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Abstract We investigate whether black holes can be defined without using event
horizons. In particular we focus on the thermodynamic properties of event hori-
zons and the alternative, locally defined horizons. We discuss the assumptions and
limitations of the proofs of the zeroth, first and second laws of black hole mechan-
ics for both event horizons and trapping horizons. This leads to the possibility that
black holes may be more usefully defined in terms of trapping horizons. We also
review how Hawking radiation may be seen to arise from trapping horizons and
discuss which horizon area should be associated with the gravitational entropy.
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1 Introduction

Black holes play a central role in physics. In astrophysics, they represent the end
point of stellar collapse for sufficiently large stars. A great number of likely stellar-
sized black hole candidates have already been observed. Supermassive black holes
seem to occur in most galaxies and appear to play an important role in active
galactic nuclei and quasars. It is even possible that supermassive black holes are
crucial to understanding galaxy formation. Black hole mergers also represent one
of the most promising candidates for observable gravitational wave sources with
the new generation of gravitational wave detectors.

From a theoretical viewpoint, the importance of black holes is perhaps even
greater. Ever since the original results on black hole uniqueness and black hole
thermodynamics, black holes have been used as testing grounds for ideas about
quantum gravity and possible hints as to the form such a theory should take. Black
holes are expected to emit Hawking radiation and perhaps ultimately evaporate
entirely. It is sometimes claimed that one of the greatest triumphs of string theory
is its ability to reproduce the Bekenstein–Hawking area–entropy relation from the
counting of string microstates. A great deal is now known about black holes in
higher dimensions, black holes in lower dimensions, black holes in higher deriva-
tive gravity theories, black holes coupled to various matter fields and black holes
in non-trivial backgrounds.

Clearly there are a great number of interesting physical phenomena in which
black holes are expected to play some role. But what exactly is a black hole?
Within the context of General Relativity there are two separate possibilities for
defining a black hole. Either one could try to define a black hole in terms of some
local geometrical property of spacetime, or one could define a black hole in terms
of the global causal structure of spacetime. Both geometry and causal structure
are important features of General Relativity, and although they are closely related,
they are logically distinct.

For many years black holes have been defined theoretically in terms of event
horizons. The black hole region is defined as that part of spacetime that is bounded
by the event horizon. This is very much a definition based on global causal struc-
ture. This definition is well established and supported by a range of arguments
[44].

However, it is possible that the definition of a black hole in terms of an event
horizon is not the most useful definition for many of the physical phenomena
listed above. Here we will argue that this is indeed the case. There are a variety of
reasons for this, both practical, physical and theoretical. In line with the pioneering
work of Hiscock [68], Collins [37], Hayward [62], Visser [109] and Ashtekar and
colleagues [5], we will suggest that in many cases black holes may be far more
usefully defined in terms of geometrically defined local horizons. In particular,
here we will focus on how black hole thermodynamics and black hole evaporation
may be understood in this context.

Once the definition of a black hole is freed from event horizons, one has the
possibility of having black holes satisfying all the physical properties listed above,
but in spacetimes that do not have true event horizons [65; 106]. This obviously
raises important issues for investigations of black hole thermodynamics, entropy
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and information [89]. So how can one define a black hole locally without appeal-
ing to the event horizon?

There are many definitions of local horizons appearing in the literature which
go under names such as apparent horizon, marginally trapped surface, trapping
horizon and dynamical horizon. Throughout this work we will refer rather loosely
to them with the collective term “locally defined horizons”. More precisely we
should refer to “quasi-locally defined horizons”. The terminology is already some-
what imprecise in the literature but essentially the difference between quasi-local
and local is that a quasi-local property refers to some small finite region of space-
time, whereas a local property is defined at a point. One cannot locate a hori-
zon at a point without specifying some extended compact two-surface to which it
belongs. In that sense, the definitions are quasi-local. In contrast, event horizons
are truly global concepts since one must specify structure all the way to some
infinite region. Since the main aim here is to contrast with globally defined event
horizons, we will continue to use the term “local horizons”. In situations where
we are referring precisely to a specific definition, to avoid confusion, we will use
its name as appears in the literature.

The difference between black holes defined in terms of event horizons and
black holes defined in terms of local horizons will be most acute in the case
of dynamically evolving black holes. Many models of astrophysical phenomena
assume some background black hole spacetime such as the Kerr or Schwarzschild
solutions and consider perturbative processes on this background. The distinction
will not make much difference in these cases, since for the Kerr and Schwarzschild
spacetimes the event horizon and the local horizon coincide. However, in truly
dynamical situations such as black hole formation or black hole merger simula-
tions there is likely to be some difference. Perhaps most importantly, in the case
of evaporating black holes, the difference may be crucial.

We will begin by examining why one might want to consider defining black
holes without event horizons. To do this it is important to recall the great success
that the event horizon concept has enjoyed. In Sect. 2 we will discuss some of the
properties of event horizons and compare them to locally defined horizons. We
will review the various definitions of local horizons in Sect. 3. To get some feel
for how the alternative local definitions work, we will illustrate how particularly
simple local horizons can be easily located in spherically symmetric spacetimes.
We will then turn to the issue of thermodynamics, with some conceptual remarks
in Sect. 4. In Sects. 5 and 6 we will discuss the area increase (second) law and its
relation to gravitational entropy, while in Sects. 7 and 8 we will review how the
other familiar laws of black hole dynamics can be derived with and without the use
of event horizons. This will illustrate some of the conceptual subtleties involved
in the use of event horizons. In Sect. 9 we will indicate what role locally defined
horizons may play in Hawking radiation. Section 10 discusses some important
work on relating local horizons to the well-known membrane paradigm. Perhaps
one of the most important issues that local horizons face in becoming truly viable
methods for defining black holes is their uniqueness and we review some impor-
tant results in this area in Sect. 11. We will conclude with some remarks about the
possible role of local horizons and some speculation on the implications for black
hole thermodynamics.
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While every care has been made to include all the relevant references, a com-
plete list is undoubtedly elusive. A more complete list of references and rigorous
derivations of many of the arguments presented here can be found in the many
excellent reviews that have already appeared on issues related to this subject.
Mukohyama has given a detailed review of black hole thermodynamics [86]. A
detailed spin co-efficient approach to isolated horizons appears in Date’s work
[42]. The experimental evidence for black holes and a discussion of the short-
comings of the event horizon concept was given by Chrusciel [35]. Ashtekar
and Krishnan review isolated and dynamical horizons and their uses in numeri-
cal relativity [11]. A comparison of the various horizon concepts and a discussion
of non-spherically symmetric horizons in spherical symmetry is given by Booth
[22]. Gourgoulhon and Jaramillo [53] provide a detailed review of null hypersur-
faces with the necessary geometrical concepts and they discuss some of the links
between local horizons and the membrane paradigm. Compere [38] reviews the
derivations of the first three laws of black hole mechanics and the latest devel-
opments in the field are discussed by Krishnan in [76] and Gourgoulhon and
Jaramillo [55]. It is not the intention to cover the important application of local
horizons to numerical relativity here. This area has already been covered in [46]
and [100].

2 Event horizons

Black holes have been defined in terms of event horizons for almost forty years
now [59]. Event horizons are the past boundary beyond which events cannot ever
influence a certain spacetime region. They are the boundary of that region’s causal
past. In general, this definition will depend on the choice of region for which one
wants to calculate the causal past.

In the context of black holes, event horizons represent the past causal bound-
ary of future null infinity. This definition captures the idea of causal signals being
unable ever to ‘escape’. It also naturally entails that causal (timelike or space-
like) signals cannot be sent from inside the event horizon to any point outside the
horizon.

One can also define event horizons for observers moving along certain world-
lines, as is done, for example, for accelerated observers in Minkowski space [59].
However, in this case the event horizon is only defined with respect to a certain
class of observers. Other observers do not share such an event horizon. Defining a
black hole event horizon as the past causal boundary of future null infinity means
that it is not defined in terms of specific observers. Sometimes the phrase ‘abso-
lute horizon’ is used for event horizons defined in this way. However, since we are
only dealing with black hole event horizons in this work, we will continue to just
call them event horizons.

If one wants the region that one defines the causal past of to be at infinity
then event horizons will inevitably depend on the spacetime structure all the way
to infinity. This teleological1 nature of the definition means that in some sense

1 The word ‘teleological’ can have a slightly different meaning in a philosophical context.
Its usage in the context of physics denotes relation to the ‘end’ or infinity without any inferred
notion about purpose.
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event horizons ‘know’ about the future. Their dynamical evolution reacts to pro-
cesses that may not even have registered in their past light cone yet. As such, the
definition is highly non-local. This has certain implications. If there were a large
enough distant shell collapsing down on us, out there in the universe, there could
be an event horizon passing through us right now. Because of this large collaps-
ing shell it may be that light signals we send out now cannot reach true infinity,
or even the region beyond the collapsing shell. The collapse to a black hole may
depend on a future quantum measurement such as in the so-called Schrödinger
black hole [102]. If one could detect the existence of a black hole one could pre-
dict the outcome of the future quantum measurement.

A related feature of event horizons is that they can, in principle, arise and
evolve in exactly flat regions of spacetime. Consider a hollow spherically sym-
metric thin shell of matter, with mass M, collapsing under its own gravity in an
otherwise vacuum spacetime. By Birkhoff’s theorem we know that the exterior
of the shell is a portion of Schwarzschild space and the interior of the hollow
shell is exactly flat Minkowski space. An observer sitting at the centre of the shell
can imagine firing radially outgoing photons. These photons will move outwards
through Minkowski space until they meet the collapsing shell.

Before the collapsing shell of matter has passed within its own Schwarzschild
radius (r = 2M) the photons will be able to pass through the shell and escape
to infinity (ignoring any interaction with the shell, which is irrelevant for causal
purposes). If a photon reaches the shell just as the shell passes through r = 2M
then the photon will be trapped, along with all subsequent photons. This photon’s
trajectory will form part of the event horizon. The portion of the photon’s trajec-
tory that lies inside the shell will form part of the event horizon in flat Minkowski
space.

Therefore, the event horizon will come into existence in purely flat space and
its area will increase at the speed of light until it reaches the surface r = 2M. This
increase of area of the event horizon is not caused by any matter flowing over
it instantaneously, but rather by the future ‘anticipation’ of infalling matter. This
is of course a highly non-equilibrium process and one would rightly not expect
thermodynamics and the first law to hold in this case. However, it does illustrate
how the teleological nature of event horizons implies that the increase in area of
an event horizon is not always related to a corresponding local energy flux.

Another drawback of the global event horizon concept is that event horizons
cannot form inside event horizons. Suppose a star falls into a very large super-
massive black hole. The region inside the event horizon of the large supermassive
black hole is not causally connected to future null infinity. If the star then begins
to collapse under its own gravity we cannot claim that it forms an event horizon
around itself because it is already causally disconnected from future null infinity.
It would be interesting in this case to examine what the thermodynamical prop-
erties of such a small black hole inside a large black hole would be and whether
there would be any Hawking radiation and evaporation.

Locating event horizons in dynamical numerical simulations is notoriously dif-
ficult, that is to say time consuming [104]. Perhaps the easiest way is to propagate
null lines back from infinity and hope that they asymptote to the event horizon.
For this to work, finding event horizons in numerical solutions also requires a
solution that is stable all the way to ‘infinity’, or at least until it settles down to an
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approximately stationary state. It is far easier numerically to locate locally defined
horizons such as marginal surfaces on a given hypersurface, and in many cases
use this as a proxy for the event horizon.

Event horizons do serve several useful purposes in numerical codes. In exci-
sion methods, the interior of the event horizon represents the maximal region that
can be excised without influencing the future development of the exterior region.
It is in this sense that using a marginal surface as a proxy is most useful, since for
most dynamical simulations of say black hole mergers, any marginal surface will
also lie inside the event horizon and so the interior of the marginal surface along
with the singularity can be excised from the simulation. The marginal surface will
lie inside the event horizon as long as the null energy condition is satisfied. This
is a reasonable assumption for astrophysical modeling but will likely break down
when quantum effects are taken into account through Hawking radiation, since
Hawking radiation is expected to violate the very energy conditions that imply
that marginal surfaces lie inside the event horizon [107; 108].

Another use of event horizons is in comparing different numerical codes. Since
the location of the event horizon is absolute and independent of the spacetime slic-
ing used to generate the solution, its location, if it can be reliably found, can be
used as a diagnostic to compare different simulation codes using different folia-
tions. In these respects event horizons serve as useful practical tools when they
can be found reliably.

