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The instanton partition functions of N = 1 5d super Yang–Mills are built using elements of
the representation theory of quantum W1+∞ algebra: Gaiotto state, intertwiner, vertex operator.
This algebra is also known under the names of Ding–Iohara–Miki and quantum toroidal ĝl(1)
algebra. Exploiting the explicit action of the algebra on the partition function, we prove the
regularity of the 5d qq-characters. These characters provide a solution to the Schwinger–Dyson
equations, and they can also be interpreted as a quantum version of the Seiberg–Witten curve.
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1. Introduction

Since the seminal work by Seiberg and Witten [1], the relation between the BPS sector of N = 2
supersymmetricYang–Mills (SYM) theories in the Euclidean spacetime R

4, and classical integrable
models has attracted intensive studies (see Ref. [2] and references therein). In 2004, Nekrasov [3]
derived by localization the exact form of the N = 2 SYM partition functions in a supergravity
background, the Omega-background R

2
ε1

× R
2
ε2

, depending on two deformation parameters ε1 and
ε2. The exact partition function, including instanton corrections, was obtained as a perturbative sum
over instanton sectors of coupled contour integrals. The evaluation of these integrals by the Cauchy
theorem produces a sum over residues in one-to-one correspondence with the set of boxes of Young
diagrams. Sending the infrared cutoffs ε1, ε2 to zero, the Omega background reduces to R

4. In
this limit, the sum is dominated by large Young diagrams and the partition function reproduces the
exponential of the prepotential obtained by Seiberg and Witten [4]. On the other hand, in the limit
ε2 → 0 while ε1 fixed, the theory becomes effectively bidimensional and the BPS sector of N = 2
SYM manifests the presence of quantum integrability [5–7] in the form of a TBA-like nonlinear
integral equation [5,8,9] and a set of Bethe equations [10–15].

In 2009, Alday, Gaiotto, and Tachikawa [16] conjectured a duality between Nekrasov partition
functions of N = 2 SYM with U (2) gauge groups and 2d Liouville theory. This conjecture was then
extended to U (n) gauge groups and Toda theories in Refs. [17,18]. In several proofs of this conjecture
[19,20] and related, it has been essential to understand the action of the symmetry algebras of 2d
conformal field theories (Virasoro for Liouville, Wn for Toda) on a natural basis for the expansion
of Nekrasov partition functions. This basis, named after Alba, Fateev, Litvinov, and Tarnopolski
(AFLT), is composed of states parameterized by n-tuple Young diagrams, where n is the rank of the
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gauge groups [19]. This representation is called rank-n representation. The underlying symmetry
of BPS N = 2 SYM was found to be a deformation of W1+∞ that contains Virasoro and Wn

algebras combined with a U (1) Heisenberg factor [21,22]. As shown explicitly in Ref. [23](see also
Ref. [24]), this algebra turns out to be equivalent to the affineYangian Y (ĝl1) and to a spherical version
of Cherednik’s double degenerate Hecke algebra called SHc, and built by Vasserot and Schiffmann
in Ref. [20]. The rank-n representation of SHc is equivalent to a Wn algebra for arbitrary n, even in
the case of degenerate representations [25,26].

The AGT correspondence can be lifted to five-dimensional N = 1 SYM theories compactified
on a circle, in correspondence with conformal blocks of q-Virasoro and q-Toda theories [27–30].
The algebraic structures involved in the correspondence are the q-deformed versions of the previous
ones. In this paper, we focus on the quantum continuous gl∞ algebra [31,32], denoted E , which is
equivalent to the Ding–Iohara algebra [33] with two additional Serre relations. In the degenerate limit,
it reduces to the affineYangian Y (ĝl1) [23] in a similar manner as quantum loop algebras degenerate
into Drinfeld second realization [34] of Yangians of semisimple Lie algebras [35]. In Ref. [31], E
is also conjectured to be isomorphic to the spherical double affine Hecke algebra (sDAHA) built
in Ref. [36]. More importantly in the context of the six-dimensional origin of AGT correspondence
[37,38], this algebra E is essentially equivalent to the Ding–Iohara–Miki (DIM) [33,39] algebra, also
called a quantum toroidal gl1 [40,41] or an elliptic Hall algebra [42].1

The covariance of the partition function under the algebra E originates a set of Ward identities
between the correlators of the theory. These identities are equivalent to the regularity property of a
sort of resolvent, the qq-character introduced in Refs. [44,45].2 This object corresponds to a (double)
deformation of the character of (affine) Lie algebras. It has been interpreted in Ref. [46] as the trace
of the transfer matrix of a TQ-system that generalizes the concept of a quantum Seiberg–Witten
curve developed in the limit ε2 → 0 [10–12,15,47–50].3 Some primitive forms of Ward identities
were studied in a series of works in Refs. [21,52–54]. In Ref. [55], some of the authors developed a
direct method to derive the regularity of qq-characters by exploiting the covariance of the 4d partition
functions building blocks under the algebra of symmetries, in their case SHc. The building blocks
for the correlation functions are given by the Gaiotto state (which describes the vector multiplet),
the flavor vertex operators (fundamental hypermultiplets), and intertwiner operators (bifundamental
hypermultiplets). A trivalent vertex supplements this construction in the case of gauge theories with
nonlinear quiver diagram. These few elements permit the construction of arbitrary N = 2 quiver
gauge theories with a U (n) (or A-type) gauge group on each node. The action of the symmetry
generators on these elements was expressed in terms of a single operator Y diagonal in the AFLT
basis. The qq-character has a simple expression in terms of this operator, and its regularity followed
from the transformation properties of the partition functions building blocks.

The aim of this paper is to provide a direct generalization of the construction exposed in Ref. [55]
to quantum W1+∞. To do so, the transformation properties of the 5d building blocks under the
generators of the algebra E will be worked out. The regularity of the qq-characters for 5d N = 1
SYM will follow from an equivalence between left and right actions in the expectation value of

1 Quantum toroidal algebras [43] are obtained as the quantization of two-variables loop algebras, here
gl1[x±1, y±1].

2 The term resolvent here refers to an analogy with matrix models developed in Ref. [45].
3 Alternatively, it can be constructed as a line defect in the 5d gauge theories, which also provides a different

proof for its regularity [51].
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operators. The definition of the algebra and its representation are given in Sects. 2 and 3 respectively.
Section 4 presents the different building blocks of the partition functions, and Sect. 5 provides the
action of the algebra on these blocks. The regularity of the qq-characters is discussed in Sect. 6; it
is interpreted as a quantization of Seiberg–Witten theory in Sect. 7. It is shown in Sect. 8 that the
results obtained in Ref. [55] are recovered in the limit of small radius of the compact dimension for
which E degenerates to SHc. Several additional comments are gathered in the discussion section.
Finally, the most relevant details of the calculations are presented in the appendices.

2. Quantum W1+∞
The algebra E depends on three Kerov deformation parameters qα with α = 1, 2, 3 constrained to
obey the relation q1q2q3 = 1. The two independent parameters q1 and q2 are the K-theoretic versions
of the 4d Omega background equivariant deformation parameters ε1 and ε2. Their dependencies will
be encoded in the scattering function h(z) and the parameter γ1 defined as4

h(z) =
∏

α=1,2,3

1 − q−1
α z

1 − qαz
, γ1 =

∏
α=1,2,3

(1 − qα). (2.1)

Note that the scattering function h(z) obeys the unitarity property h(z)h(z−1) = 1. The algebra E is
spanned by the set of generators ek , fk and the Cartan elements ψ+

k≥0, ψ−
k≤0. These generators form

the Drinfeld currents

e(z) =
∑
k∈Z

ekz−k , f (z) =
∑
k∈Z

fk z−k , ψ±(z) =
∑
k≥0

ψ±
±kz∓k , (2.2)

and the algebra E is defined by the following set of relations:

e(z)e(w) = h(w/z)e(w)e(z), f (z)f (w) = h(z/w)f (w)f (z), (2.3)

ψ±(z)e(w) = h(w/z)e(w)ψ±(z), ψ±(z)f (w) = h(z/w)f (w)ψ±(z), (2.4)

[e(z), f (w)] = 1

γ1
δ
( z

w

)
(ψ+(z)− ψ−(z)), (2.5)[

ψ±(z),ψ±(w)
] = [ψ+(z),ψ−(w)

] = 0, (2.6)

[e0, [e1, e−1]] = 0, [f0, [f1, f−1]] = 0, (2.7)

with the δ-function

δ(z) =
∑
k∈Z

zk , δ(z)F(z) = δ(z)F(1). (2.8)

In addition, ψ±
0 are central and invertible elements of the algebra. It is important to note that, in

contrast with the works presented in Refs. [37,38,46,56], the algebra is considered here without the

4 In Ref. [31], a function of two variables g(z, w) is used instead of h(z); they are related as

g(z, w) =
∏

α=1,2,3

(z − qαw), h(z/w) = −g(z, w)

g(w, z)
,

with the implicit understanding in Eqs. (2.3), (2.4) that z 	= q±1
α w.
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extra central element, or twist parameter. This difference turns out to have deep consequences for
the representations, which we will comment on in the discussion section.

For the description of 5d SYM, the set of generators defined in E is not so convenient. Instead of
using ψ±, it is more useful to introduce the current D(z) =∑k∈Z

Dkz−k that satisfies the following
commutation relations with the Drinfeld currents:

[D(z), e(w)] = δ(z/w)e(z), [D(z), f (w)] = −δ(z/w)f (w), [D(z), D(w)] = 0. (2.9)

These relations, together with Eqs. (2.3), (2.5), provide an alternative definition of the algebra.5 As
we see below, the operators ψ±(z) are expressible in terms of vertex operators built from the Dk

generators. So in this second picture, e(z), f (z), D(z) are the fundamental generators while ψ±(z)
are the derived generators.

As in Ref. [55], it is useful to introduce “free boson" generators by a formal integration of the
current D(z), which will enable us to define later the “vertex operators". It is useful to distinguish
between the action of positive/negative modes, and define two operators as

�+(z) = log(z)D0 −
∑
k>0

z−k

k
Dk , �−(z) = −

∑
k>0

zk

k
D−k . (2.10)

Using the corresponding vertex operators, we define the two Y-operators Y±(z) referred to as chiral
ring generating operators by Nekrasov, Pestun, and Shatashvili (NPS) [15].6 These operators will
play an essential role in the definition of qq-characters:

Y+(z) := ec+(z) exp
(
�+(q−1

1 z)+�+(q−1
2 z)−�+(q3z)−�+(z)

)
,

Y−(z) := ec−(z) exp
(
�−(q1z)+�−(q2z)−�−(q−1

3 z)−�−(z)
)

, (2.11)

where the series c±(z) are defined in terms of the central parameters of the algebra. In fact, the rank-n
representation introduced in the next section depends on n Coulomb branch parameters t� that play
the role of the representation weights. In terms of these parameters, the central series are given

by c+(z) = −∑n
�=1
∑

k>0
tk
�

k z−k and c−(z) = −∑n
�=1
∑

k>0
q−k

3 t−k
�

k zk . As a result, the operators
ψ±(z) can be expressed as

ψ+(z) = (1 − q−1
1 )(1 − q−1

2 )νY+(zq−1
3 )Y+(z)−1,

ψ−(z) = (1 − q−1
1 )(1 − q−1

2 )qn
3νY−(z)Y−(zq3)

−1, (2.12)

with

ν =
n∏
�=1

( −1

q3t�

)
. (2.13)

5 In Ref. [41], the operators Dk are also introduced in the algebra E , and this extension is denoted E ′. For
simplicity, here we keep the same name for the two possible presentations of the algebra.

6 Our definition slightly differs from the one given in Ref. [15]: Y±(z) = Y±
NPS(q

±1/2
3 z).
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For the description of super Yang–Mills in 5d, we need to introduce an extra generator with the
following commutation relations with e(z) and f (z):

Ue(z) = ze(z)U , U f (z) = z−1f (z)U . (2.14)

Finally, it is worthwhile to introduce the decomposition of Drinfeld currents into positive and
negative modes:

e(z) = e+(z)+ e−(z), e+(z) =
∞∑

k=1

ekz−k , e−(z) =
∞∑

k=0

e−kzk , (2.15)

and similarly for f (z) = f+(z)+ f−(z). With this decomposition, the commutation relation Eq. (2.5)
takes the following form:

[eη(z), fη′(w)] = −ηη
′

γ1

zψη(z)− wψη
′
(w)

z − w
+ ηη′

γ1
ψ+

0 , (2.16)

where η, η′ = ±, and it has been assumed |z| < |w| for η = η′ = + and |w| < |z| for η = η′ = −.
The derivation of this identity is presented in Appendix A.

By definition, the algebra is clearly invariant under the permutations of q1, q2, and q3. In the
degenerate version of this algebra, known as SHc, this S3 transformation was referred to as a triality
automorphism [26], which is related to the level–rank duality in WZW coset models [57,58] for
finite-rank representations.

The algebra E also exhibits an invariance under two discrete symmetries involving the inversion of
the parameters qα . When these parameters qα are substituted by their inverse, the scattering function
h(z) is replaced by its inverse and the sign in front of γ1 is flipped. There are two ways to render the
algebra invariant under this symmetry. The simplest one is to exchange the two Drinfeld currents
e(z) ↔ f (z). A more involved realization consists in exchanging the positive and negative modes
of the generators, ek ↔ e−k , fk ↔ f−k , ψ+

k ↔ ψ−
k , while also inversing the spectral parameter

z ↔ z−1. This automorphism can be physically interpreted as a parity transformation along the S1

compact direction.

3. Rank-n representation

The rank-n representation is obtained as an n-tensor product of the action over Macdonald polyno-
mials [59] using the coproduct of E [23,25,60]. Thus, the Hilbert space V is spanned by the AFLT
states |�t, �Y 〉 parameterized by n Young diagrams �Y = (Y�)n�=1. The n-vector �t defines a set of central
charges (or weights) characterizing the space of representation. This basis is orthonormal, and is
sometimes called the “fixed-point basis” [23], because each state corresponds to a fixed point in the
calculation of Nekrasov’s partition function for A-type gauge theories. The shape ofYoung diagrams
can be encoded in one of the two sets A(�Y ) and R(�Y ) respectively corresponding to the set of boxes
that can be added to or removed from the diagrams. In addition, we introduce for each box x = (�, i, j)
with (i, j) ∈ Y� a coordinate-like number χx = t�q

i−1
1 q j−1

2 .

