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We study the decay of a Higgs-like scalar Yukawa coupled to massless fermions in post-inflationary
cosmology, combining a nonperturbative method with an adiabatic expansion. A dynamical renormaliza-
tion is introduced to describe the formation of a renormalized (quasiparticle) state. The renormalized
survival probability P (#) is ultraviolet finite, independent of the cutoff and decays on much longer time
scales. During radiation domination, for a (quasi)particle “born” at time #, and decaying at rest in the

. _r2 ¥ 1/4 . . . .
comoving frame, Py (1) = [£] /) e =Tol=t) Py (1), where T is the decay rate at rest in Minkowski
space-time. The power with the “anomalous dimension” and the stretched exponential are remnants of the
formation of the quasiparticle and a consequence of the cosmological redshift. For an ultrarelativistic

particle we find Pg (1) = e ot(t/ ’"f)qu)(tb) before it becomes nonrelativistic at a time 7, as a

. . . _y2 2 1/4
consequence of the cosmological redshift. For ¢> 17, we find Pg(r) = [} g2 !/ 1)

[-L] ote/2e=Tol=t) Py (£, ). The extra power is a consequence of the memory on the past history of the

Inr

decay process. We compare these results to an S-matrix-inspired phenomenological Minkowski-like decay
law modified by an instantaneous Lorentz factor to account for cosmological redshift. Such a
phenomenological description underestimates the lifetime of the particle. For very long-lived, very
weakly coupled particles, we obtain an upper bound for the survival probability as a function of redshift z

T
valid throughout the expansion history Pg(z) 2 e_F%Y(Z’Z”)P¢(zb), where Y(z,z,) only depends on

cosmological parameters and 7,;.
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I. INTRODUCTION

The decay and scattering of particles are some of the
most fundamental processes in particle physics, within and
beyond the Standard Model, and they have a profound
impact on cosmology. These processes are ultimately
responsible for establishing a state of local thermodynamic
and chemical equilibrium and are fundamental ingredients in
kinetic processes in the early Universe [1-3]. Particle decay
is not only ubiquitous; it also plays an important role in big
bang nucleosynthesis (BBN) [1,4-9], and the generation of
the baryon and lepton asymmetries [10—13]. The decay of
long-lived dark matter particles is constrained by various
cosmological and astrophysical probes [14—18], and recently
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it has been suggested that the two-body decay of a long-lived
dark matter particle may relieve the tension between the
distance ladder and cosmic microwave background mea-
surements of the Hubble constant [19].

Most treatments of particle decay (and/or inverse decay)
in cosmology implement the S-matrix quantum field theory
approach as in Minkowski space-time. In this framework,
the unstable decaying state is prepared at a time far in the
past (f - —o0), and one obtains the transition amplitude to
a given final state far in the future (f — o0). Taking the
infinite-time limit in the transition amplitude yields a
total-energy-conserving delta function. Squaring this delta
function to obtain the transition probability yields a total-
energy-conserving delta function multiplied by the total
elapsed time. Dividing by this large time and summing over
all of the final states for a given decay channel gives the
total transition probability per unit time, namely, a decay
rate. Energy conservation, a consequence of the infinite-
time limit, yields kinematic constraints (thresholds) for
decay and scattering processes.

In an expanding cosmology such an approach is at best
approximate and at worst unreliable when the Hubble
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expansion rate is large, even during a post-inflationary
early stage of a radiation-dominated cosmology, or if the
lifetime of the particle is of the order of the Hubble time.
In a spatially flat Friedmann-Robertson-Walker (FRW)
cosmology there are three space-like Killing vectors
associated with spatial translational invariance and spatial
momentum conservation; however, as a consequence of
cosmological expansion there is no global time-like Killing
vector, and therefore particle energy is not manifestly
conserved in scattering or decay processes.

A consistent formulation of dynamic processes in an
expanding cosmology requires implementing methods of
quantum field theory in curved space-time [20-28].
Early studies revealed a wealth of novel phenomena such
as particle production [20,23,24] and processes that are
forbidden in Minkowski space-time as a consequence of
strict energy conservation.

S-matrix theory was extended to simple cosmological
space-times to study the decay of a massive particle into
two massless particles conformally coupled to gravity in
Ref. [29]. In Refs. [30,31] these methods were adapted to
calculate the decay of a massive bosonic particle at rest
into two massless bosonic particles conformally coupled to
gravity and into massless fermions Yukawa coupled to a
scalar.

More recently [32] the decay of bosonic particles into two
other bosonic degrees of freedom (d.o.f.) during a radiation-
dominated era was studied by implementing a nonperturba-
tive method. This method was adapted to quantum field
theory from the study of linewidths in quantum optics
[33,34], combined with a physically motivated adiabatic
expansion. While the results of this reference agreed with
those obtained in Ref. [30] for a particle decaying at rest in
the comoving frame in the long-time limit, they revealed new
phenomena for highly relativistic decaying particles as a
consequence of the cosmological redshift, and the relaxation
of kinematic thresholds as a consequence of energy uncer-
tainties determined by the Hubble scale.

Our study in this article is a natural extension of that in
Ref. [32] that focuses on the decay of a heavy bosonic
particle into fermions, which is a more relevant case for
Standard Model physics (and probably beyond) since most
of the fermionic d.o.f. in the Standard Model (with the
possible exception of neutrinos) are Yukawa coupled to the
Higgs boson.

Brief summary: The study of fermionic d.o.f. as decay
products introduces several conceptually important dis-
tinctions to the bosonic case studied in Refs. [30,32] that
result in novel aspects of cosmological decay. First,
fermionic d.o.f. couple to the background gravitational
field via the spin connection [20,25,28,35-45]. Second,
fermions Yukawa coupled to a bosonic d.o.f. yield a
renormalizable theory. Recently the decay of a bosonic
particle Yukawa coupled to fermions was studied within
a nonperturbative real-time framework in Minkowski

space-time [46]. This study revealed novel transient
dynamics associated with the dressing of the decaying
particle by fermion-antifermion pairs into a quasiparticle
state, which decays on a longer time scale. Such “dressing”
leads to the necessity of an ultraviolet-divergent renorm-
alization of the decaying state and a detailed understanding
of the various time scales to separate the many-particle
dynamics of renormalization and dressing from that of the
actual decay of the quasiparticle. Such dynamical effects
cannot be addressed within an S-matrix framework since
these effects are not secular in time and their contribution
vanishes when the transition probability is divided by the
total time in the infinite-time limit. The dynamics of
dressing and quasiparticle formation have been recently
addressed in Ref. [47] for a consistent interpretation of the
reduction formula in asymptotic quantum field theory.

We introduce a dynamical renormalization that absorbs
the ultraviolet divergences associated with fermion pairs
into a renormalized survival probability at a renormaliza-
tion time scale f7,. The survival probability obeys a
dynamical renormalization group equation with respect
to t,. The cosmological redshift encodes the memory of the
transient dynamics of quasiparticle formation in the decay
law not seen in Minkowski space-time. If the decaying
particle is ultrarelativistic, the decay dynamics depends
crucially on t,, the time scale at which it becomes
nonrelativistic as a consequence of the cosmological red-
shift. An S-matrix-inspired, phenomenologically motivated
Minkowski-like decay law is shown to underestimate the
lifetime of the decaying state. Section II introduces the
model and the adiabatic approximation, and Sec. III
summarizes the nonperturbative framework to obtain the
time evolution of the survival probability. In Sec. IV we
obtain the decay function for massless fermions during
radiation domination, Sec. V describes the dynamical
renormalization method, and Sec. VI analyzes the decay
dynamics of the renormalized survival probability during
radiation domination, compares the results to an S-matrix-
inspired decay function, and introduces an upper bound to
the decay function for very long-lived, very weakly coupled
particles that is valid throughout the entire expansion history.
Section VII discusses the various results, analyzes their
regime of validity, and highlights several implications.
Section VIII presents our conclusions and summarizes the
main results. Various appendices contain technical details; in
particular, Appendix B derives the decay law in Minkowski
space-time and highlights the renormalization aspects to
make a comparison with the curved space-time case.

II. THE MODEL

We consider a Higgs-like scalar field Yukawa coupled
to one Dirac fermion in a spatially flat FRW cosmology
with scale factor a(z) in comoving time. Generalizing to
include Majorana fermions and/or more fermionic species
is straightforward.
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In comoving coordinates, the action is given by

2
S = / d3xdt\/—_g{%¢2 - (ZZ? - % [M? + ER]¢?

+Pliy*D, —m; — Yqﬁ]‘P}, (2.1)

)

is the Ricci scalar and & is the coupling to gravity, with
£=0,1/6 corresponding to minimal or conformal cou-
pling, respectively. Introducing the vierbein field e (x)
defined as

where

(2.2)

where 7, is the Minkowski space-time metric, the curved
space-time Dirac gamma matrices y*(x) and the fermionic
covariant derivative D, are given by [25,35-37]

y'(x) =rtea(x).  {r"(x).r"(x)} =2¢" ().
where the y“ are the Minkowski space-time Dirac matrices,
chosen to be in the standard Dirac representation, and the
covariant derivative D, is given in terms of the spin
connection by

(2.3)

1
D/t = aﬂ +3 [}/Cﬁ yd]elé<aﬂedb - rﬁued})’

5 (2.4)

where I“,’l,/ are the usual Christoffel symbols.
For an FRW cosmology in conformal time diy = dt/a(t),
the metric becomes

G = C* (M) (2.5)

where 7, = diag(1,—1,—1,-1) is the flat Minkowski
space-time metric, and the vierbeins ¢}, are given by

eh = C ()8, et = C(n)sg. (2.6)

The fermionic part of the action in conformal coordinates
now becomes

S, = / d3%dnc4(n)‘i‘(5€', ) [" Cy(;) <di;7 - 262((7171))>

+i%vi—mf—y¢}lp(£,n).

The Dirac Lagrangian density in conformal time
simplifies to

(2.7)

V=9P(iy"D,¥ —m; — Y¢)¥
= (C2 () (%)) [id — (my + Y$)C(n)]

x (CV2(n) P (X.m)). (2.8)

where id = y“d, is the usual Dirac differential operator in
Minkowski space-time in terms of flat space-time y*
matrices. Introducing the conformally rescaled fields

Cp(x.1) =x(En),  CHYE1) =y(En) (29)
and neglecting surface terms, the action becomes
5= [ @xdn{cole) + Loly) + Lilewl). (210)
with
1
Lole) =3 " = (V) = M), (2.10)
Loly] = wlid M2y, (2.12)
Lily.yw] = =Yypw. (2.13)
The effective time-dependent masses are given by
C"(n)
M2(n) = m3,C*(n) — 1-6 2.14
and
M () = m;C(n). (2.15)

In the noninteracting case Y =0, the Heisenberg
equations of motion for the spatial Fourier modes with

comoving wave vector k for the conformally rescaled scalar
field are

1) + [k + M () (n) = 0. (2.16)

The Heisenberg fields are quantized in a comoving
volume V, and the real scalar field y is expanded as

X ! k3 gt o () emikE
x(E) = \/—VZ [a,;gk(n)e’k +atgi(n)e™ ] (2.17)
k
where the mode functions g, (1) obey
& 2 2
d_772+k + M=(n) | ge(n) = 0. (2.18)

The mode functions are chosen to obey the Wronskian
condition
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9 (magc(n) — gy’ (M) gr(n) = —i, (2.19)

and a,a’ obey the usual canonical commutation relations.
For Dirac fermions the field y/(X,7) is expanded as

1 > N - o
i) = — be U, (k) +di v, (K, e‘lk'x},
w(E.1) WZ[ J(k.n) L Vakn)

(2.20)

where the spinor mode functions U, V obey the Dirac
equations [38—45]

[i1°0, =7 - K= Mp(n)]U,(k.n) =0, (2.21)
[iy°0, +7-k—M;n)]V,(k,n) =0.  (2.22)

These equations become simpler by writing
Uy(k.n) = [i°0, =7 - k+ M) fr (. (2.23)
Vilkn) = [ir°0, + 7 -k + My(n) (V. (2.24)

with U;; V), being constant spinors [44,45] obeying

}/OUA - Ui, ]/OVA = _Vll' (225)
Inserting Egs. (2.23)—(2.24) into the Dirac equations (2.21)—
(2.22) and using Eq. (2.25), it follows that the mode

functions f(n), hi (1) obey the equations

[; + &2+ Mi(n) - iM}('?)] fuln) =0, (2.26)

;72

d2
[—2 + k% + M}(n) + iM}(n)} hi(n) = 0. (2.27)
dn

Multiplying the Dirac equations on the left by 7Y, it is
straightforward to confirm that

din<01<q,n>w<q,n>> —o, dinwz(q,n)vm,n)) ~o.

(2.28)

We choose the normalizations

Ui (q.mUx(q.n) = Vilq.n)Vilg.n) = 8,0 (2.29)
so that the operators b, b",d,d" obey the canonical anti-
commutation relations. Furthermore, we will choose
particle-antiparticle boundary conditions so that h;(n) =
f7(n) (see below). We note that for m; = 0 the conformally
rescaled Fermi fields obey the same equations as in
Minkowski space-time but in terms of conformal time,

whereas this only occurs for bosons if they are conformally
coupled to gravity, namely, with & = 1/6, or for a radiation-
dominated cosmology (see below). The equivalence of
massless fermions to those in Minkowski space-time will
allow a direct comparison with the case of decay in flat
space-time studied in Ref. [46] and summarized in
Appendix B, and to interpret the differences with the curved
space-time case.

A. Adiabatic approximation in post-inflationary
cosmology

The standard (post-inflation) cosmology is described by
radiation (RD), matter (MD), and dark energy (DE)-
dominated stages, we take the latter to be described by a
cosmological constant. Friedmann’s equation in comoving
time is

<g>2 — (1) = H} L?Z) +a?—ft) +9,].

