
?.04 
?.04 

+?.09 

It is also possible to draw 
a single circle: +?.04 

Sign uncertain on 0.P.E. results, 
taken from non-O.P.E. 

Poor 
Poor 

The best circle in these Argand 
diagrams 

Poor 

Very poor 

Table VII 10 

Signs and diameters on Argand diagrams 

ti 
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lying on the tail of a wide resonance whose mass lies above 

our energy range. 

This wave was included only at energies 8 and 9. It is 

small at energy 8, and larger at energy 9, particularly in 

the oFF37 wave, but nothing much can be made of this until 

more energies are analysed; it is most probably showing the 

tail of a resonance above our energy range. 

VII.5.2 Comparison with other analyses 

It would be tedious to compare our results with those 

of all other analyses. Of earlier analyses of our own data, 

Gopal (ref. 1), Stark(ref. 12) and Stevens (ref. 9) will 

suffice. Gopal analysed the 3-body channels, using decay 

data only, at energies 6, 7, 8, 9. (Vaughan Tayler (ref. 2) 

performed a similar analysis.) Stark extended Gopal's 

analysis to include data at 1.1 GeV/c and 1.2 GeV/c incident 

momenta. Rob Stevens performed our first 4-variable fits at 

4 energies, but his results must be treated with caution 

because of the error in the N*DD3 wave (though other waves 

were not seriously affected by this error). Other i,tN 

analyses that must be compared with ours are SLAC-LBL (ref.15) 

and Saclay (ref. 16); details of the Saclay analysis are 

also given in Dolbeau's thesis (ref. 34). The Oxford 7r7rN 

analysis (refs. 7 and 8) deserves some mention because we 

have used their data. Novoseller's refit of the SLAC-LBL results, 

with O.P.E. effects included (refs. 53,54) is not directly 
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comparable with our results because he refitted data only 

above 1.63 GeV (above the SLAC-LBL gap) and only obtained 

reliable phases above 1.81 GeV. SLAC-LBL and Saclay have 

performed K-matrix analyses of their irnrN results, the 

results of these K-matrix fits will be referred to as both 

groups believe that the most reliable resonance parameters 

are obtained in this way. 

Of elastic analyses, CERN (refs. 69,70,71) and Saclay 

(refs. 72,73,74) are the best suited for making comparisons; 

they are recent and comprehensive analyses. Other more recent 

elastic analyses have either used special techniques or 

concentrated on higher energies, see for instance the 

proceedings of the 1976 Oxford Conference on Baryon 

Resonances (ref. 13). The CERN and Saclay elastic predictions 

have been included on our QJP  plots, and will be referred to 

frequently, the other more recent analyses will be referred 

to when necessary. 

1t 

Everyone sees a resonance near 1650 MeV. Compared to 

this analysis, Gopal and Stark found a smaller branching 

ratio into Alf and p7r, and a larger one into N*Tr, but this may 

be because they analysed too few waves, and did not use all 

4 variables in their analyses. The CERN and Saclay elastic 

predictions are in good agreement, and our results lie 

between theirs. It is noticeable that both K-matrix analyses 

lower the mass to 1580 MeV. As Novoseller points out, the 

K-matrix method tends to alter the resonance parameters 
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from the elastic phase shift results. We would add that in 

some cases this is because two resonances lie close together 

in the same wave, so the K-matrix analysis finds a different 

resonance. 

The elastic analyses do not claim any resonances in 

our region. Gopal found strong structure near 1 GeV/c, Stark 

did not. Stevens also found strong structure, and the Oxford 

analysis found this wave to be strongly inelastic at the 

lower energies. SLAC-LBL and the earlier Saclay work found 

little P31 structure, perhaps because they constrained their 

results to be similar to the elastic predictions. (though 

Oxford did this too). Dolbeau's thesis claimed a low mass 

P31, and the Saclay K-matrix analysis confirmed it. It is 

somewhat worrying that most of the evidence for this resonance 

comes from data taken in one experiment, the low-energy 

Oxford data, though our 800 MeV/c data contributes to the 

750 MeV/c bin and predominates in the 800 MeV/c bin, without 

altering Saclay's conclusions. 