3.1. Representation of algebra E
The action of the generators e(z), f (z), ψ±(z) on the AFLT basis may be found in Refs. [23,60].
We make a minor modification of the action of e(z) and f (z) and change the normalization of the
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basis7 to render the coefficients symmetric between e(z) and f (z), up to the overall factor z−n as in
Ref. [21]:

e(z) |�t, �Y 〉 =
∑

x∈A(�Y )
δ(z/χx)�x(�Y ) |�t, �Y + x〉, (3.1)

f (z) |�t, �Y 〉 = z−n
∑

x∈R(�Y )
δ(z/χx)�x(�Y ) |�t, �Y − x〉, (3.2)

ψ±(z) |�t, �Y 〉 = [�Y (z)
]
± |�t, �Y 〉. (3.3)

Here �Y ± x denotes the addition/subtraction of a box x from the n-tuple Young diagram �Y . The
coefficients �Y (z) and �x(�Y ) are defined by

�Y (z) = (1 − q−1
1 )(1 − q−1

2 )ν
∏

x∈A(�Y )

z − q3χx

z − χx

∏
x∈R(�Y )

z − q−1
3 χx

z − χx
, (3.4)

�x(�Y )2 = ∓ 1

γ1
χn−1

x Res
z→χx

�Y (z) =
∏

y∈A(�Y )
y 	=x

1 − χxχ
−1
y q−1

3

1 − χyχ
−1
x

∏
y∈R(�Y )

y 	=x

1 − χyχ
−1
x q−1

3

1 − χxχ
−1
y

. (3.5)

The sign in the second term in Eq. (3.5) is negative for x ∈ A(�Y ) and positive when x ∈ R(�Y ). The
consistency of the representation (3.1)–(3.3) with the algebra (2.3)–(2.6) is checked in Appendix B.
The eigenvalues �Y (z) are rational functions with simple poles at z = χx for x ∈ A(�Y ) ∪ R(�Y ), and
their residues coincide with the coefficients in the action of e(z), f (z).

We added brackets [· · · ]± in Eq. (3.3). Even though the eigenvalue �Y (z) is common to both
operators ψ±(z), it should be expanded in powers of z−1 if we consider the action of ψ+, while in
powers of z for the action of ψ−. The notation [· · · ]± implies that the expression inside the brackets
should be expanded in terms of z∓1. Such a distinction is essential, and may be better understood in
the following example. Let us consider the two expansions of

z

z − w
=
{∑∞

n=0(w/z)
n, |z| > |w|,

−∑∞
n=1(z/w)

n, |z| < |w|. (3.6)

While the left-hand side of both series is formally identical, the difference between the right-hand
sides is nonvanishing:

∑
n∈Z
(z/w)n = δ(z/w). Likewise, the difference between the actions ofψ±(z)

does not vanish, but is instead represented by a sum of δ-functions centered at the poles of �Y (z):

(ψ+(z)− ψ−(z)) |�t, �Y 〉 = γ1

(
−
∑

x∈A(�Y )
+
∑

x∈R(�Y )

)
χ−n

x δ(z/χx)�x(�Y )2 |�t, �Y 〉. (3.7)

In the following, we meet some operators with a ± index that apparently have the same eigenvalue.
The notation [· · · ]± will be used to make the distinction explicit.

7 The precise form of the modification of the basis and generators is given in Appendix B.
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The action of positive and negative modes of e(z), f (z) is easily deduced from Eqs. (3.1), (3.2):

e+(z) |�t, �Y 〉 = −
∑

x∈A(�Y )

[
�x(�Y )

1 − zχ−1
x

]
+

|�t, �Y + x〉,

f+(z) |�t, �Y 〉 = −
∑

x∈R(�Y )

[
�x(�Y )χ−n

x

1 − zχ−1
x

]
+

|�t, �Y − x〉,

e−(z) |�t, �Y 〉 =
∑

x∈A(�Y )

[
�x(�Y )

1 − zχ−1
x

]
−

|�t, �Y + x〉,

f−(z) |�t, �Y 〉 =
∑

x∈R(�Y )

[
�x(�Y )χ−n

x

1 − zχ−1
x

]
−

|�t, �Y − x〉. (3.8)

We define the bra basis by 〈�t, �Y |�t, �Y ′〉 = δ�Y ,�Y ′ . The action of any generator O on the bra basis is

determined by (〈�t, �Y |O)|�t, �Y ′〉 = 〈�t, �Y |(O|�t, �Y ′〉. In particular, we have

〈�t, �Y |e(z) =
∑

x∈R(�Y )
δ(z/χx)�x(�Y )〈�t, �Y − x|, (3.9)

〈�t, �Y |f (z) = z−n
∑

x∈A(�Y )
δ(z/χx)�x(�Y )〈�t, �Y + x|. (3.10)

In the derivation of these formulae, we have used the identities �x(�Y − x) = �x(�Y ) for x ∈ R(�Y )
and �x(�Y + x) = �x(�Y ) for x ∈ A(�Y ).

3.2. Eigenvalues for the extra Cartan generators and vertex operators

As emphasized in the previous section, it is more useful to extend the algebra E by the introduction
of the extra diagonal generators D(z), U , together with the vertex operator written in terms of �±.
The action of these generators on the basis is written in a compact diagonal form. For instance, the
action of D(z) on the AFLT basis reads

Dk |�t, �Y 〉 =
∑
x∈�Y

(χx)
k |�t, �Y 〉,

or D(z)|�t, �Y 〉 =
∑
x∈�Y

δ(z/χx)|�t, �Y 〉 with D(z) =
∑
k∈Z

Dkz−k . (3.11)

The action of exponentiated operators on the AFLT basis can be derived from Eq. (3.11). The
expansions at z = ∞ (for �+) or z = 0 can be re-summed to produce simple products:

e�+(z)|�t, �Y 〉 =
⎡⎣∏

x∈�Y
(z − χx)

⎤⎦
+

|�t, �Y 〉, e�−(z)|�t, �Y 〉 =
⎡⎣∏

x∈�Y
(1 − zχ−1

x )

⎤⎦
−

|�t, �Y 〉. (3.12)

Since the expressions in the right-hand side have no singularities, their asymptotic series expansions
are convergent in the whole complex plane, and the vertex operators can be safely analytically
continued.
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Using a specialization of the shell formula that describes the cancelation between the factors
associated to the boxes of a Young diagram to produce only edge contributions,

n∏
�=1

(z − t�)
∏
x∈�Y

(z − q1χx)(z − q2χx)

(z − χx)(z − q−1
3 χx)

=
∏

x∈A(�Y )(z − χx)∏
x∈R(�Y )(z − χxq−1

3 )
, (3.13)

it is possible to evaluate the action of Y±(z) on the AFLT basis,

Y±(z) |�t, �Y 〉 =
[
Ỹ±(z, �Y )

]
± |�t, �Y 〉, (3.14)

with the eigenvalues expanded at z = ∞ and z = 0 respectively,

Ỹ+(z, �Y ) =
∏

x∈A(�Y ) 1 − z−1χx∏
x∈R(�Y ) 1 − z−1χxq−1

3

, Ỹ−(z, �Y ) =
∏

x∈A(�Y ) 1 − zχ−1
x q−1

3∏
x∈R(�Y ) 1 − zχ−1

x
. (3.15)

It can be shown using the shell formula that these rational functions are related through the formula

Ỹ−(zq3, �Y ) = ν(zq3)
nỸ+(z, �Y ). (3.16)

Finally the action of the operator U on the AFLT basis is written

U |�t, �Y 〉 =
∏
x∈�Y

χx|�t, �Y 〉; (3.17)

it will be employed to describe the contribution of Chern–Simons terms to the partition function of
5d super Yang–Mills.

4. Nekrasov partition function and discrete Ward identities
4.1. Building blocks

As in the description of the 4d case in Ref. [55], 5d Nekrasov instanton partition functions can be
obtained by combining specific coherent states and operators of the finite-rank representations of
E . They are the q-deformed version of the Gaiotto state, intertwiner, dilatation and flavor vertex
operators, and trivalent vertex. In this section, we define these building blocks and explain how the
partition function is constructed by combining them.

Gaiotto state. The simplest N = 1 SYM theory contains only a single gauge multiplet with gauge
group U (n). It is associated with the rank-n representation space V of the algebra E . In this case, the
Nekrasov partition function8 is obtained as the norm of the Gaiotto state defined in Refs. [27,28,30]
as a Whittaker state for the q-Virasoro (or q-W) algebra. The construction for the algebra E is given in
Refs. [60,61]. This q-deformed version of the Virasoro Gaiotto state [62–65] produces the instanton
partition function by inner product:

Zinst. = 〈G,�t| qD |G,�t〉, (4.1)

8 We regard here only the instanton contribution to the full partition function. The perturbative part, consisting
of classical and one-loop contributions, will not be discussed.
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Fig. 1. Convention for the labeling of a box x = (i, j) in Young diagrams.

where the grading by the exponentiated gauge coupling q = exp(2π iτ) has been factorized out
of the states. The dilatation operator D = D0 corresponds to the zero mode of the operator D(z)
defined in Eq. (3.11): it is equivalent to the Virasoro zero-mode L0. This operator is diagonal in the
AFLT basis |�t, �Y 〉 with eigenvalue | �Y | equal to the total number of boxes in the n-tuple diagram �Y .
The Gaiotto state corresponds to a sum over all the states |�t, �Y 〉 with a weight expressing the vector
multiplet contribution to the partition function,

|G,�t〉 :=
∑

�Y

(
Zvect.(�t, �Y )

)1/2 |�t, �Y 〉, (4.2)

where the vector contribution is a product over Nekrasov factors NYk ,Yl (z) indexed by two Young
diagrams [66]:

Zvect.(�t, �Y )−1 :=
n∏

k ,l=1

NYk ,Yl (tk t−1
l ), (4.3)

NYk ,Yl (t) =
∏

(i,j)∈Yk

(
1 − tq

−Y (l)′j +i
1 q

Y (k)i −j+1
2

) ∏
(i,j)∈Yl

(
1 − tq

Y (k)′j −i+1
1 q

−Y (l)i +j
2

)
. (4.4)

In this expression, Y ′ denotes the transpose of the Young diagram Y , and Yi is the number of boxes
in the ith row of the diagram Y .9 The Nekrasov partition function for pure U (n) gauge theory is
reproduced from Eq. (4.1) using the orthonormality of the AFLT states,

Zinst. =
∑

�Y
q| �Y |Zvect.(�t, �Y ). (4.5)

Intertwiner. When the quiver diagram of the gauge theory has more than one node, we need to
introduce several representation spaces, one for each node. The intertwiner inserted between nodes

9 The convention for box labels inside Young diagrams has been reversed from what was used in Ref. [55]:
(i, j) now denotes the box in the ith row and jth column (see Fig. 1).
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k and l is defined as an operator acting in the space Vl , and taking a value in the space Vk ,10

Vkl(�tk ,�tl|μkl) : Vl → Vk . (4.6)

In addition to the central parameters �tk and �tl of the two representation spaces, it also depends on an
extra twist parameterμkl . In gauge theory, the intertwiner describes the contribution of bifundamental
fields transforming under the gauge group U (nk)× U (nl), and μkl denotes the mass of these fields.
Hence, the definition of the intertwiner involves the bifundamental contribution to the instanton
partition function, suitably normalized by the vector contributions of the two gauge groups:

Vk ,l(�tk ,�tl|μkl) =
∑
�Yk ,�Yl

Z̄bfd.(�tk , �Yk ;�tl , �Yl|μkl) |�tk , �Yk〉 〈�tl , �Yl| ,

Z̄bfd.(�tk , �Yk ;�tl , �Yl|μkl) =
(
Zvect.(�tk , �Yk)Zvect.(�tl , �Yl)

)1/2 Zbfd.(�tk , �Yk ;�tl , �Yl|μkl). (4.7)

The bifundamental partition function is a well-known quantity that can be found, e.g., in Ref. [27,71].
It can be expressed as a product over the Young diagrams composing the n-tuples �Y and n′-tuple �W
of the Nekrasov factor (4.4),

Zbfd.(�t, �Y ; �t′, �W |μ) =
n∏

p=1

n′∏
q=1

NYp,Wq(tpt′−1
q μ−1). (4.8)

It is readily observed that the vector contribution given in Eq. (4.3) is a particular case of the
bifundamental contribution, obtained for two identical n-tuple Young diagrams and a bifundamental
mass of unity:

Zvect.(�t, �Y ) = Zbfd.(�t, �Y ;�t, �Y |1)−1. (4.9)

Once defined, the intertwiner, pure N = 1 SYM instanton partition function with gauge group
U (n1)× U (n2) and exponentiated gauge couplings q1 and q2 can be written as a double expectation
value in each representation space,

Zinst. = 〈G,�t1|qD
1 V12(�t1,�t2|μ)qD

2 |G,�t2〉
=
∑
�Y1,�Y2

q
| �Y1|
1 q

| �Y2|
2 Zvect.(�t1, �Y1)Zvect.(�t2, �Y2)Zbfd.(�t1, �Y1;�t2, �Y2|μ). (4.10)

This expression generalizes without effort to linear quivers in the absence of fundamen-
tal/antifundamental matter fields. Affine Â quiver partition functions are obtained by taking the
trace over the representation space. For instance, for a single gauge group U (n),

Zinst. = tr
V
[
qDV12(�t;�t|μ)

] =
∑

�Y
q|Y |Zvect.(�t, �Y )Zbfd.(�t, �Y ;�t; �Y |μ)

=
∑

�Y
q|Y |Zvect.(�t, �Y )Zadj.(μ;�t, �Y ), (4.11)

10 This intertwiner is affiliated to the vertex operator constructed in Ref. [61] upon the Ding–Iohara algebra.
For the rank-two representation, it is expected to be equivalent to the q-Virasoro vertex operator constructed
in Ref. [67] (see also Refs. [68–70] for previous works).
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where the trace tr is defined as a sum over the vectors |�t, �Y 〉 spanning the AFLT basis, with a weight
of 1:

tr
V

O =
∑

�Y
〈�t, �Y |O|�t, �Y 〉. (4.12)

