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Abstract

We derive the Hawking radiation power equations for black holes in asymptotically flat, asymptotically 
Anti-de Sitter (AdS) and asymptotically de Sitter (dS) black holes. This is done by using the greybody 
factor for these black holes. We observe that the radiation power equation for asymptotically flat black 
holes, corresponding to greybody factor at low frequency, depends on both the Hawking temperature and 
the horizon radius. However, for the greybody factors at asymptotic frequency, it only depends on the 
Hawking temperature. We also obtain the power equation for asymptotically AdS black holes both below 
and above the critical frequency. The radiation power equation for at asymptotic frequency is same for both 
Schwarzschild AdS and Reissner–Nordström AdS solutions and only depends on the Hawking temperature. 
We also discuss the power equation for asymptotically dS black holes at low frequency, for both even or 
odd dimensions.
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1. Introduction

The evaporation of a black hole can be understood in terms of the black body factor and 
the greybody factor. The black body factor is calculated from the probability of a particle being 
created in the vicinity of a horizon, and the greybody factor is calculated from the probability 
that this particle penetrates the potential barrier and escapes to infinity. The analysis of the black 
hole greybody factors shows that Hawking emission from a highly rotating black hole is strongly 
spin dependent, with particles of highest spin (gravitons) dominating the energy spectrum [1]. 
Gravitational greybody factors are analytically computed for static, spherically symmetric black 
holes, including black holes with charge and in the presence of a cosmological constant [2]. 
In this context, the greybody factors for both asymptotically dS and AdS spacetimes can be 
obtained. There are many distinct models with exact black hole solutions in literature, which 
in turn implies the need for concrete calculations of the corresponding greybody factors (some 
recent developments can be found in [3–14]).

These greybody factors were studied long ago in [15,16]. It is very simple to understand the 
basic set-up of the calculations. It might be of some difficulty to extract exact results by such 
set-up. Black holes scattering is described via linearized wave equations, which governs the 
particle perturbation in the black hole geometry [17]. The equation describing particle pertur-
bations in black hole geometries, in this spherically symmetric context, can always be written 
as a one-dimensional Schrödinger-like equation. The quantum Hawking evaporation of near-
extremal Reissner–Nordström black holes is studied recently, where the effective curvature 
potential causes distortion in the familiar radiation spectrum of genuine (3 + 1)-dimensional 
perfect black-body emitters [18]. The Hawking radiations of black holes in asymptotically flat, 
AdS and dS spacetimes though greybody factors are subject of interesting investigations. With 
the help of radiation power expression, one can compute total energy emitted as Hawking radi-
ation by multiplying the power with black hole evaporation time scale and this must be equal to 
the total mass of the black hole by virtue of energy conservation. This may provide an insight to 
the process of black hole evaporation.

It may be noted that we use a formalism that depends on the frequency, and it can be consis-
tently applied as the greybody factors are functions of all frequencies [2]. So, we use a form of 
the greybody factor which is defined for all the frequencies. Here we note that the low energy 
expression for the greybody factor for scalar fields in the background of a higher-dimensional 
Schwarzschild black hole have been obtained derived in [19]. The low-energy greybody factor 
for a higher-dimensional dS black hole have also been studied [20]. The emission of Hawking 
radiation of higher-dimensional black holes in the bulk (greybody factors and radiation spectra) 
are studied in details for the emission of scalar modes, and the ratio of the missing energy over 
the visible one is calculated for different values of the number of extra dimensions [21]. The pro-
cess we consider here is the absorption of a scalar wave by a black hole. Since the scalar wave 
propagates from infinity throughout spacetime, is partly reflected by the potential barrier of the 
black hole, and close to horizon the transmitted wave seems as the incoming radiation into the 
black hole. In fact, the greybody factor for low frequency scattering is identical to the absorption 
probability of the black hole as the scattering and absorption processes are reverse to each other 
and therefore we consider real frequencies at low energy. We shall mainly work with the results 
of [2] for our paper, where it is shown that the leading contribution to the greybody factor, in the 
low frequency limit, comes from the l = 0 mode.
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With this motivation, in this paper, we calculate the Hawking radiation power equation for 
black holes in d + 1-dimensional asymptotically flat, AdS and dS spacetimes with the help of 
following equation1 [22,23]