However, there are other drawbacks of event horizons of a more physical
nature. An obvious drawback is that it is impossible to locate an event horizon
using local measurements. It is impossible to locate an event horizon with the
tools available to finite, mortal physicists. One needs to know the entire future of
the universe. This means that it is impossible to test experimentally whether an
event horizon even exists and therefore impossible to test whether black holes,
defined in this way, truly exist. The existence of event horizon defined black holes
is technically beyond the scope of experimental verification! Even if one passed
over an event horizon, classically one would not notice.

For practical considerations, one usually makes use of the fact that station-
ary event horizons are Killing horizons. In globally stationary spacetimes, with
certain natural conditions on the matter fields, the event horizon is guaranteed
to be a Killing horizon for some suitably chosen Killing vector.2 In many situa-
tions Killing horizons are more useful than event horizons. Killing horizons have
local geometrical properties, which are often much easier to work with than the
global causal properties of event horizons. The area of a Killing horizon is con-
stant and, under mild assumptions, Killing horizons satisfy the zeroth law of black
hole thermodynamics. However, not all Killing horizons are event horizons and
not all event horizons are Killing horizons. In any conceivable physical situation,
the event horizon would probably not coincide exactly with a Killing horizon due
to dynamical processes crossing the event horizon. This would be true even if the
dynamical processes were only to occur in the far future of the black hole. While
there may be a locally defined Killing horizon in the spacetime, it may not be
where the event horizon is. The event horizon would be close to a Killing horizon,
but not exactly so. In fact, it is likely that the vast majority of astrophysical blacks

2 The basis for this statement is the strong rigidity theorem [67]. The Killing horizon is located
where the Killing vector ka becomes null, kaka = 0.
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are described by some sort of slowly evolving horizon [73], rather than an exact
Killing horizon.

One could argue that for all practical purposes, such and such an object was
practically spherically symmetric with a practically vacuum exterior and there-
fore described by the Schwarzschild metric. One could then measure the mass and
areal radius of such an object by the deviation of test masses and conclude that
there was, for all practical purposes, an event horizon at r = 2M. However, these
approximations would only ever be approximately true, especially if the object
was embedded in some expanding universe with a cosmic microwave background
and gravitational waves constantly falling into the black hole. The object would
also only be static as long as one ignored the far distant future when it might evap-
orate. It is the teleological nature of the definition of black holes that causes this
problem. Whether one would be able to perform a quantum mechanical experi-
ment that would reveal the existence of an event horizon is a question we would
like to address.

One of the main purposes of this work is to investigate the extent to which
black hole thermodynamic properties can be derived without using event horizons.
It would seem that event horizons are not required for black hole thermodynam-
ics. Various authors have been successful in deriving dynamical laws for locally
defined horizons such as dynamical and trapping horizons [12; 37; 62]. These laws
are analogous to the usual laws of black hole thermodynamics. We will focus here
on the trapping horizons of Hayward, since these are conceptually simple and eas-
ily applicable to the case where the black hole may be evaporating and the area of
the horizon decreasing.

It is important to remember that event horizons do not necessarily coincide
with trapping horizons. While many trapping horizons can be given the structure
of event horizons, there are certainly many situations where trapping horizons are
not event horizons. If thermodynamical relations can be derived for two different
types of horizon then the question arises, which one, if any, represents the ‘true’
thermodynamic system? At any given instant in time—on any given spatial hyper-
surface intersecting both horizons—the area of the event horizon and the area of
the trapping horizon may not be the same. If the area of the horizon is to represent
some physical entropy, which horizon should one choose to measure the area of?
It is even possible to conceive of situations where a trapping horizon may exist
without the spacetime admitting any event horizon at all. Whatever one believes
is the ultimate explanation for black hole entropy, one is forced to address the
question of which surface one wants to ascribe it to.

It also seems likely that event horizons are not required for Hawking radia-
tion. This is perhaps not surprising since one would like to believe that a local
quantum field theory on a curved spacetime would only depend on locally defined
structures.3 In a local theory any physically measurable quantities, that potentially
could be used for signaling, should only depend on states measurable in the the
past lightcone. One would naturally expect the system to have a consistent Cauchy
formulation satisfying the Wightmann axioms for quantum field theory. Since both
quantum field theory and general relativity are local field theories, it would be very
surprising if non-local behaviour could arise from their combination. That is not to
say that a putative theory of quantum gravity cannot give rise to non-local effects.

3 This may sound reasonable, but for a counter viewpoint see for example [48].
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Merely that, in semi-classical gravity, which is presumably all one needs to study
the Hawking radiation process, one would not expect non-local structures to play
a role. Since the event horizon is a non-local structure, one would not expect to be
able to determine the existence of an event horizon purely by measuring Hawking
radiation. In addition, it has been argued for some time now [109], that the Hawk-
ing effect is a purely kinematical effect that is generic to Lorentzian geometries.
It does not even depend on the validity of the Einstein equations.

3 Local horizons

3.1 Trapping horizons

As an alternative to event horizons, one may consider defining the black hole
as the region inside a trapping horizon. The idea of a trapping horizon is based
on the notion of a trapped surface, first introduced by Penrose in his singularity
theorem [93]. In a four dimensional spacetime with Lorentzian signature, every
two dimensional spacelike surface has two null normals associated with it that are
unique up to rescalings. A trapped surface is a closed two dimensional spacelike
surface for which the expansion, θ , of both of the future-directed null normals to
the surface is negative.

The expansion can be thought of as measuring whether neighbouring light
rays are being focused or defocused by the gravitational field. A positive θ refers
to defocusing, a negative θ to focusing. In fact, the expansion represents the
behaviour of an infinitesimal circle drawn on the spacelike two surface as it is
instantaneously propagated along one of the null directions with parameter λ . If
the light rays are being focused the area of this circle, δA, will be decreasing and
θ will be negative.

θ =
1

δA
d(δA)

dλ
. (1)

On a given partial Cauchy surface the region containing trapped surfaces is called
the trapped region and a connected outer boundary of this region is an apparent
horizon [59]. The apparent horizon is also a marginally trapped surface [77], for
which the expansion of one null normal vanishes, while the expansion of the other
is negative. An alternative, but identical, definition of a marginal surface is a closed
two dimensional spacelike surface for which the instantaneous change in the area
vanishes when propagated in the direction of one of the null normals.

The definition of an apparent horizon depends on the choice of partial Cauchy
surface. This dependency was most dramatically demonstrated in [114] where it
was shown that there are foliations of the Schwarzschild spacetime by spacelike
hypersurfaces for which the spacelike hypersurfaces come arbitrarily close to the
central singularity but contain no trapped surfaces. Since there are no trapped
surfaces there is no apparent horizon defined for these hypersurfaces. As discussed
in [99], this is achieved by considering non-spherically symmetric spacelike two-
spheres that intersect both the black hole region and the white hole region. While
one of the null normals has negative expansion in the black hole region, it has
positive expansion in the white hole region, and hence the surface is not trapped.
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Here we will denote the two null normals to a spacelike two-surface by na and
la and will we refer to them as the ingoing and outgoing null directions respec-
tively.4 Basically they represent the instantaneous path followed by lightlike rays
escaping from the surface and the vanishing of the expansion of one of the null
normals means that the rays traveling in this direction are instantaneously neither
focused nor defocused by the geometry.

It is important to realise that this requirement does not mean that light rays can-
not move away from the surface and indeed, as soon as they leave the surface, they
are, in principle, free to move outwards and ‘expand’. It is only instantaneously
at the surface that the expansion is required to be zero. The horizon can then be
thought of as the ‘worldsheet’ of such surfaces. The evolution from one surface
to the next along the worldsheet does not necessarily occur in one of the null nor-
mal directions. An outgoing null signal, although instantaneously non-expanding
on the horizon, can find itself outside the horizon at the next instant and free to
expand, thus giving a causal connection between the interior of the horizon and
the exterior. We will see below that this only occurs when the horizon is a time-
like surface and the area of the horizon is decreasing. For a trapping horizon this
requires a violation of the null energy condition.

For a spacelike two-surface with null normals na and la (such that nala =−1),
the expansion associated with the vector la can be computed by

θl = gab
∇alb +nalb

∇alb + lanb
∇alb, (2)

with a similar form for θn with all the n’s and l’s interchanged. A marginally
trapped tube (MTT) [9] is a three-dimensional hypersurface that can be foliated by
marginally trapped surfaces (MTS). The marginally trapped surfaces are smooth,
closed, connected, spacelike two-surfaces that satisfy

i. θl = 0
ii. θn < 0.

Since we have determined that l is the outgoing direction, this is often also called a
Marginally Outer Trapped Surface (MOTS). The definition of a marginally trapped
tube makes no condition on the signature of the tube, but if it is spacelike it called
a dynamical horizon (DH), if it is timelike it is called a timelike membrane (TLM)
and if it is null it is called a non-expanding horizon (NEH), provided the dominant
energy condition is satisfied on the horizon. If the intrinsic connection and matter
fields of a non-expanding horizon are time independent then it is called an isolated
horizon [5; 12].

Unlike the requirement for an apparent horizon, which is defined in terms of
a given choice of spacelike hypersurface, and is therefore foliation dependent, the
definition of a marginally trapped tube is more focused on the existence of such a
surface. While there may be slicings of the Schwarzschild spacetime that contain
no trapped surfaces [114], there is clearly a hypersurface that admits the properties
of an apparent horizon in the globally static Schwarzschild solution and in this
case it coincides with the event horizon. However, marginally trapped tubes do
not necessarily enclose trapped regions. For an example where they do not [101].

4 The division into ingoing and outgoing is not always as trivial as it may seem [20], but we
will label them this way for the simple cases considered here.
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A trapping horizon, more properly a future outer trapping horizon, is defined
by Hayward [62] as a three-dimensional hypersurface that can be foliated by
closed spacelike two-surfaces, trapping surfaces, that satisfy

i. θl = 0
ii. θn < 0

iii. na∇aθl < 0.

The third condition distinguishes a trapping horizon from a marginally trapped
tube and ensures that the trapping horizon contains a trapped region [101]. This
condition also distinguishes outer horizons from inner horizons, such as are found
in the Reissner–Nordström spacetime. The outer condition is defined with respect
to the ingoing null direction na and not any spatial direction on a chosen spacelike
hypersurface. This means that outer trapping horizons can turn into inner trap-
ping horizons, and trapped regions can appear on a spacelike hypersurface that
are bounded on both sides by an outer trapping horizon. In this case one would
usually think of a single spacelike outer trapping horizon that is intersected by the
spacelike hypersurface.

In contrast to the definitions of both isolated horizons and dynamical horizons,
the definition of a trapping horizon makes no requirement on the signature of the
horizon. A trapping horizon can be a spacelike, null or timelike hypersurface. The
connections between the various formulations was given in a unified framework
in [74] and [25].

There is therefore a hierarchy of closed spacelike two-surfaces of progres-
sively stronger restrictions: a marginal surface (the expansion of one null normal
vanishes with no restriction on the other), a marginally trapped surface (the expan-
sion of one null vanishes and the expansion of the other is negative) and trapping
surfaces (the expansion of one null normal is negative, while the other vanishes
and is changing from positive to negative in the other null direction).

Apparent horizons have a long association with black holes. In fact, the origi-
nal singularity theorem of Penrose [93] used trapped surfaces to capture the notion
of a region that light could not escape. According to the theorem, the formation
of a trapped surface, and therefore by extension an apparent horizon, leads to the
formation of a spacetime singularity under certain assumptions. But apparent hori-
zons were largely ignored as a means of defining black holes in favour of event
horizons [44].

There were several reasons for this. Firstly, apparent horizons, or at least the
outermost apparent horizon on a given hypersurface, have a tendency to ‘jump’
discontinuously [59] when black holes grow, either by accumulating matter or
merging. In contrast event horizons always grow smoothly. Secondly, since they
are causal boundaries, event horizons are always null surfaces. As we have seen
above, this is not true for locally defined horizons in general. Thirdly, there is the
foliation dependency of apparent horizons mentioned above. One risks choosing a
foliation of spacetime, finding no trapped surfaces on that foliation and concluding
that there is no apparent horizon and hence no black hole.5

5 This is the issue that Iyer and Wald are addressing in [114]. Shapiro and Teukolsky claimed
to have found evidence of cosmic censorship violation in numerical simulations since their cho-
sen foliation of spacetime did not contain any apparent horizons. However, the non-existence of
apparent horizons on one choice of foliation does not preclude their existence on other different
choices.
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These reasons are mainly practical. While it is easier just to deal with null
surfaces, it is not impossible to deal with spacelike and timelike surfaces too. The
surfaces of most physical objects are not null surfaces. One may also have to live
with the jumpiness of local horizons, or at least investigate it further to see if it
has any physical consequences. And one can adopt the position that if a space-
time contains a trapping horizon then it also contains a black hole, irrespective of
whether a trapping horizon shows up on a given hypersurface or not.