Chern–Simons term. In five dimensions, a Chern–Simons term with level κ can be added to the
action without spoiling the supersymmetry. As a result, the partition function associated with the
fixed point of the localization is modified by the inclusion of the factor

ZCS(κ , �Y ) =
∏
x∈�Y

(χx)
κ . (4.13)

As we previously mentioned, the inclusion of such a term is implemented by the insertion of the
operator (U)κ in the inner product of the representation space associated to the corresponding node.
The insertion of this operator is equivalent to a modification of the representation by a redefinition
of the basis,

|�t, �Y 〉κ := (U)κ |�t, �Y 〉. (4.14)

In the new representation space V(κ), the action of the Drinfeld currents is modified as

e(z)|�t, �Y 〉κ = z−κ ∑
x∈A(�Y )

δ(z/χx)�x(�Y ) |�t, �Y + x〉κ , (4.15)

f (z) |�t, �Y 〉κ = zκ−n
∑

x∈R(�Y )
δ(z/χx)�x(�Y ) |�t, �Y − x〉k . (4.16)

As before, the action on bra vectors is determined from the orthonormality condition

κ ′ 〈�t, �Y |�t, �Y ′〉κ =
∏
x∈�Y
(χx)

κ−κ ′
δ�Y ,�Y ′ . (4.17)

Flavor vertex operators. To introduce matter fields in 5d SYM, it is necessary to distinguish
between fundamental and antifundamental representations of the gauge groups, since the two contri-
butions are different. These contributions depend on a mass vector �m (resp. �̃m for the antifundamental)
with nf (resp. ñf ) components, in addition to the parameters �t, n characterizing the node with which
the matter is coupled. They are obtained from the bifundamental contribution (4.8) by specialization
to an empty nf -tuple Young diagram,

Zfund.(�m;�t, �Y ) = Zbfd.(�t, �Y ; �m, �∅|1), Za.f.( �̃m;�t, �Y ) = Zbfd.( �̃m, �∅;�t, �Y |1). (4.18)

Explicitly,

Zfund.(�m;�t, �Y ) =
nf∏

f =1

∏
x∈�Y
(1 − χxq−1

3 m−1
f ), Za.f.( �̃m;�t, �Y ) =

ñf∏
f =1

∏
x∈�Y
(1 − m̃f χ

−1
x ). (4.19)

11/41



PTEP 2016, 123B05 J.-E. Bourgine et al.

These factors can be obtained by acting on the states of the rank-n representation with the vertex
operators defined in Eq. (3.12),

U+
fund.(�m)|�t, �Y 〉 =

[
Zfund.(�m;�t, �Y )

]
+ |�t, �Y 〉, U−

a.f.(
�̃m)|�t, �Y 〉 =

[
Za.f.( �̃m;�t, �Y )

]
− |�t, �Y 〉, (4.20)

U+
fund.(�m) :=

nf∏
f =1

(mf q3)
−De�+(mf q3), U−

a.f.(
�̃m) :=

ñf∏
f =1

e�−(m̃f ), (4.21)

where the action of the zero mode of�+(z) has been canceled using the dilatation operator D. These
operators are diagonal in the AFLT basis and reproduce the contributions (4.18) when acted upon
these states. For instance, matter N = 1 SYM with U (n) gauge group is obtained as

Zinst. = 〈G,�t|qDU+
fund.(�m)U−

a.f.(
�̃m)|G,�t〉 =

∑
�Y

q| �Y |Zvect.(�t, �Y )Zfund.(�m;�t, �Y )Za.f.( �̃m;�t, �Y ). (4.22)

With the use of the Chern–Simons operator, one may obtain an alternative expression for U+
fund. and

U−
a.f.:

U−
fund.(�m) = Unf

nf∏
f =1

(−mf q3)
−De�−(mf q3), (4.23)

U+
a.f.(

�̃m) = U−ñf

ñf∏
f =1

(−1)De�+(m̃f ). (4.24)

Finally in Eq. (4.20) we have the symbol [· · · ]± to imply the expansion with respect to the mass
parameters mf , m̃f at 0 or ∞ since they appear as the arguments of �±. We note, however, that
the two formal expansions [Zfund.]± coincide after the summation since there are no simple poles
in Zfund., Za.f.. In this sense, we will abbreviate the formal expansion symbol [· · · ]± and treat the
parameters mf , m̃f as taking finite values in the following.

Trivalent vertex. For the description of the quiver gauge theory with bifurcation, we need to further
introduce a trivalent vertex,

|T ,�t〉k ,l,m =
∑

�Y
Zvect.(�t, �Y )−1/2 |�t, �Y 〉k ⊗ |�t, �Y 〉l ⊗ |�t, �Y 〉m . (4.25)

We refer to the discussion section of Ref. [55] for some examples. Unlike the other building blocks,
the action of E generators on the trivalent vertex is difficult to evaluate at this moment. For this
reason, our discussion in this paper is limited to the linear (and affine) quiver gauge theories.

4.2. Discrete Ward identities

In Appendix C, a set of identities is derived by examination of the variation of the most general
Nekrasov-type factors under the addition or subtraction of boxes in the Young diagrams. These
identities are the analogue of the loop equations in random matrix models; here they will be called
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discrete Ward identities to emphasize the fact that they encode the covariance under the symmetry
algebra acting on instanton partition functions. They are the q-analogue of the recursion relations
studied in Refs. [21,55]:

Zbfd.(�t, �Y + x; �t′, �W |μ)
Zbfd.(�t, �Y ; �t′, �W |μ) =

∏
y∈A( �W ) 1 − χxχ

−1
y q−1

3 μ−1∏
y∈R( �W ) 1 − χxχ

−1
y μ−1

, (4.26)

Zbfd.(�t, �Y − x; �t′, �W |μ)
Zbfd.(�t, �Y ; �t′, �W |μ) =

∏
y∈R( �W ) 1 − χxχ

−1
y μ−1∏

y∈A( �W ) 1 − χxχ
−1
y q−1

3 μ−1
, (4.27)

Zbfd.(�t, �Y ; �t′, �W + x|μ)
Zbfd.(�t, �Y ; �t′, �W |μ) =

∏
y∈A(�Y ) 1 − χyχ

−1
x μ−1∏

y∈R(�Y ) 1 − χyχ
−1
x q−1

3 μ−1
, (4.28)

Zbfd.(�t, �Y ; �t′, �W − x|μ)
Zbfd.(�t, �Y ; �t′, �W |μ) =

∏
y∈R(�Y ) 1 − χyχ

−1
x q−1

3 μ−1∏
y∈A(�Y ) 1 − χyχ

−1
x μ−1

. (4.29)

The recursion formulae for the vector multiplet can be obtained by using the relation (4.9) after a
careful treatment of the contact terms in the limit μ → 1:

Zvect.(�t, �Y + x)

Zvect.(�t, �Y ) = 1

(1 − q1)(1 − q2)

∏
y∈R(�Y )(1 − χxχ

−1
y )(1 − χyχ

−1
x q−1

3 )∏
y∈A(�Y )

y 	=x

(1 − χxχ
−1
y q−1

3 )(1 − χyχ
−1
x )

, (4.30)

Zvect.(�t, �Y − x)

Zvect.(�t, �Y ) = 1

(1 − q1)(1 − q2)

∏
y∈A(�Y )(1 − χxχ

−1
y q−1

3 )(1 − χyχ
−1
x )∏

y∈R(�Y )
y 	=x

(1 − χxχ
−1
y )(1 − χyχ

−1
x q−1

3 )
. (4.31)

5. Action of the algebra on Nekrasov partition functions
5.1. Gaiotto state

The Drinfeld currents have a very remarkable action on Gaiotto states that can be written in terms of
the operators Y±. The corresponding expressions, obtained after imposing a certain constraint on the
Chern–Simons level, can be written in a projected form that removes singularities at infinity/origin.
The projectors on the positive/negative powers in the expansion at z = ∞, will be denoted P±∞; they
are defined as follows:

P+∞ + P−∞ = 1, P+∞F(z) =
∮

∞
F(w)

z − w

dw

2iπ
, (5.1)

or explicitly for any function F(z) expanded at z = ∞ as

F(z) =
∞∑

k=−d

Fkz−k , P−∞F(z) =
∞∑

k=1

Fkz−k , P+∞F(z) =
d∑

k=0

F−kzk . (5.2)
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Similarly, P±
0 denotes the projection on the positive/negative powers in the expansion at z = 0:11

P+
0 + P−

0 = 1, P−
0 F(z) =

∮
0

F(w)

z − w

dw

2iπ
,

F(z) =
∞∑

k=−d

Fkzk ⇒ P−
0 F(z) =

d∑
k=1

F−kz−k , P+
0 F(z) =

∞∑
k=0

Fkzk . (5.3)

It is now possible to present one of the main results of this article: the actions of the Drinfeld
currents on a Gaiotto state. We refer the reader to Appendix D for the details of the derivation:

e+(z)|G,�t〉κ = −rνP−∞
(

zn−κY+(zq−1
3 )
)

|G,�t〉κ for κ ≤ 0,

e−(z)|G,�t〉κ = rP+
0 (z

−κY−(z))|G,�t〉κ for κ > n,

f+(z)|G,�t〉κ = rP−∞
(

zκ−n

Y+(z)

)
|G,�t〉κ for κ ≥ 0,

f−(z)|G,�t〉κ = −rνqn
3P+

0

(
zκ

Y−(zq3)

)
|G,�t〉κ for κ < n, (5.4)

where we have introduced a shortcut notation for the normalization constant

r = [(1 − q1)(1 − q2)]−1/2 . (5.5)

We note that positive modes of the Drinfeld currents involve a projection at infinity to remove an
unwanted pole contribution, while negative modes involve a projection at the origin. These compact
expressions are only possible upon a restriction on the Chern–Simons level parameter. The dual
actions on the bra Gaiotto state are given by the following expressions:

κ〈G,�t|e+(z) = rP−∞
(
κ〈G,�t| z−κ

Y+(z)

)
for κ ≤ n,

κ 〈G,�t| e−(z) = −rνqn
3P+

0

(
κ〈G,�t| zn−κ

Y−(zq3)

)
for κ > 0,

κ〈G,�t|f+(z) = −rνP−∞
(
κ〈G,�t|zκY+(zq−1

3 )
)

for κ ≥ n,

κ〈G,�t|f−(z) = rP+
0

(
κ〈G,�t|zκ−nY−(z)

)
for κ < 0. (5.6)

Expanding these results either at z = ∞ or z = 0 in the case of vanishing Chern–Simons level κ = 0
produces the characterization of the Whittaker states in the rank-n representation,

f0|G,�t〉 = −νrqn
3|G,�t〉, fk |G,�t〉 = 0, k = 1, . . . , n − 1, fn|G,�t〉 = r|G,�t〉, (5.7)

In the case n = 1, these conditions reproduce the characterization of the Whittaker state for the
Ding–Iohara algebra employed in Ref. [60].

11 The role of P± is naturally exchanged here since the singular part of the expansion contains (strictly)
negative powers at z = 0 and positive powers at z = ∞.
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5.2. Intertwiner

When the representation spaces carry a Chern–Simons index, the intertwiner operator defined in
Eq. (4.7) has to be modified into

V12(�t1,�t2|μ, κ , κ ′) : V(κ) → V(κ ′),

V12(�t1,�t2|μ, κ , κ ′) =
∑
�Y1,�Y2

Z̄bfd.(�t1, �Y1;�t2, �Y2|μ) |�t1, �Y1〉κ κ ′ 〈�t2, �Y2| . (5.8)

The action of the positive/negative modes of the Drinfeld currents e(z) and f (z) on this deformed
intertwiner is evaluated in Appendix D. It is observed that the action simplifies when the Chern–
Simons levels κ and κ ′ of the two representation spaces are related through

κ ′ = κ + n2 − n1, (5.9)

where n1 and n2 denote the rank of the representation. In this case, the action of the currents can be
written in terms of the diagonal operators Y±(z), suitably projected, and provided a proper behavior
is assumed at z = 0 or z = ∞. The latter condition imposes a further restriction on the range of the
CS parameters:

e+(z)V12(μ, κ , κ ′)− ν1

ν2
(q3μ)

−κ ′
μn2V12(μ, κ , κ ′)e+(zμ−1q−1

3 )

= −r
ν1

ν2
μn2

[
P−∞

(
z−κ ′Y+(q−1

3 z)V12(μ, κ , κ ′) 1

Y+(q−1
3 μ−1z)

)]
+

, κ ≤ 0,

e−(z)V12(μ, κ , κ ′)− ν1

ν2
(q3μ)

−κ ′
μn2V12(μ, κ , κ ′)e−(zμ−1q−1

3 )

= r

[
P+

0

(
z−κY−(z)V12(μ, κ , κ ′) 1

Y−(μ−1z)

)]
−

, κ ′ > 0,

f+(z)V12(μ, κ , κ ′)− μκ
′−n2V12(μ, κ , κ ′)f+(zμ−1)

= rν2μ
−n2

[
P−∞

(
zκ

′

Y+(z)
V12(μ, κ , κ ′)Y+(zq−1

3 μ−1)

)]
+

, κ ≥ 0,

f−(z)V12(μ, κ , κ ′)− μκ
′−n2V12(μ, κ , κ ′)f−(zμ−1)

= −rν1qn1
3

[
P+

0

(
zκ

Y−(zq3)
V12(μ, κ , κ ′)Y−(zμ−1)

)]
−

, κ ′ < 0, (5.10)

where we have employed the shortcut notation V12(�t1,�t2|μ, κ , κ ′) = V12(μ, κ , κ ′). It is easy to verify
that when one of the representation spaces becomes trivial, the intertwiner reduces to a Gaiotto state
(bra or ket), and the identities (5.4) and (5.6) are recovered.

