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We study the decay of a Higgs-like scalar Yukawa coupled to massless fermions in post-inflationary
cosmology, combining a nonperturbative method with an adiabatic expansion. A dynamical renormaliza-
tion is introduced to describe the formation of a renormalized (quasiparticle) state. The renormalized
survival probability PΦðtÞ is ultraviolet finite, independent of the cutoff and decays on much longer time
scales. During radiation domination, for a (quasi)particle “born” at time tb and decaying at rest in the

comoving frame, PΦðtÞ ¼ ½ ttb�
− Y2

8π2e
Y2

4π2
ðt=tbÞ1=4e−Γ0ðt−tbÞPΦðtbÞ, where Γ0 is the decay rate at rest in Minkowski

space-time. The power with the “anomalous dimension” and the stretched exponential are remnants of the
formation of the quasiparticle and a consequence of the cosmological redshift. For an ultrarelativistic

particle we find PΦðtÞ ¼ e−
2
3
Γ0tnrðt=tnrÞ3=2PΦðtbÞ before it becomes nonrelativistic at a time tnr as a

consequence of the cosmological redshift. For t ≫ tnr we find PΦðtÞ ¼ ½ ttnr�
− Y2

8π2e
Y2

4π2
ðt=tnrÞ1=4

½ ttnr�Γ0tnr=2e−Γ0ðt−tnrÞPΦðtnrÞ. The extra power is a consequence of the memory on the past history of the

decay process. We compare these results to an S-matrix-inspired phenomenological Minkowski-like decay
law modified by an instantaneous Lorentz factor to account for cosmological redshift. Such a
phenomenological description underestimates the lifetime of the particle. For very long-lived, very
weakly coupled particles, we obtain an upper bound for the survival probability as a function of redshift z

valid throughout the expansion history PΦðzÞ≳ e−
Γ0
H0

ϒðz;zbÞPΦðzbÞ, where ϒðz; zbÞ only depends on
cosmological parameters and tnr.

DOI: 10.1103/PhysRevD.100.023531

I. INTRODUCTION

The decay and scattering of particles are some of the
most fundamental processes in particle physics, within and
beyond the Standard Model, and they have a profound
impact on cosmology. These processes are ultimately
responsible for establishing a state of local thermodynamic
and chemical equilibrium and are fundamental ingredients in
kinetic processes in the early Universe [1–3]. Particle decay
is not only ubiquitous; it also plays an important role in big
bang nucleosynthesis (BBN) [1,4–9], and the generation of
the baryon and lepton asymmetries [10–13]. The decay of
long-lived dark matter particles is constrained by various
cosmological and astrophysical probes [14–18], and recently

it has been suggested that the two-body decay of a long-lived
dark matter particle may relieve the tension between the
distance ladder and cosmic microwave background mea-
surements of the Hubble constant [19].
Most treatments of particle decay (and/or inverse decay)

in cosmology implement the S-matrix quantum field theory
approach as in Minkowski space-time. In this framework,
the unstable decaying state is prepared at a time far in the
past (t → −∞), and one obtains the transition amplitude to
a given final state far in the future (t → ∞). Taking the
infinite-time limit in the transition amplitude yields a
total-energy-conserving delta function. Squaring this delta
function to obtain the transition probability yields a total-
energy-conserving delta function multiplied by the total
elapsed time. Dividing by this large time and summing over
all of the final states for a given decay channel gives the
total transition probability per unit time, namely, a decay
rate. Energy conservation, a consequence of the infinite-
time limit, yields kinematic constraints (thresholds) for
decay and scattering processes.
In an expanding cosmology such an approach is at best

approximate and at worst unreliable when the Hubble
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expansion rate is large, even during a post-inflationary
early stage of a radiation-dominated cosmology, or if the
lifetime of the particle is of the order of the Hubble time.
In a spatially flat Friedmann-Robertson-Walker (FRW)
cosmology there are three space-like Killing vectors
associated with spatial translational invariance and spatial
momentum conservation; however, as a consequence of
cosmological expansion there is no global time-like Killing
vector, and therefore particle energy is not manifestly
conserved in scattering or decay processes.
A consistent formulation of dynamic processes in an

expanding cosmology requires implementing methods of
quantum field theory in curved space-time [20–28].
Early studies revealed a wealth of novel phenomena such
as particle production [20,23,24] and processes that are
forbidden in Minkowski space-time as a consequence of
strict energy conservation.
S-matrix theory was extended to simple cosmological

space-times to study the decay of a massive particle into
two massless particles conformally coupled to gravity in
Ref. [29]. In Refs. [30,31] these methods were adapted to
calculate the decay of a massive bosonic particle at rest
into two massless bosonic particles conformally coupled to
gravity and into massless fermions Yukawa coupled to a
scalar.
More recently [32] the decay of bosonic particles into two

other bosonic degrees of freedom (d.o.f.) during a radiation-
dominated era was studied by implementing a nonperturba-
tive method. This method was adapted to quantum field
theory from the study of linewidths in quantum optics
[33,34], combined with a physically motivated adiabatic
expansion. While the results of this reference agreed with
those obtained in Ref. [30] for a particle decaying at rest in
the comoving frame in the long-time limit, they revealed new
phenomena for highly relativistic decaying particles as a
consequence of the cosmological redshift, and the relaxation
of kinematic thresholds as a consequence of energy uncer-
tainties determined by the Hubble scale.
Our study in this article is a natural extension of that in

Ref. [32] that focuses on the decay of a heavy bosonic
particle into fermions, which is a more relevant case for
Standard Model physics (and probably beyond) since most
of the fermionic d.o.f. in the Standard Model (with the
possible exception of neutrinos) are Yukawa coupled to the
Higgs boson.
Brief summary: The study of fermionic d.o.f. as decay

products introduces several conceptually important dis-
tinctions to the bosonic case studied in Refs. [30,32] that
result in novel aspects of cosmological decay. First,
fermionic d.o.f. couple to the background gravitational
field via the spin connection [20,25,28,35–45]. Second,
fermions Yukawa coupled to a bosonic d.o.f. yield a
renormalizable theory. Recently the decay of a bosonic
particle Yukawa coupled to fermions was studied within
a nonperturbative real-time framework in Minkowski

space-time [46]. This study revealed novel transient
dynamics associated with the dressing of the decaying
particle by fermion-antifermion pairs into a quasiparticle
state, which decays on a longer time scale. Such “dressing”
leads to the necessity of an ultraviolet-divergent renorm-
alization of the decaying state and a detailed understanding
of the various time scales to separate the many-particle
dynamics of renormalization and dressing from that of the
actual decay of the quasiparticle. Such dynamical effects
cannot be addressed within an S-matrix framework since
these effects are not secular in time and their contribution
vanishes when the transition probability is divided by the
total time in the infinite-time limit. The dynamics of
dressing and quasiparticle formation have been recently
addressed in Ref. [47] for a consistent interpretation of the
reduction formula in asymptotic quantum field theory.
We introduce a dynamical renormalization that absorbs

the ultraviolet divergences associated with fermion pairs
into a renormalized survival probability at a renormaliza-
tion time scale tb. The survival probability obeys a
dynamical renormalization group equation with respect
to tb. The cosmological redshift encodes the memory of the
transient dynamics of quasiparticle formation in the decay
law not seen in Minkowski space-time. If the decaying
particle is ultrarelativistic, the decay dynamics depends
crucially on tnr, the time scale at which it becomes
nonrelativistic as a consequence of the cosmological red-
shift. An S-matrix-inspired, phenomenologically motivated
Minkowski-like decay law is shown to underestimate the
lifetime of the decaying state. Section II introduces the
model and the adiabatic approximation, and Sec. III
summarizes the nonperturbative framework to obtain the
time evolution of the survival probability. In Sec. IV we
obtain the decay function for massless fermions during
radiation domination, Sec. V describes the dynamical
renormalization method, and Sec. VI analyzes the decay
dynamics of the renormalized survival probability during
radiation domination, compares the results to an S-matrix-
inspired decay function, and introduces an upper bound to
the decay function for very long-lived, very weakly coupled
particles that is valid throughout the entire expansion history.
Section VII discusses the various results, analyzes their
regime of validity, and highlights several implications.
Section VIII presents our conclusions and summarizes the
main results. Various appendices contain technical details; in
particular, Appendix B derives the decay law in Minkowski
space-time and highlights the renormalization aspects to
make a comparison with the curved space-time case.

II. THE MODEL

We consider a Higgs-like scalar field Yukawa coupled
to one Dirac fermion in a spatially flat FRW cosmology
with scale factor aðtÞ in comoving time. Generalizing to
include Majorana fermions and/or more fermionic species
is straightforward.
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In comoving coordinates, the action is given by

S ¼
Z

d3xdt
ffiffiffiffiffiffi
−g

p �
1

2
_ϕ2 −

ð∇ϕÞ2
2a2

−
1

2
½M2 þ ξR�ϕ2

þ Ψ̄½iγμDμ −mf − Yϕ�Ψ
�
; ð2:1Þ

where

R ¼ 6

�
ä
a
þ
�
_a
a

�
2
�

ð2:2Þ

is the Ricci scalar and ξ is the coupling to gravity, with
ξ ¼ 0; 1=6 corresponding to minimal or conformal cou-
pling, respectively. Introducing the vierbein field eμaðxÞ
defined as

gμνðxÞ ¼ eμaðxÞeνbðxÞηab;

where ηab is the Minkowski space-time metric, the curved
space-time Dirac gamma matrices γμðxÞ and the fermionic
covariant derivative Dμ are given by [25,35–37]

γμðxÞ ¼ γaeμaðxÞ; fγμðxÞ; γνðxÞg ¼ 2gμνðxÞ; ð2:3Þ

where the γa are the Minkowski space-time Dirac matrices,
chosen to be in the standard Dirac representation, and the
covariant derivative Dμ is given in terms of the spin
connection by

Dμ ¼ ∂μ þ
1

8
½γc; γd�eνcð∂μedν − Γλ

μνedλÞ; ð2:4Þ

where Γλ
μν are the usual Christoffel symbols.

For an FRW cosmology in conformal time dη ¼ dt=aðtÞ,
the metric becomes

gμν ¼ C2ðηÞημν; CðηÞ≡ aðtðηÞÞ; ð2:5Þ

where ημν ¼ diagð1;−1;−1;−1Þ is the flat Minkowski
space-time metric, and the vierbeins eμa are given by

eμa ¼ C−1ðηÞδμa; eaμ ¼ CðηÞδaμ: ð2:6Þ

The fermionic part of the action in conformal coordinates
now becomes

Sf ¼
Z

d3xdηC4ðηÞΨ̄ðx⃗; ηÞ
�
i

γ0

CðηÞ
�
d
dη

þ 3
C0ðηÞ
2CðηÞ

�

þ i
γi

CðηÞ∇i −mf − Yϕ

�
Ψðx⃗; ηÞ: ð2:7Þ

The Dirac Lagrangian density in conformal time
simplifies to

ffiffiffiffiffiffi
−g

p
Ψ̄ðiγμDμΨ −mf − YϕÞΨ

¼ ðC3=2ðηÞΨ̄ðx⃗; ηÞÞ½i∂ − ðmf þ YϕÞCðηÞ�
× ðC3=2ðηÞΨðx⃗; ηÞÞ; ð2:8Þ

where i∂ ¼ γa∂a is the usual Dirac differential operator in
Minkowski space-time in terms of flat space-time γa

matrices. Introducing the conformally rescaled fields

CðηÞϕðx⃗; tÞ ¼ χðx⃗; ηÞ; C
3
2ðηÞΨðx⃗; tÞ ¼ ψðx⃗; ηÞ ð2:9Þ

and neglecting surface terms, the action becomes

S ¼
Z

d3xdηfL0½χ� þ L0½ψ � þ LI½χ;ψ �g; ð2:10Þ

with

L0½χ� ¼
1

2
½χ02 − ð∇χÞ2 −M2ðηÞχ2�; ð2:11Þ

L0½ψ � ¼ ψ̄ ½i∂ −M2
fðηÞ�ψ ; ð2:12Þ

LI½χ;ψ � ¼ −Yχψ̄ψ : ð2:13Þ

The effective time-dependent masses are given by

M2ðηÞ ¼ m2
ϕC

2ðηÞ − C00ðηÞ
CðηÞ ð1 − 6ξÞ ð2:14Þ

and

MfðηÞ ¼ mfCðηÞ: ð2:15Þ

In the noninteracting case Y ¼ 0, the Heisenberg
equations of motion for the spatial Fourier modes with
comoving wave vector k⃗ for the conformally rescaled scalar
field are

χ00
k⃗
ðηÞ þ ½k2 þM2ðηÞ�χk⃗ðηÞ ¼ 0: ð2:16Þ

The Heisenberg fields are quantized in a comoving
volume V, and the real scalar field χ is expanded as

χðx⃗; ηÞ ¼ 1ffiffiffiffi
V

p
X
k⃗

h
ak⃗gkðηÞeik⃗·x⃗ þ a†

k⃗
g�kðηÞe−ik⃗·x⃗

i
; ð2:17Þ

where the mode functions gkðηÞ obey�
d2

dη2
þ k2 þM2ðηÞ

�
gkðηÞ ¼ 0: ð2:18Þ

The mode functions are chosen to obey the Wronskian
condition
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g0kðηÞg�kðηÞ − g�k
0ðηÞgkðηÞ ¼ −i; ð2:19Þ

and a; a† obey the usual canonical commutation relations.
For Dirac fermions the field ψðx⃗; ηÞ is expanded as

ψðx⃗; ηÞ ¼ 1ffiffiffiffi
V

p
X

k⃗;λ¼1;2

h
bk⃗;λUλðk⃗; ηÞeik⃗·x⃗ þ d†

k⃗;λ
Vλðk⃗; ηÞe−ik⃗·x⃗

i
;

ð2:20Þ

where the spinor mode functions U, V obey the Dirac
equations [38–45]

½iγ0∂η − γ⃗ · k⃗ −MfðηÞ�Uλðk⃗; ηÞ ¼ 0; ð2:21Þ

½iγ0∂η þ γ⃗ · k⃗ −MfðηÞ�Vλðk⃗; ηÞ ¼ 0: ð2:22Þ

These equations become simpler by writing

Uλðk⃗; ηÞ ¼ ½iγ0∂η − γ⃗ · k⃗þMfðηÞ�fkðηÞUλ; ð2:23Þ

Vλðk⃗; ηÞ ¼ ½iγ0∂η þ γ⃗ · k⃗þMfðηÞ�hkðηÞVλ; ð2:24Þ

with Uλ;Vλ being constant spinors [44,45] obeying

γ0Uλ ¼ Uλ; γ0Vλ ¼ −Vλ: ð2:25Þ

Inserting Eqs. (2.23)–(2.24) into the Dirac equations (2.21)–
(2.22) and using Eq. (2.25), it follows that the mode
functions fkðηÞ; hkðηÞ obey the equations

�
d2

dη2
þ k2 þM2

fðηÞ − iM0
fðηÞ

�
fkðηÞ ¼ 0; ð2:26Þ

�
d2

dη2
þ k2 þM2

fðηÞ þ iM0
fðηÞ

�
hkðηÞ ¼ 0: ð2:27Þ

Multiplying the Dirac equations on the left by γ0, it is
straightforward to confirm that

d
dη

ðU†
λðq; ηÞUλðq; ηÞÞ ¼ 0;

d
dη

ðV†
λðq; ηÞVλðq; ηÞÞ ¼ 0:

ð2:28Þ

We choose the normalizations

U†
λðq; ηÞUλ0 ðq; ηÞ ¼ V†

λðq; ηÞVλ0 ðq; ηÞ ¼ δλ;λ0 ; ð2:29Þ

so that the operators b; b†; d; d† obey the canonical anti-
commutation relations. Furthermore, we will choose
particle-antiparticle boundary conditions so that hkðηÞ ¼
f�kðηÞ (see below). We note that formf ¼ 0 the conformally
rescaled Fermi fields obey the same equations as in
Minkowski space-time but in terms of conformal time,

whereas this only occurs for bosons if they are conformally
coupled to gravity, namely, with ξ ¼ 1=6, or for a radiation-
dominated cosmology (see below). The equivalence of
massless fermions to those in Minkowski space-time will
allow a direct comparison with the case of decay in flat
space-time studied in Ref. [46] and summarized in
Appendix B, and to interpret the differences with the curved
space-time case.

