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PREFACE 

These notes are divided into two rather distinct parts, the first of which 

concerns the restriction of unitary representations of a group to one of its sub- 

groups, and the connection of this with ergodic theory, while the second part con- 

cerns group extensions and the connection of this with unitary ray representations. 

Some background concerning representation theory is assumed and the reader should 

consult relevant portions of Mackey's notes [33], and survey article [34], Dixmier's 

book [9], and Chapter I of [3]. The square brackets refer to the common bibliography 

for both Part I and Part II at the end. 

PART I. RESTRICTIONS OF UNITARY REPRESENTATIONS TO SUBGROUPS 
AND ERGODIC THEORY 

i. INTRODUCTION 

This first part concerns the general question of what happens when one 

takes a unitary representation of a locally compact group G, say an irreducible one, 

and restricts it to a subgroup H of G. One source of interest in this problem is 

ergodic theory as we will indicate below, but we believe a thorough study of this 

type of question will shed much light not only on representation theory as such but 

will produce much useful information concerning the structure of locally compact 

groups and their subgroups. Gelfand and Fomin [13] were perhaps the first to realize 

the relevance of this kind of problem concerning unitary representations for ergodic 

theory. They showed how one could study geodesic flows on surfaces of constant nega- 

tive curvature by looking at unitary representations of the group SL2(R ) . This 

approach was extended by Parasyuk [43], Mautner [35], Green [i], Auslander and 

Green [2], and the author [39]. Part of these notes are an exposition of some of the 

results in [39] without proofs, and the reader is referred to this paper for further 

details. We shall also discuss some related results which will appear shortly. 

Chapter I of [3] contains an exposition of some aspects of the theory of unitary 

representations which we shall use as a general source both for Part I and Part II. 
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We shall suppose for the moment in order to illustrate our approach that G 

is a Lie group with Lie algebra G. Let ~ he a continuous unitary representation 

of G and let X be an element of G. Then x(t) = exp(tX) is a one-parameter 

subgroup of G where exp denotes the exponential map of G into G, and so 

~(x(t)) is a one-parameter group of unitary operators. It has an infinitesimal 

generator, or in other words, there is a unique (usually unbounded) self adjoint 

operator A such that ~(exp(tX)) = exp(itA) where the second exp is understood 

in the usual way for unbounded operators. We write d~(X) = iA, but we shall not 

enter into more discussion concerning the definition and properties of these opera- 

tors since this is discussed in other lectures in this Rencontres. 

The problem that concerns us specifically is to determine for a given group 

G and given X 6 G, the various possibilities for the unitary type of the operator 

A = idz(X). The object is to get results that hold for fixed G and X, and for an 

arbitrary representation. One might hope to be able to say that the spectrum of A 

is limited to a very few possibilities or that one can put limitations on the possi- 

ble eigenvalues of A. If G is for instance the real line R, so that G is one- 

dimensional, then any self adjoint operator A defines a unitary representation of 

R by ~(t) = exp(itA). In this case we can extract no information concerning A, 

and in fact the same situation holds for any vector group G. Our results will con- 

cern exactly the opposite case, namely when G is semi-simple. 

This same problem can be viewed slightly differently; suppose that 

H = {exp(tX)}, X E G is a one-parameter subgroup of G and suppose that 

z(exp(tX)) = exp(itA) is a representation of H. We assume that this representation 

can be extended to a representation of G, and then ask what conclusions concerning 

the operator A can be drawn from this fact. Clearly whether one starts with a 

representation of G and restricts to H, or whether one starts with a representa- 

tion of H and assumes that it extends to G comes to exactly the same thing. It 

is only a matter of emphasis. 

Such problems are relevant in physics for if G is some postulated symmetry 

group of a quantum mechanical system, one has associated a unitary representation 

of G on the Hilbert space associated to the system. (This is not quite true, but 

rather one has a ray representation of G; at our present heuristic level this 

doesn't matter, and in fact can be gotten around by well known methods to be treated 

in Part II of these lectures.) In any case, the operators A = -ida(X) for various 

X in G have in many cases natural physical interpretations such as energy, momen- 

tum, angular momentum, and so on. It is an obvious question to ask what one can 

conclude about the spectrum or unitary type of these operators, based solely on the 

fact that they form part of the infinitesimal generators of a unitary representa- 

tion of a larger group of some specified algebraic structure. 

We have spoken about the restrictions of representations of a group G to 

one-parameter subgroups H. One can raise the same kinds of questions for larger 



subgroups of G. Some of the theorems below make sense in this generality and we 

shall state them in that form. 

2. STATEMENT OF RESULTS 

We turn now to the statement of our results, the first of which concerns as 

a special case the study of possible eigenvalues for infinitesimal generators as dis- 

cussed above. In order to formulate the theorem it is convenient to introduce the 

following definition. Let G be a locally compact group and H a subgroup; we 

shall say that H has property E (in G) if for every representation z of G, 

and for every vector v in the Hilbert space of this representation such that 

~(h)v = v for every h £ H, we have ~(g)v = v for every g 6 G. In other words, 

if we have a representation ~ of G and are looking for invariant vectors for the 

restriction of the representation to the subgroup H, the condition says that we 

have only the obvious ones, namely the G-invariant vectors. This definition singles 

out a property which a subgroup H may or may not have which will be quite relevant 

for ergodic theory. If H is a one-parameter group {exp(tX)} corresponding to an 

element of the Lie algebra, then the condition essentially forbids the infinitesimal 

generator A = -ida(X) from having 0 as an eigenvalue, unless of course the re- 

presentation ~ of G has G-invariant vectors. 

We want also to single out a slightly stronger property that a subgroup may 

have. More precisely, we say that H has property WM if for every representation 

of G and every finite dimensional subspace V of the Hilbert space of the re- 

presentation such that ~(h)V c V for every h ~ H, we must have ~(g)v = v for 

every g 6 G and every v ~ V. This condition, if satisfied, forbids the restric- 

tion of any representation ~ of G to H to have any finite dimensional subre- 

presentations other than the obvious ones. If again H is a one-parameter subgroup 

of a Lie group, the condition forbids the infinitesimal generator A = ida(X) from 

having any eigenvalues. The terminology E and WM is motivated by ergodic theory 

and as we shall see later, whenever these conditions are satisfied, one may infer 

results asserting that certain group actions are ergodic (E) or weakly mixing (WM). 

We note that a subgroup H has property E or WM (in G) if and only if 

its closure H does, and so it would suffice to consider closed subgroups. It is 

easy to see that a proper compact subgroup H of a group G can never have proper- 

ty E be examining the representation ~ of G induced by the trivial one-dimen- 

sional representation of K. Furthermore, if G is abelian, no proper closed sub- 

group can have property E. Our goal is at least in some cases to characterize 

those subgroups of a given group which have one or bohh of these properties, and 

from the two examples above, we see that we are going to have to assume that G is 

sufficiently non-commutative, and that H is sufficiently non-compact. 
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Semi-simple Lie groups are certainly one of the most important classes of 

groups, and they are in a sense as non-commutative as possible. The main result 

below will characterize those subgroups of such a group which have properties E 

and WM. This result is contained in [39] and we refer the reader to this paper for 

a more detailed discussion. 

If G is a semi-simple Lie group, let G* be its adjoint group, that is, 

G/Z, where Z is the center of G. It is well known that G* is the product 

~n G* i=l i of a finite number of simple Lie groups, each having center reduced to the 

identity element. This is the global version of the decomposition of the Lie alge- 

bra of G into a sum of simple ideals. Let Pi denote the projection of G onto 

G~. We shall say that a subgroup H of G is ~otally non-compact if Pi(H) has 
l 

non-compact closure in G~ for each i. Intuitively this says that H sticks out 
1 

non-compactly in the adjoint group of each simple factor of G. If G is simple 

with finite center, the condition is simply that the closure of H be non-compact. 

Theorem i 

For a semi-simple group G and a subgroup H of G, the following are 

equivalent 

(a) H is totally non-compact. 

(b) H has property E. 

(c) H has property WM. 

Thus for a totally non-compact subgroup H of G and any representation 

of G which has no G-invariant vectors, we can conclude that the restriction of 

to H has no invariant vectors, or for that matter no finite dimensional invariant 

subspaces. Even if H only partially satisfies the non-compactness conditions we 

can still extract information. For instance if H c G I × G 2 and if the projection 

of H into the first factor G I is totally non-compact, then one can conclude that 

any finite dimensional subspace for H is left fixed pointwise by G I . This fol- 

lows by a detailed analysis of the proof in [39]. If we specialize the theorem to 

the case of a one-parameter subgroup H = {exp(tX)}, X E G, we can conclude that the 

operator A = -ida(X) has no eigenvalues provided H is totally non-compact. 

This result overlaps with the O'Raifeartaigh theorem [42], and gives a 

stronger conclusion under much stronger hypotheses. To check that a one-parameter 

group is totally non-compact is in any given situation, a rather routine matter. 

The result above contains as special cases the results of Gelfand and Fomin, Parasyuk 

and Mautner mentioned above. 

For one-parameter groups we can in fact get much more information concerning 

the infinitesimal generator A = -ida(X) when X E G generates s totally non-com- 

pact one-parameter subgroup. The unitary type of A is in fact limited to a rather 

small number of possibilities. ~$e introduce the Hilbert space H+(n) which is to 



consist of all square integrable functions on the interval (0,~), with Lebesgue 

measure, taking values in a standard n-dimensional Hilbert space H n. Here n is 

an integer or +~. Let H-(n) and H(n) denote the similar spaces of functions on 

(-~,0), and on (-~,~), and let M!(ni)(M(n)) denote the unbounded self adjoint 
+ 

operator on H-(n)(H(n)) which is multiplication by the scalar function f(x) = x. 

We note that Hi(n ±) is a non-negative (respectively a non-positive) operator. 