But there were also physical reasons for choosing event horizons over apparent
horizons. Firstly there is the intuitive condition that the event horizon really does
define the boundary of the region that cannot ever influence events outside of
itself. That it is by definition. If that is what one insists a black hole should be
then one must live with the non-local teleological problems mentioned above.
One may have to accept that the property of being a black hole is beyond the
realm of experimental verification, or that some, as yet undiscovered, non-local
process allows one to detect the location of an event horizon.

Perhaps strongest reason for focusing on event horizons instead of apparent
horizons was the belief that if an apparent horizon exists then it must lie behind
the event horizon and so cannot influence the outside region anyway. As we will
now see, this belief was predicated on a condition that is most probably violated
by Hawking radiation.

3.2 The apparent horizon always lies inside the event horizon

As noted above, the definition of a trapping horizon and also many other local def-
initions of black holes, is closely related to that of a marginal surface and therefore
the apparent horizon. One of the properties that makes marginal surfaces useful
for excision techniques in numerical relativity is that they are guaranteed to lie
inside the event horizon. Thus excising them from the simulation cannot influence
the future evolution of the region outside the event horizon. The proof of this result
relies on several assumptions. Firstly, that the spacetime is future asymptotically
predictable [59]. This basically rules out the possibility of naked singularities,
which on a physical basis seems to be a good assumption. However, the proof also
relies on the separate condition that

Rabkakb ≥ 0, (3)

for all null vectors ka. The result then follows from the Raychaudhuri equation,
which is a purely geometric equation that will hold for any theory formulated on
a suitable differentiable manifold,

Dθl

dλ
= κθl−

1
2

θ
2
l − σ̂abσ̂

ab + ω̂abω̂
ab−Rablalb. (4)

Here κ measures the failure of la to be affinely parameterised, σ̂ab is the shear ten-
sor and ω̂ab is the twist tensor. The proof is by contradiction. Imagine the appar-
ent horizon lay outside the event horizon. Then the future causal boundary of the
apparent horizon would intersect future null infinity. The causal future bound-
ary should be orthogonal to the surface and generated by outgoing null vectors.
Therefore the null generators of this boundary would have non-positive expansion
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by definition and be twist free because they are orthogonal to the future causal
boundary hypersurface. By the Raychaudhuri equation the area of an orthogonal
circle would always be decreasing along these generators. But this is a contradic-
tion since it is required to be infinite at future null infinity. Thus the future causal
boundary of the apparent horizon cannot intersect future null infinity, if the null
energy condition is satisfied everywhere along its path.

The assumption of (3) seemed a reasonable assumption at the time this result
was proved since by the Einstein’s equations, Rab − Rgab/2 = 8πTab, one can
rewrite the requirement as

Tablalb ≥ 0, (5)

which is just the null energy condition and was at the time expected to hold for all
physically reasonable fields. However, it was subsequently shown that the Hawk-
ing radiation effect violates all the energy conditions, including the null energy
condition [107; 108], at least as far as a massless conformally coupled scalar field
is concerned in the eternallt static Schwarzschild spacetime. In fact, it is precisely
this violation of the null energy condition that allows the area of the horizon to
decrease as we shall see below. Notice also that the proof above depends on the
null energy condition being satisfied everywhere along the entire future of the
null generator, or at least that the null energy condition is satisfied in some aver-
age sense. This dependency of the result on an energy condition along the entire
future of a null ray is once again the effect of the teleological definition of an event
horizon.

If one allows the possibility that a black hole spacetime will eventually stop
accreting matter and start evaporating by the Hawking process, once must face
the possibility that locally defined horizons, based on marginal surfaces, may be
located outside the event horizon, at least for some period of the lifetime of the
black hole. In fact, the violation of the null energy condition opens up the further
possibility that there is no event horizon at all and all one need consider is the
trapping horizon [65].

Another reason for focusing on event horizons rather than apparent horizons
was the combination of the Penrose singularity theorem and cosmic censorship.
The Penrose singularity theorem [93] shows that a spacetime with trapped surfaces
must also contain physical singularities. One can then take the cosmic censorship
conjecture in one of its many guises to imply that an event horizon should form
around this singularity. Thus the existence of a trapped horizon would seem to
guarantee the existence of an event horizon. However, the singularity theorem also
relies on the assumption that the null energy condition is everywhere valid, that
the spacetime admits a non-compact Cauchy surface and that the Raychaudhuri
equation is everywhere valid. To relate the geometric Raychaudhuri equation to
the energy condition, one also requires some dynamical equations such as the
Einstein equations to hold, even arbitrarily close to the singularity. By violating
one of these assumptions it is possible to construct spacetimes that contain trapped
surfaces but no event horizon. This possibility was discussed in [59] and examples
of such spacetimes were presented in [106] and [65].



Black holes and black hole thermodynamics without event horizons 13

3.3 Spherically symmetric trapping horizons

To show how these local horizon definitions can be applied in a simple situation
we turn now to an example. Any spherically symmetric metric in four dimensions
can be put in the form [88]

ds2 =−e−2Φ̃(t,r)
(

1− 2m(t,r)
r

)
dt2 +

dr2(
1− 2m(t,r)

r

) + r2dΩ
2, (6)

in so-called Schwarzschild or curvature coordinates.6 The metric function m(t,r)
can be related to an energy density via the Einstein equations and is immedi-
ately recognisable as the Misner-Sharp mass function. The metric function Φ̃(t,r),
although often overlooked in simple cases, has important, non-trivial behaviour in
some matter models [87]. As is well known, these Schwarzschild-curvature coor-
dinates are undefined at the points r = 2m(r, t). A better coordinate system for
examining the behaviour in this region are the Painlevé–Gullstrand coordinates

ds2 = −e−2Φ(τ,r)
(

1− 2m(τ,r)
r

)
dτ

2

+2e−Φ(τ,r)

√
2m(τ,r)

r
dτdr +dr2 + r2dΩ

2. (7)

The null normals to the surfaces of isometry, the surfaces of constant r are the
radial null geodesics. The radial null geodesics for this metric can be easily found
by setting ds = dΩ = 0. For this we find

dr
dτ

=−e−Φ(τ,r)

(
±1+

√
2m(τ,r)

r

)
, (8)

where the plus sign denotes the ingoing geodesics. Thus we can find outgoing
geodesics la and ingoing geodesics na with components

la =

(
eΦ(τ,r),1−

√
2m(τ,r)

r
,0,0

)
, (9)

na =
1
2

(
eΦ(τ,r),−1−

√
2m(τ,r)

r
,0,0

)
, (10)

in Painlevé–Gullstrand coordinates. The factor of two ensures that the cross nor-
malisation is the conventional nala =−1 and the overall normalisation is just cho-
sen for convenience. Then, using (2) we can compute

θl =
2
r

(
1−
√

2m(τ,r)
r

)
, (11)

θn = −1
r

(
1+

√
2m(τ,r)

r

)
. (12)

6 This is at least true as long as t and r remain good coordinates.
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We see that the expansion of na is always negative and that at r = 2m(τ,r) the
expansion of la is zero. We can also compute the value of na∇aθl at r = 2m

(na
∇aθl)H =−(1−2m′H)

r2
H

(
1+

ṙH

2e−ΦH

)
, (13)

where we use a dash to denote partial derivative with respect to r and a dot to
denote the partial derivative with respect to the time τ (here, since rH is only a
function of τ it is actually an ordinary derivative).

For the horizon to be an outer horizon we require 2m′H < 1. Since 2m(τ,r)
must be less than r for large r in the asymptotically flat case, the slope of m(r) at
the outermost horizon must be less than 1/2. In addition, we can see from (8) for
the ingoing null geodesic na that ṙ =−2e−ΦH at the horizon. Thus we see that we
have a trapping horizon at r = 2m if the horizon is outer and not moving inwards
faster than the ingoing null geodesics.

The normal Na to the surface r = 2m has norm

NaNa =−4ṁe2Φ −4ṁeΦ(1−2m′). (14)

If ṁ = 0 the trapping horizon will be a null hypersurface, and, assuming 1−2m′ >
0, it will be a spacelike hypersurface if ṁ > 0. For−(1−2m′)eΦ < ṁ < 0 the trap-
ping horizon will be a timelike hypersurface. This opens the possibility that one
can move along a causal curve from inside an evaporating horizon to the outside.
For ṁ < −(1− 2m′)eΦ the horizon is spacelike, but evaporating ‘faster than the
speed of light’ and so all timelike curves from a region just inside the horizon must
move to the outside [88]. Note that these conditions are given in terms of a choice
of foliation of the background, in this case in terms of the Painlevé–Gullstrand
time τ .

The surface r = 2m(r, t) however, does not define the location of the event
horizon in general. The event horizon is always a null surface and so the spheri-
cally symmetric trapping horizon at r = 2m can only be an event horizon if ṁ = 0.
This is necessary but not sufficient, a trapping horizon can locally have ṁ = 0 and
still not be an event horizon if, for example, there will be matter falling on it in the
future. To find the event horizon, firstly one would need an explicit solution for the
metric everywhere and then one would look for radial null vectors that are not able
to reach infinity by propagating them outwards from the centre of the spacetime,
or alternatively propagating null rays back from infinity to see where they asymp-
tote to. In most dynamical spacetimes the trapping horizon and the event horizon
are not at the same location and on a given ‘moment in time’ spatial hypersurface
their areas are typically different.

4 Thermodynamics of black holes

The laws of black hole mechanics were first introduced in [17]. Very heuristically,
they can be written as7

7 The form of these laws is adopted to make them look like the usual laws of thermodynamics.
However, the usual laws of thermodynamics themselves are often not presented in this fashion
[72].
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Zeroth law: For a stationary black hole, the surface gravity κ is a constant over
the horizon.

First law: δM = κ

2π
δ
(A

4

)
+ΩδJ +ΦδQ

Second law: δA≥ 0.
Third law: The surface gravity cannot be taken to zero in a finite number of

steps.

Of course, to give any physical meaning to these laws we have to know what
all the terms and symbols appearing in them mean. In the original version [17],
the surface gravity κ was defined in terms of the inaffinity of a normalised null
generator of a Killing horizon, the mass M was taken as the ADM mass for an
asymptotically flat spacetime (thus the mass of the entire spacetime, not just the
mass of the black hole), the area was the area of the event horizon and the vari-
ation in the first law was a variation between solutions in phase space whilst the
variation in the second law was a physical variation as one moved along the event
horizon.

A proof of the third law was given in [69], although this is often not considered
a fundamental thermodynamic law. An alternative formulation, that a zero temper-
ature system should also have zero entropy, would correspond to the requirement
that a black hole with zero surface gravity should also have zero area. This is
clearly violated by the extremal Reissner–Nordström and extremal Kerr solutions
and does not hold in the limit of very large Schwarzschild black holes. However,
the idea that extremal black holes have non-zero entropy was challenged in [61].
In [113] it was shown that this version of the third law probably should not even
be considered a true law of ordinary thermodynamics.

Virtually all the discussion of black hole thermodynamics is given in terms of
event horizons. Perhaps the first to suggest that thermodynamic properties such
as gravitational entropy should be associated with apparent horizons was His-
cock [68]. This idea was also adopted by Collins [37], who showed how an area
increase law can be defined for apparent horizons. This work was further extended
by Hayward [62] who derived the laws of black hole mechanics for trapping hori-
zons. Thermodynamic laws for local horizons were also obtained by Ashtekar and
colleagues [6] in terms of geometrical structure defined purely on the horizon.

It is worth thinking about what exactly the laws of black hole dynamics are
telling us. The zeroth law states that in a stationary spacetime the surface gravity
is constant. Since the spacetime is assumed stationary, then it is reasonable to
assume that any function derived from the geometry, as the surface gravity is, will
be constant in ‘time’. The question then reduces to the question of whether the
surface gravity should be constant over a given ‘constant time’ slice of the horizon,
even for a highly distorted, yet stationary horizon. If it is possible to create highly
distorted yet stationary horizons then the zeroth law is indeed non-trivial.

However, the requirement that a horizon should be stationary places strong
constraints on the possibility of constructing such highly distorted stationary hori-
zons. A partial answer to this problem is provided by the black hole uniqueness
theorems. For example, in stationary, electro-vac, asymptotically flat, solutions of
Einstein’s equations8 in four dimensions, the only black hole solutions with non-

8 In acoustic models it is possible to have stationary sonic event horizons that are not Killing
horizons [109]. This is essentially because the Einstein equations need not hold in acoustic
models.
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degenerate horizons are members of the Kerr–Newman class [67]. The horizons
in this case are highly regular, at a fixed Boyer–Lindquist coordinate r.