A. Adiabatic approximation in post-inflationary
cosmology

The standard (post-inflation) cosmology is described by
radiation (RD), matter (MD), and dark energy (DE)-
dominated stages, we take the latter to be described by a
cosmological constant. Friedmann’s equation in comoving
time is

�
_a
a

�
2

¼ H2ðtÞ ¼ H2
0

�
ΩM

a3ðtÞ þ
ΩR

a4ðtÞ þ ΩΛ

�
; ð2:30Þ

where the scale factor is normalized to a0 ¼ aðt0Þ ¼ 1
today. We take the following representative values of the
parameters [48–50]:

H0 ¼ 1.5 × 10−42 GeV; ΩM ¼ 0.308;

ΩR ¼ 5 × 10−5; ΩΛ ¼ 0.692: ð2:31Þ

Passing to conformal time η with dη ¼ dt=aðtÞ, where the
metric is given by Eq. (2.5) and CðηÞ≡ aðtðηÞÞ, it follows
that

dCðηÞ
dη

¼ H0

ffiffiffiffiffiffiffi
ΩM

p
½aeq þ CðηÞ þ sC4ðηÞ�1=2; ð2:32Þ

with

aeq ¼
ΩR

ΩM
≃ 1.66 × 10−4; s ¼ ΩΛ

ΩM
≃ 2.25; ð2:33Þ

where aeq is the scale factor at matter-radiation equality.
Hence the different stages of cosmological evolution

(namely, RD, MD, and DE) are characterized by

CðηÞ ≪ aeq ⇒ RD;

aeq ≪ CðηÞ≲ 0.76 ⇒ MD;

CðηÞ > 0.76 ⇒ DE: ð2:34Þ

We will begin by studying the dynamics of particle decay
during the RD era, generalizing afterwards to the case of
a very long-lived, very weakly coupled particle. During RD
and MD, we find
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CðηÞ ¼ HRη

�
1þHRη

4aeq

�
; ð2:35Þ

where

HR ¼ H0

ffiffiffiffiffiffi
ΩR

p
≃ 10−44 GeV; ð2:36Þ

and conformal time in terms of the scale factor is given by

ηðCÞ ¼ 2aeq
HR

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C

aeq

s
− 1

#
: ð2:37Þ

During the RD stage

CðηÞ ≃HRη; ð2:38Þ

and the relation between conformal and comoving time is
given by

η ¼
�
2t
HR

�1
2

⇒ aðtÞ ¼ ½2tHR�12; ð2:39Þ

a result that will prove useful in the study of the decay law
during this stage.
Bosonic fields: Solving the mode equations (2.18),

(2.26), and (2.27) with the cosmological scale factor
(2.35) is obviously very challenging; instead, we imple-
ment a physically motivated adiabatic expansion. To high-
light the nature of the expansion, let us first consider the
bosonic mode equation (2.18). The term proportional to
C00=C in Eq. (2.18) vanishes identically in a radiation-
dominated cosmology or for conformally coupled bosonic
fields for which ξ ¼ 1=6. We argue below that we can
consistently neglect this term to leading order in the
adiabatic expansion throughout the entire cosmological
evolution during RD and MD [see Eq. (2.54)]. Neglecting
this term, the mode equation (2.18) becomes

�
d2

dη2
þ ω2

kðηÞ
�
gkðηÞ ¼ 0; ω2

kðηÞ ¼ k2 þm2
ϕC

2ðηÞ:

ð2:40Þ

We recognize that

ωkðηÞ ¼ CðηÞEkðtÞ; ð2:41Þ

where

EkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2pðtÞ þm2

ϕ

q
; kpðtÞ ¼ k=aðtÞ ð2:42Þ

is the local energy measured by a comoving observer,
and kpðtÞ is the physical wave vector redshifting with the
cosmological expansion.

Writing the solution of Eq. (2.40) in the WKB form
[23,25–28]

gkðηÞ ¼
e
−i
R

η

ηi
Wkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WkðηÞ
p ð2:43Þ

and inserting this ansatz into Eq. (2.40), it follows that
WkðηÞ must be a solution of the equation [25]

W2
kðηÞ ¼ ω2

kðηÞ −
1

2

�
W00

kðηÞ
WkðηÞ

−
3

2

�
W0

kðηÞ
WkðηÞ

�
2
�
: ð2:44Þ

This equation can be solved in an adiabatic expansion

W2
kðηÞ ¼ ω2

kðηÞ
�
1 −

1

2

ω00
kðηÞ

ω3
kðηÞ

þ 3

4

�
ω0
kðηÞ

ω2
kðηÞ

�
2

þ � � �
�
:

ð2:45Þ
We refer to terms that feature n derivatives of ωkðηÞ as
being of nth adiabatic order. The nature and reliability of
the adiabatic expansion is revealed by considering the term
of first adiabatic order,

ω0
kðηÞ

ω2
kðηÞ

¼ m2
ϕCðηÞC0ðηÞ

½k2 þm2
ϕC

2ðηÞ�3=2 : ð2:46Þ

This is most easily recognized in comoving time t in terms
of the comoving local energy (2.41)–(2.42) and the Hubble
expansion rate

HðtÞ ¼ _aðtÞ
aðtÞ ¼

C0ðηÞ
C2ðηÞ : ð2:47Þ

In terms of these variables, the first-order adiabatic ratio
(2.46) becomes [32]

ω0
kðηÞ

ω2
kðηÞ

¼ HðtÞ
γ2kðtÞEkðtÞ

; ð2:48Þ

where

γkðtÞ ¼
EkðtÞ
mϕ

ð2:49Þ

is the local Lorentz factor.
The adiabatic approximation relies on the smallness of

the (time-dependent) adiabatic ratio

HðtÞ
EkðtÞ

≪ 1; ð2:50Þ

corresponding to the physical wavelength ∝ 1=kpðtÞ and/or
the Compton wavelength of the particle 1=mϕ being much
smaller than the size of the particle horizon dHðtÞ ∝
1=HðtÞ at a given time. During RD the particle horizon
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grows as a2ðtÞ and during MD it grows as a3=2ðtÞ, whereas
the physical wavelength grows as aðtÞ. Therefore, if at a
given initial time the adiabatic approximation is valid and
HðtÞ ≪ EkðtÞ, the reliability of the adiabatic expansion
improves with the cosmological expansion.
To understand the origin of this approximation, consider

that the decaying particle is produced in the RD stage
during which

HðtÞ ≃ 1.66
ffiffiffiffiffiffiffi
geff

p T2ðtÞ
MPl

; ð2:51Þ

where geff ≲ 100 is the number of ultrarelativistic d.o.f.
Therefore,

HðtÞ
EkðtÞ

≲
�
TðtÞ
EkðtÞ

��
TðtÞ
GeV

�
× 10−18: ð2:52Þ

An upper bound on this ratio is obtained by considering
that the decaying particle is produced at the scale of grand
unification with T ≃ 1015 GeV, assuming that this scale
describes the onset of the RD era. Taking a typical comoving
energy EkðtÞ ≃ TðtÞ, one finds that HðtÞ=EkðtÞ≲ 10−3 and
diminishes with cosmological expansion and diminishing
temperature. This argument suggests that for typical particle
physics processes the adiabatic ratio HðtÞ=EkðtÞ ≪ 1
throughout the post-inflation thermal history.
In terms of this adiabatic ratio, we find

ω00
kðηÞ

ω3
kðηÞ

¼ 1

γ2kðtÞ
�

RðtÞ
6E2

kðtÞ
þH2ðtÞ

E2
kðtÞ
�
−

H2ðtÞ
γ4kðtÞE2

kðtÞ
; ð2:53Þ

where RðtÞ is the Ricci scalar (2.2). Furthermore, it is
straightforward to find that

C00

Cω2
k

¼ 2

�
_H

2E2
k

þH2

E2
k

�
¼ α

H2

E2
k

; α ≃ 0ðRDÞ;

α ≃
1

2
ðMDÞ: ð2:54Þ

Therefore, this ratio is of second adiabatic order and can
be safely neglected to the leading adiabatic order pursued
in this study, justifying the simplification of the mode
equations to Eq. (2.40) even for nonconformal coupling to
gravity.
In this study we consider the zeroth adiabatic order with

the mode functions given by

gkðηÞ ¼
e
−i
R

η

ηi
ωkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðηÞ
p : ð2:55Þ

Since the decay function is ∝ Y2, keeping the zeroth
adiabatic order yields the leading contribution to the decay
law. Furthermore, as shown in detail in Ref. [32], particle

production as a consequence of cosmological expansion is
an effect of higher order in the adiabatic expansion, and
thus it can be safely neglected to leading order.
The phase of the mode function has an immediate

interpretation in terms of comoving time and the local
comoving energy (2.41)–(2.42), namely,

e
−i
R

η

ηi
ωkðη0Þdη0 ¼ e

−i
R

t

ti
Ekðt0Þdt0 ; ð2:56Þ

which is a natural generalization of the phase of positive-
frequency particle states in Minkowski space-time.
During the RD era with CðηÞ given by Eq. (2.38), we

find that the criterion (2.50) for the validity of the adiabatic
approximation implies

ωkðηÞη ¼
EkðtÞ
HðtÞ ≫ 1: ð2:57Þ

Fermi fields: The adiabatic expansion is straightfor-
wardly applied to the fermionic case and has been dis-
cussed in the literature [39–43]. Beginning with the mode
equations (2.26)–(2.27) with M0

fðηÞ ¼ mfC0ðηÞ and now
with ω2

kðηÞ ¼ k2 þM2
fðηÞ, it follows that

M0
fðηÞ

ω2
kðηÞ

¼ HðtÞ
γkðtÞEkðtÞ

; ð2:58Þ

and therefore the purely imaginary terms in these mode
equations are of first adiabatic order and will be neglected
to leading (zeroth) adiabatic order. Hence, to leading order
we find

fkðηÞ ¼ h�kðηÞ ¼
e
−i
R

η

ηi
ωkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðηÞ
p : ð2:59Þ

In what follows we will refer to ω2
kðηÞ ¼ k2 þM2ðηÞ for

both bosonic and fermionic d.o.f. with M2ðηÞ ¼ m2C2ðηÞ
for either case. To leading (zeroth) order in the adiabatic
expansion, the Dirac spinor solutions in the standard Dirac
representation and with the normalization conditions (2.29)
are found to be

Uλðk⃗; ηÞ ¼
e
−i
R

η

ηi
ωkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðηÞ
p

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkðηÞ þMfðηÞ

p
χλ

σ⃗·k⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkðηÞþMfðηÞ

p χλ

1
CA;

χ1 ¼
�
1

0

�
; χ2 ¼

�
0

1

�
; ð2:60Þ

and
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Vλðk⃗; ηÞ ¼
e
i
R

η

ηi
ωkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkðηÞ

p
 σ⃗·k⃗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωkðηÞþMfðηÞ
p φλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkðηÞ þMfðηÞ

p
φλ

!
;

φ1 ¼
�
0

1

�
; φ2 ¼ −

�
1

0

�
: ð2:61Þ

To leading adiabatic order these spinors satisfy the
completeness relations

X
λ¼1;2

Uλ;aðk⃗; ηÞŪλ;bðk⃗; η0Þ ¼
e
−i
R

η

η0 ωkðη1Þdη1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkðηÞωkðη0Þ

p Λþ
k⃗;ab

ðη; η0Þ;

X
λ¼1;2

Vλ;aðk⃗; η0ÞV̄λ;bðk⃗; ηÞ ¼
e
−i
R

η

η0 ωkðη1Þdη1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkðηÞωkðη0Þ

p Λ−
k⃗;ab

ðη0; ηÞ;

ð2:62Þ

where the projector operators at different times Λþ
k ðη; η0Þ;

Λ−
k ðη0; ηÞ and their properties are given in Appendix A.

III. NONPERTURBATIVE APPROACH
TO THE DECAY LAW

In Minkowski space-time, the decay rate of a particle is
typically computed via S-matrix theory by obtaining the
transition probability per unit time from an in state prepared
in the infinite past to an out state in the infinite future.
Obviously, such an approach—taking the infinite-time limit
—is not suitable in a time-dependent gravitational back-
ground. An alternative approach in Minkowski space-time
considers the Dyson-resummed propagator in frequency
space that includes radiative corrections through the self-
energy. The imaginary part of the self-energy evaluated on
the mass shell in frequency space is identified with the
decay rate, and a Breit-Wigner approximation to the full
propagator—namely, approximating the self-energy near
the (complex) pole—yields the exponential decay law.
Again, such an approach is not available in an expanding
cosmological background where the lack of a time-like
Killing vector prevents Fourier transforms in time-frequency,
and makes the self-energy explicitly dependent on two time
arguments (rather than just the difference).
Instead, we implement a quantum field theory method

that complements and extends the Wigner-Weisskopf
theory of atomic linewidths and is particularly suited to
study time evolution in time-dependent situations. This
method is manifestly unitary and yields a nonperturbative
description of transition amplitudes and probabilities
directly in real time. We summarize below the main aspects
of the method as it applies to this study, referring the reader
to Refs. [32–34] for details. The total Hamiltonian in
conformal time is given by H0 þHI, where H0 is the free
field Hamiltonian and

HIðηÞ ¼ Y
Z

d3xχðx⃗; ηÞψ̄ðx⃗; ηÞψðx⃗; ηÞ ð3:1Þ

is the interaction Hamiltonian in the interaction picture.
Passing to the interaction picture wherein a given state is
expanded in the Fock states associated with the creation
and annihilation operators a; a†; b; d, etc. of the free theory,
namely, jΦðηÞiI ¼

P
nCnðηÞjni, the amplitudes obey the

coupled equations

i
d
dη

CnðηÞ ¼
X
m

CmðηÞhnjHIðηÞjmi: ð3:2Þ

This is an infinite hierarchy of integro-differential
equations for the coefficients CnðηÞ. Consider that initially
the state is jΦi so that CΦðηiÞ ¼ 1, CκðηiÞ ¼ 0 for jκi ≠ jΦi,
and consider a first-order transition process jΦi → jκi to
intermediate multiparticle states jκi with transition matrix
elements hκjHIðηÞjΦi. Obviously the state jκi will be
connected to other multiparticle states jκ0i different from
jΦi via HIðηÞ. Hence, for example, up to second order in
the interaction the state jΦi → jκi → jκ0i. Restricting the
hierarchy to first-order transitions from the initial state
jΦi ↔ jκi and neglecting the contribution from vacuum
diagrams that just yield a redefinition of the vacuum state1

(see the discussion in Ref. [32]) results in the following
coupled equations:

i
d
dη

CΦðηÞ ¼
X
κ

CκðηÞhΦjHIðηÞjκi; ð3:3Þ

i
d
dη

CκðηÞ ¼ CΦðηÞhκjHIðηÞjΦi; CΦðηiÞ ¼ 1;

CκðηiÞ ¼ 0: ð3:4Þ

Equation (3.4) with CκðηiÞ ¼ 0 is formally solved by

CκðηÞ ¼ −i
Z

η

ηi

hκjHIðη0ÞjΦiCΦðη0Þdη0; ð3:5Þ

and by inserting this solution into Eq. (3.3) we find

d
dη

CΦðηÞ ¼ −
Z

η

ηi

dη0ΣΦðη; η0ÞCΦðη0Þ; ð3:6Þ

where we have introduced the self-energy

ΣΦðη; η0Þ ¼
X
κ

hΦjHIðηÞjκihκjHIðη0ÞjΦi: ð3:7Þ

1This is one of the main differences with the method used in
Refs. [29–31] where a disconnected vacuum diagram was also
included in the transition amplitude.
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We study the decay of a single-particle bosonic state into
a fermion-antifermion pair to leading order in the Yukawa
coupling and the adiabatic approximation. Therefore, the
initial state is a single-particle bosonic state with momen-
tum k⃗, namely, jΦi≡ j1χ

k⃗
i. The set of states jκi with a

nonvanishing matrix element ofHI with this single-particle

state are jκi≡ j1fp⃗;λ; 1fq⃗;λ0 i, where λ; λ0 are the polarizations
of the fermion and antifermion states. The matrix elements
entering in the evolution of the amplitudes are

h1χ
k⃗
jHIðηÞj1fp⃗;λ; 1fq⃗;λ0 i ¼

Vδk⃗;p⃗þq⃗

V3=2

X
a

Uλ;aðp⃗; ηÞV̄λ0;aðq⃗; ηÞ × g�kðηÞ;

h1fp⃗;λ; 1fq⃗;λ0 jHIðη0Þj1χk⃗i ¼
Vδk⃗;p⃗þq⃗

V3=2

X
b

Vλ0;bðq⃗; η0ÞŪλ;bðp⃗; η0Þ × gkðη0Þ; ð3:8Þ

and the self-energy (3.7) to leading order in the adiabatic
expansion becomes

Σχðk; η; η0Þ ¼
X
p⃗;q⃗

X
λ;λ0

h
h1χ

k⃗
jHIðηÞj1fp⃗;λ; 1fq⃗;λ0 i

× h1fp⃗;λ; 1fq⃗;λ0 jHIðη0Þj1χk⃗i
i

¼ Y2
e
i
R

η

η0 ω
ϕ
k ðη1Þdη1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðηÞωϕ

k ðη0Þ
q Z

d3p
ð2πÞ3

×
e
−i
R

η

η0 ðω
ψ
pðη1Þþωψ

q ðη1ÞÞdη1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωψ
pðηÞωψ

pðη0Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωψ
q ðηÞωψ

q ðη0Þ
p

× Tr½Λþ
p⃗ ðη; η0ÞΛ−

q⃗ ðη0; ηÞ�; ð3:9Þ

where q⃗ ¼ k⃗ − p⃗. This is the fermionic one-loop self-
energy in curved space-time to leading order in the
adiabatic expansion.
Obviously the differential equation (3.6) cannot be solved

exactly with the above self-energy. InMinkowski space-time
the self-energy is a function of the time difference, allowing a
solutionvia a Laplace transform [33,34]. However, in a time-
dependent expanding cosmology such an approach is not
available. This is a consequence of the lack of a global time-
like Killing vector. Instead, for weak coupling we resort to
aMarkov approximation [32]. While details are available in
Refs. [32–34] to which the reader is referred, we summarize
here the main aspects of this approximation.
We begin by introducing

EΦðη; η0Þ≡
Z

η0

ηi

ΣΦðη; η00Þdη00; ð3:10Þ

such that

d
dη0

EΦðη; η0Þ ¼ ΣΦðη; η0Þ; ð3:11Þ

with the condition

EΦðη; ηiÞ ¼ 0: ð3:12Þ

Then, Eq. (3.6) can be written as

d
dη

CΦðηÞ ¼ −
Z

η

ηi

dη0
d
dη0

EΦðη; η0ÞCΦðη0Þ; ð3:13Þ

which can be integrated by parts to yield

d
dη

CΦðηÞ ¼ −EΦðη; ηÞCΦðηÞ þ
Z

η

ηi

dη0EΦðη; η0Þ
d
dη0

CΦðη0Þ:

ð3:14Þ

Since EΦ ∝ OðY2Þ the first term on the right-hand side of
Eq. (3.14) is of order Y2, whereas the second is OðY4Þ
because dCΦðηÞ=dη ∝ Y2. Therefore, up to OðY2Þ the
evolution equation for the amplitude CΦ becomes

d
dη

CΦðηÞ ¼ −EΦðη; ηÞCΦðηÞ; ð3:15Þ

with the solution

CΦðηÞ ¼ exp

�
−
Z

η

ηi

EΦðη0; η0Þdη0
�
CΦðηiÞ: ð3:16Þ

This expression clearly highlights the nonperturbative
nature of the Wigner-Weisskopf approximation. The imagi-
nary part of the self-energy ΣΦ yields a renormalization of
the adiabatic frequencies and will not be addressed here
[33,34], whereas the real part determines the decay law

PΦðηÞ≡ jCΦðηÞj2 ¼ e
−
R

η

ηi
ΓΦðη0Þdη0PΦðηiÞ;

ΓΦðηÞ ¼ 2

Z
η

ηi

dη1Re½ΣΦðη; η1Þ�; ð3:17Þ

where we introduced the survival probability PΦðηÞ with
PΦðηiÞ ¼ jCΦðηiÞj2. This final expression for the survival
probability directly exhibits the nonperturbative nature of
the method. The self-energy is given by Eq. (3.9) to leading
order in the Yukawa coupling.
In Refs. [32–34,46] it was established that this non-

perturbative framework correctly describes the short-,
intermediate-, and long-time dynamics in Minkowski
space-time. It provides a real-time nonperturbative
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resummation of Feynman diagrams to a given order in the
perturbative expansion, and in Minkowski space-time it is
equivalent to the time evolution obtained from the inverse
Fourier transform of the Dyson-resummed propagator in
momentum space. For a decaying particle, the propagator
has a complex pole on the second (or higher) Riemann
sheet; for weak coupling, in the narrow-width approxima-
tion the long-time behavior is completely determined by
this pole. The Wigner-Weisskopf and Markov approxima-
tions yield exactly the same result including wave-function
renormalization, and they also correctly describe the early-
time behavior [46].
This equivalence was discussed in greater detail in

Refs. [33,34,46]. The expansion yielding the Markov
approximation (3.14) can be systematically implemented
[33,34,46] as an expansion in time derivatives of the
amplitudes, which in turn is an expansion in powers of
the coupling (squared). This expansion relies on a sepa-
ration of time scales: the typical scale(s) in the self-energy
kernel is the inverse mass of the decaying particle 1=M,
whereas the typical scale of the time evolution of the
amplitude is ∝ 1=Y2M, which determines the relaxation
rate. This separation can be surmised from Eq. (3.15)
which is tantamount to taking Cϕ outside the integral and
evaluating it at η0 ¼ η. Namely, the amplitude varies very
slowly on the time scale of variation of the self-energy.
For vanishing coupling, the amplitudes remain constant and
thus vary slowly for weak coupling, as compared to the
time variation of the self-energy.
In the adiabatic approximation in an expanding cosmol-

ogy, the time scales in the self-energy are completely
determined by the adiabatic frequencies, as explicitly shown
by Eq. (3.9). Therefore, even with the expansion the time
scales in the self-energy are much shorter than the relaxation
time scale ∝ 1=Y2 of the decaying state. In the adiabatic
approximation this separation—even during in expanding
cosmology—validates the Markov approximation.

IV. MASSLESS FERMIONS

Our goal in this article is to study the decay of a heavy
Higgs-like scalar field into much lighter fermions, neglect-
ing the fermion masses. This is a suitable scenario for the
Standard Model where the Higgs scalar can decay into all
of the charged leptons and quarks except for the top quark,
and the quark and lepton masses may be safely neglected.
Such a scenario also includes the possibility of decays
into neutrinos in the case that neutrino masses originate in
Yukawa couplings to a Higgs-like scalar beyond the
Standard Model. We postpone the study of decays into
heavier fermionic d.o.f. to a companion article. Focusing on
the case of massless fermions allows a direct comparison
with results in Minkowski space-time, which are summa-
rized in Appendix B. Furthermore, understanding this
simpler case provides a pathway towards the more general
case of massive fermions (to be studied elsewhere).

For massless fermions ωψ
k ðηÞ ¼ k, in this case the pro-

jector operators Λ� in Eq. (3.9) are given by Eq. (A12) in
Appendix A, and the self-energy (3.9) can be written in
dispersive form as

Σχðk;η;η0Þ ¼Y2
e
i
R

η

η0 ω
ϕ
k ðη1Þdη1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðηÞωϕ

k ðη0Þ
q Z

ρðk0;kÞe−ik0ðη−η0Þ
dk0
2π

;

ð4:1Þ
where the spectral density is given by

ρðk0; kÞ ¼ 8π

Z
d3p
ð2πÞ3

δðk0 − p − jk⃗ − p⃗jÞ
4pjk⃗ − p⃗j

× ½pjk⃗ − p⃗j − p⃗ · ðk⃗ − p⃗Þ�; ð4:2Þ
with the result

ρðk0; kÞ ¼
1

4π
ðk20 − k2ÞΘðk0 − kÞ: ð4:3Þ

We carry out the k0 integral in Eq. (4.1) by introducing an
upper (comoving) ultraviolet cutoff Λ and a short-time
convergence factor η − η0 → η − η0 − iϵ with ϵ → 0þ and
replacing k20 → −d2=dη02, yielding the final result for the
self-energy,

Σχðk; η; η0Þ ¼ −i
Y2

16π2
e
i
R

η

η0 ω
ϕ
k ðη1Þdη1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωϕ
k ðηÞωϕ

k ðη0Þ
q �

d2

dη02
þ k2

�

×

�
e−iΛðη−η0−iϵÞ − e−ikðη−η0−iϵÞ

ðη − η0 − iϵÞ
�
: ð4:4Þ

In our analysis we will keep Λ fixed but large and take the
limit ϵ → 0þ first; clearly, this is the correct limit when the
theory is considered as an effective field theory valid below a
cutoffΛ. We note that the flat space-time limit is obtained by
replacing η → t and making the frequency ωϕ

k time inde-
pendent (see Appendix B).
It remains to perform the time integrals to obtain

ΓΦðηÞ and
R
η
ηi
ΓΦðη0Þdη0 given by Eq. (3.17). The total

time derivative in Eq. (4.4) is integrated by parts and—
consistent with keeping the leading order in the adiabatic
expansion—terms of the form ω0=ω2 are neglected since
these yield higher-order adiabatic corrections. In the limit
ϵ → 0þ for fixed Λ we find the decay function

Z
η

ηi

ΓΦðη0Þdη0 ¼
Y2

8π2
IðΛ; k; ηÞ;

IðΛ; k; ηÞ≡ ½I1ðΛ; k; ηÞ þ I2ðΛ; k; ηÞ þ I3ðΛ; k; ηÞ�;
ð4:5Þ

where

COSMOLOGICAL DECAY OF HIGGS-LIKE SCALARS INTO A … PHYS. REV. D 100, 023531 (2019)

023531-9



I1ðΛ;k;ηÞ¼
Λ−k

ωϕ
k ðηiÞ

(
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðηiÞ

ωϕ
k ðηÞ

s �
sinðR ηηiðΛ−ωϕ

k ðη0ÞÞdη0Þ
ðΛ−kÞðη−ηiÞ

þsinðR ηηiðωϕ
k ðη0Þ−kÞdη0Þ

ðΛ−kÞðη−ηiÞ
�)

; ð4:6Þ

I2ðΛ; k; ηÞ ¼
Z

η

ηi

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðη0Þ

ωϕ
k ðηiÞ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðηiÞ

ωϕ
k ðη0Þ

s #

×

�
1 − cosðR η0ηi ðωϕ

k ðη1Þ − ΛÞdη1Þ
η0 − ηi

−
1 − cosðR η0ηi ðωϕ

k ðη1Þ − kÞdη1Þ
η0 − ηi

�
dη0

≡ I2aðΛ; k; ηÞ þ I2bðk; ηÞ; ð4:7Þ

I3ðΛ; k; ηÞ ¼ m2
ϕ

Z
η

ηi

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðη0Þ

q
8<
:
Z

η0

ηi

C2ðη1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðη1Þ

q

×

�
sinðR η0η1 ðΛ − ωϕ

k ðη2ÞÞdη2Þ
η0 − η1

þ sinðR η0η1 ðωϕ
k ðη2Þ − kÞdη2Þ
η0 − η1

�
dη1

9=
;dη0

≡ I3aðΛ; k; ηÞ þ I3bðk; ηÞ: ð4:8Þ

In obvious notation the contributions I2bðk; ηÞ; I3bðk; ηÞ
are the Λ-independent terms in I2;3, respectively. These
three contributions are studied separately below, where we
analyze their cutoff-dependent and -independent terms and
extract the different physics of each term.

A. Analysis of I1;2;3
In the following analysis we will take the cutoff Λ to be

the largest of all scales; in particular, Λ ≫ ωkðηÞ at all
times.
I1: I1 vanishes identically as η → ηi and the oscillatory

terms become negligibly small for Λðη−ηiÞ≫1. Therefore,
I1 grows to its asymptotic value

I1 ¼
Λ − k

ωϕ
k ðηiÞ

ð4:9Þ

very rapidly, on a time scale η − ηi ≃ 1=Λ. This divergent
contribution corresponds to a renormalization of the
amplitude and is similar to a linearly divergent renormal-
ization in Minkowski space-time [46] (see Appendix B).
I2: The technical details of the analysis of I2 are

relegated to Appendix D. The main result is that for
Λðη − ηiÞ ≫ 1

I2ðΛ; k; ηÞ ¼ 2½ln½Λðη − ηiÞ� þ γE� þ I2bðk; ηÞ; ð4:10Þ

where γE ¼ 0.577 � � � is Euler’s constant and I2bðk; ηÞ is
given by Eq. (D5) in Appendix D where this contribution is
analyzed in detail. We discuss this contribution in further
detail in Secs. V and VI.
I3: With Λ ≫ ωk the argument of the sine function in the

first term in Eq. (4.8) [namely, in I3aðΛ; k; ηÞ] simplifies to
Λðη0 − η1Þ, and therefore

I3aðΛ; k; ηÞ ¼ m2
ϕ

Z
η

ηi

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðη0Þ

q
(Z

η0

ηi

C2ðη1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðη1Þ

q

×
sinðΛðη0 − η1ÞÞ

η0 − η1
dη1

)
dη0: ð4:11Þ

Defining σ ¼ Λðη0 − η1Þ; σf ¼ Λðη0 − ηiÞ, and taking the
limits Λ → ∞; σf → ∞, the integral over η1 in Eq. (4.11)
becomes

Z
∞

0

C2ðη0 − σ=ΛÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðη0 − σ=ΛÞ

q sin σ
σ

dσ⟶
Λ→∞

π

2

C2ðη0Þffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðη0Þ

q : ð4:12Þ

Therefore, in this limit we find

I3aðk; ηÞ ¼
π

2
m2

ϕ

Z
η

ηi

C2ðη0Þ
ωϕ
k ðη0Þ

dη0 ¼ π

2
mϕ

Z
t

ti

1

γkðt0Þ
dt0;

ð4:13Þ

where we used ωϕ
k ðηÞ ¼ CðηÞEϕ

k ðtÞ ¼ mϕCðηÞγkðtÞ and

CðηÞdη0 ¼ dt0, with γkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2pðtÞ=m2

q
being the

Lorentz factor whose time dependence is a consequence
of the cosmological redshift.
In Appendix E we provide the analysis for I3b; gathering

both terms, we find that

I3ðk; ηÞ ¼
π

2
m2

ϕ

Z
η

ηi

C2ðη0Þ
ωϕ
k ðη0Þ

½1þ Sðk; η0Þ�dη0; ð4:14Þ

where Sðk; η0Þ is given by Eq. (E25) with the asymptotic
limit Sðk; η0Þ → 1 for large η0. Therefore, I3 ¼ I3a þ I3b
does not depend on Λ in the limit Λ → ∞. This is similar to
the case in Minkowski space-time [see Appendix B where
the equivalent term is called T3ðk; tÞ, given by Eq. (B7)].

V. RENORMALIZATION: DYNAMICS
OF “DRESSING”

The final result for the decay function in Eq. (4.5),
IðΛ; k; ηÞ, is given by
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IðΛ; k; ηÞ ¼ Λ − k

ωϕ
k ðηiÞ

þ 2 ln½ΛηieγE � þ Ifinðk; ηÞ; ð5:1Þ

where Ifinðk; ηÞ is independent of the cutoff Λ in the limit
Λ → ∞, and for ðη − ηiÞ ≫ 1=Λ it is given by

Ifinðk; ηÞ ¼ 2 ln

�
η

ηi
− 1

�
þ I2bðk; ηÞ þ I3ðk; ηÞ: ð5:2Þ

The linear and logarithmic dependences on the cutoff Λ
are exactly the same as in Minkowski space-time [46], as
obtained in Appendix B. This similarity is expected as the
cutoff dependence arises from the short-distance behavior
of the self-energy correction which should be insensitive to
the curvature of space-time. As discussed in Ref. [46], the
origin of this divergence is the “dressing” of the bare single-
particle state by a cloud of fermion-antifermion pairs into a
renormalized quasiparticle state. In a renormalizable
theory the growth of the density of states at high energy
implies that this cloud of excitations contains high-energy
states. The dynamical buildup of the cloud of excitations
occurs on a time scale η − ηi ≃ 1=Λ at which the divergent
contributions to I1;2 saturate; see Eq. (4.6) and the discussion
in Appendix D.
The “dressing” of the bare state into the physical renor-

malized quasiparticle state is accounted for by the wave-
function renormalization of the amplitude [46]. For large
cutoff scale Λ and for a weakly coupled theory with Y2 ≪ 1
there is a wide separation between the time scales of
formation of the dressed renormalized state η − ηi ≃ 1=Λ,
the time scale of typical oscillations η − ηi ≃ 1=ωϕ

k ðηÞ, and
the decay time scale η − ηi ∝ 1=Y2ωϕ

k ðηÞ, which for weak
coupling is the longest scale. Therefore, we can evolve the
initial state in time up to an intermediate time scale ηb with
ðηb − ηiÞ ≫ 1=Λ, but much smaller than the typical decay
time scale ∝ 1=Y2ωϕ

k ðηiÞ, so that the initial state has enough
time to be “dressed” by fermion-antifermion pairs into the
renormalized quasiparticle state, but does not have time to
decay. For example, taking ηb − ηi ¼ 1=ωϕ

k ðηiÞ fulfills the
conditions of time-scale separation because ωϕ

k ≪ Λ, and
because for Y2 ≪ 1 there will be many oscillations of the
field before it decays. Taking this renormalization scale is
tantamount to an “on-shell” renormalization scheme. We
identify ηb as the time of formation (or “birth”) of the
“dressed” or quasiparticle state [46], which after formation
decays on a much longer time scale.
The time evolution of the “bare” single-particle state

until it is renormalized or “dressed” is implemented by the
following procedure. We write

IðΛ; k; ηÞ≡ IðΛ; k; ηbÞ þ ISðk; η; ηbÞ;
ISðk; η; ηbÞ ¼ IðΛ; k; ηÞ − IðΛ; k; ηbÞ; ð5:3Þ

where, taking ðηb − ηiÞ ≫ 1=Λ, the subtracted quantity

ISðk; η; ηbÞ ¼ 2 ln

�
η − ηi
ηb − ηi

�
þ I2bðk; η; ηbÞ þ I3Sðk; η; ηbÞ

ð5:4Þ

is independent of Λ for η > ηb and Λðηb − ηiÞ ≫ 1. The
subtracted contributions I2bðk; η; ηbÞ; I3Sðk; η; ηbÞ are
defined as

I2bðk; η; ηbÞ≡ I2bðk; ηÞ − I2bðk; ηbÞ;
I3Sðk; η; ηbÞ≡ I3ðk; ηÞ − I3ðk; ηbÞ; ð5:5Þ

and are obtained explicitly in Appendices D and E,
respectively. During RD we find [see Appendix D for
definitions and Eq. (D12)]

I2bðk; η; ηbÞ ¼ −
Z

ξ

ξb

� ffiffiffiffiffiffiffiffiffiffiffi
W½ξ0�

p
þ 1ffiffiffiffiffiffiffiffiffiffiffi

W½ξ0�p �

× ½1 − cos½Jðξ0Þ�� dξ
0

ξ0
; ð5:6Þ

with

ξ ¼ ðη − ηiÞ=ηi; ξb ¼ ðηb − ηiÞ=ηi;

W½ξ� ¼ 1

γi
½ðγ2i − 1Þ þ ð1þ ξÞ2�12; γi ≡ γðηiÞ: ð5:7Þ

Jðξ0Þ is given by Eq. (D9) in Appendix D, and

I3Sðk; η; ηbÞ ¼
π

2
mϕ

Z
η

ηb

Cðη0Þ
γkðη0Þ

½1þ Sðη0Þ�dη0; ð5:8Þ

where SðηÞ is given by Eq. (E25) in Appendix E.
The contribution from IðΛ; k; ηbÞ is absorbed into the
wave-function renormalization Z as follows. We write
Eq. (3.17) as

PΦðηÞ ¼ e
−
R

η

ηi
ΓΦðη0Þdη0PΦðηiÞ≡ e

−
R

η

ηb
ΓΦðη0Þdη0PΦ;rðηbÞ;

ð5:9Þ

where the renormalized probability is given by

PΦ;rðηbÞ ¼ ZðηbÞPΦðηiÞ; ZðηbÞ ¼ e
−
R

ηb
ηi

ΓΦðη0Þdη0 :

ð5:10Þ

The exponent in the wave-function renormalization ZðηbÞ
is given by

Z
ηb

ηi

ΓΦðη0Þdη0 ¼
Y2

8π2
IðΛ; k; ηbÞ; ð5:11Þ
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yielding an ultraviolet-divergent wave-function renormal-
ization. The renormalized probability obeys