Our suggestion of a possible resonance near 1700 MeV 

is not supported by any other analysis, but analyses at higher 

energies find a wide P31 resonance somewhere between 1780 

and 1950 MeV. Our higher energy data must be analysed to 

check if we see a separate resonance, or if, as seems 

probable, we just see the tail of the higher mass P31. 
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The P33(1690) resonance is now well-established, though 

its parameters are not well-determined. Of the analyses being 

discussed, only the Saclay elastic analysis does not find it, 

and Stevens failed to see it clearly. Gopal found increases 

in cross-section at our energies 6 and 9, and he found that 

PF33 waves were needed as well as PP33. No other analysis 

claims two resonances in this region, but elastic analyses 

agree on a mass close to 1690 MeV, whereas the K-matrix fits 

find it at 1609 MeV (SLAC-LBL, but 1609 MeV is in their data 

gap) or 1560 MeV (Saclay). The SLAC-LBL value could possibly 

be due to a shift similar to that found in S31, but the 

Saclay value is too far for this, and they think it is a new 

resonance. There may well be a very inelastic resonance near 

1600 MeV in addition to the P33(1690). The presence of a 

significantly non-zero PF33 coupling also supports this 

conclusion as will be discussed in the next section. It is 

also interesting to note that the SLAC-LBL "by eye" search 

located a resonance at 1900 MeV. This could have been a 

misplacement of the 1690 resonance, or an observation of the 

tail of the P33(2130), but is most likely to be yet another 

P33 resonance, the P33(1950) mentioned by some analyses at 

the Oxford conference. 

This is a difficult wave to sort out - theory suggests 

that it should contain several resonances, so it requires 

careful analysis. Our use of very accurate normalisation 

constants and of the N* isobar should ensure that our results 

are reliable, but an analysis of our higher energies, and a 

K-matrix analysis are still needed. 
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The D33 resonance is wide; its mass is still not 
accurately determined. Elastic analyses give a mass between 

1650 and 1720 MeV. SLAC-LBL give 1725 (by eye) or 1650 
G{-matrix) MeV. The Saclay K-matrix fit gives 1600 MeV. 

Gopal saw resonant behaviour, Stark suggested a mass of 

1650 MeV, as did Stevens, and this analysis finds the same 

mass. The Saclay elastic analysis found behaviour similar to 

our dip, several possible reasons for this dip were given in 

the previous section. The Saclay K-matrix gave a low mass for 

the resonance when the Saclay elastic data were used, and 

also when run with the CERN elastic data, which do not show 

a dip; the suggestion of a second resonance is unlikely, but 

would explain this Saclay result. 

Analyses of our data have always seen a narrow 

resonance - like D35 structure. Gopal suggested a mass of 
1640 MeV and a width of 80 t  20 MeV, Stark's results showed 

a smaller and narrower EJP 
 peak. Stevens found that the 

addition of the oDD35 wave to his earlier set of waves 
improved his fits dramatically. Gopal and Stark pointed out 

that the Saclay elastic results available at the time (ref. 

72) also suggested a narrow resonance in this region; the 

Saclay elastic results shown in our 	plots do indeed show 

a peak near 1600 MeV, but they disagree seriously with the 

CERN elastic results, The latest Saclay results (ref. 74) do 

not claim a resonance, nor does the CERN analysis. SLAC-LBL 
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did not fit this wave at all, but their technique of testing 

waves and rejecting those not needed at adjacent energies 

could easily lead to the rejection of a narrow resonance. 

The first energy at which the Saclay mr N analysis included 

the D35 wave was 1640 MeV. They found a aJP  of 0.7 mb at 

1640, but only 0.1 mb at their next two energies (1668 and 

1695 MeV). The Saclay results therefore appear to confirm 

ours, and it is a pity that they did not include this wave 

at lower energies. 

Elastic analyses agree on a wide F35(1890) resonance. 

SLAC-LBL find this resonance too, though their K-matrix fit 

gives it a mass of 1813 MeV. We do not reach this energy, 

but like the Saclay mrmrN analysis we apparently see the tail 

of the 1890. 

The 4 star resonance at mass 1950 MeV, with width 

220 MeV, is seen by all elastic analyses, and by SLAC-LBL. 

Our aJP  values at the top two energies are somewhat larger 

than the SLAC-LBL values, but appear to be consistent with 

them. 

VII.5.3 Comparison with theory 

A brief description of the theories relevant to these 

results is now necessary. Detailed descriptions can be found 

in references 13 and 14 which also give many references to 
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the original work. No complete theory of the strong interaction 

exists, so patterns that may help build up such a theory 

are sought through Group Theory. The symmetry group SU(3) 

successfully describes groupings of particles (multiplets) 

and higher symmetries are being sought in attempts to describe 

larger multiplets and their behaviour. SU(6)w 0 0(3) appears 

to be such a symmetry; its development will be described 

and our results will be compared with it. 