(2.30)

where the scale factor is normalized to ag = a(ty) = 1
today. We take the following representative values of the
parameters [48-50]:

Hy=1.5x10"* GeV, Q,; = 0.308,

Q=5x105, Q) =0.692. (2.31)
Passing to conformal time # with dn = dt/a(t), where the
metric is given by Eq. (2.5) and C(n) = a(t(n)), it follows
that

dc
T — o lac + Cla) +5CW2, - (232)
with
Qg Qp
=—no~1. 10 =—~272 2.
Qeq o, 66 x 1074, s a, 5, (2.33)

where a., is the scale factor at matter-radiation equality.

Hence the different stages of cosmological evolution
(namely, RD, MD, and DE) are characterized by

C(n) < aeq = RD,
a.q < C(n7) £0.76 = MD,

C(y) > 0.76 = DE. (2.34)

We will begin by studying the dynamics of particle decay
during the RD era, generalizing afterwards to the case of
a very long-lived, very weakly coupled particle. During RD
and MD, we find
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H
C(n) = Hgn [1 + R’q , (2.35)
dag,
where
Hp = Hy\/Qp ~ 107 GeV, (2.36)

and conformal time in terms of the scale factor is given by

2a C
C)=—T1|,/1+—-1]. 2.37
O = W1+ o (2.37)
During the RD stage
C(n) = Hgn, (2.38)

and the relation between conformal and comoving time is
given by

n= <ﬁ>% = a(t) = [2tHyg]?, (2.39)

Hp

a result that will prove useful in the study of the decay law
during this stage.

Bosonic fields: Solving the mode equations (2.18),
(2.26), and (2.27) with the cosmological scale factor
(2.35) is obviously very challenging; instead, we imple-
ment a physically motivated adiabatic expansion. To high-
light the nature of the expansion, let us first consider the
bosonic mode equation (2.18). The term proportional to
C"/C in Eq. (2.18) vanishes identically in a radiation-
dominated cosmology or for conformally coupled bosonic
fields for which & = 1/6. We argue below that we can
consistently neglect this term to leading order in the
adiabatic expansion throughout the entire cosmological
evolution during RD and MD [see Eq. (2.54)]. Neglecting
this term, the mode equation (2.18) becomes

L;inz + wi(n)} ) =0,  &}(n) =K +mC(1).

(2.40)
We recognize that
wi(n) = C(n)Ex(1). (2.41)
where
E. (1) = kf,(t) + mf/) k,(t) = k/a(t) (2.42)

is the local energy measured by a comoving observer,
and k,(t) is the physical wave vector redshifting with the
cosmological expansion.

Writing the solution of Eq. (2.40) in the WKB form
[23,25-28]
=i [ Wiy )

i

2W(n)

e

gk(n) = (2.43)

and inserting this ansatz into Eq. (2.40), it follows that
W, (n) must be a solution of the equation [25]

U Wi) 3 (WY
Wiln) = i) 2{wk<n> 2<wk<n>)]‘ (2.44)

This equation can be solved in an adiabatic expansion

w342

(2.45)

We refer to terms that feature n derivatives of wy () as
being of nth adiabatic order. The nature and reliability of
the adiabatic expansion is revealed by considering the term
of first adiabatic order,

wi(n) _ myCn)C'(n)
60%(’7) [k2 4 m{zpcz(,l)]?a/z .

(2.46)

This is most easily recognized in comoving time ¢ in terms
of the comoving local energy (2.41)—-(2.42) and the Hubble
expansion rate

_a(t)  C(n)
H(t) = a(ty  Cn)

(2.47)

In terms of these variables, the first-order adiabatic ratio
(2.46) becomes [32]

o) H()
ot~ AOED) (2.48)
where
re() = Bl (2.49)

is the local Lorentz factor.
The adiabatic approximation relies on the smallness of
the (time-dependent) adiabatic ratio

H(t)
Ey(1)

<1, (2.50)

corresponding to the physical wavelength o 1/k,(¢) and/or
the Compton wavelength of the particle 1/m, being much
smaller than the size of the particle horizon dp(f) x
1/H(¢) at a given time. During RD the particle horizon
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grows as a*(t) and during MD it grows as a*/?(t), whereas
the physical wavelength grows as a(t). Therefore, if at a
given initial time the adiabatic approximation is valid and
H(t) < E;(1), the reliability of the adiabatic expansion
improves with the cosmological expansion.

To understand the origin of this approximation, consider
that the decaying particle is produced in the RD stage
during which

H(t) ~ 1.66\/@#, (2.51)

where g.; S 100 is the number of ultrarelativistic d.o.f.
Therefore,

H(1) _ {T(ﬂ {T(’)} x 10718, (2.52)

E (1)~ |Ew(t)] |GeV

An upper bound on this ratio is obtained by considering
that the decaying particle is produced at the scale of grand
unification with 7 ~ 10" GeV, assuming that this scale
describes the onset of the RD era. Taking a typical comoving
energy E(t) =~ T(t), one finds that H(t)/E(t) <1073 and
diminishes with cosmological expansion and diminishing
temperature. This argument suggests that for typical particle
physics processes the adiabatic ratio H(t)/E(1) < 1
throughout the post-inflation thermal history.

In terms of this adiabatic ratio, we find

wi(m) _ 1 (R(t) Hz(t)>
OER(1)  Ei(1)

__H(@)
vi(EL ()

where R(t) is the Ricci scalar (2.2). Furthermore, it is
straightforward to find that

ol ~ 720 (2.53)

c’ H H2 HZ
S o ) ~ 0(RD),
e =2 1) ey @m0
1
ass (MD). (2.54)

Therefore, this ratio is of second adiabatic order and can
be safely neglected to the leading adiabatic order pursued
in this study, justifying the simplification of the mode
equations to Eq. (2.40) even for nonconformal coupling to
gravity.

In this study we consider the zeroth adiabatic order with
the mode functions given by

e—i jl‘z w(n)dy

20 (2.55)

g(n) =

Since the decay function is o Y2, keeping the zeroth
adiabatic order yields the leading contribution to the decay
law. Furthermore, as shown in detail in Ref. [32], particle

production as a consequence of cosmological expansion is
an effect of higher order in the adiabatic expansion, and
thus it can be safely neglected to leading order.

The phase of the mode function has an immediate
interpretation in terms of comoving time and the local
comoving energy (2.41)—(2.42), namely,

—i | ! o ) —i | ’ Ei ()l

e =e ,

(2.56)

which is a natural generalization of the phase of positive-
frequency particle states in Minkowski space-time.

During the RD era with C(r) given by Eq. (2.38), we
find that the criterion (2.50) for the validity of the adiabatic
approximation implies

wmmzﬁg»L

(2.57)

Fermi fields: The adiabatic expansion is straightfor-
wardly applied to the fermionic case and has been dis-
cussed in the literature [39-43]. Beginning with the mode
equations (2.26)-(2.27) with M';(n) = m;C'(n) and now
with @ (i) = k* + M7(n), it follows that

__H({)
wp(n)  re(E(1)’

(2.58)

and therefore the purely imaginary terms in these mode
equations are of first adiabatic order and will be neglected
to leading (zeroth) adiabatic order. Hence, to leading order
we find

—i [" ay(n')dn’

e i

(2.59)

2w (n)
In what follows we will refer to w?(n) = k* + M*(n) for
both bosonic and fermionic d.o.f. with M?(n) = m*>C?(n)
for either case. To leading (zeroth) order in the adiabatic
expansion, the Dirac spinor solutions in the standard Dirac
representation and with the normalization conditions (2.29)
are found to be

=i [Tonttyan [ S (n) + M (n)x;
— i

> e
ek
26Ok (”) Wy (f])Jer('?) L

() =)

(2.60)

and
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tj:’ wi(1)dn E%;QDA

2004(17)

0= o)

To leading adiabatic order these spinors satisfy the
completeness relations

(2.61)

L - e—iﬁ wy(m)dm
Z Usalkom)U, (k1) = Agab(’?’ ),
=12 2 ’

wy(n)wy(n')

. . e—"f; i (m)dmy
Vialko )V, (k) = Az (.m),
A;Z 2/ (n)ay () *ab

(2.62)

where the projector operators at different times A; (n,7'),
Aj (', n) and their properties are given in Appendix A.

III. NONPERTURBATIVE APPROACH
TO THE DECAY LAW

In Minkowski space-time, the decay rate of a particle is
typically computed via S-matrix theory by obtaining the
transition probability per unit time from an in state prepared
in the infinite past to an out state in the infinite future.
Obviously, such an approach—taking the infinite-time limit
—is not suitable in a time-dependent gravitational back-
ground. An alternative approach in Minkowski space-time
considers the Dyson-resummed propagator in frequency
space that includes radiative corrections through the self-
energy. The imaginary part of the self-energy evaluated on
the mass shell in frequency space is identified with the
decay rate, and a Breit-Wigner approximation to the full
propagator—namely, approximating the self-energy near
the (complex) pole—yields the exponential decay law.
Again, such an approach is not available in an expanding
cosmological background where the lack of a time-like
Killing vector prevents Fourier transforms in time-frequency,
and makes the self-energy explicitly dependent on two time
arguments (rather than just the difference).

Instead, we implement a quantum field theory method
that complements and extends the Wigner-Weisskopf
theory of atomic linewidths and is particularly suited to
study time evolution in time-dependent situations. This
method is manifestly unitary and yields a nonperturbative
description of transition amplitudes and probabilities
directly in real time. We summarize below the main aspects
of the method as it applies to this study, referring the reader
to Refs. [32-34] for details. The total Hamiltonian in
conformal time is given by Hy + H,, where H|, is the free
field Hamiltonian and

H(n) = / ExyEwE )y (E.n)  (3.1)

is the interaction Hamiltonian in the interaction picture.
Passing to the interaction picture wherein a given state is
expanded in the Fock states associated with the creation
and annihilation operators a, at, b, d, etc. of the free theory,
namely, |®(n)); = >_,C,(n)|n), the amplitudes obey the
coupled equations

(nlH G)lm).  (3:2)

Zcm

This is an infinite hierarchy of integro-differential
equations for the coefficients C,(r). Consider that initially
the state is |®@) so that Co(17;) = 1, Ci(17;) = 0 for |x) # |®),
and consider a first-order transition process |®) — |k) to
intermediate multiparticle states |x) with transition matrix
elements (k|H;(n)|®). Obviously the state |«) will be
connected to other multiparticle states |«’) different from
|®) via H;(n). Hence, for example, up to second order in
the interaction the state |®) — |k) — |«’). Restricting the
hierarchy to first-order transitions from the initial state
|®) < |k) and neglecting the contribution from vacuum
diagrams that just yield a redefinition of the vacuum state’
(see the discussion in Ref. [32]) results in the following
coupled equations:

l—C(D

Zc WD|H (3)|x), (3.3)

.d
ljnck(n) = C(D

CK('L') =0.

Equation (3.4) with C,(5;) = 0 is formally solved by

() {x|H ()| @),
(3.4)

Culn) = —i / V)| @) Co ). (3.5)

ni

and by inserting this solution into Eq. (3.3) we find

d n
d_c®(’7) = —/ dn'Ze(n.1')Co (1), (3.6)
n i
where we have introduced the self-energy
o) = Y (®H,(m)|k)(k|H, ()| ®).  (3.7)

K

"This is one of the main differences with the method used in
Refs. [29-31] where a disconnected vacuum diagram was also
included in the transition amplitude.
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We study the decay of a single-particle bosonic state into

a fermion-antifermion pair to leading order in the Yukawa
coupling and the adiabatic approximation. Therefore, the
initial state is a single-particle bosonic state with momen-
tum k, namely, |®) = |1)‘ ). The set of states |x) with a
|

TF k +q
<1)]€|H1(’7)|1{3y,1’ 1fqﬂ/ - V372 1
k +

<11C,1, 17,/1’|HI( )|ll = V372q

and the self-energy (3.7) to leading order in the adiabatic
expansion becomes

= > [(IH )1, 175.)

pg Ax

x (1%, mewvu@}

”/ k '71 d’71 /
2\/60(/ (maf(n
e M CAEATE
X
4/ opy (n)wp (') /@l (n)aly ()
< Te[AZ (0.1 )AZ (' )]

z, (k.n.n')

(3.9)

where § =k — p. This is the fermionic one-loop self-
energy in curved space-time to leading order in the
adiabatic expansion.

Obviously the differential equation (3.6) cannot be solved
exactly with the above self-energy. In Minkowski space-time
the self-energy is a function of the time difference, allowing a
solution via a Laplace transform [33,34]. However, in a time-
dependent expanding cosmology such an approach is not
available. This is a consequence of the lack of a global time-
like Killing vector. Instead, for weak coupling we resort to
a Markov approximation [32]. While details are available in
Refs. [32—-34] to which the reader is referred, we summarize
here the main aspects of this approximation.

We begin by introducing

n
Eo(n, ') = / o (n,n")dn", (3.10)
i
such that
d 7\ /
dfﬂ,é’@(n,n) =Zo(n. 1), (3.11)
with the condition
5@(’17 ’7i) =0. (3-12)

ZUM p.mV
S Vit

nonvanishing matrix element of H; with this single-particle
state are |k) = |1{7. .+ 175, where 4, 2’ are the polarizations
of the fermion and antifermion states. The matrix elements
entering in the evolution of the amplitudes are

v.a(@sm) % gi(n),

1 )U(Po1') % gi('), (3.8)
|
Then, Eq. (3.6) can be written as
d n d
— =— [ df— ! ! 3.13
G Coln == [ Lo Estnancolr). (13

which can be integrated by parts to yield

d n d
S Caln) = ~Eoln)Coli) + / ' Eol11) 5 Cal)

i

(3.14)

Since ¢ « O(Y?) the first term on the right-hand side of
Eq. (3.14) is of order Y?, whereas the second is O(Y*)
because dCq(n7)/dn « Y?. Therefore, up to O(Y?) the
evolution equation for the amplitude Cq becomes

d
%C¢(n) = —Eo(1n:1)Co(n), (3.15)
with the solution
n
Caln) =exp<— / %(nan/)dn')c@(m. (3.16)
ni

This expression clearly highlights the nonperturbative
nature of the Wigner-Weisskopf approximation. The imagi-
nary part of the self-energy X4, yields a renormalization of
the adiabatic frequencies and will not be addressed here
[33,34], whereas the real part determines the decay law

Nt

— ’7r®
Pon) = Colp)? = ¢~ Ji T

To(n) = 2/” dmRe[Xo (1, m)],

i

Po(1:),

(3.17)

where we introduced the survival probability Pe(n) with
Po(n;) = |Co(n;)|*. This final expression for the survival
probability directly exhibits the nonperturbative nature of
the method. The self-energy is given by Eq. (3.9) to leading
order in the Yukawa coupling.