A stationary black hole almost trivially guarantees a constant surface gravity.
But a constant surface gravity does not necessarily guarantee a stationary black
hole. One could imagine a black hole horizon with a constant surface gravity
that was not stationary. As a heuristic example, one could imagine the grad-
ual transition from a charged Reissner–Nordström black hole to an uncharged
Schwarzschild black hole by slowly adding some oppositely charged matter such
that the surface gravity, defined in terms of the static Reissner–Nordström solu-
tion, remained constant.9 Clearly such a transition is not any more stationary than
the slow accretion of uncharged matter by a Schwarzschild black hole and it is not
in this sense that one intends the zeroth law.

The first law of thermodynamics basically states that energy is conserved. For
any theory in which there is some concept of local energy conservation there
should be an associated first law. Since the area of a given surface is well-defined
geometrically, the value of the surface gravity will just depend on the choice of
mass appearing on the left hand side via a Gibbs-like equation. Since the definition
of a quasi-local mass is not clear-cut in general relativity [103], it is not always
apparent what one should take as the mass of the black hole.

However, alternatively one can think of the first law of black hole mechanics
as indicating how a geometrically defined concept, such as the area of the horizon
responds to a flow of energy-momentum across it. In this sense the first law is
closely related to the Einstein equations relating geometry to energy-momentum.
We have already seen that this viewpoint is locally untenable for some event hori-
zons such as those growing through flat space.

Perhaps the most important, and in some sense most non-trivial, of the laws
is the second law, which states that the area of the horizon cannot decrease. It is
mainly this law that allows one to make the analogy between the surface area of
a black hole and entropy and that has led to the hunt for the microscopic gravita-
tional degrees of freedom that give rise to this entropy. In a dynamical situation
where the trapping horizon does not coincide with the event horizon, a legitimate
question is which horizon area should one take as measuring the entropy of the
black hole? Should one always take the event horizon? Or do the locally defined
horizons also play a role?

It may appear that non-equilibrium thermodynamics is central to this question.
As mentioned above, it is mainly in the context of dynamical situations that the
event horizon and local horizons are expected to differ in area. If the spacetime
is dynamical and not in true equilibrium, can the entropy be reliably determined?
Can the dynamical evolution be great enough such that the difference between
the areas of the event horizon and trapping horizon is meaningful on the scale at
which one wants to measure it?

As demonstrated in [65], not all trapping horizon black holes need to have
associated event horizons. In fact, even in regions where the evolution is approx-
imately stationary and one would expect ordinary equilibrium thermodynamical
properties to be defined, there may not be any event horizon. Thus it remains

9 This is only a heuristic example since the surface gravity of a Reissner–Nordström black
hole is only defined for an exactly static state and the mass and charge are the mass and charge
of the whole spacetime measured at infinity.
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an open question whether one should associate thermodynamical properties with
event horizons or local horizons, even in equilibrium situations.

We will now present a brief review of the types of arguments that are given
to support the various laws of black hole mechanics, focusing on the necessary
assumptions that are required. Many of the ideas presented here are still active
areas of research and for further details the interested reader is referred to the
literature where appropriate. We start with the area increase law, or second law,
since it is the most straightforward and the most critical to attempts to read a
deeper meaning into the laws of black hole mechanics.

5 Area increase law

5.1 Area increase law for event horizons

The proof of the area increase theorem for event horizons, first given by Hawking
[57], rests on the idea that the expansion of the generators of the event horizon,
which are always null because the event horizon is a causal boundary, must have
non-negative expansion. The proof that the expansion of the generators must be
non-negative follows from a proof by contradiction and is similar to the proof that
the apparent horizon must lie inside the event horizon.

Suppose the expansion of the generators of the horizon were negative. Then
there would exist a small region outside the event horizon through which would
pass null geodesics that reached null infinity but which would also have nega-
tive expansion. The null generators of the boundary of the causal future of this
region would also have negative expansion. However, if the null energy condition
is satisfied, Rabkakb ≥ 0 for all null vectors ka and since the twist is zero for any
causal boundary, by the Raychaudhuri equation (4) if θ is initially negative on the
horizon it cannot ever become positive and will eventually become −∞ within a
finite affine length. Consequently it will reach a conjugate point before reaching
infinity. This establishes a contradiction with the assumption that the expansion
on the horizon can be negative, since the causal future boundary cannot contain
conjugate points [59].

Since the expansion of the null generators is positive or zero, the infinitesimal
area must increase or stay the same by Eq. (1). Since the null generator lies in
the horizon, the total area of the horizon can be found by integrating (1) over the
choice of foliation of the horizon. This integrated area will always be increasing
or constant.

Notice that the null energy condition has to hold everywhere along the null
generators of the horizon for the proof to go through in its present form. The proof
does not say anything about what happens if the null energy condition is violated,
even in a small region, for a short period of time. This is partly because of the
global nature of the event horizon.

5.2 The area increase law for trapping horizons

For trapping horizons, since they are locally defined, one is able to directly relate
the change in area of the horizon to the local value of Tablalb. The proof presented
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here is adapted from Hayward [62] with similar arguments appearing in [37]. The
null vector whose expansion vanishes on the horizon (la) is not necessarily tangent
to the horizon. A vector that is tangent to the trapping horizon and normal to the
foliation by two surfaces can be written as a linear combination of la and na

ra = αla +βna, (15)

where α and β will be scalar fields on the trapping horizon, in general depending
on spacetime position and we can choose an orientation for ra by assuming α >
0.10 From (1) we can write

LrδA = αLlδA+βLnδA = αθlδA+βθnδA = βθnδA. (16)

We can relate the value of β to the null energy condition using the following
argument. Since the expansion of la should remain zero on the horizon, we have

Lrθl = 0, (17)

Since the Lie derivative is linear, this gives

αLlθl +βLnθl = 0. (18)

From the Raychaudhuri equation (4), using θl = 0 and allowing la to be hypersur-
face orthogonal, although not necessarily orthogonal to the horizon, we see

Llθl =−σ̂abσ̂
ab−Rablalb. (19)

Since σ̂abσ̂ab is non-negative, if the null energy condition is obeyed Llθl will be
negative or zero. Putting it all together gives

LrδA =
αθnδA
Lnθl

(
σ̂abσ̂

ab +Rablalb
)

. (20)

Once again, this can be integrated over a given surface to see the behaviour of the
total area. However, now we can see the response of the area to the pointwise value
of Rablalb and the null energy condition. Since both θn and Lnθl are assumed
negative for a trapping horizon, the sign of the change in the area will depend
on the sign of

(
σ̂abσ̂ab +Rablalb

)
. The area can only decrease if Rablalb < 0. By

the Einstein equations the area can only decrease if the null energy condition is
violated. Notice also that, even if the null energy condition is violated, the area
can still be increasing if there is sufficient shear.

A similar discussion holds for marginally trapped tubes [23; 88]. In this case
the condition Lnθl is not imposed, leaving one with just a marginally trapped
tube. A marginally trapped tube can have a decreasing area, even if the null energy
condition holds. A simple example is the “pair-creation” of a dynamical horizon
and a timelike-membrane in some shell collapse models [23].

10 This orientation may be different to that inherited from a foliation of the spacetime by
spacelike hypersurfaces when the trapping horizon is spacelike. A spacelike horizon that has an
increasing area when orientated one way, will have decreasing area when orientated the other
way.
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The normal to the trapping horizon, τa, defined so that vaτa = 0 for all vectors
va tangent to the horizon, including ra, can be written as

τ
a = δ

(
la− β

α
na
)

, (21)

where α and β are the coefficients from (15) and δ is an overall normalisation
that can be used to make τa a unit normal if it is spacelike or timelike. The norm
of this vector is

τ
a
τa = 2δ

2 β

α
. (22)

The relative sign of β to α is unchanged when choosing the opposite orientation
of the trapping horizon. This shows that a negative value of β relative to α will
lead to a spacelike horizon (the normal vector τa is timelike), a positive relative
value to a timelike horizon and β = 0 leads to a null horizon. Equation (16) shows
us that the area of the horizon will be increasing if it is spacelike, decreasing if it
is timelike and constant if it is null.

6 Gravitational entropy

We have seen that an area increase law can be derived for both event horizons
and trapping horizons. The area increase law is usually interpreted as strongly
implying that a form of gravitational entropy should be associated with the surface
area of a black hole. The area increase law in itself is merely a gravitational effect
within general relativity. Both versions depend on the validity of the Raychaudhuri
equation, the relation (via the Einstein equations) Rablalb = 8πTablalb and the null
energy condition Tablalb ≥ 0.

But gravitational entropy may well involve wider physics. In particular the
existence of a gravitational entropy suggests that it should be derivable from
the counting of some microscopic quantum gravitational degrees of freedom. If
there are microscopic states associated with area entropy, one would like to know
whether they should be associated with event horizons or trapping horizons.

Hiscock [68] was perhaps the first to suggest that in dynamical situations the
entropy should be associated with the area of the apparent horizon. Ashworth,
Mukohyama and Hayward [14; 66] consider two ways in which entropy can be
assigned to trapping horizons, firstly as a boundary term in a reduced action and
secondly in terms of the Iyer–Wald Noether current [70]. In the second method
they use the Kodama vector in spherical symmetry rather than the Killing vector
to generate diffeomorphism transformations on the horizon. In both cases one can
recover the entropy as one quarter of the area of the marginally trapped surface.
It is worth mentioning in this regard that the Noether charge approach defines the
entropy purely locally and is expected to be applicable to non-stationary black
holes. Gourgoulhon and Jaramillo [54] also propose to assign entropy to the area
of a trapping horizon and use it to select out a unique dynamical horizon in a time
evolution. Gao and Wu have given an argument for how the generalised second
law may be derived for spacelike dynamical horizons based on the generalised
Bousso bound [51].



20 A. B. Nielsen

A natural way to interpret the second law of thermodynamics is that the sum
of the entropy on a given spatial hypersurfaces is non-decreasing for each subse-
quent hypersurface [39]. A naive association of entropy to the area of a marginally
trapped surface in this framework is unlikely to work. One could either attempt to
associate an entropy to each of the possibly multiple future outer trapping horizons
associated with a given black hole or one could restrict attention to only the outer-
most horizon on any given hypersurface. The first possibility seems rather bizarre
in situations where there are multiple outer trapped surfaces on a given partial
Cauchy slicing, associated with the same object. The second possibility may run
into problems with the well-known jumpiness of apparent horizons [59]. The sud-
den appearance of a new marginally outer trapped surface on a slicing would give
rise to a discontinuous jump upwards of the horizon entropy. While the trapping
horizon itself may be smooth [23] this jumpiness is caused precisely by the con-
dition of a spacelike trapping horizon possibly intersecting a given partial Cauchy
slicing multiple times. Perhaps even more worryingly, dynamical horizons and
timelike membranes can annihilate with one another [23]. This would appear to
give a discontinuous jump downward of the entropy, which is unlikely to be com-
pensated for by Hawking radiation and possibly not even by the material that is
‘revealed’ behind the disappearing horizon. This might occur, for example, in the
horizon evaporation scenario of [65]. This possibility would bring the generalised
second law into doubt if applied to trapping horizons. Further problems in assign-
ing entropy to local horizons are mentioned in [39].

There are a number of reasons why one might associate entropy to black holes.
The first, considered by Wheeler, was the apparent unverifiability of the second
law of thermodynamics if objects such as hot and cold tea were dropped into a
black hole [116]. This led Bekenstein to postulate that the area of a black hole
should be seen as a measure of the interior state of the black hole that is inac-
cessible to an external observer [19]. In this context Bekenstein appealed to the
uniqueness theorems that state that a stationary black hole must be a member of
the Kerr–Newman class and as such is only specified by its mass M, charge Q
and angular momentum J. Subsequently it has been shown that uniqueness theo-
rems do not hold for several situations, such as black holes with multiple scalar
fields non-minimally coupled to electromagnetism and non-linear gauge theories
[67], see also [78] and references therein. Furthermore, due to the existence of
the cosmic microwave background and the Hawking effect, physical black holes
are unlikely to be found in truly stationary states for any meaningful period of
their lifetimes. These arguments of Wheeler’s and Bekenstein’s also refer to an
observer dependent notion of entropy that is only applicable to observers that stay
outside the black hole. An observer that fell into the black hole would presumably
have access to at least some of its interior state.

Another argument given by Bekenstein was that the area entropy represented
a measure of the degradation of energy which is no longer available to perform
work. This argument only works classically since it is undermined by the Hawking
effect, which produces particles and is able to perform work. Once it was realised
that black holes could evaporate, Hawking argued that a black hole could lead to
a breakdown of predictability since taking the trace over the unknowable interior
state would turn an initially pure quantum state into a mixed thermal state [58]. In
Hawking’s framework this would be represented by a fundamental increase in the
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von Neumann entropy of the quantum state of the whole universe and would lead
to non-unitarity quantum evolution.