P d+1 = TH

2π

∞∫
0

dω
γ (ω)x

ex − 1
, (1)

where x ≡ ω
TH

, TH is the Hawking temperature and γ (ω) represents greybody factor (the prob-
ability for an outgoing wave, in the ω-mode, to reach infinity). First, we consider the greybody 
factor at the low frequency limit for black holes in asymptotically flat spacetime and compute the 
respective Hawking radiation power equation which depends on both, the Hawking temperature 
and horizon radius RH under different power law. Then, we derive the Hawking radiation power 
equation corresponding to the greybody factor at asymptotic frequency for Schwarzschild solu-
tion and find that it depends on the Hawking temperature only and does not depend on horizon 
radius. Interestingly, we observe that the radiation power equations corresponding to greybody 
factors at asymptotic frequency are same for all spacetime dimensions as it does not depend on 
the dimension d . In fact, it depends on Hawking temperature only with power law. Further, we 
compute the Hawking radiation power equation along greybody factor at the low frequency limit 
for asymptotically AdS black holes. We consider here both cases for which the frequencies are 
much lower and higher than the critical frequency (at which the black hole absorbs all of the radi-
ation which is sent towards it). The radiation power equations for asymptotically AdS black holes 
at asymptotic frequency are also derived for both the Schwarzschild and Reissner–Nordström so-
lutions which are found same and depend on the Hawking temperature only. Corresponding to 
greybody factor at the low frequency, we demonstrate the Hawking radiation power equations 
for asymptotically dS black holes for both even and odd spacetimes. Here, we find that the radi-
ation power equation in five-dimensional dS spacetimes depends on both the horizon radius and 
Hawking temperature. In case of even spacetime dimensions, we get simpler form of it, however 
it has an infinite sum series of Hurwitz Zeta function for the case of odd spacetime dimensions. 
It may be noted that as the greybody factors depend on all frequencies [2], our formalism can be 
applied for any given greybody factors. We have plotted diagrams also to understand the behav-
ior of the radiation power equation with respect to both the Hawking temperature and horizon 
radius.

This paper is organized as following. In section 2, we compute the radiation power equa-
tion for asymptotically flat spacetimes. Specifically, we derive radiation power equation for 
the black holes with the help of greybody factors at both the low frequency and asymptotic 
frequency for Schwarzschild solution. In section 3, we evaluate the Hawking radiation power 
equations for the asymptotically AdS black holes. Here, the radiation power equations corre-
sponding to greybody factors at both low and asymptotic frequencies for Schwarzschild solution 
and Reissner–Nordström solution are discussed. Further, in section 4, we derive the radiation 
power equation for greybody factors at low frequency only for asymptotically dS black holes in 
even and odd spacetimes. In the last section, we draw conclusion with final remarks.

1 We use the unit system in which G = h̄ = c = kB = 1.
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2. Asymptotically flat spacetimes

In this section, we analyse the radiation power equation for asymptotically flat black holes. 
First, we shall derive the radiation power equation for greybody factor at low frequency limit 
ω � TH , ωRH � 1 for Schwarzschild solution. Here, the low frequency limit precisely means 
that the wavelength of the scalar wave is much larger than any of the characteristic scales asso-
ciated with the black hole. Then, we discuss the radiation power equation for greybody factor at 
asymptotic frequency for the case of Schwarzschild solution.

2.1. Power equation for greybody factors at low frequency

In this subsection, we compute the radiation power equation for greybody factor at low fre-
quency. Since the greybody factor in the low frequency limit for asymptotically flat black holes 
is given by [2]

γ (ω) = 4πωd−2Rd−2
H

2d−2[�(d−1
2 )]2

,

where RH is the horizon radius. Here we clarify that to the above greybody factor is calculated by 
assuming that the scalar wave propagates from infinity throughout spacetime, is partly reflected 
by the potential barrier of the black hole, and near the horizon the transmitted radiation appears 
as purely incoming radiation into the black hole. We note that, as the scattering and absorption 
processes are reverse to each other, the greybody factor for low frequency scattering is identical 
to the absorption probability of a black hole.

For a convenience, we change dimension d → (d + 1)2 and, hence, the greybody factor for 
d + 1 dimensional black hole takes following form:

γ (ω) = 4πωd−1Rd−1
H

2d−1[�(d
2 )]2

. (2)

For greybody factor in the low frequency limit as given in (2), the Hawking radiation power 
equation for asymptotically flat black holes is given by

P
(d+1)
low = TH

2π

∞∫
0

dω
4πωd−1Rd−1

H

2d−1[�(d
2 )]2

ω

TH (e
ω

TH − 1)
,

where we have utilized relation (1). After further simplification, this reduces to the following 
expression:

P
(d+1)
low = Rd−1

H

2d−2[�(d
2 )]2

∞∫
0

dω
ωd

e
ω

TH − 1
. (3)

In order to solve above equation, we recall Riemann Zeta function, which is given by,

ζ(s) = 1

�(s)

∞∫
0

dy
ys−1

ey − 1
for Re(s) > 1. (4)

2 Throughout the paper d → (d + 1) represents that d is being replaced by (d + 1), where d stands for an arbitrary 
number of dimensions.
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Fig. 1. Left: Hawking radiation power versus Hawking temperature for d = 3 and RH = 1. Right: Hawking radiation 
power versus horizon radius for d = 3 and TH = 1.