In Refs. [32-34,46] it was established that this non-
perturbative framework correctly describes the short-,
intermediate-, and long-time dynamics in Minkowski
space-time. It provides a real-time nonperturbative
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resummation of Feynman diagrams to a given order in the
perturbative expansion, and in Minkowski space-time it is
equivalent to the time evolution obtained from the inverse
Fourier transform of the Dyson-resummed propagator in
momentum space. For a decaying particle, the propagator
has a complex pole on the second (or higher) Riemann
sheet; for weak coupling, in the narrow-width approxima-
tion the long-time behavior is completely determined by
this pole. The Wigner-Weisskopf and Markov approxima-
tions yield exactly the same result including wave-function
renormalization, and they also correctly describe the early-
time behavior [46].

This equivalence was discussed in greater detail in
Refs. [33,34,46]. The expansion yielding the Markov
approximation (3.14) can be systematically implemented
[33,34,46] as an expansion in time derivatives of the
amplitudes, which in turn is an expansion in powers of
the coupling (squared). This expansion relies on a sepa-
ration of time scales: the typical scale(s) in the self-energy
kernel is the inverse mass of the decaying particle 1/M,
whereas the typical scale of the time evolution of the
amplitude is o« 1/Y?M, which determines the relaxation
rate. This separation can be surmised from Eq. (3.15)
which is tantamount to taking C, outside the integral and
evaluating it at 7 = . Namely, the amplitude varies very
slowly on the time scale of variation of the self-energy.
For vanishing coupling, the amplitudes remain constant and
thus vary slowly for weak coupling, as compared to the
time variation of the self-energy.

In the adiabatic approximation in an expanding cosmol-
ogy, the time scales in the self-energy are completely
determined by the adiabatic frequencies, as explicitly shown
by Eq. (3.9). Therefore, even with the expansion the time
scales in the self-energy are much shorter than the relaxation
time scale o« 1/Y? of the decaying state. In the adiabatic
approximation this separation—even during in expanding
cosmology—validates the Markov approximation.

IV. MASSLESS FERMIONS

Our goal in this article is to study the decay of a heavy
Higgs-like scalar field into much lighter fermions, neglect-
ing the fermion masses. This is a suitable scenario for the
Standard Model where the Higgs scalar can decay into all
of the charged leptons and quarks except for the top quark,
and the quark and lepton masses may be safely neglected.
Such a scenario also includes the possibility of decays
into neutrinos in the case that neutrino masses originate in
Yukawa couplings to a Higgs-like scalar beyond the
Standard Model. We postpone the study of decays into
heavier fermionic d.o.f. to a companion article. Focusing on
the case of massless fermions allows a direct comparison
with results in Minkowski space-time, which are summa-
rized in Appendix B. Furthermore, understanding this
simpler case provides a pathway towards the more general
case of massive fermions (to be studied elsewhere).

For massless fermions @Y (17) = k, in this case the pro-
jector operators A* in Eq. (3.9) are given by Eq. (A12) in
Appendix A, and the self-energy (3.9) can be written in
dispersive form as

/ k’/] d'71

k;/]’/l / ko _lk()'] ﬂ)dzk
2\ / a)Z’ ’/’
(4.1)
where the spectral density is given by
Bp skg—p—|k-p
ﬂ@m@—8@/ 12(0 P t pl)
(27) 4plk — p
x [plk—=pl=p- (k= p)l. (4.2)
with the result
1
plho ) = (B =)0 — k). (43)

We carry out the &, integral in Eq. (4.1) by introducing an
upper (comoving) ultraviolet cutoff A and a short-time
convergence factor n —#n' — n—n' —ie with ¢ > 0™ and
replacing k3 — —d?/dn, yielding the final result for the
self-energy,

P ]
YZ ZL/ ) (m1)dm d2
)

— +
1672 dn'?
ol (el () L1

e~ iNn—1'—ie) _
X [

(n—n'"—ie)

—ik(n—n'~ie)
¢ } (4.4)

In our analysis we will keep A fixed but large and take the
limit e — O first; clearly, this is the correct limit when the
theory is considered as an effective field theory valid below a
cutoff A. We note that the flat space-time limit is obtained by
replacing n — t and making the frequency a)f time inde-
pendent (see Appendix B).

It remains to perform the time integrals to obtain
To(n) and [T (n')dy’ given by Eq. (3.17). The total
time demvatlve in Eq. (4.4) is integrated by parts and—
consistent with keeping the leading order in the adiabatic
expansion—terms of the form «'/w” are neglected since
these yield higher-order adiabatic corrections. In the limit
e — 0% for fixed A we find the decay function

n Y?
I'o()dn = —
/;1,- q>(’7) n 87[2

I(A ko) = [1(A ko) + LA ki) + I3 (A k)]s
(4.5)

I(A k. 1),

where
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11(/\”‘”7) =

A=k {1_ ! (n;) [Sin(M(A—wf(n’))dn’)
)

wf(”li) wf(n (A=k)(n—n;)

sin( [/ (o () —k)dn')
A k)(n m ]}

I ”[\/wf(n \/ 2 (1)
(A ]
?(n;) (')
5 {1 —cos(f” (a)k m)
’7 —n;
1= cos( [ (o (m)
0 —n;
= L, (A ko) + Loy (k. 1),

(4.6)

)d’h)

- k)d’h)] '
(4.7)

C2
L(A k) = (m)

of [
y {sm (Jr A—wk(ﬂz))dﬂz)
=

sin( [/ (wf (n2)
+ /
m—m

—k)d
) ’12)} dn, Sdn

= L3, (A k) + Ly (k, ). (4.8)

In obvious notation the contributions 1,,(k, ), I5,(k,#)
are the A-independent terms in I, 3, respectively. These
three contributions are studied separately below, where we
analyze their cutoff-dependent and -independent terms and
extract the different physics of each term.

A. Analysis of I , 3

In the following analysis we will take the cutoff A to be
the largest of all scales; in particular, A > w;(n) at all
times.

I: I, vanishes identically as # — #; and the oscillatory
terms become negligibly small for A(n—n;)>> 1. Therefore,
I, grows to its asymptotic value

A—k

11 -
a’f(’?i)

(4.9)

very rapidly, on a time scale 7 — 5; ~ 1/A. This divergent
contribution corresponds to a renormalization of the
amplitude and is similar to a linearly divergent renormal-
ization in Minkowski space-time [46] (see Appendix B).

I,: The technical details of the analysis of [, are
relegated to Appendix D. The main result is that for
A —n;)>1

Iy(A k) = 2[In[A(n —m)] + ve] + Loy (k). (4.10)
where yr = 0.577--- is Euler’s constant and I,,(k,7) is
given by Eq. (D5) in Appendix D where this contribution is
analyzed in detail. We discuss this contribution in further
detail in Secs. V and VI

I5: With A > w, the argument of the sine function in the
first term in Eq. (4.8) [namely, in /5, (A, k, )] simplifies to
A(' —ny), and therefore

L, (A k,n) =m / {/ Cm)
3a — My \/7 \/T
o (n
(A G —
xwwﬁ}d}% (4.11)

Defining 6 = A(y' — 1), 64 = A(y' —1;), and taking the
limits A — 00,6, — oo, the integral over 7, in Eq. (4.11)
becomes

/ A 2
/ C*(n' —6/A) sinc 7217 C¥( ) (4.12)
\/a)‘,f(n’ c/N) = \/wk
Therefore, in this limit we find
r n C2(y) n to1
L, (k,n) == / dn——m,/—dt’,
k) =3 | o™ =2 ), 1)
(4.13)

where we used @?(y) = C(n)EL (1) = myC(n)y,(t) and
C(n)dn =dr', with y(1) = /1 + k3 (1)/m* being the

Lorentz factor whose time dependence is a consequence
of the cosmological redshift.

In Appendix E we provide the analysis for /5;; gathering
both terms, we find that

I;(k,n) = (4.14)

% C2( ) / /
2 [y 0+ St

where S(k,7') is given by Eq. (E25) with the asymptotic
limit S(k,n’) — 1 for large #'. Therefore, I3 = I3, + I3,
does not depend on A in the limit A — oo. This is similar to
the case in Minkowski space-time [see Appendix B where
the equivalent term is called T(k, ), given by Eq. (B7)].

V. RENORMALIZATION: DYNAMICS
OF “DRESSING”

The final result for the decay function in Eq. (4.5),
I(A, k,n), is given by
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Wf(’?i

1A kon) = S 2InfAmgere] + Iy (k). (5.1)

where 1;,(k, ) is independent of the cutoff A in the limit
A = oo, and for (5 —#n;) > 1/A it is given by

Ty

Lyin(k,m) = ZIn[ + Ly (k) + I3(k,57). (5.2

i

The linear and logarithmic dependences on the cutoff A
are exactly the same as in Minkowski space-time [46], as
obtained in Appendix B. This similarity is expected as the
cutoff dependence arises from the short-distance behavior
of the self-energy correction which should be insensitive to
the curvature of space-time. As discussed in Ref. [46], the
origin of this divergence is the “dressing” of the bare single-
particle state by a cloud of fermion-antifermion pairs into a
renormalized quasiparticle state. In a renormalizable
theory the growth of the density of states at high energy
implies that this cloud of excitations contains high-energy
states. The dynamical buildup of the cloud of excitations
occurs on a time scale 7 —; ~ 1/A at which the divergent
contributions to /, , saturate; see Eq. (4.6) and the discussion
in Appendix D.

The “dressing” of the bare state into the physical renor-
malized quasiparticle state is accounted for by the wave-
function renormalization of the amplitude [46]. For large
cutoff scale A and for a weakly coupled theory with Y? < 1
there is a wide separation between the time scales of
formation of the dressed renormalized state n —n; ~ 1/A,

the time scale of typical oscillations  —#5; ~ 1/ a)f(n) and

the decay time scale n —#7; o< 1/ Yzwf (n), which for weak
coupling is the longest scale. Therefore, we can evolve the
initial state in time up to an intermediate time scale 7, with
(n, —n;) > 1/A, but much smaller than the typical decay
time scale o 1/Y 2wZ’(11i), so that the initial state has enough
time to be “dressed” by fermion-antifermion pairs into the
renormalized quasiparticle state, but does not have time to

decay. For example, taking 7, —n; = 1/ a)‘,f(;y,-) fulfills the

conditions of time-scale separation because a)f < A, and
because for ¥? < 1 there will be many oscillations of the
field before it decays. Taking this renormalization scale is
tantamount to an “on-shell” renormalization scheme. We
identify 7, as the time of formation (or “birth”) of the
“dressed” or quasiparticle state [46], which after formation
decays on a much longer time scale.

The time evolution of the “bare” single-particle state
until it is renormalized or “dressed” is implemented by the
following procedure. We write

I(A7k9’7) EI(A’k7nb) +IS<k7n”1b)’

Is(k,n,mp) = 1(A ko) = 1(A ko). (5.3)

where, taking (17, — #;) > 1/A, the subtracted quantity

n—n;
My — Ni

Is(k,n,np) = 21n[ + Loy (k. n,np) + I3s (k. 1.1,

(5.4)

is independent of A for # > 5, and A(y, —#;) > 1. The
subtracted contributions I, (k,n,1;), I35(k,n,1,) are
defined as

I2b(k7’7’77b) = I2b(k’ ’I) - 12b(k’ ’7b)’

Izs(k,n,np) = I3(k, ) = I3(k,n), (5.5)

and are obtained explicitly in Appendices D and E,
respectively. During RD we find [see Appendix D for
definitions and Eq. (D12)]

Ly (k. n,mp) = —/ﬂ wig] +ﬁ
<[l - ol ()] (56)
with
E=m—n)/ni&p = (np —ni)/mis
Wi = (07 =D+ (1 + 9% =rl). (67)
J(&) is given by Eq. (D9) in Appendix D, and
nllnn) = 3mp [E 1S (59

where S(n) is given by Eq. (E25) in Appendix E.
The contribution from I(A,k,n,) is absorbed into the
wave-function renormalization Z as follows. We write
Eq. (3.17) as

— |7 To(n)dn
Po(n)=e ‘ﬁ”’ ! qpcb,r(’/[b)’

(5.9)

! Lo (n)dy'

Poln) =e f"

where the renormalized probability is given by

— | " To(n)dn

,P‘D,r(”/b) = Z(’?b)Ptb(”/i), Z(ny) =e

(5.10)

The exponent in the wave-function renormalization Z(1;,)
is given by

2

M Y
/ Tl )d = 2 I(A. k.11y),
n

- (5.11)

i
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yielding an ultraviolet-divergent wave-function renormal-
ization. The renormalized probability obeys

(n')an

— ”rq)
Pos(n) = ¢ Dy ). (5.12)

The decay function that describes the time evolution of
the renormalized survival probability is given by

2

n Y
Lo(n')dn' = ——Is(k.n.ny).
87
M

(5.13)
which is finite and independent of A in the large-cutoff
limit. The time scale 7, acts as a renormalization scale;
obviously, the survival probability Pg (1) is independent
of this renormalization scale, and hence it obeys a dynami-
cal renormalization group equation, namely,

0
—Po.,(n) =0. 5.14
5y, Po ) (5.14)
The solution of this equation is obviously2
— ["A T (i )drf
Po.r(1a) =€ ! ”an,r(ﬂB)- (5.15)

Po., (1) describes the probability of the renormalized
quasiparticle state. This “dressed” state decays with the
finite and cutoff-independent decay function f,fh Co(y)dy

on time scales much longer than the “dressing” or renorm-
alization scale 7,,.