An inertial observer in flat Minkowski space always has a region of space-
time, even in his local vicinity, with which he is not instantaneously in causal
contact with, defined by his past and future lightcones. However, these regions
will eventually lie inside his past lightcone if he remains inertial, rendering them
observable after a sufficient period of his proper time has elapsed. Event horizons
are however, by definition inescapable. Whatever happens behind an event hori-
zon will forever remain inaccessible to outside observers, even if the black hole
evaporates. But it is possible to escape from within a trapping horizon. When the
black hole is evaporating and its area decreasing, the trapping horizon is expected
to be timelike. Timelike trapping horizons are two-way traversable. This means
that after a sufficient period of time has elapsed at least some of the interior state
of a trapping horizon may become measurable to an outside observer.

These arguments would seem to suggest that gravitational area entropy, if it
represents a fundamental inaccessability of information, can only truly be asso-
ciated to event horizons, and not trapping horizons. In spacetimes without true
event horizons the state of the interior of a trapping horizon black hole may even-
tually become accessible to outside observers [7; 65], just through the process of
the evaporating horizon being timelike or the formerly singular central region not
forming a true boundary to spacetime [89].

Probably the best reason to associate entropy with black holes is that several
models for quantum gravity have been able to count the microstates that give rise
to this entropy. In fact, the microstates have been counted in a number of different
theories of quantum gravity [32]. It is interesting in this context to note that this
has only been shown in Loop Quantum Gravity for isolated horizons, which, while
locally defined in a fashion similar to trapping horizons, have no true dynamics
and thus appear very similar to stationary event horizons.11 The fuzzball picture in
string theory seems to describe an object with no true event horizon [85] while the
microstate counting procedure in string theory is currently unable to distinguish
between trapping horizons and event horizons.

The association of black holes with trapping horizons may illuminate one point
that has caused great debate for many years. The very process of pure quantum
states turning into mixed quantum states is associated with event horizons, or more
properly spacetime boundaries [58; 89]. If one allows black holes to be defined in
terms of trapping horizons then it is perfectly possible to consider black holes
in spacetimes whose causal structure is similar to that of Minkowski space. In
this case there is no need to take the trace over unknowable degrees of freedom
and potentially the evolution could be perfectly unitary. An example of such a
spacetime was presented in [106] and another in [65].

Although locally defined horizons have a well-defined area increase law just
like event horizons, their spacelike nature and their ability to ‘disappear’ at finite
area seems to raise some issues for their application to a law of generalised entropy
increase. This highlights the tension between the laws of black hole mechanics
and our ideas about what the area entropy represents. It is possible that further

11 It may well be possible to produce a similar calculation for dynamical horizons but his has
yet to be done [4].
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research will resolve some of this tension, or we may have to re-evaluate exactly
which properties of a black hole we wish to associate with which type of horizon.

7 The zeroth law

7.1 The zeroth law for Killing horizons

Not all event horizons satisfy a zeroth law. The proof of the zeroth law is usually
given for those event horizons that are also Killing horizons. The Killing horizon
is where a Killing vector becomes null. Not all event horizons are Killing hori-
zons and not all Killing horizons are event horizons either. The Killing horizon is
typically embedded in a stationary spacetime with a timelike Killing field outside
the horizon. Thus the horizon inherits a notion of stationarity from the spacetime
region it is embedded in. The existence of a Killing horizon is very useful geo-
metrically. One can show that the Killing horizon must be shear-free, the Killing
orbit must be geodesic on the horizon, its area must be constant and of course, the
surface gravity is constant.

We will write the Killing vector that generates the Killing horizon as ka. On the
Killing horizon it is null by definition, kaka = 0, but its derivative is not necessarily
zero at the horizon ∇b(kaka) 6= 0 since the Killing vector is not necessarily null
away from the horizon. However, the vector ∇b(kaka) will be normal to the Killing
horizon in the sense that it will be orthogonal to any vector that is tangent to a
curve lying in the horizon. Thus there will be a function κ such that

∇
b(kaka) =−2κkb. (23)

Since ka is a Killing field this is equivalent to

ka
∇akb = κkb. (24)

Thus kb is geodesic on the horizon and κ measures the extent to which ka fails
to be affinely parameterized. This κ can be taken to be the surface gravity if the
Killing vector is suitably normalized, which is usually achieved by demanding
kaka =−1 at spatial infinity.

In static, non-rotating spacetimes, the surface gravity also has the physical
interpretation as the limiting force at infinity required to keep a mass near the hori-
zon. This interpretation is not possible for all Killing horizons that are also event
horizons. For example, it does not work in the Kerr solution [111]. In general, the
surface gravity of a Killing horizon event horizon only has the interpretation of an
inaffinity parameter.

The following proof of the zeroth law is adapted from that of Bardeen, Carter
and Hawking [17]. A proof using slightly different assumptions appears in [96].
Let the three-dimensional horizon be spanned by ka, θ a and φ a, where θ a and
φ a are orthonormal spacelike vectors tangent to a foliation of the event horizon.
Choose a fourth vector pa to complete the tetrad that everywhere on the horizon
satisfies paka = −1. In Bardeen, Carter and Hawking [17] they use la for ka and
na for pa but our notation is chosen this way to distinguish it from the null tetrad,
since it is only on the horizon that ka forms part of a null tetrad.
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From (2) and the anti-symmetry of the Killing vector one can see that θk, the
expansion of ka, is necessarily zero on the Killing horizon. This is true even though
the Killing vector field is not a null congruence. Therefore the area of a Killing
horizon is unchanging. Since ka is hypersurface orthogonal to the horizon, by the
Fröbenius theorem we have

k[a∇bkc] = 0. (25)

Contracting (25) with εabcd gives

ε
abcdkb∇ckd = 0. (26)

Thus the twist is also zero on the horizon, which is actually true for the generators
of any event horizon. If the null energy condition and Einstein equations hold,
then by the Raychaudhuri equation (4) the shear will be zero too, σ = 0, since
both the terms Rablalb and σ̂abσ̂ab are non-negative and their sum is equal to zero.
The vanishing of the shear depends on the null energy condition and the vanishing
of the expansion θk.

From the vanishing of the expansion, shear and twist of a Killing horizon it
follows that

θ
a
θ

b
∇akb = 0,

φ
a
φ

b
∇akb = 0, (27)

φ
a
θ

b
∇akb = 0.

To show that the surface gravity is constant on the horizon we need to show that
the Lie derivative of κ in any direction on the horizon vanishes. Since an arbitrary
vector field va tangent to the event horizon can be expanded in terms of the basis
vector fields of the horizon ka, θ a and φ a by

va = A(x)ka +B(x)θ a +C(x)φ a, (28)

where each of the coefficients is a function of position on the horizon, it suffices
to show that the Lie derivative of κ in these three spanning directions is zero.12

Lkκ = ka
∇aκ = 0,

Lψ κ = θ
a
∇aκ = 0, (29)

Lφ κ = φ
a
∇aκ = 0.

These results follow since the Lie derivative with respect to the arbitrary vector
field can be expanded as

Lvκ = A(x)Lkκ +B(x)Lθ κ +C(x)Lφ κ. (30)

12 In the original paper [17] the condition ka∇aκ = 0 was not discussed. This may be because
it follows ‘trivially’ from the fact that the spacetime is assumed stationary.
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The first equation is obtained as follows:

ka
∇aκ = −ka

∇a(pbkc
∇ckb)

= −ka
(

pbkc
∇a∇ckb + pb

∇akc
∇ckb + kc

∇ckb∇a pb
)

= ka pbkcRdabckd−κka pb
∇akb−κkakb

∇a pb

= ka pbkcRdabckd

= 0, (31)

since ka
(
kb∇a pb + pb∇akb

)
= ka∇a(kb pb) = 0 and for Killing vectors we have

∇c∇bka = R d
abc kd . The second equation follows by

θ
a
∇aκ = −θ

a
(

pbkc
∇a∇ckb + pb

∇akc
∇ckb + kc

∇ckb∇a pb
)

= θ
a pbkcRdabckd−θ

a pb
∇akc

∇ckb−κθ
akb

∇a pb

= Rabcdka
θ

b pckd , (32)

where the last two terms of the second line cancel due to the expansion-free, shear-
free and twist-free conditions of the Killing horizon. On the horizon we can sub-
stitute in

ka pc =−gac− pakc +θ
a
θ

c +φ
a
φ

c. (33)

This gives

Rabcdka
θ

b pckd =−Rbdθ
bkd +Rabcdφ

a
θ

b
φ

ckd , (34)

other terms vanishing by the symmetries of Riemann. On the horizon, due to the
Killing property, we have

θ
c
∇c

(
φ

a
φ

b
∇akb

)
=−Rabcdφ

a
θ

b
φ

ckd = 0. (35)

From the vanishing of Rabkakb and the null dominant energy condition, TabkbT ackc≤
0, we can conclude that

Rbdθ
bkd = 0. (36)

Putting it all together we see that

θ
a
∇aκ = 0. (37)

Since θ a and φ a have not been physically distinguished a similar argument holds
to show that φ a∇aκ = 0.
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7.2 The zeroth law for trapping horizons

In generalising the zeroth law to trapping horizons, we are immediately faced with
two questions. Firstly, what should be the equivalent definition of surface gravity
for a trapping horizon? And secondly, how should we define a sense of equilibrium
or stationarity for the horizon?

The issue of how to define the surface gravity for a non-Killing horizon was
examined in [90]. Perhaps the simplest approach is to define the surface gravity
as the non-affinity of the null normal to the horizon whose vanishing expansion
defines the horizon, la.

la
∇alb = κlb. (38)

This definition is similar to the definition for a Killing horizon in terms of the
non-affinity of the horizon generating Killing vector (24). This definition by itself
does not fix the normalisation freedom in the value of κ and is by no means the
only possible choice [90].

As we saw above, one of the key properties of a Killing horizon is that its
area is constant. It seems reasonable that a black hole in equilibrium should have
a constant area. A trapping horizon with constant area is a null trapping horizon
and is closely related to an isolated horizon [12]. The results of [43] suggest that
an isolated horizon is also a Killing horizon if there is a stationary neighbourhood
around the horizon. Thus an isolated horizon with a stationary neighbourhood will
satisfy the zeroth law in the same way a Killing horizon does.

But do all isolated horizons satisfy a zeroth law? An affirmative answer to this
question was given in [6]. In [12] the zeroth law was proved under the slightly
weaker conditions of a weakly isolated horizon. In essence a weakly isolated hori-
zon is a non-interacting horizon with a constant surface gravity. A non-interacting
horizon is a null marginal surface for which Tablb is non-spacelike, which will be
the case if the null dominant energy condition is satisfied.

8 The first law

8.1 The first law for Kerr black holes

One of the simplest proofs of the first law is for the Kerr black hole solution. In this
case we have an explicit solution of the Einstein equations. In Boyer–Lindquist
coordinates it is given by

gab =


−
(

1− 2Mr
ρ2

)
0 0 − 2aMr sin2 θ

ρ2

0 ρ2

4 0 0
0 0 ρ2 0

− 2aMr sin2 θ

ρ2 0 0 sin2
θ

(
r2 +a2 + 2a2Mr sin2 θ

ρ2

)
 , (39)

where 4 = r2 − 2Mr + a2, ρ2 = r2 + a2 cos2 θ and a = J/M, J is the angular
momentum and M is the mass measured at infinity. The area of the event horizon
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can be written as

A = 4π
(
r2
+ +a2) , (40)

where r+ is the Boyer–Lindquist coordinate of the outer event horizon (this is not
an areal radius coordinate—except in the limit of vanishing angular momentum).
Explicitly from the metric we can write

r+ = M +
√

M2−a2. (41)

Thus

A = 4π

(
2M2 +2M

√
M2−a2

)
. (42)

Varying this we find
√

M2−a2

8π(r2
+ +a2)

δA = δM− a
r2
+ +a2 δJ. (43)

For the Kerr solution we have explicitly the angular velocity of the horizon

ΩH =
a

r2
+ +a2 , (44)

and the surface gravity

κ =

√
M2−a2

r2
+ +a2 . (45)

Thus we can write

δM =
κ

8π
δA+ΩHδJ, (46)

reproducing the first law. Of course, the proof above only takes states within the
Kerr family to other states within the Kerr family. More generically one would
like to consider arbitrary variations on the phase space of stationary solutions. We
will now consider steps towards this goal.

