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In this contribution I would like to review a few issues on the recent develop-
ments concerning the truncation schemes for the nuclear configuration interaction shell
model approach. The seniority scheme is a way to solve the pairing Hamiltonian exactly
and a good starting point for shell model calculations. Physically meaningful states may
also be selected based on importance truncations from a perturbation perspective.
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1. INTRODUCTION

The nuclear interacting shell model belongs to the family of the full configura-
tion interaction approaches. It aims to construct the wave function as a linear com-
bination of all possible anti-symmetric Slater determinants within a so-called model
space. The model space is usually defined by taking a few single-particle orbitals
near the Fermi surface. The number of orbitals one can include is highly restricted
due to computation limitation. Despite of this challenge, the nuclear shell model
has a glorious history of success in explaining many properties of the nuclear many-
body system [1]. It may be interesting to mention that such kind of configuration
interaction approaches also play a decisive role in the description of other quantum
many-body systems including quantum chemistry and atomic and molecular physics
[2].

State-of-the-art configuration interaction algorithms are able to diagonalize ma-
trices with dimension up to 1010 (109 with the inclusion of three-body interaction
which makes the Hamiltonian matrix much more dense than that without three-body
interaction). One of the major challenges of the nuclear configuration interaction cal-
culations has been the development of practical computational approaches to handle
the large-scale diagonalizing problem involved [3–11]. Whereas its application is
still very much restricted since the size of the configuration space increases dramat-
ically with the number of particles and orbitals, which soon becomes much larger
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2 Seniority and truncation schemes for the nuclear configuration interaction approach 783

than that can be treated by available diagonalizing techniques. Extensive works have
been done to develop reliable truncation procedures based on perturbation methods
[2, 12], Monte Carlo sampling [13–16], importance truncation [17–19] as well as
density matrix renormalization group approaches [20, 21]. Brief descriptions on the
different approaches can be found in Refs. [2, 17].

In this contribution I will give a brief review on some of the recent devel-
opments within the nuclear configuration interaction shell model approach and its
truncation schemes (mainly works from our group due to space limitation). I will
show that the seniority scheme is a way to solve the pairing Hamiltonian exactly
and a good starting point for shell model calculations. I will then introduce an im-
portance truncation approach with which bases with good angular momentum can
be constructed and physically meaningful states may be selected based on from a
perturbation perspective.

2. EFFECTIVE HAMILTONIAN AND THE MODEL SPACE

The basic assumption of the nuclear shell model is that the nucleons can be
approximately treated as independent particles moving in a mean field that represents
the average interaction between all particles. The structure properties can then be
described by the correlation between valence particles around the Fermi surface [1],
which was supposed to be of mainly a two-body nature. A common practice in shell
model calculations is to express the effective Hamiltonians in terms of single-particle
energies and two-body matrix elements as

Heff =
∑
α

εαN̂α+
1

4

∑
αβδγJT

⟨jαjβ|V |jγjδ⟩JTA†
JT ;jαjβ

AJT ;jδjγ , (1)

where we have assumed isospin symmetry in the effective Hamiltonian, α = {nljt}
denote the single-particle orbitals and εα stand for the corresponding single-particle
energies. N̂α=

∑
jz ,tz

a†α,jz ,tzaα,jz ,tz is the particle number operator. ⟨jαjβ|V |jγjδ⟩JT
are the two-body matrix elements coupled to good spin J and isospin T . AJT (A†

JT )
is the fermion pair annihilation (creation) operator. One can re-express the interac-
tion matrix elements in the proton-neutron representation. The corresponding proton-
neutron interaction matrix element is

⟨jα,pjβ,n|V |jγ,pjδ,n⟩J =

√
(1+ δαβ)(1+ δγδ)

2
× [⟨jαjβ|V |jγjδ⟩JT=0+ ⟨jαjβ|V |jγjδ⟩JT=1] . (2)

Isospin-independence breaking interactions can also be constructed within the proton-
neutron representation by considering the isospin-independence breaking effect of
the nucleon-nucleon interaction and the Coulomb effect (see, e.g., Refs. [22–24]).
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The total energy of the state i is calculated to be

Etot
i = C+Nε0+

N(N −1)