In the following analysis we will drop the subscript r
from Py, to simplify notation since we will be strictly
dealing with the renormalized survival probability.

The decay function (5.13) depends explicitly on the
initial time 7; (see explicit expressions in Appendix D).
However, P, ,(17,) is defined at the renormalization scale
n, and it is taken to be the initial probability of the fully
renormalized state after all of the short-time transient
dynamics that result in the “dressing” of the bare state
into the renormalized quasiparticle state have subsided.
Therefore, the dependence of the contributions (5.6) and
(5.8) on n; must be traded for a dependence on #,,.

Let us write

P
My —=MNi =+

X (5.16)

with # > 1 so that the A-dependent terms in /; ; reach their
asymptotic behavior. For example, the “on-shell” renorm-
alization scheme corresponds to f = A/wy(n;). Therefore,
in terms of the Hubble rate and the physical cutoff
A,u(n;) = A/C(n;) at the initial time H(»;), we find in RD

*Note the similarity with the usual renormalization group
function associated with the running of the wave-function
renormalization that yields anomalous dimensions.

M H(n:)
—=1+p—. 5.17

ni Aph (’71') ( )
Since the cutoff scale A is taken to be much larger than
any of the energy scales and the adiabatic condition
requires that H(n)/E;(n) < 1 at all times, it follows that
H(n;)/Apn(n;) < H(n)/E(n) < 1. Furthermore, we find
that

_ @l (1) i (1)
() = wr(np) |1 = w%(’?i) kAb

+o-o, (5.18)

where the second term in the brackets is at most of first
adiabatic order, which is the case for the ‘“on-shell”
renormalization scheme for which fwy(n,)/A = 1.
Hence, to leading adiabatic order we can safely replace
w;(n;) = w(n,) in the expressions. Using the results of
Appendix D we find that similar arguments justify the
replacement y,(1;) = y(n,) along with n; — n,, in all of
the quantities that enter in the decay function. In the limit
of large cutoff A the trade-off between the variables at the
initial time and those at the renormalization scale #;,, does
not depend on the cutoff, as it must be for a consistent
effective field theory description well below the cutoff
scale. We note that the adiabatic approximation plays an
important role in this separation and is a necessary
ingredient because the frequencies depend on time, unlike
in Minkowski space-time. In particular, for the “on-shell”
renormalization scheme

1
oy

<1 5.19
n; wk(’?i)ﬂi ( )

because the adiabatic condition (during RD) corresponds to
i (ni)n; > 1 [see Eq. (2.57)].

VI. DYNAMICS OF DECAY

Once we have absorbed the ultraviolet divergences into a
renormalization of the amplitude, we proceed to analyze
the main physical aspects of the decay dynamics, leverag-
ing the adiabatic approximation.

A. Decay during radiation domination

We assume that the decaying particle has been produced
early during the RD stage by some (unspecified) particle
physics process at a high energy/temperature scale, focus-
ing first on the dynamics of decay during this era. The
subtracted decay function Ig(k,7,7,) [Eq. (5.4)] can be
written in a compact manner amenable to a numerical
study as

Is(k,n,ny) = IS (k,n,np) + Iys(kon.my), — (6.1)

with
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¢Wm%wamgywnwm—nm@m (62)
and
Lg(kgy = 20 ¢ AHEPDESEN 4 65

20 Jo Vi -+ +E)
where & WIE| are defined in Eq. (5.7), and we have
introduced the following functions (see Appendices D
and E):

B 4 ; 1 d_cf’
RK&LjA[VWEH"jﬂa]gv (6.4
Fﬁ@ﬂzéﬁ WIE] WW}mU@W§,ma

where J[¢] is defined in Eq. (D9) in Appendix D. To leading
adiabatic order (see Appendix E)

5(8) = = Sila(e)]
a@) =g [\Jr - D+ (1487 =03 - 1),

Vi

(6.6)

where Si[x] is the sine-integral function [see Eq. (E26) and
the discussion in Appendix EJ.

We highlight that the contribution /¥ is a distinct feature
of the renormalizable Yukawa interaction and the fermionic
density of states, whereas /55 in Eq. (5.8) is very similar to
the decay function found in the scalar case studied
in Ref. [32].

As discussed above, to leading adiabatic order we set
n, =1, in I35 and obtain (see Appendix E)

b/ P
I3S(k’ 1, 711)) — Za)li’h{(l + é)W[ﬂ -1 —(7/1}/4.1)
In [%}M] } + 735(](, 1),
(6.7)
- /)2 !
Tis(kony) =3 yn z;j v (7<21_+ f) )ini)é’fdé/’ o

where I55(k,7,7,) must be obtained numerically.
However, before we engage in a numerical study we
analyze the different contributions to extract a physical
picture of which terms dominate at different time scales.
In order to analyze the behavior in the different regimes, we
write the Lorentz factor both in terms of both the variable

&=, — 1 (see Appendix C) and the comoving time with

the equivalence 1 + &= +/1/t; (see also Appendix C),

r(&) = [271/24:51)2+ 1}%5 {(7?(%[—)1)+ 1}%

= [@+ IF =y(1),

; (6.9)

where ¢, is the comoving time scale at which the decaying
particle becomes nonrelativistic, given by

2
e = (72 = 1) _2m§ﬁ. (6.10)
Whence the limits
(y? = 1) < (1 + &)* = nonrelativistic,
(y? =1)> (1 + &)? = ultrarelativistic,
e <K t = nonrelativistic,
t,; > t = ultrarelativistic. (6.11)

Let us focus first on the contribution I8(k,7,7,) given
by Eq. (6.2). In Minkowski space-time the frequencies are
time independent, and therefore W[¢'] =1 and J(&') =
(wp — k)n;E'. The analysis of Appendix B shows that in
Minkowski space-time for > 1 the second term in
Eq. (6.2), namely, F| — F,, yields 21n[{/&,] + constant,
thereby canceling the logarithmic time dependence of the
first term (see Appendix B). Such a cancellation only
occurs during a limited interval in time in the expanding
cosmology as a consequence of the time dependence of the
frequencies. This follows from the analysis of Appendix D
which shows that there are three distinct stages.

1) £ <€, €, [given by Egs. (D15)—-(D16)] is the time
scale at which F,[&, &,] reaches a maximum. During
this interval F, — F, in Eq. (6.2) is negligible and I¥ ~
21n[E/&,)

ii) &,, < & < y;: During this interval the function F &, &, ]
continues to rise monotonically, whereas F,[¢,&,] oscil-
lates around its constant asymptotic value F,[¢,&,] ~
Fy[é,, &) = 21n[€,,/&,], a behavior summarized in Fig. 7
and Eq. (D19) in Appendix D.

For w;n; > 1, the results (D15)-(D16) show that £, < v;
for all values of y; > 1. Therefore, for y; > 1, during
the interval &, <& <y; it follows that W[E']~1 and
F| ~21In[£/¢&,], thereby (approximately) canceling the log-
arithm from the first term in /%, whereas F, ~21n[¢, /&)
remains constant, yielding a plateau in /%. This approximate
cancellation is effective during a time interval that increases
for y; > 1 (see the discussion in Appendix D). According
with Eq. (6.9) and the limits (6.11) during this interval,
wherein 1% is approximately constant, the decaying particle
is in the ultrarelativistic regime. In this stage the constancy
of I% is expected because in the ultrarelativistic regime the
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frequencies are nearly time independent since wy (1) =
k~w;. Therefore WI[{]~1, yielding F;~2In[é/E],
thereby canceling the logarithmic time dependence of the
first term in Eq. (6.2), similarly to Minkowski space-time.

If y; > 1 the decaying particle is “born” ultrarelativisti-
cally and there is a (long) time window &,, < & < y; within
which /W[¢]~1 and F,[& &) ~21In[E/E,], thereby
approximately canceling the first term in I¥, whereas
F,[&,&,] remains nearly constant. Therefore, for y; > 1
it follows that 1% (k, n, 17,,) rises rapidly on a time scale ~¢,,,
reaching a maximum and remaining nearly constant at /¥ ~
21n[g,, /&) until &=,

iii) £ > y;: The cosmological redshift eventually makes
the decaying particle become nonrelativistic when
&>y, > 1. During this stage the particle is nonrelativistic
as a consequence of the cosmological redshift. The time

dependence of the frequency now yields /W[E']+ 1/

VW[E]>2, and hence F;>2In[¢]. In this stage it
follows that W[{] ~ &/y;, and therefore for &> y; > 1

we find that F[g] =2,/&fy; and Fo[&,&,] = 21n[g, /&),
For &>y, the integral for F[[£,&,] is estimated by
splitting it into the stages &, < & <y; and & > y;. The first
stage yields 21n[y;/&,] since during this (ultrarelativistic)
stage W[¢'] ~ 1, and the second yields (approximately)
2/&/y; since during this (nonrelativistic) stage W[&] = £/y;.

In summary, for a particle that is “born” ultrarelativisti-
cally, namely, with y; > 1, the contribution / § rises rapidly
up to a value ~2 In[&,, /£, on a time scale &, < y; given by
Eq. (D16), remains nearly constant up to a time scale £ ~ y;
at which the particle becomes nonrelativistic, and begins to

fall off as —2+/&/y; for &>y,

In the opposite limit when y; ~ 1 the decaying particle is
nonrelativistic already at the initial time and w(n)~
myC(n). In this case, F, [y, 7] saturates rapidly, on a scale
En~n/om; < 1, and Fi[n,n,] grows faster than logarith-
mically; hence, F'; — F, becomes larger than the logarithm
in the first term of /¥ and negative. This behavior leads to
an early suppression of decay.

|
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FIG. 1. The contribution /¥ [Eq. (6.2)] for w;y; = 100,

£, =001, and y; = 2.
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FIG. 2. The contribution I® [Eq. (6.2)] for w;; = 100,
&, =0.01, and y; = 10.

This analysis is approximately summarized during the
ultrarelativistic (UR) and nonrelativistic (NR) regimes by
[see Eq. (D19) in Appendix D]

211’1[%]@(5," - 5) + 21n[%]®(§ - §m)7 for Yi > §<UR)7

I§(k,n.mp) =
21n[%] +21n[£] -2

The main aspects of this analysis are confirmed by a
numerical study summarized in Figs. 1 and 2 for y; = 2, 10,
respectively. Notice the different scales in the figures
highlighting the emergence of the plateau and the crossover
to a diminishing (negative) square root behavior at a scale
=y

Decay at rest: For a very massive particle “born” and
decaying at rest in the comoving frame (namely, fory; = 1)

(6.12)
for £>y, > £, (NR).

|
and w;n; > 1 we can provide an analytic form of the decay
function for time scales &> &, ~ 1/w;n; for on-shell
renormalization. As discussed in Appendices D and E,
F,[n,n,] reaches its asymptotic limit on a time scale &~
r/2wm; < 1 [see Eq. (D15) in Appendix D]. Furthermore,
the function S(¢&') in Eq. (6.3) reaches its asymptotic value
S =~ 1 on a time scale & ~ z/w;n; < 1. Therefore, for & >
1/w;n; we can neglect the contribution from F, and set
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S(&) =1 in Eq. (6.3), and hence I55[k,n,n,] is given by
the first term in Eq. (6.7) with y; = 1 and multiplied by a
factor of 2 to account for S = 1. Gathering all of the terms,
we find that in this case (y; = l,w;; > 1,&E> 1/w;n;)

15(0.7.my) = 2{1n[¢1 hn b—ivhglﬂ _JTT s}
+Zoml(1+ -1, (6.13)

2

where we have neglected a constant term of O(1). This
expression displays all of the features described above.
Note that for £ <1 the logarithmic time dependence
cancels out, but for &> 1 the first logarithm in
Eq. (6.13) continues to grow; however, the negative square
root eventually dominates the contribution of the first terms
within the brackets. These are precisely the terms arising
from the renormalization and their time dependence is a
consequence of the time dependence of the frequencies.

To compare to the decay law in Minkowski space-time it
is convenient to cast the result (6.13) in terms of comoving
time, using 14+ ¢&=gn/n;, with n=./2t/Hr [see
Eq. (2.39) valid in RD], and the relation

;1

i

= myHgni = 2myt;. (6.14)

Setting #; =1, to leading adiabatic order, we find for
y;=1and t>1,

1

t t|2
(0, t)zln[—] —2[—]4+7rm¢(t—t,,), (6.15)
Iy Iy
leading to the survival probability for ¢ > 1,
t _Y_zz 2 1/4
Pol1) = H et e Py 1),
b
y2

This is one of the important results of this study.
Remarkably, Iy is the same as the decay width at rest in
Minkowski space-time; however, the power law with the
“anomalous dimension” Y?/8z° and the stretched expo-
nential with the power law (¢/1,,)'/* are a consequence of
the renormalization and the time dependence of the
frequencies, which are a consequence of the expanding
cosmology. The combined effect of these two terms is to
slow down the decay as compared with the case of
Minkowski space-time, with a concomitant enhancement
of the lifetime of the decaying particle as compared to
Minkowski space-time. This is a noteworthy result: as a
consequence of the cosmological expansion the contribu-
tion from the renormalization and quasiparticle formation

slows down the decay, leading to an enhancement of the
lifetime of the initial state.