8.2 The first law for Killing horizons using ‘equilibrium states’

If we want to proceed without the help of an exact solution, but retaining a Killing
horizon we must take into account the changes of mass and angular momentum
in the spacetime outside of the black hole. This means the exterior spacetime is
no longer necessarily vacuum. This was considered in the version of the first law
of black hole mechanics given by Bardeen, Carter and Hawking [17]. For a time-
translational Killing vector ta and a spacelike hypersurface Σ with normal na we
have ∫

Σ

d3x
√

γnbtaRab =
∫

∂Σ

d2x
√

γ(2)naσb∇
atb. (47)
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For a spacetime with a Killing horizon we can take the boundary of the hyper-
surface ∂Σ to consist of both a boundary at infinity ∂Σ∞ and a boundary at the
horizon ∂Σhor. The boundary term at infinity gives the asymptotic mass, the ADM
mass, 4πM and using the Einstein equations we get

8π

∫
Σ

d3x
√

γnbta

(
T ab− 1

2
Tgab

)
= 4πM +

∫
∂Σhor

d2x
√

γ(2)naσb∇
atb. (48)

In stationary, axisymmetric, asymptotically flat spacetimes the Killing vector la

that is null on the event horizon can be written as

la = ta +ΩHφ
a, (49)

where ta is the suitably normalized, asymptotically timelike Killing vector, nor-
malized so that its parametrization at spatial infinity corresponds to parametriza-
tion by the proper time of inertial observers, ΩH is the angular velocity of the
black hole and φ a is the axial, spacelike Killing vector. The two normals to the
two-sphere ∂Σhor can be written as na = τa, which is tangent to the generators
of the horizon and σa = −ra, where σa is inward pointing at the horizon13 and
tangent to the surface Σ . We can write the outgoing and ingoing null rays of a null
tetrad as

la =
1√
2

(τa + ra)
(50)

na =
1√
2

(τa− ra) ,

where na denotes the ingoing null vector of a null tetrad, not the normal to the
spatial hypersurface. Thus the normals −τarb can be written as − 1

2 (la + na)(lb−
nb) so naσb∇alb =−κ . Since the surface gravity is constant over the horizon (the
zeroth law) and, due to the axisymmetry, the angular velocity can be assumed
constant over the horizon, we have∫

Σ

d3x
√

γnbta

(
2T ab +

1
8π

Rgab
)

= M− 1
4π

κA−2ΩHJH , (51)

where we have defined the angular momentum of the horizon JH by

JH =
1

8π

∫
∂Σhor

d2x
√

γ(2)naσb∇
a
φ

b. (52)

This integral equation can now be varied to give a differential mass formula where
the variations correspond to variations on phase space. The difference in the metric
between the two, slightly different, stationary states can be written δgab = hab.

13 While it is standard in the literature to use the symbol na to denote one of the normals to
the two-sphere, we are switching notation here to avoid confusion with the element of the null
tetrad na. The same symbol is used for both but the different meanings should be clear from the
context.
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The variation of the term involving R gives∫
Σ

d3x
√

γnctc 1
8π

(
−
(

Rab− 1
2

Rgab
)

hab +∇
e
∇ f h f

e −∇
e
∇eh f

f

)
. (53)

The last two terms give a boundary term by Stokes’ theorem, which can be written∫
∂Σ

d2x
√

γ(2)nctc
σ

e
(

∇ f h f
e −∇eh f

f

)
=−δM− δκ

4π
A−2 δΩHJH . (54)

The variation of the term involving T ab gives

2δ

∫
Σ

d3x
√

γnbtaT ab =
∫
Σ

d3x
√

γnctcT abhab, (55)

which cancels with the first part of (53) via Einstein’s equations. The final result
is

δM =
κ

8π
δA+ΩHδJH . (56)

Although this is still the first law for variations on phase space, not physical vari-
ations, it now holds for variations between all stationary uncharged axisymmetric
spacetimes, not just the vacuum Kerr solution. The mass M is the ADM defined
at infinity for the whole spacetime, while the angular momentum JH is defined at
the horizon.

8.3 Process version of the first law

Instead of considering two nearby stationary states one can ask what happens
when we add a small amount of mass to a physical black hole [60; 112]. The idea
is to start with a stationary axisymmetric black hole at a time t0 and then, at some
later time t1, add an amount of matter ∆Tab, wait until the black hole settles down
to a stationary state again (effectively at t = ∞) and look at how its parameters
have changed. We can assume that the matter dropped into the black hole can be
represented by a tensor field µab...d with

µab...d = δ µ
(1)
ab...d +O(λ 2), (57)

where δ is a small dimensionless parameter measuring the strength of the field
(and not a parameter along the null generators). We can assume, as is done by
Hawking and Hartle [60], that the perturbing field is zero before some time t1.
However, recall that the area of the event horizon can still be growing before t1.
Since the energy momentum tensor is quadratic in the field and its derivatives we
will have

Tab = δ
2T (2)

ab +O(δ 3). (58)
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By the Einstein equations, this requires the metric to be

gab = g
(0)
ab +δ

2g
(2)
ab +O(δ 3), (59)

where g
(0)
ab is the metric of the unperturbed background spacetime. Likewise we

have

gab = gab
(0) +δ

2gab
(2) +O(δ 3), (60)

and the expansion, shear and surface gravity scalars

θ = δ
2
θ

(2) +O(δ 4), (61)

σ = δ
2
σ

(2) +O(δ 4), (62)

κ = κ
(0) +O(δ 2). (63)

From the Raychaudhuri equation (4), ignoring higher order terms in δ , we have

d(δ 2θ (2))
dv

= κ
(0)(δ 2

θ
(2))−Rablalb. (64)

where v is a parameter along the null generator of the event horizon. This is a
first-order differential equation in δ 2θ (2) and can be solved using an integrating
factor.

δ
2
θ

(2) = eκ(0)v
∞∫

t

(
e−κ(0)vRablalb

)
dv. (65)

We can insert this into the expression for the change in the area given by the
expansion (1) to find

∆A =
∞∫

v0

∫ eκ(0)v
∞∫

v

e−κ(0)vRablalbdv

dA

dv

=
∞∫

v0

eκ(0)v
∞∫

v

(
e−κ(0)v

∫
RablalbdA

)
dv

dv

=
1

κ(0)

eκ(0)v
∞∫

v

(
e−κ(0)v

∫
RablalbdA

)
dv

∞

v0

+
∞∫

v0

RablalbdAdv


=

1
κ(0)

−eκ(0)v0

∞∫
v0

(
e−κ(0)v

∫
RablalbdA

)
dv+

∞∫
v0

RablalbdAdv

. (66)

The first term can be neglected as long as e−κ(0)vRablalb is always small, which
will be the case if v1 is large. The null generator la can be expanded in terms of the
ta and φ a, the Killing vectors of the background stationary, axisymmetric metric.

la = ta +ΩHφ
a. (67)
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Following a number of authors [94; 112] we can define mass changes over the
horizon, Σ , which is a null hypersurface generated by la using the background
Killing vectors ta and φ a

∆MH =
1

8π

∫
Σ

d3x
√

γlatbRab, (68)

∆JH = − 1
8π

∫
Σ

d3x
√

γlaφbRab. (69)

This will give

κ

8π
∆A = ∆MH −ΩH∆JH . (70)

Although this calculation is perturbative and uses the initial background geometry
to define the surface gravity, mass and angular momentum, it is perhaps closest
in spirit to the conservation of energy nature of the first law. A related proof for
perturbations around charged black holes was given in [50].

8.4 First law for isolated horizons

Ashtekar, Fairhurst and Krishnan [8] were able to show that the necessary condi-
tion for Hamiltonian evolution on an isolated horizon was that the first law holds.
This derivation was similar to the one appearing in Bardeen, Carter and Hawking
[17] in that it considered transitions between isolated horizon admitting space-
times in phase space rather than physical processes.

A horizon mass can be associated with an isolated horizon using a boundary
term appearing in the Hamiltonian. This Hamiltonian is associated with a time-
translational vector field ta that approaches a multiple of the horizon normal la

on the isolated horizon. Two approaches can be taken to obtaining the Hamilto-
nian. Firstly a canonical approach can be pursued [6; 21]. One defines a folia-
tion of spacetime into spatial hypersurfaces given by the vector field ta. Then one
constructs the Legendre transform of the Lagrangian and imposes suitable bound-
ary conditions at the isolated horizon. Alternatively, one can follow a covariant
approach [8]. A symplectic structure Ω on phase space Γ can be derived from
the action via a double variation. Ω will be the standard symplectic two-form on
phase space, represented by the integral of a conserved symplectic current J over
a spatial hypersurface.

Since most of the following depends on the geometrical properties of phase
space, we will use index-free notation to denote vectors and forms on phase space
for this section. A choice of a vector field ta on spacetime gives rise to a vector
field Xt on phase space Γ induced by diffeomorphisms along ta in spacetime. Xt
is a phase space symmetry if LXt Ω = 0. This is the case if and only if there is a
function Ht on phase space such that

dHt(δ ) = Ω(δ ,Xt), (71)
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for any arbitrary vector field δ on phase space. Thus Xt will be a Hamiltonian
vector field if it defines a Hamiltonian function Ht on phase space in this manner.
The symplectic structure consists of ‘bulk’ terms over the partial Cauchy surface
and boundary terms which can be placed at infinity and at the isolated horizon.
Imposing the equations of motion eliminates the bulk terms and the boundary
conditions for an isolated horizon lead to

Ω(δ ,Xt) =− 1
8π

κtδa4−ΦtδQ4−ΩtδJ +δEADM
t , (72)

where a4, Q4 and J4 refer to the horizon area, charge and angular momentum
respectively and κt is the surface gravity defined in terms of the inaffinity of ta on
the isolated horizon. Both the electromagnetic scalar potential Φt and the angular
velocity Ωt can also be defined in terms of the time-translational vector field ta via
ta = Bla−Ωtφ

a where B is a constant on the horizon, φ a is the axial symmetry
vector and Φt =−taAa where Aa is the electromagnetic potential. If ta is chosen to
coincide with a time- translation at asymptotically flat infinity the boundary term
in the symplectic structure at infinity will give the ADM mass Mt

ADM associated
with ta. Thus the requirement that ta generate Hamiltonian evolution is equivalent
to the requirement that there should exist a function Mt

4 on phase space such that

δMt
4 =

1
8π

κtδa4+ΦtδQ4+ΩtδJ, (73)

and is thus equivalent to the requirement of the validity of the first law. The varia-
tions in this version of the first law refer to arbitrary variations in the phase space
of spacetimes admitting isolated horizons and are not restricted to those between
two globally stationary states. It is also worth noting that the parameters appearing
in the first law, such as the mass, angular momentum and charge, are intrinsically
defined on the horizon and arise due to the boundary of the Hamiltonian formed
by the isolated horizon.

A related version of the first law was given by Booth and Fairhurst for slowly
evolving horizons [24; 25] where the horizon area is allowed to increase, but only
slowly.

8.5 Area balance law for trapping horizons

To construct a more physical process version of the first law one can consider
how the area of a trapping horizon responds to local energy flux across it. Both
Ashtekar and Krishnan [10] and Hayward [63] have given area balance laws that
show how the area of the black hole responds to the mass-energy that is flowing
across it. The Ashtekar–Krishnan version [10; 11] holds for a spacelike trapping
horizon, called a dynamical horizon, for which the area is necessarily increasing.
The Hayward version holds for both the spacelike and null cases. In a similar
vein to how the usual first law of thermodynamics can be viewed as displaying
conservation of energy and the transforming of energy from one form (heat, work
or internal energy) into another form, the area balance laws can be seen to derive
from the Einstein equations dictating how a geometrical structure, the horizon,
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is influenced by the local flow of mass–energy. This mirrors the interpretation
of Einstein’s equations as describing how local geometry is influenced by local
energy–momentum.

The area balance law given by Ashtekar and Krishnan is

r2

2
− r1

2
=
∫
H

NrTabτ
blbd3V +

1
16π

∫
H

Nr

(
σ̂abσ̂

ab +2ζ
a
ζb

)
d3V, (74)

where r1 and r2 are the areal radii of different foliations of the dynamical horizon,
Nr is a suitably chosen lapse function and ζ a = q̂abrc∇clb. This law has a simple
interpretation as

1
8π

(
A2

r2
− A1

r1

)
= Fm +Fg, (75)

that is the change in area caused by the matter flux Fm and the flux of grav-
itational radiation Fg . The flux of gravitational radiation is independent of the
energy momentum tensor Tab and is well defined even in the strong field limit
where gravitational radiation can no longer be viewed as just linearised perturba-
tions around flat space.

This area balance law was subsequently extended by Hayward [63; 64] to
include the case of null trapping horizons, in terms of the change of the Hawk-
ing energy

E2−E1 =
∫
H

Tabχ
a
τ

bd2Adx+
∫
H

θabχ
a
τ

bd2Adx, (76)

with a similar interpretation to the Ashtekar–Krishnan result where θab is the
effective gravitational radiation energy tensor. The vector χa is defined by χa∇ar =
0 and is in general timelike off the horizon but null on the horizon.