SU(3) is generally explained as representing three 

fundamental particles, quarks; the up, down, and strange 

quarks. These are written u, d, s or if the nature of the 

quark does not matter, just qfi Each quark has a corresponding 

anti-quark, written q. Mesons are built up of a quark and an 
anti-quark : qq, whereas baryons are built up of three quarks: 

qqq. The combination of one of three possible quarks with one 

of three possible anti-quarks is written using Group-

theoretical notation : 

3 ® 3 = {1} e {8} 

which means that mesons come in singlets and octets. 

Baryons are similarly written 

3 ® 3 ® 3 = {1} 0 {8} ® {8} e {10} 

so they come in singlets, octets, and decuplets. A Tr+p 

resonance can only be an I 2 member of a decuplet. Tr p can 

The existence of a fourth quark - the charmed quark c - is 

now certain, and two more - t and b - may be in the offing. 

The additional quark (or quarks) extend SU(3) to SU() (or 

SU(6)), but this does not need to be taken into account here 

because Tip experiments at our energies do not show any 
effects connected with charm. 
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produce members of decuplets (a,I 2) and also N*, I=2 

particles which are members of octets. 

The next step is to include the spin of the quarks 

in the Group Theory descriptions, Quarks are treated as 

spin -i objects; this automatically gives integral spin to 

mesons and i  integral spin to baryons. (The assignment of 

spin-i to quarks itself causes spin statistics problems 

but these are not relevant to the present discussion.) To 

make the theory relativistic (and workable) W-spin, described 

by the group SU(2)w is used. This gives the group SU(6)16, 

SU(3) ® SU(2)w, = SU(6)w 

Baryons are now written 

6 0 6 0 6= {20} e .{56} e 1701 e { 70 } 

These larger multiplets can be broken down into SU(3) 

multiplets with spin. The .{56} is 

{56} = {10,4} ® {8,2} 

here 	10 = 0(3) decuplet 

4 = 2S+1, so S = 	; this is a spin i decuplet 

and 
	

8 = SU(3) octet 

2 = 2S+1, so this is a spin octet 

Similarly 	170 } = { 8, 14. } e {10,21   e  {8,2}  e { 1,2  } 

Thus 56-plets and 70-plets can be detected by a Tr+p 

experiment, but only a few of their members will be seen. 

The advantage of Tr+p experiments is that beam and target 

can be easily produced, and only the I=2 channel need be 
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analysed, so a careful analysis with high statistics can 

be performed. 

As the spin of a baryon can be greater than 2, it 
must be possible to have angular momentum L between the 

quarks. This is described by the group 0(3), so baryons 

(and mesons) are described in terms of SU(6)w  0 0(3),  giving 

multiplets of the type {n, LP}, where n is the SU(66 

multiplet number, and p is the parity of the state, The total 

spin of the baryon, J, is given by the vector addition 

J = L + S. Apart from orbital excitations (L> 0), radial 

excitations which provide recurrences of the same {n, LP} 

multiplets are possible. Excitations are denoted by a 

subscript N at the end of the multiplet description, N giving 

the excitation level. The SU(3) octet of stable baryons and 

the 2+  decuplet fit well into a { 56, 0+} supermultiplet. 

The low-lying negative parity baryons make up a {70, 1-} 

supermultiplet. 

This scheme successfully describes the static properties 

of many known baryons, though some mixing of multiplets is 

apparent. One would then like to use these groups to describe 

interactions and decays. Some good predictions can be 

obtained from SU(6)w, but others are bad. Basically, in 

decays SU(6)w  involves the conservation of SZ, the quark 

spin component along the decay axis. LZ  is therefore also 

conserved, so all decays are forced to have oLZ=O. In fact, 

quarks can have transverse momentum, so that oLZ=t1 decays 

can occur. Various broken SU(6)w  models allowing oLZ=t1 and 0 
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have been suggested, and analyses such as this one are needed 

to decide which models are acceptable. Two such models deserve 

particular mention. 

Q-broken SU(6)w 

In a hadron decay, two possible values of the orbital 

angular momentum 2. between the two final particles are 

generally possible. In the simple SU(6)Ar  model, these two 

statesQ+, 2,_ are linked. The breaking of this link, so 

that separate couplings can be calculated for + and 

gives Q-broken SU(6)w. The relative phase of Q+  and Q_ 

states can then be as predicted by SU(6)1,41 - this is the 

"SU(6)w-like" solution, but the phase can now also be 

opposite - the "anti-SU(6)w" solution. 