Theorem 2 

Let G be semi-simple and let H = {exp(tX)} be a totally non-compact one- 

parameter subgroup, and ~ be a representation of G with no G-invariant Vectors, 

and let A = -ida(X). Then if we write A = A+ + A- where A + and A- are the 

i A ± ~ positive and negative parts of A, there exists n such that is unitarily 

equivalent to M±(n±). 

The proof of this is contained in [39] and the reader is referred to that 

paper for the details. We also note that if we have a single element g of G 
n 

such that its powers g form a totally non-compact subgroup, we can obtain an en- 

tirely analogous result for the unitary type of the operator ~(g) (see [39]). 

The result above for one-parameter subgroups is best possible in that all 
+ 

choices of n and n occur, and if one considers a subgroup for which the hypoth- 

esis fails, then one can find a representation for which the conclusion fails. In 

fact, for G = SL2(R) and for a one-parameter subgroup generated by a nilpotent 
+ 

matrix all possible choices of n and n- occur. The situation for irreducible 

representations of SL2(R) is quite interesting; for the principal and complemen- 
+ + 

tary series, n = n- = i, and for one discrete series, n = i, and n- = 0, while 
+ 

n = 0, and n- = i holds for the other discrete series. The one representation of 

the principal series which is not irreducible decomposes into two irreducible sum- 
± 

mands which behave like discrete series for n . 

For higher dimensional semi-simple groups, the situation becomes a bit sim- 

pler. ~iore precisely, if we exclude any group G which has a simple factor locally 
+ 

isomorphic to SL2(R) , the only possible choices for n and n- are either 0 or 

~. This fact is implicit in the argument contained in [39]. Thus in this case 

A = -ida(X) for a totally non-compact one-parameter subgroup is up to unitary equiv- 

alence, one of three types, M+(~), M-(~) or M(~). Since changing X into -X or 

replacing ~ by its contragradient representation will interchange M + and M-, we 

really have only two distinct cases, which we can classify as one sided spectrum or 

two sided spectrum. 

We can raise the question of when every totally non-compact one-parameter 

group has two sided spectrum for every representation. S. Scull in a dissertation 

in progress has shown that this is true for SLn(R) for n ~ 3. B. Kostant has 

proved that this is also true whenever the Weyl group of the maximal compact subgroup 
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K of G contains the element -i. In this connection we should also remark that 

not every element of SPn(R) has one sided spectrum as we shall see in a later sec- 

tion of these notes. 

Finally we should like to indicate one application of these results to qaun- 

tum physics. Let P denote the Poincar~ group, and let us assume that P is a sub- 

group a larger symmetry group G of un~wn origin. We shall assume that G is 

semi-simple, and that ~ is a representation of G on a Hilbert space. To extract 

physical information one would restrict ~ to P and decompose it, and Theorems 1 

and 2 above supply information about what this decomposition can look like. Indeed 

let G I be the largest normal subgroup of G containing P and let us assume that 

there are no G I invariant vectors since such vectors cannot be of interest. Now 

let X be the element of the Lie algebra of P corresponding to translation in 

time so that A = -ida(X) is the energy. The spectrum of A controls to some ex- 

tent the representations of P that can occur since in an irreducible representation 

of mass m, the energy operator has spectrum [m,~). 

Theorems i and 2 and the remarks following them give us the following 

result. 

Theorem 3 

Under the above hypotheses, A is unitarily equivalent either to M+(~), 

M-(~) or M(~), as defined in Theorem 2. 

Proof. It is a simple algebraic matter to verify that the one-parameter 

subgroup generated by X is totally non-compact in GI, and that G 1 has no fac- 

tors locally isomorphic to SL2(R) so the result follows. (The result concerning 

multiplicities it should be noted, is obvious on other grounds once one has the 

spectrum of A.) 

This result says that in the decomposition of ~ on P, we must find repre- 

sentations corresponding to arbitrarily small mass or zero mass or imaginary mass. 

For a survey of the representations of P, see the article of 0'Raifeartaigh in this 

volume. 

As we have said before, we shall not enter into the details of the proofs of 

Theorems 1 and 2. There is, however, one important fact, Lemma 4.2 of [39] used in 

the proof of Theorem i, for which we now have an alternate argument. This lemma 

says that a one-parameter subgroup of the universal covering group of SL2(R) has 

property E. The argument in [39] is based on infinitesimal methods due to 

T. Sherman. The alternate argument is global in nature and has in addition the 

property that it works for SL2(k), where k is a p-adic field, and also for the 

covering groups of this group defined in [40]. To carry this out however, one needs 

the algebraic analysis of the covering groups of SL2(R) and SL2(k) Contained in 



[40]. We will carry out the proof for SL2(R) with the understanding that if one 

redefines the meaning of the symbols that we will introduce, the argument will carry 

over word for word to the general case. 

We may clearly assume that the one-parameter subgroup under consideration is 

x(t) =(~ ~). We let y(t)be the transpose of the matrix x(t), and we define 

w(t) = x(t)y(-t-l)x(t) and h(t) = w(t)w(-l). It may be verified that h(t) is a 

diagonal matrix with entries t and t -I. Let us suppose that ~ is a unitary re- 

presentation of SL2(R) and that v is a vector of unit length such that 

~(x(t))v = v for all t. An easy calculation shows that (~(w(t))v,v) 

= (z(y(-t-l))v,v) and if we let Itl ÷ ~, we see that lim(~(w(t))v,v) = i. We let 

u = z(w(-l))-iv so that (u,u) = i, and note that (~(h(t))u,v) ÷ (v,v) = 1 as 

Itl ÷ ~. We then write ~(h(t))u = a(t)v + s(t) where s(t) is orthogonal to v, 

and note that la(t) l 2 + Is(t) l 2 = i. Since (~(h(t))u,v) = a(t) we see that 

Is(t) l ÷ i as Itl ÷ ~, or equivalently, ~(h(t))u ÷ v. It follows immediately that 

~(h(s-lt))u ÷ v for any s # 0 and then that ~(h(s))v = v. Since the one-param- 

eter group h(t), t > 0, has property E (this is Mautner's lemma [35]), it follows 

that ~(g)v = v for g E SL2(R ) . This completes the proof of the lemma in question. 

3. APPLICATIONS TO ERGODIC THEORY 

We shall now turn our attention to the applications of these results to er- 

godic theory and defer for a later section a treatment of some more questions con- 

cerning the restriction of representations to subgroups. These final results have 

little direct connection with ergodic theory whereas Theorems i and 2 have a very 

direct connection. 

Let us first introduce the setting in which we are going to study ergodic 

theory. Let M be a Borel space, that is, a set equipped with o-field of subsets, 

called the Borel sets, and let G be a locally compact group, separable in the sense 

of the second axiom of countability. We shall @uppose that G acts on M as a 

transformation group so that we have specrified a map f of G x M ÷ M, written 

f(g,m) = g • m such that for fixed g E G, the map m + g • m is a hijective map 

of M onto itself and such that the function that associates to each g in G, 

this bijective map, is a homomorphism of G into the group of all such maps of M 

into itself. We say that G is a Borel transformation group if the map 

f(g,m) = g • m is a Borel map from G x M into M where G is given the o-field 

of sets generated by the open sets ancL where G x M is given the product Borel 

structure. A function f is a Borel function if f-l(E) is a Borel set in the 

domain for every Borel set in the range. Thus not only is m ÷ g • m a Borel auto- 

morphism of M, but this Borel automorphism varies "smoothly" with g. The reader 

should consult Chapter I of [3] for further details. 
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For any Borel set E of M, g • E = {g • mlm E E} is a Borel set called 

the transform of E by g. If ~ is a measure on M, we define the transform 

g • ~ of D by g using the formula g • ~(E) = ~(g-I . E). We say that ~ is 

G-invariant (or simply invariant) if g • ~ = ~ for all g E G. Unfortunately, 

r, mny interesting measures arising in practice fail to have this property, but pos- 

sess instead the weaker property of quasi-invariance. A measure ~ is quasi-invar- 

iant if ~ and g • ~ are equivalent in the sense of absolute continuity, or more 

concretely, ~(E) = 0 = ~(g • E) for all g E G. 

If G is the additive group of the integers, then specifying an action of 

G on M is the same thing as specifying the Borel automorphism h or M corre- 

sponding to the group element one. If h • D = ~ for some measure or if h • 

is equivalent to ~ then ~ is invariant (or respectively quasi-invariant). The 

case of a single measure preserving automorphism of a finite measure space is the 

classical setting for ergodic theory (see [15]). If G is the real line, an action 

of G consists in giving a one-parameter group h(t) of Borel automorphisms of M 

subject to the joint measurability condition. This condition is readily verifiable 

in cases of interest and indeed in general it is a condition that permits us to work 

with actions of groups that are not discrete groups. 

If M is a compact manifold and if X is a C vector field on M, then 

the usual existence theorems for ordinary differential equations provide us with a 

one-parameter group h(t) of diffeomorphisms of M such that h(t) = X(h(t)) and 

C ~ such that (t,m) * h(t)(m) is a map and hence certainly Borel. Such a flow 

may or may not leave invariant a measure, but if for instance X is of Hamiltonian 

type, then Liouville's theorem provides an invariant measure. Since this subject 

is discussed in Kostant's article in this volume we will not go into more details 

here (see also [4]). 

Before proceeding in our general context of which we have seen several ex- 

amples above, we must impose a regularity condition on M of a technical nature; 

more precisely, we shall assume that M is an analytic Borel space. The reader is 

referred to [3] for further exposition concerning this condition; in any case it is 

a condition that is satisfied in all reasonable examples. Suppose that ~ is a 

quasi-invariant measure on M for G. (In fact this is not just a property of ~, 

but rather a property of the set of all measures equivalent to ~, so we may speak 

of a quasi-invariant measure class.) One says that G acts ergodically on M, with 

respect to the measure ~, or that ~ is an ergodic measure if whenever we have 

g • E = E for all g ~ G, and some Borel set E, then ~(E) = 0 or ~(M - E) = 0. 