5.3. Flavor vertex operators

The Chern–Simons and flavor vertex operators are special cases of a more general vertex operator
depending on two sets of insertion points {zi} with i ∈ I and {wj} with j ∈ J ,

U±({zi}, {wj}) = exp

⎛⎝∑
i∈I

�±(zi)−
∑
j∈J

�±(wj)

⎞⎠ . (5.11)
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The commutation relations with Drinfeld currents are derived by considering the action on the AFLT
basis, forming a faithful representation of the algebra,

U+({zi}, {wj})−1e(u)U+({zi}, {wj}) =
∏

j(wj − u)∏
i(zi − u)

e(u),

U+({zi}, {wj})−1f (u)U+({zi}, {wj}) =
∏

i(zi − u)∏
j(wj − u)

f (u),

U−({zi}, {wj})−1e(u)U−({zi}, {wj}) =
∏

j(1 − wju−1)∏
i(1 − ziu−1)

e(u),

U−({zi}, {wj})−1f (u)U−({zi}, {wj}) =
∏

i(1 − ziu−1)∏
j(1 − wju−1)

f (u). (5.12)

Similar identities can be established for the positive/negative modes by applying the projections P−
or P+ to the Laurent expansion of the right-hand side. It is instructive to specialize to the case of the
flavor vertex operator,

Ufund.(�m)∓1e(z)Ufund.(�m)±1 = pfund.(zq−1
3 )∓1e(z),

Ufund.(�m)∓1f (z)Ufund.(�m)±1 = pfund.(zq−1
3 )±1f (z),

Ua.f.( �̃m)∓1e(z)Ua.f.( �̃m)±1 = pa.f.(z)
∓1e(z),

Ua.f.( �̃m)∓1f (z)Ua.f.( �̃m)±1 = pa.f.(z)
±1f (z), (5.13)

where we have introduced the mass polynomials in variables z or z−1 respectively,

pfund.(z) =
nf∏

f =1

(1 − zm−1
f ), pa.f.(z) =

ñf∏
f =1

(1 − m̃f z−1). (5.14)

6. qq-character and Ward identity
6.1. Pure U (n) gauge theories with a Chern–Simons term

The simplest 5d N = 1 SYM theory consists of a single U (n) vector multiplet without any matter
field. The Hilbert space contains only one copy of the rank-n representation space V . Including a
Chern–Simons term, it is more convenient to consider two representation spaces V(κL) and V(κR)

with the deformed scalar product (4.17). A weighted trace for operators O : V(κL) → V(κR) acting
in this space can be defined as the q-graded normalized expectation value in a Gaiotto state,

〈O〉(κL,κR) = κL〈G,�t|qDO|G,�t〉κR

κL〈G,�t|qD|G,�t〉κR

= 1

κL〈G,�t|qD|G,�t〉κR

∑
�Y

q| �Y |Zvect.(�t, �Y ) κL〈�t, �Y |O|�t, �Y 〉κR .

(6.1)
The instanton partition function coincides with the normalization factor,

Zinst. = κL〈G,�t|qD|G,�t〉κR . (6.2)

Two Chern–Simons levels have been introduced, κL and κR, each associated to a different Hilbert
space. However, due to the form of the scalar product (4.17), the instanton partition function depends
only on the difference of the Chern–Simons levels. Accordingly, all physical quantities are expected
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to depend only on the effective Chern–Simons level κeff = κR − κL. If so, the theory is invariant
under the shift of κL and κR by an arbitrary integer; this extra symmetry will be fixed later.

The Ward identities can be deduced from the equivalence between the action of Drinfeld currents
on the left and on the right for the Gaiotto states defining the trace. Considering the trace of f+(z),
the two Chern–Simons levels must be restricted to κL ≥ n and κR ≥ 0 to be able to employ the
projection formulas given in Eqs. (5.4), (5.6), and derive

〈f+(z)〉(κL,κR)
= rP−∞

(〈
zκR−n

Y+(z)

〉
(κL,κR)

)
= −rq−1P−∞

〈
νzκLY+(zq−1

3 )
〉
(κL,κR)

, (6.3)

where the commutation relation with qD is easily obtained by noticing that f (z) adds boxes to 〈�t, �Y |
when acting on the left. The Ward identity follows,

P−∞

[
zκL−n

〈
νznY+(zq−1

3 )+ q
zκeff

Y+(z)

〉
(κL,κR)

]
= 0, (6.4)

which corresponds to a particular linear combination of the discrete Ward identities presented in
Eq. (4.30). It suggests defining the qq-character as

χ+(z) =
〈
νznY+(zq−1

3 )+ q
zκeff

Y+(z)

〉
(κL,κR)

. (6.5)

As seen from formula (3.15), the eigenvalues of the operator Y+(z) do not depend on the Chern–
Simons level of the representation space. As a result, χ+(z) depends only on the effective level κeff .
Its asymptotic properties can be deduced from those of the eigenvalues of Y+(z), and lead to the
expansion

χ+(z) �
d∑

k=−∞
χ+

k zk , (6.6)

with d = max(n, κeff ). Setting r = κL − n, the Ward identity (6.4) takes the form

P−∞

⎡⎣ d∑
k=−∞

χ+
k zk+r

⎤⎦ =
−r−1∑

k=−∞
χ+

k zk+r = 0, (6.7)

or equivalently χ+
k = 0 for k < −r. The strongest requirement is obtained for r = 0 (or κL = n)

leading to χ+
k = 0 for k < 0. The result is that χ+(z) is a polynomial of degree max(n, κeff ), and

κeff ≥ −n. Furthermore, the expression (6.4) is reminiscent of the Seiberg–Witten curve Y +q/Y ∝
Pn(z), with Pn(z) representing a polynomial of degree n in z. In fact, it is shown in the next section
that the qq-character degenerates to the polynomial Pn(z) in the limit q1, q2 → 1. It is thus natural
to assume that it is of degree d = n. Given the previous constraints on the Chern–Simons level, the
effective level of the theory is restricted to the range −n ≤ κeff ≤ n, in agreement with the bounds
obtained in Ref. [72].

The same result can also be derived by examination of the action of the positive modes of the
Drinfeld current e(z),

〈e+(z)〉(κL,κR)
= −rP−∞

[
νzn−κR

〈
Y+(zq−1

3 )
〉
(κL,κR)

]
= qrP−∞

[
z−κL

〈
1

Y+(z)

〉
(κL,κR)

]
, (6.8)
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with the restrictions κR ≤ 0, κL ≤ n. The Ward identity reads

P−∞

[
z−κR

〈
νznY+(zq−1

3 )+ q
zκeff

Y+(z)

〉
(κL,κR)

]
= 0.

The strongest requirement is obtained by setting κR = 0, and again this imposes that χ+(z) defined
in Eq. (6.5) is a polynomial, and κeff ≥ −n. As explained previously, assuming that it is of degree
exactly n further constrains the effective level to be in the physical range −n ≤ κeff ≤ n.

A similar analysis can be performed for the negative modes of the Drinfeld currents, with the
projections taken at the origin. For instance, the trace of f−(z) provides the Ward identity

P+
0

[
zκL−nχ−(z)

] = 0, with χ−(z) =
〈
Y−(z)+ q

zκeff +n

νqn
3Y−(zq3)

〉
(κL,κR)

, (6.9)

for κR < n and κL < 0. Like χ+(z), the qq-character χ−(z) depends only on the difference κeff of
the two Chern–Simons levels. Introducing the asymptotic expansion of

z−nχ−(z) �
∞∑

k=−d ′
χ−

k zk , d ′ = −min(−n, κeff ), (6.10)

into the Ward identity (6.9) gives

P+
0

⎡⎣ ∞∑
k=−d ′

χ−
k zk+κL

⎤⎦ =
∞∑

k=−κL

χ−
k zk+κL = 0, (6.11)

equivalent to χ−
k = 0 for k ≥ −κL. This identity is valid for κL < 0, and the strongest requirement

is obtained after setting κL = −1 (so that κeff = κR + 1 ≤ n). It provides χ−
k = 0 for k > 0, and

χ−(z) =
d ′∑

k=0

χ−
−kzn−k (6.12)

is a polynomial provided that d ′ ≤ n, which is realized in the physical range −n ≤ κeff ≤ n. Due to
the relation (3.16) between the eigenvalues of the operators Y+(z) and Y−(z), the two qq-characters
defined in Eqs. (6.5) and (6.9) describe the same quantity, i.e., χ−(z) = χ+(z).12 This is why in the
following we will drop the index ± of the notation for the qq-character.

An explicit expression for χ(z) can easily be derived by expanding the right-hand side of (6.5) at
infinity, using the expression (3.15) for the eigenvalues. In the pure gauge case, κeff = 0, and only
the first term in Eq. (6.5) contributes to the polynomial part,

χ(z) = νzn

⎛⎝1 + 1

z

〈 ∑
x∈R(�Y )

χx −
∑

x∈A(�Y )
q3χx

〉⎞⎠+ O(zn−2). (6.13)

This result can also be expressed as a sum over the box content of �Y using the shell formula (3.13);
this is done in Appendix E up to the order O(zn−3).

12 The qq-charactersχ+(z) (resp.χ−(z)) were primarily defined as an expansion around z = ∞ (resp. z = 0).
However, being polynomials, they can be analytically continued safely to the whole complex plane on which
they coincide.
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6.2. qq-characters for super Yang–Mills with fundamental multiplets

The weighted trace associated to a U (n) gauge theory with a number of fundamental and antifun-
damental flavors is normalized by the instanton partition function (4.22). Its definition involves the
introduction of flavor vertex operators in the expectation value of a Gaiotto state,

〈O〉 = 〈G,�t|qDUfund.(�m)Ua.f.( �̃m)O|G,�t〉
〈G,�t|qDUfund.(�m)Ua.f.( �̃m)|G,�t〉

= 1

Zinst.

∑
�Y

q| �Y |Zvect.(�t, �Y )Zfund.(�m;�t, �Y )Za.f.( �̃m;�t, �Y ) 〈�t, �Y |O|�t, �Y 〉. (6.14)

Here, for simplicity, we have turned off the Chern–Simons levels κL,R.
In order to derive the regularity of the qq-character, we need to know the action of the

positive/negative modes of the Drinfeld currents e(z) and f (z) on the flavor vertex operators. Unfor-
tunately, this action was only given in terms of the full currents in Eq. (5.13), and these relations
need to be projected on the proper modes. For the sake of the argument, let us consider the positive
modes e+(z) and the fundamental mass operator. The relation (5.13) involving the full current e(z)
reads

Ufund.(�m)e(z) = pfund.(zq−1
3 )e(z)Ufund.(�m) (6.15)

where pfund.(z) is a polynomial of degree nf ≤ n. The action of e+(z) on a state |�t, �Y 〉 is obtained
from e(z) by projecting out the positive powers of z at infinity, so that formally e+(z) = P−∞e(z).
Using the property that for any polynomial p(z)we have P−∞p(z)P+∞ = 0 and P−∞p(z)P−∞ = P−∞p(z),
it is shown that13

Ufund.(�m)e+(z) = P−∞
[
pfund.(zq−1

3 )e(z)Ufund.(�m)
]

= P−∞
[
pfund.(zq−1

3 )e+(z)Ufund.(�m)
]

. (6.16)

A similar relation can be obtained for the antifundamental flavor vertex operator, exploiting the fact
that zκpa.f.(z) is a polynomial for κ ≥ ñf . For this purpose, it is useful to introduce the identity in
the form U−κUκ = 1 in the trace (6.14), and consider the commutation relation of

UκUa.f.( �̃m)e(z) = zκpa.f.(z)e(z)UκUa.f.( �̃m), (6.17)

which can be projected on positive modes,

UκUa.f.( �̃m)e+(z) = P−∞
[
UκUa.f.( �̃m)e(z)

]
= P−∞

[
zκpa.f.(z)e(z)UκUa.f.( �̃m)

]
= P−∞

[
zκpa.f.(z)e+(z)UκUa.f.( �̃m)

]
. (6.18)

These properties can be applied to derive the regularity of the qq-character. First, consider the
action on the right using the formula (5.4),

〈e+(z)〉 = −rνP−∞zn
〈
Y+(zq−1

3 )
〉

, (6.19)

13 This property is due to the fact that for any rational function F(z), P+
∞F(z) is a polynomial, and so is

p(z)P+
∞F(z). Expanded at z = ∞, a polynomial has no negative powers of z, and so P−

∞p(z)P+
∞ = 0. The

second relation is deduced from the definition of the dual projector P−
∞ = 1 − P+

∞.
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and then on the left, inserting the two spurious Chern–Simons levels, taking κ ≥ ñf :

〈e+(z)〉 = 1

Zinst.
〈G,�t|qDUfund.(�m)Ua.f.( �̃m)U−κUκe+(z)|G,�t〉

= 1

Zinst.
P−∞
[
zκpfund.(zq−1

3 )pa.f.(z) κ〈G,�t|qDe+(z)Ufund.(�m)Ua.f.( �̃m)|G,�t〉κ
]

= qrP−∞
[

zκpfund.(zq−1
3 )pa.f.(z)P

−∞
〈

z−κ

Y+(z)

〉]

= qrP−∞

〈
pfund.(zq−1

3 )pa.f.(z)

Y+(z)

〉
. (6.20)

The second equality is obtained using the commutation relations (6.16) and (6.18), and then absorbing
the Chern–Simons operators within the Gaiotto states. The third equality follows from the left
action (5.6) on the Gaiotto state, which is obtained for κ ≤ n, which implies ñf ≤ n. This inequality
is always true for a physical theory. Finally, it is observed that the second projector can be omitted
since κ is assumed strictly positive in this computation. Combining the two previous results, we find
that

P−∞
[
χ+(z)

] = 0, χ+(z) =
〈
νznY+(zq−1

3 )+ q
m(z)

Y+(z)

〉
, m(z) = pfund.(zq−1

3 )pa.f.(z), (6.21)

which implies that χ(z) is a polynomial. For physical theories with nf + ñf ≤ n, it is of degree n.
Using the negative modes of the Drinfeld currents, it is possible to show that the qq-character defined
around z = 0 by

χ−(z) =
〈
Y−(z)+ qν(zq3)

n m(z)

Y−(zq3)

〉
(6.22)

is also a polynomial of degree n. In fact, due to the relation (3.16) between the eigenvalues of
operators Y+(z) and Y−(z), the two qq-characters are identical, namely χ+(z) = χ−(z) for the
analytic continuation to z ∈ C.