To match this Zeta function with the desired integral, we replace y = ω
TH

in above equation to 
get,

ζ(s) = 1

T s
H �(s)

∞∫
0

dω
ωs−1

e
ω

TH − 1
for Re(s) > 1. (5)

Now, exploiting (3) and (5), the Hawking radiation power equation for asymptotically flat black 
holes is given by

P
(d+1)
low = C

(d+1)
low T d+1

H Rd−1
H , (6)

where explicit form of C(d+1)
low is C(d+1)

low = ζ(d+1)�(d+1)

2d−2[�( d
2 )]2 . Here we see that the Hawking radiation 

power equation depends on both the Hawking temperature and horizon radius with different 
power law. For example, for a black hole in four dimensional spacetime, the Hawking radiation 
power equation is proportional to T 4

H and R2
H . The behavior of Hawking radiation power with 

respect to Hawking temperature and horizon radius can been seen from Fig. 1.

2.2. Power equation for greybody factors at asymptotic frequency

In this subsection, we determine power equation for greybody factors at asymptotic frequency 
for Schwarzschild solution. In order to determine the radiation power equation, we first write the 
Schwarzschild greybody factor at asymptotic frequency by [2],

γ (ω) = e
ω

TH − 1

e
ω

TH + 3
. (7)

The poles of above greybody factor precisely correspond to the asymptotic quasinormal frequen-
cies. Now, using binomial theorem, we can write the greybody factor at asymptotic frequency 
as

(
e

ω
TH − 1

)(
3 + e

ω
TH

)−1 =
∞∑ (−1)n+1

3n

(
e

nω
TH − e

(n−1)ω
TH

)
. (8)
n=1
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With the help of expression (1) and greybody factor (8), the radiation power equation corre-
sponding to the greybody factors at asymptotic frequency for Schwarzschild solution takes the 
following form:

P (d+1)
asym = 1

2π

∞∑
n=1

(−1)n+1

3n

⎛
⎝ ∞∫

0

dω
ωe

nω
TH

e
ω

TH − 1
−

∞∫
0

dω
ωe

(n−1)ω
TH

e
ω

TH − 1

⎞
⎠ . (9)

In order to simplify the above integral, we can use the Hurwitz (generalized Riemann) Zeta 
function3 as it has the following definition:

ζ(s, q) = 1

�(s)

∞∫
0

dy
ys−1ey(1−q)

ey − 1
for Re(s) > 1.

In order to match the form of above Hurwitz Zeta function integral with the radiation power equa-
tion (9), we make the following identification: y = ω

TH
. With such identification, the expression 

of Hurwitz Zeta function results to

ζ(s, q) = 1

T s
H �(s)

∞∫
0

dω
ωs−1e

ω
TH

(1−q)

e
ω

TH − 1
for Re(s) > 1. (10)

Comparing expressions (9) and (10), one can easily derive the radiation power equation corre-
sponding to greybody factors at asymptotic frequency for Schwarzschild solution as

P (d+1)
asym = 1

2π

∞∑
n=1

(−1)n+1

3n

[
�(2)ζ (2,1 − n)T 2

H − �(2)ζ (2,1 − (n − 1)) T 2
H

]

= C(d+1)
asym T 2

H , (11)

where, coefficient C
(d+1)
asym = 1

2π

∑∞
n=1

[
(−1)n+1

3n (ζ (2,1 − n) − ζ (2,2 − n))
]
. Here, we have 

used �(n) = (n − 1)! for �(2) = 1! = 1. Remarkably, we find that the radiation power equa-
tions corresponding to greybody factors at asymptotic frequency in any arbitrary dimensions are 
same as it does not depend on the dimension d . Also, we notice that the radiation power equation 
corresponding to greybody factors at asymptotic frequency depends on Hawking temperature 
only with power law T 2

H and does not depend on horizon radius. However, for greybody factor 
at low frequency, it depends on both the Hawking temperature and horizon radius.

3. Asymptotically AdS spacetimes

In this section, we derive the radiation power equation of black hole in asymptotically AdS 
spacetimes corresponding to the greybody factors at both the low frequency and asymptotic 
frequency.