In other words, the only invariant Borel sets under the action are null sets or their 

complements. It also says that the action is indecomposable in that we cannot write 

M = M 1U M 2 where M 1 and M 2 are disjoint invariant Borel sets of positive 

measure. 



A rather natural modification of this definition consists in assuming that 

whenever ~(g • E AE) = 0 for all g E G and some Borel set E, then D(E) = 0 or 

~(M - E) = 0. Here g • E A E denotes the symmetric difference of the two sets, 

that is, the points in one but not the other of the two sets. A set with 

~(g • E A E) = 0 might be called almost-invariant, and one would be asserting that 

any such set is a null set or the complement of a null set. The second definition 

of ergodicity is clearly more restrictive than the first, and if G is countable 

they can easily be seen to be equivalent. For a general locally compact group it is 

a non-trivial result of Mackey (see [32]) that the two conditions are equivalent. 

Suppose now that ~ is a finite invariant measure for an action of the 

integers. This as we have seen is specified by a single measure preserving trans- 

formation, and if the action is ergodic one has the Birkhoff ergodic theorem [15]. 

For f E LI(~) , 

i n (ui(x)) [ 
lim~-~--~ Ei=0f = fd~ 
n-~o J 

for almost all x. (There is a similar statement for ergodic actions of the real 

line.) If we interpret this formula in its classical context of statistical mechan- 

ics where u(x) is the evolution of a state x after unit time, then the left-hand 

side is the time average of a function f (a dynamical variable) and the right-hand 

side is the phase average of the same dynamical variable. The equality of these two 

averages is to hold for almost all initial states of the system. In fact it is not 

difficult to see that the validity of such a formula is equivalent to ergodicity. 

The question of equality of time averages and phase averages has a long history in 

statistical mechanics, and the ergodic theorem just reduces the question to the 

problem of showing that certain actions are ergodic (see [24]). 

Not only for this reason, but for many others, one of the fundamental ques- 

tions in ergodic theory is to supply sufficient conditions for an action or a class 

of actions to be ergodic. Our object here is to review a general method one has 

available for doing this by means of unitary representations and to apply the re- 

sults of the previous section. We have remarked before that the present technique 

was initiated by Gelfand and Fomin for geodesic flows, although the observation that 

ergodic theory and unitary representations are closely connected goes back to 

Koopman. 

We shall assume now that we are dealing with actions of a group G on a 

space M with a finite invariant measure ~, and we may assume without loss of gen- 

erality that ~(M) = i. One can then define an associated unitary representation 

of G on the Hilbert space L2~M,~). More precisely for f E L2, and g E G, we 

define (~(g)f)(x) = f(g-i . x). It is easy to verify that for each g E G, ~(g) 

is a unitary operator, and using joint measurability of the action, one can show 

that ~ is a continuous unitary representation of G. The key observation is that 

one can detect ergodicity of an action merely by looking at ~. Heuristically, the 

non-existence of invariant sets is equivalent~othe non-existence of invarimnt measurable 
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functions, and since the space has finite measure this is equivalent to the non- 

existence of square summable invariant functions. 

Lemma 3.1 

The action of G on M is ergodic if and only if ~(g)f = f for all 

g E G implies that f is a constant almost everywhere, and hence a constant in 

L2(M,P). 

There is a somewhat stronger notion than ergodicity which is often useful, 

namely weak mixing. For this one must define the Cartesian square of an action of 

G on M. We notice that G acts on M x M by g • (m,n) = (g • m,g • n) and 

that the product measure ~ x ~ is invariant. One says that the action of G on 

M is weakly mixing [15] if the action of G on M x M is ergodic. This condition 

trivially implies ergodicity, and if it is satisfied, every Cartesian power of the 

action is weakly mixing and ergodic. Weak mixing can also be detected by looking at 

the unitary representation ~ (see [15] and [39]). 

Lemma 3.2 

The action of G on M is weakly mixing if and only if any finite dimen- 

sional subspace V of L2(M,~) invariant under ~ consists of constant functions 

(and hence is one-dimensional). 

These lemmas serve to motivate the definitions of properties E and WM in 

Section 2 above since these definitions concern invariant vectors and finite dimen- 

sional subspaces of representations of a group. Finally, if G is the real line 

R or the integers Z, an action may possess the yet stronger property of strong 

mixing. To motivate this we note that the ergodic theorem implies that for any pair 

of measurable sets A and B 

lim p(h(t)A N B) = ~(A)p(B) 
t~ 

in the sense of Cesaro limits. Here h(t) is the action defined for t ~ R or 

t ~ Z. One says that the action is strongly mixing if the above limit exists in the 

usual sense [15]. One can find a sufficient condition in terms of the representa- 

tion ~ for this to be the case; indeed by Stone's theorem [25], there exists a 

projection valued measure P on the Borel sets of the dual of G (R or the circle 

group T) corresponding to ~. We shall say that P is absolutely continuous if 

P(E) = 0 if E is a Lebesgue null set. See [15] for the following. 

Lemma 3.3 

If G is as above, then an action of G is strongly mixing provided that 

the subrepresentation of ~ on the orthogonal complement of the constant function 
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has an absolutely continuous projection valued measure. 

It is clear that strong mixing implies weak mixing and that Theorem 2 of 

Section 2 is exactly the sort of result that will enable us to establish that cer- 

tain actions are strongly mixing. 

More specifically the theorems from Section 2 will be applied in the fol- 

lowing manner. Suppose that we have an action of a group H on M with a finite 

invariant measure, and suppose that G is a larger group containing H which acts 

on M preserving ~ such that the action of H on M determined by the fact 

that H is a subgroup of G coincides with the given action of H on M. In 

other words, we are assuming that the given action of H on M may be "embedded" 

in the action of a larger group G. We shall assume that the larger group G acts 

ergodically, and then ask if we can conclude from this that H also necessarily 

acts ergodically. Equivalently we can start with an action of G on M known to 

be ergodic by some method, and pick a subgroup H of G, and ask if H also acts 

ergodieally. Properties E and WM from Section 2 are immediately relevant to 

this situation. 

Theorem 4 

Suppose that H has property E (respectively WM) in G, and that G 

acts ergodically on M with a finite invariant measure. Then H is also ergodic 

(respectively weakly mixing). 

Proof. We consider the representation ~ of G on L2(M,~). If f is 

an invariant function for H then by property E, it is an invariant function for 

G, and by ergodicity of G, f is a constant. Hence H acts ergodically; by the 

same argument we can conclude weak mixing if H has property WM. 

The following follows immediately using Theorem i. 

Corollary. If G is semi-simple and acts ergodically on M as above, 

and if H is totally non-compact in G, then H is ergodic and weakly mixing. 

If H is a subgroup of G isomorphic to the real line (or the integers) 

we can also obtain results concerning strong mixing using Theorem 2. 

Theorem 5 

Let G be semi-simple and let H c G be totally non-compact, and isomor- 

phic to the real line (or the integers). If G acts ergodically on M as above, 

then the action of H is strongly mixing. 

Although the hypothesis of the above theorems, as far as H is concerned, 

may seem rather special, their interest lies in the observation that this hypothesis 
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of embedability in a larger group G is satisfied in many cases. Indeed it is 

satisfied for some classical flows, that seemingly have no connection with group 

theory. One way that an action of a group G can be seen to be ergodic is if it 

is transitive; that is if m and 6 are given points of M, there is an element 

g E G such that g • m = n. If we put F = {glg " m = m} for a fixed m, one can 

identify the coset space G/F with M by means of the map gF + g • m. With our 

hypotheses on M, one can conclude that this is a Borel isomorphism and that F is 

closed so that we may as well assume that M is G/F. (See [30] and [3] for an 

exposition of the details of this reasoning.) The action of G on G/F is then 

given concretely by g • (hF) = ghF. Our assumption that M has a finite G-invar- 

iant measure means that G/F also possesses such a measure, and this places rather 

severe restrictions on what F can be (see [7] for instance). A transitive action 

is immediately seen to be ergodic by the first of the two definitions of ergodicity 

above. 

One of the simplest examples of an action of the real line which is em- 

bedable in a transitive action is that of a rotation on a torus. Let T n 

= {(Zl,'.',Zn) , z i complex numbers with Izil = i} be an n-torus. We pick real 

numbers al,,.. , a n and let R act on T n by t • (Zl,...,Zn) = (exp(itan)Zl,'--, 

exp(itan)Zn). This action is well known to be ergodic if and only if the a.l are 

rationally independent [15]. We observe, however, that this action can be embedded 

in a transitive action of R n since T n = Rn/z n where Z n is a lattice. The 

classical proof of the result quoted above is based in its essence on this observa- 

tion. Leon Green [i] has established a beautiful generalization of this result to 

nil manifolds which again uses exactly the same ideas (see also [2]). Gelfand and 

Fomin [13] observed that geodesic flows on surfaces of constant negative curvature 

are embedded naturally in transitive actions of the group G = SL2(R); Parasyuk [43] 

observed the same for horocycle flow, and Mautner did the same for geodesic flow on 

certain higher dimensional manifolds [35]. The proofs of ergodicity are all based 

on the same idea and the following general result subsumes all such results con- 

cerning semi-simple groups, and follows immediately from Theorems 4 and 5. 

Theorem 6 

Let G be a semi-simple Lie group and let F be a subgroup such that 

G/F has a finite invariant measure, and let H be totally non-compact. Then the 

natural action of H on G/F is ergodic and weakly mixing. If H is the line 

(or the integers), then the action is strongly mixing. 

Many examples of subgroups F satisfying this condition are known; for 

instance SLn(Z), the subgroup of SLn(R) consisting of matrices with integral en- 

tries (see [8]). 
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We shall close this brief discussion of one aspect of ergodic theory with 

a duality theorem of sorts which was noticed independently by G. W. Mackey and the 

author (see [39]). Above we were dealing with two subgroups H and F of G but 

there was an assumed asymmetry since we let H act on G/F. We can just as well 

let F operate on H\G = {Hglg ~ G} by y • Hg = Hgy -I. The following fact holds 

for any pair of closed subgroups F and H of G. 