Decay of particles with y; > 1: These are particles that
are “born” ultrarelativistically. For y; > 1 the contribution
from I8(k,n.n,) is summarized by Eq. (6.12) and dis-
played in Fig. 2: a rapid rise on a time scale &,, < y; given
by Eq. (D16) up to I¥ ~21n[¢,, /&,] followed by a near
plateau during the stage while £ < y,. This contribution falls
off slowly as —4/¢&/y; during the nonrelativistic stage, £ >
v; [see Eq. (6.12)]. While a quantitative analysis of /5
requires a numerical study, we can obtain a fairly accurate
estimate as follows. The contribution from S to I35 [see
Eq. (6.3)] is discussed in Appendix E, and can be approx-
imately summarized as S~ 0 for £ < & and S(n) ~ 1 for
&> &, with & given by Eqs. (E28)—(E29).

With y; > 1, the ultrarelativistic stage corresponds to
y; > &, and during the stage y; > &, > £ it follows that
S~0. Using 1+ ¢ = /t/t; and Eqgs. (6.10) and (6.14),
during this stage /3¢ is given in comoving time ¢ by

Iys(1) = gmd)tm {G Li] - G[t—b” (6.17)

where

Glx] = [x(1 4+ x)]'/? = In[v/1 + x — /] (6.18)

also describes the decay function in the case of a scalar field
decaying into two massless scalars [32]. During this stage,
for t <« t,, we find

Iys(1) :§m¢tnr (})[1 - <%>+] (6.19)

For y; > &> & it follows that S ~ 1, and therefore the
above result is multiplied by a factor of 2. Hence, during the
ultrarelativistic stage with y(¢) > 1 (or r < ;) and S = 1
in Eq. (6.3), it follows that

2 32 t,\3

which when combined with the result (6.12) yields in this
ultrarelativistic regime, for y; > &> &.,&,,

Sm| , 2 12 )3
el (1) - ()
(6.21)

Neglecting the perturbatively small nonsecular constant in
the decay function from the first term in Eq. (6.21),3 in the

*Or absorbing it into a finite perturbatively small time-
independent wave-function renormalization of Pg.
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time interval for ¢, > ¢ > 1, during which the decaying
particle is ultrarelativistic and the transient dynamics of
quasiparticle formation is saturated, we find

Po(t) = e ol Py (1), (6.22)

We can now use the property (5.15) and write for ¢ > 1,

Po(t) = & Iu oD (4 ) (6.23)

where

2

n Y
[ Talor )t =3 listhnm) = (k)
r]nr

(6.24)

After the decaying particle becomes nonrelativistic for
E>y;ort> t,, when y(t) ~ 1, the contribution S ~ 1 and

I35(&) — I35(&,) becomes

t

1 1
I3S(t) - [3S(tnr) = n'm,/)t{l —% —Zl;hl |:t_:| + - :| s
nr

(6.25)

where the dots in the above expression stand for terms of
higher order in the ratio /1.

Finally, combining the above result with the result given
by Eq. (6.12), the total decay function after the particle has
become nonrelativistic £ > y; (or t > 1. > 1) is given in
comoving time by

I5(t) = Is(ty) = In Li} —2 FF

nr tnr

+ t 1 tnr [nr ln t +
”m —— — — — o . N
¢ t 2t |t

(6.26)

where we have neglected a perturbatively small constant
term and approximated ;77 ~ t,, for y; > 1. Hence, for t >
tyr > t, we find

2
tl= » £ | otur/2
Polt) = [] 8 (1) {] 0 e~Tol=) Py (1,1,

tnr

(6.27)

It would be expected that after #,,, when the particle has
become nonrelativistic as a consequence of the cosmologi-
cal redshift, the time evolution of the survival probability
would be similar to that of a particle born and decaying at
rest. However, the result (6.27) features an extra power law
with exponent I'yz,./2 as compared to the decay function
for the particle born at rest, Eq. (6.16). This difference

reflects the memory of the past evolution in the form of the
integral (6.24).

We can provide a measure of the impact of curved space-
time effects on the decay function by comparing the results
above to a phenomenological, S-matrix-inspired Minkowski
decay law allowing for a local time dilation factor to account
for the cosmological redshift, namely,

Ty

P (1) = eI PN (1), (6.28)
where ') = % is the decay width at rest in Minkowski

space-time, and y(r) is the local Lorentz factor (6.9). The
comparison to the cutoff-independent subtracted decay
function (6.1) is facilitated by introducing

er¢t tl:|
Iy(t) = 1——, 6.29
so that the Minkowski-like decay function is given by
Iy 2
—(t—1;) =—1y(1), 6.30
]/(f) ( l) 87[2 M( ) ( )

where a factor is included in Eq. (6.30) to ensure that
Iy(t; = t,) = O consistently with the subtraction defining
Eq. (6.1). For t > t, this phenomenological decay function
is interpreted as that of Minkowski space-time but with
the instantaneous Lorentz time dilation factor. For ¢ > ¢ it
provides a “benchmark™ to compare the results obtained
above for the decay function to an S-matrix-inspired
instantaneous Minkowski decay law.

Before we engage in a numerical comparison, it is
illuminating to analyze the cases discussed above.

Nonvrelativistic, y(t) = 1: For this case I4(7) is given by
Eq. (6.15), the last term of which is precisely I,,(7) for
y(#) = 1. The first two terms in Eq. (6.15) yield a negative
contribution for ¢ > ¢, = t;, and therefore the cosmological
decay function is smaller in this case than the phenomeno-
logical Minkowski function, leading to a longer lifetime.

Ultrarelativistic, y; > 1: During the ultrarelativistic
regime y(¢) > 1 (¢t < t,,), and taking the time large enough
so that the transient buildup of S in Eq. (6.3) has saturated,
the cosmological decay function is given by Eq. (6.21),
whereas 1y(1) ~ wmyt(t/1,,)"/>. The logarithmic term in
Eq. (6.21) could be fairly large for large y;, thereby yielding
I4(t) > I);(7) during a time interval. This can be under-
stood from the following argument.

As discussed above and in Appendix D, for y; > 1 the
contribution I§ [see Eq. (6.2)] increases on a time scale
En = (Bry?/om)'? up to a maximum =~21n(¢,/&,),
after which it remains nearly constant up to &~y
yielding the logarithmic term in Eq. (6.21). For example,
for y; 2200, w;n; ~ 100, and “on-shell” renormalization
with &, = 1/w;n;, the contribution from I§ increases to a
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value z%ln[\/% ;w;n;] =~ 14.7 on a comoving time scale
t,/t; = 240. Since the Hubble time scale 1/H(t) =2t
during RD, it follows that /% increases to the plateau over
~240 Hubble times, with the possibility that during this
time I5(7) > I,,(r). However, after the particle has become
nonrelativistic, namely, for 7> 1t,, the cosmological
decay function I¢(¢) is given by Eq. (6.26), whereas

t
I, (1) ~ tl_ﬂ s,
(1) ﬂm¢[ 2t+ }

(6.31)
showing that I5(7) < I,() for ¢ > t,. This suggests a
crossover behavior for very large values of y;: there is an
early time window during the ultrarelativistic stage
wherein the cosmological decay function may be larger
than the Minkowski one; however, as the decaying particle
eventually becomes nonrelativistic the latter will ulti-
mately dominate. This behavior is borne out by a detailed
numerical study.

Figures 3-5 show a comparison between the phenom-
enological Minkowski decay function (6.29), the total
contribution /g (6.1), and /55 (6.3) for on-shell renormal-
ization with w;n; = 100 and y; = 10, 50, 200, respectively.
For these values the transition time to the nonrelativistic
behavior is #,,/t; ~10%,2.5 x 10°, and 4 x 10*, respec-
tively. For y; = 10, 50, Figs. 3 and 4 show that /g and /3¢
are nearly indistinguishable, namely, I¥ [Eq. (6.2)] is
subleading in these cases, and that the phenomenological
I, is always larger than Ig.

However, for y; = 200 Fig. 5 shows that the contribution
from I ’; dominates at early time, increasing on a time scale
t/t; ~ 100. In this case I, is smaller than /g during a
substantial time window (=500 Hubble times from the
“birth” of the quasiparticle) before crossing over to become
the largest decay function.

Therefore, we conclude that in the ultrarelativistic case,
for very large values of y;, the decay function is larger than

15000
®in; = 100, Yi =10
i Im(t)
10000 [~
5000 I I3s(t), Is(t)
O 1 1 ‘ | 1 ‘ | | ‘ 1 1 | 1 |
0 200 400 600 800 1000
t/t;
FIG.3. Comparison between [, I, 155 for on-shell subtraction

with w;n; = 100,y; = 10, and 1,,/t; = 99.

1600
L Omn;= 100, Yi =50

1200 — Im(®)

I(t)
I

I3s(D), Is(t)
400

0 200 400 600 800 1000
tt

FIG. 4. Comparison between [y, I, I35 for on-shell subtraction
with win; = 100, Yi = 50, and tnr/ti = 2499.

120
ool om; = 100, y; =200 ()
80 [—
S 60~
40 — Izs(H)
Is(®
20
0 1 J 1 1 1 ‘ 1 1 1 ‘ 1 1 ‘ 1 1 1
0 200 400 600 800 1000
t/t
FIG.5. Comparison between [y, I, I for on-shell subtraction

with w;n; = 100,y; = 200, and t,,/t; ~ 4 x 10*.

the phenomenological Minkowski one within a substantial
time interval but eventually becomes smaller at a time scale
that depends on the various parameters. In either case, at
long time the decaying particle lives longer than predicted
by a Minkowski decay law extrapolated to the expanding
cosmology. This is a generic result: after an intermediate
time scale that depends on y;, the cosmological decay
function is smaller than the phenomenological Minkowski-
like one. Therefore the S-matrix-inspired phenomenologi-
cal Minkowski decay law underestimates the lifetime of the
decaying particle.

B. Long-lived particles: Decay during matter
domination or beyond

1The discussion above focused on decay during the
radiation-dominated era that lasts until C(i7) = aeq ~ 1074,
corresponding to an ambient temperature 7 ~ eV at a time
teq & 10" 5. If the decaying particle is very long lived,
as would befit a dark matter candidate, it would continue to
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decay during the matter- and perhaps dark-energy-
dominated eras. This case corresponds to an extremely
small Yukawa coupling, which allows to safely neglect
early transient effects that saturate at early times. The
general form of the decay function after renormalization
is given by Egs. (5.13) and (5.4). Under the assumption
of very weak Yukawa couplings we can neglect the
contribution from the cosine term in I, [Eq. (5.6)]
[the contribution F, in Eq. (6.5)] and we can set S =1
in Eq. (5.8). This is because both terms saturate on short
time scales, and therefore they yield perturbatively small
corrections to the decay function for very weak Yukawa
couplings as compared to the terms that continue to grow
in time. Hence, neglecting these perturbatively small
transient contributions for very weak Yukawa couplings,
the decay function simplifies to

n / / Y2 6
/ﬂb Lo (1 )dn :8_7r2 [2111[5} - F[¢, &)

nC /
+ ﬂ'm¢ / (11/)
where & = (7 —n;)/n;, F1 is given by Eq. (6.4), and the dots

in Eq. (6.32) stand for constant terms that are of O(Y?).
The general scale factor W[£] is given by

C2(r/)]%
Cz('h) '

d:y’} oo, (6.32)

wieg = [(ﬁ 1+ (6.33)

Let us analyze each term separately in order to under-
stand their behavior at long time during the MD era,
taking the upper bound C(n)=~O(1) or, upon using
Eq. (2.37), n /Geq/Hg. With “on-shell” renormaliza-
tion (£, = 1/w;n;), we find

(6.34)
Taking the initial time to correspond to an initial temper-
ature 105 GeV yields C(n;) ~ 10728, and therefore the
logarithmic contribution to the decay function for 7 ~

Vleq/Hp yields

y? ¢ 2 My
P8 s Zaf (28]

Obtaining the contribution from F; over the whole
history from early RD into MD can be done numerically,
although this is a rather challenging task because of the
enormous dynamic range, with the scale factor varying over
24 orders of magnitude. However, we can provide a simple
estimate of the remaining two terms of the decay function at
long time during the MD era and/or beyond. If the particle
remains ultrarelativistic, then as discussed in the previous

(6.35)

sections the contribution from F'| cancels the logarithmic
time dependence of the first term, and hence the combi-
nation of the first two terms saturates (this is the plateau in
Fig. 2) and yields a perturbatively small time-independent
contribution to the decay function. Hence, during this
ultrarelativistic stage the last term in Eq. (6.32) dominates
the decay function.

After the particle has become nonrelativistic, W[¢] ~

C(n)/yiC(n;) > 1 and

Fi[8.8)] ~ / Y dn (6.36)

Vri€n;)

during MD using Eq. (2.35), and by taking the upper bound
N /Geq/Hg we find

1 1014

2/7:C(n;)

Finally, we can estimate the last term in Eq. (6.32) during
the stage when the particle is nonrelativistic and MD
dominated: taking y(1') ~ 1 and n ~ | /G@.q/Hg, we find

/
m, /n C(’?/) dn ~ 1042<m¢>'
(') GeV

Since during the ultrarelativistic stage the time depend-
ences of the first and second terms cancel out and the last
term dominates the decay dynamics, we conclude that the
last term in Eq. (6.32) dominates the decay dynamics of a
very long-lived particle with very weak Yukawa coupling,
throughout the entire time evolution. Since the first
(logarithmic) term is always subdominant, and the second
term is negative and larger in magnitude than the loga-
rithmic term but also subdominant at late time, the last term
in Eq. (6.32) yields an upper bound to the decay function
throughout the entire expansion history. It can be written as
a function of the redshift by recalling that C(n)dn = dt and
using dt = da/(aH(a)), where H(a) is the Hubble expan-
sion rate given by Eq. (2.30). Writing the local Lorentz

factor as y(a(t))) = [;—EZ) + 1]2, a,, = k/my, we find that

the upper bound to the decay function at redshift z is
given by

F\[6.&)] = (6.37)

(6.38)

n I
/ To(n)dy =~ —>(z.2;). (6.39)
My HO

where [y =Y 2m¢ /8 is the decay rate at rest in Minkowski
space-time,

1/(1+2) da
T(z.2) =

1/2, \/aﬁr+a2[%+%+QA]l/2

(6.40)
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depends solely on the cosmological parameters, a,, = k/m,,
is the scale factor at which the decaying particle transitions
from ultrarelativistic to nonrelativistic, and we have taken
7 > 1. In particular, this result for the decay function is
insensitive to the early transient dynamics.