2
V1+[T (T +1)− 3

4
N ]V0+ ⟨ΨI |Heff |ΨI⟩, (3)

where ΨI is the calculated shell-model wave function of the state i and I is the total
angular momentum. The constant C denotes the (negative) binding energy of the
core. The values of ε0 and V0,1 depend on the way the effective Hamiltonian is con-
structed. For example, in Ref. [25] we take 100Sn as the inert core and include the
single-particle orbitals 0g7/2, 1d5/2, 1d3/2, 2s1/2 and 0h11/2 in the model space. We
assume ε0g7/2 = V0,1;0g2

7/2
= 0 and the other single-particle energies and monopole

interactions are given as relative values with respect to those of the orbital 0g7/2.
Thus ε0 and V0,1 are determined from the single-particle energy and monopole inter-
action of the 0g7/2 state in 101Sn. It should also be mentioned that the wave function
and the evolution of the effective single-particle energies within the model space are
not dependent on the relative values of the monopole interactions but only on their
relative values. In the other word, the excitation energy and wave function of a given
state only depend on the shell model Hamiltonian Heff . The relative value of the
T = 0 and T = 1 monopole interaction determines the relative position of the nu-
clear states with different total isospin T .

One may rewrite the Hamiltonian as Heff = Hm+HM where Hm and HM

denote the (diagonal) monopole and Multipole Hamiltonians, respectively. The shell
model energies can be written as

ESM = ⟨ΨI |H|ΨI⟩

=
∑
α

εα < N̂α >+
∑
α≤β

Vm;αβ

⟨
N̂α(N̂β − δαβ)

1+ δαβ

⟩
+ ⟨ΨI |HM |ΨI⟩,

(4)

where
∑

α < N̂α >=N and∑
α≤β

⟨
N̂α(N̂β − δαβ)

1+ δαβ

⟩
=
N(N −1)

2
. (5)

The very first step for the shell model calculation is to classify the bases in
terms of “partitions” or blocks which stands for a set of configurations with same
definite number of particles in each orbit. The basis vectors in each partition can
then be constructed within the so-called j-j coupled scheme [26] or the uncoupled
M-scheme [27]. The mixture of basis vectors from different partitions is induced by
non-diagonal two-body interaction matrix element with α ̸= γ and/or β ̸= δ in Eq.
(1). The M-scheme is compatible with basic bit operations in modern computer archi-
tecture where the time-consuming calculations of coefficients of fractional parentage
in j-j scheme can be avoided. That is the reason why most existing shell model codes
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Fig. 1 – Left: Numbers of Mπ = 0+ (solid symbols) and Iπ = 0+ (open symbols) states in even-
even Sn (circle) and Te (triangle) isotopes as a function of neutron numbers N in the model space
g7/2dsh11/2; Right: Numbers of Mπ = 0+ (solid symbols) and Iπ = 0+ (open symbols) states
in even-even Sn isotopes as a function of neutron numbers N in the model spaces gdsh11/2 and
f5/2pgdsh11/2.

are written in the M-scheme. As examples, in the left panel of Fig. 1 we plotted the
total numbers of Mπ = 0+ and Iπ = 0+ states in even-even Sn and Te isotopes as a
function of neutron numbers N in the model space g7/2dsh11/2 as studied in Refs.
[25, 28–32].

In the M-scheme, however, only Jz and Tz are good quantum numbers. An-
other disadvantage is that it is difficult to apply the variety of truncation algorithms
since angular momentum is not conserved. A hybrid algorithm between the M-
scheme and the j-j coupled scheme is applied in Ref. [33] and followed in Refs.
[4–6], where the symmetry of J (T ) is restored through a projection procedure [34].
The dimension of the matrix can be significantly reduced through this symmetry
restoration, as can be seen from Fig. 1. However, the projection process is very
time-consuming and has numerical precision problems for problems involving large
dimension and/or large-j shells [6].