Lemma 3.4 

The action of H on G/F is ergodic if and only if the action of F on 

H\G is ergodic. 

In general a coset space G/F or H\G has no invariant measure, much 

less a finite one, but it always has a unique quasi-invariant measure class [28], 

and it is with respect to this measure class that the above lemma applies. 

As an application of this, let G = SLn(R ) and let F = SLn(Z), the sub- 

group of matrices with integral entries, and let H denote the subgroup of G con- 

sisting of matrices with first column (i,0,...,0). Then G/F has finite volume 

and H is totally non-compact if n ~ 2. Since H is ergodic on G/F, the duality 

principle says that F is ergodic on H\G. The space H\G is easy to identify 

and is in fact R n minus the origin with Lebesgue measure, and the action of G on 

this space is the natural linear action. Since a single point is a Lebesgue null 

set, HIG is measure theoretically the same as R n and we have the following 

result. 

Theorem 7 

The linear action of F = SL (Z) on R n with Lebesgue measure is ergodic. 
n 

Moreoveg the same is true for any F such that SLn(R)/F has a finite invariant 

measure. 

This easily stated result does not appear to be amenable to any direct 

approach. 

4. MORE ON RESTRICTIONS 

In Section 2 we studied certain aspects of the general problem of restric- 

ting a representation of a semi-simple Lie group to a subgroup and examining how it 

decomposes. These results are of immediate interest in ergodic theory and the con- 

nection was discussed in Section 3. In this final section we Want to discuss some 

additional questions concerning the restriction of representations to subgroups. 

Theorem 2 for instance concerned the restriction of representations to one-parameter 
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of representations to more general subgroups H, particularly general abelian sub- 

groups. From the general version of Stone's theorem for abelian groups H [25], we 

know that any unitary representation of H leads to a projection valued measure on 

the Borel subsets of the dual group H. Together with an appropriate multiplicity 

function (see [33]) this projection valued measure determines the representation. 

We are interested in the equivalence class of this projection valued measure P 

and in particular we would like to compare it to Haar measure on H. We will say 

that P is absolutely continuous (with respect to Haar measure) if P(E) = 0 for 

any Haar null set E c H, and that P is equivalent to Haar measure if P(E) = 0 

if and only if E is a Haar null set. Theorem 2 above says in particular that if 

G is semi-simple and if H is a totally non-compact one-parameter subgroup of G 

and if ~ is a representation of G with no G-invariant vectors, then the projec- 

tion valued measure on H associated with the restriction of ~ to H is abso- 

lutely continuous. It is natural to raise the question of when other abelian sub- 

groups have this property. We note that non-compactness is not an issue since the 

conclusion above is trivially satisfied when H is a compact subgroup of any group 

G. If one knows such results about the projection valued measure for a vector sub- 

group, one may immediately conclude results concerning eigenvalues of any operator 

corresponding to an element of the enveloping algebra of the Lie algebra of H, a 

question of some interest in physics. 

Let us now suppose that G is simple, and we write the Iwasawa decomposi- 

tion G = KAN. Any abelian subgroup is in some vague sense made up of a part from 

K, a part from A, and a part from N, and we shall consider the three cases sepa- 

rately. We have already noted that the question posed is trivial for compact sub- 

groups, and we turn to subgroups of A. Since A is abelian, we may as well con- 

sider the case H = A. T. Sherman [48] has observed at least in a special case that 

the answer is affirmative, and the same holds in general one can easily see. 

Theorem 8 

If G is simple and if ~ is a unitary representation of G with no 

G-invariant vectors, then the projection valued measure associated with the restric- 

tion of ~ to A is equivalent to Haar measure on A. Moreover, the multiplicity 

is uniform. 

We now turn to the consideration of subgroups of N, and here all we have 

at present is a counterexample. We consider the symplectic group SPn(R) of real 

2n x 2n matrices preserving a non-degenerate skew bilinear form. Since the funda- 

mental group of this group is the integers, there is a unique double covering group 

G of SPn(R). (This is Weil's metaplectic group [51].) It is easy to verify that 

N for this group contains a normal abelian subgroup V isomorphic to the vector 
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space of real n x n symmetric matrices. In fact N is the semi-direct product 

of V with a group T isomorphic to all strictly triangular n x n matrices (that 

is, all entries above the diagonal are 0 and all diagonal entries are one). Weil 

[51] has constructed a representation ~ of G called the metaplectic representa- 

tion (see also Shale [46]). One may compute the projection valued measure on 

associated with the restriction of ~ to V quite easily. In fact if one identi- 

fies V with V by means of the bilinear form ~(a,b) = Tr(ab), this projection 

valued measure on V = V is concentrated on the set of positive definite matrices 

of rank one. Thus, if n > i, this is a Haar null set, and gives an example where 

P is singular with respect to Haar measure. This example also shows that many 

one-parameter subgroups of V have one sided spectrum and hence that the phenome- 

non noticed for SL2(R) persists in higher dimensions. 

There is another point worth noticing about this situation; let ~(k) 

denote the kth tensor power of the representation ~ with itself. Then it is quite 

easy to check that the projection valued measure associated with the restriction of 

~(k) to V is concentrated on the set of positive definite matrices of rank equal 

to the minimum of k and n. Thus ~(n) is the first tensor power to have abso- 

lutely continuous spectrum. Since it is virtually obvious that any discrete series 

representation of G has a projection valued measure which is absolutely continu- 

ous, any connection between discrete series and the tensor powers of ~ analogous 

to the situation for n = i, is likely to involve large tensor powers. 

We notice that the condition above for abelian groups H that the projec- 

tion valued measure on the dual group H associated to a representation be abso- 

lutely continuous, can be rephrased so as to make sense for any subgroup H. The 

condition can be readily seen to be equivalent to the condition that the representa- 

tion of H should be unitarily equivalent to a subrepresentation of the direct sum 

of the regular representation with itself infinitely many times. This makes sense 

for any H, and we shall say following [33], that a representation of H satis- 

fying this condition is quasi-contained in the regular representation. (If as often 

happens, the regular representation is equivalent to the infinite direct sum of it- 

self, the condition is simply that the given representation is a subrepresentation 

of the regular representation.) 

We do not have any general theorems concerning this situation, but there 

is one case of special interest. If G is semi-simple with Iwasawa decomposition 

G = KAN, we let M be the centralizer of A in K, and define B = MAN. One 

knows that B is a group [6], and in some sense it is one of the most important 

subgroups of G. The principal series representations of G consist simply of the 

representations of G induced by the finite dimensional representations of B [6], 

and B plays a key role in the structure of G. When G is SLn(R), then B 

is simply the subgroup of triangular matrices. 
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Our interest here will be the study of restrictions of representations 

of G to B in the spirit indicated above, and for this we shall need to know 

something about the structure of the regular representation of B. When G = SL2(R) , 

the regular representation of B is rather striking. It is known that B has in 

addition to its obvious one-dimensional representations, exactly four other irre- 

ducible representations, all infinite dimensional [33], say ~i' i = i, 2, 3, 4. A 

simple calculation will show that the regular representation ~ of B is the 

direct sum of the ~. each taken infinitely often, ~ = ~(~i @ ~2 @ 73 @ ~4 )" ThUS 
l 

is the discrete direct sum of irreducible representations, with in fact only a 

finite number of distinct types entering into the decomposition. It is easy to see 

that the same is true for G = SL2(C). 

Is this an accident or do we find the same phenomenon for other semi-simple 

groups? A calculation for G = SLn(R ) for n ~ 3 reveals that the regular repre- 

sentation of B decomposes as a continuous direct integral and contains no irre- 

ducible summands. On the other hand for G = SPn(R), one can find exactly 4 n 

irreducible infinite dimensional representations of B such that the regular re- 

presentation is the discrete direct sum of these representations, each taken in- 

finitely often. We shall now state a general criterion which will appear in a 

forthcoming paper. 

As usual we consider the normalizer M I of A in K, and note that 

W = MI/M is a finite group, called the Weyl group, which acts as a group of auto- 

morphisms of A, and hence also on the Lie algebra of A. The group W may or may 

not contain the automorphism a ÷ a -I of A (or equivalently the map Y ÷ -Y of 

the Lie algebra of A). If it does we shall say that -i belongs to W. 

Theorem 9 

If G is semi-simple, then the regular representation of its subgroup B 

either decomposes as a discrete direct sum of irreducible representations of B 

(with a finite or countable number of inequivalent summands) or it decomposes as a 

continuous direct integral with no irreducible summands. The first possibility 

occurs if and only if -i belongs to W. 

If -i E W, we may think of the finite or countably infinite number of 

irreducible representations which are summands of the regular representation as 

"discrete series", but we prefer to call them generic representations since they 

are in a sense those irreducible representations of B which are in "general posi- 

tion". One may not conclude as in the semi-simple case that the matrix entries are 

square integrable functions on B since B is not unimodular. Finally we note 

that Harish Chandra [21] has given a necessary and sufficient condition that the 

group G have a discrete series, that is, there are irreducible representations 

which are summands of the regular representation. It is interesting to note that 
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his condition implies that -i E W (and in fact is almost equivalent to it) and 

hence if G has a discrete series so does B. 

Once we have this kind of control over at least some of the representations 

of B, it is natural to raise the question of what the restriction of a representa- 

tion ~ of G to B looks like. This technique is exceedingly fruitful for 

G = SL2, and Stein in his lectures in this volume uses a similar technique except 

with B replaced by an even larger subgroup. 

One may ask if it is true that any representation ~ of a simple group G 

which has no G-invariant vectors has its restriction to B quasi-contained in the 

regular representation of B. This is true for all the series of representations 

constructed by Harish-Chandra [20] which are used to obtain the Plancherel formula. 