The Melosh transformation 

Up to now, the discussion has been in terms of quarks 

that make up the hadrons - "constituent" quarks. This 

provides a very simple model of mesons and baryons. Decays 

of hadrons can however be described in terms of current 

algebra which uses a different SU(3) whose representations 

are "current" quarks. To describe a transition from hadronic 

state A to hadronic state B, we therefore use the matrix 

element 

Bconst. IQ  I Aconst.' 
	7.24 

ft is however much easier to calculate terms such as 

Bcurrent 1 Q  1 Acurrent 
	7.25 
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Here, Q is the axial charge used in current algebra; according 

to SU(6)w  it can only have a oLZ  = 0 part. The constituent 

and current quarks are representations of different algebras, 

and the Melosh approach is to write a transformation V such 

that 

I Aconst.' = V I  Acurrent ' 7.26 

The general properties of V can be examined, or specific 

expressions can be tried. It is sufficient here to note that 

7.24 can be rewritten 

Bconst. I Q  I Aconst.' 
	

`Bcurrent.I V-1  Q V I  Acurrent'  

`Bcurrent I al  Acurrent' 7.27 

The transformed Q can keep its oLZ  = 0 part, and also gain 

aALZ  = ±1 part. If one part or the other dominates, then 

we have "SU(6)w- like" or "anti-SU (6)w" behaviour. This 

approach validates the previously arbitrary breaking, and 

allows current algebra calculations to be made. Rosner and 

Faiman (refs. 75 and 76) for example have calculated the 

signs expected in decays of the {70,  1-  }and { 56, 2+} 

depending on whether they are "like" or "anti". Such 

predictions can be used to compare possible multiplets with 

our results. 

Negative parity states 

S31(1620) and D33(1650) fit well into the {70, 1-}. 

Table VII.11 compares the SU(6)w  predictions of Faiman and 

Rosner (refs. 75 and 76) with our signs for 76,  and pN decays; 

it is seen that our results favour "anti-SU(6)w", as do the 
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results of other analyses. It would be useful to check the 

N*ir decays too, but SU(6)w  calculations for these are not 

yet available. 

Experimental determinations of pN signs have long been 

an embarassment to SU(6)w  predictions. pN Argand diagrams 

in our energy range do not show clear loops as do oar Argands, 

this is presumed to be caused by ill-understood effects 

which are due to the pN channel being below thep production 

threshold. Even where pN signs are determined though, they 

are often poorly determined, and can be in conflict with 

SU(6)w  predictions. This analysis makes a significant 

contribution to knowledge of the negative parity pN states. 

We determine the p 1SS31 sign to be clearly positive - neither 

SLAC-LBL nor Saclay were sure of this sign. We also determine 

the P1DD33 sign to be clearly positive, and thep 3DD33 sign 

to be probably positive. Neither SLAC-LBL nor Saclay included 

these waves in their analyses. All three signs agree with 

SU(6)w, but do not distinguish between "like" and "anti". 

In addition to SU(6)w  predictions, fits can be made. 

Hey et al have made SU(6)w  fits, based on the Melosh 
transformation, to available experimental results, and thence 

predicted other values. Their original paper (ref. 51a) was 

expanded (ref. 52a) and then updated at the Oxford conference 

(ref. 13) in the light of additional experimental results. 

Their fitted signs for the A7 channels, and their predicted 

signs for pN are given in Table VII.11. The pN predictions 

are made on the basis of a fit to pN couplings that Hey et al 

considered to be reliable at the time of the Oxford Conference, 

and none of the waves in Table VII.11 were included in that fit. 
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Hey et al 

did not give their predictions for p iDD33, p3SD31, p 3DD33, 

so their predicted signs have been calculated by the author 

from the updated parameters given at Oxford, and from other 

parameters and formulae given in references 51a and 51b. The 

fits made by Hey et al contain more theoretical input than 

the SU(6)w  predictions and predictions made from these fits 

are sensitive to the experimental input. It is therefore a 

significant success of these fits that they correctly predict 

all the three {70,1-}pN signs that we have determined, and 

our determination of these signs is a valuable experimental 

result. 