PΦ;rðηÞ ¼ e
−
R

η

ηb
ΓΦðη0Þdη0PΦ;rðηbÞ: ð5:12Þ

The decay function that describes the time evolution of
the renormalized survival probability is given by

Z
η

ηb

ΓΦðη0Þdη0 ¼
Y2

8π2
ISðk; η; ηbÞ; ð5:13Þ

which is finite and independent of Λ in the large-cutoff
limit. The time scale ηb acts as a renormalization scale;
obviously, the survival probability PΦ;rðηÞ is independent
of this renormalization scale, and hence it obeys a dynami-
cal renormalization group equation, namely,

∂
∂ηb PΦ;rðηÞ ¼ 0: ð5:14Þ

The solution of this equation is obviously2

PΦ;rðηAÞ ¼ e
−
R

ηA
ηB

ΓΦðη0Þdη0PΦ;rðηBÞ: ð5:15Þ

PΦ;rðηbÞ describes the probability of the renormalized
quasiparticle state. This “dressed” state decays with the
finite and cutoff-independent decay function

R
η
ηb
ΓΦðη0Þdη0

on time scales much longer than the “dressing” or renorm-
alization scale ηb.
In the following analysis we will drop the subscript r

from PΦ;r to simplify notation since we will be strictly
dealing with the renormalized survival probability.
The decay function (5.13) depends explicitly on the

initial time ηi (see explicit expressions in Appendix D).
However, PΦ;rðηbÞ is defined at the renormalization scale
ηb and it is taken to be the initial probability of the fully
renormalized state after all of the short-time transient
dynamics that result in the “dressing” of the bare state
into the renormalized quasiparticle state have subsided.
Therefore, the dependence of the contributions (5.6) and
(5.8) on ηi must be traded for a dependence on ηb.
Let us write

ηb − ηi ¼
β

Λ
; ð5:16Þ

with β ≫ 1 so that the Λ-dependent terms in I1;2 reach their
asymptotic behavior. For example, the “on-shell” renorm-
alization scheme corresponds to β≡ Λ=ωkðηiÞ. Therefore,
in terms of the Hubble rate and the physical cutoff
ΛphðηiÞ ¼ Λ=CðηiÞ at the initial time HðηiÞ, we find in RD

ηb
ηi

¼ 1þ β
HðηiÞ
ΛphðηiÞ

: ð5:17Þ

Since the cutoff scale Λ is taken to be much larger than
any of the energy scales and the adiabatic condition
requires that HðηÞ=EkðηÞ ≪ 1 at all times, it follows that
HðηiÞ=ΛphðηiÞ ≪ HðηÞ=EkðηÞ ≪ 1. Furthermore, we find
that

ωkðηiÞ ¼ ωkðηbÞ
�
1 − β

ω0
kðηbÞ

ω2
kðηbÞ

ωkðηbÞ
Λ

þ � � �
�
; ð5:18Þ

where the second term in the brackets is at most of first
adiabatic order, which is the case for the “on-shell”
renormalization scheme for which βωkðηbÞ=Λ ¼ 1.
Hence, to leading adiabatic order we can safely replace
ωkðηiÞ → ωkðηbÞ in the expressions. Using the results of
Appendix D we find that similar arguments justify the
replacement γkðηiÞ → γkðηbÞ along with ηi → ηb in all of
the quantities that enter in the decay function. In the limit
of large cutoff Λ the trade-off between the variables at the
initial time and those at the renormalization scale ηb does
not depend on the cutoff, as it must be for a consistent
effective field theory description well below the cutoff
scale. We note that the adiabatic approximation plays an
important role in this separation and is a necessary
ingredient because the frequencies depend on time, unlike
in Minkowski space-time. In particular, for the “on-shell”
renormalization scheme

ηb
ηi

− 1 ¼ 1

ωkðηiÞηi
≪ 1 ð5:19Þ

because the adiabatic condition (during RD) corresponds to
ωkðηiÞηi ≫ 1 [see Eq. (2.57)].

VI. DYNAMICS OF DECAY

Once we have absorbed the ultraviolet divergences into a
renormalization of the amplitude, we proceed to analyze
the main physical aspects of the decay dynamics, leverag-
ing the adiabatic approximation.

A. Decay during radiation domination

We assume that the decaying particle has been produced
early during the RD stage by some (unspecified) particle
physics process at a high energy/temperature scale, focus-
ing first on the dynamics of decay during this era. The
subtracted decay function ISðk; η; ηbÞ [Eq. (5.4)] can be
written in a compact manner amenable to a numerical
study as

ISðk; η; ηbÞ ¼ IRS ðk; η; ηbÞ þ I3Sðk; η; ηbÞ; ð6:1Þ

with

2Note the similarity with the usual renormalization group
function associated with the running of the wave-function
renormalization that yields anomalous dimensions.
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IRS ðk; η; ηbÞ ¼ 2 ln

�
ξ

ξb

�
− ðF1½ξ; ξb� − F2½ξ; ξb�Þ; ð6:2Þ

and

I3Sðk; ξÞ ¼
π

2

ωiηi
γi

Z
ξ

ξb

ð1þ ξ0Þ2½1þ Sðξ0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2i − 1Þ þ ð1þ ξ0Þ2

p dξ0; ð6:3Þ

where ξ;W½ξ� are defined in Eq. (5.7), and we have
introduced the following functions (see Appendices D
and E):

F1½ξ; ξb� ¼
Z

ξ

ξb

� ffiffiffiffiffiffiffiffiffiffiffi
W½ξ0�

p
þ 1ffiffiffiffiffiffiffiffiffiffiffi

W½ξ0�p �
dξ0

ξ0
; ð6:4Þ

F2½ξ; ξb� ¼
Z

ξ

ξb

� ffiffiffiffiffiffiffiffiffiffiffi
W½ξ0�

p
þ 1ffiffiffiffiffiffiffiffiffiffiffi

W½ξ0�p �
cos½Jðξ0Þ� dξ

0

ξ0
; ð6:5Þ

where J½ξ� is defined in Eq. (D9) in Appendix D. To leading
adiabatic order (see Appendix E)

Sðξ0Þ ¼ 2

π
Si½αðξ0Þ�;

αðξ0Þ ¼ ωiηi
γi

ξ0
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðγ2i − 1Þ þ ð1þ ξ0Þ2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2i − 1Þ

q i
;

ð6:6Þ

where Si½x� is the sine-integral function [see Eq. (E26) and
the discussion in Appendix E].
We highlight that the contribution IRS is a distinct feature

of the renormalizable Yukawa interaction and the fermionic
density of states, whereas I3S in Eq. (5.8) is very similar to
the decay function found in the scalar case studied
in Ref. [32].
As discussed above, to leading adiabatic order we set

ηb ¼ ηi in I3S and obtain (see Appendix E)

I3Sðk; η; ηbÞ ¼
π

4
ωiηi

�
ð1þ ξÞW½ξ� − 1 −

ðγ2i − 1Þ
γi

ln

�
γiW½ξ� þ ð1þ ξÞ

1þ γi

��
þ Ĩ3Sðk; η; ηbÞ;

ð6:7Þ

Ĩ3Sðk;η;ηbÞ¼
π

2

ωiηi
γi

Z
ξ

ξb

ð1þξ0Þ2Sðξ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2i −1Þþð1þξ0Þ2

p dξ0; ð6:8Þ

where Ĩ3Sðk; η; ηbÞ must be obtained numerically.
However, before we engage in a numerical study we

analyze the different contributions to extract a physical
picture of which terms dominate at different time scales.
In order to analyze the behavior in the different regimes, we
write the Lorentz factor both in terms of both the variable

ξ ¼ η
ηi
− 1 (see Appendix C) and the comoving time with

the equivalence 1þ ξ≡ ffiffiffiffiffiffiffi
t=ti

p
(see also Appendix C),

γðξÞ ¼
�ðγ2i − 1Þ
ð1þ ξÞ2 þ 1

�1
2 ≡

�ðγ2i − 1Þ
ð ttiÞ

þ 1

�1
2

¼
�
tnr
t
þ 1

�1
2 ≡ γðtÞ; ð6:9Þ

where tnr is the comoving time scale at which the decaying
particle becomes nonrelativistic, given by

tnr ¼ tiðγ2i − 1Þ ¼ k2

2m2
ϕHR

: ð6:10Þ

Whence the limits

ðγ2i − 1Þ ≪ ð1þ ξÞ2 ⇒ nonrelativistic;

ðγ2i − 1Þ ≫ ð1þ ξÞ2 ⇒ ultrarelativistic;

tnr ≪ t ⇒ nonrelativistic;

tnr ≫ t ⇒ ultrarelativistic: ð6:11Þ

Let us focus first on the contribution IRS ðk; η; ηbÞ given
by Eq. (6.2). In Minkowski space-time the frequencies are
time independent, and therefore W½ξ0� ¼ 1 and Jðξ0Þ ¼
ðωk − kÞηiξ0. The analysis of Appendix B shows that in
Minkowski space-time for ξ ≫ 1 the second term in
Eq. (6.2), namely, F1 − F2, yields 2 ln½ξ=ξb� þ constant,
thereby canceling the logarithmic time dependence of the
first term (see Appendix B). Such a cancellation only
occurs during a limited interval in time in the expanding
cosmology as a consequence of the time dependence of the
frequencies. This follows from the analysis of Appendix D
which shows that there are three distinct stages.
i) ξ≲ ξm: ξm [given by Eqs. (D15)–(D16)] is the time

scale at which F2½ξ; ξb� reaches a maximum. During
this interval F1 − F2 in Eq. (6.2) is negligible and IRS ≃
2 ln½ξ=ξb�.
ii) ξm < ξ≲ γi: During this interval the function F1½ξ; ξb�

continues to rise monotonically, whereas F2½ξ; ξb� oscil-
lates around its constant asymptotic value F2½ξ; ξb�≃
F2½ξm; ξb� ≃ 2 ln½ξm=ξb�, a behavior summarized in Fig. 7
and Eq. (D19) in Appendix D.
Forωiηi ≫ 1, the results (D15)–(D16) show that ξm ≪ γi

for all values of γi ≥ 1. Therefore, for γi ≫ 1, during
the interval ξm ≤ ξ < γi it follows that W½ξ0� ≃ 1 and
F1 ≃ 2 ln½ξ=ξb�, thereby (approximately) canceling the log-
arithm from the first term in IRS , whereas F2 ≃ 2 ln½ξm=ξb�
remains constant, yielding a plateau in IRS . This approximate
cancellation is effective during a time interval that increases
for γi ≫ 1 (see the discussion in Appendix D). According
with Eq. (6.9) and the limits (6.11) during this interval,
wherein IRS is approximately constant, the decaying particle
is in the ultrarelativistic regime. In this stage the constancy
of IRS is expected because in the ultrarelativistic regime the
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frequencies are nearly time independent since ωkðηÞ≃
k ≃ ωi. Therefore W½ξ� ≃ 1, yielding F1 ≃ 2 ln½ξ=ξb�,
thereby canceling the logarithmic time dependence of the
first term in Eq. (6.2), similarly to Minkowski space-time.
If γi ≫ 1 the decaying particle is “born” ultrarelativisti-

cally and there is a (long) time window ξm < ξ < γi within
which

ffiffiffiffiffiffiffiffiffiffiffi
W½ξ0�p

≃ 1 and F1½ξ; ξb� ≃ 2 ln½ξ=ξb�, thereby
approximately canceling the first term in IRS , whereas
F2½ξ; ξb� remains nearly constant. Therefore, for γi ≫ 1

it follows that IRS ðk; η; ηbÞ rises rapidly on a time scale ≃ξm,
reaching a maximum and remaining nearly constant at IRS ≃
2 ln½ξm=ξb� until ξ ≃ γi.
iii) ξ ≫ γi: The cosmological redshift eventually makes

the decaying particle become nonrelativistic when
ξ ≫ γi ≫ 1. During this stage the particle is nonrelativistic
as a consequence of the cosmological redshift. The time
dependence of the frequency now yields

ffiffiffiffiffiffiffiffiffiffiffi
W½ξ0�p þ 1=ffiffiffiffiffiffiffiffiffiffiffi

W½ξ0�p
≫ 2, and hence F1 > 2 ln½ξ�. In this stage it

follows that W½ξ� ≈ ξ=γi, and therefore for ξ ≫ γi ≫ 1

we find that F1½ξ� ≃ 2
ffiffiffiffiffiffiffiffiffi
ξ=γi

p
and F2½ξ; ξb� ≃ 2 ln½ξm=ξb�.

For ξ ≫ γi, the integral for F1½ξ; ξb� is estimated by
splitting it into the stages ξb ≤ ξ ≤ γi and ξ > γi. The first
stage yields 2 ln½γi=ξb� since during this (ultrarelativistic)
stage W½ξ0� ≃ 1, and the second yields (approximately)
2
ffiffiffiffiffiffiffiffiffi
ξ=γi

p
since during this (nonrelativistic) stageW½ξ� ≈ ξ=γi.

In summary, for a particle that is “born” ultrarelativisti-
cally, namely, with γi ≫ 1, the contribution IRS rises rapidly
up to a value ≃2 ln½ξm=ξb� on a time scale ξm ≪ γi given by
Eq. (D16), remains nearly constant up to a time scale ξ ≃ γi
at which the particle becomes nonrelativistic, and begins to
fall off as −2

ffiffiffiffiffiffiffiffiffi
ξ=γi

p
for ξ ≫ γi.

In the opposite limit when γi ≃ 1 the decaying particle is
nonrelativistic already at the initial time and ωkðηÞ≃
mϕCðηÞ. In this case, F2½η; ηb� saturates rapidly, on a scale
ξm ≃ π=ωiηi ≪ 1, and F1½η; ηb� grows faster than logarith-
mically; hence, F1 − F2 becomes larger than the logarithm
in the first term of IRS and negative. This behavior leads to
an early suppression of decay.

This analysis is approximately summarized during the
ultrarelativistic (UR) and nonrelativistic (NR) regimes by
[see Eq. (D19) in Appendix D]

IRS ðk; η; ηbÞ ≃
8<
:

2 ln½ ξξb�Θðξm − ξÞ þ 2 ln½ξmξb �Θðξ − ξmÞ; for γi > ξðURÞ;

2 ln½ξmξb � þ 2 ln½ ξγi� − 2
ffiffiffi
ξ
γi

q
; for ξ ≫ γi > ξmðNRÞ:

ð6:12Þ

The main aspects of this analysis are confirmed by a
numerical study summarized in Figs. 1 and 2 for γi ¼ 2, 10,
respectively. Notice the different scales in the figures
highlighting the emergence of the plateau and the crossover
to a diminishing (negative) square root behavior at a scale
ξ ≃ γi.
Decay at rest: For a very massive particle “born” and

decaying at rest in the comoving frame (namely, for γi ¼ 1)

and ωiηi ≫ 1 we can provide an analytic form of the decay
function for time scales ξ ≫ ξb ≃ 1=ωiηi for on-shell
renormalization. As discussed in Appendices D and E,
F2½η; ηb� reaches its asymptotic limit on a time scale ξ ≃
π=2ωiηi ≪ 1 [see Eq. (D15) in Appendix D]. Furthermore,
the function Sðξ0Þ in Eq. (6.3) reaches its asymptotic value
S ≃ 1 on a time scale ξ0 ≃ π=ωiηi ≪ 1. Therefore, for ξ0 ≫
1=ωiηi we can neglect the contribution from F2 and set

FIG. 2. The contribution IRS [Eq. (6.2)] for ωiηi ¼ 100,
ξb ¼ 0.01, and γi ¼ 10.

