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Nouvelles méthodes de détermination
des paramétres cosmologiques

Durant ces vingt derniéres anndes, la cosmologie est passé du statut de science trés qualitative
et spéculative a celui de véritable scicnce quantitative. Récemment cette évolution s'est consid-
érablement accentué par I'important développement des nouvelles méthodes de détermination du
paramétre de décélération {ou plus précisément d’accélération) a partir des supernovac de type
Ia, des études de leffet Sunyaev-Zel'dovich dans les amas de galaxies, de I'analyse des lentilles
gravitationnelles ou des observations du fond cosmique micro-onde.

., Dans ce cours, nous étudions dans la premiere partie les lentilles gravitationnelles et dans la
“seconde partie les anisotropies du fond cosmique micro-onde. Nous avons souhaité montrer d’une
part que ces sujets permettent un trés attrayant traitement théorique, et d'autre part souligner que,
sous certaines hypothéses, les données expérimentales prévues les prochaines années permetirons de
déterminer & quelques pourcents prés les paramétres cosmologiques tels que la courbure de 'espace,
le paramétre de Hubble ou la constante cosmologique, une nouveauté inouie en cosmologie.

Nous tenons A remercier notre assistant Martin Kunz pour son aide trés eflicace concernant la
préparation des nates de ce cours, et pour sa lecture soigneuse de la premiére version de ce texte.
Nos remerciements vont aussi & Lukas Grenacher. Enfin nous remercions le Troisiéme Cycle de
la Suisse Romande de nous avoir invité i présenter les nouveaux développements de ce fascinant
sujet.

Ruth Durrer et Norbert Stranmann




Contents

I Lectures on Gravitational Lensing
Introduction

1 Basic lensing equations
1.1 Reduction to a problem of ordinary ray optics, effective refraction index . . . . . .
1.2 Deflection by an arbitrary mass concentration . . . . . . . ... . oo 0oL
1.3 Thegenerallensmap. . . . . . . o v v v v i i i e e e e et e e e e
1.4 Magnification, critical curves and caustics . . . . .. . ... ... .
1.5 Timedelay . . . . . . . o e e e e e e
1.6 Whitney theorem on generic singularities . . .. .. ... .. ... ... ...
1.7 Classification of ordinary images, orientation and shape . .. .. ... .. ... ..
1.8 Appendix: Alternotive derivation of the lens equation. . . ... .. . .. ... ...

2 Simple lens models
2.1 Axially symmetric lenses: generalities . . ... ... ... ... .. . 0L,
2.2 The Schwarzschild lens: microlensing . . . . . .. . .. ... ... L
2.3 Singular isothermal sphere . . . . . . . . . L Lo
2.4 Isothermal sphere with finite coreradius . . . . .. ... .. . ... ... .....
2.5 Lensing experiments . . . . . . . v v v ittt e e e e e
2.6 DExtended source . . . .. ... . e e e e e e
2.7 Twopoint—-masslens . . . . . . . . L e e e e e e e

3 Lensing by galaxy clusters
3.1 Stronglensing by clusters . . . . . . .. ... oo e
3.2 Mass reconstruction from weak lensing . . . . . .. . .o o oo
3.2.1 Relations between mean convergence and reduced shear . . . .. ... ...
3.2.2 Practical difficulties, examples . . . . . . . . ..o .o e
3.3 Comparison with results from X—ray observations . . . . . .. . .. .. ... .. ..

4 Extensions to a cosmological context

4.1 Lens mapping in cosmology . . . . . . . . . .. . e
4.2 Hubble constant from timedelays . . . . .. . ... ... .. o o
4.3 Bounds ou the cosmological coustant from lensing statisties . . . .. ... ... ..
44 Updates . . . . . . . o o e e e e e e e e e e e e

4.4.1 Statistics of strong gravitational lensing of distant quasars by galaxies . . .

4.4.2 'Statistics of arcs caused by clusters of galaxies . ... ... .........
4.5 Appendix on Lens mapping in cosmelogy . . . . . . . . L Lo o0

5 Complex formulation of lensing theory
5.1 Complex formulation . . . . . . . . . e e e e e e e e e
5.1.1 Mathematical preliminaries . . . . .. .. . .. . . ... ..
5.1.2 The complex lens mapping and its differential . . . . .. ... ... ... ..
5.2 Applications . . . . . . ... L e e

19
19
21
23
25
26
27
28

31
32
33
33
38
36

39
39
41
42
48
48
=4

50
50

87
87
o7



2 CONTENTS

5.2.1 Number of images for aregularlens . . .. . ... .. ... ... ... 60
5.2.2 Relations between mean convergence and reduced shear . . . . . . ... .. 61
5.2.3 Other useful reconstruction equations . . . . . . .. ... ... ... ..., . 62

II Lectures on Anisotropies in the Cosmic Microwave Background 67

8 Introduction 69
6.1 Friedmann-Lemaitre universes . . . . . . . . . . 0 v i e e e 69
6.2 Recombination and the cosmic microwave background (CMB)} . . . ... .. .. .. 73

7 Perturbation Theory 7T
7.1 Gaunge transformation, gauge invariance . . .. ... ... ... ... ... . .... 77
7.2 Gauge invariant perturbation variables . . . . . .. .. ... Lo L. 78

7.2.1 Metric perturbations . . . . . . . .. L o L 79
7.2.2 Perturbations of the energy momentum tensor . . . .. .. ... ... ... 80
7.3 Basic perturbation equUations . . . . . . . . e h e e e e e e e 82
7.3.1 Coustraint equations . . . . . . . . -« o . e e e e e 82
7.3.2 Dynamical equations . . . . . . . ... Lo 82
7.3.3 Conservation equations . . . ... ... . ... ... ... .. 82

8 Simple applications 85
81 Thepuredustfluidat x =0,A=0 ... ... . . .. . . ... 85
8.2 The pure radiation fluid, s =0,A=0 . ... . ... ... . . .. ... 86
8.3 Adiabatic and isocurvature initial conditions for & matter & radiation fluid .. .. 87

8.3.1 Adiabatic initial conditions . . . . . ... ... oL L L 87
8.3.2 Tgocurvature initial conditions . ., . . ... .. . . ... .., 88
8.3.3 Vector perturbations of perfect fluids . . . . . ... ... ... ... ... .. 80
834 Tensor perturhations . . . ., . . . ... ... e 90

9 CMB anisotropies 23
9.1 Lightlike geodesics . . . . . . . . L e e e e 93
9.2 Powerspectra . . . . . . L. e e e e e e e 95
9.3 The Boltzmann equation . . . . . . . . . . . . ... e 99

9.3.1 Elements of thederivation . . . . .. ... . ... ... .. .. ... 99

9.3.2 The tight couplinglimit . . . . .. ... ... .. . ... . . ... 104

9.3.3 Damping by photon diffusion . . .. .. ... .. Lo, 106

9.4 Polarization . . . . . ... e e e e e e e 107
9.5 BUIMIATY . - v e e e e e e e e e e e e 111
9.5.1 Physical processes . . . . . . . . et e e e e e 111

952 Scaledependence . . . ... .. . ... e 111

9.5.3 The main influence of cosmological parameters . . . . .. . ... ... ... 112

10 Observations 115

A The C¢’s from gravitational waves 119



Part 1

Lectures on Gravitational Lensing






Introduction

Gravitational lensing has become one of the important flelds in present day astronomy. The ¢nor-
mous activity in this area has largely been driven by congiderable improvements of the observational
capabilities. So far we have, however, only scratched the surface. The rate and quality of the data
will increase dramatically, thanks to new wide—field cameras and imaging with new telescopes, in
particular those of the 8m—class.

Why is gravitational lensing so important? The answer is simple: It has the distinguishing
feature of being independent of the nature and the physical state of the deflecting mass. Therefore,
it is perfectly suited to study dark matter at all scales.

Let me mention, for illustration, just one topic which has recently attracted a lot of attention.
This concerns the parameter—free reconstructions of projected mass distributions from (weak)
lensing data, for instance, for rich clusters of galaxies. Fig. 1 shows an example of such data,
which has been obtained with the wide—field camera (WFPC 2) on HST. Beside arcs onc can see
many arclets which are weakly distorted images of faint distant galaxies. We shall gsee in these
lectures how one analyses such data.

It is always interesting to know something about the history of a field. I will inject historical
remarks at appropriate places here and there during the course. Let me now mention, however,
that Einstein discovered gravitational lensing as early as in 1912, before the general theory of
relativity was formulated. At the time he was working on the static limit of a relativistic theory
of gravity. Reconstruction of some of Einstein’s research notes dating back to 1912 reveals that he
explored the possibility of gravitational lensing. These research notes can be found in [1], see also
[2].) Einstein did the gravitational lensing calcubations during a visit to Berlin where he met the
astronomer Freundlich at the Konigliche Sternwarte (Royal Observatory). Beside considering the
possibility of a double image of a source as a result of gravitational bending, he also computed the
magnification of the intensity of these images. As is well known, it is this effect which the present
day MACHQO search relies upon.

The first who recognized the great potential of gravitational lensing was Fritz Zwicky back in
1937. In two short and very impressive papers [3] he pointed out that galaxies can split images
of background sources by a large enough angle to be observed. I shall later go through Zwicky’s
papers. As you will see, virtually all of hig predictions have come true {(about 50 years later).

Let me add a few remarks on the program of these lectures. I want to derive already at the
beginning - as directly as possible - all the important general lensing equations. For this I need one
simple consequence of general relativity {GR), namely that one can reduce gravitational lensing to
a problem in ordinary ray optics, with an effective refraction index that is simply given in terms of
the Newtonian potential (for an almost Newtonian situation, i.e., weak fields). Those of you who
do not know GR. should accept this fact,

The table of contents gives a more detailed description of the program,






Chapter 1

Basic lensing equations

The conceptual basis of gravitational lensing is extremely simple. At the same time this is the
main reason why it is so important for the study of mass distributions at all scales. For all practical
purposes we can use the ray approximation for the description of light propagation. In thig limit,
the rays correspond to null geodesics in a given gravitational field, and the polarization vector
obeys the law of parallel transport.

These laws can be deduced from Maxwell’s equations; see, e.g., [4], Section 1.8. Let us briefly
recapitulate the eikonal approximation for the Maxwell field F. As usual we set

F = feis (1.1)

with a slowly varying f and a real S. (I omit to indicate that the real part on the right has to be
taken.) From dF = 0 we get

df +if AdS=0 (1.2)
and d * F' = 0 implies
dx f+i(xf)AdS=0. (1.3)
In these equations we neglect the differentials of f and *f,
Fads=0, xfirnds=0 (1.4)
These relations imply
0 =ive(f AdS) = (ivsf) AdS + f (V5. (1.5)

Since the second equation in (1.4} is equivalent to iygf = 0, we obtain the general relativistic
eikonal eguation

(V8?2 =0 (¢9,58,8=0). (1.6)

Let me also repeat the Hamilton-Jacobi method for light propagation. Consider rays (A}, i.e.,
trajectories orthogonal to the wave fronts {$ = const.}:

YA) = VS (v (A). (1.7)
We show that ¥(A) is a null geodesic, A an affine parameter. First, ¥ is a null vector,
g%,y =g(VS§,VvSs)=0. (1.8)

Secondly, we have
Vi¥=Ves (VS) I’T(") - (1‘9)

Here, the right hand side is

(V*8) V., (V#§) = V*SV* (V,8) = %w (V*8V,S) = 0. (1.10)
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For sufficiently strong lenses the wave fronts develop edges and self-intersections (see Fig. 1.1),
An observer behind such folded fronts obviously sees more than one image. From Fig. 1.1 one also
understands how the time delay of pairs of images arises: this is just the time elapsed between
crossings of different sheets of the same wave front. Hopefully, this will lead, for instance, to an
accurate determination of the Hubble constant (see Section 4.2).

Fig. 1.1 also shows, where strong and weak lensing occurs behind a cluster of galaxies.

ARCLETS M
-

.g(.a'/

-

SMALL ELLIPSES

Figure 1.1: Wave fronts in the presence of a cluster perturbation.

1.1 Reduction to a problem of ordinary ray optics, effective
refraction index

For the time being, we consider almost Newtonian, asymptotically flat situations. Generalizations
to the cosmological context are easy and basically amount to interpreting all distances in the
formulas derived below as angular diameter distances. GR implies then that gravitational lensing
theory is just usual ray optics with the effective refraction index

n(x)=1-2Ux)/, (1.11)

where U (x} is the Newtonian potential of the mass distribution p (x),

U =G [ LF) g (1.12)

x —x'|

Until we come to cosmological problems, this is the only fact which you have to accept from
GR. For those of you who have some knowledge of this great theory, I describe briefly how one
arrives at {1.11). ]

For an almost Newtonian situation, the metric element of spacetime (in almost Lorentzian
coordinates) is given by

g=(1+2U/c%) dt* - (1 - 2U/c%) ax® (1.13)
(see, e.g., [4], Section 4.2).
On the other hand, the spatial part of a light ray satisfles Fermat's principle

d;m =0, (1.14)
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for variations with fixed end points ([4], Section 1.7). Here do? denotes the spatial part of (1.13).
Honce, we arrive at Fermat’s principle in ordinary ray optics

6/?1 (x(s)|% (s)l ds = 0, (1.15)

where the refraction index n is given by (1.11); x(s) is the parametrized light path and |x (s)|
denotes the euclidean norm of the tangent vector.

Let me remind you how one obtains from Fermat’s principle (1.15) the basic ray equation in
optics. You can regard {1.15) as a Hamiltonian variational principle, with Lagrangian

L (x,%) = n{x) % (1.16)

When s is the euclidean path length parameter, we have:

oL .2
a = Vn, (x = 1) H
oL _ n x
ox
This gives for the Euler-Lagrange equatiocn
49L 9L _
dsdx Ox
the well known ray equation
d dx
—_ — ] = . 1.1
T (ﬂ, ds) vn (1.17)

We give another derivation of (1.11) by making use of the etkonal description. For the metric
(1.13) the eikonal equation ¢"*8, 58,5 = 0 becomes, by setting S{z) = 5(x) — wt,

5\ 2 2 2
(VS) =n‘w*, n:l—?, (1.18)
where the operations on the left have to be understood in the Euclidean 3-space.

Alternatively, one can write the Maxwell equations for the metric g as in Special Relativity,
but with

e=p~1- -z—g. (exercise) (1.19)
¢
Hence, Maxwell’s relation gives again
2U
n:,;suzl—-c—z. (120)

Solution: Maxwell eqs. in an almost Newtonian g-field

We decompose F into electric and magnetic pieces, F' = E A dt + B The homogeneous equation
dF = 0 splits into
. dB =0, dE+8.58 =0. (1.21)

If we set *F = D — H A dt, we have similarly from d+ F = 0:
dD =0, dH =3§D. (1.22)

For a static metric (Y'g = —a®dt? + g we obtain the relations

D=l*E, B:-l—*H. (1.23)
a a
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For an almost Newtonian situation: g ~ o~2§ (§: flat metric). Thus

1
x5 = EEE (¥ : fat star operator)

and hence i )
D=—%B, B= 3l (1.24)
(1.21), (1.22) and (1.24) are just Maxwell’s equations in fAat space-time for a medium with
1 1 U
5=uz§-}n=,/s#:§=1—2-‘c—2—. (1.25)

1.2 Deflection by an arbitrary mass concentration

In terms of the unit tangent vector e = dx/ds, Eq. (1.17) can be approximated as

d 2
e=—5V.U, (1.26)

where V| denotes the transverse derivative, V) = V — e(e - V). This gives for the deflection
angle & = e;, — €4y, with initial and final directions e;, and ef;y,, respectively,

a=2[ v.vd, (1.27)
C2 .

where the integral is taken over the unperturbed path (u.p.).! Here, we insert the expression
(1.12) for the Newtonian potential of a mass density p(x). Parametrizing the unperturbed path
a8 x = £+ z2e, e = e;, , £ fixed, we obtain

&:C%/V_LU(Eﬂ-ze)dz:—%G/dsm'p(x’)/v_,_ (——1-—) dz

%]

or, setting x’ = (£',2') ( ie, x' =€ + Z'e) and using

Vi (Ix —1x’l) - _af—_i’ﬁ’

! Alternatively we can proceed from here as follows. From (1.27) we obtain

2
VJ_-&=—2/ Ay U ds. {1.28)
e Ju.p.

Here, we can replace the transversal Laplacian by the thres-dimensional one and use the Poisson equatien AU =
A7 G p:

8y (e
Via=—2 [ pds= E;—z. (1.29)
e Jup ¢
On the other hand, (1.27) can be written as
a:%vﬁ;}, qﬁ:f U ds. {1.20)
& U.p.
Hence, we have .
) Ay = 4rGE. (1.31)
Using the Green’s function (1.37) below, the potential ¥ is given by
96 =26 [ mle - ¢ ne). (1.32)
From this we obtain for the deflection angle
L 4G £-¢ ' '
= -— N o 1.33
ir 62 RZIE—£’| (E)ZE! ( )

which agrees with (1.34).
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we have

& = i_f /d2f’dz’p (Er,z") (E _Er) f 2 dz -
[e-e) + -]
The z-integration has to be extended over the interval between the source and the observer. Now,
since the extension of the lens (for instance a cluster of galaxies) is much smaller than the distances
of the observer and the source to the lens, one is allowed to replace the finite interval for z by all
of R. Making use of

f+°° dz 2 ‘
S PN L

note that — Lo = = ! we finally pet
YT\ VEre) T ) v 8

=i_f/ f’l;_sl fdzpé 4

Only the projected mass density

B = [ ple2)ds,

appears on the right hand side. In terms of this, our main result of this section becomes

. e
@) =— f £-¢ =5 (£ d?¢. (1.34)
¢ Jpe2 IE 4 ’
For a point mass M located at the origin of the transversal plane, £ (£) is equal to M§2 (£)
and thus ACM 1
&8) = — -, 1.35
© =~ (1.35)

which is Einstein’s famous result. Consider, more generally, an axially symmetric lens with mass
M (£) located inside the cylinder defined by the impact paraueter £, we expect from (1.35) that

f o AGM(8)
& (&) = R (1.36)
For a simple way to show this, we note first that
1
= —1 .
G (€)= o-lnle (137
is the Green’s function of the 2-dimensicnal Laplacian?
@AG = §), (1.38)

2Proof of AG =6
It is easy to verify that for |x| > 0 Ag = 0 holds: in polar coordinates (r, ) we have

1 ¢ 8l
Alnjx| =~ (raatr) =0 for >0

Let f be a test function with supp f C Dg (disk of radius R). Then

< Alnlx|,f >=<In|x|,Af >= lim In [ Afd%z.
e—0 e<|x|<R

For the last integral the second Green’s formula gives

f Aln x| fd?z + ( f ) (1:11 x| 2 _ 00 "") ds =
e x| < R |%]=r x| R
_ AL !
-/l.xl=s( 111|x| 3 +fr) 8

Here, only the second term survives in the limit ¢ — 0 and becomes equal to 27f(0). This shows that
< Aln|x|, f >= 2 < §, f > for all test functions f, which proves our claim,
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With its help the result (1.34) can be written briefly as the gradient

a="0v(gay), (1.39)

where the star (*) denotes convolution. Taking the divergence of this equation gives, with (1.38),
V. & =8rGL/c . {1.40)

We integrate this over the disk with radius £ and obtain with the 2-dimensional version of Gauss’
theorem for an axially symmetric lens

/V.ﬁgd2£=/d-11d3=27r£&(§)=3WGM(E)

(n: unit outerward normal to the disk). The last equality just gives (1.36}. (You also can obtain
this result by introducing polar coordinates in (1.34) and working out the angular integration, but
the above derivation is much simpler.)

We shall study axisymmetric lens models in detail later, but I want to proceed now with the
general lens.

1.3 The general lens map

Fig. 1.2 summarizes some of the notation we are using. (I will follow as much as possible the
beautiful monograph [5] by Schneider, Ehlers and Falco, hereafter quoted as SEF.) Simple geometry
shows that

n= -g_;e — Duéff), (1.41)

where 7 is the source position and £ is the lens position. This defines a map £ — 7 from the lens
plane to the source plane. Fig. 1.2 shows also that

£ = D9, n=D,8, (1.42)
hence (1.41) can be written as
Dys
,6 = 9 —_ Di . (1‘43)

This or {1.41) is what is called the lens equation.’

It turns out, not unexpectedly, that (1.43) holds also in cosmology (see Section 4.1).

It is convenient to write (1.41) in dimensionless form. Let & be a length parameter in the lens
plane (whose choice will depend on the specific problem), and let 79 be the corresponding length
in the source plane, ng = (D,;/Dy) &. We set x = £/&, ¥ =n/n0, and

z (Eﬂx) DJ-DtL‘: -

k{x)= —1, o{x) = & (Eox), 1.44
0 =52 a0 = B ) (1.44)

with )

c D 1 Gpo
Leri =— 2 =0, 2 . 14

‘= 1nG DDy, 00D (D(;Dds/Ds) (149

Then Eq. (1.41) reads as follows
y=x—a{x}, (1.46)

whereby Eqg. (1.34) translates to
o(x) = 1 / —)[—.x—qrc(x') d*z'. (1.47)

™ Jas [x —xf°

38ee the appendix 1.8 for an alternative derivation.
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Source plane

]
M 1

Das

Lens plang

o
Observer

Figure 1.2: Notation adopted for the description of the lens geometry.

As in (1.39) we can write « as a gradient
a=Vy, Y =20%*x, (1.48)
From (1.38) it follows that 1/ satisfies the 2—dimensional Poisson equation
Ay = 2. (1.49)

The map ¢ : x = y defined by (1.46) is thus a gradient map

1
ex)=V (Exﬁ — 3 (x)) . {1.50)
Explicitly, the second equation in (1.48) reads
1
P (x) = ;/ In (|x — x') & (x') %2, (1.51)
mZ
The differential Dy will often be used. A standard parametrization is
l—s—-m —2

Dy = , 1.52
v ( —Ta 1—N+’n) (152)

where v = -;-(3111,9 — Gatp}, Y2 = O12% = Ba19b. Note, that the matrix elements of Dy are {see,

e.g., {1.50})
(Dip);; = bij — 0:959, (1.53)

where 8; = 8/8x;. In particular, the trace of (1.52) is chosen correctly (see (1.49)}), and Dy is
clearly symmetric. The dimensionless projected mass density & is often called the mean Ricei
curvature, and the 2-dimensional vector 4 = (y1,72) is the Weyl shear. For a geometrical inter-
pretation, see Section 1.7.
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1.4 Magnification, critical curves and caustics

Next, I show that the magnification g, that is, the ratio of the flux of an image to the flux of the

unlensed source, is given by
1

= [det D)

In order to derive this result, I recall a simple but important fact from ray optics.
Consider a ray I and any two points along the ray and construct areas dA; and d4,; normal

to the ray at these points. Let dE; = dFEy be the energy of all rays passing through both 4A4; and

dA4s during the time dt. Since

2 (1.54)

dEl = L,l dAl dtdﬂl dvl, dEz = qu dAgdtngde,

where df) 5 is the solid angle subtended by dA4z: at dA; 2, and because dQy = dAs/R?, dQy =
dA:1/R? (R = distance between dA4; and dA2), we obtain

I, dvy = I,dva. (1.55)
If there is no frequency shift, the specific intensity is thus constant along a ray
I, = const. (1.56)

This holds also for gravitational light deflection by localized, nearly static lenses, because this does
not introduce an additional frequency shift between source and observer, beside the cosmological
one {cosmological effects will be considered later).* Now, the ux of an image of an infinitesimal
source is the product of its surface brightness I and the solid angle df? it subtends on the sky.
From (1.56) we conclude that the magnification g is the ratio of 492 and the sclid angle df2q for
the undeflected situation. On the other hand dfi5/df} is equal to the area distortion of the lens
map ¢, and thus equal to the Jacobian |det D¢| . This proves our claim (1.54). {For a more
sophisticated derivation, which applies also in cosmology, see SEF, Sections 3.4-3.6, in particular
eqs. {3.81), (3.82).)
The lens map  becomes singular along criticel curves in the lens plane. These are characterized
by
det(Dyg) =0 (1.57}

(1-x)? -7 =0 (1.58)

The caustics are the images of these critical curves®.

In the vicinity of these source points the magnification becomes very large. On caustics it
diverges formally, but this is of no physical significance, because the magnification remains finite
for any extended source (see Section 2.6 or SEF, Section 6.4). For a point-like source, the ray
approximation breaks down and we would have to use wave optics. (You find a discussion of this
in Chapter 7 of SEF.)