The D35(1640) resonance is a considerable embarassment 

for theory. The lowest multiplets it can come from are {70, 3-1 

or {56, 1-}. Unfortunately, conventional models do not expect 

these multiplets to have masses below 2 GeV. At the 1976 

Oxford conference (ref. 13), Cutkosky presented strong 

evidence for a 1 D35(1925) resonance, and proposed a dual string 

model to allow a lower mass for the {56, 1-} multiplet, so 

that the AD35(1925) could fit into it. This model, dubbed the 

"Polish bag", could perhaps be stretched to even lower masses 

allowing our D35(1640) to fit into it. Two consequences would 

arise. Firstly, the D35(1925) would have to belong in a 

radially excited {56, 1-} or in a {70, 3-}. Hey pointed out 

at Oxford that masses of a {70, 3-3 could lie below 2 GeV, 

so the D35(1925) could after all be assigned to this multiplet. 

(The alternative of an excited Polish bag appeals to this 

author.) Secondly, a {56, 1-} would require additional low 

mass AS31 and iD33 resonances. The possible second AD33 



Resonance/wave Predictions 

SU (6)w  - 	Anti- 
like 	SU (64f  

Hey et 
al fit 

Saclay 
sign 

I.C./ 
W.C. 
sign 

+ 

0E6 

+ + 

=NI 

+ 

+ + +? +? 

+ + +? + 

+ + n/a + 

- - _ ? 

+ + +? ? 

+ + n/a +? 

A SD31 

A DS33 

A DD33 

p 1SS31 

p iDD33 

p 3SD31 

p 3DS33 

p 3DD33 
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Sign convention of Hey et al (ref. 51) 

Uncertain signs are followed by a question mark, very 
doubtful ones are given by a ? alone 

n/a - wave not included in Saclay analysis 

Table VII.11  

Comparison of {70, 1-}  signs with predictions 
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resonance in our energy range would fit such a scheme very 

nicely, but there is no sign of an additional .AS31. 

The o D35(1640) is therefore a serious challenge to 

theory, and it may be preferable to dismiss it as a threshold 

effect unless other analyses confirm it, or this analysis 

is repeated with allowance for the N*(1520) isobar and still 

sees this resonance. 

Positive parity states  

Our mass range lies above that of the{ 56, 0*} ground 

level multiplet, and in the region of the {56, 2`'}  multiplet 

or slightly below it. These two are well established, but 

other multiplets are also needed to explain some resonances 

that lie in this mass range. In order to discuss this 

situation, N* resonances must be considered as well as a 

resonances, so results of analyses discussed in the previous 

section, and values from the Particle Data Group tables 

(ref. 50) will be frequently mentioned. Possible multiplets 

in our mass range are radial excitations of the {56, O'}  - 

these are { 56, e}2  and { 56, 0+14  - and also { 56, 2+1  , 

{ 70, 0+1, {70,  2+} . Results from the Oxford conference show 

that the {70, 2+}  has masses of 2 GeV or above. Hey et al 

are strongly opposed to suggestions of "non-minimal" multiplets 

such as the{ 70, 0t1  (and the {56, 1-} ) but they may be 

wrong. The first column of Table VII.12 lists the possible 

multiplets, and the members each requires. Only ai decays 

are included because no predictions are available for N',r, 

and our pN signs are uncertain. 
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The'known P11(1470) and P11(1780) resonances appear 

to be members of two radially excited {56, 0+} multiplets. 

Their signs, determined by the SLAC-LBL analysis prevent 

them from being members of the { 70, 0+}. The second and 

third columns of Table VII.12 give the air decay sign 

predictions for "SU(6)1N -like" and "anti-SU(6)y" dominance; 

the calculations of Faiman and Rosner have been used (ref. 

75). The fourth column shows the SLAC-LBL K-matrix results, 

the fifth shows the Saclay K-matrix results, the sixth 

shows our results, and the seventh contains comments. The 

assignments of each particle will be discussed here, the 

signs given by SLAC-LBL and Saclay have all been flipped to 

agree with the convention of Hey et al, which is the same 

as ours and Faiman and Rosner's. Uncertain signs are followed 

by a question mark and unknown signs are represented by a 

question mark alone. 

As the two P11 resonances establish two {56, 0+}radial 

excitations, two P33 resonances with positive signs are 

required. These must be the iP33(1560-1620) and the 

AP33(1900-1950), whose signs are clearly determined. In a 

simple experimental model, one would expect our radially 

excited { 56, 0+}2  P33 to decay into P11(1470)rr , just as 

the ground state P33(1230) decays into P11(930. This is 

very clearly seen in our N#,r Argand diagrams, indeed the 

N*PP33 wave gave better results in CHI than any other wave. 

