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The physical background of this paper concerns the equations of Newtonian mechanics: 
we consider (autonomous) 2nd-order differential equations, represented by the vector 
field r = v i cg/cgqi+ fi(q, v)cg/Ov i on TM.  Associated to r ,  there are two important 
sets of 2nd-order linear PDE's, namely 

~, s, 0 f  ~ Of i 
r ~ C~ ,~) - ~ u ,  ) ~ - ~,i ~ = o ,  (1) 

) r ~ ( ~ d  + r \ o~, ~ ;  - ~ j  = o .  (2) 

The first is the equation for symmetries of r ,  (2) is the adjoint of (1). Geometrical 
objects on T M  associated to any solution of (1) and (2) are respectively: a symmetry 
vector field Y =/z  i O/oqi+r(Ix i) a/Ov i and a 1-form of type a = cq dvi+r(~i)  dq i which 
we call an adjoint symmetry of r .  Their intrinsic characterization could be described 
as follows (see [1] and [2]). Consider on T M  the following sets: 

Xr = {X e X(TM) I S(tr, xI) = 0 } ,  

I~ = {a 6 ]('(TM) I £r(S(a)) = a}, 

where S = O/Ov i ® dq ~ is the type (1,1) tensor field defining the vertical endomorphism 
on T M .  Then, Y 6 X ( T M )  is a symmetry of r iff Y 6 X r & ZrY 6 X r ,  whereas a is 
an adjoint symmetry of r iff a E X{. & £ r a  6 X~. 

Observe that  f r and X~ are modules over C ~ ( T M )  for the product F * Y = 
F r + r ( F )  s(y) and F ,  a = F a + r ( F )  S(a).  Having recognized the interest of these 
sets and their duality, it is natural to think of an extension of XI~ , i.e. to look for specific 
classes of differential forms on T M  which constitute a realization of the abstract algebra 
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of forms on the module I r .  It turns out (see [2]) that an appropriate generalization is 
obtained as follows: 

. ~  = {w 6 A ' ( T M )  IS-Jw is a form & Lr(S-Jw)  = w}, 

which is a module over C®(TM)  via the product F * w = F w  + F(F) S . Jw  and can be 
o 

given the structure of a graded algebra via the rule w ^ p = (S_Jw) ^ p + w A (S ~#) .  
In [2] we further investigated the elementary derivations of A r and also paid attention 
to (1,1) tensor fields preserving X r and X~, which are characterized by 

T~'*= {ReT*'t(TM) ISoR=RoS & So £rR=O}. 

REMARKS: Constructing this new kind of calculus, with all commutator and bracket 
relations one normally expects, was rather laborious, so that proofs were omitted. On 
the other hand, for all r-related objects introduced above, it is obvious that really 
only one set of coefficients is important (the others following by Lie derivation), which 
suggests that calculations and proofs might be economized by concentrating first on the 
semi.basic forms S-Jw. A paper on the full theory of derivations of semi-basic forms, 
which is needed for that purpose, is in preparation [3]. In what follows, w e  briefly 
report on its main results and the connection with the theory developed in [2]. Note for 
a start that one could think of derivations of semi-basic forms as being those derivations 
of A ( T M )  which preserve the subset A0(TM ) of semi-basic forms. It turns out that 
this does not provide the right approach for our needs. Instead, we study the theory 
of derivations of i ( r ) :  the graded algebra of differential forms along the projection 
r : T M  ~ M (isomorphic with A0(TM)) , whose elements act C °o (TM)-multilinearly 
on I (r), the set of vector fields along r. 

Local coordinate expressions for elements of I ( r )  and e.g. At(r) read: 

x= ) o , = o 

Along with the algebra A(r), we will further need vector-valued forms along r, i.e. 
elements of V(r) = A(r) ® I ( r ) .  

A derivation D of degree r on h(r)  is a map D : h(r)  ....... .~ A(r) with the Defini t ion:  
properties 

DC a + ~) = Da + A D~, A E R 

D(~AB)=DaA/~+(--I) praADB, aEAP(r) 
Every theory of derivations necessarily will follow the pattern of the pioneering work of 
FrSlicher and Nijenhuis [4]. The fundamental exterior derivative of our model, denoted 
by d v, is the derivation corresponding to ds in the identification of h (r) with Ao(TM ). 
Its action on functions, for example, is given by dVF = (OF~Or i) (dq i o r). We then 
might say that D is of type i ,  if it vanishes on functions and of type dr, if it commutes 
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with d v. Examples of such derivations are, respectively, for L 6 Vt(r) ,  the derivation 
i~ of degree r-l, defined for w E AP(r) by 

1 
iLW(Xt , . . .  ,Xp+r-1) = (p _ 1)!r[ E sgn(a)~o(L(Xa(D,. . . ) ,Xa(r+l) , . . . )  

o" 

and the derivation d~ of degree r, defined by d~ = [iL,d v] = iL o dV _ (_ l ) r - ldV o iL.  
One can show that every D has a unique decomposition D = D1 + D2 with D1 of 
type i,  and D2 of type d v. Also: Dt is iLt for some Lt E V (r). At this point, 
however, the standard pattern breaks down: D2 is not necessarily of the form d~=. 
This is caused primarily by the fact that every d~, vanishes on C= (M), a property 
not necessarily shared by a general D2. As a result, we need a way for extending 
the ordinary d on Coo (M) to a corresponding action on C °O (TM) and this is most 
easily achieved by introducing a connection on T M .  Such a connection induces a map 

~.  : X(r) ) X (TM) .  Rutting Hi = ~u (a_~ror) = ~ _ F~ o-~, where F~ are 

the connection coefficients, we can introduce the derivation d x of h(r) ,  which e.g. on 
C=*(TM) is given by d " F  = Hi(F) (dq i o r). 