FIG. 1. The contribution IRS [Eq. (6.2)] for ωiηi ¼ 100,
ξb ¼ 0.01, and γi ¼ 2.
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Sðξ0Þ ¼ 1 in Eq. (6.3), and hence I3S½k; η; ηb� is given by
the first term in Eq. (6.7) with γi ¼ 1 and multiplied by a
factor of 2 to account for S ¼ 1. Gathering all of the terms,
we find that in this case (γi ¼ 1;ωiηi ≫ 1; ξ ≫ 1=ωiηi)

ISð0; η; ηbÞ ¼ 2

�
ln½ξ� − ln

� ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
− 1ffiffiffiffiffiffiffiffiffiffiffi

1þ ξ
p þ 1

�
−

ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p �

þ π

2
ωiηi½ð1þ ξÞ2� − 1�; ð6:13Þ

where we have neglected a constant term of Oð1Þ. This
expression displays all of the features described above.
Note that for ξ ≪ 1 the logarithmic time dependence
cancels out, but for ξ ≫ 1 the first logarithm in
Eq. (6.13) continues to grow; however, the negative square
root eventually dominates the contribution of the first terms
within the brackets. These are precisely the terms arising
from the renormalization and their time dependence is a
consequence of the time dependence of the frequencies.
To compare to the decay law in Minkowski space-time it

is convenient to cast the result (6.13) in terms of comoving
time, using 1þ ξ ¼ η=ηi, with η ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2t=HR

p
[see

Eq. (2.39) valid in RD], and the relation

ωiηi
γi

¼ mϕHRη
2
i ¼ 2mϕti: ð6:14Þ

Setting ηi ¼ ηb to leading adiabatic order, we find for
γi ¼ 1 and t ≫ tb

ISð0; tÞ ≃ ln

�
t
tb

�
− 2

�
t
tb

�1
4 þ πmϕðt − tbÞ; ð6:15Þ

leading to the survival probability for t ≫ tb

PΦðtÞ ¼
�
t
tb

�
− Y2

8π2e
Y2

4π2
ðt=tbÞ1=4e−Γ0ðt−tbÞPΦðtbÞ;

Γ0 ¼
Y2

8π
mϕ: ð6:16Þ

This is one of the important results of this study.
Remarkably, Γ0 is the same as the decay width at rest in
Minkowski space-time; however, the power law with the
“anomalous dimension” Y2=8π2 and the stretched expo-
nential with the power law ðt=tbÞ1=4 are a consequence of
the renormalization and the time dependence of the
frequencies, which are a consequence of the expanding
cosmology. The combined effect of these two terms is to
slow down the decay as compared with the case of
Minkowski space-time, with a concomitant enhancement
of the lifetime of the decaying particle as compared to
Minkowski space-time. This is a noteworthy result: as a
consequence of the cosmological expansion the contribu-
tion from the renormalization and quasiparticle formation

slows down the decay, leading to an enhancement of the
lifetime of the initial state.
Decay of particles with γi ≫ 1: These are particles that

are “born” ultrarelativistically. For γi ≫ 1 the contribution
from IRS ðk; η; ηbÞ is summarized by Eq. (6.12) and dis-
played in Fig. 2: a rapid rise on a time scale ξm ≪ γi given
by Eq. (D16) up to IRS ≃ 2 ln½ξm=ξb� followed by a near
plateau during the stage while ξ≲ γi. This contribution falls
off slowly as −

ffiffiffiffiffiffiffiffiffi
ξ=γi

p
during the nonrelativistic stage, ξ ≥

γi [see Eq. (6.12)]. While a quantitative analysis of I3S
requires a numerical study, we can obtain a fairly accurate
estimate as follows. The contribution from S to I3S [see
Eq. (6.3)] is discussed in Appendix E, and can be approx-
imately summarized as S ≈ 0 for ξ < ξs and SðηÞ ≈ 1 for
ξ > ξs, with ξs given by Eqs. (E28)–(E29).
With γi ≫ 1, the ultrarelativistic stage corresponds to

γi ≫ ξ, and during the stage γi ≫ ξs ≫ ξ it follows that
S ≈ 0. Using 1þ ξ ¼ ffiffiffiffiffiffiffi

t=ti
p

and Eqs. (6.10) and (6.14),
during this stage I3S is given in comoving time t by

I3SðtÞ ¼
π

2
mϕtnr

�
G

�
t
tnr

�
− G

�
tb
tnr

��
; ð6:17Þ

where

G½x� ¼ ½xð1þ xÞ�1=2 − ln½ ffiffiffiffiffiffiffiffiffiffiffi1þ x
p

−
ffiffiffi
x

p � ð6:18Þ

also describes the decay function in the case of a scalar field
decaying into two massless scalars [32]. During this stage,
for t ≪ tnr we find

I3SðtÞ ¼
π

3
mϕtnr

�
t
tnr

�3
2

�
1 −

�
tb
t

�3
2 þ � � �

�
: ð6:19Þ

For γi ≫ ξ ≫ ξs it follows that S ≃ 1, and therefore the
above result is multiplied by a factor of 2. Hence, during the
ultrarelativistic stage with γðtÞ ≫ 1 (or t ≪ tnr) and S ¼ 1
in Eq. (6.3), it follows that

I3SðtÞ ≃
2π

3
mϕtnr

�
t
tnr

�
3=2
�
1 −

�
tb
t

�3
2 þ � � �

�
; ð6:20Þ

which when combined with the result (6.12) yields in this
ultrarelativistic regime, for γi ≫ ξ ≫ ξs; ξm,

ISðtÞ ≃ 2 ln

�
ξm
ξb

�
þ 2π

3
mϕtnr

�
t
tnr

�
3=2
�
1 −

�
tb
t

�3
2 þ � � �

�
:

ð6:21Þ

Neglecting the perturbatively small nonsecular constant in
the decay function from the first term in Eq. (6.21),3 in the

3Or absorbing it into a finite perturbatively small time-
independent wave-function renormalization of PΦ.
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time interval for tnr ≫ t ≫ tb during which the decaying
particle is ultrarelativistic and the transient dynamics of
quasiparticle formation is saturated, we find

PΦðtÞ ¼ e−
2
3
Γ0tnrðt=tnrÞ3=2PΦðtbÞ: ð6:22Þ

We can now use the property (5.15) and write for t > tnr

PΦðtÞ ¼ e
−
R

η

ηnr
ΓΦðη0Þdη0PΦðtnrÞ; ð6:23Þ

where

Z
η

ηnr

ΓΦðη0Þdη0 ¼
Y2

8π2
½ISðk; η; ηbÞ − ISðk; ηnr; ηbÞ�: ð6:24Þ

After the decaying particle becomes nonrelativistic for
ξ ≫ γi or t ≫ tnr when γðtÞ ≃ 1, the contribution S ≃ 1 and
I3SðξÞ − I3SðξnrÞ becomes

I3SðtÞ − I3SðtnrÞ ¼ πmϕt

�
1 −

tnr
t
−
tnr
2t

ln

�
t
tnr

�
þ � � �

�
;

ð6:25Þ

where the dots in the above expression stand for terms of
higher order in the ratio tnr=t.
Finally, combining the above result with the result given

by Eq. (6.12), the total decay function after the particle has
become nonrelativistic ξ ≫ γi (or t ≫ tnr ≫ tb) is given in
comoving time by

ISðtÞ − ISðtnrÞ ≃ ln

�
t
tnr

�
− 2

�
t
tnr

�1
4

þ πmϕt

�
1 −

tnr
t
−
tnr
2t

ln

�
t
tnr

�
þ � � �

�
;

ð6:26Þ

where we have neglected a perturbatively small constant
term and approximated tiγ2i ≃ tnr for γi ≫ 1. Hence, for t ≫
tnr ≫ tb we find

PΦðtÞ ¼
�
t
tnr

�
− Y2

8π2e
Y2

4π2
ðt=tnrÞ1=4

�
t
tnr

�
Γ0tnr=2

e−Γ0ðt−tnrÞPΦðtnrÞ:

ð6:27Þ

It would be expected that after tnr, when the particle has
become nonrelativistic as a consequence of the cosmologi-
cal redshift, the time evolution of the survival probability
would be similar to that of a particle born and decaying at
rest. However, the result (6.27) features an extra power law
with exponent Γ0tnr=2 as compared to the decay function
for the particle born at rest, Eq. (6.16). This difference

reflects the memory of the past evolution in the form of the
integral (6.24).
We can provide a measure of the impact of curved space-

time effects on the decay function by comparing the results
above to a phenomenological, S-matrix-inspiredMinkowski
decay law allowing for a local time dilation factor to account
for the cosmological redshift, namely,

PðMÞ
Φ ðtÞ ¼ e−

Γ0
γðtÞðt−tiÞPðMÞ

Φ ðtiÞ; ð6:28Þ

where Γ0 ¼ Y2mϕ

8π is the decay width at rest in Minkowski
space-time, and γðtÞ is the local Lorentz factor (6.9). The
comparison to the cutoff-independent subtracted decay
function (6.1) is facilitated by introducing

IMðtÞ ¼
πmϕt

γðtÞ
�
1 −

ti
t

�
; ð6:29Þ

so that the Minkowski-like decay function is given by

Γ0

γðtÞ ðt − tiÞ≡ Y2

8π2
IMðtÞ; ð6:30Þ

where a factor is included in Eq. (6.30) to ensure that
IMðti ¼ tbÞ ¼ 0 consistently with the subtraction defining
Eq. (6.1). For t ≫ ti this phenomenological decay function
is interpreted as that of Minkowski space-time but with
the instantaneous Lorentz time dilation factor. For t ≫ ti it
provides a “benchmark” to compare the results obtained
above for the decay function to an S-matrix-inspired
instantaneous Minkowski decay law.
Before we engage in a numerical comparison, it is

illuminating to analyze the cases discussed above.
Nonrelativistic, γðtÞ ¼ 1: For this case ISðtÞ is given by

Eq. (6.15), the last term of which is precisely IMðtÞ for
γðtÞ ¼ 1. The first two terms in Eq. (6.15) yield a negative
contribution for t ≫ tb ¼ ti, and therefore the cosmological
decay function is smaller in this case than the phenomeno-
logical Minkowski function, leading to a longer lifetime.
Ultrarelativistic, γi ≫ 1: During the ultrarelativistic

regime γðtÞ ≫ 1 (t ≪ tnr), and taking the time large enough
so that the transient buildup of S in Eq. (6.3) has saturated,
the cosmological decay function is given by Eq. (6.21),
whereas IMðtÞ ≃ πmϕtðt=tnrÞ1=2. The logarithmic term in
Eq. (6.21) could be fairly large for large γi, thereby yielding
ISðtÞ > IMðtÞ during a time interval. This can be under-
stood from the following argument.
As discussed above and in Appendix D, for γi ≫ 1 the

contribution IRS [see Eq. (6.2)] increases on a time scale
ξm ≃ ð3πγ2i =ωiηiÞ1=3 up to a maximum ≃2 lnðξm=ξbÞ,
after which it remains nearly constant up to ξ ≃ γi,
yielding the logarithmic term in Eq. (6.21). For example,
for γi ≃ 200, ωiηi ≃ 100, and “on-shell” renormalization
with ξb ¼ 1=ωiηi, the contribution from IRS increases to a
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value ≃ 4
3
ln½ ffiffiffiffiffiffi3π

p
γiωiηi� ≃ 14.7 on a comoving time scale

tm=ti ≈ 240. Since the Hubble time scale 1=HðtÞ ¼ 2t
during RD, it follows that IRS increases to the plateau over
≃240 Hubble times, with the possibility that during this
time ISðtÞ > IMðtÞ. However, after the particle has become
nonrelativistic, namely, for t ≫ tnr, the cosmological
decay function ISðtÞ is given by Eq. (6.26), whereas

IMðtÞ ≃ πmϕt

�
1 −

tnr
2t

þ � � �
�
; ð6:31Þ

showing that ISðtÞ ≪ IMðtÞ for t ≫ tnr. This suggests a
crossover behavior for very large values of γi: there is an
early time window during the ultrarelativistic stage
wherein the cosmological decay function may be larger
than the Minkowski one; however, as the decaying particle
eventually becomes nonrelativistic the latter will ulti-
mately dominate. This behavior is borne out by a detailed
numerical study.
Figures 3–5 show a comparison between the phenom-

enological Minkowski decay function (6.29), the total
contribution IS (6.1), and I3S (6.3) for on-shell renormal-
ization with ωiηi ¼ 100 and γi ¼ 10, 50, 200, respectively.
For these values the transition time to the nonrelativistic
behavior is tnr=ti ≃ 102; 2.5 × 103, and 4 × 104, respec-
tively. For γi ¼ 10, 50, Figs. 3 and 4 show that IS and I3S
are nearly indistinguishable, namely, IRS [Eq. (6.2)] is
subleading in these cases, and that the phenomenological
IM is always larger than IS.
However, for γi ¼ 200 Fig. 5 shows that the contribution

from IRS dominates at early time, increasing on a time scale
t=ti ≃ 100. In this case IM is smaller than IS during a
substantial time window (≈500 Hubble times from the
“birth” of the quasiparticle) before crossing over to become
the largest decay function.
Therefore, we conclude that in the ultrarelativistic case,

for very large values of γi, the decay function is larger than
the phenomenological Minkowski one within a substantial
time interval but eventually becomes smaller at a time scale
that depends on the various parameters. In either case, at
long time the decaying particle lives longer than predicted
by a Minkowski decay law extrapolated to the expanding
cosmology. This is a generic result: after an intermediate
time scale that depends on γi, the cosmological decay
function is smaller than the phenomenological Minkowski-
like one. Therefore the S-matrix-inspired phenomenologi-
cal Minkowski decay law underestimates the lifetime of the
decaying particle.

B. Long-lived particles: Decay during matter
domination or beyond

1The discussion above focused on decay during the
radiation-dominated era that lasts until CðηÞ ¼ aeq ≃ 10−4,
corresponding to an ambient temperature T ≃ eV at a time
teq ≈ 1012 s. If the decaying particle is very long lived,
as would befit a dark matter candidate, it would continue to

FIG. 3. Comparison between IM, IS, I3S for on-shell subtraction
with ωiηi ¼ 100; γi ¼ 10, and tnr=ti ¼ 99.

FIG. 4. Comparison between IM, IS, I3S for on-shell subtraction
with ωiηi ¼ 100; γi ¼ 50, and tnr=ti ¼ 2499.

FIG. 5. Comparison between IM, IS, I3S for on-shell subtraction
with ωiηi ¼ 100; γi ¼ 200, and tnr=ti ≃ 4 × 104.
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decay during the matter- and perhaps dark-energy-
dominated eras. This case corresponds to an extremely
small Yukawa coupling, which allows to safely neglect
early transient effects that saturate at early times. The
general form of the decay function after renormalization
is given by Eqs. (5.13) and (5.4). Under the assumption
of very weak Yukawa couplings we can neglect the
contribution from the cosine term in I2b [Eq. (5.6)]
[the contribution F2 in Eq. (6.5)] and we can set S ¼ 1
in Eq. (5.8). This is because both terms saturate on short
time scales, and therefore they yield perturbatively small
corrections to the decay function for very weak Yukawa
couplings as compared to the terms that continue to grow
in time. Hence, neglecting these perturbatively small
transient contributions for very weak Yukawa couplings,
the decay function simplifies toZ

η

ηb

ΓΦðη0Þdη0 ¼
Y2

8π2

�
2 ln

�
ξ

ξb

�
− F1½ξ; ξb�

þ πmϕ

Z
η

ηb

Cðη0Þ
γkðη0Þ

dη0
�
þ � � � ; ð6:32Þ

where ξ ¼ ðη − ηiÞ=ηi,F1 is given by Eq. (6.4), and the dots
in Eq. (6.32) stand for constant terms that are of OðY2Þ.
The general scale factor W½ξ� is given by

W½ξ� ¼ 1

γi

�
ðγ2i − 1Þ þ C2ðηÞ

C2ðηiÞ
�1

2

: ð6:33Þ

Let us analyze each term separately in order to under-
stand their behavior at long time during the MD era,
taking the upper bound CðηÞ ≃Oð1Þ or, upon using
Eq. (2.37), η ≃ ffiffiffiffiffiffiffiaeq

p =HR. With “on-shell” renormaliza-
tion (ξb ¼ 1=ωiηi), we find

ln
�
ξ

ξb

�
≃ ln

�
ωi

ffiffiffiffiffiffiffiaeq
p
HR

�
≃ ln½1042CðηiÞ� þ ln

�
γi

�
mϕ

GeV

��
:

ð6:34Þ
Taking the initial time to correspond to an initial temper-
ature 1015 GeV yields CðηiÞ ≃ 10−28, and therefore the
logarithmic contribution to the decay function for η ≃ffiffiffiffiffiffiffiaeq
p =HR yields

Y2

4π2
ln

�
ξ

ξb

�
≃ 0.82Y2 þ Y2

4π2
ln

�
γi

�
mϕ

GeV

��
: ð6:35Þ

Obtaining the contribution from F1 over the whole
history from early RD into MD can be done numerically,
although this is a rather challenging task because of the
enormous dynamic range, with the scale factor varying over
24 orders of magnitude. However, we can provide a simple
estimate of the remaining two terms of the decay function at
long time during the MD era and/or beyond. If the particle
remains ultrarelativistic, then as discussed in the previous

sections the contribution from F1 cancels the logarithmic
time dependence of the first term, and hence the combi-
nation of the first two terms saturates (this is the plateau in
Fig. 2) and yields a perturbatively small time-independent
contribution to the decay function. Hence, during this
ultrarelativistic stage the last term in Eq. (6.32) dominates
the decay function.
After the particle has become nonrelativistic, W½ξ� ≃

CðηÞ=γiCðηiÞ ≫ 1 and

F1½ξ; ξb� ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γiCðηiÞ
p Z

η
ffiffiffiffiffiffiffiffiffiffiffi
Cðη0Þp
η0

dη0 ð6:36Þ

during MD using Eq. (2.35), and by taking the upper bound
η ≃ ffiffiffiffiffiffiaeq

p =HR we find

F1½ξ; ξb� ≃
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γiCðηiÞ

p ≃
1014ffiffiffiffi
γi

p : ð6:37Þ

Finally, we can estimate the last term in Eq. (6.32) during
the stage when the particle is nonrelativistic and MD
dominated: taking γðη0Þ ≃ 1 and η ≃ ffiffiffiffiffiffiaeq

p =HR, we find

mϕ

Z
η Cðη0Þ
γkðη0Þ

dη0 ≃ 1042
�

mϕ

GeV

�
: ð6:38Þ

Since during the ultrarelativistic stage the time depend-
ences of the first and second terms cancel out and the last
term dominates the decay dynamics, we conclude that the
last term in Eq. (6.32) dominates the decay dynamics of a
very long-lived particle with very weak Yukawa coupling,
throughout the entire time evolution. Since the first
(logarithmic) term is always subdominant, and the second
term is negative and larger in magnitude than the loga-
rithmic term but also subdominant at late time, the last term
in Eq. (6.32) yields an upper bound to the decay function
throughout the entire expansion history. It can be written as
a function of the redshift by recalling that CðηÞdη ¼ dt and
using dt ¼ da=ðaHðaÞÞ, where HðaÞ is the Hubble expan-
sion rate given by Eq. (2.30). Writing the local Lorentz

factor as γðaðtÞÞÞ ¼ ½ a2nr
a2ðtÞ þ 1�1=2; anr ≡ k=mϕ, we find that

the upper bound to the decay function at redshift z is
given by Z

η

ηb

ΓΦðη0Þdη0 ≃
Γ0

H0

ϒðz; zbÞ; ð6:39Þ

where Γ0 ¼ Y2mϕ=8π is the decay rate at rest in Minkowski
space-time,

ϒðz; zbÞ ¼
Z

1=ð1þzÞ

1=zb

daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2nr þ a2

p
½ΩM
a3 þ ΩR

a4 þ ΩΛ�1=2
ð6:40Þ
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depends solely on the cosmological parameters, anr ¼ k=mϕ

is the scale factor at which the decaying particle transitions
from ultrarelativistic to nonrelativistic, and we have taken
zb ≫ 1. In particular, this result for the decay function is
insensitive to the early transient dynamics.
The redshift evolution of the survival probability

throughout the entire expansion history is summarized
concisely as

PΦðzÞ≳ e−
Γ0
H0
ϒðz;zbÞPΦðzbÞ: ð6:41Þ

The inequality in Eq. (6.41) reflects the fact that Eq. (6.39)
yields an upper bound to the decay function. For anr ¼ 0,
namely, when the decaying particle is “born” at rest, it
follows that ϒðz; zbÞ ¼ H0ðt − tbÞ independently of the
cosmology, and we can compare the result (6.39) for
anr ¼ 0 to the case of the particle decaying at rest given
by Eq. (6.15) valid during the RD era. The discussion of
dominant terms above clarifies that the last term in
Eq. (6.15) dominates the decay dynamics, whereas the
first two terms combine into a negative contribution which
becomes subleading at long time for very weak Yukawa
couplings. Hence, it is clear that for very weak Yukawa
couplings and long times, Eq. (6.39) becomes the leading
contribution and yields an upper bound to the decay
function for long-lived particles decaying at rest.
Furthermore, for a ≪ anr, namely, when the decaying
particle is ultrarelativistic and taking this regime to be
during the RD era with a ∝ t1=2, it follows that

ϒðz; zbÞ ∝ t3=2; ð6:42Þ

in agreement with the decay law (6.22) during the ultra-
relativistic regime in RD. This analysis confirms the
validity of the decay law (6.41) with Eq. (6.40) as an
upper bound to describe the evolution of the survival
probability for very weakly coupled, long-lived particles
throughout the entire cosmological evolution, under the
assumption that the fermionic decay products can be
considered massless in the decay process.