The {56, 2+} P33 resonance should also lie in our energy 

range or a little above it. The first column of Table VII.12 

shows that it will have a PF33 decay, whereas {56, 0+} 
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members will not. We do indeed see a PF33  signal - small, 

but with small errors - we believe that a signal of this 

size is real because we have used very accurate normalisation 

constants. A CHI run tied to thea PF33 wave gave the 

preferred combination and a x2  that is good for a small wave; 

see Table VII.3.a for details of this run. We therefore 

conclude that LPF33 clearly shows a resonance, which must 

be a{ 56, 2+} member, and must have a corresponding ;PP33 

with a negative sign. One would expect this to be our 

PP33(1680) which shows an uncertain sign, but may be negative, 

unlike the oPP33(1620). Analysis of our higher energies 

would be useful as the higher PP33 may have a mass slightly 

above the present energy range, and may show its sign more 

clearly at these higher energies. 

The P33 situation is not entirely clear; the two 

resonances lie so close together that they may undergo some 

multiplet mixing. The possibility of drawing two loops in 

the PF33 waves could then be explained by mixing instead of 

merely being attributed to large errors in a small wave. 

SLAC-LBL and Saclay did not allow for the N*T channel, so 

their PP33 results are bound to differ from ours. Both these 

analyses find a PP33 near 1600 MeV with a positive sign -

neither analysis sees a negative sign near 1700 MeV, though 

both show a clear doubling back in their Argand diagrams at 

this energy. There is also a problem with the{ 56, 2+}P33 

signs. The {56, 2+} is generally believed to be "SU(6 , -like" 

because of the F15 decay signs. PN signs do not agree with 

"like" or "anti", but they are even more uncertain than the 

pN signs of the {70, 1-}. Photoproduction experiments seem 



-288- 

to require the {56, 2+} to be "anti-SU(6)101 " - see Hey's talk 

at Oxford (ref. 13). Our Argand diagrams, and those of 

Saclay show clearly that the signs of oPP33 and APF33 are 

out of phase at all energies analysed. This requires the 

{56, 2+} to be "anti-SU(6)11 ", and it appears that no 

arguments about mixing or resonances lying close together 

can change this. Even if the mass of the second P33 lies 

somewhat above our energy range and above Saclay's highest 

energy (1738 MeV), the relative phases of the two waves 

would have to change by more than 2  in a very small energy 

range to give "SU(6)/0/ -like" behaviour. It may be that neither 

ALZ  = 0 nor ALZ  = t1 dominate in this multiplet. 

Further evidence for there being two P33 resonances 

close together comes from Hey et al (ref. 51b) and also 

Burkhardt and Pulido (ref. 76) who examine our P33 N#7 

results. Both find that the P33 is about 3 times as large 
as they require for a {56, 0+}2. If the experimental results 

are interpreted as two resonances, not one wide one, this 

problem should be immediately resolved. 

Our analysis sees no other {56, 2+} members, except 

for the tails of F35 and F37 but, for completeness, the 

members seen by SLAC-LBL and Saclay are included in Table 

VII.12. 

This leaves our P31 resonance or resonances still not 

assigned. The P31 (1520) mass is too low for the {56, 2+} 

and its sign, though not very well determined, also disagrees 

with the{ 56, 2+}. The P31 (1520) therefore has to be 
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assigned to {70, 0+}. Saclay also make this assignment, and 

find a low mass P13(1S50) to go into the {70, 0+}. This 

leaves a missing P11, which Saclay suggest is mixed with 

the Roper - P11(1470) - and difficult to see. The Saclay 

elastic analysis claims that the Roper is split, with 

components of masses 1413 MeV and 1532 MeV. The higher mass 

P11 would then fit very well with the P13(1550) and the 

P31(1520-1550). The Particle Data Group mini-review on N's 

and A's in reference 50 discusses this splitting, and mentions 

the possibility of a P13(1530). The {70, 0+} clearly needs 

closer examination, but the combined evidence for it is 

strong. The only place another P31 can belong is in the 

{56, 2+}, and this is already clearly filled by the 

P31(1780-1950). The uncertainty in this resonance's parameters 

is large, and our higher mass P31 can easily be the tail 

of this resonance; analysis of our higher energy data should 

clarify the matter. 