It is instructive to compare the results obtained in this section with the work of Nekrasov, Pestun,
and Shatashvili in Ref. [15] (see also Ref. [46]) where two operators were introduced,

χ̂±
NPS(z) = Y±

NPS(z)+ P±(zq1/2
3 )

Y±
NPS(zq3)

, Y±(z) = Y±
NPS(zq±1/2

3 ), (6.23)

with the following mass-dependent functions:

P+(z) = qν−1z−nm(z), P−(z) = qνqn
3znm(z). (6.24)

Using the previous identification, it is possible to relate our definition of the qq-characters to the
operators defined in Ref. [15],

χ̂−
NPS(q

−1/2
3 z) = Y−(z)+ qν(zq3)

n m(z)

Y−(zq3)
, χ̂+

NPS(zq−1/2
3 ) = Y+(zq−1

3 )+ qν−1z−n m(z)

Y+(z)

⇒ χ−(z) =
〈
χ̂−

NPS(zq−1/2
3 )

〉
, χ+(z) = νzn

〈
χ̂+

NPS(zq−1/2
3 )

〉
. (6.25)
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6.3. Characters of linear quivers

In a general quiver gauge theory, a representation space Vi is attached to each node i of the quiver.
To each operator Oi acting in the space Vi can be associated the following weighted trace:

〈Oi〉 = 1

Zinst.

∑
�Yk

∏
nodes k

q
| �Yk |
k Zvect.(�tk , �Yk)Zfund.(�mk ;�tk , �Yk)Za.f.( �̃mk ;�tk , �Yk)ZCS(κk , �Yk)

×
∏

links 〈kl〉
Zbfd.(�tk , �Yk ;�tl , �Yl|μkl)× 〈�ti, �Yi| Oi |�ti, �Yi〉. (6.26)

This quantity can be obtained by insertion of the operator in the corresponding expectation value,

〈Oi〉 = 1

Zinst.
〈G,�t1|qD

1 Ufund.(�m1)Ua.f.( �̃m1)UCS(κ1)V12(�t1,�t2|μ12)

· · · UCS(κi)OiVii+1(�ti,�ti+1|μii+1) · · · |G,�t·〉. (6.27)

A qq-character χ±
i (z) is attached to each node of the quiver, and we can repeat the same procedure

as in the one-node case to obtain their expressions, introducing a Drinfeld current e±(z) or f±(z)
acting in the space Vi. Again, it is useful to deform the representation spaces by adding spurious
Chern–Simons levels κLi and κRi for the bra and ket states of the ith node respectively, the final result
depending only on the differences κi = κRi − κLi.

As an illustration, the case of a quiver A2 without fundamental/antifundamental matter fields is
treated in Appendix F. There, it is assumed that the Chern–Simons levels belong to the physical
range [15]14

−n1 ≤ κ1 ≤ n1 − n2, n1 − n2 ≤ κ2 ≤ n2. (6.28)

Traces of operators are defined explicitly as

〈O1〉 = 1

Zinst.
κL1〈G,�t1| qD

1 OV12(�t1,�t2|μ, κR1, κL2)q
D
2 |G,�t2〉κR2

,

〈O2〉 = 1

Zinst.
κL1〈G,�t1| qD

1 V12(�t1,�t2|μ, κR1, κL2)q
D
2 O |G,�t2〉κR2

. (6.29)

Using the positive modes of the Drinfeld current, it is shown that the following qq-characters

χ+
1 (z) =

〈
ν1zn1Y+

1 (zq−1
3 )+ q1ν2μ

−n2zκ1+n2
Y+

2 (zq−1
3 μ−1)

Y+
1 (z)

+ q1q2μ
−κ2

zκ1+κ2

Y+
2 (zμ

−1)

〉
,

χ+
2 (z) =

〈
ν2zn2Y+

2 (zq−1
3 )+ q2zκ2

Y+
1 (zμ)

Y+
2 (z)

+ q1q2
ν2

ν1
qκ1+n2−n1

3 μκ1−n1
zκ1+κ2+n2−n1

Y+
1 (zq3μ)

〉
, (6.30)

14 It is also assumed that the theory is in the asymptotically free or conformal class, which restricts the ranks
of the gauge groups to obey 1

2 ≤ n1
n2

≤ 2, thus ensuring that the physical range of Chern–Simons parameters
is nonempty.

21/41



PTEP 2016, 123B05 J.-E. Bourgine et al.

are polynomials in the physical range (6.28), of degrees n1 and n2 respectively. Similarly, it follows
from the invariance under the action of the negative modes that the qq-characters

χ−
1 (z) =

〈
Y−

1 (z)+ q1ν1qn1
3 zκ1+n1

Y−
2 (zμ

−1)

Y−
1 (zq3)

+ q1q2ν2qn2
3 μ

−κ2−n2
zκ1+κ2+n2

Y−
2 (zq3μ−1)

〉
,

χ−
2 (z) =

〈
Y−

2 (z)+ q2
ν2

ν1
qn2−n1

3 μ−n1zκ2+n2−n1
Y−

1 (zq3μ)

Y−
2 (zq3)

+ q1q2ν2qκ1+n2+n1
3 μκ1

zκ1+κ2+n2

Y−
1 (zq2

3μ)

〉
,

(6.31)

are also polynomials of degree n1 and n2. It is observed that due to the relation (3.16) between the
eigenvalues of Y+(z) and Y−(z), the qq-characters defined in Eqs. (6.30) and (6.31) are actually
equivalent, namely χ+

i (z) = χ−
i (z) for i = 1, 2.

The Z2-symmetry corresponding to exchanging the two nodes of the A2 quiver involves a nontrivial
mapping of the parameters that can be understood upon examining the bifundamental contribution

Zbfd.(�t1, �Y1;�t2, �Y2|μ) = ν
−|�Y2|
1 ν

| �Y1|
2 q−n1| �Y2|

3 μ−n1| �Y2|−n2| �Y1| ZCS(n2, �Y1)

ZCS(n1, �Y2)
Zbfd.(�t2, �Y2;�t1, �Y1|(μq3)

−1).

(6.32)
When the two nodes are exchanged, the ranks of the two gauge groups are obviously mapped to each
other, n1 ↔ n2, and so are the central parameters �t1 ↔ �t2 (and ν1 ↔ ν2). On the other hand, due to
the presence of extra factors in Eq. (6.32), the Chern–Simons levels transform as

κ1 + n2 → κ2, κ2 − n1 → κ1, (6.33)

the mass of the bifundamental multiplet is inverted and shifted, μ → (q3μ)
−1, and the gauge

coupling parameters receive corrections in the form of extra factors:

q1ν2μ
−n2 → q2, q2ν

−1
1 (q3μ)

−n1 → q1. (6.34)

Under this symmetry, it is readily observed from Eqs. (6.30) and (6.31) that the qq-character χ±
1 (z)

is mapped to χ±
2 (z) and vice versa.

7. Quantum Seiberg–Witten geometry

In the limit q1, q2 → 1, the background reduces to R
4 × S1, and the expressions of the qq-characters

χ± in terms of the operators Y± reproduce the Seiberg–Witten curve. In the case of N = 2 4d SYM,
this fact is shown explicitly in Ref. [55], built on previous works [4,10,11,13,15].A similar argument,
although partly heuristic, can be given for the 5d theories we are studying here. For simplicity, we
focus on the case of a single gauge group of rank n, with a Chern–Simons term of level κ , and
fundamental/antifundamental matter fields,

Zinst. =
∑

�Y
q| �Y |ZCS(κ , �Y )Zfund.(�m;�t, �Y )Za.f.( �̃m;�t, �Y )Zvect.(�t, �Y ). (7.1)

As a first step, we would like to derive the quantum Seiberg–Witten curve in the Nekrasov–
Shatashvili limit q2 → 1. To perform this limit, we proceed by analogy with the 4d case and assume
that the sum over �Y is dominated by an n-tuple Young diagram �Y ∗ that extremizes the sum. The
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critical Young diagrams composing �Y ∗ are supposed to contain an infinite number of boxes, and
obey the discrete saddle point equation

q| �Y ∗+x|ZCS(κ , �Y ∗ + x)Zfund.(�m;�t, �Y ∗ + x)Za.f.( �̃m;�t, �Y ∗ + x)Zvect.(�t, �Y ∗ + x)

q| �Y ∗|ZCS(κ , �Y ∗)Zfund.(�m;�t, �Y ∗)Za.f.( �̃m;�t, �Y ∗)Zvect.(�t, �Y ∗)
= 1 (7.2)

for all x ∈ A(�Y ∗). Using the discrete Ward identities (4.30), this condition can be written explicitly as

q
χκx m(χx)

(1 − q1)(1 − q2)

∏
y∈R(�Y ∗)(1 − χxχ

−1
y )(1 − χyχ

−1
x q−1

3 )∏
y∈A(�Y ∗)

y 	=x

(1 − χxχ
−1
y q−1

3 )(1 − χyχ
−1
x )

= 1, (7.3)

with m(z) = pfund.(zq−1
3 )pa.f.(z) a rational function containing the dependence in the mass of the

fundamental/antifundamental fields. We further assume that �Y ∗ is such that a box can be added or
removed from each row i, so that

R(�Y ∗) = {(l, i, Y (l)i ), i = 1, . . . , nl , l = 1, . . . , n},
A(�Y ∗) = {(l, i, Y (l)i + 1), i = 1, . . . , nl + 1, l = 1, . . . , n}, (7.4)

where nl denotes the number of rows in the diagram Y ∗
l , and Y (l)i the number of boxes in each row.

Under this condition, Eq. (7.3) can be expressed using the variables e2λr for the coordinates of the
boxes in R(�Y ∗) with r = 1, . . . , NB =∑l nl , and e2ξl = tlq

nl
1 for the n extra boxes in A(�Y ∗),

q
e2κλr m(e2λr )∏n

l=1(1 − q−1
3 e2λr−2ξl )(1 − e2ξl−2λr )

NB∏
s=1
s 	=r

(1 − e2λr−2λs)(1 − q−1
3 e2λs−2λr )

(1 − q−1
3 e2λr−2λs)(1 − e2λs−2λr )

= 1, (7.5)

where the factor (1 − q1)(1 − q2) has been canceled by the term (1 − χxχ
−1
y )(1 − χyχ

−1
x q−1

3 ) for

χy∈R(�Y ∗) in the same column as χx, i.e., χy = χxq−1
2 . It is now possible to set q2 = 1, q3 = q−1

1 =
e−2iα , and

q̃e(2κ+nf −ñf )λr

∏nf

f =1 sinh(λr − μf + iα)
∏ñf

f̃ =1
sinh(λr − μ̃f )∏n

l=1 sinh(λr − ξl + iα) sinh(λr − ξl)

NB∏
s=1
s 	=r

sinh(λr − λs − iα)

sinh(λr − λs + iα)
= 1, (7.6)

where we have also introduced the notation mf = e2μf , m̃f = e2μ̃f for the mass parameters, and the
renormalized gauge coupling constant,

q̃ = q(−1)n+nf 2nf +ñf −2neiα(nf −n)e
∑

f μf −
∑

f̃ μ̃f̃ . (7.7)

The parameters nl (or ξl) play the role of cutoffs, so they must be sent to infinity at the end of the
computation. The equations obtained in Eq. (7.6) are reminiscent of the Bethe equations for the XXZ
spin chain. In general, the integrable system pertaining to a 5d gauge theory compactified on a circle
of radius R is the relativistic (or anisotropic) version of the system obtained in the four-dimensional
case, and 1/R is identified with the speed of light (or anisotropy parameter) [73].
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The limit q2 → 1 of the qq-character can be performed under the same assumptions, namely that
the trace is dominated by the classical state |�t, �Y ∗〉 with �Y ∗ defined by the properties mentioned
above. For this specific state, the eigenvalue of the operator Y+(z) simplifies into

Ỹ+(z, �Y ∗) � 2ne
∑

l ξl−iαNBe−nu
n∏

l=1

sinh(u − ξl)

NB∏
r=1

sinh(u − λr)

sinh(u − iα − λr)
, (7.8)

with the spectral parameter z = e2u. Define the Baxter Q-function

Q(u) = e−nu
NB∏
r=1

sinh(u − λr), Ỹ+(z, �Y ∗) � 2n(−1)n/2ν̃1/2e−nu
n∏

l=1

sinh(u − ξl)
Q(u)

Q(u − iα)
,

(7.9)
where ν̃ = (−1)ne2iαNB−2

∑
l ξl is the limit of the parameter ν.15 Then, taking the limit q2 → 1 of

definition (6.21), the qq-character can be written in the form of a Baxter TQ-equation associated to
the set of Bethe equations (7.6),

T (u)Q(u) =
n∏

l=1

sinh(u + iα − ξl)Q(u + iα)

+ q̃e(2κ+nf −ñf )u

∏nf

f =1 sinh(u + iα − μf )
∏ñf

f =1 sinh(u − μ̃f )∏n
l=1 sinh(u − ξl)

Q(u − iα), (7.10)

where χ+(z) degenerates to the T -function

T (u) = 2−ne−nu(−1)n/2ν̃1/2 lim
q2→1

χ+(e2u). (7.11)

In the case of pure gauge, κ = nf = ñf = 0, we recover in the limit Re ξl → ∞ the TQ-equation
of the relativistic periodic Toda chain with a twist,

T̃ (u)Q̃(u) = Q̃(u + iα)+ q̃e2nu+niαQ̃(u − iα), (7.12)

with a minor modification of the functions T̃ (u) = en(u+iα)T (u), Q̃(u) = A−iu/αQ(u), A = 2−ne
∑

l ξl .
In Eq. (7.10), the cutoff-dependent terms can be absorbed by a modification of the definition of

the function Q(u) that consists in introducing spurious poles,

Q(u) = e−nu∏NB
r=1 sinh(u − λr)∏n

l=1
∏nl

k=1 sinh(u − iα(k − 1)− τl)
, (7.13)

15 Its expression can be obtained by noticing that the shell formula (3.13) specialized at z = 0 implies

ν =
∏

x∈R(�Y )(−χx)∏
x∈A(�Y )(−χxq3)

.
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with tl = e2τl and ξl = τl + iαnl . Then, the TQ-equation no longer contains any cutoff variables,

T (u)Q(u) =
n∏

l=1

sinh(u + iα − τl)Q(u + iα)