For discrete series this follows from the observation that any representation con- 

tained in the regular representation of G, has its restriction to any subgroup H 

quasi-contained in the regular representation of H. The general case follows from 

known facts concerning induced representations. Unfortunately the answer to the 

above question is negative in general, and the counterexample is our friend the 

metaplectic representation ~ of the double covering G of SPn(R) , n ~ 2. We 

have B = MAN and N contains a normal subgroup isomorphic to the vector space of 

symmetric n × n matrices. If the restriction of ~ to B is quasi-contained in 

the regular representation of B, it follows by the comment above that its further 

restriction of V is quasi-contained in the regular representation of V which we 

know is false. Again we do not know what the best possible theorems are in the gen- 

eral case. 

PART II. GROUP EXTENSIONS AND GROUP COHOMOLOGY 

5. STRUCTURE OF LOCALLY COMPACT GROUPS 

In this second part we shall take up a rather different aspect of group 

representations, and indeed here the major considerations will concern more the 

structure of locally compact groups. The motivation for the study of group exten- 

sions comes from the phenomenon of ray or projective representations of groups; how- 

ever, to treat these questions properly, we feel it is better to first widen the 

problem, and then come back to the original questions using the general techniques 

which we shall develop. 

We shall suppose that G and A are topological groups with A abelian, 

and that G operates on A is a topological transformation group of automorphisms. 

More precisely, we are given a continuous map of G × A ÷ A written (g,a) ÷ g • a 

such that for fixed g ~ G, the map a ÷ g • a is an automorphism of A, which we 

denote by p(g), and further that p is a homomorphism of G into the group of 
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automorphisms of A. The hypothesis of joint continuity of g • a assures not only 

that p(g) is an automorphism of the topological group A, but that p(g) varies 

"smoothly" with g. If G and A satisfy the above, we say that A is a topo- 

logical G-module or simply that A is a G-module [37]. 

This definition includes a wide variety of examples. If for instance A is 

a Hilbert space with its norm topology, and if ~ is a continuous unitary represen- 

tation of G on A in the usual sense, then one may verify that (g • a) = ~(g)(a) 

defines A as a G-module. If ~ is again a representation of G on a Hilbert 

space, and if A is some group of unitary operators on this Hilbert space such that 

~(g)az(g) -I 6 A Va ~ A, then g • a = ~(g)a~(g) -I defines for each g 6 G an 

automorphism of A. It may be verified that A, equipped with the strong operator 

topology, is a G-module. Finally, if A is any topological group g • a = a de- 

fines A as a G-module. Such modules will be called trivial topological G-modules. 

A group extension of a given G by a given topological G-module will be 

first of all an exact sequence of groups 

i 
I÷A÷E÷G+I 

where i is an injection of A into E, and ~ is a surjection of E onto G, 

and where the kernel of ~ is exactly the range of i. We assume not only that i 

is continuous, but also that it is a homeomorphism onto its range, and we assume 

that ~ is continuous and open. This means that A and i(A) can be identified 

not only as groups, but as topological groups where i(A) has the relative topology 

from E, and that E/i(A) and G may be identified as topological groups, the 

first of these having the quotient topology. Finally, we impose an algebraic assump- 

tion to take account of the action of G on A. We note that if g E G and if g' 

is an element of E with ~(g') = g, then a ÷ i-l(g'i(a)(g') -I) is an automor- 

phism of A which depends only on g, and not on the choice of g'. We demand that 

this automorphism be the given automorphism a ÷ g • a in the ~efinition of A as 

a G-module. We note that whenever we have an extension of G by A, then by the 

above A becomes a G-module, the joint continuity of the map G x A ÷ A following 

from the axioms for a topological group. This observation is one of the main moti- 

vations for defining G-modules as we did by imposing the condition of joint contin- 

uity. The reader is referred to [37] and [38] for more details. 

One of the simplest examples of a topological group extension is the exten- 

sion of the circle T by the integers Z (viewed as a trivial module), defined by 

the real line R, namely 

1 ÷ Z ÷ R ÷ T + 1 . 

Another example which is of more significance particularly in quantum physics is as 

follows. Let H be a Hilbert space, and let U(H) be the group of all unitary 

operators on H with the strong operator topology. Then the circle group T 

viewed as scalar multiples of the identity operator is a normal subgroup, and 
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U(H)/T = PU(H) is called the projective unitary group. Then 

i + r ÷ U(H) ÷ PU(H) + i 

is an extension of PU(H) by T, T being trivial module. 

set of one-dimensional subspaces of H, then any a 6 U(H) 

on P(H) by r ÷ a • r where a • r is the transform of 

Indeed if P(H) is the 

defines a collineation 

r 6 P(H) under a. A 

classic theorem of Wigner (see [52] or [5]) says that except for anti-unitary trans- 

formations, these are the only maps of P(H) onto itself which preserve the func- 

tion f(rl,r2) = l(Ul,U2) l which is defined for r i ~ P(H) by picking unit vectors 

u. 6 r.. We observe that the projective transformations corresponding to a and 
I l 

b ~ U(H) agree if and only if a = tb with t ~ T. Thus U(H)/T = PU(H) is iso- 

morphic naturally to a group of projective transformations. 

If H is the Hilbert space associated with a quantum mechanical system, 

and if G is a symmetry group of this physical system, the axioms of quantum me- 

chanics say that we have a homomorphism of G into PU(H) (except for those sym- 

metries which we would want to be anti-unitary, but this will not change anything 

essential in this heuristic discussion). Such a homomorphism is precisely what is 

known as a projective or ray unitary representation [5]. For the moment let us 

assume that G c PU(H); then if p is the projection from U(H) onto PU(H), we 

let G r = p-l(G), and then 

I÷T+Gr +G÷I 

becomes a group extension of G by T. Even when we do not want to identify G as 

a subgroup of PU(H), we Shall see that we can still construct a group extension 

I÷T÷E+G+I 

where E has a homomorphism into U(H), or in other words, a unitary representation. 

The fact that projective representations can be viewed as ordinary representations 

of a suitable group extension is a well known and fundamental fact. 

In these notes we want to present a brief outline of a systematic theory of 

group extensions and more generally of a theory of group cohomology which is inti- 

mately related to the initial problem. We refer the reader to [37] and [38] for 

more details and to the references cited there, in particular the pioneering work of 

G. W. Mackey [29], [31] who originated this point of view concerning group exten- 

sions. A large part of the contents of these notes will be the subject of a forth- 

coming paper of the author, and we will try to summarize the major new points in- 

volved. These results extend and generalize those in [38] and [39]. 

One of the most important problems is to classify the set of all extensions 

of a given group G by a given topological G-module A. Two extensions are said to 

be equivalent if there is a commutative diagram 

I÷A÷E+G÷I 

+ + + 

1 ÷ A ÷ E'÷ G ÷ 1 

of continuous maps where the end vertical maps are the identity maps and where the 
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middle vertical is an isomorphism of topological groups. It should be noted that it 

is not sufficient to assume that E and E' are isomorphic as topological groups 

to have equivalent extensions, but rather there must be a particular isomorphism 

which respects the data of a group extension. One of the first facts is that the 

set of equivalence classes of extensions of G by A forms a group Ext(G,A) by 

means of the Baer product (ef. [16]), and at least in many cases this group is given 

as a two-dimensional cohomology group H2(G,A). It turns out to be useful to study 

the other cohomology groups Hn(G,A), both to gain a better understanding of exten- 

sions, and also to have at hand general methods of computing Ext(G,A) in many 

specific situations. 

6. G-MODULES 

After this introduction we shall now proceed to some of the details. We 

will henceforth assume that G is locally compact and separable in the sense of the 

second axiom of countability. (Local compactness seems to be essential for this 

treatment, although we hope in the future to be able to dispense with it; separa- 

bility is an assumption of a more technical nature used to avoid certain patholo- 

gies.) We shall also assume that A is separable, metrizable and moreover metriz- 

able by some complete metric. Following Bourbaki, one might call such groups polon- 

ais, and we denote the family of all such groups by P. Since we will always be 

dealing with G-modules, we consider all polonais G-modules which we denote by P(G). 

We note that P(G) contains all separable locally compact G-modules A. Group ex- 

tensions were studied in the case of locally compact A in [38] and [39], and one 

of the key points in the present treatment is that we now enlarge the category of 

modules to P(G). In addition to including many important and interesting examples 

which were excluded before, we also achieve more technical versatility in that the 

larger category will contain cohomologically trivial modules, will enable us to de- 

fine induced modules in a natural way, and will allow us to construct resolutions 

without going outside the category. 

If A,B E P(G) a G-homomorphism f of A into B is simply a continuous 

intertwining homomorphism, that is, one satisfying f(g • a) = g • f(a). We note 

that P (resp. P(G)) is closed under the operations of countable Cartesian prod- 

ucts, closed subgroups (closed submodul~s), and quotient groups (quotient modules). 

In addition, if we have a sequence of elements of P 

i 
i ÷ A p ~ A" ÷A ÷l 

which is exact in the sense of Section 5, then one can show that A E P if and only 

if A" and A" are in P. The same is clearly true for P(G) if the homomor- 

phisms in the sequence above are G-equivariant. Morever, if A, AP, A" are in P, 

and it is only assumed that i and ~ are continuous, it follows by classical 
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closed graph theorems (cf. [3]) that i is a homeomorphism and that ~ is open, 

and hence that the sequence is exact in the sense of Section 5. 

In addition P is closed under the following construction which might be 

described as a sort of direct integral. This construction will be of paramount im- 

portance to us. Let (M,u) be a o-finite measure space such that the measure alge- 

bra of (M,~) is separable [14]. This means that we may as well assume that M is 

[0,i] with Lebesgue measure together with a countable number of atoms. Now let 

A E P, and define U(M,A) to be the group of all measurable functions from M to 

A modulo the group of functions equal to i (the identity in A) almost everywhere. 