What can we conclude about SU(6)14  multiplets and the 

resonances in Table VII.10? For the{ 70, 1-1 ,  we confirm 

its anti-SU(6)/a  nature, and our S31 and D33 resonances 

clearly belong in it. We note a possible D35 and suggest, 

with some diffidence, that it be placed in a {56, 1-}. The 

D35 may however be the result of large background and a 

threshold effect. We see the {56, 0+}2  and some of the 

{56, 2+  }- their P33 members appear to be mixed, but both 

seem to exist. Our P31(1520) adds to the significant 

evidence accumulating in favour of a {70, 0+1. Finally, our 

suggested P31(1680) is almost certainly just the tail of 

the P31 somewhere between 1780 and 1950 MeV. 
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Multiplet 
members 

Predicted signs 

SU(6)w- 	anti- 
like 	SU(6)w 

Experimental signs & masses 

SLAC Saclay I.C/ 
-LBL 	W.C. 

Comments 

{ 56,  0+}2 
PP11 

PP33 + 

+ 	1381 + 	1340 + 

+ 	1609 + 	1540 + 	1620 + 

see note about the 
Roper resonance. 

{56, O+}4 

PP11 
PP33 

'{70, 	0+} 
PP11 

+ 
+ 

1708 + 	1710 -? 
maybe the 	o/e 
1900+ seen 
by eye 

n/s 	may be 
mixed with 
the Roper 

o/e 

PP31 n/s 1550 -? 1525 +? 
PP13 + n/s 1530 -? 

(56, 2+ } 
PP13 1716s/u 1750 - 
PF13 - n/a n/a 
FP15 + 1668 - 1650 -  
FF15 + 1668 + 1650 + 
PP31 n/s 1800 +? 

PP33 n/s ' not seen 
separately 
from PP33 

1690? 

1540 
PF33 n/a 1540 -? 1690? 

FF35 1813s/u o/e o/e 

FF35 1813 + o/e o/e 

FF37 1924 +? o/e o/e 

A P33 with mass 1900-
1950 is seen by 
several analyses. 

see note about the 
Roper resonance 

Saclay & SLAC-LBL 
see a squiggle here. 

Sign undetermined, 
but opposite to PP33. 

Symbols 

Notes 

n/a not included in this analysis 

o/e outside energy range 

n/s not seen 

s/u sign unavailable, because on channel not analysed 

1/ .the signs of SLAC-LBL and Saclay have all been flipped, 
to conform with the conventions of Hey et al, and Faiman and Rosner 

2/ I.C./W.C. only analyse I=i  waves 

3/ The Roper P11(1470) may well be split into two resonances, 

see text for details 

4/ Doubtful signs are followed by a ?, Very doubtful ones are given 

by ? alone 

  

Table VII.12 

 

 

Positive parity multiplets and their on decays 
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The {56, 2+} cannot be firmly said to be "SU(6)w-like", 

or "anti-SU(6)w". It would be useful to check p signs in 

this multiplet, and also in {56, 0+}2  and {70, 0+ 1, once 

definite theoretical predictions are available. N'Il,r decay 

signs should also be checked. Analysis of our higher energy 

data would be interesting, but the analysis described here 

is itself a significant contribution to work on the baryon 

spectrum. 

VII.6 Concluding Remarks  

This work started with film measurement and analysis, 

followed by an elastic data analysis which provided data 

on backward elastic cross-sections, and allowed the accurate 

determination of cross-sections in ir+p induced states. The 

results of two energies were used to bridge the gap between 

other data which was then subjected to a TrrrN 4-variable 

maximum likelihood partial wave analysis. As opposed to the 

claims made by the Saclay group (ref. 16a) we found that 

analysis of the I=i  data alone can be successful; such 

results can then be used to check the results of a joint I=2 

and I=i analysis, or they can be used as input to such an 

analysis. 

We have analysed ,r r+n data properly, using an N* 

isobar, and including One Pion Exchange terms, not an I=2 

isobar. Many fits from random starts were made, without 

rejecting apparently small waves, and using very accurate 

normalisation integrals. The continuum ambiguity has been 

discussed, and we suggested that its seriousness has been 
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overestimated. A continuity analysis was used to pick a 

unique combination of solutions at different energies, and 

this continuity analysis was also used to check for resonant 

waves. Unitarity corrections to the isobar model have been 

shown not to be serious. 