VII. DISCUSSION

The final form of the renormalized decay function
[Eq. (6.1)] describing the time evolution of the survival
probability of the quasiparticle state is amenable to a
straightforward numerical study. The analysis of Sec. VI
reveals a very rich dynamical evolution with various
different time scales. The shortest time scales describe
the buildup of the quasiparticle; this early transient dynam-
ics is absorbed into a wave-function renormalization of
the quasiparticle survival probability at a time scale tb.
After this short-time transient there remain time scales
over which F2 [Eq. (6.5)] saturates at a constant value and
S [Eq. (6.6)] rapidly approaches S ≃ 1. The detailed

dynamics over these scales is studied analytically and
numerically in Appendices D and E, respectively. The
evolution of the survival probability on the intermediate
and long time scales becomes simpler and can be summa-
rized succinctly. Furthermore, because the short-time tran-
sients saturate to constant values, for weak Yukawa
couplings the largest contributions to the decay dynamics
arise from terms that are secular (grow in time) over the
intermediate and long time scales.
Decay at rest in the comoving frame (γi ¼ 1): The time

evolution of the survival probability is given by

PΦðtÞ ¼
�
t
tb

�
− Y2

8π2e
Y2

4π2
ðt=tbÞ1=4e−Γ0ðt−tbÞPΦðtbÞ; ð7:1Þ

where Γ0 ¼ Y2

8πmϕ is the decay width of a particle at rest in
Minkowski space-time. The power-law and stretched
exponentials are both a remnant of the renormalization
or “dressing” of the bare state into the quasiparticle state
and a distinct consequence of the cosmological redshift.
Indeed, in Minkowski space-time the terms that give rise
to these contributions become time independent after the
transient dynamics, whereas in curved space-time the
origin of these contributions is the time dependence of
the frequencies via the cosmological redshift.
The methods that we implemented in this study—a

nonperturbative formulation combined with a physically
motivated adiabatic expansion including a consistent treat-
ment of renormalization—are very different from those
implemented in Ref. [31]. The decay law of a particle at rest
[Eq. (7.1)] is also very different from that reported in
Ref. [31]. The origin of the discrepancy is not clear to us.
However, since the power-law and stretched exponentials
originate precisely from the contributions to the renorm-
alization of the survival probability, we suspect that the
discrepancy originates in the treatment of the ultraviolet
divergences. These are of the same form as in Minkowski
space-time (see Appendix B and Ref. [46]) as expected
since these are short-distance divergences, but they were
discussed or addressed in Ref. [31]. As explained above,
the time dependence of the frequency yields an unexpected
contribution to the decay law on longer time scales that
originates in the dynamics of quasiparticle formation.
Born ultrarelativistically: If the particle is “born” or

produced ultrarelativistically, namely, with γi ≫ 1 during
RD, an important time scale is tnr ¼ k2

2m2
ϕH0

ffiffiffiffiffi
ΩR

p , which

determines when the particle transitions from being ultra-
relativistic [γðtÞ ≫ 1 or t ≪ tnr] to nonrelativistic [γðtÞ ≃ 1
or t ≫ tnr] as a consequence of the cosmological redshift.
The dynamical evolution of the survival probability is
different during these stages: a) Ultrarelativistic stage
[γðtÞ ≫ 1, or tb ≪ t ≪ tnr],

PΦðtÞ ¼ e−
2
3
Γ0tnrðt=tnrÞ3=2PΦðtbÞ; ð7:2Þ
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b) nonrelativistic stage [t ≫ tnr or γðtÞ ≃ 1],

PΦðtÞ ¼
�
t
tnr

�
− Y2

8π2e
Y2

4π2
ðt=tnrÞ1=4

�
t
tnr

�
Γ0tnr=2

e−Γ0ðt−tnrÞPΦðtnrÞ:

ð7:3Þ

Although for t ≫ tnr the particle has become nonrelativistic
because of the cosmological redshift, compared to the case
of decay at rest [Eq. (7.1)] this decay law features a new
power with exponent Γ0tnr=2. Its origin is the memory of
the decay function manifest in the form of the integral of
the cosmological redshift in Eq. (5.8) over the whole
history of the decay process. Therefore, even well after
the decaying particle has become nonrelativistic, the
survival probability features an enhancement factor that
“knows” about the past history when the particle was
ultrarelativistic. The dynamics during the transition from
the ultrarelativistic to the nonrelativistic behavior must be
studied numerically, and the previous section shows such a
study for several values of the parameters.
Massless fermions vs massless bosons: Reference [32]

studied the decay of a scalar into two massless scalars, and
therefore we can now compare the results of that study to
those obtained here for the case of scalar decay into massless
fermions. The main difference is in the contribution IRS in
Eq. (6.1), which is given by Eq. (6.2). The contribution from
I3S to the decay function is the same for fermions and
bosons; for example, the functionG½x� is the same that enters
in scalar decay [32]. The extra contribution (namely, IRS ) has
the same origin as the ultraviolet-divergent contributions that
are absorbed into the wave-function renormalization. This is
also the case in Minkowski space-time [46], as shown in
Appendix B. Whereas in Minkowski space-time this con-
tribution becomes time independent after a short-time
transient and is absorbed into the wave-function renormal-
ization, in an FRW cosmology it is time dependent as a
consequence of the cosmological redshift and becomes
important for nonrelativistic particles. Namely, IRS is a
remnant of the physical process of quasiparticle formation.
There is no such contribution in the case of decay into two
scalars because the theory in this case is super-renormaliz-
able, and hence there is no equivalent of the IRS term. This
contribution suppresses the decay function at long time,
thereby enhancing the lifetime of the decaying particle. This
behavior is yet another source of discrepancy with the results
of Ref. [31], which found a larger rate in the fermionic
case. The source of this discrepancy is precisely the
“anomalous” power and stretched exponentials which are
a consequence of the quasiparticle formation and wave-
function renormalization. Although the decay probability
requires an ultraviolet-divergent wave-function renormaliza-
tion even in Minkowski space-time, this aspect seems to be
missing in the treatment of Ref. [31]. The cumulative effect

of these differences is that a meaningful comparison to our
study has eluded us.
“Benchmarking” the decay law: The decay laws

obtained above are very different from the usual exponen-
tial decay in Minkowski space-time, one of the reasons for
the difference being the cosmological redshift. Thus a
natural question arises: would an S-matrix-inspired, phe-
nomenologically motivated exponential decay law with a
time-dependent Lorentz factor to account for the cosmo-
logical redshift even approximately describe the decay of
the particle? This motivates the comparison of the previous
results to the following Minkowski-like decay law (in RD):

PðMÞ
Φ ðtÞ ¼ e−

Γ0
γðtÞðt−tiÞPðMÞ

Φ ðtiÞ; γðtÞ ¼
�
tnr
t
þ 1

�
1=2

:

ð7:4Þ

For decay at rest γðtÞ ¼ 1, this decay law misses the power
with the anomalous dimension and the stretched exponen-
tial, whose combination is negative. Therefore the
Minkowski-like decay law overestimates the suppression
of the survival probability in the case of decay at rest. For a
particle that is produced ultrarelativistically, during the
stage wherein γðtÞ ≫ 1 (namely, t ≪ tnr) one finds

PðMÞ
Φ ðtÞ ¼ e−Γ0tnrðt=tnrÞ3=2PðMÞ

Φ ðtiÞ; ð7:5Þ

which is smaller than Eq. (7.2). For t ≫ tnr when the
decaying particle has become nonrelativistic,

PðMÞ
Φ ðtÞ ¼ e−Γ0ðt−tnr=2ÞPðMÞ

Φ ðtiÞ: ð7:6Þ

Comparing this result with Eq. (7.3) clearly shows that the
phenomenological Minkowski decay law including the
instantaneous Lorentz factor overestimates the suppression
of the survival probability, namely, it underestimates the
lifetime of the decaying state. The discrepancies with the
cosmological decay law—both the factor of 2=3 in
Eq. (7.2) and the powers and stretched exponential in
Eq. (7.3)—are traced to i) the memory of quasiparticle
formation, and ii) the memory of the past evolution in the
integral of the time dilation factor. Neither of these can be
captured by a phenomenological Minkowski-like decay
law including an instantaneous Lorentz factor, as such a
description has no memory of the past evolution. We draw
two important conclusions from this comparison: i) a
phenomenological, S-matrix-inspired Minkowski decay
law underestimates the lifetime of the decaying particle
since it overestimates the suppression of the survival
probability; ii) describing particle decay in cosmology in
terms of a decay rate, even one that includes the cosmo-
logical redshift in the time dilation factor, is not only not
useful but is also misleading insofar as it lacks important
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physical processes and yields a substantial underestimate of
the lifetime of the decaying particle.
On initial conditions: We have taken the initial state to

correspond to a single-particle state of a given momentum,
to compare to the usual case in S-matrix theory. The
calculation of a decay rate in S-matrix theory considers
the transition amplitude from an “in” single-particle state
(prepared at time −∞) to an “out”multiparticle state at time
þ∞. Our main point is that such a calculation is not
meaningful in an expanding cosmology, motivating the
study of the previous sections. Thus the chosen initial
condition allows us to directly compare to what would be
expected from S-matrix theory, appended with an exponen-
tial decay law with the rate calculated with S-matrix theory.
Alternative initial conditions may be considered but they

all imply not only technical complexities, but also con-
ceptual aspects: a single-particle but spatially localized wave
packet will not only decay via the decay of the different
single-particle components for different momenta, but its
amplitude will also decay as a consequence of dispersion
and spreading. Spatially narrow wave packets will decay the
fastest and systematically separating the different physical
processes is, in general, not only technically daunting but
also implies some ambiguity as to how to extract a “decay.”
Another physically motivated initial condition would be to
take the initial state to emerge from the decay of a heavier
particle. Obviously, such a choice would have inherent
ambiguities from the choice of the parent particle and its
decay kinematics. These aspects notwithstanding, the frame-
work developed in the previous sections can be simply
adapted to alternative initial conditions.
Modifications to BBN?: Although the results obtained in

this study do not apply directly to neutron decay, since we
focused on scalar decay Yukawa coupled to massless
fermions, and the small phase space available for three-
body neutron decay is a result of the small neutron-proton
mass difference, let us explore the consequences of the
results for this process, with all of these caveats. First, the
neutron is “born” after the QCD phase transition at TQCD ≃
150 MeV at a time tb ≃ 10−5s, because the neutron mass
MN ≃ GeV ≫ TQCD it is “born” at rest in the plasma. Let us
identify the dimensionless coupling Y2=8π ≡ ΓN=MN

where ΓN ≃ 10−3s−1 is the neutron’s lifetime. Hence
Y2=8π ≃ 10−21, and taking t=tb ≃ 1=ΓNtb ≃ 108 we see
that the power law with the “anomalous” dimension and the
stretched exponential correction to the usual exponential
decay law in Eq. (6.16) for decay at rest are all but
negligibly small and would not affect the dynamics of a
neutron decay during BBN. Of course, there are the above-
mentioned caveats to this conclusion which should only be
taken as an extrapolation and as a gross estimate of the
effects. This analysis also suggests that the corrections to the
decay law are more important for particles that are “born”
very early during RD and very long lived, a situation that
befits most descriptions of a dark matter candidate.

Emergence of a local decay law with constant S-matrix
decay rate: If a measurement of the time evolution of the
survival probability is carried out during a sufficiently short
time interval Δt ¼ tf − ti and sufficiently long after the
transient dynamics has subsided, we would expect that the
decay law would be nearly exponential with a nearly
constant decay rate. Namely, we would expect that locally
during such a short time interval the survival probability is
given by

P½tf� ¼ e−Γ̄ΦðkÞðtf−tiÞP½ti�; ð7:7Þ
where Γ̄ΦðkÞ is a constant related to the S-matrix rate. This
law cannot emerge during the transient stage dominated by
the power laws in the survival probabilities (6.22) and
(6.27). However, in fact, it emerges naturally at longer time
scales (after the transient dynamics becomes negligible)
from Eq. (6.39) when considered during time intervals
Δt ¼ tf − ti ≪ 1=HðtiÞ, where HðtiÞ is the Hubble expan-
sion rate at time ti. This is seen as follows: keeping only the
last term in Eq. (6.32) (neglecting transients), and passing
to comoving time with Cðη0Þdη0 ¼ dt0, it follows thatZ

ηf

ηi

ΓΦðη0Þdη0 ¼ Γ0

Z
tf

ti

dt0

γðt0Þ : ð7:8Þ

We now expand γðt0Þ around ti, γðt0Þ ¼ γðtiÞ þ γ0ðtiÞ
ðt0 − tiÞ þ � � �, and integrate to obtain

Γ0

Z
tf

ti

dt0

γðt0Þ ¼
Γ0

γkðtiÞ
Δt
�
1þ 1

2
β2kHðtiÞΔtþ � � �

�
;

βk ¼
kp
Ek

: ð7:9Þ

Therefore we clearly see that for time intervals Δt ≪
1=HðtiÞ the decay law features small departures from
the exponential S-matrix-inspired one, with corrections
of order ΔtHðtiÞ ≪ 1. This is expected on physical
grounds: on very short time scales, much shorter than
the Hubble time, a local Minkowski space-time approxi-
mation is warranted by the equivalence principle. For
example, accelerator experiments today measure the life-
time of StandardModel particles, and these experiments are
obviously insensitive to the Hubble time today ≃13.5 Gyr.
Therefore the S-matrix-inspired calculation in Minkowski
space-time is warranted as it describes the measurement
of lifetimes much smaller than 1=H0. In the early stages of
a radiation-dominated cosmology during rapid expansion,
or for lifetimes comparable to the Hubble time, such
an S-matrix-inspired approximation does not correctly
describes the dynamics of decay, as discussed in detail in
the previous sections.
Caveats: We have focused on studying scalar decay into

massless fermion pairs, a situation that approximates most
of the fermionic decay channels of a Higgs scalar in the
Standard Model. An important aspect of this decay process
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is that it does not feature thresholds. Including the mass for
the decay products introduces kinematic thresholds, a
consequence of strict energy-momentum conservation. In
Ref. [32] it was argued that the Hubble rate of expansion
introduces a natural energy uncertainty, leading to a relax-
ation of the kinematic thresholds, and thereby allowing
processes that are forbidden in Minkowski space-time by
energy conservation. Furthermore, Ref. [46] has shown that
energy uncertainties associated with transient nonequili-
brium aspects of the decay allow decay into heavier particles
during a time interval. In an expanding cosmology these
effects may combine with the energy uncertainty from
Hubble expansion to enhance the decay by opening up
novel channels that would be otherwise forbidden by strict
energy conservation. These aspects associated with the
masses of the decay products will be the subject of fur-
ther study.
The inclusion of masses for the decay products becomes

a more pressing issue in the case of the decay of very
long-lived particles studied in Sec. VI B, where we have
extended the results obtained for the RD era to provide an
upper bound on the decay function throughout the entire
expansion history. Therefore, the decay law (6.41) with the
decay function (6.40) must be understood within the
context of decay of a heavy particle into massless or nearly
massless fermionic channels with the caveat that such an
approximation may be of limited validity during the MD
or DE eras and should be interpreted as indicative of the
decay dynamics.
In this study we have neglected finite-temperature

corrections to decay vertices and masses, as their inclusion
requires studying the time evolution of an initial density
matrix. Furthermore, if the decay products thermalize with
the medium, their population buildup will lead to Pauli
blocking factors, thereby suppressing the decay of the
parent particle. These effects remain to be studied but are
beyond the scope and goals of this article.
Possible implications: The time dependence of the decay

function reveals nonequilibrium aspects that have not been
previously recognized, from not only the transient buildup
of the quasiparticle but also the memory effects that yield
the unexpected power laws and stretched exponentials.
These novel nonequilibrium effects may lead to interesting
and perhaps important dynamics relevant to baryogenesis
and leptogenesis. In particular, we envisage corrections to
quantum kinetic processes for particle production and their
inverse processes. Typically quantum kinetics inputs tran-
sition rates perhaps with finite-temperature contributions
but ultimately obtained from S-matrix theory. Namely, such
transition rates are obtained in the infinite-time limit and
the forward and backward probabilities input strict energy
conservation, and as a consequence they obey a detailed
balance. The richer time dependence of the decay function
revealed by this study, with the hitherto unexplored novel
nonequilibrium aspects, suggests that similar dynamical

processes may enter in a modified quantum kinetic
description in the early Universe. We expect to report on
these and other related issues in future studies.