3. SINGLE-PARTICLE TRUNCATIONS AND SENIORITY AND PAIR TRUNCATIONS

Full configuration interaction calculations can be done, with the help of super-
computers, for all nuclei shown in the left panel of Fig. 1. However, the dimension
will increase dramatically and go well beyond the present computation limit if one
want to expand the model space, as can be seen from the right panel of Fig. 1. The
most straightforward truncation approach is to restrict the maximal/minimal numbers
of particles in different orbitals, which is often referred to as single-particle trunca-
tion. This method is applied both to no-core [7] and empirical [23, 24, 28, 32, 35–
37] shell model calculations. For example, in Ref. [32] we managed to study the
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786 Chong Qi 5

structure and electromagnetic transition properties of light Sn isotopes within the
gdsh11/2 model space, which involves six orbitals, by restricting the maximal num-
ber of neutrons that can be excited from the g9/2 orbital to four.
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Fig. 2 – Left: Numbers of v = 0, Iπ = 0+ states in the jj (open) and M (solid) schemes in even-even
Sn isotopes as a function of neutron numbers N in the model spaces g7/2dsh11/2 and f5/2pgdsh11/2;
Right: Total numbers of partitions in even-even Sn isotopes as a function of neutron numbers N in the
model spaces g7/2dsh11/2 and f5/2pgdsh11/2.

For systems involving the same kind of particles, the low-lying states can be
well approximately within the seniority scheme [1]. This is related to the fact that
the T = 1 two-body matrix elements in Eq. (1) is dominated by monopole pairing
interactions with J = 0. The seniority quantum number is related to the number
of particles that are not coupled to J = 0. Recent studies on the seniority coupling
scheme may be found in Refs. [38–41]. One can also derive the exact solution of
the pairing Hamiltonian by diagonalizing the matrix spanned by the v = 0, I = 0
states in many shells. This is applied in Ref. [42]. Such states represent only a
tiny part of the total wave function, as can be seen from the comparison between
Figs. 1 and 2 but are the most important components for the low-lying nuclear states.
The number of v = 0 state is even less than the total number of partitions since
there is at most one v = 0 state for each partition. As an illustration for the appli-
cation of the seniority truncation, in the left panel of Fig. 3 we plotted the overlaps
between the wave functions |ΨI⟩ of the full Hamiltonian H and those of the pair-
ing Hamiltonian with Jmax = 0 for the first 5/2+ and 7/2+ states in light odd-A
Sn isotopes, which may be well approximated as v = 1 states. The empirical pair-
ing gaps extracted from experimental and theoretical binding energies are shown in
the right panel of Fig. 3 as a function of the neutron number. The overlaps of the
total wave function of the first 7/2+ state 103Sn with its leading components are
calculated to be |⟨(1d25/2)J=00g7/2|Ψ⟩I | = 0.65, |⟨(0g27/2)J0g7/2|Ψ⟩I | = 0.62 and
|⟨(0g7/21d5/2)J=61d5/2|Ψ⟩I |=0.57 [25].
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Alternatively, one can also construct the v = 0 states within the ”M-scheme”.
This is even more straightforward since the number of pairs in each j|m| orbital
is either zero or one. However, as can be seen from the left panel of Fig. 2, the
dimension of the bases is much higher in such a scheme than that in the jj scheme.
Such a scheme can also be applied to study the pairing correlation in deformed nuclei.
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Fig. 3 – Left: Overlaps between the wave functions |ΨI⟩ of the full Hamiltonian H and those of the full
pairing Hamiltonian with Jmax = 0 (solid) and of the residual interaction with only the non-diagonal
pairing matrix elements (open) for the first 5/2+ and 7/2+ states in light odd-A Sn isotopes. Right:
Neutron pairing gaps in Sn isotopes extracted from the experimental and calculated binding energies.

We have also done pair-truncated shell-model calculations with collective pairs
as building blocks in Refs. [43–45] for both the standard shell model and continuum
shell model in the complex energy plane. The seniority coupling may be broken if
both protons and neutrons are present. The effect of the maximally aligned neutron-
proton pair in single-j systems was discussed in Refs. [46–49].

Recent Monte Carlo sampling calculations can be found in Refs. [13–16]. In
Ref. [50] a simple Monte Carlo sampling algorithm is applied in shell model cal-
culations in the complex energy plane. In Refs. [17–19] the importance truncation
approach is applied to shell model calculations in the M-scheme. The density matrix
renormalization group approach is applied to the shell model in both the jj and M
schemes [20, 21]. It is seen that both the importance truncation and density matrix
renormalization group approaches do not show good convergence in some cases.