1.5 Time delay

The lens map (1.50) can also be written asg

Vi (x, y) =0, (1.59)

4More general argument: Without absorption and scattering processes the distribution function f for photons
satisfies the Liouville equation

Lx,f=0,
where X, is the vector field of the geodusic spray. Since the intesity I{w) is proportinnal to w® f, we conclude that

[{w}/w? remaing constent along null-geodesics.
A famous Lhearem of Sard tells us that Lliese crilical values of ¢ form a set of measure zero.
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with .
p0y) =5 x-y) - ¢. (1.60)

This formulation reflects the Fermat principle. We now show that the delay of arrival times is
directly given by the Fermat potential ¢

cAt = o(x,y). (1.61)

o a
50 D d D iz
The travel time is 1/c times the integral in the Fermat principle (1.15)

¢ = -i—[ | nols) ()] do = (1.62)

-E—CEB/ U(x(s))ds

({ = path length). In {1.63) we have used the basic formula (1.11) for the effective refraction index.
It suffices to take the integral along the unperturbed path. (This part describes the “Shapiro time
delay™.)

A look at Fig. 1.2 shows that

1
b= \/Dﬁ.,+(£—n)2+\/£2+D2:Dds+Dd+2Dds

For the potential part in (1.63) we proceed as in Section 1.2 (using the same notation). We have

j;_,,_ U (x(s)) ds

2 1 .
& —-n) +2—Dd'5-

/ U(€+z2e)dz = (1.63)

F ot et d
= _G/d2§d2p(£’z)./‘\/(6—5’)21(3—2’)2’

Now 2z’ varies over a much smaller domain than z. Therefore, the z—integral is approximately equal

to
1 Daa cui 2
/ —JW = I+ e+ (-¢))

[N 32 +

+Dds
o~ (1.64)
— Dy

2D 20y
~ In{|—7 In| ——| .
“hm‘l]”[w—fl]

Since the last expression is independent of z', we can do the »'-integral and find

£ ¢
£o

2

-5 U(x(s))ds = —%f—/d%’ﬂ () In [ :l + const. (1.65)

If we subtract from (1.63) the arrival time for an unlensed ray from the same source, we obtain
the time delay

. 1 D{.’.Dx E i ? 1 -
At = Em (-ﬁ; - D_s) - E '!,b (E) + const, (]_66)
where ,
$ (€)= 4;23 f F°€'S (') In [Ii%—ElJ : (1.67)

The constant in {1.85) is independent of £ and 7. From the definitions in Section 1.3 one finds

that
D&

B0 &=k, (168)

P (&) =
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and in terms of the dimensionless variables x and ¥ one finds that (1.65) agrees with the claimed
formula (1.61).

In a cosmological context one has to take into account red-shift effects (see Sect. 4.1). I
should, however, already be clear that the prefactor in (1.60) involves the Hubble parameter.

1.6 Whitney theorem on generic singularities
In & pioneering work of modern singularity theory, H. Whitney [6] studied in 1955 the generic
properties of smooth mappings of the plane into itself. His results apply directly to realistic lens

maps, and it ig, therefore, interesting to know what he showed. Before telling you, I must explain
what fold and cusp singularities are. Consider a smooth map f: B2 — R?>. We say that x € R? is a

f(S,if) XI
\i-
—_ X,

Figure 1.3: Cusp singularity. The map from the plane (z1, z2) to X is given by (z1, 22) — (31, T2, 2152+
z3); 51(f) in coordinates is given by &1 = —32%. The map from the plane (z;, T2) to the plane (x;, xa)
is given by (x1, x2) = (z1, 712 + 73}, and corresponds to the normal form for a cusp point; f(81(f)) is
given as £ = (—3t%, — 26%).

regular point, if the differential D f (x) is non—singular, i.e., det Df # 0 at x. In this situation the
map is locally differentially equivalent to the identity {z;,22) — (z1,22) in a sufficiently small
neighborhood of the origin. (Technically, it is convenient to use germs of maps.)

If Df(x) is singular at z, one calls x a critical point and its image f{x)} a eriticol value. We
say that a critical point is a fold if the germ of the map at that point is diffeomorphic to the germ

(z1,22) — {23, 32) at x =29 = 0. (1.69)

This means that one can introduce local coordinates (21,®2) in the source plane and (y1,y2) in
the target plane, such that locally 4 = x2, y2 = za.
We say that a critical point is a cusp, if the map is locally equivalent to

(z1,22) = (:c? +:c1:c2,$2) . (1.70)

An example of a cusp is shown in Fig. 1.4. Whitney has proven that maps which have only
fold and cusp singularities are generic. {This means that these contain an open and dense subset
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of all smooth maps in some natural topology, now called the Whitney topology.) Moreover, those
maps in this open and dense subset which satisfy a few mild global conditions are also stable. (I
do not want to give a precise definition for stability.) In higher dimension, things are much more
complicated.

1.7 Classification of ordinary images, orientation and shape

For a given source position y the images are those points x which satisfy V¢ (x) = 0 {critical
paints of the Fermat potential). This invites us to use some standard mathematical concepts and
toals for a qualitative discussion of the lens map.

A critical point of ¢ is non—degenerate, if the Hessian, H (¢} = (¢,i;) = Dy, is a non—-degenerate
quadratic form (cquivalently: det Dy # ), that is, the source is not on a caustic. The index of
such a critical point is just the index of H (¢} at that paoint, i.e., equal to the number of negative
terms in the normal form of H(f). In two dimensions we have three types of non—degenerate
critical points = ordinery images:

- type I corresponds to a minimum of ¢ (index = 0},

- type II to a saddle {index = 1),

- type III to a maximum (index = 2).

For a given source position, not lying on a caustic, we denote by nz,n;y,nsrr the number of
ordinary images of the indicated type. Using a theorem by Morse, one can show that

ny—n+nrgr =1 (1.71)

According to this theorem, the left—hand side of (1.70) is equal to the Euler characteristic of a
hig circle, which is equal to 1. In Chapter 5, 1 will give an clementary derivation of this result by
making use of standard tools in complex analysis.

As a consequence of (1.70) we arrive at the important fact

ni=ny+ni+nr=1+2n. (1.72)

The number of ordinary images of a regular lens is thus always odd. This number is bigger than
one, if and only if the arrival time surface {¢ = conast} has saddle peints. A beautiful example is
stiown in Figs. 1.4, 1.5, taken from [7]. Remember: ordinary images are located at local cxtrema
and a saddle points of the arrival time surface. We say that such an image has positive (negative)
parity if detDy > 0{< 0). Clearly, type I and III have positive parity, while type II has negative
parity. There is a simple geomnetrical meaning of this notion. Consider a source at y and au iinage
at x, y = @ (x). The linearization A := Dy (x) of ¢ at x fells us what happens with infinitesimal
displacements, described by vectors Y at the source and vectors X at the inage point x, related
by ¥ = AX.

Note first, that X - Y = A(X,X) := B4,X;X; > 0(<0) for type I, III, {type II). Thus,
for images of type I, III the position angle of the image vector differs by no more than w/2
from that of the source, while for type II they differ by more than #/2. Consider now two pairs
XW Y1) and X®, Y@, with YO = AX, Let XU A X® = det (X®),X®), etc. Then
YO AY® = (det A)XM A X(2), This shows that positive parity images preserve the handedness,
whereas for negative parity (type II) it is reversed.

Finally, let us see how infinitesimal circles in the source plane are deformed. Thus, consider a
small circular source with radius R at y, bounded by the curve

H cost
C(t)=y+<Rsint) @<t<m).
The boundary of the images is
- H cost
d{t) =x+4™ ( R sint )
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Xy {optical axis)

....... r S?urce
——en
B/
observer 5}1’2

Figure 1.6: Notation adopted for the description of the lens geometry.

we transform (1.79) into an integral equation,

G
£(8,0),0) = (8 -2 /0 4e(C = YT LUE (B, ¢ 0) - (1.81)

Here, the first term is a solution of the homogeneous equation, which would describe the light ray
without deflection. Clearly,

= 9. (1.82)
=0

d

To first arder in U, we can replace the argument in ¥V U on the right hand side of (1.81) by the
unperturbed ray and cbtain the explicit sclution

¢
€0.0=0-2 [ 4 (¢~ ) VLUCO,0) (1.83)
At the source plane (¢ = ;) this gives, with n = £(8,(,),
Cs
n=is0-2 [ dcits - OV.U0.0). (184)
Since n = (;3, we obtain the lens equation
CB — -~
g=0—2 dS "9, Up)~0-2%0v, 5D, (1.85)
0 Cs S’ Ds
1)
(1) slowly varying =~ 5%51 = %?_ ,
(2) (CaB,€) =(DuB,() ,
where
H0:) = [ U (Da0,0) (1.86)
Thus -
—_a._. Dn!a ~ P i _ .1.('11’9
3=0 D. é, a—ZV_Lv,b—DdaB, (1.87)
with

(0} = $(Dy9). (1.88)
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From here, we again obtain

V.4 = 2/.ALUdC=8wGE, (1.89)

AW = 4wGE. (1.90)
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Chapter 2

Simple lens models

It is now high time to study some simple, but important examples of specific types of lenses.
Although they are simple, they turn out to be very useful to better understand the lensing phe-
nomenon.

2.1 Axially symmetric lenses: generalities

If the lens is axially symnetric, our general lensing equations simplify considerably. For the
deflection angle, this was already shown in Section 1.2. According to (1.36) we have then

. 4G M (¢)
- 2.1
a() = 7 (21)
{only the modulus of the angle counts). For the rescaled angle « (z) in {1.44) this translates to
)= 21D = a,0),250), (2.2
where .
m(z) = 2/ k(z') 2'dx’, {(2.3)
0
The lens equation (1.46) can be written in scalar form
y:m—a(:r):x—ﬂ.ii), (2.4)

where now z € R and m (z) = m (|z]). From (1.48) we obtain

_ W
a= (2.5)

The Poisson equation (1.49) for 7/ becomes

1d { dy
Inserting here (2.5) and (2.2) leads to
dm
— = 2.7
" — 2an @), 2.7
which of course, follows also from (2.3). From (2.5), (2.2) and (2.3) we have
dp 2 [ i
E_x[) & (z") 2'da’. (2.8)
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In this equation, the right hand side is also equal to

d ¢ KA, r '
d.a:2/0 k(z") 2 In (:“;‘T) dz’.

Thus, provided that « {z)decreases faster than 71, we find
— ‘ Nl 1n (2 gt
1,b(x)—2/0 n(x)xln(x,)dx. (2.9)
Let us also look at the differential D of the lens map. According to {2.4), ¢ is given by
m{z
y=x-— —%x (z=1x]). (2.10)
Hence,
_ m(z) { 22 — a2 —2x170 m’ {z) ¥ zym
De=1- gt ( —2x1 % z? — 23 a3 Tix2 X ) (2.11)
Because of (2.7), the trace is correct (see (1.52)), and the components of the shear are
1,, o f2m m m' 2m
71=§(9:2—:51) (x—4~;§ 3 Yo = T2 =t ) (2.12)
This gives
2 T
= (5 -x)
and . .
detDp= (1—k)"—|v|"=
m m
(1 - m_ﬁ) (1 i 2“’) - (2.13)

-(-38) (%)

The last two factors are the eigenvalues of Di.
This implies that there are two types of critical curves

mm(zx) = 1: tangential eritical curve;
(2.14)
i (m) = 1: radial critical curve.
dr L

(The terminology will soon become clear.) The image of a tangential critical curve degenerates
according to (2.4} into the point ¥ = 0 in the source plane.
We can look at the critical points on the x;~axis with x = (£,0), £ > 0. Then

m(z) { =1 0 m' (1 0
D“’_l__mT(o +1)_?(0 0) (2.15)
and this matrix must have an eigenvector X with eigenvalue zero. For symmetry reasons, the
vector must be either tangential, X = (0,1), or normal, X = (1,0), to the critical curve (which
must be a circle).
We see readily that the first case occurs for a tangential critical curve, and the second for a

radial critical curve. It turns out that the radial critical curve consist of folds.
For a tangential critical curve {|x| = z;:}, we have by (2.14) and (2.3)

m (zs) = fo 22k (z) de = 22 (2.16)
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With (1.44) this translates to
& _
/ D6 (€) dE = £ Serse. (2.17)

0
The total mass M (&) inside the critical curve is thus

M (&) = €l S opi- (2.18)

This shows that the average density (T}, inside the tangential critical curve is equal to the critical

density,
() = Berit- (2.19)

{Correspondingly, {s), = 1.)

This can be used to estimate the mass of a deflector if the lens is sufficiently strong and the
geometry is such that almost complete Einstein rings are formed. If 8,,. is the angular distance of
the arc, we obtain numerically

M ((Bar'c” = 7 (Dd.ecr.rr:)2 Ec'm't Az (220)

0...\2{ D
14 are
~ (L1x10 M@)(W,) (——1 Gpc).

{D is defined in (2.31) below.}

2.2 The Schwarzschild lens: microlensing

This is the simplest case and is most relevant for the MACHO search.
We shall soon see that a convenient length scale & is provided by the Einstein radius

1

4GM DDy, M D, Dy Dy\1*
S = LRy S < R 2.21
Re o2 D, 610 Ro [M@ kpe D D, ( )

Since ¥ (£) = M 62 (€), we then have & (x) = w6? (x), according to (1.44), and thus m (z) = 1. The
latter equation follows also from (2.1), (2.2) and (1.44). Thus, since Eq. (2.5) implies ' (z) =Inz,
we have

1
= = 2.22
a () o (2.22)
and the lens map is given by
1
y=x——. (2.23)
x

If the source is on the symmetry axis (y = 0}, then x = £1 (Einstein ring}. For a given source
position ¥, (2.23) has two solutions

na = (v ViEHI). (224

The magnification x = |det Dcp|"1 follows immediately from (2.13)

1
pl = ’1 - = (2.25)
which gives for the two images
Y y2+4
== + +2 (2.26)
S DY oy S
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The total magnification p, = p; + p2 is found to be
y* 2
Hp = —r——.
Yy +4
It is this function which one observes for MACHQOs. Note that

g Dy
Y= = DD g ~ /D~ e (228)

(2.27)

where fp = RE/Dd, i.e.,
(2.29)

o - [4GM Das 1#
S R

is the angular separation corresponding to the Einstein radius, and 3 (see Fig. 1.2) is the angular
separation of the source from the optical axis. Numerically, (2.29) reads

(0.9”-10-3)( ) (IOkpc)_% (2.30)

1
_ § M N2/ D )
- (0'9)(1012:14@) (lec '

DD,
D ds

I

fr

where

D= (2.31)
is the effective distance.

Even when it is not possible to see multiple images, the magnification can still be detected if
the lens and scurce move relative to each other giving rise to lensing-induced time variability. This
kind of variability is called microlensing. Microlensing was first observed in the multiple—imaged
Q5022374-0305 [8]. As is well-known, Paczynski proposed in 1986 to monitor millions of stars in
the LMC to look for such magnifications in a fraction of the sources. In the meantime, this has
been successfully implemented. The time scale for microlensing-induced variations is obviously
given by tq = Dyfg/v, where v is a typical virial velocity of the galactic halo. Numericaliy

M 3 Dy 3 Dy 3 200 kin 5!
g = _ . 2.32
0 = 0214 yr(M@) (10 kpc) (Ds) ( v (2.32)

(The ratio Dy, /D is close to unity.)

Typical light variation curves corresponding to (2.27) are shown in Fig. 2.1 and Fig. 2.2, Note
that £y does not directly give the mass. The chance of seeing a microlensing event can be expressed
in terms of the optical depth, defined as the probability that at any instant of time a given star is
within the angle 8z of a lens. This probability 7 is given by

1
T=5 /dVﬂ, (Da) 6%, (2.33)

where dV = dﬂDﬁdDd is the volume of an infinitesimal spherical shell with radius D; which covers
a solid angle df). Indeed, the integral gives the solid angle covered by the Einstein circles of the
lenises, and the probability 7 is obtained upon dividing this quantity by the observed solid angle
df}. Inserting the expression {2.29) for fp gives

D, '
_ / 4«?,0 DuDus D, = 4?FG92/ p (@) x (1 - ) dz,
0 o D, 0

where ¢ = DyD ! and p is the mass density of the MACHOs. It is this density that determines 7.
Observations have shown that 7 is a few times 107° (the statistical errors are still large). We
will hear more about the present status of this exciting subject. The future looks promising,
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Figure 2.1: Einstein ring (dashed) and five possible relative orbits of a background star with projected
minimal distances umin = €min/Ke = 02,04, ..., 1.0,

2.3 Singular isothermal sphere

The so—called singular isothermal sphere i8 often used as a simple model for the mass distribution
in elliptical galaxies. One arrives at this model by assuming an ideal isothermal gas law p =
(p/m) kpT for the equation of state, where p is the mass density of stars and m the (average) mass
of a star.

The equation of hydrostatic equilibrium then gives

kpTdp _ GM(r)

modr r2 (2.34)

If we multiply this by r? (m/kgT) and then differentiate with respect to r, we obtain, using

dM(r)

— A2 2.35
o drrp, (2.35)
the differential equation
d 2 d Gm 3
= —_ =———4 . 2.36
= (r‘ = lnp) P (2.36)

One arrives at this equation also in the kinetic theory as follows. Start from the Jeans equation,
which one obtains by taking the first moment of the collisionless Boltzmann equation. In the
stationary, spherically symmetric case this reads [9]

_dE
dr’

£ o)+ 2 (o7 —of) = m

(2.37}
where n is the density of particles, and o, o¢ are, respectively, the radial and transversal, velocity
dispersions.

For the special case 02 = 67 = ¢ =const, Eq. {2.37) reduces to

dn GM (r)
28 _
am g

(2.38)

which is identical to {2.34) for p = nm, if we make the identification

kT = mo?. (2.39)
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' B A LA S I A L
_2 L i
. ]
-151
g -1t
E . -
E 4
3
_[]5 ( .
[ Urmin =10 :
YT G RN U TN T DUP T S S Y S T S S
-2 -1 0 1 2

time (in t, = Ry/ Virans!

Figure 2.2: Light curves for the five cases in Fig. 2.1. The maximal magnification is g = 1.34 or
Am = —0.32 mag, if the star just touches the Einstein radius {#mix = 1.0). For smaller values of ¢min the
maximal magnification is larger.

(Note, that ¢? is the 1-dimensional velocity dispersion.) One solution, with a power dependence
for p(r}, is easily found
2
T 2rGr?’
Because the density is singular at the origin, it is called the singular isothermal sphere (regular
solutions are only known numerically; [9]).
The projected mass density for (2.40) is easily found to be

p(r) (2.40)

a2 1
For the length scale & we choose
a2 DyDys
& =drx (E) —5 : (2.42)
and obtain from (2.41} and (1.44)
1
H (;T.,) == m, (243)
thus
m(z)=lz|, alz)= % (= & = 4no?/e? = const) , (2.44)
and
Y=g — (2.45)
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The Einstein ring is given by |z| =1, [£{ = &. The corrcsponding angle is thus

b5 = 4 (%)2 %is ~ (29" (———103 an 3_1)2 %’ (2.46)

This is often used also for clusters of galaxies.
We also note the mass M (< &) inside the Einstein radius

1
M(<&) = fo 5 (T) Deris2rady = 7L Lepiz = (2.47)

Il

b\ ( D
™ (Dabe)* Dorie 2 1.1 x 104 Mo (ﬁ) (i o)

where D is again given by (2.31).
The magnification for an image at z is easily found from (2.13)

.u,=

= 1‘ . (2.48)

For |y| > 1 one sees from (2.45) that there is only one image at x = y -+ 1 (take y¥ > 0). When
|| < 1, there are two images, at z = y+1 and z = y — 1. Using this in (2.48) we find for the total
magnification of a point source

_ 2/y for y<1,
R T PR 249)

Note that the inner image becomes very faint for y — 1.
Finally, we determine the time delay for the two images. This is easily found from (1.61) and
¥ (z) = |=| (from {2.8))

oy 2 2 DriD(fs
At = [4:rr (E) ] 5 . (2.50)

{(Recall that no red-shift effects have been taken into account.)

2.4 TIsothermal sphere with finite core radius

Since no analytic solutions of (2.36) without a central singularity are known, the surface mass
density (2.41) is often modified parametrically by introducing a finite core radius &,

(2.51)

a? 1
G

Using the same scale length £y as before, the corresponding dimensionless surface magss density is

. = £/ . (2.52)

w(m)=
2\/.1:3 T+ a2

With the help of the formulas in Section 2.1, you can easily work out every thing you like.
When does the lens become critical? Consider, in particular, an ezfended source near y¥ = (0 and
discuss the form of the images (arcs and counter arcs, etc.).

In Chapter 8 of SEF other examples are worked out.
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Figure 2.3: Deflection of a light ray passing through an axially symmetric lens (taken from S. Refsdal and
J. Surdej, 1994 [10]).

2.5 Lensing experiments

I show now how one can mimic the deflection of light rays by an axially symmetric gravitational
lens with an optical lens. Hopefully, some of you will construct such a lens for didactical purposes.
For simplicity, we choose the lens such that it is flat on one side and determine the axially
symmetric shape of the other side such that the deflection angle comes out right. All angles in
Fig. 2.3 can be assumed to be small. If n denotes the refraction index of the lens with respect to
the air, we have
sin ()
sin {7)

The deflection angle £ () = i — r ~ r (n — 1) should agree with &(£) = 4GM () /c*¢:

= R

3| e

_AGM ()
T (ﬂ.- 1) = T
From Fig. 2.3 we read off that
% = —{ (r) o
dE = g ~ .
The shape of the optical lens is thus determined by
dA 4G M (£)

= Pmoy e Al=o (2.53)

Let us first mimic the Schwarzschild lens, M (£) = M. In this case we get from (2.53)

AGM
A (E) = _(‘.2

ﬁ lnf—l— const = A (&0) + 2Rs ].ll (E—O) , (2.54)

n—1 '3

where R, is the Schwarzschild radius. The choice of (&, A(&)) i8 up to you. Example: plexiglass
with n =1.49, & = 14 cm, A (§) =1 cm, Re = 0.3 cm {corresponding to one third of the Earth
mass). The shape is shown in Fig. 2.4a. Let us determine also the shape corresponding to the
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i
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Figure 2.4: Several examples of axially symmetric optical lenses simulating the light deflection properties
due to: {a) a point mass, (b) a singular isothermal sphere, (c) a spiral galaxy, (d) a uniform digk, (e) a
truncated uniform disk of matter (taken from S. Refsdal and J. Surdej, Rep. Progr. Phys. 1994 [10]}.

singular isothermal lens. From (2.41) we obtain
2
o
M(§) = o =G {2.55)
hence

A (E) =A (Eo) + K (EQ — E) . (256)

This is an axially symmetric cone {Fig. 2.4b).
Other examples are carried out in the review article by S. Refsdal and J. Surdej [10]. These
authors describe also a convenient experimental set up.

2.6 Extended source

We go back to a general axially symmetric lens (Section 2.1}, and study the magnification of
a source close to the symmetry axis, assuming that there exists a tangential critical curve at
z: (m (z:) = z7). Let us first consider a point source near y = 0. The lens equation (2.4},

m(z)
¥=x - z 1
. o dy\ ™
has two solutions close to the critical curve at £ = z,+Az, 1z = —x;+Ax, where Az = I Y.
d
Now, we have det Dy = % 2’ % =1—Ek(x) with & {z) = m;f) (= mean mass surface density
within £). Thus
di

|det Dip| = |1 — & {£z: + Az)||dy/dz| =~ ly)

and so the total magnification of the point source is
—1
(2.57)

dik
tp = GalY¥, gp =2 ‘35 {Tt)

Now, we turn to an extended source with surface brightness profile 7 (y) . Its magnification p. is
generally given by
I a4
po= LL0) 1 ) dy. (2.58)
I dy
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For an axially symmetric lens in polar coordinates centered on a circular source with radius R and
brightness distribution I{r/R)}, we have

00 -1 roo 2
g
e = 21rf I{r/R rdr] f rdrI {r/R d G .
o= |on [ rierm) rarrierm [T o et
Thus 9
pe=20/R) (2.59)
where

{{u) = [?T ‘/:0 I{z) mda;} - -‘/:OI (z) zdz ]: s :c;T P— (2.60)

The function { (u) is discussed in SEF, p.238. For a uniform brightness its maximum is at u = 0
where ((0) = 2. At any rate, u. remains finite for ¥ — 0. If one computes, as an exercise, u7'** for
Schwarzschild lens, one finds, using (2.27),

2
e = L2 (261)

2.7 Two point—mass lens

This is an instructive non—axially symmetric lens model. It has also become highly relevant recently,
because binary microlensing events (OGLE #7, DUO #2,...... } have been discovered (see Fig.
2.5). For several point masses M, at transversal positions £, the general formula (1.34) for the

-_"'I"'T]""I”"l'*lll"'-. 2?"‘1""1“"!""I""I'l_

1;- E O b o o H -.H“
051 2 ]
g Ok =
oF 1 E2r )

- ] qo_1-4;1::e:}+e::{4::{lrs::,: 7
05 1 of ]
: i o .
-.l{Inllll.l.larlll|“i||-4E (2]: |.|||l1[l!lll|llll|ll‘:
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Figure 2.5: Light curve of a binary microlensig event {(taken from R. Narayan and M. Bartelmann, Lectures
on Gravitational Lensing, 1995 [11]}.

deflection angle gives
N
. 4GM; £ - &,
i=1 )

N
Let M = 3 M; be the total mass and M; = z; M. For the length scale & we choose the Einstein

i=1
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Figure 2.6: Imaging of extended sources for the twoe point-mass lens with lens separation 2y = 1.0. The
inserts show the isophotes of a circular source, together with part of the caustic. The dashed line is the
critical curve. Depending on the source position, the images can have vastly different shapes (taken from
SEF, p. 263).

radius (2.21} for the total mass. Then the lens map becomes
1
y=x— ——F(x—x,;), (2.63)

where x; = &;/&o.