The redshift evolution of the survival probability
throughout the entire expansion history is summarized
concisely as

—F—OT(z,zb)
P@(Z) Z e o P@(Zb)- (641)
The inequality in Eq. (6.41) reflects the fact that Eq. (6.39)
yields an upper bound to the decay function. For a,, = 0,
namely, when the decaying particle is “born” at rest, it
follows that Y(z,z,) = Hy(t —t,) independently of the
cosmology, and we can compare the result (6.39) for
a,. = 0 to the case of the particle decaying at rest given
by Eq. (6.15) valid during the RD era. The discussion of
dominant terms above clarifies that the last term in
Eq. (6.15) dominates the decay dynamics, whereas the
first two terms combine into a negative contribution which
becomes subleading at long time for very weak Yukawa
couplings. Hence, it is clear that for very weak Yukawa
couplings and long times, Eq. (6.39) becomes the leading
contribution and yields an upper bound to the decay
function for long-lived particles decaying at rest.
Furthermore, for a < a,, namely, when the decaying
particle is ultrarelativistic and taking this regime to be
during the RD era with a « #!/2, it follows that
Y (z.z2p)  13/2, (6.42)
in agreement with the decay law (6.22) during the ultra-
relativistic regime in RD. This analysis confirms the
validity of the decay law (6.41) with Eq. (6.40) as an
upper bound to describe the evolution of the survival
probability for very weakly coupled, long-lived particles
throughout the entire cosmological evolution, under the
assumption that the fermionic decay products can be
considered massless in the decay process.

VII. DISCUSSION

The final form of the renormalized decay function
[Eq. (6.1)] describing the time evolution of the survival
probability of the quasiparticle state is amenable to a
straightforward numerical study. The analysis of Sec. VI
reveals a very rich dynamical evolution with various
different time scales. The shortest time scales describe
the buildup of the quasiparticle; this early transient dynam-
ics is absorbed into a wave-function renormalization of
the quasiparticle survival probability at a time scale 7.
After this short-time transient there remain time scales
over which F, [Eq. (6.5)] saturates at a constant value and
S [Eq. (6.6)] rapidly approaches & =~1. The detailed

dynamics over these scales is studied analytically and
numerically in Appendices D and E, respectively. The
evolution of the survival probability on the intermediate
and long time scales becomes simpler and can be summa-
rized succinctly. Furthermore, because the short-time tran-
sients saturate to constant values, for weak Yukawa
couplings the largest contributions to the decay dynamics
arise from terms that are secular (grow in time) over the
intermediate and long time scales.

Decay at rest in the comoving frame (y; = 1): The time
evolution of the survival probability is given by

2
tl-o 2
Poli) = H 2 a0 TPy (1), (7.1)

where [j = g—; my is the decay width of a particle at rest in
Minkowski space-time. The power-law and stretched
exponentials are both a remnant of the renormalization
or “dressing” of the bare state into the quasiparticle state
and a distinct consequence of the cosmological redshift.
Indeed, in Minkowski space-time the terms that give rise
to these contributions become time independent after the
transient dynamics, whereas in curved space-time the
origin of these contributions is the time dependence of
the frequencies via the cosmological redshift.

The methods that we implemented in this study—a
nonperturbative formulation combined with a physically
motivated adiabatic expansion including a consistent treat-
ment of renormalization—are very different from those
implemented in Ref. [31]. The decay law of a particle at rest
[Eq. (7.1)] is also very different from that reported in
Ref. [31]. The origin of the discrepancy is not clear to us.
However, since the power-law and stretched exponentials
originate precisely from the contributions to the renorm-
alization of the survival probability, we suspect that the
discrepancy originates in the treatment of the ultraviolet
divergences. These are of the same form as in Minkowski
space-time (see Appendix B and Ref. [46]) as expected
since these are short-distance divergences, but they were
discussed or addressed in Ref. [31]. As explained above,
the time dependence of the frequency yields an unexpected
contribution to the decay law on longer time scales that
originates in the dynamics of quasiparticle formation.

Born ultrarelativistically: If the particle is “born” or
produced ultrarelativistically, namely, with y; > 1 during

. . . o k2 .
RD, an important time scale is f,, = T Ho which

determines when the particle transitions from being ultra-
relativistic [y(¢) > 1 or t < t,,] to nonrelativistic [y(z) =~ 1
or t > t,.] as a consequence of the cosmological redshift.
The dynamical evolution of the survival probability is
different during these stages: a) Ultrarelativistic stage
[y(£) > 1, or 1, < t K t,],

Pa() = e ol Py (1,); (72)
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b) nonrelativistic stage [7 > f,,, or y(t) ~ 1],

tnr tm‘

1 2 t ] Totu/2
Polt) = {_] 8 Zef”z(t/tm)‘/4 {_] 0 e—Fo(t—tm)Pq)(tnr).

(7.3)

Although for 7 > 1, the particle has become nonrelativistic
because of the cosmological redshift, compared to the case
of decay at rest [Eq. (7.1)] this decay law features a new
power with exponent I'yt,./2. Its origin is the memory of
the decay function manifest in the form of the integral of
the cosmological redshift in Eq. (5.8) over the whole
history of the decay process. Therefore, even well after
the decaying particle has become nonrelativistic, the
survival probability features an enhancement factor that
“knows” about the past history when the particle was
ultrarelativistic. The dynamics during the transition from
the ultrarelativistic to the nonrelativistic behavior must be
studied numerically, and the previous section shows such a
study for several values of the parameters.

Massless fermions vs massless bosons: Reference [32]
studied the decay of a scalar into two massless scalars, and
therefore we can now compare the results of that study to
those obtained here for the case of scalar decay into massless
fermions. The main difference is in the contribution /% in
Eq. (6.1), which is given by Eq. (6.2). The contribution from
I35 to the decay function is the same for fermions and
bosons; for example, the function G|x] is the same that enters
in scalar decay [32]. The extra contribution (namely, /%) has
the same origin as the ultraviolet-divergent contributions that
are absorbed into the wave-function renormalization. This is
also the case in Minkowski space-time [46], as shown in
Appendix B. Whereas in Minkowski space-time this con-
tribution becomes time independent after a short-time
transient and is absorbed into the wave-function renormal-
ization, in an FRW cosmology it is time dependent as a
consequence of the cosmological redshift and becomes
important for nonrelativistic particles. Namely, I¥ is a
remnant of the physical process of quasiparticle formation.
There is no such contribution in the case of decay into two
scalars because the theory in this case is super-renormaliz-
able, and hence there is no equivalent of the /¥ term. This
contribution suppresses the decay function at long time,
thereby enhancing the lifetime of the decaying particle. This
behavior is yet another source of discrepancy with the results
of Ref. [31], which found a larger rate in the fermionic
case. The source of this discrepancy is precisely the
“anomalous” power and stretched exponentials which are
a consequence of the quasiparticle formation and wave-
function renormalization. Although the decay probability
requires an ultraviolet-divergent wave-function renormaliza-
tion even in Minkowski space-time, this aspect seems to be
missing in the treatment of Ref. [31]. The cumulative effect

of these differences is that a meaningful comparison to our
study has eluded us.

“Benchmarking” the decay law: The decay laws
obtained above are very different from the usual exponen-
tial decay in Minkowski space-time, one of the reasons for
the difference being the cosmological redshift. Thus a
natural question arises: would an S-matrix-inspired, phe-
nomenologically motivated exponential decay law with a
time-dependent Lorentz factor to account for the cosmo-
logical redshift even approximately describe the decay of
the particle? This motivates the comparison of the previous
results to the following Minkowski-like decay law (in RD):

o » 1/2
Pg\l)([) — ol ">P$”>(ti), r(1) = {74_ 1] .
(7.4)

For decay at rest y(¢) = 1, this decay law misses the power
with the anomalous dimension and the stretched exponen-
tial, whose combination is negative. Therefore the
Minkowski-like decay law overestimates the suppression
of the survival probability in the case of decay at rest. For a
particle that is produced ultrarelativistically, during the
stage wherein y(¢) > 1 (namely, ¢t < 1,,;) one finds

Po' (1) = e ot Pl (1), (1)
which is smaller than Eq. (7.2). For t> t,, when the
decaying particle has become nonrelativistic,

Po" (1) = e o= P (1), (7.6)
Comparing this result with Eq. (7.3) clearly shows that the
phenomenological Minkowski decay law including the
instantaneous Lorentz factor overestimates the suppression
of the survival probability, namely, it underestimates the
lifetime of the decaying state. The discrepancies with the
cosmological decay law—both the factor of 2/3 in
Eq. (7.2) and the powers and stretched exponential in
Eq. (7.3)—are traced to i) the memory of quasiparticle
formation, and ii) the memory of the past evolution in the
integral of the time dilation factor. Neither of these can be
captured by a phenomenological Minkowski-like decay
law including an instantaneous Lorentz factor, as such a
description has no memory of the past evolution. We draw
two important conclusions from this comparison: i) a
phenomenological, S-matrix-inspired Minkowski decay
law underestimates the lifetime of the decaying particle
since it overestimates the suppression of the survival
probability; ii) describing particle decay in cosmology in
terms of a decay rate, even one that includes the cosmo-
logical redshift in the time dilation factor, is not only not
useful but is also misleading insofar as it lacks important
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physical processes and yields a substantial underestimate of
the lifetime of the decaying particle.

On initial conditions: We have taken the initial state to
correspond to a single-particle state of a given momentum,
to compare to the usual case in S-matrix theory. The
calculation of a decay rate in S-matrix theory considers
the transition amplitude from an “in” single-particle state
(prepared at time —oo) to an “out” multiparticle state at time
+oco0. Our main point is that such a calculation is not
meaningful in an expanding cosmology, motivating the
study of the previous sections. Thus the chosen initial
condition allows us to directly compare to what would be
expected from S-matrix theory, appended with an exponen-
tial decay law with the rate calculated with S-matrix theory.

Alternative initial conditions may be considered but they
all imply not only technical complexities, but also con-
ceptual aspects: a single-particle but spatially localized wave
packet will not only decay via the decay of the different
single-particle components for different momenta, but its
amplitude will also decay as a consequence of dispersion
and spreading. Spatially narrow wave packets will decay the
fastest and systematically separating the different physical
processes is, in general, not only technically daunting but
also implies some ambiguity as to how to extract a “decay.”
Another physically motivated initial condition would be to
take the initial state to emerge from the decay of a heavier
particle. Obviously, such a choice would have inherent
ambiguities from the choice of the parent particle and its
decay kinematics. These aspects notwithstanding, the frame-
work developed in the previous sections can be simply
adapted to alternative initial conditions.

Modifications to BBN?: Although the results obtained in
this study do not apply directly to neutron decay, since we
focused on scalar decay Yukawa coupled to massless
fermions, and the small phase space available for three-
body neutron decay is a result of the small neutron-proton
mass difference, let us explore the consequences of the
results for this process, with all of these caveats. First, the
neutron is “born” after the QCD phase transition at Tocp =
150 MeV at a time t, ~ 10735, because the neutron mass
My ~GeV > Tcp itis “born” at rest in the plasma. Let us
identify the dimensionless coupling Y?/8z=Ty/My
where 'y ~1073s™! is the neutron’s lifetime. Hence
Y?/8m ~ 107!, and taking t/t, ~1/Tyt, ~ 10 we see
that the power law with the “anomalous” dimension and the
stretched exponential correction to the usual exponential
decay law in Eq. (6.16) for decay at rest are all but
negligibly small and would not affect the dynamics of a
neutron decay during BBN. Of course, there are the above-
mentioned caveats to this conclusion which should only be
taken as an extrapolation and as a gross estimate of the
effects. This analysis also suggests that the corrections to the
decay law are more important for particles that are “born”
very early during RD and very long lived, a situation that
befits most descriptions of a dark matter candidate.

Emergence of a local decay law with constant S-matrix
decay rate: If a measurement of the time evolution of the
survival probability is carried out during a sufficiently short
time interval A7z =1, — i and sufficiently long after the
transient dynamics has subsided, we would expect that the
decay law would be nearly exponential with a nearly
constant decay rate. Namely, we would expect that locally
during such a short time interval the survival probability is
given by

Plt;] = e TeMt—0P[g), (7.7)

where [y (k) is a constant related to the S-matrix rate. This
law cannot emerge during the transient stage dominated by
the power laws in the survival probabilities (6.22) and
(6.27). However, in fact, it emerges naturally at longer time
scales (after the transient dynamics becomes negligible)
from Eq. (6.39) when considered during time intervals
At =ty —t; < 1/H(t;), where H(t;) is the Hubble expan-
sion rate at time ¢;. This is seen as follows: keeping only the
last term in Eq. (6.32) (neglecting transients), and passing
to comoving time with C(y')dy’ = dr, it follows that

ny trdt
Te(y)dy =T / —.
/ () ), 7(®)

We now expand y(¢) around 1, y(¢)=y(t;) + 7 ()
(f —t;) + - - -, and integrate to obtain

F /rf dt/ o FO
0 a v rl(n)

(7.8)

At{l +%ﬁﬁH(r,~)At +-- } .
(7.9)

Therefore we clearly see that for time intervals At <
1/H(t;) the decay law features small departures from
the exponential S-matrix-inspired one, with corrections
of order ArH(t;) < 1. This is expected on physical
grounds: on very short time scales, much shorter than
the Hubble time, a local Minkowski space-time approxi-
mation is warranted by the equivalence principle. For
example, accelerator experiments foday measure the life-
time of Standard Model particles, and these experiments are
obviously insensitive to the Hubble time today ~13.5 Gyr.
Therefore the S-matrix-inspired calculation in Minkowski
space-time is warranted as it describes the measurement
of lifetimes much smaller than 1/H. In the early stages of
a radiation-dominated cosmology during rapid expansion,
or for lifetimes comparable to the Hubble time, such
an S-matrix-inspired approximation does not correctly
describes the dynamics of decay, as discussed in detail in
the previous sections.