3 Here we note that for this type of Zeta function there are two different forms exists 1) ζ(s, q) = ∑∞
a=0(a + q)−s for 

q > 0 and 2) ζ(s, q) = ∑∞ [(a + q)2]− s
2 for q < 0. We also note that both are identical for Re(q) > 0.
a=0



384 R. Mistry et al. / Nuclear Physics B 923 (2017) 378–393
3.1. Power equation for greybody factors at low frequency

The greybody factor for asymptotically AdS black holes, in the low frequency regime ω̂ � 1
is given by [2],

γ (ω̂) = 1 −
∣∣∣∣1 − z(ω̂)

1 + z(ω̂)

∣∣∣∣
2

, (12)

where ω̂ = ω
k

is a dimensionless variable for the frequency and quantity

z(ω̂) = π

2d−1[�(d
2 )]2

ωd−1

k2d−2Rd−1
H

. (13)

Now, we define π

2d−1[�( d
2 )]2k2d−2Rd−1

H

:= α, so that we can write z(ω̂) = αωd−1. Here note that 

we have used d → (d + 1) in original form (which can be derived back by using d → (d − 1)

in above expressions). For this greybody factor for asymptotically AdS black holes in the low 
frequency regime (12), the radiation power equation (1) takes the following form:

P
(d+1)
low = 1

2π

⎡
⎣ ∞∫

0

dω
ω

e
ω

TH − 1
−

∞∫
0

dω

(
1 − z

1 + z

)2
ω

e
ω

TH − 1

⎤
⎦ . (14)

Here we see that the first integral of above expression can be solved by using (5), as a result we 

get 
∫ ∞

0 dω ω

e
ω

TH −1
= ζ(2)�(2)T 2

H = π2T 2
H

6 . With this simplification, the expression for radiation 

power (14) reads,

P
(d+1)
low = π

12
T 2

H − 1

2π

∞∫
0

dω

(
1 − αωd−1

1 + αωd−1

)2
ω

e
ω

TH − 1
,

here we have utilized z = αωd−1. Now, taking αωd−1 = δ, the above expression can further be 
simplified as follows,

P
(d+1)
low = π

12
T 2

H − 1

2π

1

(d − 1)α
2

d−1

×
∞∫

0

dδ

(
1 − 4

1 + δ
+ 4

(1 + δ)2

)
δ

3−d
d−1

exp

[
1

TH

(
δ
α

) 1
d−1

]
− 1

.

Here, exploiting binomial expansion for (1 + δ)−1 and (1 + δ)−2, we find that (1 + δ)−1 −
(1 + δ)−2 = ∑∞

n=1(−1)n+1nδn. With this result, the above expression for the radiation power 
equation reduces to,

P
(d+1)
low = π

12
T 2

H − 1

2π

1

(d − 1)α
2

d−1

×
∞∫

0

dδ

(
1 − 4

∞∑
n=1

(−1)n+1nδn

)
δ

3−d
d−1

exp

[
1

TH

(
δ
α

) 1
d−1

]
− 1

. (15)
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In order to solve above integral, we plug y = 1
TH

(
δ
α

) 1
d−1 in the expression of Zeta function (4), 

and we have

ζ(s) = 1

T s
H �(s)

1

α
s

d−1 (d − 1)

∞∫
0

dδ
δ

s−d+1
d−1

exp

[
1

TH

(
δ
α

) 1
d−1

]
− 1

for Re(s) > 1. (16)

Finally, using (15) and (16), we get simplified expression for the radiation power equation corre-
sponding to greybody factor in low frequency limit as

P
(d+1)
low =

∞∑
n=1

C
(d+1)
low

T nd−n+2
H

k2n(d−1)R
n(d−1)
H

, (17)

where, C(d+1)
low = 2

π

[
(−1)n+1 nπn

2
n(d−1)

[
�

(
d
2

)]2n ζ(nd − n + 2)�(nd − n + 2)

]
. Here, the radiation 

power equation has an infinite sum series with terms depending on Hawking temperature and 
horizon radius differently. Also, we notice that, contrary to flat spacetime case, the radiation 
power equation depends on horizon radius with inverse power law.

Here, we note that there exists a critical frequency ω̂c for which there is no reflection of 
radiation for black hole i.e., the black hole absorbs all of the radiation which is sent towards it. 
Alternatively, in the reverse process, i.e., for emission of radiation from the black hole, all of the 
emitted radiation at critical frequency will reach the asymptotic region.

In this condition, z(ω̂c) = 1 and critical frequency ω̂c simplifies from (13) as [2]

ω̂c =
2
[
�

(
d−1

2

)] 2
d−2

π
1

d−2

kRH .