Even for the two point—mass lens the analysis of this map is fairly complicated. Fig. 2.6,
taken from SEF (p. 263), is very instructive. Depending on the position of the source relative to
the caustic, the image shape varies strongly. If the source lies completely inside the caustic, five
separate images are produced (one is very close to the line connecting the two masses). The two
images close to the critical curve are highly elongated and point Lowards each other. In (b) the
source lies on a caustic and this leads to the formation of images with internal structure, because
the inner isophotes still have five separate images, while those which cross the caustic have fewer.
More complicated images are formed (c) close to a cusp. You should have a careful look at the
figure.
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Figure 2.7: Light curve of the first binary microlensing event, OGLE # 7 (taken from the OGLE web
page http://www.astro.princeton.edu/ stanek/ogle/}.
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3.1 Strong lensing by clusters

Strong lensing occurs when in the central region X {£) becomes larger than the critical surface mass
density (1.45). In the ideal case of an axisymmetric mass distribution and a source right behind
the lens’ center, the deflection angle becomes

atp) =MD (3.1)
(see (1.36)), and the lens equation (1.43) reduces to
8D, = G (8) Das. (3.2)
These two equations give
M (< 8) = 7(8Dg)* Sepis. (3.3)

The radius 8,y of a large arc gives an estimate of the Einstein radius of the cluster and (3.3) for
8 = 8,,. provides an estimate of the mass enclosed by the arc, if we know the redshifts of the lens
and the source. Even if no ring—shaped image is produced, a mass estimate with this procedure
is ugeful and often surprisingly accurate. For example, a quadrupole image system, such as the
“Einstein cross” (QS02237+40305) allows one to trace approximately the Einstein “circle” and a
mass estimate can be obtained with (3.3). This is, however, only the first step. For extended
sources detailed modellings have been made making use of elaborate techniques. (See, e.g. [12],
and references therein.)
One can also get a simple estimate of the velocity dispersion o, by using {2.49), i.e.,

1
e \% /D¢ \?
o, 22 10° km s (29”) (Dds) : (3.4)

Table 1 lists masses, mass-to-blue-light ratios, and wvelocity dispersions of three clusters with
prominent ares. Further results can be found in the review article by Fort and Mellier [13].

Let me emphasize the limitations of all this. First the analysis is model dependent and one
determines the mass only inside a cylinder of the inner part of a lensing cluster.

Az a historical footnote, I should add that the discovery of arcs was a surprise, because people
thought that clusters are not compact enough to produce critical curves. This was based on
estimates of core radii from X-ray observations of the intercluster gas which came out larger than
required for critical cluster. This discrepancy between core radii < 30 ™! kpc inferred from arcs
and the results of X~ray imaging has been discussed a lot, and various explanations have been put
forward (see, e.g., Ref. [14]).

Generally speaking, the dark matter and hot gas density profiles do not have to follow each
other. In particular, an isothermal X-ray gas in hydrostatic equilibrinm may develop a flat core
well outside the radius where giant arcs form. Several reasons, like projection effects, have been
suggested to explain the apparent discrepancies [15], [16].

Another interesting result is worth mentioning. Numerically generated cluster mass profiles by
Bartelmann, Steinmetz and Weiss [17] show that the probability for forming arcs in these clusters is
substantially higher than that of more symmetric mass profiles with the same mass. Asymmetries
and substructure increase the total length of the caustic curves. This is probably related to the
fact that the shear is increased by substructure, implying that critical curves can occur also in
rcgions where & is less than unity (see [18]).

A remarkable phenomenon is the occurrence of so—called rudial arcs in galaxy clusters. These
are radially rather than tangentially elongated, as most luminous arcs are. They are much less
numerous (examples: MS 2137, Abell 370}). Their position has heen interpreted in ferms of the
turnover of the mass profile and a core radius ~ 20 A~! kpc has been deduced, quite independent
of any details of the lens model. There are, however, other mass profiles which can produce radial
arcs, and have no flat core; even singular density profiles can explain radial arcs [19]. Such singular
profiles of the dark matter are consistent with the large core radii inferred from X-ray emission
(see [14]).
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Table 1: Masses, mass—to—blue-light ratios, and velocity dispersions for three clusters with prominent
arcs.

Cluster M (Mg) M/Lg (solar) o(km s~1)
A3T0 ~ 101 ~ 200 ~ 1550
A2390 ~15x 10" ~120 ~ 1250
MS§2137-23 ~ 5 x 10'% ~ 250 ~ 1100

3.2 Mass reconstruction from weak lensing

There is a population of distant blue galaxies in the universe whose spatial density reaches 50—
100 galaxies per square arc minute at faint magnitudes. The images of these distant galaxies are
coherently distorted by any forground cluster of galaxies. Since they cover the sky so densely, the
distortions can be determined statistically (individual weak distortions cannot be determined, since
galaxies are not intrinsically round). Typical separations between arclets are ~ (5 + 10)” and this
is much smaller than the scale over which the gravitational cluster potential changes appreciably.

Initiated by an influential paper of Kaiser and Squires [20], a considerable amount of theoretical
work on various parameter—free reconstruction methods has recently been carried out [21] [22]. The
main problem consists in the task to make optimal use of limited noisy data, without modeling
the lens.

Parameter—free inversions can most simply be described by making use of a cornplex formulation
of lensing theory. In this formalism, the relevant equations emerge almost automatically [23]. I
will describe this in detail in Chapter 5. In what follows, I shall, however, only use what we have
learned in the previous sections.

3.2.1 Relations between mean convergence and reduced shear

The reduced shear g, introduced in Section 1.7, is in principle observable over a large region. What
we are really interested in, however, is the mean curvature «, which is related to the surface mass
density by (1.44). Since by {1.77)

N |
8= -7 (3.5)

we first look for relations between the shear + and .

Recall that
1 1
K=54Y, m= 3 (W11 —v22) = D1, Y2 = %12 = Dayp, (3.6)
where
1

Dy =g (62 - 82y, Dy = 6164 3.7

Note the identity

D} 4+ D = %Az. (3.8)

Hence
A.‘t =2 Z .D,;"n. (39)

i=1,2

Here, we can substitute the reduced shear, given by Eq. (3.5), on the right for «v. This gives the
important equation

Ak = —2ZD¢[gl- (1 - &) (3.10)
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For a given {measured) g this equaticn does not determine uniquely x, which is a famous mass-
sheet degeneracy (a homogeneous mass sheet does not produce any shear). For a given g , Eq.
(3.10) remains invariant under the substitution

K= M+ (1= A), (3.11)

where A is a real constant.
Eq. {(3.10) can be turned into an integral equation, by making use of the fundamental solution
1

G = o In |x|, (3.12)

introduced in (1.37). One solution of (3.9) is

k=20 % (Z Dn.:) + kg, (3.13)

with a real constant xy. The most general solution corresponds to mg replaced any harmonic
function. For physical reasons, this function must, however, be bounded, and it is a constant.
Replacing - again by the reduced shear, we obtain an integral equation for x. We write this in a
different form by noting that

2 - De, 1
Dilmjx|=2" =p,,  Dylnjx|=-22 =, (3.14)
I lac(’
Since )
G* (D) = (DiG) + v = 5 Di* %
we obtain from (3.13)
1
K=Kg+;[D1*’}(1+Dz*’YQ], (315)
and thus the integral equation
1 1
K=Ky — ;Dl * (g1 (1 - &) — ;Dz *[ga (1 — k}]. (3.16)

Eq. {3.15) appears the first time in [20]. The integral equation (3.16) has been used, for instance,
in [22] for nonlinear cluster inversions.

Note also 1 ( o
= .1 — 9 ":b,lll + 1 201 _ M1 + ¥2,2
Vi = ( K2 ) a ( %(‘lﬁ,nz + 1,222) ) - ( Va1 — Y12 ) - (3.17)

This expression for the gradient Vi in terms of the shear has been translated by Kaiser [24] into
a relation involving the reduced shear.
We proceed as follows., Let K = In(1 — ), then

VK =-(1-x)""Vx (3.18)

In addition, we have
v = =05 [(1 — &) gi] = — (1 — %) 89 + gi0;,

and thus, with (3.17),
Ok =y + 0272 = — (1 — K) (O101 + Baga} + g101K + g2k,

Hence, we have

K B Lo
11—« 921—5

(1—m) = —01;1 — G290,



3.2 Mass reconstruction from weak lensing 35

Similarly,
81.‘6 32&
e +{1+aq) 1o, = o2 0201
The left hand side of this linear system for V&/ (1 — &) is given by the matrix

l—¢ —g2
M= , 3.19
( —2 144 ) (3.19)

with the inverse

- 1 1+¢ g2
Ml= —F — ‘ 3.20
1—9*?—9%( 92 1-¢ (3.20)
This, together with (3.18), gives
VK =u, (3.21)
where | 5 5
1+;m 92 ( 191 + D292
— . 3.22
“ 1»9?—9-3( 92 1—91) B192 — 021 (3:22)
In principle, the gradient of K" = In (1 — &) is thus observable.
As was emphasized earlier, this can be done only statistically, by determining {g} = — <

¥/ (L-x)> (forw<<l, (g ~-<g>)h

3.2.2 Practical difficulties, examples

In practice, there are several difficulties that complicate the application of the inversion formulas
derived so far. I do not have to tell astronomers that atmospheric turbulence causes images to
be blurred and thus circularize elliptical images taken by ground-based telescopes. On the other
hand, anisotropies of the point—-spread function can introduce spurious ellipticities. These effects
have to be taken into account with high precision.

Another difficulty is that reconstruction equations of the type (3.15) and (3.16) involve con-
volutions over the entire plane. Real lensing data are, however, always confined to a finite field
of the sky. For this reason, it is important to find integral formulas in which only integrations
over bounded domains occur. This is possible [22], as I show in Chapter 5, by using the complex
formulation.?

!In an ideal world {without measuring errors) equation (3.21),
VK =u, (3.23)

{with u given by {3.22) in terms of the reduced shear) can be solved in various ways. For instance, by taking the
divergence, we get

AK =WV.u inside 2, (3.24)
and by taking the scalar product of (3.23) with the outward unit normal n on 8{}, we find for the normal derivative
oK _ n-u on 85 (3.25)

du

Equations (3.24) and (3.25) constitute a Neumanu boundary problem for K, which determines K up to & constant.
There are efficient and fast methods for a numerical solution of the Neumann problem.

In reality, however, the vector field u comes from uoisy observational data, and lience will not be a gradient Reld,
We can, of course, consider a decomnposition of u{®b®) inta a pradient and a rotational parl,

uEObB') = B;R +Ei4 8_,'6‘, [3'26)

but this is uot uuique on 1. The question is which WK should be identified with VK.
The rotational part in {3.26) is due to noise and we naturally impose the condition that its mean over £ vanishes.
(It should, of course, also vanish if u is already a gradient field.) By Gauss® theorem, this condition is equivalent to

f 35,;_;71-_;(‘“ =10
an
A sufficient condition for this is & [sq = const. (nse againt Gauss’ theorem). Then we have besides

AR . u(obs.)
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This second method is very topical and will also play an important role in future developments.
It may, therefore, be appropriate to remind you of the main points. If the hydrostatic equilibrium
equation for the hot gas

& ST

is combined with the ideal equation of state P, = (kpT,/umpy) p,, one easily finds for the total

mass profile
_ kyTe (dlnp, N dinT, ,
Gumyg \ dlnr dlnr

The right hand side can be determined from the intensity distribution and some spectral informa-
tion. (At present, the latter is not yet good enough, because of relatively poor resolution, which,
however, will change with the XMM survey.) Note, that we assumed spherical symmetry, and this
can introduce substantial errors if the cluster is strongly elongated along the line of sight.

Weak lensing, together with an analysis of X-—ray observations offers a unique possibility to
probe the relative distributions of the gas and the dark matter, and to study the dynamical rela-
tionship between the two.

Let me show an example of such a comparison. The cluster of galaxies A2163 (2=0,201) is the
hottest and one of the two most massive known so far. GINGA satellite measurements gave an
X-ray temperature of ~ 14 keV and a X-ray luminosity of 6 x 10*° erg s71. ROSAT measurements

dPg _ GMt (T’)

My(r) = (3.27)
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Figure 3.3: The radial mass profiles determined from the X-ray and lensing analysis for Abell 2163. The
triangles display the total mass profile determined from the X-ray data. The solid squares are the weak
lensing estimates “corrected” for the mean surface density in the control annulus determined from the
X-ray data. The conversion from angular to physical units is 60" = 0.127 h~' Mpc (taken from G, Squires
et al., 1997 [29]).

reach out t0 2.3 A~ Mpc (~ 15 core radii). The tolal mass is 2.6 times greater than that of COMA,
but the gas mass fraction, ~ 0.1 A3/2 is typical for rich clusters. A2163 exhibits the Sunyaey—
Zel'dovich effect. It is remarkable in the radio, having the most luminous and extended hale yet
detected. The galaxy distribution is irregular and extended, with very high velocity dispersions
o = 1680 km s~*. All data together suggest that there was a recent merger of two large clusters.
The optical observations of the distorted images of background galaxies were made with the CFHT
telescope. The resulting lensing and X-ray mass profiles are compared in Fig. 3.3. The data sets
only overlap out to a radius of 200" ~ 500 k=% kpc to which the lensing studies were limited. It is
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Figure 3.4: The ratio of lensing (strong and weak) and X-ray masses for those clusters for which a reliable
and direct comparison of these valnes can be made. The ratios of the strong-lensing and X-—ray masses
are plotted as circles. Strong lensing resnlts are only presented for the cooling—flow clusters. Filled circles
show the results obtained with the detailed lensing models and open circles the results from the simple,
spherically-symmetric lensing models (which are only used when results from more detailed modelling are
not available). The weak-lensing results are plotted as triangles (taken from S.W. Allen, 1997 [30]).

evident that the lensing mass estimates are systematically lower by a factor of ~ 2 than the X-ray
results, but generally the results are consistent with each other, given the substantial uncertainties.
There are reasons that the lensing estimate may be biased downward. Correcting for this gives the
results displayed by open squares. The agreement between the lensing and X—ray results becomes
then quite impressive. The rate and quality of such data will increase dramatically during the
coming years. With weak lensing one can also test the dynamical state of clusters. By selecting
the relaxed ones one can then determine with some confildence the relative distributions of gas
and dark matter. One should alsa select those cases for applying the Sunyaev-Zel’dovich effect in
determining Hj.

In addition, it will become possible to extend the investigations to super clusters scales, with
the aim to determine the power spectrum and get information on the cosmological parameters [29)].
An interesting comparison of mass measurements for clusters of galaxies using ASCA and ROSAT
X-ray data and constraints from strong and weak gravitational lensing has recently been made by
3.W, Allen [31]. He showed that for cooling—flow clusters, which are the more dynamically—relaxed
systems, the X-ray and strong gravitational lensing mass measurements show excellent agreement,
while for the non~cooling-flow clusters, the mass determined from the strong lensing data exceeds
the X-ray value by factors 2 + 4. On larger spatial scales, comparisons of the X-ray mass results
with measurements from weak gravitational lensing show excellent agreement for both cooling—fow
and non—cooling—flow- clusters.

A summary of these comparisons is shown in Fig. 3.4, which however does not contain the
strong lensing data for the non—cooling—flow clusters, since the hydrostatic equilibrium is not
expected to hold for these non-relaxed systems. For more information, I refer to the original paper
[31] and [32]).



Chapter 4

Extensions to a cosmological context

So far, we considered only almost static, weak localized perturbations of Minkowski spacetime. In
cosmology the unperturbed spacetime background is given by a Robertson—Walker metric, and this
induces various changes in our previous discussions. Fortunately, the final results for the lens map
and the time delay look practically unchanged. As it turns out, we only have to insert some obvious
redshift factors and interpret all distances as angular diemeter distances, which is presumably, not
really surprising.

4.1 Lens mapping in cosmology

I now describe in more detail the relevant modifications. Let me recall (1.66) (for ¢ = 1)

Dst £ 7 : 7
At = e I :
¢ 2D, (Dd Ds> ¥ (£) + const

Note that (T}% - %‘—) = (8 — B). This was the time declay for an almost Newtonian situation,

If the distances involved are cosmological, we must multiply the whole expression by the redshil}
(1 + z4) of the lens. In addition all distances must be interpreted as angular diameter distances.
A systematic derivation is given in the appendix 4.5 to this chapter. OQur starting point is thus

DuD,
2Ddﬁ

Af = (1+zd){ (8 - B)° —z;?(.g)} + const. (4.1)

The prefactor of the first terms is, clearly, proportional to 1/Hg (Hp is the present Hubble param-
eter). We shall come back to this.
For cosmological applications, it is convenient to rewrite the potential term slightly. Using the
length scale £ = Dy in (1.65), as well as 8 = £/Dy, we have
P (&) = 4G / d?¢' DT (D68} In |6 - 6| = 2R (9),

where R, = 2G'M is the Schwarzschild radius of the total mass M of the lens, and

P (0) = /d%}’i (6')in|e - &, (4.2)
with (Db
£(6) = Af‘iﬂpg. (4.3)

This quantity gives the fraction of the total mass M per unit solid angle as seen by the observer,
We can now write (4.1) in the form

At = ¢(8, B) + const, (4.4)
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where @ is the cosmological Fermat potential

DdD

1 .
$(0,8) = 5 (1+za) (9 B — 2R, (1 +24)% (8) . (4.5)
1 should probably stress that in cosmology D # Dy + Dy, (space-time is curved).
It is elementary to work out the angular diameter distance D (21, 2s) between two events at
red shifts z; and 23 (21 < z3). For a Friedmann-Lemaitre model with density parameter £} and
vanishing cosmological constant A, one finds

Dz, 22) = Hlﬂz (1+21) R (22) Rp (1) — R1 (1} Rz (22)], (4.6)
where .
Ri(z)= %—2 Ry (z) = —“(?:‘_”;)21‘ (4.7)

The formulas (4.4-7) provide the basis for determinations of the Hubble parameter with gravita-
tional lensing. Some results will be presented later.

From (4.5) we obtain the cosmological lens mapping using Fermat’s principle, which implies
that 6¢/08 = 0. This gives
Dds alvz?

—9-2R, . 4.
A=06-2R DyD, 68 (4.8)
For comparison, we write this also in terms of £ = D48, = D,8 and
_ 2R, &
a(g) = D, 96 (4.9)
as
Dy .
n="Dt¢ Dua(e). (410)
d

This looks identical to {1.41), but with the present meaning of the symbols it holds for arbitrary
redshifts.
Consider two images at the {observed) positions @, &», with separation @15 = 6, — 8 and
time delay At;s. From the lens equation (4.8) we obtain
} @i
[N

The time delay At = ¢{6,8) — #(02,8) contains the unobservable angle 3, but this can be
eliminated with the lens equation (4.8) and (4.11):

oY
56

W

t!s
810 =2R,—— !: T

rID

6,

o
o8

At1p = 2R, (1 +zd) { (g‘g

Given a model (i.e. £(8)), then (4.11) gives a relation

) 01z — (15(91) -&(92))} . (4.12)

&, 0.

2H,
B2 o Q, 2, 2, —1
—~~ Hy
observahle N

dimensionless quantities

and (4.12) relates A#yo directly to R. (Q}, Hp, z; do not appear).
The combination of the two gives R, and Hy for given 92, z4, z,. Fortunately, the dependence
on {2 is in practice not strong.



4.2 Hubble constant from time delays 41

Illustration

Consider the simple case of a point source lensed by a point mass {Schwarzschild lens). Then

$(6) =In|0| and (4.11) gives
912=2Rs D (1 1))

DyDy \61 8
impliying
Dt!s
#916:| = 2R, .
| ! 2| Dst

On the other hand, equation (4.12) becomes

Atlz

n

2B,(1 + 22) {% (% , 51;) b1z — (In[61] ~ In leal)}
, }

N
We write this in terms of the ratio » of the magnifications. Using (2.26) one finds v = In{65/8,)?
and thus

62 — o
2R3(1 + Zd) mg_l +1n

Atz = Ry (1 + z4) {VUZ —p 2 410 v} )

4.2 Hubble constant from time delays

The first term in (4.5) is proportional to Hy ' (see (4.6)). As first noted by Refsdal back in
1964, time delay measurements can yield, in principle, the Hubble parameter. {Note that the lens
equation is dimensionless and does thus not provide any constrains.)

Unfortunately, the use of (4.5} requires a reliable lens model. This introduces systematic uncer-
tainties. Beside that and Hy, the cosmological Fermat potential involves the density parameter g
(see {4.6,7)) and A (set equal to zcro in (4.6) and {4.7)). The dependence on §1 and A is, however,
not strong, at least in some redshift domains (2, <2, 24 <0.5).

Y]

Table 4.1: Observed and predicted uncertainties in the time delays between images in four gravitation-
ally lensed systems with most secure measured time delays. The best estimate for the Hy is quoted in the
first three cases.

Lens gystein Alft obzerved At/t predicted  best estimaie of Hy
QU957+561 1 10 61
PG1115+080 10 15 53
B0218+357 25 30 70
B1830-211 20 ? ?

There is, of course, also the astronomical problem of measuring the time delay. This is not straight-
forward, as the history of the famous double QS00957+561 demonstrates. This quasar has been
monitored since 1980 both in the optical and radio wavebands, but conflicting claims for At have
been made. Some of the difficulties are: (i) the QSO has not varied strongly, (14) some of the
variability is due to microlensing; (#¢4) from the ground the QSO is observable only for 8 months
a year at optical telescopes (this does not apply to radio observations, but in practice there are
also gaps, as a result of changing configurations of the VLA). Fortunately, the time delay for
Q5009574561 is now well known: At = 417 + 3 days {33]. Modelings gave the best estimate,
Hy =~ 61 km s~! Mpc™!. For this example there are constraints for modeling the lens. For exam-
ple, VLBI images show a core and a radio jet with five blobs, each of which is also doubly imaged.
These constraints are really needed, because the lens consists of a galaxy plus a parent cluster



42 4 Extensions to a cosmological context

and hence requires more parameters for even minimal modeling.! It is difficult to assess an error
for the value of Hy. Another example is the Einstein ring system B0218+357. A single galaxy is
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Figure 4.1: Lightcurves of the two images of the gravitationally lensed quasar Q0957+561. Note the
sudden decrease of image A at the beginning of the 1995 season (taken from T. Kundié et al., 1997 {31]).

responsible for the small image splitting of 0.3". The time delay was reported to be 12+ 3 days and
the value Hq ~ 70 km s Mpc™' was deduced [34]. Further results became known more recently
(see Table 4.1; taken from [35].) The ongoing CLASS survey will hopefully uncover new lenses
that possess the desirable characteristics for a reliable determination of Hy. Having discussed the
problems, I should also mention the advantages of determining Hy through gravitational lensing
over other methods:

(1) The method can be used for large redshifts (~ 0.5).

(#) It is absolutely independent of any other method.

(#i) It is based on fundamental physics, while other methods rely cn meodels for variable stars
(Cepheids), or supernova explosions (type II), or empirical calibrations of standard candles (Tully-
Fisher distances, type I supernovae). We repeat, however, that a parametrized lens model is
required.