A similar procedure can be followed for timelike trapping horizons. However,
the flux terms have indefinite signatures for a timelike trapping horizon and the
latter term does not have a simple interpretation as a flux of gravitational radiation
in this case [23].

8.6 Thermodynamics for spherically symmetric trapping horizons

In spherical symmetry it is actually surprisingly easy to see how the thermodynamic-
like behaviour of trapping horizons arises [88]. Dynamical laws analogous to the
usual laws of thermodynamics can easily be derived for the above spherically
symmetric trapping horizons. As we saw above, the surface defined by

r = 2m(τ,r), (77)

defines a trapping horizon in many cases. Differentiating this equation with respect
to any parameter ξ that labels spherically symmetric foliations of the horizon,
gives

dr
dξ

= 2
∂m
∂τ

dτ

dξ
+2

∂m
∂ r

dr
dξ

. (78)
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If we take ξ = τ and rearrange using the formula for the area A = 4πr2 this
becomes

∂m
∂τ

=
1

8π

(1−2m′)
2r

dA
dτ

, (79)

where m′ = ∂m
∂ r . In order for this to take the same form as the first law of black

hole thermodynamics dm = 1
8π

κ dA it seems natural to take

κ =
(1−2m′)

2rH
, (80)

as a definition of surface gravity, defined by the first law and normalised by the
choice of quasi-local mass, in this case the Misner–Sharp mass [90]. In the static
case this formula will give the usual Killing horizon value of the surface gravity
for the Reissner–Nordström black hole. Since the partial derivative of the Misner–
Sharp mass function, m′ is taken in the direction of constant τ , the form of this
surface gravity will depend on the choice of τ . While this dependence on the time
slicing may look strange, we will see below that it is replicated in the temperature
derived from the tunneling approach to Hawking radiation.

In order to obtain a version of the second law we can just compute Gablalb,
where Gab is the Einstein tensor of the metric (7). This gives

Gablalb =
2eΦ

r2
∂m
∂τ

√
2m
r
− 2

r
∂Φ

∂ r

(
1−
√

2m
r

)2

. (81)

Rearranging gives

∂m
∂τ

=
1
2

e−Φ r2
√

r
2m

Gablalb

+ e−Φ
Φ
′r
√

r
2m

(
1−
√

2m
r

)2

. (82)

At r = 2m we can impose (79) and so we find

dA
dτ

=
8πr3e−Φ

1−2m′
Gablalb. (83)

Once again, for an outermost horizon we require 1− 2m′ > 0. Thus we see that
the area of the horizon A is increasing if Gablalb > 0. By the Einstein equations
we can write this condition as Tablalb > 0, which is exactly as we expect. The area
of the horizon is increasing if the null energy condition is satisfied, the area of the
horizon is constant if the null energy condition is saturated and can decrease only
if the null energy condition is violated.

The Einstein equations are used at two points in this derivation. In the last step
to relate the Einstein tensor to the energy–momentum tensor and in interpreting
the metric function m(r,τ) as the quasi-local Misner–Sharp mass. The condition
1−2m′ > 0 for the outermost horizon is also related to a weak condition about the
asymptotic behaviour of the mass function. Since the derivations are only based
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on the behaviour of what is essentially a ‘metric ansatz’, these results will apply
to an arbitrary matter theory in spherical symmetry.

The above laws of black hole mechanics are of course coordinate dependent in
that they depend on the time parameter τ (and the radial coordinate r). However,
there is nothing particularly special about this choice of time parameter. Any good
parameter on the horizon will give similar laws of mechanics. What is essential is
that these laws hold at r = 2m, which as we have seen above, defines a trapping
horizon and in general, does not define the event horizon. Using slightly different
definitions, perturbative deviations from spherical symmetry were considered in
[73].

9 Hawking radiation for trapping horizons

If trapping horizons can give rise to thermodynamic laws just like event horizons,
which horizon should be associated with ‘true’ thermodynamic behaviour? Di Cri-
scienzo et al. have investigated the production of Hawking radiation by trapping
horizons [45]. Similar results have been obtained earlier by Visser in [110] who
was able to conclude that an event horizon is not necessary for the production of
Hawking radiation. We will give a brief recap of the argument. Effectively the
argument just boils down to employing the geometrical optics approximation on
solutions of the Klein–Gordon equation on the curved background spacetime.

Consider the equation for a massless scalar field on a curved background, and
in particular the spherically symmetric s-wave solutions

h̄2
√
−g

∂a

(
gab√−g∂b

)
φ(τ,r) = 0. (84)

We look for solutions of the form φ(τ,r) = exp(iS(τ,r)/h̄) and we ignore the
amplitude which we assume to be slowly varying with respect to the phase. Tak-
ing the limit as h̄ → 0, to lowest order this equation gives the Hamilton–Jacobi
equation

gab
∂aS∂bS = 0. (85)

With the four-momentum of the particle defined as pa = ∇aS this is just the same
as the massless field condition pa pa = 0. Invoking the geometrical optics approx-
imation, which will be valid when the wavelength is small with respect to the
curvature and is changing slowly on a scale with respect to the frequency,

S(τ,r) = ωτ−
∫

k(r)dr, (86)

Equation (85) gives

ω
2 +2e−Φ

√
2m
r

ωk− e−2Φ

(
1− 2m

r

)
k2 = 0. (87)

Solving quadratically for k gives

k =± ωeΦ

1∓
√

2m
r

. (88)
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The upper sign denotes the outgoing modes and the lower sign denotes the ingoing
modes. The outgoing modes contain a simple pole at r = 2m, the location of the
trapping horizon. We can examine the contribution to the phase S of the outgoing
modes by expanding around the horizon.

S = ωt +
2rHωeΦH

(1−2m′H)

∫ dr
(r− rH)

. (89)

This integral can be performed by deforming the contour into the lower half of the
complex plane, which gives a complex contribution to S

ImS =
4πrHωeΦH

(1−2m′H)
. (90)

It is well known14 that this calculation gives rise to a tunneling probability of

Γ ∼ φφ
∗ = e−2ImS/h̄. (91)

For a thermal spectrum we expect a tunneling rate proportional to a Boltzmann
factor Γ ∼ e−ω/T . At this level of approximation this corresponds to thermal radi-
ation with a temperature

T =
h̄

2π

e−ΦH

2rH

(
1−2m′H

)
, (92)

which agrees with the calculations in [90].
This seems to suggest that it is exactly the pole at r = 2m that is responsible

for the tunneling flux through the horizon. This is of course a trapping horizon (at
least a marginally trapped surface) and not the event horizon. A similar conclusion,
that it is not the event horizon that is responsible for Hawking radiation, has been
reached in [31; 36].

A different argument for the local nature of Hawking radiation, independent of
the asymptotic structure and independent of the exact form of the metric, was pre-
sented in [92]. This was based on the Bogolubov transformations between freely
falling observers and constant r observers. Once again, the r = 2m structure played
the key role in a spherically symmetric situation, corresponding to a marginally
trapped surface. Since only a local patch of the metric is required for this con-
struction, there is no guarantee that this is also the location of the event horizon.

These arguments are of course far from being incontrovertible proof that such a
horizon is necessary or sufficient for Hawking radiation. But it is a least suggestive
that it may have some role to play and further research may clarify the picture.
Indeed, it is not yet clear what exactly is the minimal structure required for this
Hawking radiation through tunneling to be operative. It would seem that all that
is required in spherical symmetry is the r = 2m pole, which strictly speaking is
only a marginally trapped surface. Extra conditions are required for it to be a
full trapping horizon. Wu and Gao have demonstrated the same effect for weakly
interacting horizons [118]. Barcelo et al. have argued that even a trapped region
may not be necessary [16].

14 A subtlety arises here as to whether this expression is canonically covariant or not. In [1; 34]
it is argued that it is more correct to write Γ = exp(−Im

∮
prdr/h̄).
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One of the great successes for the thermodynamics of event horizons is the
equivalence of the classically defined surface gravity with the semi-classically
derived Hawking temperature (with appropriate factors of 2π and dimensional
constants). It is arguably this equivalence that was instrumental in clinching the
picture of black hole thermodynamics. The various possible definitions for the
surface gravity of a locally defined horizon have been investigated in [90]. There
it was shown that not all the definitions agree and some do not agree with the tem-
perature derived above, even in the static limit. If it is true that Hawking radiation
is related to a local horizon while true gravitational entropy should be associated
to the event horizon then we are faced with somewhat of a puzzle; two different
structures for what is supposedly related behaviour that need not be anywhere near
one another! In fact, one can conceive of spacetimes with one structure and not
the other. What this has to tell us about the relationship between the dynamical
evolution of a black hole and its Hawking radiation has yet to be fully clarified.

10 Fluid flow analogies

An important feature of event horizons, that plays a particular role especially in
the electrodynamics of black holes is the membrane paradigm of Thorne et al.
[95; 105]. In this picture the event horizon, or more properly the stretched horizon
which lies just outside the event horizon, has many of the physical properties of a
physical body such as electrical resistance and bulk viscosity. This picture is also
closely related to the brick wall model of t’Hooft and has been used to motivate
the black hole complementarity proposal. As such the membrane paradigm may
have a role to play in explaining the physical origin of Hawking radiation and
resolving the information loss paradox.

One can ask whether trapping horizons have properties that would allow the
membrane paradigm to be applied to them rather than event horizons? The mem-
brane paradigm was partly based on the work of Damour [41], who obtained a
Navier–Stokes equation for the effective fluid of the horizon. The Navier–Stokes-
like properties of apparent horizons were discussed early on in [37]. Although
Damour’s work relied heavily on the null signature of the event horizon, Gourgoul-
hon [52] introduced a Navier–Stokes evolution equation for spacelike dynamical
horizons. In this way one can interpret the area balance law as an internal energy
balance equation. Interestingly, the bulk viscosity turns out to be positive for a
dynamical horizon, while it is negative for an event horizon [54]. In this way, the
dynamical horizon behaves more like an ordinary fluid.

Damour also proposed a differential equation for the area increase, derived
from the Einstein equations. For event horizons, we have

d2A
dλ 2 − κ̄

dA
dλ

=−
∫ (

Rablalb + σ̂(l)abσ̂
ab
(l)−

θ 2
l
2

+(κ̄−κ)θl

)
dA. (93)

κ is the pointwise surface gravity while κ̄ is the average surface gravity for the
surface and l is the suitably normalised null generator of the horizon. The right
hand side contains local source terms for matter fluxes, etc. This cannot be solved
as an initial value problem as one is required to impose dA/dt = 0 at infinity to
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avoid diverging solutions. For a trapping horizon instead we have [54]

d2A
dλ 2 + κ̄

′ dA
dλ

=
∫ (

Rabτ
arb + σ̂(τ)abσ̂

ab
r − θ 2

r

2
+(κ̄ ′−κ

′)θr

)
dA, (94)

with the opposite sign (in both cases κ is positive). Thus it can be solved as an
initial value problem. This reflects the local nature of the trapping horizon. This
equation is defined using the tangents τa and normal ra to the horizon instead of
null generators. In the null case they coincide with the horizon generator la above,
in which case both equations are trivial, since the area is unchanging.

It is worth mentioning that another area where trapping horizons play an impor-
tant role is in analogue models of black holes [15]. Here one wishes to recreate an
‘analogue’ black hole in the laboratory typically using a fluid flowing with respect
to a fixed frame and sound waves traveling through the fluid. In this case, when
the fluid flows faster than the speed of sound in the medium an effective horizon is
produced. In the gravitational analogy, these horizons correspond to trapping hori-
zons. It is even hoped that one may be able to observe analogue Hawking radiation
in such a system from the quantised phonon vibrations of the underlying fluid.

11 Uniqueness

An important question in the context of locally defined horizons is their unique-
ness. Given any spacetime there are typically many ways to slice it into space-
like hypersurfaces suitable for Cauchy evolution. There are often many different
marginally trapped tubes. For some of these marginally trapped tubes it may be
possible to give them the structure of a trapping horizon. Which one should we
take as the surface of the black hole, defining its outer boundary?

Wald and Iyer [114] have shown that there are foliations of the Schwarzschild
spacetime for which no outer trapped surfaces exist. However, these foliations do
contain marginal surfaces [99] and the foliation of Wald and Iyer cuts through
the white hole region of the eternally static Schwarzschild solution. Even though
there are foliations of the Schwarzschild solution on which outer trapped surfaces
do not exist, it is known that there exists at least one trapping horizon, the null
trapping horizon that coincides with the event horizon. The question is, given a
spacetime that admits one trapping horizon, is it possible to find other nearby
trapping horizons that one could plausibly associate with the same black hole? A
conjecture was proposed in this direction by Eardley [47]. Eardley showed that
for a smooth marginally trapped surface for which either Tablalb or the shear was
non-zero, one could find a marginally trapped surface slightly outside the first
such that every point on the original surface was perturbed outwards in a spacelike
direction. Eardley then conjectured that the outer boundary for this process would
be the event horizon. The event horizon returned to play a role even for locally
defined horizons. Support for Eardley’s conjecture was given numerically in [99]
and analytically in [20]. Once again though, we remind the reader that Eardley’s
conjecture depends on the global validity of the null energy condition.