Here we note that only for small AdS black holes one can achieve the critical frequency. Now, 
there are two cases possible in calculation of power radiation equation for AdS black hole. Firstly, 
if we now consider frequencies much lower than the critical frequency (ω̂ << ω̂c) and secondly, 
if we now consider instead frequencies much higher than the critical frequency (ω̂ >> ω̂c).

3.1.1. Case I: when ω̂ << ω̂c

In this case, the greybody factor for ω̂ << ω̂c is given as follows,

γ (ω̂) = 4z(ω̂) = π

2d−2
[
�

(
d−1

2

)]2

ω̂d−2

(kRH )d−2
.

Here we notice that the greybody factor is inversely proportional to the area of the black hole, 
whereas it is proportional to ωd−2. Therefore, the frequencies much lower than the critical fre-
quency is identical to ω̂ << kRH . This means that large AdS black holes (with kRH >> 1) are 
always in a frequency regime much lower than the critical frequency. For convenience (without 
loss of generality), we rewrite the above expression of the greybody factor for d → (d + 1) as,

γ (ω̂) = π

2d−1
[
�

(
d
)]2

ωd−1

k2d−2Rd−1
. (18)
2 H
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Fig. 2. Left: Hawking radiation power versus Hawking temperature for d = 3 and k = RH = 1. Right: Hawking radiation 
power versus horizon radius for d = 3 and k = TH = 1.

For this greybody factor, the power radiation equation (1) is given by

P
(d+1)
low−I = 1

2d [� (
d
2

)]2

1

k2d−2Rd−1
H

∞∫
0

dω
ωd

e
ω

TH − 1
,

here, subscript low − I stands for low frequency in region I (i.e. ω̂ << ω̂c). In order to obtain 
explicit expression for the power radiation, we need to solve the integral, which can be done 
easily with the help of Zeta function (5). Hence, we get

P
(d+1)
low−I = C

(d+1)
low−I

T d+1
H

k2(d−1)Rd−1
H

, (19)

where the constant C(d+1)
low−I = ζ(d+1)�(d+1)

2d
[
�

(
d
2

)]2 . Here we observe that the radiation power correspond-

ing to greybody factor for frequencies much lower than the critical frequency depends on both 
the Hawking temperature with power law ∼ T d+1

H and horizon radius with power law ∼ Rd−1
H . 

In four-dimensional spacetimes, the radiation power equation reduces to P (d+1)
low−I = π3

30
T 4

H

k4R2
H

. The 

behavior of Hawking radiation power with respect to Hawking temperature and horizon radius 
can be seen in Fig. 2.

3.1.2. Case II: when ω̂ >> ω̂c

In this case of frequencies much higher than the critical frequency, the greybody factor for 
d → (d + 1) is given by,

γ
(
ω̂

) = 2d−1
[
�

(
d
2

)]2

π

Rd−1
H k2d−2

ωd−1
. (20)

Here, greybody factor is proportional to the area of the black hole, whereas it is instead inversely 
proportional to ωd−2. Here we note that this frequency regime is possible for small AdS black 
holes with kRH << 1 only. Now, we follow the same procedure as discussed in case I and get 
the following expression for radiation power equation:

P
(d+1) = C

(d+1)
T −d+3k2(d−1)Rd−1, (21)
low−II low−II H
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where constant C(d+1)
low−II = 2d−2

[
�

(
d
2

)]2

π2 ζ(−d + 3)�(−d + 3). Here subscript low − II stands 
for low frequency in region II (i.e. ω̂ >> ω̂c). Remarkably, we observe that the radiation power 
depends both on Hawking temperature with power law ∼ T −d+3 and horizon radius with power 
law ∼ Rd−1

H . This clearly means that for four-dimensional spacetimes the radiation power de-
pends only on horizon radius and does not depend on Hawking temperature. However, for space 
dimensions d �= 3, the radiation power depends on temperature with different nature. For d > 3, 
it depends on temperature with inverse power law and, for d < 3, it depends on temperature with 
direct power law.

3.2. Power equation for greybody factors at asymptotic frequency

Remarkably, the greybody factor at asymptotic frequency for the Schwarzschild solution and 
the Reissner–Nordström solution is same and given by [2],

γ (ω) = 1. (22)

For this greybody factor, the Hawking radiation power equation reads,

P (d+1)
asym = 1

2π

∞∫
0

dω
ω

e
ω

TH − 1
.