4.3 Bounds on the cosmological constant from lensing statis-
tics

The volnme per unit redshift of the universe at high redshifts increases for a large A. This implies
that the relative number of lensed sources for a given comoving number density of galaxies increases

!Note that the image positions depend on the derivatives of the potential, while the potential itself determines
the time delays. Reconstructing the potential from a small number of derivatives is an ill-posed problem.
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Figure 4,2: The lightcurve of image A of Fig. 4.1 is advanced by the optimal velue of the time delay, 417
days (taken from T. Kundié et al., 1997 [31]}.

rapidly with A. This can be used to constrain A by making use of the observed probability of
lensing. Various authors have used this method and came up with a limit Q4 < 0.6 for a universe
with Qg + Q14 = 1. It remains tc be seen whether such bounds, based on lensing statistics, can be
improved.

Let me now add a few details. The mentioned volume increase can be seen by locking at the
angular distance D (2; Q, ho) - For Qg -+ Ao = 1 this is given by:

dz!

L
1+'~'/o \/Qn(1+z’)3+(1—90)

In Fig. 4.3, one sees how D,(z} varies with varying cosmological parameters. For the same four
cases, [Mig. 4.4 shows the (normalized) probability of a beam cucountering a lens for a source at 2,
[36]. This is obtained as follows. Let ¢ be the cross section for “strong” lensing, taken to be ©R%,
where Ry is the Einstein radius. For a singular isothermal lens this is (see (2.46})

4 ) 2
o = 167 (%) (}—3'“—1)“) . (4.14)

. (4.13)

H()D (Z) =

D,

The optical depth for a beam of light from a source {z,) due to lensing is, using ng(z) =
ng (0) {1 + z)* = number density of deflectors,

N % dt
T(26) = / ngeodt = / na (0) (1 + 24)° oc——dz,.
t 0 dzg

0
From the Friedmann Eq. one obtains (Ag = (4)

odt = —— & A (4.15)

Ho (1+2) \/ﬂo(1+z)3+(1—ﬂg—An)(1+z)2+An
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Figure 4.3: Angular diameter distance (£,) as a function of redshift (z) (in units of Rg = ¢/Hp). The
fonr cases A-D correspond to: Qo = 1, a4 = 0 (A), o = 0.1, Q4 =0 (B), £ = 0.1, Qa = 0.9
(C), 20 =0, Qa =1 (D) (taken from M. Fukugita, T. Futamase, M. Kasai and E.L. Turner, 1992 [34]).

Thus
2
za) (14 22)° dzg . (4.16)
/% (14 2% + (1 - Qo = do) (14 20)* + o

T(zs)=m(0)Hi0/;0(

Exercise
Equation {4.16) reads
_ 1 (14 z)2
(z2) = nal0) 3 /0 () g,

where
E2(2) = Qo(1+2)% 4+ (1 — Qo — Q) (1 + 2)2 + Q4.

Let 7Adveial be the result for o = 1, 24 = 0 and show that for a singular isothermal leng
m(z) _ 15 [1 17 / (+2) s DA(o.z)DA(z.zs)de
rid 4 VIt zs o Kz T° D al0, z,) '

The result is plottet in figure 4.4.

Solution

Recall:

1 z de 12
=& ) = — = el 21, = | ta)S '
r(z) (x), x(2) wHo Jy E@@) Do(21,22) = a0y 2 a{t2)S(xa — x1)

e{ta)riz
Thus

Dy, = a(ts)S(Xs_Xd)s
De = alta)S(xd),
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Figure 4.4: Probability for observing a gravitational lens, as contours in the (Qar, £2a) plane, normalized
to unity for the case Qar =1, Q4 =0.

The optical depth 7 for a singular isothermal lens {cross section (4.14})) can be written as follows.
Start from the equation below (4.14):

T:/nd((])(1+z[;)30' dta |
p———_— e ¥
[eo/alts)]®  alta}dxae

where 0 = 7&*(Dy; Da/ D,)? with & = 4n{o, /c)?, to find

. B 2
T = /Ox ng{0)admé? (S(xd)g((::) Xd')) dxa.

For the fiducial case k = 0, {tpr =1, A = 0 we have §{x) = x and

D, 2 !
.= =* =11 s Ds: DS = 1 - - -
GoXe = a0 gy = (1+2) el +zs]

Hence,
fid 3 %o [ xa{xs — xa) 2
™ = nd(O)anfrézf [———] dxd
\O Xsa ,
Fr xS
3
112 1
= Ord?— = {1 - —
na(0)md’ 5 [H (1 \/_1+z_;)]
o2 1 4 1 1°
= ng(0)167° (22) o= 1 - ——e]
a(0)16m (c) H0315[' \/——l—f—zs]
and with dy = M—HE(z)dz

T 15 1 17% 1% (14 2,)% [HoDal0,2) HoDa(z, 24)] 2 .
[ ] L5 [ HoD (0, 2,) ]”"
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In Fig. 4.5, the cross section {4.12) has been chosen, in which the D's were taken to be
the angular distances ((4.11) for {1g + Ap = 1}. There is actually a problem as to which of the

08—
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Figure 4.5: Normalized optical depth {see text; taken from M. Fukugita, T. Futamase, M. Kasai and E.L.
Turner, 1992 [34]).

redshift—distance relations is the relevant one. This is associated with the fact that the light
propagates through an inhomogeneous spacetime, rather than the averaged smooth Friedmann-
Lemaitre spacetime; the light rays thus feel the local metric. This point has been discussed a lot
and causes a significant uncertainty. Various choices have been used in [36]. The main outcome
of this investigation was, that the cosmological constant, if it dominates over the mass density,
increases the optical depth greatly {Fig. 4.4), and that its effect is much larger than the uncertainty
arising from the choice of the redshift-distance relation.? (I guess that Monte-Carlo studies are
needed to reduce this inherent uncertainty.) From 7 (z;) one can predict lensing frequencies if
the redshift distribution of quasars is known. In [36] a detailed discussion of the uncertainties,
both theoretical and observational, is given. An observational problem is that quasar samples arc
needed which are homogeneous surveys for lenses. So far, in practice there are biases against lens
images with certain A#.

Another interesting quantity is the mean image separation A8 (z4) at a given z4, and its average
over the lens redshift distribution:

< AB >= f "2z, (4.17)
4]

7 (25) dz4

Consider, as an example, again a singular isothermal lens sphere. From the discussion in Section

g2 D D
2.3, we know that the lens produces two images for § < Ferie = 4#(?”) Dd" = & Dd‘“_ The
separation Ax = 2 translates into o :
47r03 Dy,
Af = 2.5cm'f, = 2(:_2 2) .

Since this is independent of the impact parameter, the right hand side is the value of Ad. Thus

g Dds
—_— =2
& D’

&=dr (%)2 . (4.18)

*The parameter I in Fig. 4.4 is defined by F = 167%ny (0) (0w /c)* (¢/Ho)® and is a measure for the effectiveness
of maiter in producing double images.
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It turns out [36], that the image separation is relatively insensitive to the choice of the cosmological
parameters {and to the choice of the distance formula).
As an exercise, compute << A# > for Qy + £24 = 1. The result is

< A§>=é. (4.19)

It has been pointed out by several authors, that the mean separation does become sensitive to A,
when it is used together with other information (lens redshift, lens magnitude, velocity dispersion
of lens galaxy). For a recent paper (with references) see [37]. These authors compare the theoretical
prediction of the critical radius @..;; as a function of zs, z4, and the apparent magnitude, e, of
the lens with observations of elliptical (field) galaxies acting as strong gravitational lenses,

For the function &, (24, 2s, mq) they use the singular isothermal model, for which we found

o2 D
Oerip = dn (E‘) Dda ,
s

In addition they make use of the Faber—Jackson relation

L 2
U=J*(E) .

Besides this, use the fact that the angular diameter distance D) is related to the luminosity distance
Dium by D = Dpuny/ (1+ 2)° . Tntroducing now the magnitudes

L/L. = 10"3M=M) 0 M = Slogyg [Dium (Mpo)] + 25,

one gets

Berie = 4T (%) %‘i“ [Dd 1+ zd)'z] ¥ {g08plm—r.-25], (4.20)

To this one has to add the [{—correction and an evolutionary correction. Fig. 4.5 below shows the
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Figure 4.6: 8:ri — z relation for two gravitational lenses HST1415645226 and HST12531-2914 (see text;
taken from M. Im, R.E. Griffiths and K.U. Ratnatunga, 1997 [35]).
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f.rit — 2 relation for the strong gravitational lens system HST12531-2914 and HST14176+5226,
adopting the parameters g,, 3 , etc. described in the paper, and two choices of the cosmological
parameters. As one can see, 8.4 is quite sensitive to A for sufficiently large redshifts z.. The
measured values of €..;: are also shown. Unfortunately, the redshifts of the two sources are not
known. There are, however, other good examples where z; is known. On the basis of a likelyhood
analysis of seven strong lenses, satisfying certain selection criteria, the authors come up with the
result
Qp=064102%  for Qp+Qa=1

Stronger contraints should become possible with future HST cbservations when new lens systems
with measured values of zy,mg4, 2 are discovered. For a discussion of the intrinsic systematic
uncertainties, I refer to the quoted paper.

4.4 Updates

4.4.1 Statistics of strong gravitational lensing of distant quasars by
galaxies

I discuss here mainly a recent re-analysis of M, Chiba and Y. Yoshii [38]; see also Yu-N. Cheng
and L. M. Krauss [40].

We saw already that the number of multiply imaged QS0s in lens surveys is a sensitive function
of 4. Observationally there are only a few lenses among hundreds of QSOs.

The re-analysis [38] is based on an improved luminosity function (LF) of E/SQ galaxies and
updated knowledge of internal dynamics (velocity dispersions and light profiles). It turns out
(as was known before) that spiral and irregular galaxies make negligible contributions to lensing
statistics. This may, however, be questioned, since spiral galaxy lenses have been found (eg.
B1600+34 in the CLASS sample).

The lens model used by the authors is an isothermal sphere with finite core,

0_2

270G (92 442

core )

plr) = (4.21)

that we discussed brieftly in section 2.4 (see also [41]).
For the number density of E/S0 galaxies, the luminosity function ¢, in

L dL
g =g (L_*) -I: (4.22)

is parameterized in the form proposed by Schechter
$o(y) = duye V. (4.23)

Such a Schechter function is also used for the quasar LF ¢g.
We are interested in the probability p(Lg, zs) that a QSO with redshift z; and luminosity Lg
is multiply lensed. This is given by the expresmon

dt / dr ¢g fd SrpQ(LQlﬂ'l‘-’s)/H’ (424)

7{1 (qu LQ: zs)

p(Lqg, 2s) =f dza(l + 22)°
4]

where S is the selection function and the last fraction is the number of 3SOs that are amplified
to the luminosity Lqg (magnification bias).

The differential cross section is given by 2nédé, where £ = (Dy/ D)7 is the impact parameter
of the unlensed rays in the lens plane. The integration is restricted to £ < {y(Ly, z5), where &, is
the critical ¢ with 3-fold images for £ < #.

(Exercise: Determine ¢y as a function of @, reore.)
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The observational material and fitting procedure entering in (4.24) are described in the original
paper [38]. I discuss only some of the main results. Throughout, a flat cosmology {Qas + Q4 = 1)
is agsumed.

The upper plot of fig. 4.7 shows the results of model calculations with different LFs for the
adopted surveys (about 900 QSOs at z, > 1 with 5 lensed cases). The three different lines for
a particular LF {such as LPEM) correspond to three different values of a faint cutoff magnitude
appearing in the parameterization. The lower figure shows the prediction of image-separation,
compared with the observational histogram.
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Figure 4.7: (a) Predicted total number of lenses n with A# < 4” in the adopted optical lens surveys,
compared with the observed five lenses (thin solid line). (b) Predicted image-separation distribution n{A#d),
compared with the observed image-separation distribution in the optical sample (histogram) and in the
optical lenses (asterisks located at their respective separations Ad).

Fig. 4.8 gives the result of a macimurn likelihood analysis for reproducing both the total number
of optical lenses n with A# < 4" and the image separation n{A#8) of optical and radio lenses.

These results are interesting, systematic uncertainties (galaxy luminosity functions, dark matter
velocity dispersions, galaxy core radii) remain. Further observational work is required before
reliable values for Qs and 24 can be obtained with this method, At the moment the LF based
on the Stromlo-APM survey (LPEM) fits best, and a value Qs =~ 0.3 is favored. This luminosity
function has, however, recently been criticized by Kochanek et al [39].
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Figure 4.8: Results of the maximul likelihood analysis for reproducing both the total number of optical
lenses with Af < 4" and the image-seperation distribution n{A#) of optical and radic lenses.
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Figure 4.9: Likelihood contour plots for flat cosmologies in the two dimensional parameter space (a*, {¥n},
for the standard model using LPEM’s LF with M = —17mag.

4.4.2 Statistics of arcs caused by clusters of galaxies

Clusters with 0.2 < 2z, < 0.4 are efficient lenses for background sources at z, ~ 1. For several
reasons one can expect that the probability for the formation of pronounced arcs is a sensitive
function of {2,s and Q. First, it is well-known that clusters form earlier in low density universes.
Secondly, the proper volume per unit redshift is larger for low density universes and depends
strongly on A for large redshifts (see fig. 6 in [42]).

An extensive numerical study of arc statistics has recently been performed by Bartelmann et
al [43], while we have studied this with semi-analytical methods [44, 45].

4.5 Appendix on Lens mapping in cosmology

In section 4.1 the basic equation (4.8} was obtained by an educated guess. Below we give an ab
initio derivation and also prove the time delay formula (4.4), {4.5).
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The null geodesics of the perturbed Friedmann metric (in longitudinal gauge),
g=a’(n) [-(1+28)d” + (1 - 2¢)7] (4.25)

(y: metric for a space of constant curvature k = 0,£1, ¢ < 1)}, are, after a change of parameter,
the same as for the conformally flat metric

§=—(1L+2¢)dn* + (1 — 28}y (4.26)
or B
§g=—dp’+n%y, n=1-24. (4.27)

Note that we have for § —(1 + 2¢)7% + (1 — 2¢)y:;3'37 = 0 and (1 — 2¢)7° = const, thus
yiyat@? =1 for an appropriate normalization of the affine parameter,
The ray orbits x*{s} thuy satisly the Hamiltonian principle

5 / n(x(s))y/ 755 (5)é4 (5)ds = 0. (4.28)
The corresponding Euler-Lagrange equations are easily found to be
# + Dia?a? = (Inn)* - (4°0; Inn)e’, (4.29)

where I‘;-,c denote the Crhistoffel symbols for the unperturbed metric v;;. (The index on the right
is raised with .} 3
This result also follows from the following exercise: Let £#{A) be a geodesic for the Riemannian

metric § with affine parameter X (g, 2% . & =1):
d?ar ., dz® dzf

= 0. (4.30)

H2 I a

Consider the conformally related metric g, § = e2%g, and let A be a new parameter with dh jdA =
€2 ie.,

dxt dz¥ 24
— o2 431
v g dx (4-31)
1. Show that ) .
dx# p dx%dw 2 p
a7z ar_dz” vé 4.32
e Tle gy gy =T (4.52)
(¢ Christoffel symbols for g).
2. Change A to s, with gu. d:: % = 1 and derive the equation
e, dz® do? dx¥ dxz*
S g {E =
ds? tlas ds ds g (ds ("5’”) ds (4.33)

Solution

1. One finds readily
P =Ths + 0505+ 8300 — gapg™ b0

2 it 1 I
de¥ 2 @ (e—wdi) —4¢[ 2¢¢” &z ],

Now,

diz dA di dA?

where ¢ = d/d\$(z#())). Furthermore,

., dz® daf A N da® dy?

| SRl T e il et

2 S a TP s I
———

ed?

Thus equation {4.32) is correct.
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2. We find immediately {4.33) by using

dat s dat
—_— = ¥
dA ds
A2 e‘ﬁi eq&ida:_“ _ 20 dq‘)(:r.‘(s))ézﬂ_'“ diz#
daz ds ds J ds ds ds?

In abstract notation, the orbit c(s) thus satisfies the equation
Vet =Ve—(Veg) e =V o (4.34)
(g{e.e) =1).

For our problem § = n®y, g = : standard metric of §°, PS®, B®; V: covariant derivative for
T
Ve =Volnn {eq. {4.29))
or, with n =1 — 2¢,
Veb = —2V . 6. (4.35)

Consider now a bundle of light rays intersecting at the observer. Each of these rays is char-
acterized by the angles 8 it encloses with some fiducial ray (see Fig. 4.10). The angles 8 are all
assumed to be small.

:_-polar axis of unperturbed
space (k=0, :1)

light ray with

fiducial observing angles &

ay

observer
Figure 4.10: Situation under consideraion.

The metric + is one of the standard coodrinates

giny (k=1)
y=d+S8x)d?,  S={¢ x (k=0 (4.36)
sinhy (k= -1),

For small angles & we can approximate d2° of 52 by d#? + df%,
v = dx? + 8%(x) (6} + db3) . (4.37)

In this aproximation, the parameter s satisfies ¥ = 1, up to guadratic terms. Neglecting such
terms also in (4.29) or (4.35), we find

(s2008:)" = ~252. (4.38)

(This is best derived from (4.28).)
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It is useful to write Lthese equations also in terms of z; = S{)}#;. We have

& S'(x)x8; + 56; ~ S'x)8; + Sb;,
i = 285%6;+8"6; + Sb;.

Since " + kS = 0 we obtain {up to higher orders)

. _Lrcesyt 1 8¢
it hoi= 5 (8%:) = 5 20"
or Y
T L= — . 4.39
£ + kx; 2 oz, (4.39)
We write this in two-dimensional vector notation
&x
Zx—z +kx = —2V_Lt;b. (440)

For & = 0 this reduces to the basic equation {1.26), (From this one also obtains immediately the
Jacobi equation.)
Now, we proceed as in the appendix 1.8. Since S(y) satisfies

S"+kS=0, S(0)=0, §(0)=1, (4.41)
the distribution
Glx, x") = S8 —x") (4.42)

is a fundamental solution for the operator d?/dx® + k and thus we obtain for x(8, x) the integral
equation

(0,0 = 5008 -2 [ ¥ 50— )V LA (x(8, X, X') . (4.43)

The first term on the right is the unperturbed homogeneous solution of {4.40}.
Under the integral we replace x{8, x') by the unperturbed solution S{x’}@ (weak lensing)

pe
X(6,00 = S6)8 -2 [ S(x=x) V1 (S8 x) (4.49)
Note that this approximate solution satisfies, as it should,
&t e (4.45)
dx »=0

Let i = x(8, x;) for a source at x = . From (4.44) we get
xﬂ
N=5x:}0-2] &'S(x—x)Vig¢(up)
0

(where ‘wp.’ denotes {(§(x)8,x)). Sctting n = S{x;s}0 (F: unperturbed position angles of the
source), we can write this as

_ Xe Slas— 1)
p=0-2[" 6n=E =X, gup). (4.46)

The first factor under the integral is often slowly varying over the dimensions of the lens® and can
thus be replaced by the ratio Dys/D; of angular diameter distances

Dys = a(t,)S(xs — xa).  elc.

3This is not true far weak lensing produced by large scale structures. Then one has to work with (4.46).
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In this thin lens approximation we fnally obtain

Das . . A 2
=8 — = = —_— 4,
=0 *=TV =0 an
with
P = fqb(u.p.)dx. (4.48)
This agrees with (4.8}, as we now show,
From the last two equations we obtain again
V.. a=20.4=2 f AL(updy =2 f Ad(up.) dy ~ 87GTalta),
—
4rQpa?(t)
ie., A
AL = 4nGa(ty) . (4.49)
Hence,
bx) = 26 f Infx ~ X'|a(ta) B0¢) gz
5%(xq)d28'=a—2(tq) D3d26
= ﬁZGfln |8 — &'|2(D48')d?0’ + "const” (indep. of 8).
d
As a result, we finally get A 5
. 2 89 2R, 3
_ 9% g) = 2=V 4,50
where D¢
»(0) = fln |@ — G’I_'(T;.)Dﬁd%’. (4.51)

(4.47), (4.50) and (4.51) agree with the basic formulae (4.26), {4.27), (4.32) and (4.33).

Exercize
Let + be the standard metric on M = §%, P5% or B3, Let ¢: T — M he a geodesic, and X a
Jacobi field along ¢ perpendicular to ¢, Write the Jacobi equation

X +R(X,&é=0,

where X = VX, etc., in terms of the components £'(s) of X relative to an orthonormal basis
e1, ez orthogonal to &, which is parallel along ¢. Result:

£ +ke =0.

Next, we derive the time delay formulas (4.4) and (4.5). For light rays we have dn* =
n?;dr'dz?, and thus the conformal light travel time is (as in (1.61))

n= / n.\/ﬁ‘-ja':ﬂ'ifds = 2[ dy. (4.52)
path u.p.

Here £ is the path length measured with the unperturbed metric v;;. We show below that the
corresponding conformsl time delay, Afgeom, is given by

1SS 1o a2
Angeom ~ 5 SI(XS _ Xd) (9 I@) ' (453)



4.5 Appendix on Lens napping in cosmology 55

The last integral in (4.52) is ¢ = (R, /aq)9. Therefore, the total conformal time delay (relative to
the unlensed situation) is

_ 18(va)S{xs) g _ gy2 _ 2R g
= 2800 —xa) O T YO (4.54)

Since this is small in comparison to the Hubble time Hy !, we have At = aoA7. Using also the
angular diameter distances

Dy =0a38(xa), Ds=0:8(xs}, Duas = a4:sS{Xe — Xa), (4.55)
we obtain the important result which we guessed in (4.4) and {4.5):

DaD,
Dd.s

At = %(1 + 202425 0 8)2 _ 2aRs(1 + 2a)0(6). (4.56)

Geometrical time delay

We stil! have to show that for small &
1 DD,

3 Da, (6 - B)". (4.57)

Atgeom = {]- + Zd)

We give the proof for &£ = 0 in such a way that it can be translated verbatim to & = 4-1 by using
the corresponding cosine and sine theoreins for spherical and hyperbolic geometries, respectively.

deflection

Figure 4.11: The geodesic triangle.

We compute
A”?geom =0ds + 04 — O (458)

of figure 4.11, and use afterwards Algeom = 20A%gzeom.
The cosine theorem gives

2 2 N 2 . [
T, = 0'3 + 04, +20404:c08& = (0q + Tds ) — 404045 sin? 7

Thus (for small &)

200045 . o & lauohs .,
To ™ 04+ 0gs — ———5in° = = 04 + 045 ~ 584",
Td+ Ty 2 2 o5
Hence,
Filuy .9
Ang{:om =L o

2o,
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The sine theorem gives for small &, (8 — )

2
Fa

(8 - ﬁ)gs = Gags = &2 = e (9 - 16)2
ft-'i
Together we obtain
— Fot Ty 8 2
Aﬂgeom = m( ~ B)°.

Now, the angular diameter distances are for k =0

D¢ =0404, D, =ga,0,, Dy = as04s.

Inserting this gives {with ag/eq =1 + 24) indeed (4.57).

Exercise
Translate the argument to the case k = 1 and show that

sineogsing, 2
A =—— (8- .
Tgeom 2einog, ( A )

For k = —1 one has to replace sin by sinh.

(4.59)

(4.60)

(4.61)



Chapter 5

Complex formulation of lensing theory

This chapter contains parts of my paper [23]. What follows is the abstract.

The elegonce and usefulness of a complez formulation of the basie lensing equations is demon-
strated with a number of epplications. Using stendard tools of complex function theory, we present,
for instance, a new proof of the foct that the number of images produced by a regular lens is always
odd, provided that the source i3 not locoted on a ceustic. Severel differential and integral relations
between the mean curvature and the (reduced) shegr are also derived. These emerge almost au-
tomatically from complez differentiations of the differential of the lens map, together with Stokes’
theorem for compler valued 1—forms.

5.1 Complex formulation

In this section we translate the basic lensing equations into a complex formulation. It will turn
out that this is not only elegant, but also quite useful, because one can then apply various tools
and techniques of complex analysis. This has also been noted before by other authors.