VIII. SUMMARY, CONCLUSIONS, AND
FURTHER QUESTIONS

In this article we studied the decay of a bosonic particle
into massless fermions via a Yukawa coupling in post-
inflation cosmology. The approximation of massless fer-
mions is warranted for a heavy Higgs-like scalar within or
beyond the Standard Model decaying into mostly charged
leptons or quarks (except for the top quark) of the Standard
Model. We implemented a nonperturbative method that
yields the time evolution of the survival probability PΦðtÞ
combined with a physically motivated adiabatic expansion.
This expansion is justified when HðtÞ=EkðtÞ ≪ 1, where
HðtÞ is the Hubble rate and EkðtÞ is the local energy of the
particle as measured by a comoving observer. We have
argued that this approximation is valid for typical particle
physics processes during the radiation-dominated era and
beyond. In a standard cosmology the reliability of this
approximation improves with the cosmological expansion,
and therefore if the adiabatic condition is fulfilled at the
initial time when the decaying particle is produced, its
reliability improves throughout the expansion history.
Particle decay into fermionic channels introduces novel

phenomena associated with ultraviolet divergences, which
require renormalization and result in two different physical
processes: i) the buildup of a quasiparticle state out of the
bare initial state by dressing with fermion-antifermion
pairs, and ii) the decay of this quasiparticle state via the
emission of fermion pairs. These two different processes
occur on widely separated time scales. We introduced a
dynamical renormalization method that allows to separate
the dynamics of formation of the quasiparticle from its
decay on longer time scales. It relies on introducing a
renormalization time scale tb to absorb the transient
dynamics of formation into the wave-function renormali-
zation of the quasiparticle state. The survival probability
obeys a dynamical renormalization group equation with
respect to tb. The decay function of this renormalized state
is ultraviolet finite and cutoff independent.
We carried out a detailed analytic and numerical study

of the decay function during the radiation-dominated era.
The dynamics of decay depends crucially on whether the
particle is nonrelativistic or relativistic. For a particle that is
“born” at rest in the comoving frame during RD we found
that after short time transients, the survival probability is
given by

PΦðtÞ ¼
�
t
tb

�
− Y2

8π2e
Y2

4π2
ðt=tbÞ1=4e−Γ0ðt−tbÞPΦðtbÞ;

Γ0 ¼
Y2

8π
mϕ; ð8:1Þ
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where Y is the Yukawa coupling and Γ0 is the decay rate at
rest in Minkowski space-time. The scale tb is an inter-
mediate time scale that describes the buildup of the
quasiparticle state, and PðtbÞ is the renormalized proba-
bility of such state. The power of t=tb with the “anomalous”
dimension and the stretched exponential with power 1=4
are both a remnant of the formation of the quasiparticle on
long time scales as a consequence of the cosmological
redshift.
For the case in which the decaying particle is “born”

ultrarelativistically the time evolution over the whole history
during RD must be obtained numerically. Different regimes
emerge depending on whether the particle is ultrarelativistic
for t ≪ tnr or nonrelativistic for t ≫ tnr, where tnr ¼
k2=ð2m2

ϕH0

ffiffiffiffiffiffi
ΩR

p Þ is the time scale at which the decaying
particle of mass mϕ that is born ultrarelativistically with
comovingmomentumk transitions to beingnonrelativistic as
a consequence of the cosmological redshift. During the
ultrarelativistic regime (t ≪ tnr) we find for t ≫ tb that
the decay function is a stretched exponential,

PΦðtÞ ¼ e−
2
3
Γ0tnrðt=tnrÞ3=2PΦðtbÞ;

whereas for t ≫ tb and after the particle has become non-
relativistic (t ≫ tnr) we find

PΦðtÞ ¼
�
t
tnr

�
− Y2

8π2e
Y2

4π2
ðt=tnrÞ1=4

�
t
tnr

�
Γ0tnr=2

e−Γ0ðt−tnrÞPΦðtnrÞ:

The extra power of t=tnr as compared to the case when the
particle is born at rest [see Eq. (8.1)] is a consequence of
the decay function’s memory of the past history during the
ultrarelativistic stage.
The cosmological decay law was compared to a phe-

nomenological Minkowski-like, S-matrix-inspired decay
law with an instantaneous Lorentz time dilation factor,

PðMÞ
Φ ðtÞ ¼ e−

Γ0
γðtÞðt−tiÞPðMÞ

Φ ðtiÞ: ð8:2Þ

We found that this phenomenological law describes at long
times a much faster decay, thereby underestimating the
lifetime of the decaying particle.
The decay dynamics revealed by this study during RD

allowed us to extrapolate to the case of very long-lived
(i.e., very weakly coupled) particles. We obtained a decay
function that yields an upper bound to the survival
probability throughout the entire expansion history under
the assumption of two-body decay into massless fermions,
which is given by

PΦðzÞ≳ e−
Γ0
H0
ϒðz;zbÞPΦðzbÞ; ð8:3Þ

where ϒðz; zbÞ is given by Eq. (6.39) and depends only
on the cosmological parameters and the scale factor at

which the particle transitions from ultrarelativistic to
nonrelativistic.
One important conclusion from these results is that

using a decay rate as the measure of the decay dynamics is
not a useful concept and misses the correct dynamical
evolution. An S-matrix calculation of transition ampli-
tudes or probabilities (where the time interval is taken to
infinity) not only fails to capture the various different
dynamical scales and temporal behavior of the survival
probability, but also substantially underestimates the
lifetime of the decaying state.
An important corollary of this study is that the S-matrix

approach to describing quantum decay in the cosmological
setting is in general inadequate, and while it may yield a
good approximation for processes of decay at rest for
weakly coupled particles late in the cosmological history, it
misses important nonequilibrium dynamics. The nonequi-
librium effects revealed by our study—from the transient
dynamics of the formation to the quasiparticle, to the
memory of the decay function about the past history of the
decaying particle—could be relevant in the quantum
kinetics of processes in the very early Universe. These
could have a potential impact in CP-violating nonequili-
brium dynamics, baryogenesis, and leptogenesis and merit
further study.
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APPENDIX A: PROJECTORS

Introducing the notation

ΩkðηÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωψ
k ðηÞ þMfðηÞ

q
; ωψ

k ðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

fðηÞ
q

;

ðA1Þ

with the zeroth-adiabatic order spinors (2.60)–(2.61), the
projector operators are given by Eq. (2.62). We find

Λþ
k⃗
ðη; η0Þ ¼

 
ΩkðηÞΩkðη0ÞI −σ⃗ · k⃗ ΩkðηÞ

Ωkðη0Þ

σ⃗ · k⃗ Ωkðη0Þ
ΩkðηÞ − k2

ΩkðηÞΩkðη0Þ I

!
; ðA2Þ

Λ−
k⃗
ðη0; ηÞ ¼

 k2
ΩkðηÞΩkðη0Þ I −σ⃗ · k⃗ ΩkðηÞ

Ωkðη0Þ

σ⃗ · k⃗ Ωkðη0Þ
ΩkðηÞ −ΩkðηÞΩkðη0ÞI

!
; ðA3Þ

where I is the 2 × 2 identity matrix. These expressions can
be written more compactly by introducing the following
functions (suppressing the momentum and conformal time
arguments):
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λ0 ¼
1

2

�
ΩkðηÞΩkðη0Þ þ

k2

ΩkðηÞΩkðη0Þ
�
; ðA4Þ

λ1 ¼
1

2

�
ΩkðηÞ
Ωkðη0Þ

þΩkðη0Þ
ΩkðηÞ

�
; ðA5Þ

λ2 ¼
1

2

�
ΩkðηÞ
Ωkðη0Þ

−
Ωkðη0Þ
ΩkðηÞ

�
; ðA6Þ

λ3 ¼
1

2

�
ΩkðηÞΩkðη0Þ −

k2

ΩkðηÞΩkðη0Þ
�
: ðA7Þ

Then we obtain

Λþ
k⃗
ðη; η0Þ ¼ γ0λ0 − γ⃗ · k⃗λ1 þ γ⃗ · k⃗γ0λ2 þ λ3; ðA8Þ

Λ−
k⃗
ðη0; ηÞ ¼ γ0λ0 − γ⃗ · k⃗λ1 þ γ⃗ · k⃗γ0λ2 − λ3: ðA9Þ

Two relevant cases: 1) Equal time, η ¼ η0,

Λþ
k⃗
ðη; ηÞ ¼ γ0ωψ

k ðηÞ − γ⃗ · k⃗þMfðηÞ
¼ aðtÞ½=KðtÞ þmf�;

KμðtÞ ¼ ðEψ
k ðtÞ;−k⃗pðtÞÞ; ðA10Þ

Λ−
k⃗
ðη; ηÞ ¼ γ0ωψ

k ðηÞ − γ⃗ · k⃗ −MfðηÞ
¼ aðtÞ½=KðtÞ −mf�: ðA11Þ

2) Massless fermions,

Λþ
k⃗
¼ Λ−

k⃗
¼ γ0k − γ⃗ · k⃗: ðA12Þ

APPENDIX B: MINKOWSKI
SPACE-TIME: mψ = 0

TheMinkowski space-time limit is obtained by replacing
η → t and the frequencies are time independent. The self-
energy in this case becomes [46]

Σχðk; t; t0Þ ¼
Y2

16π2
eiω

ϕ
k ðt−t0Þ

ωϕ
k

Z
dk0ρðk0; kÞe−ik0ðt−t0Þ;

ρðk0; kÞ ¼ ðk20 − k2ÞΘðk0 − kÞ: ðB1Þ

Replacing k20 → −d2=dt02 and introducing a convergence
factor ϵ → 0þ yields

Σχðk; t; t0Þ ¼ −i
Y2

16π2
eiω

ϕ
k ðt−t0Þ

ωϕ
k

�
d2

dt02
þ k2

�

×

�
e−iΛðt−t0−iϵÞ − e−ikðt−t0−iϵÞ

ðt − t0 − iϵÞ
�
; ðB2Þ

and the decay function

Z
t

0

Γkðt0Þdt0 ¼ 2

Z
t

0

�Z
t0

0

Re½Σχðk; t0; t00�dt00
�
dt0: ðB3Þ

Integrating the derivative term in Eq. (B2) by parts twice,
we find

Z
t

0

Γϕ
k ðt0Þdt0 ¼

Y2

8π2ωϕ
k

½T1ðΛ;k; tÞþT2ðΛ;k; tÞþT3ðk;tÞ�;

ðB4Þ

where

T1ðΛ; k; tÞ ¼
1

ϵ
ðeðωϕ

k−kÞϵ − eðω
ϕ
k−ΛÞϵÞ − sinððΛ − ωϕ

k ÞtÞ
t

−
sinððωϕ

k − kÞtÞ
t

; ðB5Þ

T2ðΛ; k; tÞ ¼ 2ωϕ
k

Z
t

0

�
1 − cosððΛ − ωϕ

k Þt0Þ
t0

−
1 − cosððk − ωϕ

k Þt0Þ
t0

�
dt0; ðB6Þ

T3ðk; tÞ ¼ m2
ϕ

Z
t

0

½SiððΛ − ωϕ
k Þt0Þ þ Siððωϕ

k − kÞt0Þ�dt0;

ðB7Þ

where SiðtÞ ¼ R t0 sinðxÞ=xdx. Taking ϵ → 0þ and keeping
Λ large but finite yields

T1ðΛ; k; tÞ ¼ ðΛ − kÞ
�
1 −

sinððΛ − ωϕ
k ÞtÞ

ðΛ − kÞt

−
sinððωϕ

k − kÞtÞ
ðΛ − kÞt

�
; ðB8Þ

T2ðΛ; k; tÞ ¼ 2ωϕ
k

�
ln

�
Λ − ωϕ

k

ωϕ
k − k

�
− Ci½ðΛ − ωϕ

k Þt
�

þ Ci½ðωϕ
k − kÞt�

�
; ðB9Þ

and

T3ðk; tÞ ¼ m2
ϕ

�
t½Si½ðΛ − ωϕ

k Þt� þ Si½ðωϕ
k − kÞt��

−
½1 − cos½ðΛ − ωϕ

k Þt��
ðΛ − ωϕ

k Þ
−
½1 − cos½ðωϕ

k − kÞt��
ðωϕ

k − kÞ

�
;

ðB10Þ
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where for Λt → ∞ it follows that Si½ðΛ − ωϕ
k Þt� → π=2 and

Ci½ðΛ − ωϕ
k Þt� → 0. Taking the limit Λ → ∞ yields

Z
t

0

Γϕ
k ðt0Þdt0 ¼

Y2

8π2ωϕ
k

�
Λ − kþ 2ωϕ

k ln

�
Λ

ωϕ
k − k

�

þm2
ϕt

�
π

2
þ Si½ðωϕ

k − kÞt�
�
þ Ci½ðωϕ

k − kÞt�

−
½1 − cos½ðωϕ

k − kÞt��
ðωϕ

k − kÞ þOð1=tÞ
�
: ðB11Þ

This is exactly the same result as obtained in Ref. [46]
obtained by integrating in k0 first.

APPENDIX C: USEFUL IDENTITIES

In this appendix we gather some useful identities valid
during the radiation-dominated stage (see also Appendix D).

ωðηÞ ¼ ½k2 þm2H2
Rη

2�1=2
¼ ½k2 þm2H2

Rη
2
i þm2H2

Rðη2 − η2i Þ�1=2

≡ ωi

γi

�
γ2i − 1þ η2

η2i

�
1=2

;

ωi ¼ ωðηiÞ; γi ¼ γðηiÞ: ðC1Þ
The local Lorentz factor in conformal time is given by

γðηÞ¼
�ðγ2i −1Þ

ð ηηiÞ2
þ1

�
1=2

¼
�

k2

m2H2
Rη

2
þ1

�
1=2≡

�
η2nr
η2

þ1

�
1=2

¼
�
ηi
η

��
γ2i −1þη2

η2i

�
1=2

; γ2i ¼ 1þη2nr
η2i

;

ηnr ¼
k

mHR
¼ ηi

ffiffiffiffiffiffiffiffiffiffiffi
γ2i −1

q
; ðC2Þ

yielding the identity

γ2ðηÞ − 1 ¼
�
ηi
η

�
2

ðγ2i − 1Þ: ðC3Þ

The relationship with the comoving time t is obtained via
Eq. (2.39), namely,

γðηðtÞÞ ¼
�ðγ2i − 1Þ

ð ttiÞ
þ 1

�
1=2 ≡

�
tnr
t
þ 1

�
1=2

: ðC4Þ

The conformal and comoving time scales ηnr and tnr,
respectively, determine the scale at which the decaying
particle transitions from being relativistic [with γðηÞ ≫ 1
for η ≪ ηnr or t ≪ tnr] to being nonrelativistic [with γðηÞ ≃ 1
for η ≥ ηnr or t ≥ tnr]. In terms of η; ηi we find

ωðηÞη ¼ ωiηi
γi

�
η

ηi

��
γ2i − 1þ η2

η2i

�
1=2

: ðC5Þ

APPENDIX D: ANALYSIS OF I2: EQ. (4.7)

Consider the first term in I2 [Eq. (4.7)],

I2;aðΛ; k; ηÞ ¼
Z

η

ηi

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðη0Þ

ωϕ
k ðηiÞ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðηiÞ

ωϕ
k ðη0Þ

s #

×

�
1 − cosðR η0ηi ðωϕ

k ðη1Þ − ΛÞdη1Þ
η0 − ηi

�
dη0:

ðD1Þ

For Λ ≫ k;mϕ the argument of the cosine becomes simply
Λðη0 − ηiÞ. We define x ¼ Λðη0 − ηiÞ and change the
integration variable to x, with xf ¼ Λðη − ηiÞ, yielding

I2;aðΛ; k; ηÞ ¼
Z

xf

0

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðηi þ x=ΛÞ
ωϕ
k ðηiÞ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðηiÞ

ωϕ
k ðηi þ x=ΛÞ

s #

×

�
1 − cosðxÞ

x

�
dx: ðD2Þ

In the limit Λ → ∞ we find

I2;a → 2½lnðxfÞ þ γE − CiðxfÞ�; ðD3Þ

where γE ¼ 0.577 � � � is Euler’s constant and for xf ≫ 1 we
find CiðxfÞ ¼ sinðxfÞ=xf þ � � �. We confirmed the result
(D3) numerically. Therefore, for Λ ≫ k;mϕ; 1=ðη − ηiÞ we
find

I2;a ¼ 2 ln½ΛeγEðη − ηiÞ�: ðD4Þ

Let us now consider

I2;bðk; ηÞ ¼ −
Z

η

ηi

" ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðη0Þ

ωϕ
k ðηiÞ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðηiÞ

ωϕ
k ðη0Þ

s #

×

�
1 − cosðR η0ηi ðωϕ

k ðη1Þ − kÞdη1Þ
η0 − ηi

�
dη0: ðD5Þ

Using the identities obtained in Appendix C for a
radiation-dominated cosmology, we write

ωϕ
k ðηÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

ϕH
2
Rη

2
q

¼
�
k2þm2

ϕH
2
Rη

2
i þm2

ϕH
2
Rη

2
i

��
1þη−ηi

ηi

�
2

−1

��
1=2

¼ωiW½ξ�; ðD6Þ

where we introduced the definitions

W½ξ� ¼ 1

γi
½γ2i − 1þ ð1þ ξÞ2�1=2; ðD7Þ
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ωi ≡ ωϕ
k ðηiÞ; ξ ¼