The above integration can be performed with the help of (5). Thus, we find the value of radiation 
power equation in simplified form as

P (d+1)
asym = Cd+1

asymT 2
H , (23)

where the coefficient C(d+1)
asym = ζ(2)�(2)

2π
= π

12 . Here we conclude that the radiation power equa-
tion corresponding to greybody factor at asymptotic frequency depends on Hawking temperature 
only.

4. Asymptotically de Sitter spacetimes

In this section we shall find the Hawking radiation power equation corresponding to the grey-
body factor, at low frequencies, for black holes in asymptotically dS spacetimes. The greybody 
factor (after considering d → (d + 1)) in this case is given by [2]

γ (ω) = 4h(ω̂)(kRH )(d+1)−2 = 4h(ω̂)(kRH )d−1, (24)

where function h(ω̂) for even (d + 1) ≥ (3 + 1) is expressed by

h(ω̂) =
(d+1)−2

2∏
n=1

(
1 + ω̂2

(2n − 1)2

)
=

d−1
2∏

n=1

(
1 + ω̂2

(2n − 1)2

)
, (25)

however, for odd (d + 1) ≥ (4 + 1) we have,

h(ω̂) = πω̂

2
coth

(
πω̂

2

) (d+1)−3
2∏ (

1 + ω̂2

(2n)2

)
= πω̂

2
coth

(
πω̂

2

) d−2
2∏ (

1 + ω̂2

(2n)2

)
. (26)
n=1 n=1
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Here we see that h(ω̂) → 1 and h(ω̂) → 0 as ω̂ → 0, for even and odd spacetime dimension 
respectively. Now, we shall calculate the power radiation equation for the given greybody factor 
by considering specific cases. For example, we shall study (a) (d + 1) = 4 and (b) (d + 1) = 6
for the even spacetimes, and (c) (d + 1) = 5 and (d) (d + 1) = 7 for the odd spacetimes.

4.1. Even Spacetimes case I: (d + 1) = 4

In this case, the function h(ω̂) (25) leads to

h(ω̂) = 1 + ω̂2 = 1 + ω2

k2
.

With this value of h(ω̂), the greybody factor, at low frequencies, for asymptotic dS black holes 
(24) reads,

γ (ω) = 4k2R2
H + 4ω2R2

H . (27)

Now, exploiting relation (1), we write the power radiation equation for four-dimensional dS black 
hole as follows:

P
(3+1)
low−even = 2

π
R2

H

⎡
⎣k2

∞∫
0

dω
ω

e
ω

TH − 1
+

∞∫
0

dω
ω3

e
ω

TH − 1

⎤
⎦ . (28)

The integrals of above expression can be solved very easily with the help of Riemann Zeta 
function (5). After simplification the expression (28) reduces to

P
(3+1)
low−even = 2

π
R2

H

(
1

6
π2k2T 2

H + 6

90
π4T 4

H

)
,

= 1

3
πk2R2

H T 2
H + 2

15
π3R2

H T 4
H . (29)

It is evident that the radiation power for four-dimensional asymptotically dS black hole corre-
sponding to greybody factor at low frequency depends on both the Hawking temperature and 
horizon radius. The behaviors of radiation power for four-dimensional asymptotically dS black 
hole corresponding to greybody factor at low frequency with respect to Hawking temperature 
and horizon radius can be seen in Fig. 3.

4.2. Even Spacetimes case II: (d + 1) = 6

In case (d + 1) = 6, the expression for h(ω̂) given in (25) has the following form:

h(ω̂) = 1 + 10ω2

9k2
+ ω4

9k4
.

With this value of h(ω̂), the greybody factor, at low frequencies, for asymptotically dS black 
holes (24) is given by

γ (ω) = 4k4R4
H + 40

ω2k2R2
H + 4

ω4R4
H . (30)
9 9
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Fig. 3. Left: Hawking radiation power versus Hawking temperature for d = 3 and k = RH = 1. Right: Hawking radiation 
power versus horizon radius for d = 3 and k = TH = 1.

Fig. 4. Left: Hawking radiation power versus Hawking temperature for d = 5 and k = RH = 1. Right: Hawking radiation 
power versus horizon radius for d = 3 and k = TH = 1.