+ q̃e(2κ+nf −ñf )u

∏nf

f =1 sinh(u + iα − μf )
∏ñf

f =1 sinh(u − μ̃f )∏n
l=1 sinh(u − τl)

Q(u − iα). (7.14)

This TQ-equation can be written in the form of a quantum algebraic curve by introducing the shift
operator

ŷ = eiα∂u , [ŷ, u] = iαŷ, ŷz − q1zŷ = 0, (7.15)

and it reads

T (u)Q(u) =
( n∏

l=1

sinh(u + iα − τl)ŷ

+ q̃e(2κ+nf −ñf )u

∏nf

f =1 sinh(u + iα − μf )
∏ñf

f =1 sinh(u − μ̃f )∏n
l=1 sinh(u − τl)

ŷ−1
)

Q(u). (7.16)

In this form, the limit q1 → 1 is easily obtained: the operator ŷ becomes a variable y commuting
with u (or z), and the function Q(u) can be factorized out, leaving only

T (u) = y
n∏

l=1

sinh(u − τl)+ q̃y−1e(2κ+nf −ñf )u

∏nf

f =1 sinh(u − μf )
∏ñf

f =1 sinh(u − μ̃f )∏n
l=1 sinh(u − τl)

, (7.17)

or, in the original variables,

t(z) = y
n∏

l=1

(1 − zt−1
l )+ q(−1)ny−1 zn+κm(z)∏n

l=1(1 − zt−1
l )

, with t(z) = lim
q1,q2→0

χ+(z). (7.18)

Here, t(z) is a polynomial from its definition in terms of χ+(z), and we recover the expression of
the Seiberg–Witten curve for N = 1 SYM on R

4 × S1.16

8. Degenerate limit

In the degenerate limit, the results presented in this article should reproduce those obtained in
Ref. [55] and pertaining to the SHc algebra and 4d Nekrasov partition functions. To perform the
limit procedure, it is necessary to express explicitly the dependence on the radius R of the fifth
dimension, which enters the Kerov deformation parameters as qα = e−Rεa , where α = 1, 2, 3 and
ε1 +ε2 +ε3 = 0. It also appears in the central charge parameters t� = e−Ra� when we try to associate
the 4d Coulomb charges a� with t�. We further denote χx = e−Rφx with φx = a�+(i−1)ε1+(j−1)ε2

16 Further defining ỹ = yz−n/2
∏

l(1 − zt−1
l ), it can be written in the more familiar form [73]

ỹ + q(−1)n
zκm(z)

ỹ
= z−n/2t(z).
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for a box (�, i, j) ∈ �Y , the spectral parameter z = e−Rζ , the mass parameter μ = e−Rm, and so on in
terms of R. The radius R is then sent to zero in order to recover the 4d background R

4
ε1,ε2

, and we
consider its first nontrivial order.

As R → 0, it is easily seen from expression (3.15) of their eigenvalues that the operators Y±(z)
degenerate to the operator YBMZ(z) introduced in Ref. [55],

Y+(z) → (−R)nYBMZ(ζ ), Y−(z) → RnYBMZ(ζ − ε3), (8.1)

in agreement with relation (3.16), with ν → (−1)n. As a result, the Cartan currents ψ±(z), which
are expressed as a ratio of Y± operators in Eq. (2.12), degenerate into the Cartan generator of SHc,

ψ±(z) → R2ε1ε2(−1)nE(ζ ). (8.2)

On the other hand, the coefficients �x(�Y ) degenerate into the coefficients defined in Ref. [55]
with the same notation up to a phase factor (−1)n/2. As a consequence of the representation (3.8),
the positive/negative modes of the Drinfeld currents degenerate into the generating series of SHc

generators with degree ±1 as follows:

e±(z) → ∓R−1(−1)n/2D+1(ζ ), f±(z) → ∓R−1(−1)n/2D−1(ζ ). (8.3)

The coefficient γ1 behaves as γ1 ∼ R3ε1ε2ε3, and the commutation relation (2.5) reduces to one of
the fundamental commutators defining the SHc algebra,

[eη(z), f ′
η(z

′)] → (−1)n

R2 [D1(ζ ), D−1(ζ
′)] = (−1)n

R2

ηη′

ε3

E(ζ )− E(ζ ′)
ζ − ζ ′ , (8.4)

where ψ+
0 /γ1 drops out because it is of subleading order, ψ+

0 being of order O(R2) as seen in
Eq. (8.2). Finally, the function h(z) degenerates into a ratio of scattering factors for SHc:

h(z) → S(−ζ )
S(ζ )

, S(ζ ) = (ζ + ε1)(ζ + ε2)

ζ(ζ + ε+)
, (8.5)

and the relations (2.3) reproduce the braiding relations satisfied by the currents D±1(z) [23].
It is well known that the degeneration of the 5d Nekrasov partition function reproduces the

4d partition function, with the same building blocks. Note however, that the Chern–Simons term
ZCS(κ , �Y ) → 1 + O(R) disappears in this limit. It is also possible to take the limit of the qq-
character using the explicit expression provided in Eq. (6.13) and recover the 4d qq-character for a
theory with the same field content.

9. Discussion

In this article, we have analyzed the action of the quantum W1+∞ algebra E on instanton partition
functions of N = 1 5d SYM. For this purpose, the instanton partition functions have been built
out of elements of the rank-n representation of the algebra: Gaiotto states, intertwiner, flavor, and
Chern–Simons vertex operators (or the Chern–Simons weighted Gaiotto state) encode the presence
of, respectively, the gauge, bifundamental, fundamental/antifundamental multiplets, and Chern–
Simons terms. The action of the algebra on these building blocks has been given in the form of
an action of the Drinfeld currents on the Gaiotto states Eqs. (2.12), (5.4)–(5.6) written in terms
of the operators Y±(z), and of their commutation relations with intertwiner and vertex operators
Eqs. (5.10), (5.12). These operators are elements of the Cartan of the algebra, diagonal in the AFLT
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basis, and can be used to define the qq-characters. The qq-characters encode, through their regularity
property, a set of Ward identities (or recursion relations) obeyed by the instanton partition function.
We have shown that this regularity follows from an invariance under the action of the Drinfeld
currents e(z) and f (z). This derivation can easily be extended to arbitrary linear quivers, and an
explicit expression has been provided for the qq-characters of the A2 quiver. However, the treatment
of D, E quivers requires the introduction of a trivalent vertex whose transformation properties are
still poorly understood. We hope to be able to provide more details on this issue in future work.

Very recently, a deformed version of the algebra E has attracted a lot of attention in the context of
AGT correspondence and its extension to five- and six-dimensional gauge theories [37,38,46,74]. It is
obtained from E by the introduction of a central element γ that twists the commutation relations, and
will be denoted here by Eγ . As a result, the Cartan elements ψ±(z) of E are no longer commuting
in Eγ , and the representation on partition functions presented here no longer holds. In fact, the
representation of the algebra Eγ on the BPS sector of 5d N = 1 SYM requires the introduction of a
set of source terms coupled to the operators Dk defined in Eq. (3.11),

Zinst.(z) =
〈
exp
(

t0D0,1 −
∑

n>0
(1 − qn

1)(1 − qn
2)tnD0,n+1

)〉
. (9.1)

The Drinfeld currents generating Eγ are then expressed in terms of the modes of a q-deformed
Heisenberg algebra [25,38,46,59] based on the bosonic modes an = ∂tn and a−n = tn. This underlying
action of the algebra Eγ accounts for both the Bethe/gauge and BPS/CFT correspondences. The
correspondence with 2d conformal field theories is due to the presence of quantum versions of q-
Virasoro and Wn algebras in the rank-n representations [25]. This is already an important feature of E
that can be verified in this paper. On the other hand, the deformation into Eγ permits the construction
of a TQ-system [46], thus rendering integrability at the level of the full Omega-background.17 The
qq-character studied here corresponds to the trace of the transfer matrix associated to the TQ-system.
The algebras E and Eγ share a common subalgebra spanned by the positive modes of the Drinfeld
currents e+(z), f+(z), and ψ+(z). It is clear from our derivation that the action of these modes is
only sufficient to prove the regularity of the qq-character. This fact explains why the same property
can be obtained in our simpler, untwisted context. Furthermore, the operators Y±(z) constructed
here can be identified with the positive q-Heisenberg modes of similar operators defined in Ref. [46]
for Eγ . However, principally due to the fact that both Y±(z) are diagonal, it does not seem possible
to construct the full TQ-system in our algebraic framework. But it still provides a fast and efficient
method for the derivation of the polynomial qq-characters encoding the Ward identities of the theory.

Finally we would like to mention the rapid developments on the connection between topological
strings, the Ding–Iohara–Miki algebra, and instanton partition functions for 5d SYM [37,38,56].
In this approach, the Dynkin diagram of the gauge group and the quiver diagram are treated on
an equal footing, and exchanged under S-duality. This treatment seems natural if we consider the
whole algebra of symmetry Uq(glr) affine for the Ar quiver, whereas we focused in this paper on the
diagonal subalgebra

(
Uq(gl1)

)⊗r . We hope to address the whole symmetry algebra in a future work,
and construct algebraically the intertwiner operator representing the bifundamental contribution in
this extended framework.

17 For instance, for gauge theories of rank n = 2, the TQ-system consists of the stress-energy tensor of
q-Virasoro and a q-analogue of the BRST charges obtained by q-integration of the screening! currents.
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Appendix A. Derivation of the identity (2.16)

As an illustration of the derivation of the identity (2.16), we will consider the commutation relation
between the negative modes only. It is obtained by projecting the commutator (2.5) on positive
powers of z and w in an expansion of the right-hand side,

γ1[e−(z), f−(w)] = P+
z=0P+

w=0

∑
n∈Z

( z

w

)n∑
k≥0

(
ψ+

k z−k − ψ−
−kzk

)

= ψ+
0 −

∑
k≥0

ψ−
−k

k∑
n=0

wnzk−n. (A.1)

The projection operator P+
0 is defined in Eq. (5.3); here the variable on which it is acting has been

made explicit. The modes ψ−
k are obtained from the current ψ−(z) after integration along a contour

circling z = 0,

ψ−
−k = 1

2iπ

∮
0

dx

x
x−kψ−(x). (A.2)

This formula is valid provided that the contour of integration does not include any of the current
singularities. Inserting the integral into the expression of the commutator, we obtain

γ1[e−(z), f−(w)] = ψ+
0 − 1

2iπ

∮
0

dx

x
ψ−(x)

∑
k≥0

k∑
n=0

(w

z

)n ( z

x

)k
. (A.3)

In order to take the sum, we assume |w| < |z| and choose the contour of the integral such that
|z| < |x|. Thus, this contour surrounds the origin but also the points at x = z and x = w. Then we
can use the formula

∑
k≥0

k∑
n=0

(w

z

)n ( z

x

)k = x2

(x − z)(x − w)
(A.4)
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to rewrite the commutator as a contour integral that is easily evaluated by residues (under the
assumption that |z| is also smaller than the modulus of all the singularities in ψ−(x)):

γ1[e−(z), f−(w)] = ψ+
0 − 1

2iπ

∮
0

dx
xψ−(x)

(x − z)(x − w)
= ψ+

0 − zψ−(z)− wψ−(w)
z − w

, |w| < |z|.
(A.5)

The other three commutators are evaluated using similar arguments.

Appendix B. Check of the algebra for the rank-n representation
B.1. Preliminaries

Using the shell formula (3.13), the function�Y (z) can also be written as a product over all the boxes
in the Young diagrams,

�Y (z) = (1 − q−1
1 )(1 − q−1

2 )

n∏
�=1

1 − zt−1
� q−1

3

z − t�

∏
x∈�Y

h(χx/z). (B.1)

As a result, under a variation of the box content of Young diagrams, it is simply multiplied by a
scattering factor,

�Y±x(z)

�Y (z)
= h(χx/z)

±1. (B.2)

Taking the residues, we deduce that for x, y such that χx 	= q±1
α χy we have the properties(

�x(�Y ± y)

�x(�Y )

)2

= h(χy/χx)
±1 and

(
�x(�Y ± x)

�x(�Y )

)2

= 1. (B.3)

B.2. Commutation relations

The commutation relations (2.4) directly follow from the covariance of �Y (z):

ψ±(z)e(w)|�t, �Y 〉 =
∑

x∈A(�Y )
δ(w/χx)�x(�Y )�Y+x(z)|�t, �Y + x〉

=
∑

x∈A(�Y )
δ(w/χx)�x(�Y )h(χx/z)�Y (z)|�t, �Y + x〉

= h(w/z)e(w)ψ±(z), (B.4)

and similarly for f (z).
To check the commutation relation of e(z)e(w), we assume z 	= q±1

α w for α = 1, 2, 3, and consider

e(z)e(w) |�t, �Y 〉 =
∑

x∈A(�Y ),y∈A(�Y+x)

δ(χy/z)δ(χx/w)�x(�Y )�y(�Y + x) |�t, �Y + x + y〉

=
∑

x∈A(�Y ),y∈A(�Y )
x 	=y

δ(χy/z)δ(χx/w)�x(�Y )�y(�Y + x) |�t, �Y + x + y〉

+
∑

x∈A(�Y ),y∈A( �Y+x)
y/∈A(�Y )

δ(χy/z)δ(χx/w)�x(�Y )�y(�Y + x) |�t, �Y + x + y〉. (B.5)
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In the second term, we have eitherχy = q1χx orχy = q2χx, which provides a delta function δ(qαw/z)
with α = 1 or α = 2. This delta function is never realized since g(z, w) kills the nonvanishing
contribution from z = q±1

α w, and there only remains

e(z)e(w) |�t, �Y 〉 =
∑

x∈A(�Y ),y∈A(�Y )
x 	=y

δ(χy/z)δ(χx/w)�x(�Y )�y(�Y + x) |�t, �Y + x + y〉.