5.1.1 Mathematical preliminaries

We use standard notation when identifying B? with €, by writing z = z + ¢y for (z,y) € F2 and
dz = dv + idy, dz = dw — idy for the cotresponding basis of 1-forms. In terms of the Wiriinger

derivatives,
_ 9 _1/9 .8 _o6_1(/8 .96
3z=a—§(3:5 *55)’ BF%‘E(az“ay)‘ o4

the differential of any smooth complex function f on C has the representation

_9f of .
df = -é];dz + Egdz. (5.2)

We shall also write f, and f; for 8, f and O;f, respectively. A function f is holomorphic if and
only if 8; f = 0. In terms of the Wirtinger derivatives, the Laplacian is given by

A = 48385. (5-3}

We shall make repeated use of Stokes’ theorem for complex—valued differential forms on C (or
an open subset of C): If £ is a compact subset of € with a smooth boundary 552, then for every

complex differential 1-form w
f dw = f ER (5.4)
Q a0

An immediate corollary of Eq. (5.4) is the Cauchy—Green formula: For a smooth function f we
consider d
z

z—C’

w=f (5.5)



58 5 Complex formulation of lensing theory

and apply Stokes’ theorem (5.4) for £ minus an e—disk with center ¢, In the limit ¢ = 0 we obtain

=L L8 L [EE (5.6)

-

27 foan 2 —¢ 2mt Jo 2 —¢

For holomorphic functions the second integral is absent. (Note that dz A dZ = —2idz A dy.)
The dilatation or Beltrami coefficient v = v; of a smooth function f is defined by

f.i:foza (57)
and this equation is also called Beltrami equotion. Since the Jacobian Jr of f is given by
Ir =160 =151, (5.8)

we conclude that |vf| < 1 if f preserves orientation and vy = 0 if and only if f is conformal. For
the interpretation of vy we consider the infinitesimal ellipse field by assigning to each z € C the
ellipse that is mapped to a circle by f. As indicated in Fig. 5.1, the argument of the major axis
of this infinitesimal ellipse is {7 + arg (v7)] /2, and the eccentricity & is

£ =

Ile'—lf5|=l—[uf| g9
PR 5.9

Solving the Deltrami equation (5.7) is then equivalent to finding a function f whose associated
ellipse field coincides with a prescribed ». We shall see that this is just the inversion problem in
gravitational lensing. Weak gravitational lensing corresponds to quasiconformal maps. A smooth
mep [ is k—conformal if its Beltrami parameter »; satisfies |vy| < &k < 1, Geometrically, this means
that there is a fixed bound on the stretching of f in any given direction compared to any other
direction.

We now quote ah existence and unigueness theorem for the Beltrami equation. For a fixed k
with 0 < k& < 1 let L (k, R) denote the measurable functions on C bounded by k and supported
in {z € Cl|z| < R}.

Lvsargi)l /2~

Figure 5.1: Geometrical interpretation of the Beltrami parameter.

Theorem: For v € L™ (z, R), there is a complex function f on C, normalized so that f(z) =
z+ O(1/z) at co, with distributional derivatives sutisfying the Beltrami equation f; = vf,, ond
such that f; and f, — 1 belong to LP for a p > 2 sufficiently close to 2. Any such f is unique. The
solution f i3 u homeomorphism of C, which is holormorphic en any open set on which v = 0. If
veC! and v, € CF, then f € CL.
A proof of this theorem can, for instance, be found in [46].

The reconstruction problem (for noncritical lensing) will lead to the inhomogeneous Cauchy—
Riemann equation

3:f =h. (5.10)



5.1 Complex formulation 59

In case the smooth function h has compact support, the Cauchy-Green formula {5.6) provides one
solution:

1 h(z)
= — dz A dZ. A1
10 = 5 [z ndz (511)
Obviously, f is only determined up to an additive holomorphie function. If the solution is assumed
to be hounded, f is unique up to an edditive constant.

From the solution {5.11) we see that (w2) " is a fundamental solution of the differential operator

0z,
1 1
- ~ 1l =4 .
L (1) - -
because (5.11) can be written as
1
=—xh 5.1
=" (5.13)

A special case of the so—called Dalbaut Lemma in several complex veriables implies that one
may drop the assumption that k has compact suppaort:
Theorem: For any smooth function h on C there erists ¢ smooth function f such that (5.10)
holds.
For & complete proof, see Chapter 2 of [47].

As an easy consequence we have the
Corollary: For any smooth funciion h there exists a smooth solution of the Poisson equation
Af=h,

In the following we often use the abbreviations 8 = 8,, 8= 4;.

5.1.2 The complex lens mapping and its differential

The lens mapping ¢ : R? +— R?
y =@ (x) =x~ Vi (x), (5.14)

is now written as f : C+— €, w = f (2) with 2 = 2 + izg, w =y +iyz. We have

f5y=2-28¢ (5.15)
ar
f=08{(zz—29). (5.16)
Eq. (1.49) becomes
200y = k. (5.17)

The differential of f will be very important. From (5.15) and (5.17) we obtain
df = (1 - ) dz — 28y dz.

But
_ 1 i 1 .
By = i (97 -y + %3132%9 =3 (1 +iv),

according to the original definition (1.52) of the shear vector. Introducing the complex shear
7=v+tir2 (5.18)

we obtain
df = (1 — &) dz —- vdz. (5.19)

Hence, the Beltrami parameter vy of the lens map is given by

vr=— y . (520)
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This agrees with the reduced shear introduced by Schneider and Seitz [48]. The examples (2.23}
and (2.45) become

1 1
Schwarzschild lens flzy=z- FYU=5 (5.21)
1
stngular isothermal lens J{z)=2z- %, vy = E‘"(|z|z——l) (5.22)
2

For reference, we note that, according to (1.54), (5.8) and (5.19) the amplification £ is given by

=gl =|j0sf - 01| = |1 - WP - 1P|, (5.23)

5.2 Applications

The usefulness of the complex formulation will be illustrated in this section with several applica-
tions. No new results are obtained, but some of the derivations become simpler and more natural.

5.2.1 Number of images for a regular lens

The important fact that the number of images for a regular lens is always odd, provided the source
does not lie on a caustic, is traditionally proven with the help of some elements of Morse theory [5].
We now give a proof which uses only standard tools of complex function theory that are used, for
example, in the derivation of the theorem of residues. In particular, we make use of the following
analytic formula for the index of a closed (rectifiable) curve + relative to a point a ¢ +:

1 dz

. 24
2ri yZ—a (5-24)

indy (a) =

This index is equal to the winding number of 4 around ¢ and hence an integer. Furthermore, it is
a homotopic mvariant, changes sign under orientation reversion, and is additive under composition
of closed curves (see, e.g., Chapter IV of [49]).

Consider now a point wp in the source plane with images f~! (wo) = {21,....2x} in the lens

plane. The coniplex 1-form
1 df
= 5.25
v 2ri f —wg ( )
is regular on C\|J; D; (z;), where D, (a} denotes the closed disk with center ¢ and radius . It is
also closed, and therefore Stokes’ theorem (5.4) gives

i df /
= 5.26
2w apg(0) f —wo Z 2mi Jop, (2 f wo (5.26)
Now, for a closed curve 4 we haye by the transformation formula of imtegrals and (5.24)
dw
= = ind;o . 5.27
2mi _/ f—up 2?1'1 Foy W — Wo ind oy (tw0) ( )

Asymptotically the lens map approaches the identity, and hence the left hand side of (5.26) is equal
to 1 for sufficiently large R. Therefore, we have

N
l= Zind‘rfoagg(%) (wo)=m1 —n_1+2{ns—n_z)+ ..., (5.28)
=1

where 1 denotes the nurber of z; in {zi,......,2n } for which the index in (5.28) is equal to A.
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For the special case, when wg is not on a caustic, the Jacobians Jy (z;) do not vanish and all
indices are thus equal to 1 (41 if f is orientation preserving and -1 if it is orientation reversing
al z;). Hence

N=n +n_1, l=n; —n_y, (5.29)

implying that
N=14+2n, (5.30)

is odd.

5,2.2 Relations between mean convergence and reduced shear

The Beltrami parameter (reduced shear) v¢ of a lens map is in principle observable, What we are
really inlerested in is, however, the mean curvature « which is related to the surface mass density
by (1.44).
In view of (5.18) it is natural to look first for relations between the complex shear v and x.
Eq. (5.19) for the differential of the complex lens map and (5.15) give

5= —8f = 20%. (5.31)
In order to get a useful relation we differentiate (5.31) and use (5.17)
By = 20 (0D} = Bk. (5.32)

This can be regarded as an inhomogeneous Cauchy-Riemann equation for k. With the results in
Subsection 5.2.1 we conclude

1 1
k= - (1)*67+no=—6(£)*7+n0
T\ 2 To\z

11
K=-—— * ¥ + Ko, (5.33)

or

The additive constant xg reflects the fact that a homogeneous mass sheet does not produce any
shear (“mass sheet degeneracy”). The real form of (5.33) appeared the first tiine in [20]. In making
use of (5.20), we obtain an integral equation for « when v is known

m:-%gﬂ[y(l-nnﬂm (5.34)

This has been used, for instance, in [22] for nonlinear cluster inversions.
We add that (5.34) has an inverse, that also appeared in the influential paper [20] of Kaiser
and Squires. From (5.31), (1.48) we obtain

g = 48%G * k. (5.35)

Since the [undamental solution G of the two—dimensional Laplace operator is

1 1
= — = — z 36
g 5 In|z| ir In {z2), {5.36)
we find L1
"r = —;z—z * K. (5.37)

Note that (5.32) has the real form (x is real)

6171 +82'T2 )
V&= . 5.38
K ( 6‘171 + 8271 ( )
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Let us diflerentiate (5.32) once more
90k = B, (5.39)

giving
Ak = 48*[v (1 — &)], (5.40)

from where we could again arrive at (5.34). The mass-sheet degeneracy is reflected in the following
invariance property: Eq. {5.40), for given v, remains invariant under the substitution

k= Ax+ (1= A), (5.41)

where A is a real constant (26],
We can use (5.32) in » different manner. Tirst, we write this equation as

k=08 (l—k}]=(1—-kK)Ov—vik.
This becomes simpler in terms of K :=1In {1 — &)
O — yOK = dv. (5.42)

To this we add its complex conjugate. Noting that K is real, we again obtain an inhomogeneous
Canchy-Riemann equation, this time for A"

K =h(v), (5.43)

whereby the inhomogeneity .
)= (1-1") o0 +7vov] (5.44)

is, in principle, observable,

The real form of this equation was obtained by Kaiser [24] and has often been used in the
analysis of cluster data. The coinplex version appears also in [50].

The utility of the complex formulation should now be clear, The relations, derived in this sub-
section, emerge almost automatically by just applying 8 and 9 to the coeflicients of the diflerential
of the lens map.

5.2.3 Other useful reconstruction equations

Real lensing data are always confined to a finite field of the sky. Therefore, the solution of (5.43)
in the form (5.11), for example, involving an integration over all of C, is not very practical. On
the other hand, one can obtain integral formulas in which only integrations over bounded domains
occur. In order to arrive at the latter, we write the inhomogeneous Cauchy-Riemann equation in

terms of differential forms:
d'g =w. (5.45)

Here w is a 1-form and we use the standard decomposition d = d' + d” of the exterior derivative,
gatisfying
dod =0, d"od' =0, dod +d od =0 (5.46)

(see, e.g., [47]). We also make use of the *—operator, which is related to complex conjugations as
follows: If a 1-form « is decomposed as a = o + a2, where @, is of type (1, 0) and o of type (0,
1), then ‘

va=i(o - ). (5.47)

The following identities are useful

xxQ = —q, FO =%,
d* (0:1 + (1‘2) = id’&l - id”ﬁ:z,

*»d g =id'g, =»d'g=-id'g,
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dxdg =2id'd"'g = Agdz N dy, {5.48)

where g is a function.
Now let 2 C C be a bounded domain with smooth boundary 952 and A = || . We show that

g minus its average g over £,

1
g=— / gdz A dy, (5.49)
A Jo
can be represented in the following form
g—g:/ v Aw. {5.50)
Q
The 1-form a in the integral is given by
a=-2d"H (5.51)
in terms of the real Green’s function H, defined by
1
AH— — = -4, 5.52

together with the Neumann boundary condition on 6%1.
This is a consequence of Stokes’ theorem. The integrand in {5.50) is

saAw=sand'g=~d"(g*a)—29d" (xd'H).
By making use of (5.48) we obtain for the last term
29d" (+d"H) = —2igd'd H = gAHdz A dy,
while the first term is given by

d" (g d"H) = d(g+ d"H).

/m/\w:/ gxd'H+g9—g.
&0

This is just (5.50) since the last integral vanishes, due to the Neumann boundary condition for H.
Formulas equivalent to {5.50) have been used often by S. Seitz and P. Schneider [22].
The starting point for the derivation of another useful relation is (5.19) in the form

Hence,

d(f -~ z) = —ndz — vdz,

If we wedge this with dz and subtract the complex conjugate of the resulting equation, we find
kdr Adz = %d [k (zdZ — zdz) — yzdZ + Yzdz]. (5.53)
Taking the average according to (5.49) we arrive at

_ $ {y2dZ — yzdz) (5.54)

R=im § (zdz — zdz)

where {-} denotes the average along the boundary 6}

§ ki (zdz — 2dz)

{k} = W (5.55)

For the special case of a disk [),, we have along the boundary z = re®? zdz — zdz = —2ir?dyp,

hence
k= ()~ (n}, (5.56)



64 5 Complex formulation of lensing theory

where +; denotes the tangential cornponent of the shear
Yt = Y1 €08 2 + Y 8in 2¢p. (5.57)

This relation is not new (see Rel. [21]). Noting that

_ 1 i
A k(@) rdr'dp, (5.58)
and thus .
LY —
m — 2 (K:) - 2:‘6, (5-59)

we can use (5.56) to obtain the interesting connection
dr
dlnr

This has recently been used in an analysis of weak lensing data [20]. A useful integral form of it
is, in obvicus notation,

=2{y). (5.60)

2 -1 Ta
ﬁ:(n)—ﬁ(r1<r<rz)=—2( ——2) [k (5.61)

The left hand side of this equation is what Kaiser and Squires call the {—statistics, ¢ (r1, r2). One
can use general weight functions for the average process [21] and try to optimize the choice for
the detection of mass overdensities [22]. Note also, that the integral on the right in (5.61) can be

written as v y ) L
.
—_—= — Rl =7 )dzAd 5.62
Ik %.f[rm] (57) asnay (5.62)

‘We conclude by pointing out another appearance of a Beltrami parameter in lensing theory. An
often used method for describing the shape of a galaxy image uses the second brightness moments

1
Norm

Qs = g [ 100 @i~ ) 5 =) Pz, (5.69)
where I(x) is the surface brightress distribution and X is the center of light of the galaxy image.
Now regard Q = (J;;) as a linear map of R?. If this is interpreted as a map z +— w (2) of C it
reads

W= % Q11+ Qu2) 2+ % (Qu1 — Qaz + 2iQ12) Z = %”’Q [z +x2], (5.64)
where i
X = Qi1 — Qti-z;- 2iGhz (5.65)

x is called the complex ellipticity and is clearly just the Beltrami parameter of the map {5.64).
The intrinsic brightness moments ng-) of the galaxy are defined correspondingly and it is easy to

see that Q{®) = Dy - Q - Do, D being the differential {1.52} of the lens map. The interpretation
of x given above, allows us Lo easily find the corresponding relation between x and x‘). One just
has to compose the map (5.64) on the right and on the left with the linearized lens map

w=(l-kK)z—"7Z (5.66)
This readily gives
0 o _"TEx+%

UL - 2men) (557

X

with the inverse
20 + x4yl

X = : . 5.68
¢ L4 |e] +2m (1) (5.68)
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A real derivation of these formulas is quite akward. They are used in applications by averaging
over a set of galaxy images, logether with statistical assumptions about the intrinsic ellipticity
distribution (for instance {x{*)) = 0}, to determine the reduced shear v of the lens map. Here,
we just wanted to point out that y has the interpretation of a Beltrami parameter, and that the
relations {5.67) and (5.68) are very easily obtained in the complex formalism.

We hope that the reader will find other examples of such simplifications, After this paper was
made public, I learnt more about the related work of T. Schramm. As a supplement to what
was discussed above, I refer especially to his study of the Beltrami equation with the help of the
corresponding characteristic equations [51].
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Chapter 6

Introduction

In these lectures 1 would like {0 show you the importance and the power of measurements of
anisotropies in the cosmic microwave background (CMB).

CMB anisotropies are so useful mainly because they are small: For a given model, they can
be calculated within linear perturbation theory, to very good approximation. They are influenced
only little by the non-linear processes of galaxy formation. This allows us to compute them very
precisely (to about 1%, which is high precision for present cosmological standards). For given
initial Auctiations, the result depends only on the cosmological parameters. If we can measure
CMB anisotropies to a precision of, say 1%, this allows us therefore to determine cosmological
parameters to about 1%, An unprecedented possibility! Consider that at present, after the work
of two generations, e.g. the Hubble parameter is known only to about 25%, the baryon density is
known within about a factor of 2 and the uncertainties in the dark matter density, the cosmological
constant and the space curvature are even larger.

This somewhat too optimistic conclusion has however three caveats which we want to mention
before entering the subject of these lectures.

1. Initial conditions: The result depends on the model for the initial Quctuations. Inflationary
scenarios contain in general three to four free parameters, like the ratic of tensor to scalar
perturbations (r) and the spectral index of the scalar and tensor perturbations (ng and nr},
s0 a few more parameters need to be fitted additionally to the data.

If the perturbations are generated by active sources like, e.g., topological defects, then the
modeling is far more complicated, and the analysis is too different to be included in these
lectures.

2. Degeneracy: Even though we can measure over 1000 independent modes (Cy's) of the
CMB anisotropy spectrum, there are certain combinations of the cosmological parameters
that lead to degeneracies in the CMB spectrum. The result is, e.g., very sensitive to the sum
Qunaceer + §14, hut not to the difference (“cosmic confusion”).

3. Cosmic variance: Since the Auctuations are created by random processes, we can only
calculate expectation values. Yet we have only one universe to take measurements {“cosmic
variance”). For small-scale (Inctuations we can in general assume that the expectation value
over ensembles of unjverses is the samc as a spatial average (a kind of ergodic hypothesis),
but for large scales we can’t escape large statistical errors.

6.1 Friedmann-Lemaftre universes

Iriedmann-Lemaitre universes are homogeneous and isotropic solutions of Einstein’s equations.
The hyper-surfaces of constant time are homogeneous and isotropic, i.e., spaces of constant cur-
vature with metric a®(n)vi;dz’da’, where vi; is the melric of & space with constant curvature
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K’!
yidatdz? = dr® + x*{(r) (d9* + sin®9dp*) (6.1)
r2 , £=0
iry = sinr | k=1 (6.2)
sinh?r |, k=-1,

where we have rescaled a(n) such that & = £1 or 0. (With this normalization the scale factor a has
the dimension of a length and 5 and r are dimensionless for « # 0.) The four-dimensional metric

is then of the form o
Gupdatde” = —a®(n)dn® + az(n)’njdx‘dx’. (6.3)

Here 7 is called the conformal time,
Einstein’s equations reduce to ordinary differential equations for the function a{n) (with "=

d/dn):

2y 2
(a,) +r = 5 ¢ o+ 3Aa (6.4)
8y —4rGa? ( +3)+5Aa2— Ay _(ey’ (6.5)
a B TGP TP Ty T \ea a/ ' '

where p = ~T3, p = T} (no sum!) and all other components of the energy momentum tensor have
to vanish by the requirement of isotropy and homogeneity. A is the cosmological constant.

Energy momentum “conservation” (which is also a consequence of (6.4) and (6.5} due to the
contracted Bianchi identity) reads

p=-3 (E) (o +p). (6.6)

After these preliminaries (which we suppose to be known to the audience) let us answer the
following question: Given an object with comoving diameter A! at a redshift z(n) = (ag/a) — L.
Under which angle 9(A, z) do we see this object today and how does this angle depend on Q4 and

0.7
We define

2
0o - (c20)

2
3(2)" o

—K
Qn = ) 1

(2)

="

where the index ¢ indicates the value of a given variahle today. Friedmann’s equation (6.4) then
requires
1 =1y + 04 + Q. {6.8)

Back to our problem: Without loss of generality we set r = 0 at our position and thus r =y =
1o — 71 at the position of the flashes, A and B at redshift z;. If A denotes the comoving arc length
between A and B we have A = x{(r }J = x(n0 — m)¥, i.e.

A

="
x{ne — m1}

(6.9)

Lor physical size a{n)A = d
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MosZ=0 e
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Figure 6.1: The two ends of the object emit a flash simultaneously from A and B at z; which reaches us
today.

It remains to calculate (mg — 1, }(21).

Note that in the case & = 0 we can still normalize the scale factor a as we want, and it is
convenient to choose ay = 1, so that comoving scales today become physical scales. However, for
k #£ 0, we have already normalized a such that & = £1 and ¥ = sihr or sinh r. We have in principle
no normalisation constant left,

From the Friedmann equation we have

o’ = %a“p + lz‘u;l,‘l - &a’, (6.10)
3 3
We assume that p is a combination of “dust” (cold, non—relativistic matter) with p; = 0 and
radiation with prad = 1spraa .
From (6.6) we find that paq < @ and pg o a3, Therefore, with Ho = () (n0), we define

G
ﬁ;—-a“ = H? (a2Qna + Quac}) (6.11)
1
gi‘xa“ = HZQua? {6.12)
-ka® = HiQ.d%ad . ' (6.13)
The Friedmann equation then implies
da @ at a? 3
— = Hpt} | Qraa + —Qa + — 04 + 50 6.14
- oao( at et o A+aé 5) (6.14)

so that
dz

_ 1 /'“
Hoto Jo  [Qrpalz + 104+ Qulz +1)% + Q4 + Qulz +1)7)E

Here we have introduced the cosmological redshift z + 1 = ag/a. (In principle we could of course
also add other matter components like, e.g. “quintessence” [58], which would lead to a somewhat
different form of the integral (6.15), but for definiteness, we remain with dust, radiation and a
cosmological constant.)

In general, this integral has Lo be solved numerically. Tt determines the angle ¥(A, 2;) under
which an object with comoving size A at #; is seen.

On the other hand, the angular diameter distance to an object of physical size d seen under
angle ¥ is given by o — 9, = r1 = ¥~ (d/a, /9). If we are able to measure the redshift and the
angular diameler distance of a certain class of objects comparing with Eq. (6.15) allows in principle
to determine the parameters Q,,, Q4, 2. and Hg.

We have ﬁ;r?‘g = Qﬁ = Hyup = \/I_]-—ﬁ:’ for ﬂh -',l’—' 0.

(6.15)

o —m

Observationally we know 1075 < Qg <107% as well a5 0.1 € Qg < 1, |Q4] < 1 and [Q.] < 1.

If we are interested in small redshifts, z, ~ 10, we may safcly neglect. {},,4. In this region,
Eq. (6.15) is very sensitive to {14 and provides an excellent mean to constrain the cosmological
constant (see part I).
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Figure 6.2: The function x(na —m) as a function of the redshift » for different values of the cosmological
parameters {2, {left, with Qx=0) and 24 (right, with Q,=0), nemely —0.8 [dotted], —0.3 {short—dashed],
D [solid], 0.3 [dot—dashed], 0.8 [long—dashed].

At high redshift, 2; ~ 1000, neglecting radiation is no longer a good approximation.
We shall later need the opening angle of the horizon distance,

. _ m
Ou(z1) = =)’ (6.16)

e de L (617)
000 Jz;  [Quaal(z+ L)+ Qulz + 103 + 04 + Q{24+ 1)2)7

(Clearly this integral diverges if Qyoq = ¢ = 0. This is exactly what happens during an inflationary
period and leads there to the solution of the horizon problem.)
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Figure 6.3: 9x(z1) (in degrees) for different values of the cosmological parameters Q. and Q4 as in
Fig. 6.2.
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The value of the radiation density is well ktiowh,

Prad = 7.94 x 1073(T},/2,737K ) g/cm® .

This gives
Dragh? = 4.2 1075(Ty /2.737K)* | (6.18)
km
= 100h—— . .19
Hy sMpe (6.19)
Exercise: Neglecting Qyaq, show that for Qx4 = 0 and small curvature, 0 < |Q,.] & Q4

at high enough redshilt, 2) > 10, ng — m =~ 2,/[02<|/Qq. Conclude that #(A, z;) x /{1 so that
9 2 /Ry (A, 2}, Caledlate dh (A, 2) = (A, 2)|n,=1,0,=0a=0,.4=0 Cxplixilely.