Caveats: We have focused on studying scalar decay into
massless fermion pairs, a situation that approximates most
of the fermionic decay channels of a Higgs scalar in the
Standard Model. An important aspect of this decay process
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is that it does not feature thresholds. Including the mass for
the decay products introduces kinematic thresholds, a
consequence of strict energy-momentum conservation. In
Ref. [32] it was argued that the Hubble rate of expansion
introduces a natural energy uncertainty, leading to a relax-
ation of the kinematic thresholds, and thereby allowing
processes that are forbidden in Minkowski space-time by
energy conservation. Furthermore, Ref. [46] has shown that
energy uncertainties associated with transient nonequili-
brium aspects of the decay allow decay into heavier particles
during a time interval. In an expanding cosmology these
effects may combine with the energy uncertainty from
Hubble expansion to enhance the decay by opening up
novel channels that would be otherwise forbidden by strict
energy conservation. These aspects associated with the
masses of the decay products will be the subject of fur-
ther study.

The inclusion of masses for the decay products becomes
a more pressing issue in the case of the decay of very
long-lived particles studied in Sec. VI B, where we have
extended the results obtained for the RD era to provide an
upper bound on the decay function throughout the entire
expansion history. Therefore, the decay law (6.41) with the
decay function (6.40) must be understood within the
context of decay of a heavy particle into massless or nearly
massless fermionic channels with the caveat that such an
approximation may be of limited validity during the MD
or DE eras and should be interpreted as indicative of the
decay dynamics.

In this study we have neglected finite-temperature
corrections to decay vertices and masses, as their inclusion
requires studying the time evolution of an initial density
matrix. Furthermore, if the decay products thermalize with
the medium, their population buildup will lead to Pauli
blocking factors, thereby suppressing the decay of the
parent particle. These effects remain to be studied but are
beyond the scope and goals of this article.

Possible implications: The time dependence of the decay
function reveals nonequilibrium aspects that have not been
previously recognized, from not only the transient buildup
of the quasiparticle but also the memory effects that yield
the unexpected power laws and stretched exponentials.
These novel nonequilibrium effects may lead to interesting
and perhaps important dynamics relevant to baryogenesis
and leptogenesis. In particular, we envisage corrections to
quantum kinetic processes for particle production and their
inverse processes. Typically quantum kinetics inputs tran-
sition rates perhaps with finite-temperature contributions
but ultimately obtained from S-matrix theory. Namely, such
transition rates are obtained in the infinite-time limit and
the forward and backward probabilities input strict energy
conservation, and as a consequence they obey a detailed
balance. The richer time dependence of the decay function
revealed by this study, with the hitherto unexplored novel
nonequilibrium aspects, suggests that similar dynamical

processes may enter in a modified quantum kinetic
description in the early Universe. We expect to report on
these and other related issues in future studies.

VIII. SUMMARY, CONCLUSIONS, AND
FURTHER QUESTIONS

In this article we studied the decay of a bosonic particle
into massless fermions via a Yukawa coupling in post-
inflation cosmology. The approximation of massless fer-
mions is warranted for a heavy Higgs-like scalar within or
beyond the Standard Model decaying into mostly charged
leptons or quarks (except for the top quark) of the Standard
Model. We implemented a nonperturbative method that
yields the time evolution of the survival probability Pg,(¢)
combined with a physically motivated adiabatic expansion.
This expansion is justified when H(t)/E;(t) < 1, where
H(t) is the Hubble rate and E; (1) is the local energy of the
particle as measured by a comoving observer. We have
argued that this approximation is valid for typical particle
physics processes during the radiation-dominated era and
beyond. In a standard cosmology the reliability of this
approximation improves with the cosmological expansion,
and therefore if the adiabatic condition is fulfilled at the
initial time when the decaying particle is produced, its
reliability improves throughout the expansion history.

Particle decay into fermionic channels introduces novel
phenomena associated with ultraviolet divergences, which
require renormalization and result in two different physical
processes: i) the buildup of a quasiparticle state out of the
bare initial state by dressing with fermion-antifermion
pairs, and ii) the decay of this quasiparticle state via the
emission of fermion pairs. These two different processes
occur on widely separated time scales. We introduced a
dynamical renormalization method that allows to separate
the dynamics of formation of the quasiparticle from its
decay on longer time scales. It relies on introducing a
renormalization time scale 7, to absorb the transient
dynamics of formation into the wave-function renormali-
zation of the quasiparticle state. The survival probability
obeys a dynamical renormalization group equation with
respect to t,. The decay function of this renormalized state
is ultraviolet finite and cutoff independent.

We carried out a detailed analytic and numerical study
of the decay function during the radiation-dominated era.
The dynamics of decay depends crucially on whether the
particle is nonrelativistic or relativistic. For a particle that is
“born” at rest in the comoving frame during RD we found
that after short time transients, the survival probability is
given by

t _%é ¥2 1
O RO

(8.1)

Ty = —my,
0 87tm¢
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where Y is the Yukawa coupling and I’ is the decay rate at
rest in Minkowski space-time. The scale 7, is an inter-
mediate time scale that describes the buildup of the
quasiparticle state, and P(t,) is the renormalized proba-
bility of such state. The power of ¢/t, with the “anomalous”
dimension and the stretched exponential with power 1/4
are both a remnant of the formation of the quasiparticle on
long time scales as a consequence of the cosmological
redshift.

For the case in which the decaying particle is “born”
ultrarelativistically the time evolution over the whole history
during RD must be obtained numerically. Different regimes
emerge depending on whether the particle is ultrarelativistic
for t < t,, or nonrelativistic for 7> t,, where f, =
k?/(2m3Ho+/Qy) is the time scale at which the decaying
particle of mass m, that is born ultrarelativistically with
comoving momentum k transitions to being nonrelativistic as
a consequence of the cosmological redshift. During the
ultrarelativistic regime (r < t,,) we find for 7> ¢, that
the decay function is a stretched exponential,

P(D(t) = e_%rﬂtnr(t/tnr)z/zpcb(l’b)’

whereas for ¢ > 1, and after the particle has become non-
relativistic (¢t > t,,,) we find

2
t]=2 2 t Tot/2
Po(t) = [_] 82 a2 (1) L_} ! e o=t Py (1),

tnr nr

The extra power of ¢/, as compared to the case when the
particle is born at rest [see Eq. (8.1)] is a consequence of
the decay function’s memory of the past history during the
ultrarelativistic stage.

The cosmological decay law was compared to a phe-
nomenological Minkowski-like, S-matrix-inspired decay
law with an instantaneous Lorentz time dilation factor,

T
Po" (1) = PG (1), (8.2)
We found that this phenomenological law describes at long
times a much faster decay, thereby underestimating the
lifetime of the decaying particle.

The decay dynamics revealed by this study during RD
allowed us to extrapolate to the case of very long-lived
(i.e., very weakly coupled) particles. We obtained a decay
function that yields an wupper bound to the survival
probability throughout the entire expansion history under
the assumption of two-body decay into massless fermions,
which is given by

Po(z) 2 e 0 2Py (z,), (8.3)

where Y(z,z,) is given by Eq. (6.39) and depends only
on the cosmological parameters and the scale factor at

which the particle transitions from ultrarelativistic to
nonrelativistic.

One important conclusion from these results is that
using a decay rate as the measure of the decay dynamics is
not a useful concept and misses the correct dynamical
evolution. An S-matrix calculation of transition ampli-
tudes or probabilities (where the time interval is taken to
infinity) not only fails to capture the various different
dynamical scales and temporal behavior of the survival
probability, but also substantially wunderestimates the
lifetime of the decaying state.

An important corollary of this study is that the S-matrix
approach to describing quantum decay in the cosmological
setting is in general inadequate, and while it may yield a
good approximation for processes of decay at rest for
weakly coupled particles late in the cosmological history, it
misses important nonequilibrium dynamics. The nonequi-
librium effects revealed by our study—from the transient
dynamics of the formation to the quasiparticle, to the
memory of the decay function about the past history of the
decaying particle—could be relevant in the quantum
kinetics of processes in the very early Universe. These
could have a potential impact in CP-violating nonequili-
brium dynamics, baryogenesis, and leptogenesis and merit
further study.
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APPENDIX A: PROJECTORS

Introducing the notation

Qi(n) =/} (n) +My(n),

oy (1) = /K> + M3(n),

(A1)

with the zeroth-adiabatic order spinors (2.60)—(2.61), the
projector operators are given by Eq. (2.62). We find

A;E(n/’”) _ <Qk(’7)gk("/)

where I is the 2 x 2 identity matrix. These expressions can
be written more compactly by introducing the following
functions (suppressing the momentum and conformal time
arguments):
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1 k?
Ao == )y +7>, Ad
o= (2N + i) (A
1(Q(n) | ln ))
A== + , A5
=3 <ka> ) (A3)
1 (Q(n) Qk(’7/)>
Al == - , A6
P2\un) ) (A6)
b= 3 () e )
P2 U T o )
Then we obtain
AL(n) = Y22 =7 - Kiy +7 - k"2 + 23, (A8)
AZ('n) =7%% =7 Ky +7 - k%% = s, (A9)
Two relevant cases: 1) Equal time, n =17,
AL (nn) = 7o (n) =7 - K+ My(n)
= a(t)[K(t) + my],
K, (1) = (E{ (1), =k, (1)), (A10)
A= (1) = ol (n) =7 - k= My(n)
= a(t)[K(t) — my]. (A11)
2) Massless fermions,
+ _ A= _ .0 -7
A=A =7k=7 k (A12)

APPENDIX B: MINKOWSKI
SPACE-TIME: my, = 0

The Minkowski space-time limit is obtained by replacing
n — t and the frequencies are time independent. The self-
energy in this case becomes [46]

Y2 ool (=1)

> (k,t, 1) = — [ dkyp(ky, k)e~ikolr=1)
T

p(ko. k) = (kg — k*)© (ko — k).

(B1)

Replacing k3 — —d?/dr"* and introducing a convergence
factor € — 07 yields

)

Y2 eiwk(t—t’) [dz kZ]

Skt l)=—i——s——— | —
){< ) l1677.'2 a);}(5

d f/2 +

[e—i/\(t—z’—is) _ e—ik(r—t’—ie)j|
X 9

(t—1 —ie)

(B2)

and the decay function

t t /
/ T (f)df =2 / { / "Re[3, (k. t’,t”}dt”}dt’. (B3)
0 0 0

Integrating the derivative term in Eq. (B2) by parts twice,
we find

2

t Y
/ TY()dr = —— [T (Aoko) + To(A k) + T (k1))
0 87wy,

(B4)

where

n b
T, (A, k, l,) _ 1 (e(u)'f—k)e _ e(m;{’—A)e) _ Sln((A . a)k)t)
€

Sin((a)¢ — k)l‘)
= (85)
ma(h k) =20 [ [l —cos((f - of)?)
— _ a)lﬁ /
1 cos((tlf ")t )] i (56)

Ttk = mj, [ ISi((A = o)+ siCCof = R0
(87)

where Si(r) = [} sin(x)/xdx. Taking € — 0" and keeping
A large but finite yields

Tl(A,k,t):(A—k){l_M

(A— k)t
- 73111%5% ;;;)t)} : (BS)
To(A. k. 1) = 20 [m (2{_‘”}%) — Ci[(A - a)f)t}
+ciflaf - 0. (B9)

and

Ty(k,1) = mg{z[sl'[(/\ — o)1) + Si[(0? = k)1]]
_[L=cos[(A=a{)]] [1=cos[(af — k)t]]}
(A=) (f = k) ’
(B10)
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where for A7 — oo it follows that Si[(A — w?)f] — /2 and
Ci[(A — @!)1] = 0. Taking the limit A — oo yields

‘ Y2 A
r/(¢)dr = {A—k+2w¢ln{ ]
A (r) & a)(’l’ ¢ a)(,f—k

+mit {5 + Si[(0? - k)t}} + Ci[(0? — k)]

1= cos(@f - )]
(@f — k)

This is exactly the same result as obtained in Ref. [46]
obtained by integrating in k first.