An element of U(M,A) is then an equivalence class of measurable functions, all of 

which are equal to each other almost everywhere. (A function f is measurable if 

f-l(0) is measurable in M for every open 0 in A.) It is clear that U(M,A) 

is a group under pointwise multiplication. 

We topologize U(M,A) by the topology of convergence in measure; more pre- 

cisely let Pl be a bounded metric on A, which always exists, and let ~ be a 

finite measure on M equivalent to ~. We define a metric on U(M,A) by 

P(f'g) = I Pl(f(x)'g(x))d~(x) 

which is always finite since ~ is finite and Pl is bounded. 

Lemma 6.1 

U(M,A) with p as defined above is in P, and the topology is independent 

of the choice of Pl and ~. 

If A = T is the circle group, U(M,T) has a natural interpretation; 

namely let H be L2(M) , the space of square integrable functions on M, and let 

f E U(M,T). Then f defines a unitary operator on H by multiplication by F, 

(U(f)h)(x) = f(x)h(x). Clearly U(f) = U(g) if and only if f = g in U(M,T) and 

so U(M,T) may be viewed as a group of unitary operators on H. It may be verified 

that the topology on U(M,T) introduced above is exactly the strong operator topol- 

ogy when we view U(M,T) as operators. If A = R is the real line, U(M,R) is a 

topological vector space; in fact a Frechet space, although it is not locally convex. 

Finally, if A ~ P(G), we can define an action of G on U(M,A) by means of the 

formula (g • F)(m) = g • (F(m)). This may be thought of as a direct integral of 

copies of A. If M is an atomic measure space, the construction does give the 

Cartesian product of copies of A. In analogy with direct integrals of representa- 

tions [33] one might hope to find a reasonable definition of a measurable map of M 

into P(G), and then define a direct integral where the "fiber" A(m) over m ~ M 

is allowed to vary instead of remaining constant as above. Since we have found no 

use for this kind of construction as yet, we shall not proceed any further. 
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The group U(M,A) for A E P has many interesting properties, and one of 

the most important for our purposes is a "law of exponents". We let M = M I × M2, 

and then intuitively a function of two variables on M into A can be thought of 

as a function of one variable (say ml) into the space of functions of the second 

variable m 2 into A. Such a correspondence holds exactly and indeed follows from 

a version of the Fubini theorem. 

Lemma 6.2 

There is a canonical isomorphism of U(M I x M2,A ) onto U(MI,U(M2,A)) as 

topological groups. 

A most important special case of the construction of U(M,A) is when 

M = G is a locally compact (separable) group with Haar measure. In this case 

U(M,A) will be denoted by I(A) and we note that I(A) is itself a G-module for 

any A E P. In fact we simply let G act by translation: (g • F)(s) = F(g-ls). 

If in addition A E P(G) so that G also operates on A we can embed A into 

I(A) by the map f defined by (f(a))(s) = s -I • a. 

Lemma 6.3 

If A E P, then I(A) is in P(G). Moreover, f is an equivariant isomor- 

phism of A onto a closed submodule of I(A) so that 

1 ÷ A ÷ I(A) ÷ U(A) ÷ i 

is exact where U(A) is the quotient module. 

It is clear that I(A) is in some sense the regular representation of G 

with coefficients in A. In the case of a finite group, it is known that I(A) is 

cohomologically trivial in that Hn(G,A) = 0 for n ~ i [45]. The fact that this 

can also be proved in the present context will be of vital importance. Lemma 6.3 

above would then assert that any A may be embedded in a cohomologically trivial 

module, and this fact will allow us to use many techniques from homological algebra. 

It should also be noted that I(A) is almost never locally compact. Finally, once 

we have defined the regular representation, it is but a short step to the notion of 

induced representations. If H is a closed subgroup of G, and if A 6 P(H), we 

I~(A), the induced module, as a submodule of I(A). More precisely, define 

I~(A) = {fI f E I(A), f(gs) = s-lf(g) for almost all pairs (s,g) in H × G where 

Haar measure is understood~. We have engaged in the usual abuse of notation and 

have regarded elements of I(A) as functions instead of equivalence classes of 

functions, but this poses no problem. It is easy to show that I~(A) is a closed 

submodule of I(A) and hence is in P(G). All of the expected properties of in- 

duced representations such as inducing in stages hold in our context, but we shall 

defer these details to our forthcoming paper. 
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7. GROUP EXTENSIONS 

Having discussed the G-modules which will enter into our theory, we turn to 

a more explicit discussion of group extensions and group eohomology. In complete 

analogy with the case of discrete groups [ii], we shall introduce cohomology groups 

Hn(G,A), n ~ 0 for A E P(G). These groups have simple interpretations in low 

dimensions; namely H0(G,A) = A G, the G-fixed points in A = {alg • a = a for all 

g E G}. For n = i, and a trivial G-module, HI(G,A) will be the continuous homo- 

morphisms of G into A (while for a general module we will have equivalence 

classes of continuous crossed homomorphisms). For n = 2, H2(G,A) will be 

Ext(G,A), the group of topological group extensions of G by A. 

By way of introduction to the cohomology we shall begin with a discussion 

of how one may parameterize the group extensions of G by A using cocycles. Let 

I+A÷E÷G÷I 

be a given extension. The identity element of the group Ext(G,A) is the semi- 

direct product of G and A, and in the special case when A is a trivial G-module, 

the direct product of G and A. This extension is characterized by the property 

that one may find a continuous homomorphism f of G back into E such that 

(~of)(g) = g. The idea behind the following is to compare a general extension of G 

by A to the semi-direct product. It is natural to consider a map f of G to E 

such that ~of is the identity map, and compute the defect of f from being a 

homomorphism. Since we are dealing not with abstract groups, but with topological 

groups, it would not be sensible to choose any arbitrary map f. Ideally one would 

want to look for a continuous map f of G into E satisfying the above, however, 

it is simply a fact of life that such a continuous map does not always exist. Indeed 

even in the case 

I+Z+R÷Z÷I 

such a map does not exist, and in general the existence of such a continuous map for 

a general extension would imply that E viewed as a principal fiber bundle with 

base G and fiber A would be a trivial bundle and so in particular E = G × A as 

topological space. Mackey has shown how to resolve this, and following him we ob- 

serve that one may always find a Borel map f of G into E satisfying 

(nof)(s) = s for s E G, (see [9]). Other choices of an appropriate map may be con- 

sidered such as those continuous at the identity element of G or those continuous 

in a neighborhood of the identity element of G, but we believe that the choice of a 

Borel map f leads to a theory which is in general more satisfactory. 

Once we have selected such a Borel function f (or cross section as it is 

sometimes called) we note that a(g,h) = f(g)f(h)f(gh) -I is a Borel function from 

G x G into the subgroup i(A) of E. We view it as a function from G x G into 

A and we notice that it is a Borel function, and as a consequence of the associative 
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law in E satisfied the "cocycle identity", 

a(s,t)a(st,r) = (s • a(t,r))a(st,r) 

for all s, t, r, G x G x G. We denote by Z2(G,A) the group of all Borel maps of 

G x G into A satisfying this identity, and call such functions 2-cocycles. The 

group structure is understood to be multiplication of such functions pointwise. We 

have associated now to each element of Ext(G,A) an element of Z2(G,A), but this 

depends on the selection of a Borel cross section f of G into E. If we replace 

f by any other Borel cross section f', the cocycle a changes, but it changes 

only by multiplication by a 2-cocycle of the form (s • b(t))b(s)b(st) -I for some 

Borel function b of G into A. We call such functions 2-coboundaries, and de- 

note the group of such by B2(G,A), and notice the very important fact that to each 

extension in Ext(G,A) we can associate a unique element of the quotient group 

Z2(G,A)/B2(G,A) which is independent of any choices. This quotient group is de- 

noted by H2(G,A), the two dimensional cohomology group of G with coefficients in 

the topological G-module A. 

The map of Ext(G,A) into H2(G,A) may be verified to be a homomorphism 

of groups, and moreover may be seen to be injective. If A is locally compact 

Mackey [30] has shown that this map is surjective as well. We are able to show (see 

below) that this is also true for any A E P(G). This construction gives a param- 

eterization of Ext(G,A) in terms of a cohomology group and also motivates the in- 

troduction of the general cohomology groups Hn(G,A). 

If A £ P(G), we define a complex of groups Cn(G,A), n ~ 0, where Cn(G,A) 

is the set of all Borel functions from Gx.-.xG (n factors) into A, and we define 

a coboundary operator 6 from Cn(G,A) into cn+I(G,A) by the classical formula 
n 

[ll], 

(~nf)(sl,-..,Sn+l) = s I • f(s2,s3,..-,sn+l) 

- f(sls2,s3,...,sn+l) ... ± f(sl,''',SnSn+l ) 

¥ f(Sl,''',S n) 

where we are writing A additively. The verification that ~n f is a Borel function 

if f is a Borel function is routine [38], as is also the formula ~n+16n = 0. We 

define Zn(G,A) to be the kernel of ~ and Bn(G,A) to be the range of ~n-l, 
n 

and Hn(G,A) to be the quotient group Zn/B n. For n = 2, this gives the group 

H2(G,A) as defined above, so everything is compatible. For n = 0, a function of 

zero variables is by convention an element of A, and 60 is given by ~0(a)(s) 

= s • a - a. Thus B 0 = 0 and Z 0 = H0(G,A) = A G, the G-fixed points in A. For 

n = i, and a trivial G-module, B 1 = 0, and Z 1 = HI(G,A) = {flf(st) = f(s) + f(t), 

f Borel}. By a classical theorem of Banach, every such Borel homomorphism is auto- 

matically continuous (cf. [3]), so HI(G,A) is the group of continuous homomor- 

phisms of G into A. If G acts on A, B 1 # 0, and Z 1 consists of Borel crossed 

homomorphisms of G into A or functions satisfying f(st) = s • f(t) + f(s). Such 



25 

a function is by the same theorem of Banach continuous so HI(G,A) consists of 

classes of continuous crossed homomorphisms of G into A where a class consists 

of a coset of BI(G,A) = {f(s) = s • a - a for some a E A}. 