Hayward had earlier conjectured that a suitably regular boundary of an inex-
tendible trapped region would be a trapping horizon [62]. In dynamical cases,
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where the event horizon area is increasing, it is still a null hypersurface but it can-
not be a null trapping horizon, since its null normal has non-zero expansion. The
question of what ultimately forms the boundary of the inextendible trapped region
is still an area of ongoing research.

What about the uniqueness of trapping horizons themselves? Ashtekar and
Galloway [9] showed that the foliation of a dynamical horizon is unique. They
also showed that one cannot foliate a region of spacetime with dynamical horizons
and that for a given dynamical horizon there is no dynamical horizon entirely in
its past.

Andersson, Mars and Simon [2; 3] showed that for a spacelike foliation of
spacetime, if an initial slice contains a strictly stable marginally outer trapped sur-
face then that surface will be part of a marginally trapped tube that can be foliated
by marginally outer trapped surfaces. The strictly stable condition is related to
the condition Lnθl < 0, although not identical to it. It contains the idea that the
expansion of l will be positive for some variation normal to the surface but tangent
to the spacelike hypersurface.

Bartnik and Isenberg [18] derived the necessary conditions for an initial Cauchy
surface to be a spherically symmetric dynamical horizon. They also derived nec-
essary and sufficient conditions for a spherically symmetric spacetime satisfying
the null energy condition to contain a dynamical horizon. Williams [117] showed
what conditions the stress-energy tensor Tab must satisfy in spherical symmetry,
assuming the dominant energy condition, to guarantee that the spacetime contains
a marginally trapped tube and that this marginally trapped tube will asymptote to
the event horizon.

In [101] Senovilla showed that no trapped surfaces exist in regions where all
the curvature invariants vanish. This means that no trapping horizons can exist
in this region either, but it is possible for dynamical horizons to be found there.
If fact, examples are given of dynamical horizons that do not contain a trapped
region. In [84] it was shown that no closed trapped surfaces can exist in regions
where there is an everywhere timelike Killing vector field. However, it is possi-
ble to find non-closed trapped surfaces even in flat spacetime, demonstrating the
importance of the assumption that the spacelike two-surfaces should be closed.
For a generalisation of these results see [33]. Wang [115] showed that in a space-
time with two commuting spacelike Killing vectors, the orbits of the symmetries
cannot form part of an apparent horizon if the dominant energy condition holds.

Booth et al. [23] studied marginally trapped tubes in spherically symmetric
spacetimes with various matter fields, all satisfying the weak energy condition.
They found that generically marginally trapped tubes are either associated with
singularities or are pair produced as timelike-membrane dynamical horizon pairs.

Dafermos [40] has shown that trapped surfaces lead to event horizons when
the dominant energy condition is satisfied in spherical symmetry for a range of
matter fields. Jaramillo et al. [71] provide boundary conditions for the existence
of dynamical trapping horizons in excision techniques. A complete classification
of symmetric, non-expanding horizons was provided in [80].

Locally defined horizons have also been investigated in a wide variety of
physics-inspired situations: with extremal horizons [26], in Einstein–Gauss–Bonnet
theory [82; 91], in higher dimensional anti-de-Sitter spaces [13], in braneworlds
[28; 29; 30], in supersymmetry [27; 83], with phantom energy [49], in Friedmann–
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Robertson–Walker universes with dark energy domination [81], in closed uni-
verses without event horizons [106], in higher dimensions generally [75; 79] and
in the higher dimensional Vaidya solution [97].

There are thus many results available on the existence of marginally trapped
surfaces and trapping horizons in a variety of spacetimes. However, many ques-
tions still remain. It is still not known how to specify the outer boundary of
the region admitting trapped surfaces and what structure this boundary has. It
is widely believed that Eardley’s conjecture [47] is true in spacetimes that sat-
isfy the null energy condition and support for this belief has been given in certain
cases [20; 99]. But what about in the case when the null energy condition is vio-
lated? It seems likely that most dynamical black hole spacetimes will admit sev-
eral marginally trapped tubes or trapping horizons. But how can these be related to
physical properties of the black hole such as its area-entropy and particle produc-
tion? The idea of a local horizon is clearly useful for understanding black holes,
but much further work needs to be done to establish precisely what properties are
relevant to what physical aspects.

12 Conclusion

The definition of a black hole as the region encompassed by an event horizon has
been with us for a long time now. This idea has been very successful and has led to
many advances in understanding both classical general relativity and the quantum
properties of black holes. Perhaps the crowning achievement of the event horizon
paradigm is the laws of black hole mechanics, first hinted at by the area-increase
theorem for event horizons in 1972.

In classical physics the concepts of thermodynamics are essentially local in
nature. The entropy can be localised to a given region of space at a given instant
of time and thermal radiation can cause transitions in a local particle detector. For
black holes it is reasonable to expect that gravitational entropy and the generation
of Hawking radiation are related to properties of the local gravitational field.

In this respect, the definition of a black hole in terms of an event horizon
presents a number of problems. Firstly, the definition is non-local. The event hori-
zon cannot be located without knowledge of the full future development of the
spacetime. The future development of the spacetime may not be discernible from
data that is locally available. This is perhaps most clearly demonstrated in the case
of the so-called Schrödinger black hole [102]. The question of whether true event
horizons exist in our universe or not is almost impossible to determine experimen-
tally. This indetectability is inherent in their teleological definition.

Secondly, the definition of an event horizon is divorced from the local gravita-
tional field. Event horizons can exist in locally flat space. Thirdly, the behaviour
of the event horizon is not necessarily related to local matter fluxes crossing it.
These considerations have raised the question of whether the physical aspects of
black holes can be associated with a structure defined in a more local way.

In addition, the proofs of the various laws of black hole mechanics require
certain assumptions about what is meant by the various terms. Parameters such as
the surface gravity and mass need to be defined and their variations can either be
physical in a given spacetime or between different spacetime solutions in phase
space. Historically one has relied on concepts such as the surface gravity of a
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Killing horizon in a stationary state, normalised at infinity and the ADM mass in
an asymptotically flat region to measure these quantities. The investigation of local
horizons has also allowed some of these properties to be more locally defined.

In this review, we have seen that the zeroth, first and second laws of black hole
mechanics can be reproduced for locally defined horizons. We have also seen that
locally defined horizons make it much easier to extract information about how
local changes in energy-momentum impact the behaviour of the horizon. We have
seen how local laws of black holes thermodynamics can be much more closely
related to quasi-local definitions of the black hole mass and surface gravity. Local
horizons may well offer some insights into black hole behaviour. However, further
work is required to establish them as truly viable definitions for black holes. In
fact, we are presented with a number of dilemmas.

An area increase law can be shown to hold for all trapping horizons [62]. How-
ever, in situations where there may be multiple trapping horizons associated with
the same black hole, it is not clear whether we can use this to associate a mean-
ingful entropy to the area of each trapping horizon [9]. Furthermore, it is not clear
how to extend this to a generalised second law since a spacelike trapping horizon
may intersect a given spatial hypersurface of the spacetime multiple times [39] and
the foliation of the horizon inherited from the full foliation may not be the same
as the foliation of the horizon into marginally trapped surfaces that guarantees the
area increase law [23].

Entropy, in terms of a locally defined Noether current, can be shown to hold
for spherically symmetric trapping horizons if the time-translational Killing vec-
tor is replaced by the Kodama vector [66]. However, the relation of this entropy to
permanently irretrievable information is unclear since trapping horizons can exist
without event horizons in spacetimes with trivial causal structure [65]. Many of
the arguments in favour of assigning gravitational entropy to black holes seem
to apply best to event horizons, since unless physics becomes non-local, what is
dropped over an event horizon really is lost forever from the exterior. If physics
becomes non-local, it is unlikely that the event horizon can remain as a truly mean-
ingful concept in its present form, tied up as it is so fundamentally with the notion
of causality.

The third law of black hole mechanics remains somewhat enigmatic. No proof
of the third law has ever been given for locally defined horizons. In fact the model
presented in [65] seems to provide an explicit example of where it might be vio-
lated. Here the final evaporation of the black hole occurs when an inner horizon
meets an outer horizon. In this case the surface gravity goes instantaneously to
zero at the moment of final evaporation. This of course relies on a choice of defi-
nition for the surface gravity of a trapping horizon [90] which has yet to be con-
clusively resolved.

Hawking radiation seems to be associated with the locally defined horizon and
not the event horizon, at least as far as the quantum tunneling [110] and local
Bogoliubov transformation [92] arguments are concerned. In this case it seems
that no more than a marginally trapped surface is required and perhaps one can
do with even less [16]. Hawking radiation is at best only loosely related to the
existence of event horizons. This is not surprising since the production of Hawk-
ing radiation should be seen as purely kinematical effect associated with a general
Lorentzian geometry [109].
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There are several different local horizon definitions that are currently being
investigated in the research literature. Each definition has its own strengths and
various results apply exclusively to one or a few of these. Currently there is no
clear congregation around a single definition that can unambiguously define the
surface of a black hole.

We have argued here for the adoption of trapping horizons as the best option
currently available. There are several reasons for this. Firstly, the trapping hori-
zon is required to bound a trapped region. This is, for example, not necessarily
true for dynamical horizons as shown by Senovilla [101]. Secondly, trapping hori-
zons make no assumption about the signature of the horizon. This means that
the horizon can in principle be timelike, like a timelike-membrane. Ashtekar and
Galloway [9] have expressed the opinion that timelike-membranes should not be
associated with the surfaces of black holes, as they can be crossed by causal sig-
nals from the inside to the outside. However, if one is to accept only spacelike and
null marginally trapped tubes as definitions of black holes surfaces, one is faced
with what to do when the black hole stops accreting matter and starts to evapo-
rate via Hawking radiation. In this case the area of the horizon should shrink and
the horizon itself becomes timelike. But it would be hard to say that the black
hole had instantaneously disappeared. Trapping horizons at least provide a unified
framework for discussing transitions from growing black holes to shrinking black
holes.

Thirdly the area of a trapping horizon can only decrease if the null energy
condition is violated. This reflects the behaviour of event horizons and allows an
area increase law to be most easily applied to trapping horizons. Again, this is not
necessarily true for marginally trapped tubes, that can be timelike and shrinking
even with normal matter fields [23].

In regular predictable spacetimes that satisfy the null energy condition every-
where, any outer trapped surface must lie within an event horizon [59]. This would
seem to suggest that if a trapping horizon exists then an event horizon should exist
too. However, this relies on the assumption of the null energy condition. This con-
dition is likely violated if Hawking radiation can occur and must be violated if the
area of the black hole is to decrease.

In general relativity we have the celebrated singularity theorems that imply
that trapped surfaces (which are closely related to trapping horizons) lead to sin-
gularities. By the cosmic censorship hypothesis, one can then argue that such sin-
gularities should be covered by event horizons. This seems to imply that trapping
horizons will always be associated with event horizons. The singularity theorems
rely on an energy condition. It is not well studied whether Hawking radiation alone
can provide enough violation of the energy conditions to circumvent the singular-
ity theorems [98]. However, these theorems also depend on the hypothesis that
our universe can always be described by a smooth manifold and that the Einstein
equations relate the energy-momentum tensor to the curvature, an assumption that
may be violated in the vicinity of the centre of a black hole [7].

It would seem that a spacetime admitting local horizons but no event horizons
would have no problem fitting the currently available astrophysical data. In fact,
it is unlikely that any future data set will unambiguously demonstrate the need
for event horizons. The difference between a spacetime that admits an event hori-
zon and one that only contains local horizons need not be apparent from anything
externally measurable. It is most likely to depend on the spacetime structure clos-
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est to the singularity [56] where one might reasonably expect quantum gravity to
play a role [7; 65]. A spacetime without event horizons circumvents some of the
issues of the black hole information paradox [89].

There remains much to be discovered about black holes in four dimensions,
even in semi-classical theories with ordinary matter fields. We do not yet have
an adequate black hole definition that gives us all we want in all situations as
regards black hole properties. Global event horizons are not easily related to gen-
uine astrophysics but local horizons are not satisfactorily related to entropy and
trapping properties, despite having good versions of the area increase law and of
Hawking radiation, and they are not unique in all situations. It is even possible that
such a unique black hole definition does not exist and that some of their properties
are not as closely related as previously thought. There is certainly a lot of further
work that needs to be done, but with a new local perspective perhaps some of the
outstanding questions that have been raised in the field of black hole physics will
be answered.
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