6.2 Recombination and the cosmic microwave background
(CMB)

During its expansion, the universe cools adiabatically. Al early times, it is dominated by a Lhermal
radiation background with p = C/a* = gernspT?? and we find that T o o' '. Here gesp =
1y, + 7/8np is the effective number of degrees of freedom, bosons counting as 1 and fermions
counting as 7/8 (sec e.g. [59]). At temperatures below 0.5MeV only neutrinos and photons are
slill relativistic leading to the density parameter given in Eq. {6.18). { Neutrinos have a somewhal
lower temperature than photons, T, = (4/11)}/37, since they have already dropped out of thermal
equtilibrium before e* annihilation which therefore reheats the photons but not the neutrinos, see
e.g. [59, 60}.)
The photons obey a Planck distribution,

flw)= e—w,ﬁ—q , (6.20)

At 2 temperature of about T ~ 4000K ~ 0.4e¢V, the number density of photons with encrgies
above the hydrogen ionisation energy drops below the baryon density of the universe, and the
protons begin to (re-)jcombine to neutral hydrogen. (Helium has already recombined carlier.)
PPhotons and baryons ere tightly coupled beflore (re-)eombination by non-relativistic Thomson
scattering of electrons. During recombination the free eleciron density drops sharply and the nean
free path of the photon grows larger than the Hubble scale, At the temperature Tye. ~ 30005
(vorresponding to 1he redshift zqe. = 1100 and the physical timne fqec = agfdec = 10%years) photons
become free and the universe becomes transparent.

After recombination, the photon distribution evolves according to Liouville's equation {geodesic
spray):

0 H v af —_
P aﬂf_]-‘pup‘up 6__‘!9‘ = Lng =0, (6‘21)
where § = 1,2,3. Since the photons are massless, |p[? = 335 | pip’ = w? (w = ap”). Tsotropy of
the distribution implies that f depends on p’ only via [p| = w, and so

8f _owdf pof
opt T 9ptdw  wdw’ (6.22)

In a Friedmann universe {also if & 7 0!} we find for p“p,, = ~w?® + p* = 0 [exercisel)

. v a
T p'p'pi =~ (;;) . (6.23)

?We will use units with A = ¢ = kg = 1 throughout these lectures. The Stefan-Boltzmann constant is then given
by agp = w2k} /{60R%c?) = n2/60.
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Inserting this result into {6.21) leads to

1y
0y f +w (-Z—) % =0, (6.24)
which is satisfied by an arbitrary function f = f{wa}. Hencc the distribution of free-streaming
photons changes just by redshifting the momenta. Therefore, setting T o< ¢~! even after recombi-
nation, the blackbody shape of the photon distribution remains unchanged.

Note however that after recombination the photons are no longer in thermal equilibrium and
the T'in the Planck distribution is not a temperature in the thermodynamical sense but merely a
parameter in the photon distribution function.
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Figure 6.4: Spectrum of the cosmic background radiation. The graph on the left shows the measurements
of the FIRAS experiment on COBE (the vertical bars), overlaid by a blackbody spectrum at a temperature
of 2.73 K. The error bars are 20 times magnified! The image on the right shows a larger number of
measuremenis. The FIRAS data is represented by the fat line around the peak of the spectrum [60].

The blackbody spectrum of these cosmic photons which are called the “cosmic microwave back-
ground” (CMB) is extremely well verified observationally {see Fig. 6.4). The limits on deviations
are often parameterized in terms of three parameters: The chemical potential u, the Compton
y parameter (which quantifies a well defined change in the spectrum arising from interactions
with a non-relativistic electron gas at a different temperature, see e.g. [60]) and Yg (describing a
contamination by free-free cmission).

The present limits on these parameters are (at 95% CL, [56]}

) <9-1075, |y|<12-107°, |Yg| < 1.9-1075 (6.25)

The CMB Photons have not only a very thermal spectrum, but they are also distributed very
isotropically, apart from a dipole which is {most probably} simply due to our motion relative to
the surface of last scattering:

An observer moving with velocity v relative to a source emitting a photon with proper momen-
tum p = —wn sees this photon redshifted with frequency

w =yw(l ~nv), (6.26)

in first order in v this is just a dipole perturbation. This dipole anisotropy, which is of the order

of
(E) ~ 1073
T dipole

has already been discovered in the 70ties [61, 62]. Interpreting it as due to our motion with respect
to the last scattering surface implies a velocity for the solar-system bary-center of v = 371+0.5km /s
at 68% CL {[56]).
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The COBE® DMR experiment (Differential Microwave Radiometer) has found Huctuations of

<(A—f)2> ~ 1075 (6.27)

on all angular scales # > 7° [57]. On smaller angular scales many experiments have found fluctua-

tions (that we shall describe in detail later), but all of them are ~ 10~4.

As we shall see later, the CMDB Huctuations on large scales provide a measure for the deviation
of the geometry from the Friedmann-Lemaitre one. The geometry perturbalions are thus small and
we may calculate their ellects by linenr perturbolion theory, On smaller scales, AT/T rellecls the
fluctuations in the energy density in the baryon/radiation plasma prior to recombination. Their
anplitude is just about right to allow Lhe formation of the presently observed non-linear structures
(like galaxics, clusters, ete,) out of small initial [luctuations by gravitational instability.

These hndings strongly support the hypothesis which we will assume during ihese lectures,
namely thal the large scale strueture (i.e. galaxy distribution) chserved in the imiverse formed by
gravitational instabilily from relatively small {(~ 10~ — 1075) initial [luctuations. As we shall see,
such initial $ucluations leave an inleresting “fingerprint” on the cosmic microwave background.

3Cogmic Backgraund Explorer, NASA satellite lannched 1990,
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Chapter 7

Perturbation Theory

The tool for the analysis of CMB anisotropies is cosmological perturbation theory. We spend
therefore some time on this subject, especially on the fundamental level.

Once all the variables are defined, we will be rather brief in what concerns the derivation of
the basic perturbation equations. First of all, because these derivations are in general not very
illuminating and secondly because nowadays all of you can obtain them very easily by setting

Hup = g;w -+ Eazh_m, (7.1)

(g, Deing the unperturbed Friedmann metric) and asking Mathematic or Maple to calculate the
Eiustein Tensor using the condition €2 = 0. We conventionally set (absorbing the “smallness”
parammeter ¢ into h,,)

Iy = Gure + 0 Py goo = —a?, §i; = oy |Rye| < 1 (7.2)
T =T, +6}, To=-5  Ty=p6i  |8el/p<l.

7.1 Gauge transformation, gauge invariance

The first fundamental probleni we want to diseuss is the problem of ’choice of gauge’ in cosmalogical
perturbation theory:

For linear perturbation theory to apply, the spacetime manifold M with metric ¢ and the
energy momentum tensor T of the real, observable universe must be in some sense close to a
Friedmann universe, t.¢., the manifold AM with a Robertson—Walker metric § and a homogeneous
and isotropic energy momentum tensor T. It is an interesting, non—trivial unsolved problem how
to construct g and T from the physical felds g and 7T in practice. There are two main difficulties:
Spatial averaging procedures depend on the choice of a hyper—surface of constant time and do not
commute with derivatives, so that averaged fields § and T will in general not satisfy Einstein’s
cquations. Secondly, averaging is in practice impossible over super-horizon scales.

Even though we cannot give 2 constructive prescriplion, we now assume that there exists an
averaging procedure which leads to a Friedmann universe with spatially aversged tensor felds @,
stich that the deviations (Ty ~ T )/ maxoay {|Tapl} and (gu0 — 7,0 )/ max(ap{Fup} are small,
ond § and T satisfy Friedmann’s eqnations, Let ns call such an averaging procedure "admissible’.
There may be many other admissible averaging procedures (e.g. over a diflerent hyper—surface)
leading Lo slightly diflereut Friedmann backgrounds. But sinee |g — g| is small of order ¢, the
diflerence of the two Friedmann backgrounds rmust alsa be small of order € and we can regard it
as part of the perturbation.

We consider now a fixed admissible [riedmann background (g, T} as chosen. Since the theory is
invariant under dilfeoniorphisms (coordinate transformations}, the perturhations are not unique.
For an arbitrary diffeomorphism ¢ and its pullback ¢*, the iwo metrics g and ¢* (g} describe the
same geometry. Since we have chosen the background metric § we only allow diffeomorphisms which
leave § invariant f.e. which deviate only in first order form the identity. Such an 'Infinitesimal’
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isomorphism can be represented as the infinitesimal flow of a vector field X, ¢ = ¢, Remember
the definition of the flow: For the integral curve +,(s) of X with starting point x,ie., v.{s =0) ==
we have ¢ (z) = v,(s). In terms of the vector fleld X, to first order in ¢, its pullback is then of

the form
¢ =id+eLy

{Lx denotes the Lie derivative in direction X), The transformation ¢ = ¢*{g) is equivalent to
g +ea’h = § + e(a®h 4+ Lxg), i.e. under an ’infinitesimal coordinate transformation’ the metric

perturbation h transforms as
h—+h+a?Lxg. (7.3)

In the context of cosmological perturbation theory, infinitesimal coordinate tra.n§f0rmations are
called gauge transformation’. The perturbation of a arbitrary tensor field Q@ = Q + Q1) obeys

the gauge transformation law B
QW 5 QW+ LG . (7.4)

Since every vector field X generates a gauge transformation ¢ = ¢X, we can conclude that
only perturbations of lensor fields with LxQ = 0 for all vector fields X, i.e., with vanishing (or
constant} ‘background contribution’ are gauge invariant. This simple result is sometimes referred
to as the "Stewart Walker Lemma’ [52].

The gauge dependence of perturbations has caused many controversies in the literature, since
it is often difficult to extract the physical meaning of gauge dependent perturbations, especially on
super-horizon scales. This has led to the development of gauge invariant perturbation theory which
we are going to use throughout these lectures, The advantage of the gauge—invariant formalism is
that the variables used have simple geometric and physical meanings and are not plagued by gauge
modes. Although the derivation requires somewhat more work, the final systermn of perturbation
equations is usually simple and well suited for numerical treatment. We shall also see, that on
sub-horizon secales, the gauge invariant matter perturbations variables approach the usual, gauge
dependent ones, and one of the geometrical variables corresponds to the Newtonian potential, so
that the Newtonian limit can be performed easily.

Pirst we note that since all relativistic equations are covariant (i.e. can be written in the form
Q) = 0 for some tensor field Q), it is always possible to express the corresponding perturbation
equations in terms of gauge invariant variables [53, 54, 55].

7.2 Gauge invariant perturbation variables

Since the {n = const} hyper-surfaces are homogeneous and isotropic, it is sensible to perform
a harmonic analysis: A (spatial) tensor field @ on these hyper-surfaces can be decomposed into
components with transform irreducibly under transiations and rotations. All such components
evolve independently. For a scalar quantity f in the case x = 0 this is nothing else than its Fourier
decomposition:

fox,m) = f % ()™, (7.5)

(The exponentials Yy (x) = e’** are the unitary irreducible representations of the Euclidean trans-
lation group.) For & = 1 such a decomposition also exists, but the values k are discrete, k? = £{¢+2)

and for & = ~1, they are bounded from below, &* > 1. Of course, the functions Yy are different
for k £ 0. _
They are always the complete orthogonal set of eigenfunctions of the Laplacian,
AYS) = 2y (3, (7.6)

In addition, a variable (at fixed position x) can be decomposed into irreducible components
under the rotation group S0O(3),
For a vector field, this is its decomposition into a gradient and a rotation,

Vi=Vige+ By (7.7)
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where ‘
B, =0, {7.8)
where we used X|; to denote the three-dimensional covariant derivative of X. ¢ is the spin 0 and

B is the spin 1 component of V,
For a symmetric tensor field we have

1 1
Hi; = Hpyi + (V"Vj - EA%J-) Hr + 3 (Hi(l‘;:') +H§;§)) + Hﬂ_-(J.T), (7.9)
where . ,
BV =g = BT = 0. (7.10)
i i il §

Here Hp and Hy are spin 0 components, H§V] is a spin 1 component and Hg} is a spin 2
componetit.

We shall not need higher tensors (or spinors) in these lectures. As a basis for vector and tensor
modes we use the vector and tensor type eigenfunctions to the Laplacian,

Ay = —pyfV (7.11)
and
ayi = -y, (7.12)

where }’j(v) is a transeverse vector, Y}W)lj =0and YJ,,-(,-T) is a symetric transverse traccless tensor,
(1Y __ 4D
YJ‘ - Y; i = 0.
According to Egs. (7.7,7.9) we can construct scalar type vectors and tensors and vector type
tensors. To this goal we define

v/ = gy (7.13)
_ 1

YE = kG 4 Y@ (7.14)

) = _1lav 3t

YY) = -+ ). (7.15)

In the following we shall extensively usc this decomposition and write down the perturbation
equations for a given mode k.
The decompasition of a vector field is then of the form

B; = BYS + BMYY), (7.16)
The decomposition of a scalar field is given by {compare 7.9)

Hy = HLY(S)"W + HT}EE,-S) + H(V)Y‘;E,»V) + H{T)Y;g-T), (7.17)

7.2.1 Metric perturbations
Perturbations of the metric are of the form
Guv = G + @l (7.18)
We pararmeterize them as
hypdatde” = ~2Adn® + 2Bidnds’ -+ 2H;;dede?, (7.19)

and we decompose the perturbalion variables B; and H;; according to (7.16) and (7.17).
Let us consider the behaviour of h,, under gauge transformations. We set the vector field
defining the gauge transformation to

X =T8,+ L3, {7.20)
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Using simple identities from differential geometry like Lx (df} = d(Lx f) and
(Lx7v}i; = Xyjy + Xy, we obtain

Lxj = @° [—2 (ET + T) dr? + 2 (L,- - T,,:) dndz*
+ (2%1"7,:3- + Ly + LJ-H) d:e:{d:x:-"} : (7.21)

Compering this with (7.19) and using (7.3) we obtain the following behaviour of our perturba-
tion variables under gauge transformations (decomposing L; = LY‘-(S] + LW)Y;-(V)):

A = A+—ET+T (7.22)

B -+ B-L-kT (7.23)
BY) 4 BW_ [V (7.24)
Hy — Hp+ ET + gL (7.25)
Hy - Hp—kL (7.26)
HY) 5 gV V) (7.27)
HTD 5 g, (7.28)

Two sealar and one vector variable can be brought to disappear by gauge transformations.
One often chooses kL = Hr and T = B + L, so that the variables H+ and B vanish. In this
gauge {longitudinal gauge), scalar perturbations of the metric are of the form {Hy = B = Q):

hE) = —2Tdn? + 28y;de’de’. (7.29)

¥ and P are the so called Bardeen potentials. In genceral they are given by

T o= A- %k‘lo ey (7.30)
1 a,
¢ = Hy+3Hr——ko (7.31)

with ¢ = k~1Hy — B. A short calculation shows that they are gauge invariant.
For vector perturbations it is convenient to set kL{Y) = H(Y) so that H'Y) vanishes and we

have
K derdr” = —20V YY) dndzt. (7.32)

e

We shall call this gauge the “vector gauge”. In general o'¥) = k=2 H(V) — B(V) i gauge invariant!,
Clearly there are no tensorial {spin 2) gauge transformation and hence Hff Vs gauge invariant.

7.2.2 Perturbations of the energy momentum tensor

Let Tj = T, + O be the full energy momentum tensor. We define its energy density p and its
energy flow 4-vector # as the timelike eigenvalue and eigenvector of T#:

Thu' = —pu*, u?=-1. (7.33)
We then define their perturbations by

p=p(1+8), u=u’d+u'd;. (7.34)

1 Y‘-E.VJJ(V) ia the shear of the hyper-surfaces of constant time.
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4? is fixed by the normalisation condition,
o 1
u = 5(1 ~- A), (7.35)

We further set

2

We define P¥ = u'u, + 8, the projection tensor onto the part of tangent space normal to «
and set the stress tensor

T = PRPLT™ (7.37)

In the unperturbed case we have 7§ = 0,7} = ;35; Including perturbations, to first order we

still obtain

=1 =15 =0. (7.38)

But 'r;f contains in general perturbations. We set
H=p[(L+ )6 + 18], with IIj=0. (7.39)

We decompose IT; as
I = IOy ny 4 Oy fDs, (7.40)

We shall not go in detail through the gauge transformation properties, but just state some
results which can be obtained as an exercise;

e Of the variables defined above only the II(S:¥:T) are gauge inveriant; they describe the
anisotropic stress tensor, I1% = 1# — 13726, They are therefore gauge invariant due to
the Stewart~Walker lemma, since I = 0. For perfect fluids IT# = 0.

s A second gauge invariant variable is
I'=mnp — 53-6, {7.41)
w

where ¢2 = p/p is the adiabatic sound speed and w = p/p is the enthalpy. One can show
that I" is proportional to the divergence of the entropy fux of the perturbations. Adiabatic
perturbations are therefore characterised by I' = 0.

s Gauge invariant density and velocity perturbations can be found by combimng §, v and ‘Ui(VJ

with metric perturbations.

‘We shall use
Vo= v— % Hr = vllors) (7.42)
Dy = 643(1+w) (HL + %Hg«) = lone) 4 3(1 + w)d {7.43)
D = 608 4301 +w) (E) % (7.44)
vVl = V) _ % £V) o ylvee) (7.45)
Q = o) - BV) = ylved) _ gl¥) (7.46)
Q-v = V), (7.47)

Here v0o78), 5(long) and ("% are the velocity (and density) perturbations in the longitudinal and
vector gauge respectively and ol") is the metric perturbation in vector gauge (see Eq. (7.32)).
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These variables can b interpreted nicely in terms of gradients of the energy density and the shear
and vorticity of the velocity field [63].

But we just want to show that on scales much smaller than the Hubble scale, kn 3 1, the
metric perturbations are much smaller than & and v and we can thus “forget them” (which will be
important when comparing experimental results with calculations in this formalism):

The perturbations of the Einstein tensor are given by second derivatives of the metric pertur-
bations. Einstlein’s equations yield the following order of magnitude estimate;

k
0 (6—T) OB8rGT) = O (izh +-h+ kzh) (7.48)
T ) —— i 7
o(4)*=06r
§T 5
(@) ) = O (h + knh + (kn)*h) . (7.49)

For kn > 1 this gives O(5,v) = O (4L) » O(k). On sub-horizon scales the difference between §,
§Uong) D, and D is negligible as well as the difference between v and V or o*), V{¥) and V),

Later we shall also need other perturbation variables like the perturbation of the photon bright-
ness (energy—integrated photon distribution function), but we shall introduce them as we get there
and discuss some applications frst.

7.3 Basic perturbation equations

As already announced, we do not derive Einstein’s equations but just write down those which we
shall need later:

7.3.1 Constraint equations

47Ga’pD = (k*-2K)® (08) 3
wGlp+pV = k((B)v-#) (o) (scalar) (7.50)
8nGa*(p +p)Q = -;— (25 — &%) V) (04) (vector) (7.51)
7.3.2 Dynamical equations
k(@ +T0) = 8xGa’pll'S  (scalar) (7.52)
k (d(v) +2 (g) o(v)) = 8rGa®pll™"} (vector) (7.53)
HTD 42 (S) HD + 20+ ) HTD = SHGazpﬂg] {tensor) (7.54)

Note that for perfect [luids, where H;- = 0, we have & = — ¥, oY) « 1/a% and H obheys a
damped wave equation. The damping term can be neglected on small scales (over short time

periods) when 52 S 264 k%, and H,; represents propagating gravitational waves. For vanishing
curvature, these are just the sub-horizon scales, kn 1. Fork < 0, waves oscillate with a somewhat
smaller frequency, w = /2 + k2, while for £ > 0 the frequency is somewhat larger.

7.3.3 Conservation equations

Dy+3(c2—w) (2) D, + (1 + w)kV + 3w ($)T=0
v+ (£) (1 —3E2) V = &k (T — 3c2®) + 13;%: ’ (scalar) (7.55)
+i [0 -3 (1 - 3) 1]
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Wp+p)

Qi+ (1 - 3c2) (E) =_r (k - %) HEV} {vector) (7.56)
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Chapter 8

Simple applications

We first discuss some simple applications which will be important for the CMB. We could of course
also write (7.55) in terms of D, but we shall just work with the relation

D=D,+3(1+w) (—@ + (%) k—lv) . (8.1)

8.1 The pure dust fluid at k=0,A=0

We assume the dust to have w = ¢2 = p = 0 and Il = I' = 0. The equations (7.55), (7.52) and
{7.50}) then reduce to

D, = —kV (energy conservation eqn.) (8.2)

V4 (S) V = k¥ (gravitational acceleration eqn.) (8.3)
® = -¥ (8.4)

—k*T = 4nGa®p (Dg +3 (vp + (E) k—lv)) (Poisson eqn.). (8.5)

In a pure dust universe p o« 673 = (@/e)? oc ™!, which is solved by @ x 5?. The Einstein
cquations then give immediately 47Gpa® = 3/2(3/a)? = 6/n*. Setting kn = z and ' = d/dz, the
system (8.2-8.5) then becomes

D, = -V (8.6)
v’+%v " (8.7)

6 2
= Dy +3(T+ ;V = -¥, (8.8)

We use (8.8) to eliminate ¥ and (8.6} to eliminate D, leading to
(18+2%) V" + (%2— +43:) V- (g— +4) V=o. (8.9)
The general solution is then found to be
V=%:.-:+-r—1. (8.10)

Since the perturbations are supposed to be small initially, they cannot diverge for x — 0, and we
have therefore to choose V] = 0 (the growing mode). Another way to argue is as follows: If the
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mode V) has to be small already at some early initial time ny,, it will be ¢ven much smaller at later
times and may hence be neglected. The perturbation variables are then given by

D, = —15%—%1/0952 (8.12)
T = 3V (8.13)

The constancy of the gravitational potential ¥ in a matter dominated universe and the growth
of the density perturbations like the scale factor a led Lifshitz to conclude 1946 [64] that pure
gravitational instability cannot be the cause for structure formation: If we start from tiny thermal
fluctuations of the order of 10735, they can only grow to about 1073 through this process during
the matter dominated regime. Or, to put it differently, if we do not want to modify the process
of structure formation, we need initia! fluctuations of the arder of 1072, One possibility to create
such fluctuations is due to quantum particle production in the classical gravitational field during
inflation, The rapid expansion of the universe blow them up from microscopic scales to cosmological
scales.

We distinguish two regimes:

i} super-horizon, € 1 where we have

D, = -15% (8.14)
T = 3 (8.13)
V = Vs (8.16)
and 4) sub-horizon, & » ! where the solution is dominated by the terms
V = Vn&'} (8’17)
D, = —%%;.-;2 (8.18)
T = 3V = const (8.19)

Exercise: Write and discuss this system in terms of the variables D, ¥V and ¥. Compare the
results!

8.2 The pure radiation fluid, k =0,A =0

In this limit we set w = ¢2 = /3 and II = 0. We conclude from p o< a=* that a xn and & = -,
and the perturbation equations become {with the notation as above):
4
D, = -3V (8.20)
Vo= 204 ipg (8.21)
\ 12
—22' = 3D, + 120+ V (8.22)

The general solution of this system is

Dy, = Dy [cos (75) —2? sin (%)]
+Dy [sin (%) +2§ cos %)] (8.23)
v = -2D, (8.24)
5 - —3Ds-(2/)V (5.25)

12 4 22
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Again, regularity at £ = 0 implies D; =0,
In the super-horizon, © € 1 regime we obtain

T =T, Dy;=Do— %Vomz, V=V (8.26)
with
Dy = —6%3=-D) (8.27)
1 1
W = —2-‘110 = _EDU. (828)

On sub-horizon, = » 1 scales we find oscillating solutions with constant amplitude with a
frequency of 1/ V3

V = Vsin (%) (8.29)
k%) I
D_q = DQ COE ﬁ s v = —E:L' Dg (8.30)
4V
Dy = —ﬁz (8.31)

We conclude therefore that perturbations cutside the Hubble horizon are frozen to first order.
Once they enter the horizon they start to collapse, but pressure resists the gravitational force and
the radiation fluid starts to oscillate. The perturbations of the gravitational potential oscillate and
decay like 1/a? inside the horizon.

8.3 Adiabatic and isocurvature initial conditions for a matter
& radiation fluid

In this section we want to investigate a system with a matter and a radiation component that are
coupled only through gravity. The matter component acts therefore as dark matier, since it does
not interact directly with the radiation,

Since the matter and radiation perturbations behave in the same way on super-horizon scales,

D{V = A+ B2?, D™ =4 +B%% VO ovi™, (8.32)

we may require a constant relation hetween matter and radiation perturbations. As we have seen
in the previous section, inside the horizon (z > 1) radialion perturbalions start to oscillate while
matter perturbations keep following a power law. On sub-horizon scales a constant ratio can thus
no longer be maintained. There are two interesting possibilities:

8.3.1 Adiabatic initial conditions

Adiabaticity requires that matter and radiation perturbations are initially in perfect thermal equi-
librium. This implies that their velocity felds agree (see below, section of the Boltzmann eqn.!)

v = pim, (8.33)

s0 the energy flux in the two fluids is coupled initially.