Using

�x(�Y )�y(�Y + x) = h(χx/χy)�y(�Y )�x(�Y + y), (B.6)

we find

e(z)e(w) |�t, �Y 〉 =
∑

x∈A(�Y ),y∈A(�Y )
x 	=y

δ(χy/z)δ(χx/w)h(χx/χy)�y(�Y )�x(�Y + y) |�t, �Y + x + y〉

= h(w/z)e(w)e(z)|�t, �Y 〉. (B.7)

Finally, we address the commutator between e(z) and f (w). It is expressed as a sum over states
|�t, �Y + x − y〉 with either x ∈ A(�Y ) and y ∈ R(�Y + x), or y ∈ R(�Y ) and x ∈ A(�Y − y). Due to the
properties (B.3), only the diagonal terms x = y remain, and using (3.5),

[e(z), f (w)] |�t, �Y 〉 =
( ∑

x∈R(�Y )
χ−n

x δ(z/χx)δ(w/χx)�
2
x(

�Y )

−
∑

x∈A(�Y )
χ−n

x δ(z/χx)δ(w/χx)�
2
x(

�Y )
)

|�t, �Y 〉

= 1

γ1
δ(z/w)

( ∑
x∈A(�Y )

δ(z/χx)χ
−1
x Res

w→χx
�Y (w)

+
∑

x∈R(�Y )
δ(z/χx)χ

−1
x Res

w→χx
�Y (w)

)
|�t, �Y 〉.

The agreement with Eq. (2.5) is obtained by decomposing the δ-function into positive and negative
powers,

χ−1
x δ(z/χx) =

[
1

z − χx

]
+

−
[

1

z − χx

]
−

, (B.8)

where the first term should be expanded in powers of z−1 as in ψ+(z), and the second one in powers
of z as in ψ−(z).

Eventually, to check the Serre relations, we perform a change of normalization to simplify the
calculation. It is also possible to check it directly, however, the choice of the correct branch for
the square roots in the expressions for e and f may be a little confusing. The renormalized basis is
defined as

|�t, �Y 〉′ =
(
Zvect.(�t, �Y )

)−1/2 |�t, �Y 〉, (B.9)
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and the representation for e(z) takes the form

e(z) |�t, �Y 〉′ = r
∑

x∈A(�Y )
δ(z/χx)�

′
x(

�Y ) |�t, �Y + x〉′ , �′
x(

�Y ) =
∏

y∈R(�Y ) 1 − χyχ
−1
x q−1

3∏
y∈A(�Y )

y 	=x

1 − χyχ
−1
x

, (B.10)

where the constant r is expressed simply in terms of q1 and q2 and can be found in Eq. (5.5). This
representation is exactly the one presented in Ref. [23] up to the overall factor −q3r−1, which is
irrelevant for the consistency of the representation. Since e(z) adds a box to the Young diagrams, the
only nonvanishing matrix elements of the Serre relation for e(z) are proportional to

′ 〈�t, �Y + x + y + z| [e0, [e1, e−1]] |�t, �Y 〉′ = r3H (χx,χy,χz; �Y )�′
x(

�Y )�′
y(

�Y )�′
z(

�Y ), (B.11)

where we have introduced a renormalized bra vector orthonormal to the renormalized vectors. The
function H (χx,χy,χz; �Y ) can be expressed in terms of the rational function θ(z) defined as

θ(z) = (1 − z)(1 − q−1
3 z)

(1 − q1z)(1 − q2z)
,

�′
x(

�Y + y)

�′
x(

�Y ) = θ(χy/χx) (B.12)

as follows:

H (χx,χy,χz; �Y ) = χxχ
−1
y

(
θ(χy/χx)θ(χy/χz)θ(χx,χz)− θ(χx/χy)θ(χx/χz)θ(χy/χz)

−θ(χz/χy)θ(χy/χx)θ(χz/χx)+ θ(χz/χx)θ(χz/χy)θ(χx/χy)
)

+ (permutations among x, y, and z). (B.13)

Here it is assumed that x, y, and z are in a completely general position, i.e., no two of them sit side
by side in the Young diagram. Contact terms must be treated separately, case by case. The terms we
explicitly wrote down in the above expression come from the assignment that x is added by e1, y
is added by e−1, and z added by e0. All other permutations cover the remaining assignments. After
a tedious computation (or with Mathematica), it is seen that the coefficients H (χx,χy,χz; �Y ) are
indeed vanishing. This implies that the rank-n representation also satisfies the Serre relation for e(z)
before the change of normalization.

With the same redefinition of the ket vectors as in Eq. (B.9), the action of f (z) also reproduces the
representation given in Ref. [23] up to an overall factor r−1:

f (z) |�t, �Y 〉′ = rz−n
∑

x∈R(�Y )
δ(z/χx)

∏
y∈A(�Y ) 1 − χxχ

−1
y q−1

3∏
y∈R(�Y )

y 	=x

1 − χxχ
−1
y

|�t, �Y − x〉′ . (B.14)

Serre relations are obtained using the same arguments as in the case of e(z) treated previously.

Appendix C. Recursion formula for the generalized Nekrasov factor

In this appendix, we derive the recursion formula for the generalized Nekrasov factors

ÑY ,W (t) =
∏
(i,j)∈Y

F(t, W ′
j − i, Yi − j + 1)

∏
(i,j)∈W

F(t, −Y ′
j + i − 1, −Wi + j), (C.1)

where F(t, n, m) is an arbitrary function. By setting it as

F(t, n, m) =
{

t + ε1m − ε2n for 4d,

1 − tq−n
1 qm

2 for 5d,
(C.2)
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Fig. C.1. Rectangular decomposition of a Young diagram Y .

we obtain the Nekrasov factors in 5d and 4d. The index (i, j) refers to the box in the ith row and jth

column. Consider the ratio ÑY+x,W (t)
ÑY ,W (t)

. By adding a box x in the I th row and J th column of the Young

diagram Y , YI and Y ′
J increase by 1. The ratio of the Nekrasov factor before and after the addition

of the box becomes,

ÑY+x,W (t)

ÑY ,W (t)
= F(t, W ′

J − I , YI − J + 2)

×
YI∏

j=1

F(t, W ′
j − I , YI − j + 2)

F(t, W ′
j − I , YI − j + 1)

W ′
J∏

i=1

F(t, −Y ′
J + i − 2, −Wi + J )

F(t, −Y ′
J + i − 1, −Wi + J )

. (C.3)

In the second term, the cancelation between the numerator and the denominator occurs when
W ′

j = W ′
j−1 and nonvanishing factors remain at the corners of W where W ′ changes. Similar

cancelation occurs in the third factor and again the nonvanishing factors lie at the remaining corners
of W . In order to show the remaining terms in the ratio, we introduce the rectangle decomposition
of Y and W as shown in Fig. C.1. We use the variables ri, si, . . . to describe the shape of Y , and the
bar variables r̄i, s̄i, . . . to encode the shape of W . After the cancelations, we find the formula

ÑY+x,W (t)

ÑY ,W (t)
=
∏f̄ +1

p=1 F(t, s̄p − I , J − r̄p−1)∏f̄
p=1 F(t, s̄p − I , J − r̄p)

. (C.4)

Similarly, we have

ÑY−x,W (t)

ÑY ,W (t)
=

∏f̄
p=1 F(t, s̄p − I , J − r̄p)∏f̄ +1

p=1 F(t, s̄p − I , J − r̄p−1)

, (C.5)

ÑY ,W+x(t)

ÑY ,W (t)
=
∏f +1

p=1 F(t, I − sp − 1, rp−1 + 1 − J )∏f
p=1 F(t, I − sp − 1, rp − J + 1)

,

ÑY ,W−x(t)

ÑY ,W (t)
=

∏f
p=1 F(t, I − sp − 1, rp − J + 1)∏f +1

p=1 F(t, I − sp − 1, rp−1 + 1 − J )
. (C.6)
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To recover the identities presented in Eqs. (4.26)–(4.29) is a matter of identification of the boxes’
coordinates in each set, e.g.,

A(Y ) = {(rp−1 + 1, sp + 1) for p = 1, . . . , f + 1}, R(Y ) = {(rp, sp) for p = 1, . . . , f }. (C.7)

Appendix D. Action of the Drinfeld currents on the coherent states
D.1. Gaiotto state

The derivations of Eqs. (5.4) and (5.6) follows what was done in Ref. [55] to treat the 4d case.
Expanding the action of e±(z) on the |�t, �Y 〉κ basis, we find

e±(z)|G,�t〉κ = ∓
∑

�Y

∑
x∈R(�Y )

[
�x(�Y − x)χ−κ

x

1 − zχ−1
x

]
±

(
Zvect.(�t, �Y − x)

Zvect.(�t, �Y )

)1/2 (
Zvect.(�t, �Y )

)1/2 |�t, �Y 〉κ ,

(D.1)
which gives, using the recursion formulae,

e±(z)|G,�t〉κ = ∓r
∑

�Y

∑
x∈R(�Y )

[
χ−κ

x

1 − zχ−1
x

]
±

∏
y∈A(�Y ) 1 − χxχ

−1
y q−1

3∏
y∈R(�Y )

y 	=x

1 − χxχ
−1
y

[Zvect.(�t, �Y )]1/2|�t, �Y 〉κ

= ∓r
∑

�Y

∑
x∈R(�Y )

[
1

z − χx

]
±

Res
z→χx

z−κ
∏

y∈A(�Y ) 1 − zχ−1
y q−1

3∏
y∈R(�Y ) 1 − zχ−1

y
[Zvect.(�t, �Y )]1/2|�t, �Y 〉κ .

(D.2)

To rewrite the summation over poles in a compact form, we use the following trick. Let g(z) be a
rational function of the complex variable z. We assume that it has only simple poles, located at z = zi

(i = 1, . . . , N ), and possibly multiple poles at z = 0, ∞. Such a function can be written uniquely in
the form

g(z) = g+(z)+ g−(z)+
N∑

i=1

ci

z − zi
, g+(z) =

N+∑
n=0

gnzn, g−(z) =
N−∑
n=1

g−nz−n, (D.3)

where the coefficients ci are evaluated as residues of g(z) at z = zi, and ci = Resz→zi g(z) and g±(z)
are identified with g+(z) = P+∞(g(z)), g−(z) = P−

0 (g(z)). One may apply the expansion at z = ∞
or z = 0 by projecting out the divergent part,

[
P−∞(g(z))

]
+ = g−(z)+

N∑
i=1

[
ci

z − zi

]
+

,
[
P+

0 (g(z))
]
− = g+(z)+

N∑
i=1

[
ci

z − zi

]
−

. (D.4)

This trick can be applied to the right-hand side of Eq. (D.2). In the case of e+(z), it can be expressed
as a sum over the simple poles of the function g(z) = zn−κνỸ+(zq−1

3 , �Y ) at z = χx for x ∈ R(�Y ).
The trick applies if the function g(z) has no pole at z = 0, so that g−(z) = 0. This condition imposes
a restriction to κ ≤ 0 that is deduced from the asymptotic form Y+(z, �Y ) ∼ z−n at z = 0. In this
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range of the Chern–Simons level, the action of e+(z) can be expressed as

e+(z)|G,�t〉κ = −r

⎡⎣∑
�Y

P−∞(zn−κνỸ+(zq−1
3 , �Y ))

(
Zvect.(�t, �Y )

)1/2 |�t, �Y 〉κ
⎤⎦

+
= −rνP−∞(zn−κY+(zq−1

3 ))|G,�t〉κ . (D.5)

A similar argument holds for the action of e−(z). In this case, the right-hand side of Eq. (D.2) repre-
sents the sum over simple poles contribution of the function g(z) = Ỹ−(z, �Y ), which is equivalent
to the previous one due to the relation (3.16). However, it is now required that the pole contribution
at infinity vanishes, i.e., g+(z) = 0, which provides a different constraint over the Chern–Simons
level, namely that κ > n. With this condition, Eq. (D.2) becomes

e−(z)|G,�t〉κ = r

⎡⎣∑
�Y

P+
0 (z

−κ Ỹ−(z, �Y ))
(
Zvect.(�t, �Y )

)1/2 |�t, �Y 〉κ
⎤⎦

−
= rP+

0 (z
−κY−(z))|G,�t〉κ . (D.6)

The derivation of the left action on the bra is similar,

κ 〈G,�t| e±(z) = ±r
∑

�Y
κ 〈�t, �Y |

(
Zvect.(�t, �Y )

)1/2

×
∑

x∈A(�Y )

[
1

z − χx

]
±

Res
z→χx

z−κ
∏

x∈R(�Y ) 1 − χxq−1
3 z−1∏

x∈A(�Y ) 1 − χxz−1 . (D.7)

The right-hand side can be written as the sum over the simple poles of g(z) = z−κ Ỹ+(z, �Y )−1 or
g(z) = νqn

3zn−κ Ỹ−(zq3, �Y )−1, leading to

κ〈G,�t|e+(z) = rP−∞
(
κ〈G,�t| 1

zκY+(z)

)
, for κ ≤ n, (D.8)

κ 〈G,�t| e−(z) = −rνqn
3P+

0

(
κ〈G,�t| zn−κ

Y−(zq3)

)
, for κ > 0. (D.9)

Similarly the action of the Drinfeld currents f±(z) decomposed on the |�t, �Y 〉 basis reads

f±(z)|G,�t〉κ = ±r
∑

�Y

∑
x∈A(�Y )

[
1

z − χx

]
±

× Res
z→χx

zκ−n

∏
x∈R(�Y ) 1 − χxq−1

3 z−1∏
x∈A(�Y ) 1 − χxz−1

(
Zvect.(�t, �Y )

)1/2 |�t, �Y 〉κ ,

κ 〈G,�t| f±(z) = ∓r
∑

�Y
κ 〈�t, �Y |

(
Zvect.(�t, �Y )

)1/2

×
∑

x∈R(�Y )

[
1

z − χx

]
±

Res
z→χx

zκ−n

∏
x∈A(�Y ) 1 − zχ−1

x q−1
3∏

x∈R(�Y ) 1 − zχ−1
x

. (D.10)
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Again, the calculation can be performed using the same rational functions with κ replaced by n − κ

and the action on bra and kets exchanged:

f+(z)|G,�t〉κ = rP−∞
(

zκ−n

Y+(z)

)
|G,�t〉κ , for κ ≥ 0,

f−(z)|G,�t〉κ = −rνqn
3P+

0

(
zκ

Y−(zq3)

)
|G,�t〉κ , for κ < n,

κ〈G,�t|f+(z) = −rνP−∞
(
κ〈G,�t|zκY+(zq−1

3 )
)

, for κ ≥ n,

κ〈G,�t|f−(z) = rP+
0

(
κ〈G,�t|zκ−nY−(z)

)
, for κ < 0. (D.11)

D.2. Intertwiner

The strategy to prove the two formulas (5.10) is same as in the case of Gaiotto states. We first analyze
the action of e±(z) on the intertwiner. Using the discrete Ward identities on vector and bifundamental
contributions, we find

e±(z)V12(μ, κ , κ ′) = ±r
∑
�Y1,�Y2

∑
x∈R(�Y1)

χ1−κ
x

[
1

z − χx

]
±

∏
y∈A(�Y1)

1 − χxχ
−1
y q−1

3∏
y∈R(�Y1)

y 	=x

1 − χxχ
−1
y

×
∏

y∈R(�Y2)
1 − μ−1χxχ

−1
y∏

y∈A(�Y2)
1 − μ−1χxχ

−1
y q−1

3

Z̄bfd.(�t1, �Y1;�t2, �Y2|μ)|�t1, �Y1〉κ κ ′ 〈�t2, �Y2|

(D.12)

and

(q3μ)
−κ ′
μn2

ν1

ν2
V12(μ, κ , κ ′)e±(zq−1

3 μ−1) = ±r(q3μ)
1−κ ′

μn2
ν1

ν2

∑
�Y1,�Y2

∑
x∈A(�Y2)

χ1−κ ′
x

[
1

z − χxq3μ

]
±

×
∏

y∈R(�Y2)
1 − χ−1

x χyq−1
3∏

y∈A(�Y2)
y 	=x

1 − χ−1
x χy

∏
y∈A(�Y1)

1 − μ−1χ−1
x χy∏

y∈R(�Y1)
1 − μ−1χ−1

x χyq−1
3

Z̄bfd.(�t1, �Y1;�t2, �Y2|μ)|�t1, �Y1〉κ κ ′ 〈�t2, �Y2|.