Resonances were sought in the final Argand diagrams 

and cross-section plots, then compared with other experimental 

results and with theory. The {70, 1-} supermultiplet is seen 

clearly and is definitely "anti-SU(6)w". A possible D35 

resonance is noted, but other explanations for the behaviour 

of this wave are given. Some members of the {56, 2+} super-

multiplet are seen, but it is not clear whether it is 

"anti-SU(6)w" or "SU(6)w-like". The {56, 0+ 12  supermultiplet 

is also seen, and we find a P31(1525) resonance which 

requires the existence of a {70, 0+} supermultiplet. 

Our O.P.E. results were self-consistent, the scattering 

length ao2  was found to be inconsistent with theory, but 

consistent with other experimental determinations. The phase 

shifts sot  agree at low V7 masses with other experiments. 

The achievements of this work can be favourably 

compared with a list describing the "ideal 77N TrTrN analysis", 

given by another Ph.D. student, D.E. Novoseller, in his 

recent Ph.D. thesis (ref. 53). 

(a) "Include all,ro, p N, EN low partial waves" 

We have analysed only 7+p data, so EN waves were not 

needed, but we have included all the pro and pN waves. 

(b) "Include the effects of various ITN* isobar contributions" 
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We have included the Roper N#(1470) isobar, the only 

important one in our range of energies. 

(c) "Include proper barrier factors for the isobar production 

amplitude" 

We have not done this, but Rob Stevens, in the Ph.D. 

thesis immediately preceding this one (ref. 9) showed 

that CO barrier factors were satisfactory at our energies. 

(d) "Include the Tr.-exchange input for the high partial waves" 

We have treated this problem differently from Novoseller, 

but have included 0.P.E., and have shown it to be 

successful. 

(e) "Incorporate subenergy unitarity" 

We have not done this, but we quote K.W.J. Barnham who 

has used our data to show that this effect is small. 

(f) "Include the effect of 1=2 TM scattering" 

We have used 0.P.E. to do this. 

(g) "Include corrections due to electromagnetic mass 

differences" 

We feel that this cannot at present be justified. Even 

with our accurate normalisation integrals and good 7+p  

statistics, we cannot hope for accuracy at a level where 

electromagnetic mass differences can have a noticeable 

effect. This does however bring out an important point - 

better results need higher statistics. Novoseller 

suggests a factor of 20 more data, but where is this to 

come from? A few groups still have unmeasured Trp film, 

at our energies, but this would not even double present 

statistics. Taking 3-body data in any apparatus other 
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than a bubble chamber and analysing it is extremely 

difficult. Even if we were to ask for a factor of three 

more data, where are we to get it? SU(6)w  has not yet 

been investigated to theorists'satisfaction, but 

experimental work has long since bypassed it, and bubble 

chambers have been closed down or assigned to other work. 

Perhaps the new Japanese K.E.K. bubble chamber will be 

used to take the required film, but who will measure it? 

The work we have done compares favourably with 

Novoseller's list, but much could still be done. Using our 

present data, we could analyse higher energies, add another 

N* isobar, and perform a K-matrix analysis. An amalgamation 

of world data could be analysed by 1r,r N analysts from various 

groups, and more data would be welcome. Perhaps even, a 

theoretical breakthrough will explain present results 

completely and obviate the need for further experimental 

work. For the present - we have done more than we dreamt 

of doing. 
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Appendix A  

Argand diagrams with errors for all waves fitted, 

obtained from the original non-O.P.E. fits. 

Points 1-9 denote solutions at the following energies 

(in GeV) 

1 - 1.439 2 - 1.495 3 - 	1.526 

4 - 1.551 5 - 1.577 6 - 1.612 

7 - 1.640 8 - 1.668 9 - 1.693 

non O.P.E. 
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non O.P.E. 
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non O.P.E. 
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non O.P.E. 
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non O.P.E. 
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non 0.P.E. 
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non O.P.E. 
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non O.P.E. 
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non O.P.E. 
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Appendix B  

Argand diagrams with errors for all waves fitted, 

obtained from the refits with O.P.E. 

Points 1-9 denote solutions at the following energies 

(in GeV) 

1 - 	1.439 2 - 1.495 3 - 1.526 

4 - 1.551 5 - 1.577 6 - 1.612 

7 - 1.640 8 - 1.668 9 - 1.693 

O.P.E. refit 
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O.P.E. refit 
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O.P.E. refit 
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0.P.E. refit 
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0.P.E. refit 
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O.P.E. refit 



1I'1(T) 
O.S 

IMCT) 
O.S 

RH01 FF35 

RH03 5031 
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O.P.E. refit 

RH01 FF37 

RH03 PP31 

O.S 
RE(T) 
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O.P.E. refit 
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O.P.E. refit 
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