Let us investigate the radiation solution in the matter dominated ers, when the corresponding
scale is already sub-horizon. Since ¥ is dominated by the matter contribution, we have ¥ »~ const =
Ty, We neglect the (decaying) contribution from the sub-dominant radiation to ¥. Energy-
momentum conservation for radiation then gives

4
Dy = v (8.34)

v = 2‘Ir+iD§”. (8.35)
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Now ¥ is just a constant given by the matter perturbations, and we assume that it acts just
like a constant source term. The full solution of this system is then found to be

Dg‘“) = Acos (%) - %B sin (%) — B8 {cos (%) - 1} (8.36)
v = Bcos (E—) + ﬁA sin (-—x—) — 2v3Usin (i) . (8.37)
V3 4 V3 V3
Our adiabatic initial conditions require
lim e =V, = lim Ve < 0o (8.38)
=0 T =0 T

Therefore B'=0 and A = 4V, — 8%, Using in addition ¥ = 3V} (see {8.19)) we obtain

, 44 xr

DN = —— ¥ eos (ﬁ) + 8% (8.39)
1 ¥
v = i (——) 8.40
7 7 (8.40)
DM = R+ ie?) (8.41)
}
yim = %llfm (8.42)
¥ = 3V. (8.43)
On super-horizon scales, z < 1 we have

D) _%.;, and V)~ %mlI' . (8.44)

8.3.2 Isocurvature initial conditions

Here we want to solve the system (7.50) and (7.55) for dark matter and radiation under the
condition that the metric perturbations vanish initially, {.e., ¥ =0,
3 (a\? a
U= -3 (5) k2 [Dg +3(1 + w)¥ + 3(1 + w) (E) k“V] =0. (8.45}
In principle, we have four evolution and one constraint equations. We thercfore have four
constants to adjust. Condition (8.45), however, requires an entire function to vanish. This may be
impossible. Let us nevertheless try:
If & = 0 the solutions of the radiation dominated equations are simply

DY) = Acos (_;v__) +Bsin(i) 8.46
{ v = (5.46)
v = EA sin (i) - ﬁB cos (i) . (8.47)
4 V3 4 V3
For the matter perturbations we find
yim) — —%, axz®, 1<B8<2 (8.48)
W =
(m} _ m) _ 0% 49
D e (8.49)
T = 0 implies with
D, = i (p,.D;r) + pmpgml) and (8.50)
Vo= —— ((or + 2V 4 v ) (8.51)
p+p
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that
0= Lrpi) 4 pim 4 2 (9) LV 4 3 (9) L1y, (8.52)
™ Pm \G @

Since V¢ « 1/a it can compensate, for small values of z, the term ox cos(z/v/3} of V{7,
which behaves like 1/a as well, due to the pre-factor p,./pm. This Lerwn can also be compensated
in Ds{,‘rJ by the term Voz/a of Dg"”. However, Lhere is no way fo compensate CU% or the term
proportional to A. We have to choose therefore 4 = C™ = 0 and

LB v B Py (8.53)
Pm 3 apy

(The compensation of the smaller terms D}_.’") and D_S_.m) is only complete if § ~ 2.)
With ¢, = 1/+/3 we find

D{ o~ Pm_vi sin (cs7) {isocurvature) (8.54)
QPrly
4
D ~ ¢ (8— %—oos (csx)) (adiabatic) (8.55)
(8.56)

The CMB anisotropies, which we are going to determine in the next chapter, contain a term

1 .
S (e m) = o+ DI (O, ) eRnro ) (5.57)
On scales where this term dominates the CMB anisotropies, the peaks in D, translate into peaks
in the angular power spectrum of CMB anisotropies.
For isocurvature iuitial conditions, we find a [irst peak in D, at

(1 _ () - lf_ /\(-l) _ _2"-'1_ _ (1 ., 4¢'57dec
T; kl fldec = c, 21 { = X T = 468“{"3(‘.? 19, iy —__l (no — ;rmac] y (8.58)

[}

Here 19&1) is the angle under which the comoving scale A,‘;]) at comoving distance 7y — 7jge. 15 Seen.
In the next chapter, we will expand the temperature fluctuations in terms of spherical harmonics.
An fluctuation on the angular scale ¥ then shows up around the harmonic £ ~ #/{2¥). As an
indication, we note that for A = x = 0, the harmonic of the first isocurvature peak is

i w20y ~ 110,

In the adiabatic case the first “peak” is at ki = 0.

Since Dgf) is negative for small x, the first peaks are “expansion peaks”, and due to the gravi-
tational attraction of the baryons {which we have neglected in this simple argument) they are less
pronounced than the second (“compression”) peaks.

These second peaks are usually called the “first acoustic peak”. (It is the first compression
peak and we shall adopt the convention to call it the “first peak” mainly for consistency with the
literature.) They correspond to wavelengths and angular scales

4 {4/3)¢sNdec 2 .
MDD = o, O o VUG ) 350 (isocurvature) 8.59
3 © ! X (7}'0 - ndec) * ( ( )
AD = Gompe, 9@ & M ) 950 (adiabatic). (8.60)

B X (”0 — T?dm:)

Here the indicated harmonic is the one obtained in the case A = x = 0, for a typical baryon density
inferred from nuclosynthesis.
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In is interesting to nore that the distance between consecutive peaks is independent of the
initial condition. It is given by

205Md0e

Aky = kP — kY = £/ (conaec) = Ake , AD = Al ~ 220, (8.61)

B X (7?0 - ’?dcc) ,
Apgain, the numerical velue indicated for A€ corresponds to a universe with A = & = 0. The resulf
is strongly dependent especially on «. This is the reason why the measurement of the peak position
{or better of the inter-peak distance) allows an accurate determination of curvature,

From our analysis we can hence draw the following important conclusions: For scales where
this term dominates, the CMDB anisotropies show a series of acoustic oscillations with spacing Ak,

the position of the first significant peaks is al k= kflz}i, depending on the initial condition.

The spacing Ak iy independent of initial couditions. The angle A+ onto which this scale is
projected in the sky is determined entirely by the matter content and the geometry of the universe.
According to our findings in Chapter I, ¢ will be larger if 2., < 0 (positive curvature) and smaller
if Q2 > 0 (see Fig. 6.3).

In our analysis we have neglected the presence of baryons, in order to obtain simple analytical
results. Baryons have two effects: They lead to (p+3p)iad1ibar > 0, and therefore to an enhancement
of the compression peaks (the first, third, etc. acoustic peak). In addition, the baryons slightly
decrease the sound speed ¢, increasing thereby Ak and decreasing Ad.

Another point which we have neglected is the fact that the universe became matter dominated
at 7eq, only shortly before decoupling: fgec = 4%eq, for Om = 1. As we have seen, the gravita-
tional potential on sub-horizon scales is decaying in the radiation dominated era, If the radiation
dominated era is not very long ago at decoupling, the gravitational potential is still slightly decay-
ing and free streaming photons fall into a deeper gravitational potential than the have to climb
out of. This effect, called “early integrated Sachs Wolfe eflect” adds to the photon temperature
Auctuations at scales which are only slighty larger than the position of the first acoustic peak for
adiabatic perturbations. It therefore ’boosts’ this peak and, at the same time, moves it to lightly
larger scales (smaller angles) Since 7eq o k™2, the first acoustic peak is larger if h is smaller.

A small Hubble parameter increases therefore the acoustic peaks. A similar effect is observed
if a cosmological constant or a negative curvature are present, since 1.4 is retarded in those cases.

8.3.3 Vector perturbations of perfect fluids
If 1Y) = 0 equation (7.56) implies

Qo a1, (8.62)
For p/p = ¢ < 1/3, this leads to a non—growing vorticity. The dynamical Einstein equation implies
oV x a2, (8.63)

and the constraint (7.51) reads (at early times, so we can neglect curvature)

0~ 226V, (8.64)

If perturbations are created in the very early universe on super-hotizon scales {e.g. during an
inflationary period}, vector perturbations of the metric decay and become soon entirely negligible.
Even if {; remains constant in a radiation dominated universe, it has to be so small on relevant
scales at formation (%, < 1) that we may safely neglect it.

8.3.4 Tensor perturbations
The situation is different for tensor perturbations. Again we consider the petfect Auid case, Hg) =
0. There (7,54) implies (if & is negligible)

H + %@H;j FHy =0, (8.65)
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with 8 = 1 in the radiation dominated era and 8 = 2 in the matter dominated era. The less
decaying mode solution to Eq. (8.65) is Hy; = eyx*/2~2J, j2-a(%), where J, denotes the Bessel
function of order v and e;; is a transverse traceless polarisation tensor. This leads to

Hy; = const forzx«l (8.66)
Hy = % forz R 1. (8.67)
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8 Simple applications




Chapter 9

CMB anisotropies

9.1 Lightlike geodesics

After decoupling, n > 7ngec, photons follow to a good approximation lightlike geodesics. The
temperature shift is then given by the energy shift of a given photon.

The unperturbed photon trajectory follows {z*) = (5, n{n — n0) + Xo), where xq is the photon
position at time 1, and n is the (parallel transported) phofion direction. With respect Lo a geodesic
basis (e)?zl, the components of n are constant. If & = 0 we may choose ¢; = d/dz" if Kk # 0
these vector fields are no longer parallel transported and therefore do not form a geodesic basis
(Ve, &5 =10).

Our mctric is of the form

ds? = a*ds® ,with (9.1)
ds® = (yuu +hu)de®dz’, o0 = =1, Yo =0, Y5 = Vi (9.2)

as before.

We make use of the fact that lightlike geodesics are conformally invatriant. More precisely ds®
and d3? have the same lightlike geodesics, only the corresponding affine parameters are diflerent.
Let us denote the iwo alfine parameters by A and A respectively, and the tangent vectors 1o the

geodesic by

da dz: 2 =2 0 2 3
—_— fl = —= n"=n = “ = 1 n = ]_. 9.
dA ! dA ! P ’ ( )

We set n° = 1 + 6n0. The geodesic equation for the perturbed metric

n =

ds? = (Yuy + by )dztdz” {9.4)

yields, to first order,
d%&n“ = —6T% nnP, (9.5}
For the encrgy shift, we have to determine én°. Since g% = —1 . &, + frst order, we obtain

6P?xﬁ = = 1a(hao,s + hgo,a — ﬁar@), so that
@ g0 s 1 6
—_ = ha o _ha a , .
d)\én hoo,gn’n 5 hapnn (9.6)

Integrating this equation we use hapgn® = fx(hagn“'), so that the change of n® between some
initial time 7; and some final time 7y is given by

1] f .
6n°I] = [hoo + hojﬂj];‘r B %/ hypntntdA . 8.7)

93
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On the other hand, the ratio of the energy of a photon mcasured by some observer at ¢y to the
energy emitted at ¢; is
&z(':‘f»?:.)f:ﬁ(n.-tz)f ! 9.8)
E  (A-u)y, Ti(n-u)
where u; and w; are the four-velocities of the observer and emitter respectively, and the factor
Ty/T; is the usual (unperturbed) redshift, which relates n and 7. The velocity field of observer
and emitter is given by

u=(1— A5, +v'9; . (9.9

An observer measuring a temperature Ty receives photons that were emitted at the time 94,

of decoupling of matter and radiation, at the fixed temperature Ty... In first-order perturbation

theory, we find the following relation between the unperturbed temperatures T, T}, the measurable
temperatures Tg, Tyee, and the photon density perturbation:

Tf To 5Tf 6T Th ( 1
Ty _ _ 8Ty PR PETAN 1
Ty~ Tgee (1 T YT ) T T L2k (9.10)

where 87 is the intrinsic density perturbation in the radiation and we used ) o T4 in the
last equality. Inserting the above equation and Eq. (9.7) into Eq. (9.8), and using Eq. {7.19)
for the definition of h,,, one finds, afler integration by parts [55] the following result for scalar
perturbations:

S

. f I - .
1. To {1— [lﬂgf)ﬂg‘*’)nww —nb] +/ (‘I—¢)d)~} : (.11)
i Tec 4 i d

Here DE,") denotes the density perturbation in the radiation fluid, and V¥ is the peculiar velocity
of the baryonic matter component (the emitter and observer of radiation). The final time values
in the square bracket of Eq, (9.11) give rise only to monopole contributions and to the dipole due
to our motion with respect to the CMB, and will be neglected in what follows,

Evaluating Eq. (9.11) at final time 7 (today) and initial time 74.., we obtain the temperature
difference of photons coming from diflerent directions n and o’

AT _ 6T(n) 6T(n")

T - T T’ (9.12)
with temperature perturbation
AT{n 1 . o, .
BTG (2000 4 V0w +9 - 6] (i) + [ (G- Oxtdan, (019
Mdec

where x(17) = %p — {1 — #)n is the unperturbed photon position at time # for an observer at xo,
and Xg4ec = X(fgec). The first term in Eq. (9.13) describes the intrinsic inhomogeneities on the
surface of last scattering, due to acoustic oscillations prior to decoupling. Depending on the initial
conditions, it can contribute significantly on super-horizon scales. This is especially important in
the case of adiabatic initial conditions. As we have seen in Eq. (8.44}, in a dust + radiation universe
with € = 1, adiabatic initial conditions imply D’ (k,n) = —20/3%(k,) and V) = V(") <« D"
for kn < 1. With & = — 7 the the square bracket of Eq. (9.13) gives

AT (OSW) 1
( Ign)) = —@(ndecaxdec)

ndinbatic

on super-horizon scales. The contribution to JTT from the last scattering surface on very large

scales is called the 'ordinary Sachs Wolfe effect’ (OSW). It has been derived for the first time by
Sachs and Wolfe [T1]). For isocurvature perturbations, the initial condition D,{(k,7) = 0 for s = 0
is satisfied and the contribution of D, to the ordinary Sachs Wolfe effect can be neglected.

(AT(H))(OSW}

T = 211'(7?(19.(:! Xdcc)

isocurvature
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The second term in {9.13) describes the relative motions of emitter and observer. This is the
Doppler contribution to the CMB anisotropies. It appcars on the same angular scales as the
acoustic term, and we thus call the sum of the acoustic and Doppler contributions “acoustic peaks”.

The last two terms are due to the inhomogeneities in the spacetime geometry; the first con-
tribution determines the change in the photon energy due to the diflerence ol the gravitational
polential at ihe position of emitter and observer. Together with the part contained in D;’") they
represent the “ordinary” Sachs-Wolfe eflect. The integral accounts for red-shift or blue-shift caused
by the time dependence of the gravitational Held along the path of the photon, and represents
the so-called integrated Sachs-Wolfe (ISW) cffect. In a & = 1, pure dust universe, the Bardeen
potentials are constant and there is no integrated Sachs-Wolfe effect; the blue-shift which the pho-
tons acquire by falling into a gravitational potential is exactly canceled by the redshift induced
by climbing out of it. This is no longer true in a universe with substantial radiation contribution,
curvature or a cosmological constant.

The sum of the ordinary Sachs Wolfe term and the integral is the full Sachs-Wolfe contribution
(SW).

For vector perturbations 6) and A vanish and Eq. (9.8} leads to

. f .
(Er/EYY) = (asfap)l = VA + | omddN] . (9.14)
f 3 .

1

Again we obtain a Doppler term and a gravitational contribution. For tensor perturbations, i.e.
gravitational waves, only the gravitational part remains:

! .
(B JE)D = (asfas)(L - / Fiyninidy] . (9.15)
Equations (9.11), (9.14) and (9.15) are the manifestly gauge invariant results for the Sachs—Wolfe

effect for scalar vector and tensor perturbations. Disregarding again the dipole contribution due
to our proper motion, Egs. (9.14,9.15) imply the vector and tensor temperature fluctuations

vy

(_M}(n)) = V™ Cttecs XatecI? + f:f'a(n,x(nnnfdz\ (9.16)
(T) 5o .

(F72) = - [ Asxmminian (0.17)

Note that for models where initial fluctuations have been led down in the very early universe,
vector perturbations are irrelevant as we have aleady pointed out. In this sense Eq. (9.16) is here
mainly for completeness. However, in models where perturbations are sourced by some inherently
inhomogeneous component {(e.g. topological defects} vector perturbation can be important.

9.2 Power spectra

One of the basic tools to compare models of large scale structure with observations are power spec-
tra. They are the “harmonic transform” of the two point correlation functions. If the perturbations
of the model under consideration are Gaussian (a relatively generic prediction from inflationary
models}, then the power spectra contain the full statistical information of the model,

One important power spectrum is the dark matier power spectrum,

2
D™ (te, )| > , (9.18)

Pp(k) = <

where ( } indicates a statistical average over “initial conditions” in a given model. Pp{k) is usually
compared with the observed power spectrum of the galaxy distribution.
Another power spectrum is given by the velocity perturbations,

Py(k) = IV (e mo)|*) = HIQM Po(k)k ™ . (9.19)
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Tor =~ we have used that |kV|(1o) = D{™ (n0) ~ HoQ%6D, on sub-hotizon scales (see e.g. [60]).
The power spectrum we are most interested in is the CMB anisotropy power spectrum. It is
defined as follows: AT/T is a function of position xg, time 1y and photon direction n. We develop
the n—dependence in terms of spherical harmonics, We will suppress the argument n, and often
also Xg in the following calculations. All results are for today (1) and here (x3). By statistical
homogeneity expectation values are supposed to be independent of position.
AT

— (X0, 1,10} = Y  Gm{X0)Yem(m), {(Gem * ap ) = Bpr Bm Co (9.20)
T
£m

The C,'s are the CMB power spectrum, We assume that the perturbations are generated
by a homegeneous and isetropic process, so that Cp depends neither on x; nor on m, and that
{@em - @}, ) vanishes for € # ¢ or m # m'.

Let us, at this poinf insert a comunent on the problem of cosmic variance: Even if our ’ergodic
hypothesis’ is correct and we may interchange ensemble and spacial averages, we cannot obtain
very precice averages for measurements of large scale characteristics, due to the fact that we can
ohserve only the universe around a given position. For example, let us assume that temperature
Auctuations are Gaussian, as they are in most inflationary models. The functions as,, are then
also Gaussian distributed, and we expect a variance of

1

| c
241

£
2-—C — Cobs_c _ ,
m;glafml f| ] £ £| 2€+1

on the average of the 2¢ + 1 volues g, which can in principle he measured from one point. For
simplicity, we neglect here the additional reduction due to the fact that our own milky ways blocks
a portion of sky (about 20%). Wick’'s theorem now gives

(1) —{Ce) = {lagm[*) ~ (laem|*)? = 2{|asn[*)?
For a given multipole ¢ we then expect a variance of

Jerr-c
=\ (9.21)

Ce

The two point correlation function is related to the Cy's by

(F@F@) = T (o ah) Yin()¥inla') =
n-o'=pn

£,8 rm?
£
. 1
Zgjce _Z_e Yim ()Y, (0') = ;(2€+ 1CiPr(p), (9.22)
241 py(n-n)

where we have used the addition theorem of spherical harmonics for the last equality.
Clearly the a;,,’s from scalar, vector and tensor perturbations are uncorrelated,

(e262.) = (o208 ) = (of2afE ) =0 02

Since vector perturbations decay, their contributions, the Cgv), are negligible in models where
initial perturbations have been laid down very early, e.g., after an inflationary period, Tensor
perturbations are constant on super-horizon scales and perform damped oscillations once they
enter the horizon.

Let us first discuss in somewhat more detail scalar perturbations. We suppose the initial
perturbations to be given by a spectrum,

<|'I'|3> kS = Akmignl, (9.24)
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(We multiply by the constant %5 ' in order to keep A dimensionless for all values of n.)
On super-horizon scales we then have, for adiabatic perturbations:
l r 5 r
ZDg ) = -——1II+O(3:2), v = v = O2) (9.25)
The dominant contribution on super-horizon scales (neglecting the integrated Sachs Wolfe effect
f& - ¥) is then

%;(xo, 0,7} = %'I’(zdemﬂdec)— (9.26)
The Fourier transform of (9.26) gives (setting 4 = kn)
_Aﬁ"z(k,n‘nu) = %‘I'(k,naec) - glkn(no—ndes) (9.27)
Using -
eemino=nses) = (20 + 1)i%je(k(nio — Maee)) Pelis}
we obtain =

AT AT
<T(X01 11'7]‘0)“—(3(01 Il’ﬂ?u)>

= %/d%o( — (X0, m,70) T(XU, "?D)>

- (e () )

= )39 /da | & ) Z (2¢+ 1)(2€ + 1)e(k(no — Naec) 175 (k{0 — Tdes))i"™
£,8/=0

.P;(kn) - Pj(kn') . {9.28)

Inseriing Pr(kn) = 7 o Yo (k)Yym(n) and P’[l:m") = o Yot Yoo (k})’}um {n'), integra-
tion over the dlu'cmons dﬂ,k glv(*a Bts Oomm! 2y Ying (1) Yrm ('), Usingas well 3, V5, () Yo (n') =
221 Py (1), where now 4 = n - ', we find

<%(Ko‘ﬂ;ﬂn)£(xmﬂ',?b)> o =
S rin [ (519 ) K0 ) (9.29)

Comparing this equation with Eq. (9.22) we obtain for ediabatic perturbations on scales 2 < £
& X("E‘D - ndec)/ndec ~ 100

(SW)  ~(OSW) dk
o o o L [ k(\;

2
> '{'333 (A‘ (WD - ndecn ' (9'30)

If 7 is a pure power law and we set k{7 — Ndec) ~ k7o, the integral (9.30) can be performed
analytically. For the ansatz {9.24) one obtains for —3 <n < 3
™) = A T@E-nI{E-1 + 3
9 23— n[2(2 - —)I‘(f + ~ -3)
Of special interest is the scale inveriant spectrum, n = 1. This spectrum with a time and seale

independent gravitational potential has first been investigated by Harrison and by Zel'dovich [73].
It is therefore called the Harrison—Zel’dovich spectrum and leads to

£ +1)0E™) = const. <(M (19,3)) > , Ye=w/l. (9.32)

(9.31)
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This is precicely (within the accuracy of the experiment) the behaviour observed by the DMR
experiment aboard COBE [57].

Inflationary models predict very generically a HZ spectrum (up to logarithmic corrections). The
DMR, discovery has therefore been regarded as a great success, if not a proof, of inflation. There
are however other models like topological defects [75, 76, 77 or certain string cosmology models
{78] which also predict scale-invariant, i.e., Harrison Zel’dovich spectra of fluctuations. These
models do however not belong to the class investigated hete, since in these models perturbations
are induced by seeds which evolve non-linearly in time.

For isocurvature perturbations, the main contribution on large scales comes from the integrated
Sachs Wolfe effect and (9.30) is replaced by

2
> . (9.33)

swy 2 [ dk

Inside the horizon ¥ is roughly constant {matter dominated). Using the ansatz (9.24) for ¥ inside
the horizon and setting the integral in {9.33) ~ 2¥{k,5 = 1/k)jZ(kno), we obtain again (9.31), but
with 4/9 replaced by 44. The Sachs Wolfe temperature anisotropies coming from isocurvature
perturbations are therefore about a factor of 6 times larger than those coming from adiabatic
perturbations.

On smaller scales, £ 2100 the contribution to AT/T is usuelly dominated by acoustic oscilla-
tions, the first two terms in Eq. (9.13). Instead of (9.33) we then obtain

/ " 20k, )32 (el — )

ciA9 &

2> . (9.34)

On sub-horizon scales Dér) and V) are oscillating like sine or cosine waves depending on the

initial conditions. Correspondingly the Cé‘d'c) will show peaks and minima. On very small scales
they are damped by the photon diffusion which takes place during the recombination process (see
next section}.
For gravitational waves (tensor fluctuations), a formula analogous to (9.31) can be derived (see
Jelk(Gio ~n))

appendix},
o™= 2 / dkk? \ (ex2)! (9.35)
¢ T op (k(no —n})? '

(¢-2)"
To a very crude approximation we may assume H=0o0n super-horizon scales and | d’.-';H Je(k{no—
m} ~ H(y = 1/kj{kno). For a pure power law,

£
2 rogk /|1 . . .
2 / 5 (| DOk, naecdse (o) + VO (k, tae) 4 o)
™ [} k 4

o .
dnH (n, k)
Ndec

& (H (k= 1/R)P) = Ak, (9.36)
this glves

o 2R [

(¢ — 2)! T a1
2)! (6 — nr)I(¢ — 24 BC
- (€+2)|AT G_n( . fT) -2+ % )m : (9.37)
(f—=2)0 " 28— D2(§ —np)T(E+4— 5F)
For a scale mvariant spectrum (np = 0) this results in
¢ )
W oD D (9.38)

S e -2)

The singularity at £ = 2 in this crude approximation is not real, but there is some enhancement of
ge+1)C") at e~ 2,
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Figure 9.1: A sample adiabatic( solid line} and isocurvature (dashed line} CMB anisotropy spec-
trum, £(¢ + 1)C,, are shown on the top panel. The guantity shown in the bottom panel is propor-
tional to their ratio (from Kanazawa et al, [79]).