Elements of Z2(G,T) arise naturally in the study Of unitary ray represen- 

tations [31]. Let p be a continuous homomorphism of G into PU(H), the projec- 

tive unitary group of a Hilbert space H as defined previously. We can find a 

Borel cross section f of PU(H) back into U(H) by general theorems as above, 

and then f(p(s))f(p(t))f(p(st)) -I = a(s,t) can be seen to define an element of 

Z2(G,T), and hence an element of H2(G,T). It is clear that the element of H2(G,T) 

is zero if and only if we may find a continuous unitary represnetation z of G on 

H which "induces" p [31]. Thus an analysis of H2(G,T) is crucial for an under- 

standing of when a ray representation "is" in fact an honest unitary representation. 

Even if the element of H2(G,T) is non zero we can still construct according to 

Mackey's theorem a group extension of G by T 

1 ÷ T ÷ E ÷ G ÷ i 

and one may verify that E possesses an "honest" unitary representation on H 

which is of the form t ÷ t • 1 on T and which "induces" the given projective or 

ray representation of G. This makes explicit our earlier comment that ray repre- 

sentations may be interpreted as ordinary representations of a group extension. 

8. COHOMOLOGY GROUPS 

The introduction of cohomology groups Hn(G,A) is grantedly very ad hoc. 

First of all we selected a particular class of functions (Borel functions) which 

happened to give us what we wanted in low dimensions, and moreover we selected a 

perhaps somewhat artificial definition of 6 . One's doubts are further compounded 
n 

by the observation that the constructions of Section 6 suggest a somewhat different 

definition of the groups Hn(G,A). 

We defined Cn(G,A) to be all Borel functions from Gx---xG = G n" into A, 

but one is led to consider the possibility of replacing Cn(G,A) by U(Gn,A), the 

group of equivalence classes modulo null functions of measurable functions from G n 

(Haar measure) into A, and we denote this group by c__n(G,A). It is not difficult 

to verify that 8 as above is a well defined map from C n to C n+1, and hence 
n -- -- 

that we get cohomology groups H n(G,A) = z_n(G,A)/B_n(G,A) where Z_ n is the kernel 

of 6 and B n is the range of 6n_ I . The cocycles in dimension zero consist of 
n 

the kernel of 60 or the elements a of A such that s • a = a for almost all 

s in G. It is not hard to see that this implies that s • a = a for all s 6 G, 

and hence H0(G,A) = A G. If A is a trivial G-module, then the cocycles in dimen- 

sion one are exactly the equivalence classes of functions f from G to A such 

that f(st) = f(s) + f(t) for almost all pairs s and t. Similarly, in dimension 
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two we look at functions which satisfy the cocycle identity above for almost all 

triples (s,t,r). A result of Mackey in [36] suggests that such an approach is not 

as outlandish as it first appears. 

Motivated by the above, together with the possibility of a wide variety of 

other choices of cohomology groups we ask if we can somehow find a set of reasonable 

axioms which any cohomology theory should in principle satisfy, and then prove that 

there is up to isomorphism only one way of satisfying these axioms. We shall show 

that this is the case, and moreover that the groups H n and H n defined above by 

cocycles do satisfy these axioms. We then will know not only that these two defini- 

tions of cohomology groups agree, but also that any other attempt to define cohomol- 

ogy groups satisfying the axioms below must necessarily lead to the same groups. 

(a) Our first axiom is of a general algebraic nature. We assume given for 

each A ~ P(G), G fixed, and for each n ~ 0, an abelian group denoted by Hn(G,A) 

such that these are "functors of cohomological type". More precisely, we assume 

that for any G-homomorphism f of A into B, we have induced homomorphisms fn 

of Hn(G,A) into Hn(G,B) such that the law of composition is sa~sfied: 

(gf)n = gnfn when g is a G-homomorphism of B into C. Moreove~ i n = 1 where 

i denotes the identity homomorphism of A into A, and we assume that for any 

short exact sequence 

i ÷ A" ÷ A ÷ A ~ ÷ i 

in P(G), we have natural coboundary operators ~ : Hn(G,A ") ÷ Hn+I(G,A ~) such that 
n 

the infinite long sequence 

0 ÷ H0(G,A ") ÷ H0(G,A) ÷ H0(G,A ") ÷ HI(G,A ") ÷ ... ÷ Hn(G,A) 

÷ Hn(G,A ") ÷ H n+I(G,A ~) ÷ H n+I(G,A) ÷ ... 

is exact (see [38] and [45]). 

(b) The second axiom demands H0(G,A) = A G for any A ~ P(G). 

(c) The third axiom is a vanishing axiom which is motivated by the cohomol- 

ogy of finite groups; namely we demand Hn(G,I(A)) = (0) for n ~ i, and every 

polonais group, where I(A) is the "regular representation" as defined in Section 6. 

Axiom (c) is of course the really crucial one; it asserts that certain 

modules are cohomologically trivial and although there is a great deal of motivation 

for it from the cohomology of abstract groups, it does represent a definite choice. 

One could conceivably select some other class of modules and assume them to be 

cohomologically trivial, and this would lead to a unicity theorem for some possibly 

different cohomology theory. Our defense here is that the groups defined by co- 

chains above do satisfy this vanishing axiom, and that the groups I(A) do seem to 

play a natural role in analysis and group representations. 

The following unicity theorem follows immediately from Lermna 6.3 and stan- 

dard methods of homological algebra. 
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Theorem i0 

If H~(G,A), i = i, 2 are two assignments of cohomology groups defined for 

A ~ P(G) for a fixed G which satisfy Axioms (a), (b), and (c) above, there are 

of H~(G,A) onto H~(G,A) for all n and all A. canonical isomorphisms 
I 

One of our major results is that the groups Hn(G,A) and H n(G,A) defined 

above by Borel cochains, and equivalence classes of measurable cochains do satisfy 

these axioms. 

Theorem ii 

The groups Hn(G,A) and Hn(G,A) satisfy Axioms (a), (b), and (c) and 

hence are isomorphic. More precisely, the map which attaches to each Borel cochain 

in Cn(G,A), its equivalence class in Cn(G,A), induces this isomorphism on co- 

homology. 

The verification of Axioms (a) and (b) is routine in both cases (see [38]); 

however, the verification of Axiom (c) is non-trivial. In fact for n = i, this 

verification is for all intents and purposes equivalent to Mackey's general version 

of the Stone-von Neumann theorem in [26]. A close examination of Mackey's argument 

in [26] reveals that what is essentially being proved is that HI(G,I(T)) = 0. (Ac- 

tually one wants to replace T by a unitary group U(H) on a Hilbert space, and 

this would lead us into non-abelian cohomology (see [45]~ The essential analytic 

details however are the same as when H is one-dimensional so that U(H) = T.) 

Theorem ii is proved first for n = i, and then the general case is reduced to this 

case by an induction argument. The argument follows in spirit the argument for ab- 

stract groups where in fact the result is trivial; however, there are non-trivial 

analytical complications concerning null sets in our case. 

In view of Theorem ii we shall henceforth use the notations Hn(G,A) and 

Hn(G,A) interchangeably; our choice of notation will serve to emphasize that we are 

interested in a particular facet of these groups which may be evident from one of 

the definitions, but not the other. We note in particular that such results as the 

above are not approachable if one stays within the category of locally compact G- 

modules, and that essential use is made of non-locally compact modules. 

We have remarked before that we have a natural notion of induced modules 

gives us for each A ~ P(H), a module I~(A) E P(G) where H is a closed which 

subgroup of G. A very useful tool for finite groups is Shapiro's lemma [45] which 

relates the cohomology of A with that of the induced module. 

Theorem 12 

isomorphisms Hn(H,A ) _~ Hn(G,IH(A) )r_ for all A ~ P(H) There are canonical 

and all n. 
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The proof is obtained by noting that both sides of the above as functors on 

P(H) satisfy Axioms (a), (b), and (c), and then one applies Theorem i0. We note 

that for H = (e), this is simply the vanishing theorem. Also we note for n = i, 

that this theorem is essentially Mackey's imprimitivity theorem [27]. 

9. ADDITIONAL PROPERTIES 

We shall now discuss some additional properties of these cohomology groups, 

and in particular nail down the connection with group extensions. For n = 0, we 

have already seen that H0(G,A) = A G and that n = i, HI(G,A) is the group of con- 

tinuous crossed homomorphisms of G into A modulo principal ones, and if A is 

a trivial G-module, it is simply the group of all continuous homomorphisms of G 

into A. In Section 7 we constructed an injective homomorphism of the group 

Ext(G,A) of equivalence classes of topological group extensions into H2(G,A). For 

A locally compact, Maekey has shown that this map is onto, but his argument [30] 

does not extend since it makes essential use of the Haar measure on A. We have an 

alternate argument which works in general and which we outline below. 

If a ~ H2(G,A), we embed A into I(A) by Lemma 6.3 and let a p be the 

image of the class a in H2(G,I(A)) under the map given in Axiom (a). Since 

H2(G,I(A)) = 0, a p = 0, and so there is clearly an extension of G by I(A) corre- 

sponding to a', namely the semi-direct product I(A) • G. We wish to construct an 

extension of G by A corresponding to a ~ H2(G,A) and on general principles we 

would expect this extension, if it exists, as a subgroup of I(A) • G. In fact if 

we pick a cocycle in the class a, we can immediately construct a subgroup E p of 

I(A) • G and then prove that it has all the required properties. (This particular 

construction is virtually forced on us, again by general principles.) Thus 

Ext(G,A) = N2(G,A). 