4. CORRELATED BASIS TRUNCATION APPROACH

In the jj coupled scheme, vectors with good angular momentum in each parti-
tion can be expanded in M-scheme bases as

|ΨJ
i ⟩=

∑
m≤i

MimP
J |αm⟩, (6)
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where P J is the projection operator [34] and |α⟩ are the M-scheme bases. M is
a lower triangle matrix. Elements of M can be obtained by inverting the matrix
⟨ΨJ

i |αm⟩ [6].
The correlated basis truncation approach is introduced in Ref. [51]. The con-

struction of the correlated basis is rather straight forward. First, one constructs the
usual M-scheme bases. Then the correlated bases are built by diagonalizing the re-
duced Hamiltonian H in each partition without considering the non-diagonal matrix
elements linking different partitions as

|ΨJ
i ⟩(H) =

∑
m

aim|αm⟩, (7)

which also conserve the angular momentum. The Hamiltonian can then be recon-
structed within the correlated basis approach, where the partial HamiltonianH within
each partition is now expressed as a diagonal matrix elements and the non-diagonal
matrix elements only contains the effective interaction that connects different parti-
tions. The total wave function can be be given as an expansion of the correlated bases
by diagonalizing the corresponding Hamiltonian matrix.

Our method is similar to the angular momentum projection method [34] used in
shell model codes. However, it should be emphasized that the fundamental difference
between the two approaches is that our bases, which contains the most important
information of the Hamiltonian within each partition, are physically meaningful as
compared with the random projected basis within the projection approach [34]. One
thus has the opportunity perform different truncation schemes within this approach.

It is expected that the basis vectors with lower unperturbed energy should play
more important role in the low-lying states since the non-diagonal matrix elements
are relatively weak in comparison to the diagonal ones. It implies that in truncating
the shell model configure space one can remove those high lying basis vectors. One
can evaluate the importance of a given basis vector ψi within a partition through a
perturbation measure

Eg =
|⟨ψi|H|ψc⟩|
ϵi− ϵc

(8)

where ψc is the chosen reference state for which one may simply take the state with
lowest unperturbed energy ϵc for the calculations of low-lying states. A similar mea-
sure is used in the importance truncation approach which is defined within the M-
scheme [17]. In practice, the off-diagonal matrix element ⟨ψi|H|ψc⟩ (interaction
between different partitions ) is seldom larger than 1 MeV. Therefore the basis select-
ing process of ψc can be implicitly done by calculating the difference of unperturbed
energy as

ϵg = ϵi− ϵc. (9)
An truncated model space can thus be defined by ϵg or Eg. If we take a sufficiently
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8 Seniority and truncation schemes for the nuclear configuration interaction approach 789

small (large)Eg (ϵg), the model space will contain all the possible configurations and
give the same result as a common jj-coupled scheme calculation. The reference state
ψc may also be optimized during the iteration. The advantage of the correlated ba-
sis approach over the single-particle truncation approach is obvious since the strong
correlation within each partition is not considered in the latter case.

u

Fig. 4 – Energies of the low-lying states in 28Si calculated with the correlated basis approach under
different truncation levels.

As an illustration, in Fig. 4 we have performed calculations for nuclei in the sd
shell within the correlated basis approach and compared with those of the standard
shell model. One can see that the a very good convergence of truncation scheme is
reached when the truncation model space is only one half of full model space. The
convergence is even faster if we only consider the spectrum relative to the ground
state. The wave function also shows a very good convergence. For the 0+ state, the
overlap is already nearly one by taking only around 2% of the total bases.

If one starts from a random M-scheme basis, the eigen vectors one obtain by di-
agonalizing the Hamiltonian may have different J values. A more efficient approach
is to start with a basis with good angular momentum J instead which is constructed
through the standard projection approach. In such a way, the eigen vectors one obtain
through the Lanczos iteration approach will all have the same angular momentum.

5. SUMMARY

In this contribution we present briefly our recent works on the configuration
interaction shell model calculations. The seniority scheme can serve as a way to
solve the pairing Hamiltonian exactly. It is also a good starting point for practical
full shell model calculations. In the correlated basis approach, the bases are taken as
the eigen vectors of the partial Hamiltonian in each shell-model partition/block. The
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790 Chong Qi 9

basis wave functions thus defined conserves the angular momentum automatically. A
truncation scheme can be established by taking the lowest-lying correlated bases in
the different partitions. Good convergence is reached for both the energy and wave
function. Large scale calculations within the correlated basis approach are under way
to study the spectroscopic and transition properties of nuclei in the 100Sn that cannot
be reached by standard shell model calculations.
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