�
η

ηi
− 1

�
;

γi ¼
ωi

mϕHRηi
≡ Eϕ

k ðtiÞ
mϕ

; ðD8Þ

and γi is the local Lorentz factor at time ηi.
In terms of these variables we find

J½ξ0�≡
Z

η0

ηi

½ωϕ
k ðη1Þ − k�dη1

¼ ωiηi
2

�
ð1þ ξ0ÞW½ξ0� − 1 − 2

ξ0

γi

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2i − 1

q

þ ðγ2i − 1Þ
γi

ln

�
γiW½ξ0� þ 1þ ξ0

1þ γi

��
: ðD9Þ

We note that the fulfillment of the adiabatic condition at all
times implies that

ωiηi ¼
Eϕ
k ðηiÞ
HðηiÞ

≫ 1: ðD10Þ

For ξ0 ≪ 1 it is straightforward to find that J½ξ0� features the
expansion

J½ξ0� ¼ ωiηiξ
0
"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

γ2i

s
þ 1

2

ξ0

γ2i
þ � � �

#
: ðD11Þ

In terms of these variables we find that the subtracted
integral I2bðk; η; ηbÞ defined by Eq. (5.4) is given by

I2;b½k; η; ηb� ¼ −
Z

ξ

ξb

� ffiffiffiffiffiffiffiffiffiffiffi
W½ξ0�

p
þ 1ffiffiffiffiffiffiffiffiffiffiffi

W½ξ0�p �

×
�
1 − cos½Jðξ0Þ�

ξ0

�
dξ0: ðD12Þ

Consider the two contributions to this function,

F1ðξÞ ¼
Z

ξ

ξb

� ffiffiffiffiffiffiffiffiffiffiffi
W½ξ0�

p
þ 1ffiffiffiffiffiffiffiffiffiffiffi

W½ξ0�p �
dξ0

ξ0
; ðD13Þ

F2ðξÞ ¼
Z

ξ

ξb

� ffiffiffiffiffiffiffiffiffiffiffi
W½ξ0�

p
þ 1ffiffiffiffiffiffiffiffiffiffiffi

W½ξ0�p �
cos½Jðξ0Þ�

ξ0
dξ0: ðD14Þ

During the time scale when Jðξ0Þ ≪ 1 the term
cos½Jðξ0Þ� ≃ 1, and therefore F2ðξÞ ≃ F1ðξÞ and I2b ≃ 0.
Figures 6 and 7 display F1;2ðξÞ for ωiηi ¼ 100 and γi ¼ 2,
10, respectively, for ξb ¼ 1=ωiηi. F2ðξÞ increases to a
maximum at ξm at which JðξmÞ ¼ π=2 and begins damped
oscillations, reaching a plateau. As it increases to the
maximum F2ðξÞ ≃ F1ðξÞ, thereby yielding I2bðk; η; ηbÞ ≃
0 during the interval ξb ≤ ξ≲ ξm.

Although in general the value of ξm must be obtained
numerically, for ωiηi ≫ 1 there are two limits that afford an
analytic estimate. a) For ωiηi ≫ 1 and γi ≃ 1, we assume
self-consistently that ξm ≪ 1, and therefore from Eq. (D11)
we obtain

ξm ≃
π

2

(
ωiηi

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

γ2i

s #)−1

for γi ≃ 1: ðD15Þ

This expression confirms the assumption that ξm ≪ 1 for
γi ≃ 1. b) For γi ≫ 1, it is convenient to carry out the integral
(D9) by expanding ωϕ

k ðη1Þ ≃ kþm2
ϕC

2ðη1Þ=kþ � � � and
keeping the leading-order term, which gives

ξm ≃
��

1þ 3πγ2i
ωiηi

�1
3

− 1

�
for γi ≫ 1: ðD16Þ

FIG. 6. The contributions F1ðξÞ and F2ðξÞ for ξb ¼ 0.01,
γi ¼ 2, and ωiηi ¼ 100.

FIG. 7. The contributions F1ðξÞ and F2ðξÞ, for ξb ¼ 0.01,
γi ¼ 10, and ωiηi ¼ 100.
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This latter expression is fairly accurate even for γi ≃ 2, 3.
We have numerically confirmed the validity of these
approximate values of the maxima of F2ðξÞ (see Figs. 6
and 7). In both cases we find that for ωiηi ≫ 1 the value at
the maxima fulfills ξm=γi ≪ 1. In summary, we find that
during the time interval ξb < ξ < ξm, F1ðξÞ ≃ F2ðξÞ ≃
2 ln½ξ=ξb� and I2b½k; η; ηb� ≃ 0. For ξ > ξm the contribution
F2ðξÞ ≃ F2ðξmÞ ≃ 2 ln½ξm=ξb� remains constant, while
F1ðξÞ increases monotonically. The above analysis shows
that for ωiηi ≫ 1 it follows that ξm ≪ γi in the whole range
of γi, and therefore during the interval ξm < ξ < γi and
W½ξ0� ≃ 1. Hence,

F1ðξÞ ≃ F1ðξmÞ þ 2 ln
�
ξ

ξm

�
; ξm < ξ < γi; ðD17Þ

with F1ðξmÞ ≃ F2ðξmÞ ≃ 2 ln½ξm=ξb�. For ξ ≫ γi the func-
tion

ffiffiffiffiffiffiffiffiffiffi
W½ξ�p þ 1ffiffiffiffiffiffiffi

W½ξ�
p ≥ 2, as shown in Fig. 8, and hence

F1½ξ� > 2 ln½ξ�, with the asymptotic behavior

F1½ξ� ≃ 2 ln

�
γi
ξb

�
þ 2

ffiffiffiffi
ξ

γi

s
; for ξ ≫ γi: ðD18Þ

The behavior of F1;2 in the ultrarelativistic case γi ≫ 1 is
summarized as follows:

F1½ξ�≃F2½ξ�≃ 2 ln

�
ξ

ξb

�
for ξb ≲ ξ≲ ξm;

F1½ξ�≃ 2 ln

�
ξ

ξb

�
; F2½ξ�≃ 2 ln

�
ξm
ξb

�
for ξm ≲ ξ≲ γi;

F1½ξ�≃ 2 ln

�
γi
ξb

�
þ 2

ffiffiffiffi
ξ

γi

s
; F2½ξ�≃ 2 ln

�
ξm
ξb

�
for ξ≫ γi:

ðD19Þ

APPENDIX E: ANALYSIS OF I3bðk;η;ηbÞ: EQ. (4.8)

Let us now consider the following integral in I3b,
namely, the second contribution to Eq. (4.8):

Iðη0Þ ¼
Z

η0

ηi

C2ðη1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðη1Þ

q sinðR η0η1 ðωϕ
k ðη2Þ − kÞdη2Þ
η0 − η1

dη1: ðE1Þ

This integral is similar to the case of decay into bosonic
particles studied in Ref. [32].
Following the treatment in that reference, we introduce

the following definitions:

ωϕ
k ðη0Þη0 ¼ zðη0Þ ≫ 1 ðE2Þ

ωϕ
k ðη0Þðη0 − η2Þ ¼ x; ωϕ

k ðη0Þðη0 − η1Þ ¼ τ: ðE3Þ

In terms of these variables, it follows that

ωϕ
k ðη2Þ ¼ ωϕ

k ðη0ÞR½x; z�; ðE4Þ

with

R½x; z� ¼
�
1 −

2x
zγ2

þ x2

z2γ2

�
1=2

; ðE5Þ

where there is an implicit η0 dependence in z and γ.
The argument of the sine function in Eq. (E1) becomes

Aðτ; η0Þ ¼
Z

τ

0

R½x; z�dx − kτ

ωϕ
k ðη0Þ

¼ τ

�
1 −

�
1 −

1

γ2

�
1=2
�
þ δkðτ; η0Þ; ðE6Þ

with

δðτ; η0Þ ¼ z
2

��
1 −

2τ

z

�
−
�
1 −

τ

z

�
R½τ; z�

−
ðγ2 − 1Þ

γ
ln

�
γR½τ; z� þ ð1 − τ

zÞ
1þ γ

��
; ðE7Þ

where z≡ zðη0Þ; γ ≡ γkðη0Þ. Writing

C2ðη1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðη1Þ

q ¼ C2ðη0Þffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðη0Þ

q P½η0; η1� ðE8Þ

and using (E4), it is straightforward to find

P½τ; η0� ¼ ½1 − τ
z�2ffiffiffiffiffiffiffiffiffiffiffiffiffi

R½τ; z�p : ðE9Þ

We finally obtain

FIG. 8. The function C½ξ� ¼ W1=2½ξ� þ 1=W1=2½ξ� vs ξ, for
γi ¼ 1, 10.
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Iðη0Þ ¼ C2ðη0Þffiffiffiffiffiffiffiffiffiffiffiffiffi
ωϕ
k ðη0Þ

q Z
z̃

0

P½τ; η0� sin½Aðτ; η
0Þ�

τ
dτ; ðE10Þ

where z̃ ¼ ωϕ
k ðη0Þðη0 − ηiÞ. Combining this result with

Eq. (4.13) for I3a, we find

I3ðk; ηÞ ¼
π

2
mϕ

Z
η

ηi

Cðη0Þ
γkðη0Þ

½1þ Sðη0Þ�dη0; ðE11Þ

where

Sðη0Þ ¼ 2

π

Z
z̃

0

P½τ; η0� sin½Aðτ; η
0Þ�

τ
dτ;

z̃ ¼ ωϕ
k ðη0Þðη0 − ηiÞ: ðE12Þ

For η0 ≫ ηi and zðη0Þ ≫ 1 the integral in Eq. (E10) has
an adiabatic expansion, and for τ ≪ z we find

δkðτ; η0Þ ¼ −
τ2

2γ2z
þ � � � : ðE13Þ

Therefore, δk is of adiabatic order one and higher.
Furthermore,

R½τ; z� ¼ 1 −
τ

zγ2
þ � � � ; ðE14Þ

and to leading (zeroth) adiabatic order we can replace
P½τ; η0� ¼ 1. The τ integral in Eq. (E10) is dominated by the
region τ ≃ 0 and the region for which τ ≃ z yields a
contribution ∝ 1=z, and hence is of first adiabatic order
or smaller. Therefore, to leading (zeroth) adiabatic order we
neglect δk in Eq. (E6) and replace P → 1 in Eq. (E10).
Although the variables (E2)–(E3) allow an explicit

identification of the nature of the adiabatic expansion,
the most suitable variables to merge the results for I3b with
those of the contributions from I2b are those introduced in
Appendices C and D. We now recast the results for I3b in
terms of these variables. We introduce

t ¼ η0 − η1
ηi

; y ¼ η0

ηi
¼ 1þ ξ0; ðE15Þ

in terms of which we find [using Eq. (C1)]

ωϕ
k ðη0Þ ¼

ωi

γi
fðyÞ; fðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2i − 1þ y2

q
: ðE16Þ

Similarly, using Eq. (C3) we obtain

γkðη0Þ≡ γðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2i − 1Þ

y2
þ 1

s
¼ fðyÞ

y
; ðE17Þ

and the variables z, τ introduced in Eq.s. (E2) and (E3),
respectively, are given by

zðη0Þ ¼ ωiηi
γi

fðyÞy; τ ¼ ωiηi
γi

fðyÞt; ðE18Þ

which fulfill the identity

zðη0Þ
γkðη0Þ

ðγ2kðη0Þ − 1Þ ¼ ωiηi
γi

ðγ2i − 1Þ: ðE19Þ

Using these results, we find

R½τ; z�≡R½t; y� ¼ 1

γðyÞ
�ðγ2i − 1Þ

y2
þ
�
1 −

t
y

�
2
�
1=2

;

ðE20Þ
and the ratio (E9) becomes

P½τ; η0�≡ P½t; y� ¼
ð1 − t

yÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffi
R½t; y�p ; ðE21Þ

and δðτ; η0Þ in Eq. (E7) becomes

δðτ; η0Þ≡ Δ½t; y� ¼ ωiηi
γi

�
yfðyÞ

��
1 − 2

t
y

�

−
�
1 −

t
y

�
R½t; y�

�

× ðγ2i − 1Þln
�
γðyÞR½t; y� þ ð1 − t

yÞ
1þ γðyÞ

��
:

ðE22Þ
Finally, the function Aðτ; η0Þ given by Eq. (E6) becomes

Aðτ; η0Þ≡A½t; y� ¼ A0½t; y� þ Δ½t; y�; ðE23Þ
with

A0½t; y� ¼
ωiηi
γi

t
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðγ2i − 1Þ þ y2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2i − 1Þ

q i
; ðE24Þ

and the integral (E12) becomes

Sðη0Þ ¼ 2

π

Z
ξ0

0

P½t; y� sin½Aðt; yÞ�
t

dt;

y ¼ 1þ ξ0; ξ0 ¼
�
η0

ηi
− 1

�
: ðE25Þ

We have argued above in this appendix that for
ωϕ
k ðη0Þη0 ≫ 1 the term δ≡ Δ is higher order in the

adiabatic approximation and can be neglected, and that
to leading order in this approximation we can set
P≡ P → 1. We now test this assertion numerically in
terms of the new variables. Since in the new variables the
product ωϕ

k ðη0Þη0 ¼ ωiηi
γi

yfðyÞ, it follows that ωϕ
k ðη0Þη0 ≫ 1

at all times implies that ωiηi ≫ 1, which is precisely the
statement of the validity of the adiabatic approximation

at the initial time. Figure 9 compares sin½A0½y;t��
t and

P½y; t� sin½A½y;t��
t for γi ¼ 5, ωiηi ¼ 100, and y ¼ 10,

DANIEL BOYANOVSKY and NATHAN HERRING PHYS. REV. D 100, 023531 (2019)

023531-28



confirming the validity of the adiabatic approximation.
We have explored a wide range of parameters with similar
results.
Therefore, to leading order in the adiabatic approxima-

tion we can replace the argument of the integral in

Eq. (E25) with sin½A0½y;t��
t , yielding to lowest adiabatic order

Sðξ0Þ ¼ 2

π
Si½αðξ0Þ�;

αðξ0Þ ¼ ωiηi
γi

ξ0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðγ2i − 1Þ þ ð1þ ξ0Þ2
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2i − 1Þ

q �
;

ðE26Þ

where Si½x� is the sine-integral function, with Si½x� ≃ x as
x → 0, which reaches a maximum at x ¼ π and Si½x� →
π=2 for x≳ π. The maximum of SðξÞ occurs when

αðξÞ ¼ π; ðE27Þ

beyond which SðξÞ ≃ 1.
In particular, for γi ¼ 1 (the particle decaying at rest) and

ωiηi ≫ 1, Sðξ0Þ reaches a maximum at ξ0 ¼ ξs ≃ π=ωiηi þ
Oð1=ðωiηiÞ2Þ with SðξsÞ ≃ 1. In the opposite limit, for an
ultrarelativistic particle with γi ≫ 1 and ωiηi ≫ 1 we find
self-consistently that Sðξ0Þ reaches a maximum at ξs with
αðξsÞ ¼ π, where ξs is a solution of

ξsð1þ ξsÞ2 ¼
2πγ2i
ωiηi

: ðE28Þ

For 2πγ2i =ωiηi ≪ 1 we find

ξs ≃
�
2πγ2i
ωiηi

�
−
�
2πγ2i
ωiηi

�
2

þ � � � ; ðE29Þ

and for 2πγ2i =ωiηi ≫ 1

ξs ≃
�
2πγ2i
ωiηi

�1
3

−
2

3
þ � � � : ðE30Þ

In both cases we find that ξs
γi
≪ 1 whenever γi ≫ 1.

Figure 10 displays the behavior of SðξÞ for ωi ¼ 100
and γi ¼ 2, 10.
Using the relations derived in Appendix C along with

the identities Cðη0Þ ¼ CðηiÞðη0=ηiÞ ¼ CðηiÞð1þ ξ0Þ and
mϕCðηiÞ ¼ ωi=γi, it follows that I3ðk; ηÞ given by
Eq. (E11) can be written in terms of the same variables
as I2, namely, ξ ¼ η=ηi − 1 and ηb ¼ ηb=ηi − 1. We find

I3ðk; ξÞ ¼
π

2

ωiηi
γi

Z
ξ

ξb

ð1þ ξ0Þ2½1þ Sðξ0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2i − 1Þ þ ð1þ ξ0Þ2

p dξ0: ðE31Þ

The contribution from the term with S in the integrand must
be evaluated numerically; however, the first term can be
evaluated analytically, yielding

I3Aðk; ξÞ ¼
π

4
ωiηi

�
ð1þ ξÞW½ξ� − 1 −

ðγ2i − 1Þ
γi

× ln

�
γiW½ξ� þ ð1þ ξÞ

1þ γi

��
; ðE32Þ

where we have set ξb ¼ 0 to leading adiabatic order.
The function S½αðξÞ� has the following behavior for

ξ ≪ ξs and ξ ≫ ξs, corresponding to αðξÞ ≪ π and
αðξÞ ≫ π, respectively:

S½αðξÞ� ≃ 2

π

�
α −

α3

18
þ α5

600
þ � � �

�
; α ≪ πðξ ≪ ξsÞ;

ðE33Þ

S½αðξÞ�≃ 2

π

�
1−

cos½α�
α

−
sin½α�
α2

þ�� �
�
; α≫ πðξ≫ ξsÞ:

ðE34Þ

FIG. 10. S½y; t� for γi ¼ 2, 10 and ωiηi ¼ 100.
FIG. 9. Comparison of S0½y; t� ¼ sin½A0½y;t��

t and S½y; t� × P½y; t�
with S½y; t� ¼ sin½A½y;t��

t for γi ¼ 5, ωiηi ¼ 100, and y ¼ 10, con-
firming the validity of the adiabatic approximation.
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