Once the expression for the greybody factor is known, it is matter of calculation to obtain the 
radiation power equation which utilizes relation (1). For the greybody factor (30), the expression 
for the radiation power equation is given by

P
(5+1)
low−even = 2

π
R4

H

⎡
⎣k4

∞∫
0

dω
ω

e
ω

TH − 1
+ 10

9
k2

∞∫
0

dω
ω3

e
ω

TH − 1
+ 1

9

∞∫
0

dω
ω5

e
ω

TH − 1

⎤
⎦ . (31)

In order to solve the integrals in above expression, we utilize the Zeta function (5). After doing 
so, the expression for the radiation power equation simplified to

P
(5+1)
low−even = 2

π
R4

H

[
k4ζ(2)�(2)T 2

H + 10k2

9
ζ(4)�(4)T 4

H + 1

9
ζ(6)�(6)T 6

H

]
,

= 1

3
πk4R4

H T 2
H + 4

27
π3k2R4

H T 4
H + 16

567
π5R4

H T 6
H . (32)

Here, we see that the expression for the radiation power equation depends on both the horizon 
radius and Hawking temperature. In particular, it depends on the sum of different powers of 
Hawking radiation. In order to see behavior of the radiation power equation with respect to 
horizon radius and Hawking temperature, we plot Fig. 4.
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4.3. Odd Spacetimes case I: (d + 1) = 5

The expression for h(ω̂) given in (26) for Odd Spacetimes (d + 1) = 5 takes following value:

h(ω̂) = πω

2k
coth

(πω

2k

)(
1 + ω2

4k2

)
. (33)

Now, in order to simplify above expression we utilize following definition: coth(x) = 1+e−2x

1−e−2x . 
With this definition, we have

coth
(πω

2k

)
=

(
1 + e−π ω

k

)(
1 − e−π ω

k

)−1
. (34)

With the help of binomial expansion, we can write 
(

1 − e−π ω
k

)−1 = ∑∞
m=1 e(1−m)π ω

k . As a 

result, the expression (34) reduces to coth
(

πω
2k

) = ∑∞
m=1

(
e−mπ ω

k + e(1−m)π ω
k

)
. By inserting 

this value of coth
(

πω
2k

)
into (33), the function h 

(
ω
k

)
takes the following expression:

h
(ω

k

)
= πω

2k

(
1 + ω2

4k2

) ∞∑
m=1

(
e−mπ ω

k + e(1−m)π ω
k

)
.

Plugging this value of h 
(

ω
k

)
in (24), the greybody factor for five-dimensional asymptotic dS 

black holes at low frequencies reduces to

γ (ω) = 2πω

k
(kRH )3

(
1 + ω2

4k2

) ∞∑
m=1

(
e−mπ ω

k + e(1−m)π ω
k

)
. (35)

Now, it is matter of calculation to evaluate the radiation power equation for a given greybody 
factor. So, utilizing relations (1) and (35), we write the radiation power equation for black hole 
in five-dimensional dS spacetimes as

P
(4+1)
low−odd = TH

2π

∞∫
0

dω

(
2πω2k2R3

H

)
TH

(
e

ω
TH − 1

) (
1 + ω2

4k2

) ∞∑
m=1

(
e−mπ ω

k + e(1−m)π ω
k

)
,

= R3
H

∞∑
m=1

⎡
⎣ ∞∫

0

dω
(
e−mπ ω

k + e(1−m)π ω
k

)(
k2ω2

e
ω

TH − 1
+ 1

4

ω4

e
ω

TH − 1

)⎤
⎦ . (36)

In order to simplify the integrals, we utilize the Hurwitz Zeta function (10) and by doing so, we 
get the following explicit expression for the radiation power equation:

P
(4+1)
low−odd = 2k2R3

H T 3
H

∞∑
m=1

[
ζ

(
3,1 + mπ

k
TH

)
+ ζ

(
3,1 − (1 − m)π

k
TH

)]

+ 6R3
H T 5

H

∞∑
m=1

[
ζ

(
5,1 + mπ

k
TH

)
+ ζ

(
5,1 − (1 − m)π

k
TH

)]
. (37)

Here, it is evident that although the radiation power equation in five-dimensional dS spacetimes 
depends on both the horizon radius and Hawking temperature but has an infinite sum series of 
Hurwitz Zeta function as well.

Next, we shall derive the radiation power equation for the (d + 1) = 7.
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4.4. Odd Spacetimes case II: (d + 1) = 7

The expression for function h(ω̂) (26) for Odd Spacetimes (d + 1) = 7 is given by:

h(ω̂) = πω

2k
coth

(πω

2k

)(
1 + 5ω2

16k2
+ ω4

64k4

)
. (38)

Now, plugging the value of coth
(

πω
2k

)
calculated in the above last subsection, the above function 

h(ω̂) reduces to the following form:

h
(ω

k

)
= πω

2k

(
1 + 5ω2

16k2
+ ω4

64k4

) ∞∑
m=1

(
e−mπ ω

k + e(1−m)π ω
k

)
. (39)

With this value of h 
(

ω
k

)
(39), the greybody factor for seven-dimensional asymptotically dS black 

holes at low frequencies (24) has following value:

γ (ω) = 2π
ω

k
(kRH )5

(
1 + 5ω2

16k2
+ ω4

64k4

) ∞∑
m=1

(
e−mπ ω

k + e(1−m)π ω
k

)
. (40)

Once the expression for greybody factor of black hole is known, the Hawking radiation power 
equation can easily be calculated from relation (1). For a given greybody factor (40) at low 
frequency in (d + 1) = 7 dimensions, the Hawking radiation power equation reads,

P
(6+1)
low−odd = 1

2π

∞∫
0

dω

(
2πω2k4R5

H

)
e

ω
TH − 1

(
1 + 5ω2

16k2
+ ω4

64k4

) ∞∑
m=1

(
e−mπ ω

k + e(1−m)π ω
k

)
,

= R5
H

∞∑
m=1

⎡
⎣ ∞∫

0

dω

(
e−mπ ω

k + e(1−m)π ω
k

)
e

ω
TH − 1

(
k4ω2 + 5

16
k2ω4 + 1

64
ω6

)⎤
⎦ . (41)

In order to simplify the above expression, we can use Hurwitz Zeta function (10). By doing so, 
we get following expression for the Hawking radiation power equation:

P
(6+1)
low−odd = 2k4R5

H T 3
H

∞∑
m=1

[
ζ

(
3,1 + mπ

k
TH

)
+ ζ

(
3,1 − (1 − m)π

k
TH

)]

+ 15k2

2
R5

H T 5
H

∞∑
m=1

[
ζ

(
5,1 + mπ

k
TH

)
+ ζ

(
5,1 − (1 − m)π

k
TH

)]

+ 45

4
R5

H T 7
H

∞∑
m=1

[
ζ

(
7,1 + mπ

k
TH

)
+ ζ

(
7,1 − (1 − m)π

k
TH

)]
. (42)

Here, we can see that the Hawking radiation power equation in (d + 1) = 7 dimensions also de-
pends on both the horizon radius and Hawking temperature but with different power law. Similar 
to the previous case, here also, Hawking radiation power has an infinite sum series of Hurwitz 
Zeta function.
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5. Conclusions

In this paper, we have evaluated the Hawking radiation power equations for given greybody 
factors in asymptotically flat, AdS and dS black holes in (d +1) dimensions. First of all, we have 
derived the Hawking radiation power equation for asymptotically flat Schwarzschild solution of 
black hole corresponding to the greybody factor at low frequency. We have solved the Hawking 
radiation power equation with the help of Zeta function and found that it depends on both the 
Hawking temperature and horizon radius with different power law. Moreover, we compute the 
same for the greybody factor at asymptotic frequency and found that in this region of frequency 
the Hawking radiation power equation depends on the Hawking temperature only with square 
power law and remains same for all spacetime dimensions.

Furthermore, we have evaluated the radiation power equations for black hole in asymptoti-
cally AdS spacetimes. Here, also we have considered the greybody factors in different regime 
of frequency in order to calculate power equations. For the low energy regime, we note that 
the critical frequency exists only for small AdS black holes at which there are no reflection of 
radiation for black hole and/or no emission of radiation from the black hole. Here, we have dis-
cussed the cases: 1) if one considers frequencies much lower than the critical frequency, and 2) if 
one considers instead frequencies much higher than the critical frequency. For former case, we 
have observed that the radiation power depends on both the Hawking temperature with power 
law and horizon radius. However, for later case, remarkably, we observed that though it de-
pends on both Hawking temperature and horizon radius but with different power law. In fact, 
for four-dimensional spacetimes the radiation power depends on horizon radius only but not on 
the Hawking temperature. The radiation power for greybody factors at asymptotic frequency is 
independent of horizon radius and dimensionality of spacetime, however, depends on Hawking 
temperature only.

For asymptotically dS spacetime, the Hawking radiation power corresponding to greybody 
factor at low frequency highly depends on dimensionality of spacetime. We have computed this 
for even and odd spacetimes. In case of even dimensions, we have obtained simpler form of 
the radiation power equation which depends on both the horizon radius and Hawking tempera-
ture. However, the radiation power equation in odd dS spacetimes although depends on both the 
horizon radius and Hawking temperature but has an infinite sum series of Hurwitz Zeta function.

It is known that by multiplying the radiation power expression of black hole with black hole 
evaporation time, one can estimate the total energy emitted as Hawking radiation which must 
be equal to the total mass of the black hole by virtue of energy conservation. This might give 
an insight to understand the process of black hole evaporation. Such analysis a subject of future 
work.
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