The higher cohomology groups have as yet no direct interpretation, however, 

we certainly do expect H3(G,A) to contain obstructions to the construction of non- 

abelian extensions as in [3], Chapter IV. 

When the cohomology groups are constructed via equivalence classes of meas- 

urable cochains, another interesting and significant property emerges. Namely, 

since c n(G,A) is a polonais group, and since it may be readily checked that the 

coboundary operators ~n are continuous, it follows that z_n(G,A) is closed and 

hence in P. Thus H__n(G,A) is the quotient of a group in P by a subgroup and, 

hence when given the quotient topology, is itself a topological group. There is no 

a priori reason for B_n(G,A) to be closed, and it is an unpleasant fact of life 

that it is not always closed so that Hg(G,A ) may not even be Hausdorff. The 

closure of the identity element in such a group is a closed subgroup, and upon 

dividing by it, we obtain a Hausdorff group which in the case of H_n(G,A) is simply 
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Zn(G,A) divided by the closure of Bn(G,A). This quotient group will again be 

polonais, and Hn(G,A) will satisfy all the axioms of a polonais group except with 

"metric" replaced by "pseudo-metric". Thus Hn(G,A) is in a class of groups one 

might reluctantly call pseudo-polonais. 

In any case, the fact that Hn(G,A) and hence Hn(G,A) have a natural and 

more or less reasonable topology will be quite important for us. In fact we can 

strengthen Axiom (a) above and prove that the groups Hn(G,A) are functors of co- 

homological type taking values in the category of topological groups. Moreover, if 

n = i, and if A is a trivial G module, HI(G,A) being continuous homomorphisms 

of G into A has a natural Hausdorff topology, namely that of Convergence on com- 

pact sets. It may be verified that the topology on HI(G,A) coincides with this 

topology. In [39] a great deal of effort was devoted to constructing a topology for 

H2(G,A) for various G and A by rather ad hoc methods. It is not hard to show 

that this topology coincides with the one above on H2(G,A) whenever the former 

exists. Details of this will appear in our subsequent paper. 

One reason for seeking a topology on Hn(G,A) (aside from the esthetic one 

of expecting a topological object when one starts with topological data) is so that 

one can hope to make sense out of the spectral sequence for the cohomology of a 

group extension (cf. [19]). If H is a closed normal subgroup of G, the analogy 

with finite groups leads us to hope for a spectral sequence E p'q converging to 
r 

P'q = HP(G/H,Hq(H,A)) (see [19]). We observe that for this to be- H*(G,A) with E 2 

gin to make sense, we must have Hq(H,A) E P(G/H), and in particular it must have a 

topology. We can show that there is always a spectral sequence of this type, and 

moreover that if Hq(H,A) happens to be Hausdorff then the E~ 'q term is given by 

the expected formula. The existence of such a spectral sequence is quite important 

since it is an almost indispensable tool in making all but the simplest calculations 

of our cohomology groups. The reader is referred to [38] and [39] for examples in 

the case when A is locally compact. 

We shall close this section with one final result concerning direct inte- 

grals of G-modules. Recall from Section 6 that if A ~ P(G), the group U(X,A) had 

a natural structure as G-module which we called the direct integral. Since 

Cartesian products are a special case of this, and since cohomology commutes with 

products, we may ask if the same is true for integrals and we have the following 

result. 

Theorem 13 

If Hn(G,A) is Hausdorff, we have an isomorphism of topological groups 

Hn(G,U(X,A)) = U(X,Hn(G,A)) . 

The content of this result is that a cocycle with values in a direct inte- 

gral module U(X,A) may be represented as a direct integral of cocycles. If n = 1 
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with trivial action, the side condition is satisfied and since one cocycles are 

homomorphisms, this result essentially gives us a new proof of the existence of 

direct integral decompositions of unitary representations. 

i0. EXAMPLES AND APPLICATIONS 

We want to conclude with some examples, some computations, and some appli- 

cations of the general theory above. 

Suppose that G = G 1 × G 2 and suppose for simplicity that A is a trivial 

G-module. Then either as a consequence of the spectral sequence above, or as a re- 

sult of explicit computations (cf. [31]), we may obtain a structure theorem for 

H2(G,A) as follows: 

H2(G,A) = H2(GI,A ) @ H2(G2,A) @ HI(GI,HI(G2,A)) . 

The first two terms are easy enough to understand and represent the contributions of 

the factors G 1 and G 2 to the cohomology of G, while the final term is a cross- 

term representing the interaction of G 1 and G 2. This enables us for instance to 

immediately compute H2(Rn,T), H2(Zn,T), and H2(Tn,T) by induction on n. Indeed 

it is easy to verify that H2(R,T) = H2(Z,T) = H2(T,T) = 0 by looking at the possi- 

ble group extensions in these three cases. Since R n = R n-I x R, and so on, it fol- 

lows readily by induction that H2(Rn,T) is isomorphic to a vector space V of 

dimension n(n - i)/2, and that H2(Zn,T) is isomorphic to a torus S again of 

dimension n(n - 1)/2, and that H2(Tn,T) = 0. Moreover the topology defined above 

on the groups H__2(Rn,T) and H2(Zn,T) coincides with the usual topology on the 

vector V and torus S. The isomorphism can also be implemented quite explicitly 

since one may show that each class in H2(Rn,T) contains a unique skew symmetric 

continuous bilinear function, and one may identify H2(Rn,T) with the group of such 

functions which is a vector group of dimension exactly n(n - 1)/2. A similar but 

slightly more involved statement holds for H2(Zn,T). 

If G is a semi-simple Lie group and if A is a trivial locally compact 

G-module, it is classical [47] that H2(G,A) = HI(~I(G),A ) where ~I(G) is the 

usual fundamental group of G. Furthermore H2(G,A) is Hausdorff in its natural 

topology and this topology coincides with the compact open topology on HI(~I(G),A) 

= Hom(~I(G),A) which in this simple case is simply the topology of pointwise con- 

vergence. This result also holds for any trivial G-module in P(G) and moreover a 

similar result holds for a much broader class of groups G if one is willing to 

suitably redefine and generalize the notion of the fundamental group ~I(G) of G 

(see [40]). 

Using the spectral sequence of the previous section one may compute H2(G,T) 

when G is a semi-direct product of a semi-simple group and say a vector group. One 
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may verify in this case known results for the inhomogeneous Lorentz group, and 

similar kinds of groups. We refer the reader to [38] and [39] for more details. 

Another application of this material, and especially of our results con- 

cerning non-locally compact G-modules concerns the following situation. Let A = T n 

be a finite or infinite dimensional torus where n = i, 2, -.., ~, and suppose that 

i ÷ A ÷ E ÷ G ÷ i 

is a group extension of G by A where E is locally compact and abelian. It is 

a trivial and well known consequence of the duality theory of locally compact abelian 

groups that such an extension splits (that is, represents the identity element of 

Ext(G,A)) and so E = A @ G is a direct sum of A and G as topological groups. 

With this result in mind for Cartesian products of circles, it is natural 

to ask if a similar result holds for direct integrals of the circle group and the 

answer is affirmative. 

Theorem 14 

If 1 ÷ U(X,T) ÷ E ÷ G ÷ i is an extension of G by U(X,T) with E 

abelian and G locally compact, then the extension is split so that E = U(X,T) + G 

as topological groups. 

The idea of the proof is quite simple; one may verify that H2(G,T) is 

Hausdorff and so Theorem 13 is applicable. After some extra argument using the fact 

that E is assumed to be abelian, the problem is thrown back using Theorem 13 to 

case when U(X,T) = T where the result is known. Theorem 14 is found to be quite 

useful in settling certain questions concerning the structure of non-locally compact 

topological groups. Moreover exactly the same technique allows us to establish the 

following result. 

Theorem 15 

If H2(G,T) = (0) then any extension i ÷ U(X,T) ÷ E ÷ G ÷ i with G 

locally compact and U(X,T) a trivial G-module splits. 

This final result leads to a very useful theorem concerning automorphism 

groups of von Neumann algebras which will have some applications in quantum field 

theory. Suppose that B is avon Neumann algebra of operators on a separable 

Hilbert space and that G is a locally compact group. We suppose given a homomor- 

phism f of G into the group of inner *-automorphisms of B satisfying the con- 

tinuity requirements set down in [22]. Thus for each g E G, we have a unitary 

operator u(g) in B such that f(g)(b) = u(g)b u(g) -I for all b ~ B. The 

question we raise is whether one can choose the operators u(g) so that they form 

a continuous unitary representation of G. This question is relevant in quantum 

field theory when for instance B is some algebra of observables and G is some 
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symmetry group of the physical system. If B is the algebra of all bounded opera- 

tors on Hilbert space, a moment's reflection will show that we are raising exactly 

the question of when a projective or ray representation of G can be converted into 

an ordinary representation since the group of *-inner automorphisms of B is PU(H). 

It follows from our general discussion of group extensions that we can do this for 

projective representations if H2(G,T) = 0, or equivalently if every group extension 

of G by the circle group splits as a product. The theorem to follow asserts that 

the same is true in the general context described above. 

Theorem 16 

If f is any homomorphism of G into the group of *-inner automorphisms 

of avon Neumann algebra B on a separable Hilbert space, continuous in the sense 

described in [22], and if H2(G,T) = 0, then there is a unitary representation 

of G with ~(g) 6 B such that f(g)(b) = ~(g)bz(g) -I for b 6 B. 

The proof is almost immediate for the map f immediately gives rise to a 

cohomology class a in H2(G,W) where W is the group of unitary operators in the 

center of B, such that a = 0 if and only if a representation ~ as described in 

the theorem exists. However, by the structure theory of von Neumann algebras W is 

of the form U(X,T) and the result follows by Theorem 15. 

When G = R, Kadison in [22] established a special case of this. Recently 

R. Kallman [23] has obtained a far more general result. For the Poincar~ group, 

another case of physical interest, L. Michel has already obtained the above result 

by rather different methods [36]. 
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