With this extra tool at our disposal, we now arrive at a satisfactory classification 
of all derivations of / t ( r ) .  First, we will slightly change the terminology: from now on 
a derivation is said to be of type d, v, if it commutes with d v and vanishes on Coo(M), 
which amounts to saying that  we are dekling with a derivation of the form d~. Likewise, 
a derivation is said to be of type d, n, if it is of the form d~. = [iL, d "] for some L. Our 
main classification result then can be expressed as follows. 

Theorem:  Every derivation D of A(r) of degree r has a unique decomposition in the 
form D = iLl + d v + d" with L1 e Vr+Z(r), L2, Ls 6 Vr(r). L2 La ' 

Some other interesting features of this theory are reflected by the commutator 
1 [d  H di=l] proper t ies [d ' ,d  v ] = d ~ a n d  ~t , , = i p + ~ , w i t h T ,  R e V 2 ( r )  a n d P e V ~ ( r ) .  

Here, T corresponds to the torsion tensor of the connection and R is the curvature. In 
addition, we have the following kind of generalized Bianchi identities: [d x, d~] = d~, 
[d ~, d~] = d~. It is interesting to know that vanishing of the torsion T actually means 
that the connection is one that  can be associated to a given second-order field. Observe 
finally that V (r) acquires a graded Lie algebra structure via the property [d~.,, d~; 2 ] = 
d~/h ,L=]' 

Understanding the relationship between this theory of derivations and the calculus 
referred to at the beginning involves two steps. The first step consists of prolonging 
forms and fields along r : T M  ~ M to corresponding objects along r21 : T~M 
TM,  which we denote by the sazne symbol with upperindex 1. One can prove the follow- 
ing properties of such prolongations: for G E C ' ( T M ) ,  Z E X(r), a, fl 6 k(r) ,  L 6 
V(r), we have tha t  S i n  1 is a form and 

( c x ) '  = x + c 

( G ~ )  1 : ('r;1G) o~ 1 + G '1 (S_ l~ l ) ,  

(G~L) 1 = (T;1G~) L 1 + G 1 (S 0 z l ) ,  

(0~ A ~) 1 = O~ 1 A (S.-J,.~ 1) -'~ ( S - J .  1) A,~I. 
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These properties are very similar to the relations characterizing the module structure 

of Xr, A r and the/~ product. 

For the second step, note that a 2nd-order equation in normal form can be inter- 
preted as a section "7 : T M  .... ~ T2M.  Composing the prolongations of step 1 with 
~/then turns these into genuine geometric objects on T M .  For example: the compo- 
sition of X 1 : T ~ M  --* T ( T M )  with "7 yields a vector field X 1 o ~ E X (TM) .  The 
net result is that we obtain isomorphisms I r  : A(r) ~ At ,  a , ~ a 1 o ~ and 
J r  : V(r) ~ Vr, L ,  ~ L 1 o ~. The theory of derivations of A(r) (and V(r)) thus 
translates to a corresponding theory of derivations of A r (and Vr) via a rule of the form 
Dr = Ir o D o Ir -1.  

CONCLUSIONS: The unpublished proofs of [2] are now redundant: they follow from 
the theory of derivations of A(r). Moreover, we have obtained a much more complete 
picture. For example: we now know of V~, wl~ereas previously we had only considered 

Tr (1'I) = V~. By far the most important conclusion is that we know something is 
missing if we only consider an': there is need for a connection and the corresponding 
horizontal derivation d x. Such a connection does not impose extra prerequisites in this 
context, since a 2nd-order field r comes equipped with one. 

As a final point of interest, let us come to a new interpretation of the equations 
for symmetries and adjoint symmetries. The connection determined by r leads to a 
generalized notion of covariant derivative V, with the following action on functions and 
vector fields along r: V F  -- r(F) for F E C ~ (TM) ,  and 

o r  for X = ~ i  o r  . 

Then by duality we have 

= - (dq o f o r  = ( d q '  o e 

and V further extends to a derivation of £(r) (and V(r)). We next find the following 
interesting commutators: [dr, V] -- d ~, [d X, V] = iR -- eV¢. The vector-valued 1-form 
¢ thus defined helps to re-interprete geometrically the equations for symmetries and 
adjoint symmetries, from the point of view of the calculus of forms and fields along r. 
Indeed, Eq.(1) now reads VVX + ~(X) = 0 and may be called the generalized Jacobi 
equation. Eq.(2) similarly becomes VV~ + ¢(a) = 0. 
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