+(9(1/¢)}. (B11)

APPENDIX C: USEFUL IDENTITIES

In this appendix we gather some useful identities valid
during the radiation-dominated stage (see also Appendix D).

a)( ): {k2+m2H2n2]1/2

= [k* + m*Hin? + m*Hyx(n?
2 1/2

ek

i

—n?)]'/?

i

w; =), i =r0) (C1)

The local Lorentz factor in conformal time is given by

(2 -1) 1/2 K2 | /2 2. 1/2
=[] E ]
(27 e e
_ 21172 2
n i i
k
= 1, C2
o = =i vi— (C2)
yielding the identity
2 _ (i,
rim)—1= n (vi = 1) (C3)

The relationship with the comoving time ¢ is obtained via
Eq. (2.39), namely,

yWM—W@”+f”z%+f@<m>

The conformal and comoving time scales #, and f,,
respectively, determine the scale at which the decaying
particle transitions from being relativistic [with y() > 1
forn < i, ort < f,/] to being nonrelativistic [with y (1) ~ 1
for n > n,. or t > t,.]. In terms of 7, n; we find

n. 271/2
:%@M Hﬂ] _
Vi \Mi ’7,

w(n)n (CS)

APPENDIX D: ANALYSIS OF I,: EQ. 4.7)
Consider the first term in 7, [Eq. (4.7)],

\/ (1) \/wk 1)
a)k ’7:

1 —cos(["( w? —A)d
5 [ fm /k (m) ) ”1)}51;1’
m—=n;

12a(A k 77

(D1)
For A > k, m; the argument of the cosine becomes simply

Ay’ —n;). We define x = A(y' —#;) and change the
integration variable to x, with x; = A(7 —#;), yielding

B Xy a)f(rh —+ X/A) wf(’?;)
L (A k) = A [\/ o (n;) " \/wf(ﬂi + x/A)

1—
X [COS(X)] dx. (D2)
X
In the limit A — oo we find
I, = 2[In(xy) +yg — Ci(xs)], (D3)

where yp = 0.577 - - - is Euler’s constant and for x; > 1 we
find Ci(x;) = sin(x;)/x; + ---. We confirmed the result
(D3) numerically. Therefore, for A > k,m,, 1/(n —n;) we
find

I, = 2In[Ae’(n —n;)]. (D4)
Let us now consider
¢
| |w @? (n;
Iz.b(k,’?):_/ l\/ ; \/ i ]
i U)k
1 —=cos( [T (w —k)d
« { (f,, (/ 2 (1) ) ’71)] . (D5)
m—=n;

Using the identities obtained in Appendix C for a
radiation-dominated cosmology, we write

a)f (n)=/k +m(2/)H%172

_ )2 2.2 n—n;\? 1/2
=<k +m(/)HRnl+m HR;/II 1+— -1

n;
=w; W&, (D6)
where we introduced the definitions
1
Wi =—[ri -1+ (1+&%"2, (D7)

i
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w; = a)f(”li)’ &= (771_ 1>,

i

w0 E(//:(fi)

Vi = = , D8
myHgn; mg, (D8)
and y; is the local Lorentz factor at time #;.
In terms of these variables we find
o U P
)= [ o) - K,
ni
2 fir e -1-25 -
2 Vi
21 WE+1+¢
Vi I +vy;

‘We note that the fulfillment of the adiabatic condition at all
times implies that

Ef(”li)

> 1.
H(’Ii)

Wil = (D10)

For ¢ < 1 it is straightforward to find that J[¢'] features the
expansion

J[E] = omé ll —y/1- (D11)

In terms of these variables we find that the subtracted
integral I,,(k,n,1n,) defined by Eq. (5.4) is given by

Lyplk.n,mp) = —/:[ wig] +#]

wi¢]
o {1 — cos[J(&)]

5 } de'. (D12)

Consider the two contributions to this function,

Fi(E) = /f[ WE] + Vlv[g,]}df—?', (D13)

1 } cos[J(&')]
W& g

Fa() = /6 5[ WIE] + dg.  (D14)

During the time scale when J(&') <1 the term
cos[J(&')] =~ 1, and therefore F,(&) =~ F(£) and I, ~0.
Figures 6 and 7 display F; ,(&) for w;n; = 100 and y; = 2,
10, respectively, for &, = 1/w;n;. F,(£) increases to a
maximum at £,, at which J(&,,) = n/2 and begins damped
oscillations, reaching a plateau. As it increases to the
maximum F, (&) ~ F (&), thereby yielding I,,(k,n,n;) ~
0 during the interval &, <& <&,

FIG. 6. The contributions F;(&) and F,(¢£) for &, = 0.01,
y; = 2, and w;n; = 100.

Although in general the value of £,, must be obtained
numerically, for w;n; > 1 there are two limits that afford an
analytic estimate. a) For w;n7; > 1 and y; ~ 1, we assume
self-consistently that £,, < 1, and therefore from Eq. (D11)
we obtain

-1
1
fng{wir]i ll— 1——2 } for }/lﬁl (DIS)

1

This expression confirms the assumption that &,, < 1 for
v; =~ 1.b)Fory; > 1, itis convenient to carry out the integral

(D9) by expanding a)f(r/l) ~k+ méCZ(m)/k + ... and
keeping the leading-order term, which gives

21
ijz{[l+3”i]3—l} fory;> 1. (D16)

win;

4 vi =10, o= 100, &, = 0.01

0\|\\\\\|\\\\\||\\\\\\|\\\\\
0 1 2 3 4 5 6 7

FIG. 7. The contributions F,(£) and F,(&), for &, = 0.01,
Yi = 10, and N, = 100.
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FIG. 8. The function C[¢]
yi =1, 10.

= W'2[g] +

1/W'2[E] vs &, for

This latter expression is fairly accurate even for y; ~ 2, 3.
We have numerically confirmed the validity of these
approximate values of the maxima of F,(&) (see Figs. 6
and 7). In both cases we find that for w;n; > 1 the value at
the maxima fulfills £,,/y; < 1. In summary, we find that
during the time interval &, < &< ¢, F{(&) = Fy(&) ~
21n[¢/&,] and Ik, 17, 17,) = 0. For € > £,, the contribution
Fy(&) =~ Fy(&,) ~21In[&, /&, remains constant, while
F(&) increases monotonically. The above analysis shows
that for w;n; > 1 it follows that £,, < y; in the whole range
of y;, and therefore during the interval £, < £ < y; and
WI[¢E'] ~ 1. Hence,

Fi() = Fy(&,) + 2In [55

m

:| ) gm < 5 < Vis <D17)

with Fl (fm)
tion

~ F,(&,) =21n[¢,,/&]. For &>y, the func-
> 2, as shown in Fig. 8, and hence

F[&] > 21In[¢], with the asymptotic behavior

il o

for >y, (D18)

The behavior of F'| ; in the ultrarelativistic case y; > 11is
summarized as follows:

Fl[f]ze[ﬂzzln[é] for & <E< .

Fi[¢]=21n [é] ,

Vi ¢
F ~2In|— 24 =,
1[€] n L:b] + v

Fz[azzln[‘:—"ﬂ for &, <E<7n
&y

F,[E] ~21In F—m} for E>>y,.
&b

(D19)

APPENDIX E: ANALYSIS OF I, (kn.1;): EQ. (4.8)

Let us now consider the following integral in I3,
namely, the second contribution to Eq. (4.8):

sin(f,?l’ (w(zf(ﬂz) — k)dn,)

n—=m

/ C2 771
\/ wk

This integral is similar to the case of decay into bosonic
particles studied in Ref. [32].

Following the treatment in that reference, we introduce
the following definitions:

dn,. (El)

ol () = z(n') > 1 (E2)

ol () =m)=1. (E3)

In terms of these variables, it follows that

ol () (' =) =

of (1) = o (1 )R[x; 2], (E4)
with
2x  x2 12
Rz = [1-24+ 2|7, E5
b2 { zr? 1272] (E3)

where there is an implicit #/ dependence in z and y.
The argument of the sine function in Eq. (E1) becomes

: k
A(T,V]/)_A R[x;z]dx—TT,

oy (')
= 1[1 - (1 —;—2)1/2] +8u(r:nf).  (E6)
with

o 5{()-(-

yl)ln{ﬂ?[m} (1—9”, (E7)

1+y

where z = z(17'),y = v+ (n'). Writing

C%(n C*(n
W) _ ) ppy (ES)
\/ \/wk ()
and using (E4), it is straightforward to find
-
R[z; 7]

Plt;n] = (E9)

We finally obtain
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() = / Ples ) S1A /)]dr, (E10)

where z = o?(/)(1f' = ;). Combining this result with
Eq. (4.13) for I5,, we find

ko) =5 [" S SO, @)
where
s6f) =2 [ ple) A gy
2= ol ()l =) (E12)

For ' > #n; and z(x') > 1 the integral in Eq. (E10) has
an adiabatic expansion, and for 7 <« z we find

/ 72
o(tsn) = —z—>— E13
(e) = =5 (E13)
Therefore, 6, is of adiabatic order one and higher.
Furthermore,

T
R[’L';Z]ZI—ZT/Z‘F"‘,

(E14)

and to leading (zeroth) adiabatic order we can replace
Plz;i'] = 1. The 7 integral in Eq. (E10) is dominated by the
region 7~0 and the region for which 7=~z yields a
contribution o 1/z, and hence is of first adiabatic order
or smaller. Therefore, to leading (zeroth) adiabatic order we
neglect J; in Eq. (E6) and replace P — 1 in Eq. (E10).

Although the variables (E2)-(E3) allow an explicit
identification of the nature of the adiabatic expansion,
the most suitable variables to merge the results for /5, with
those of the contributions from /,, are those introduced in
Appendices C and D. We now recast the results for /5, in
terms of these variables. We introduce

/ /

Pk | ) (E15)
ni ni
in terms of which we find [using Eq. (C1)]
Py =2 —\/r —1+y% (El6
wi (1) y,f(y), fO)=\Jri—1+y".  (El6)
Similarly, using Eq. (C3) we obtain
—1 fly
n)=v(y) = i 7 - (y), (E17)

and the variables z, 7 introduced in Eq.s. (E2) and (E3),
respectively, are given by

wn; win;
2(n) = Tf()’)y’ T= Tf()’)ta (E18)
which fulfill the identity
z(n') 2/ il , 5
Vel ) — — i 1 E19
7k(77/)( () —1) ” ( ) (E19)
Using these results, we find
L [7-1) < zﬂw
RT»ZERt,y__[ l +(1-= :
.2 = Rlr.y] ro Ly y
(E20)
and the ratio (E9) becomes
(137
Ple,nf] =Plt.y] = —=——. (E21)
RIt, Y]

and 5(z,7’) in Eq. (E7) becomes
D; 4
— i 1—2-
o ol (-25)
t
—(1=-2)Rlr,
(15|

8(z,n') = Alt,y]

Rit,y]+ (1 -1
< (7 — D)in [y(y) [2.y] + ( y)] }
L+7(y)
(E22)
Finally, the function A(z,#’) given by Eq. (E6) becomes
A(z.) = Alt.y] = Aolt.y] + Alt.y]. - (E23)
with
Aolty) =i\ = 1) 402 =7 -0 (B2
and the integral (E12) becomes
S@y) :% ¢ Pt y] sin[A(t, y)] dr,
T Jo t
y=1+§’,§’:<g—1>. (E25)

We have argued above in this appendix that for

?()yf > 1 the term §=A is higher order in the
adiabatic approximation and can be neglected, and that
to leading order in this approximation we can set
P="P — 1. We now test this assertion numerically in

terms of the new variables. Since in the new variables the

product a)f (' = ";—"y f(y), it follows that wf(n’ > 1

at all times implies that w;n; > 1, which is precisely the

statement of the validity of the adiabatic approximation

sinfA[y.1]]
1

at the initial time. Figure 9 compares and

Ply, A for y, =5, wm; =100, and y = 10,
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150

¥i =5, @jn=100,y =10

100

S[y,t]+P[y,t]

SO[YJ]

50

FIG. 9. Comparison of Sy[y, ] = w and S[y, 7] x Ply, 1]
with S[y, 1] = SniAb-] b U for y, = 5, wm; = 100, and y = 10, con-
firming the va11d1ty of the adiabatic approximation.

confirming the validity of the adiabatic approximation.
We have explored a wide range of parameters with similar
results.

Therefore, to leading order in the adiabatic approxima-
tion we can replace the argument of the integral in

Eq. (E25) with $nie [‘ sinlAob1] yielding to lowest adiabatic order

5() = %&'[a(aﬂ,

) = |\Ji7 - 1)+ (1427 - o7 - 1),

Vi

(E26)

where Si[x] is the sine-integral function, with Si[x] ~ x as
x — 0, which reaches a maximum at x = 7 and Si[x] —
n/2 for x 2 . The maximum of S(&) occurs when
a(§) == (E27)

beyond which S(&) ~ 1
In particular, for y; = 1 (the particle decaying at rest) and
wn; > 1, S(&') reaches a maximum at &' = & ~z/w;n; +
O(1/(w;n;)?) with S(&,) ~ 1. In the opposite limit, for an
ultrarelativistic particle with y; > 1 and w;;, > 1 we find

self-consistently that S(£’) reaches a maximum at £; with
a(é) = =, where & is a solution of

2ny?
E(1+&)=—". (E28)
1;71
For 27y?/w;n; < 1 we find
27y? 27722
ég{ﬁﬁ}_ﬁﬂ% . (E29)
w;n; win;

1.2

1.0 V"“'/\ /\ TAN AW NN

0.8 1

=2 @m;=100

0.6

S[El

=10 om; =100
0.4 |

02~

0.0\\I‘\\I‘\I\‘J\\‘\\\l\\\l\\l‘\\l
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g

FIG. 10. S|y, ] for y; =2, 10 and w;; = 100.

and for 27y? Jwn; > 1

27273 2
éz{jﬁ}__+“_

E30
wn; 3 ( )

In both cases we find that 5‘ <1 whenever y; > 1.
Figure 10 displays the behav10r of S(¢) for w; =100
and y; = 2, 10.

Using the relations derived in Appendix C along with
the identities C(n') = C(n;)(n'/n;) = C(n;)(1 + &) and
myC(n;) = w;/y;, it follows that I5(k,n7) given by
Eq. (E11) can be written in terms of the same variables
as I,, namely, ¢ =#/n; — 1 and 5, = n,/n; — 1. We find

¢ (1411 +38(E)]
o VIri-1D)+01+8)

The contribution from the term with & in the integrand must
be evaluated numerically; however, the first term can be
evaluated analytically, yielding

71'607’],

(k.8 =52

de.  (E31)

(ri-1)

Vi

Ik &) = ,m{(1+§)W[§]—1—

50

where we have set £, = 0 to leading adiabatic order.

The function S[a(£)] has the following behavior for
E< ¢, and &> &, corresponding to a(é) <z and
a(&) > r, respectively:

(E32)

@ @
Sla(é)] ﬁ%[ “B et } a<n(E<E).
(E33)
Sta@)=z[1-20- ) e s,

(E34)
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