(D.13)

We focus on the case of e+(z) since the reasoning is the same for the negative modes. Then, these
two expressions can be rewritten as a sum over residues of a rational function:

e+(z)V12(μ, κ , κ ′) = −r
ν1

ν2
μn2

∑
�Y1,�Y2

∑
x∈R(�Y1)

[
1

z − χx

]
+

Res
z→χx

zn1−n2−κ Ỹ+(zq−1
3 , �Y1)

Ỹ+(zμ−1q−1
3 , �Y2)

× Z̄bfd.(�t1, �Y1;�t2, �Y2|μ)|�t1, �Y1〉κ κ ′ 〈�t2, �Y2|,

(q3μ)
−κ ′
μn2

ν1

ν2
V12(μ, κ , κ ′)e+(zq−1

3 μ−1) = r
ν1

ν2
μn2

∑
�Y1,�Y2

∑
x∈A(�Y2)

[
1

z − χxq3μ

]
+

(D.14)

× Res
z→χxq3μ

z−κ ′ Ỹ+(zq−1
3 , �Y1)

Ỹ+(zμ−1q−1
3 , �Y2)

× Z̄bfd.(�t1, �Y1;�t2, �Y2|μ)|�t1, �Y1〉κ κ ′ 〈�t2, �Y2|.
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The two rational functions coincide when the Chern–Simons levels are related through κ ′ = κ +
n2 −n1. In this case, it is possible to rewrite the action of e+(z)with the help of the diagonal operator
Y+(z), provided that no unwanted pole appears at the origin. This requirement of regularity at z = 0
imposes an additional restriction to the range of the Chern–Simons parameters: we have to impose
κ ≤ 0 in order to obtain

e+(z)V12(μ, κ , κ ′)− ν1

ν2
(q3μ)

−κ ′
μn2V12(μ, κ , κ ′)e+(zμ−1q−1

3 )

= −r
ν1

ν2
μn2

[
P−∞

(
z−κ ′Y+(q−1

3 z)V12(μ, κ , κ ′) 1

Y+(q−1
3 μ−1z)

)]
+

. (D.15)

A similar expression can be obtained for the action of the negative modes e−(z) in terms of the
operators Y−(z),

e−(z)V12(μ, κ , κ ′)− ν1

ν2
(q3μ)

−κ ′
μn2V12(μ, κ , κ ′)e−(zμ−1q−1

3 )

= r

[
P+

0

(
z−κY−(z)V12(μ, κ , κ ′) 1

Y−(μ−1z)

)]
−

, (D.16)

valid for κ ′ = κ + n2 − n1 and κ ′ > 0 (or κ > n1 − n2) from the condition of regularity at infinity.
The demonstration for f±(z) is parallel to what has been done for the action of e±(z). In the case

of f+(z), we find

f+(z)V12(μ, κ , κ ′) = rν2μ
−n2

∑
�Y1,�Y2

∑
x∈A(�Y1)

[
1

z − χx

]
+

Res
z→χx

zκ−n1+n2
Ỹ+(zq−1

3 μ−1, �Y2)

Ỹ+(z, �Y1)

× Z̄bfd.(�t1, �Y1;�t2, �Y2|μ)|�t1, �Y1〉κ κ ′ 〈�t2, �Y2|, (D.17)

μκ
′−n2V12(μ, κ , κ ′)f+(zμ−1) = −rν2μ

−n2
∑
�Y1,�Y2

∑
x∈R(�Y2)

[
1

z − χxμ

]
+

Res
z→χxμ

zκ
′ Ỹ+(zq−1

3 μ−1, �Y2)

Ỹ+(z, �Y1)

× Z̄bfd.(�t1, �Y1;�t2, �Y2|μ)|�t1, �Y1〉κ κ ′ 〈�t2, �Y2|.

Again, the two rational functions involved coincide when κ ′ = κ + n2 − n1. Further, imposing
κ ≥ 0, the action of f+(z) can be written in terms of the operator Y+(z) acting diagonally in each
representation space:

f+(z)V12(μ, κ , κ ′)− μκ
′−n2V12(μ, κ , κ ′)f+(zμ−1) (D.18)

= rν2μ
−n2

[
P−∞

(
zκ

′

Y+(z)
V12(μ, κ , κ ′)Y+(zq−1

3 μ−1)

)]
+

. (D.19)

Similarly, for f−(z) with κ ′ = κ + n2 − n1 and κ ′ < 0 we find

f−(z)V12(μ, κ , κ ′)− μκ
′−n2V12(μ, κ , κ ′)f−(zμ−1) (D.20)

= −rν1qn1
3

[
P+

0

(
zκ

Y−(zq3)
V12(μ, κ , κ ′)Y−(zμ−1)

)]
−

. (D.21)
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Appendix E. Concrete evaluation of the qq-character

In the pure gauge case, κeff = 0 and the second term in Eq. (6.5) does not contribute to the polynomial
part of χ(z). Its only role is to cancel the poles coming from the first term. As a result, it is sufficient
to expand the first term at z = ∞ since

χ(z) = P+∞
〈
νznY+(zq−1

3 )
〉

, (E.1)

where the expectation value 〈· · ·〉 denotes the weighted trace (6.1) with Chern–Simons level turned
off, i.e., κL = κR = 0. The eigenvalues of the operator Y+(z) can be expressed as a product of the
box content of the n-tuple Young diagram �Y upon using the shell formula (3.13),

νznỸ+(zq−1
3 , �Y ) = ν

n∏
l=1

(z − tlq3)
∏
x∈�Y

(1 − χxq−1
1 /z)(1 − χxq−1

2 /z)

(1 − χxq3/z)(1 − χx/z)
. (E.2)

Expanding the second product at z = ∞ leads to

χ(z) = ν

n∏
l=1

(z − tlq3)

(
1 + (1 − q1)(1 − q2)

q3

z

〈∑
x∈�Y

χx

〉

+ 1

2
(1 − q2

1)(1 − q2
2)

q2
3

z2

〈∑
x,y∈�Y
x 	=y

χxχy

〉

+ (1 − q1)(1 − q2)(1 + q−1
3 )

q2
3

z2

〈∑
x∈�Y

χ2
x

〉
+ O(z−3)

)
. (E.3)

Appendix F. Regularity of the qq-characters: A2 quiver case

In this section of the appendix, we show the regularity of the qq-characters in the case of two nodes,
with the Chern–Simons levels κ1 and κ2, and no fundamental/antifundamental matter. We assume that
the Chern–Simons levels belong to the physical range (6.28), and traces will be evaluated according
to Eq. (6.29).

We first analyze the trace of the modes f+(z). Using the right and left actions on Gaiotto states
given in Eq. (5.4) and (5.6), it is shown that〈

f+,1(z)
〉 = −rq−1

1 ν1P−∞
[
zκL1

〈
Y+

1 (zq−1
3 )
〉]

, κL1 ≥ n1,

〈
f+,2(z)

〉 = rP−∞

[
zκR2−n2

〈
1

Y+
2 (z)

〉]
, κR2 ≥ 0. (F.1)

In addition, the commutation (5.10) with the intertwiner provides the identity

〈
f+,1(z)

〉− q2μ
κL2−n2

〈
f+,2(zμ

−1)
〉 = rν2μ

−n2P−∞

[
zκL2

〈
Y+

2 (zq−1
3 μ−1)

Y+
1 (z)

〉]
, κR1 ≥ 0 (F.2)

for κL2 = κR1 + n2 − n1. Replacing the left-hand side with the help of Eq. (F.1) gives the condition

P−∞
[
zκL1−n1χ+

1 (z)
] = 0. (F.3)
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From this point, the analysis is the same as what was done in the case of a single gauge group. These
equations, valid for κL1 ≥ n1, imply a tower of constraints, and the stronger requirement is obtained
for κL1 = n1. We deduce that χ+

1 (z), which by definition depends only on the effective Chern–
Simons levels κi = κRi − κLi, is a polynomial of degree n1. The other, spurious, Chern–Simons
levels are then fixed to the values κR1 = κ1 + n1, κL2 = κ1 + n2, and κR2 = κ1 + κ2 + n2. The
method is valid if κR2 ≥ 0 and κR1 ≥ 0, which corresponds to κ1 ≥ −n1 and κ1 + κ2 ≥ −n2. These
conditions are always realized in the physical range (6.28).

A similar analysis can be performed for e+(z): using Eqs. (5.4), (5.6), and (5.10), we find for
κL2 = κR1 + n2 − n1,

〈
e+,1(z)

〉 = rq1P−∞

[〈
z−κL1

Y+
1 (z)

〉]
, κL1 ≤ n1,

〈
e+,2(z)

〉 = −rν2P−∞
[
zn2−κR2

〈
Y+

2 (zq−1
3 )
〉]

, κR2 ≤ 0,

〈
e+,2(z)

〉− q2
ν2

ν1
(q3μ)

κL2μ−n2
〈
e+,1(zq3μ)

〉 = rq2P−∞

[
z−κL2

〈
Y+

1 (zμ)

Y+
2 (z)

〉]
, κR1 ≤ 0. (F.4)

These three identities imply that

P−∞
[
z−κR2χ+

2 (z)
] = 0, (F.5)

with χ+
2 (z) defined in Eq. (6.30). The strongest condition is obtained for κR2 = 0; it implies that

χ+
2 (z) is a polynomial of degree n2. Setting κR2 = 0, κL2 = −κ2, κR1 = n1 − n2 − κ2, and
κL1 = n1 − n2 − κ1 − κ2, the conditions κL1 ≤ n1 and κR1 ≤ 0 are equivalent to κ1 + κ2 ≥ −n2 and
κ2 ≥ n1 − n2; they are always realized in the physical range (6.28).

The analysis of the negative modes is very similar. Starting from (κL2 = κR1 + n2 − n1)

〈
f−,1(z)

〉 = rq−1
1 P+

0

[
zκL1−n1

〈Y−
1 (z)

〉]
, κL1 < 0,

〈
f−,2(z)

〉 = −rν2qn2
3 P+

0

[〈
zκR2

Y−
2 (zq3)

〉]
, κR2 < n2,

〈
f−,1(z)

〉− q2μ
κL2−n2

〈
f−,2(zμ

−1)
〉 = −rν1qn1

3 P+
0

[
zκR1

〈
Y−

2 (zμ
−1)

Y−
1 (zq3)

〉]
, κL2 < 0, (F.6)

we find

P+
0

[
zκL1−n1χ−

1 (z)
] = 0, (F.7)

for all κL1 < 0. Choosing κL1 = −1 leads to the strongest constraint; it imposes that χ−
1 (z) is

a polynomial of degree n1. Then, we have κR1 = κ1 + 1, κL2 = κ1 + 1 + n2 − n1 and κR2 =
κ1 + κ2 + 1 + n2 − n1. The inequalities κR2 < n2 and κL2 < 0 are equivalent to κ1 + κ2 ≤ n1 and
κ1 ≤ n1 − n2, which are always true in the physical range.
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Finally, the action of e−(z) gives for κL2 = κR1 + n2 − n1,

〈
e−,1(z)

〉 = −rq1ν1qn1
3 P+

0

[
zn1−κL1

〈
1

Y−
1 (zq3)

〉]
, κL1 > 0,

〈
e−,2(z)

〉 = rP+
0

[
z−κR2

〈Y−
2 (z)

〉]
, κR2 > n2,〈

e−,2(z)
〉− q2

ν2

ν1
(q3μ)

κL2μ−n2
〈
e−,1(zq3μ)

〉
= −rq2

ν2

ν1
(q3μ)

κL2−κR1μ−n2P+
0

[
z−κR1

〈
Y−

1 (zq3μ)

Y−
2 (zq3)

〉]
, κL2 > 0, (F.8)

which implies for the qq-character defined in Eq. (6.31),

P+
0

[
z−κR2χ−

2 (z)
] = 0, (F.9)

for all κR2 > n2. The strongest condition is obtained for κR2 = n2 + 1; it implies that χ−
2 (z) is a

polynomial of degree n2. The other levels are set to κL2 = n2 + 1 − κ2, κR1 = n1 + 1 − κ2, and
κL1 = n1 + 1 − κ1 − κ2. The conditions κL1 > 0 and κL2 > 0 correspond to κ1 + κ2 ≤ n1 and
κ2 ≤ n2, again always true in the physical range.
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