Since tensor perturbations decay on sub-horizon scales, £ R 60, they are not very sensitive to
cosmological parameters.

Apgain, inflationary models (and topological defects) predict a scale invariant spectrum of tensor
fluctuations (nr ~ 0},

On very small angular scales, Fe 600, Auctuations are damped by collisional damping (Silk
damping). This effect has to be discussed witb the Boltzmann equation for photons derived in the
next section,

9.3 The Boltzmann equation

9.3.1 Elements of the derivation

When particles are not very tightly coupled, the fluid approximation breaks down and they have
to be described by a Boltzmann equation,

V0.1 - Dhars 5 = U1 (9.39)

C[f] is a collision integral which describes the interactions with other matter components. The left

hand side of {9.39) just requires the particles to move along geodesics in the absence of collisions.
Let ws first cousider the situation where collisions are negligible, C[f] = 0. The unperturbed

Boltzmann equation implies that f be a funclion of ¥ = ap only. Setting f = f(v) + F(n,x,v,n),

where n denotes the momentum directions, leads then to the perturbation equation

yOF _ df

o, F — G F — I‘;-‘z)injn i Ua;

[n“A,,- — i (B,;,j ~ Hy) + Hi. (9.40)
Here I‘ﬁf” are the Chrisloffel synibols of the space of constant curvature «.

To derive (9.40) we have used p? = 0. The Liouville equation for particles with non—vanishing
mass can be found in Ref. [55].
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Figure 9.2: Some sample isocurvature CMB anisotropy spectra are shown., The variable T; =

To/E(f + 1)Ce/(27) is plotted for the Peebles model (from [80]).

The ansatz
(%) L
(9" {p,p)? f v
= = — 9.41
with T(z,n) = T(n} + AT(z,n) leads to
= df AT
= — . .42
f=F-viis (9.42)
Integrating (9.41) over photon energies, we can alsc write
AT 1
—_— = 43
T 1" (9.43)
where @ is the brightness perturbation,
47 /'°° 3
1= — Fuvidv, 9.44
pat Jo ( )

Comparing Eq. (9.42) with (9.40), we find

ATY | .. (AT L L0 (81) . SN
= 9, (2 ) = inh AT ) |nia. (B — Ho: | n'nd
Oy ( T ) + n'd; ( T ) Iy 'n'n e [n Ay (B‘h H,,) n'n +HL] . {9.45)

The fact that gravitational perturbatious of Liouville’s equation can be cast purely in femper-
ature perturbations of the original distribution is not astonishing. This is just an expression of
gravity being “achromatic”, i.e. independent of the photon energy.

We now decompose (9.45) into scalar, vector and tensor components. Even though AT/T is
just a function, it can be represented in the form

AT

= =]
T 0o} =37 i () oy (0.46)
=0
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Tigure 9.3: Adiabatic scalar and tensor CMB anisofropy spectra are shown (top panels). The
bottom panels show the corresponding posarization spectra (see Section 9.4). (from [81]).

where the a;,, i are symmetric traceless tensor fields that contain scalar, vector, 2—tensor and in
principle also higher tensor components. Since spin components larger than 2 are not sourced by
the right hand side of equation (9.45) and since they are suppressed at early tirnes, when collisions
arc importani, we neglect them here.

For the scalar contribution to AT /T we obtain from (9.45)

8 g 7y (5)
"\ T T k Ont

- [kpA + mutk? (B - HT) + Hp + %szﬁ] , (9.47)

where we have introdnuced the direction cosine 4 defined by n'Y,i = kpY . Note that in flat space,
% = D, we have just p = ik - n.
This equation is not manifestly gauge—invariant. However, setting

(5) 1 .
M= (%I—-‘) + Hr + EszT+k,u (H—B) ) (9.48)

it reduces to

M
‘Bt
where @ and ¥ are the Bardeen potentials. If n’ are components with respect to a geodesic basis
{(or x'= 0), the third term on the left hand side of Eq. {9.49) vanishes. For simplicity we now
concentrate on the case & = 0. We can then integrate the equation and obtain

Oy M + kpM — TS 'nint S = kp (@ — ¥), (9.49)

M{,n,k) = explik - n{ty, — 10)] M{7in, 0, k)
+ [ " s explik - n(y — no)jn - K (& — T)dn . (9.50)
Tin

Integration by parts and neglecting the monopale term (& — ) (), leads to
M(no,n, k) =
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explik  n{ni, — 10} [MDin, 0, k) + (@ — ) (i k)]

) . .
- / explik - n(n — no)l (113 - IIJ) dn . (9.51)
Hn
Comparing this equation with (9.13), we see again that M = (%)(3) (up to gauge dependent

monopole and dipole contributions) if the initial condition is
1
M(mmn,k) = ZDs(?r)(ni'm k) +n- kv(b)(ninrk) ¥

which is equivalent to require that AM{x;,) has no higher than first moments. As we shall see
below, this assumption is quite reasonable since collisions suppress the build up of higher moments
before recombination.

Since the right hand side of (9.49) is gauge invariant, the left hand side must be so as well
and we conclude that M is a gauge—invariant variable (a direct proof of this, analysing the gauge
transformation properties of the distribution function, can be found in Ref. [55]).

M coincides with the scalar temperature fluctuations up a to a gauge dependent monopole and
dipole contribution.

The vector and tensor parts of AT/T are gauge-invariant by themselves and we denole them
by M) and M) for consistency. In the absence of collisions, they satisly the equations

V) ) i gk OMY) b mp (V)

MU ipk MY =T ' n G = T ko, (9.52)
o L AMD) :
M(7)+iukM(T)—ng)‘n3nk—i:,-)%— = —intn™H,... (9.53)

The components of the energy momentum tensor are obtained by integrating the second mo-
ments of the distribution function over the maas shell,

2 dpdf).
T — p;;pyf(p, .'B)p )

: (9.54)
P {x) o

where {1; denotes the angular integration over momentum directions. One finds for & = 0 and
setting p=mn-k:

1

D" = = / Mdf (9.55)

pr = 3 pMdQ (9.56)
4m

nn = 2 (2-1) Mo (9.57)
27 3

' = ¢ (9.58)

v - L / MV (9.59)
4m

v 6

n" = - / pry MY dQ {9.60)

P = 3 / nin; MTdQ. (9.61)
T

Let us now turn to the collision term. At recombination {when the Quid description of radiation
breaks down) the temperature is ~ 0.4 ¢V. The electrons and nuclei are non-relativistic and the
dominant collision process is non-relativistic Thomson scattering. Since collisions are important
only before and during recombination, where curvature effects are entirely negligible, we set £ = 0
in the reminder of this section.
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The collision term is given by
dfy df_
Of] = ——— —, 9,
=% (9.62)
where [, and f_ denote the distribution of photons scattered into respectively out of the beam

due to Compton scattering.
In the matter (baryon/electron} rest frame, which we indicate by a prime, we know

dﬂi— arhe rrpot ’ '
- - da’,
e (p,n) y /f!p,n)w(n,n)

where 1, denotes the number density of free electrons, or is the Thomson cross section, and w is
the normalized angular dependence of the Thomson cross section:

3
win,ny=8/4l+ (m - n) =1+ Zﬂijn;j with ng; =nn; — %6,}- .

In the baryon rest frame which moves with four velocity u, the photon energy is given by
p = puut,

We denote by p the photon energy with respect to a tetrad adapted to the slicing of spacetime into
{n = constant} hyper—surfaces:

p=pn*, with n=a"'[{1 - A)ad,+ B&].

The unit vector n is the normal the the hyper-surfaces of constant time. The lapse function and
the shift vector of the slicing are given by @ = a(1 + 4) and B = —B'9; . In first order,

po = ap(l + A} - apn;B* |
and in zeroth order, clearly,
pi = apn; .

Furthermore, the baryon four velocity has the form v = a™*(1 — 4) , w' = u%" up to first
order. This yields
7' =puut = p(l +n;(v° — BY) .

Using this identity and performing the integration over photon energies, we find

di (1)
AT

= prorne[l + 4n; (v’ — BY) + ?41; / t(n"w(n,n')dQ’] .

The distribution of photons scattered out of the beam, has the well known form
(sce e.g. Lifshitz and Pitajewski [1983])

df_
F = UTnef’(p’:n) s

so that we finally obtain

4?7. d df - i 1 3 !
' = et /dp(é':l - dit'-)pa = o7n)0 — L+ dng{v* — B + Tﬁ_ﬁnij /t.(n')n,;jdﬂ'] s

where &, = (1/4w} [ +(n)d} is the photon energy density perturbation.
Using the definitions of the gauge-invariant variables M and V{* for the photon brightness
perturbation and the baryon velocity potential, we can write C' in gauge-invariant form.

: 1 . '
C' = dorne[D§) ~ M+ v 4 ni MY, (9.63)
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with DY = (1/x) [ MdSQ and
T !
MY = g/M(n )n:_?dﬂ' .
Since the term in square brackets of (9.63) is already first order we can set dt' = dt which yields

C= ‘i‘.ﬁ—;C' = %C’ = af.”". The Bolizmann cquation for scalar perturbations expressed in terms of
the punge invariant variable M then becomes

. . , . 1 .
M+t dM=n"d;(® - T)+ aaTne[iDS’J ~ M —nia Vv ¢ En‘:jM”] . (9.64)
For vector and tensor perturbations we get
MWV gk = —n'n’oy; + aorn. [niV;( ) %n‘:jMi(jV} - M(v]] (9.65)
M LMD = —n'n? By + aorn, [n"jM‘-(JT] - M(T)} . (9.66)
9.3.2 The tight coupling limit
Before recombination, when n, ~ pg/m,,
1 8 ~2 >
nr = e (1 4+ 2) I €9, 2~ Zdec: (9.67)

aorn, igh
To lowest order in 57, collisions force the photon distribution to be of the form

M= ipg +a' V4 %n‘fM,-j, (9.68)
the building up of higher moments is strongly suppressed by collisions.

During recombination, the number density of free electrons, n., decreases rapidly and the
collision term becomes less and less important. Higher moments in the photon distribution develop
by free streaming.

The collision term C[AM] of equation (9.64) also appears in the equation of motion of the baryons
as a drag. The Thomson drag force is given by

—Adaorn.p.

(V) 9.69)

or
Fy == [ CMnjdn =

with M; = fm/andn :
T

This yields the following scalar baryon equation of motion in an jonized plasma

4agrnepr

VO 4 (afa)aV® = 5,0 —
3()[,

(M; +8,V®) (9.70)

where we have added the drag force to the second eq. of (7.55) with w = 2 = 0.

We now want to discuss equations {9.064,9.70) in the limit of very many collisions. The comoving
photon mean free path is given by nr = I = (aorn.)*. In lowest order nr/n and I7/A, ' M is
given by (9.68), and eq. (9.70) implies

M;+aV® =0.

Inserting the solution (9.68} in the Boltzmann equation (9.64) and integrating over directions this
implies

3
4

1Here X is a typical size of & perturbation. For a given Pourier mode k, it is A ~ m/k.

AV® = g:M; = AV = =Dl (9.71)
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Implying especially V) = V{7 = V. Eq. (9.71) is equivalent Lo the energy conservation equation
(7.55) for radiation. Using also (7.58) for baryons, w = 0, we obtain

{r 4 b 4. b
This shows that entropy per baryon is conserved, I' = 0. Before recombination, when the collisions

are sufliciently frequent, baryons and photons are adiabatically coupled. Inserting (9.68) in (9.64)
we find up to first order in nr

M o= Dg(;‘) - 41’?.16,71/ + %nijM‘-’ - T}T[D_gr) - 4?‘1‘3,'1”’ + Q‘nng‘J
+n58jD(;) - 4?&£?1j6§3jv + %n*nijiM“j - 4nj8j (® - 7). (9.72)

Using (9.72) to calculate the drag force yields
F; = (p,/3)40:;V — 8;D{) + 46;(3 — ¥)] .
Inserting & in (9.70}, we obtain
(oo + (4/3)p )8V + p{aj @)V = (pr/3)8: DL + (py + (4/3)pr)0,T — (40,/3)0,2 .

This is equivalent to momentum conservation, the second equation of (7.55) for p = py + gy,
p=p-/3and I =1 =0, if we use

- PwDér] + pr!(;b}

DY) = (4/3)D®) d D
g = /A0 an ! o + O

In this limit therefore, baryons and photons behave like a single Auid with density p = p, + p» and
pressure p = p,./3.

From (7.55} we can derive a second order equation for D,. This equation can be simplilied if
expressed in terms of the varinble D related by (8.1). To discuss the coupled matter radiation fuid
we consider a plane wave D = D(t) exp{tk - ). We then obtain

D+ k2D + (1 + 3¢ — 6w){a/a)D — 3[w(d/a) — (a/a)?(3(cZ —w) — (1/2)(L + w})]D = 0.

Tor small wavelengths (sub-horizon), which are however sufficiently large for the fluid approxi-
mation to be valid, 1/nr » ¢k » 1/n, we may drop the term in square brackets. The ansafz
D(t) = A(t) exp(—i [ keodt) then eliminates the term of order ¢2k?. For the terms of order ek /n
we obtain the equation

2A/A+ (1 — 3¢ — 6w)(a/a) +é,fc, =0 . (9.73)

For the case ¢2 = w =const. , this equation is solved by A o (kn)'~" with v = 2/(3w + 1}, ie,,
the short wave limit. In our situation we have

Pr
W = ——
3(pe + )
. ; 1/3)pr
CZ = PT - ( d_
© T B4 o +3m
Gofes = —3/2aja)——Lb

4py + 3pu )

Using all this, one finds that

( o+ (4/3)p, )”2 _ ( .0+p)”2

cs(pr + Ph)zad - csp:’a‘*
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solves {9.73) exactly, so that we finally obtain the approximate solution for the, tightly coupled
matter radiation fluid on sub-horizon scales

D) (&t&)m exp(—ik f eodn) . (9.74)

cepind

Note that this short wave approximation is only valid in the limit n 3 1/{c,k), thus the limit to the
matter dominated regime, ¢, = 0 cannot be performed. In the limit to the radiation dominated
regime, 2 -+ 1/3 and p x a~* we recover the acoustic waves with constant amplitude which we
have already found in the last subsection. But also in this limit, we still need matter to ensure
pr = 1/(aorn,.) < 1. In the opposite case, nr > %, radiation does not behave like an ideal fluid
but it becomes collisionless and has to be treated with Liouville's equation ((9.64) without the
collision term}.

9.3.3 Damping by photon diffusion

In this subsection we discuss the Boltzmann equation in the next order, (nr/n)?. In this order we
will obtain the damping of Auctuations in an iouized plasma due to the finiteness of the mean free
path; the non-perfect coupling, We follow the treatment by Peebles [1980] [65] (using our gauge-
invariant approach instead of synchronous gauge). Again we consider Eqs. (9.64) and (9.70}, but
since we arc mainly interested in collisions which take place on time scales nr < %, we neglect
gravitational effects and the time dependence of the coefficients. We can then look for solutions of
the form
Vix Mocexp(ifk -z —wy)) .

In {9.64) and (9.70) this vields (neglecting also the angular dependence of Compton scattering,
i.e., the term n;; M)

1 D —iknV
M= 41 —igr(w—k - n) (9.79)
and
nrkwV = (4p,{3ps)(ikV + M) , (9.76)

with M = (3/4r) [ nMdQ. Integrating (9.64) over angles, one obtains Dgﬂ + (1/3)6:;M* = 0.
With our ansatz therefore k - M = 3uJD!(,r). Using this after scalar multiplication of {3.76) with
k, we find, setting 22 = 3p,/4p»,
(3/4)wD”
T Wk Rw — ik
Inserting this result for V' in (8.75) leads to
Dy 1+ ety

M= T—iqrwh

4 1-inr(w—ky)’

where we have set g = k - n. This is the result of Pecbles [1980] [65], where this calculation is
performed in synchronous gauge. Like in there (§92}, one obtains in lowest order wnr the dispersion
relation. Using

By f k
1+ 1—157,-,-“;12

—lonw® gy
1= inr(w — k)

1 /! D" 1}
- Mdp = =2 hi jelds 1 ==
2/_1 it ¥ ich yields 2]:1

one finds

R+ 4R+1)

TP (9.77)

w=wo— iy with wo=k/[3(1+ R)]"? and v = (k*nr/6)
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In the baryon dominated regime, I > 1, therefore
v kPnr /6 . {9.78)

(I the angular dependence of Thompson scaltering is not neglected, the term $(8 4 1) becomes
(12 + 1}. I also polarization is taken into account, one oblains (R +1).)
Posing kqamptir/6 = 1, this leads t0 a damping scale Agump ~ N7 {0dec), which is projecied in
the microwave sky to an angle
7?’!’{”{]&1':}
x{no — aec)
For x = 0 this corresponds to a few arc minubes and to the harmonic numnber

T9da.mp ~

THo (]- + zduc}2
~ k. 9.79
1097 (Maee) 10 ’ (0.79)

This estimate is very crude since we are using the the approximation for fp from the tight coupling
regime just where coupling stops to be tight, and we assume an arbitrary value of n, ~ 0.1ny at
the woment of decoupling. Both these effects lower laamp somewhat and numerical results give

gdamp = 1r|',/19danu:» fad

ﬂdamp ~ GO

in a « = 0 universe. In open (closed) universes, this scale (which of course also depends on ) is
moved to larger (lower) £ due to projection. A reasonable approximation for the damping harmonic

18
Wh
£qamp ~ 600 ("—_o.oml /2) :

Temperature fluctuations on smaller scales, ¢ > fdamp are exponentially damped by photon diflu-
sion.

9.4 Polarization

Thomson scattering is not isotropic. And what is more, for a non-isotropic photon distribution
it depends on the polarisation: Even if the incident photon beam is unpolarised, the scattered
beamn will be, unless the incident, distribution is perfectly isotropic, In the previous section we
have neglected this eflect by summing over the initial polarizations and averaging over final po-
larizations. Now we want to derive the difference in the Boltzmann equation taking into account
polarisation. For simplicity (and since this is by far the most relevant case) we concentrate on
scalar perturbations.

Polarisation is usually characlerized by means of the Stokes parameters [66, 67, 68).

For a harmonic electromagnetic wave with associated electric field

B(x,t) = (g1 F) + €35} 0%t | (9.80)

where n, &, and ez form an orthonormal basis and the complex field amplitudes are parameterised
as F; = a;e* | the Stokes parameters are given by

I = a}+ad} (9.81)
Q = a’—-al (9.82)
7' = 2aj0;cos(dy ~ &) (9.83)
vV = Z2aiaqg Sin(Jg - ) (984)

I is the intensity of the wave (whose perturbation 2 has been introduced in the previous section),
while @ is a measure of the strength of linear polavisation (the ratio of the principal axis of the
polarisation ellipse}. U and V' pive phase information (the orientation of the ellipse). One can
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show that I/ and V are not coupled to [ and @ by Thomson scattering. For scalar perturbations
U and V even vanish. We therefore ignore them here.
Since @ venishes in the background, to first order it obeys the unperturbed Liouville equation,

JAR)
ani 0

The differential cross section of Thomson scattering for a photon with incident polarisetion e
and outgoing polarisation g, is

M@ +intk M QD — T i (9.85)

do 3 2

Q" 8r

e

(9.86)

ar 8?8)8(1;]

Figure 9.4: Definition of the angles and vectors for Thomson scattering in the {n, &3) plane,

It is often convenient to introduce the two ‘partial’ intensities I = a2 = (7 + Q)/2 and

I, =af = (I -Q)/2. A wave scattered in the {n,&;) plane (see Fig. 9.4) by an angle # has the
intensities

5 3ot (i)
I = b
Izts} = BE;L:I:@ cos? 8, {9.87)

or, expressed in terms of the Stokes parameters,

9N 3oz [ 1+4cos®0 sin? 8 It (0.58)
Q" | 7 167 sin? @ 1+cos?d oW /- .

To rotate a wave into a common coordinate system, one uses that a rotation in the (e, £3) plane
by an angle ¢. According to the general transformation of the Stokes parameters under rotation,
this brings (I, Q) into (I', Q") given by

I'=1I, Q' =Qcos(2¢), or (9.89)
Y  (cos’¢ sin®¢ I
( 4 ) - ( sin?¢  cos? @ ) ( I ) ' (9.90)

I we start with a wave (I'9, Q%)) propagating in the direction n that is scattered into a wave
(I*), @%*)} in dircetion n’, then we need Lo go through the following steps (we will use the plane
(z,y) es reference plane, see Fig. (9.5) for definitions of the angles and vectors):

1. Rotate the plane (n,n') around n into the plane {(z,n). One needs to apply the rotation
(9.89) for ¢ = « to the Stokes parameters.

2. Rotatc the new plane {n,n'} around z into the reference plane. This operation does not
influence the scattering,

3. Now we are in the known case of {9.87) and (9.88). Hence we can apply one of those scattering
matrices,

4, We rotate the scattering plane back around z into the old (z, n') plane. This does again not
change the Stokes parameters.
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Figure 9.5: Definition of the angles and vectors for Thomson scattering in the general case. The
polarisation vectors are oriented like in Fig, 9.4.

5. Finally we rotate around n’ by the angle ¢’ to reach the original state. To do this, we have
t0 apply the rotation matrix {9.89) again, but for ¢ = .

The scattering matrix for an incoming photon with direction n that is scattered into direction
n' for a reference frame with k = z and for the scalar part is then given by:

( g(?} ) - %( (n -1n"F)2(11‘(l:1")%lﬂc]2 L+ (n -(:’);1 )(r: (lrcl Y —{n' - k)? ) ( fg{:‘)’ ) (.01

To calculate the collision term including polarisation eflects, we change into the (I, f3) basis .
For each of the two intensities A € {1,2} we then have the collision term given by

g g
oy =¥ Y (0.92)
d-q d1
where ff‘] and _;"9) denote the distribution of photons in the polarisation state A scattered into
respectively out of the beam due to Compton scattering.
In the matter (baryon/electron) rest frame, which we indicate by a prime, we know that

dfﬁmf aTne {8)tr, .t I
o) = 20 [ O, e

where n. denotes the electron number density, or is the Thomson cross section, and w} is the
normalised Thomson scattering matrix (9.91}, but in the basis {I}, I3}.

Using the Lorentz transformation from the baryon rest frame to the laboratory frame (like in
the previous section) and performing the integration over photon energies, we obtain

d.',{:\} (n}

Py gp T PO [1 +4ny(v* — BY) + 4_15 /L(JJ (n')w (n,n)de’ | .

The distribution of photons scattered out of the beam is like in the previous section,

df“)

dt, = gl f{")’(p n) y
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80 that we finally have

dar df ) ddf e
A | 3
o = pal _/ dp( ag »

1 : : 1
- = Y Aot — Y4+ — f &) ¢
= 0T, { M + 4 (v' — By + i f.', {(n')w}(n,n )dﬂ] .

We convert this result to the normal Stokes parameters by setting CH) = C(U + ¢ and
C@ = — @ a5 well as ¢ = {1 + 42 and ¢ = 4 — (¥, The resulting collision integrals are
then

e = grn. [—L-|— dn;(v' — BY) + ﬁ / (@11t +dn2q) dﬂ}] {9.93)
Ly
09 = o [~g+ i [ @t o) a0 (9.94)

where & is the normalised scattering matrix for I and @ from Eq. (9.91). Clearly, ¢ = M%), The
term dn, is as in the previous section,

3 . 1
@{n,n’} =3/41 + (an)?] =1+ 7" y  with ng =nn; EJ‘;:_: . (9.95)

Using 6 = (1/47)} [ «(n)dS) (1he photon energy density perturbation) and the definitions of the
gauge-invariant variables M) and V¥ for the photon brightness perturbation and the baryon
velocity potential, we can write C*/)' in gauge-invariant form.

' = gpn, | DI~ M) 4 4nd VO 4 %n,-jM*'J' + % f E19q dn*] . (9.96)

The scatterlng matrix element &y = 3/[(nn')? — (nk)?] can be rewritten as 3/4[(nn’)? ~ 1) —

3/4[( (nk)? — 1/3], The first part then gives /2n;; M (9% just like for the brightness perturbation,
Since the term in square brackets of (9.94) and (9.96) is already first order we can set dt' = dt

which yields ¢ = %%C" = a‘%C’ = aC’. The Boltzinann equation for scalar perturbations expressed

in terms of the gauge invariant variable AM{5) then becomes
M 4 i M) = an' (& — T) + aorn, {D(T] -~ M) —anigv®

sty (M9 4+ 2004 23 ((nf()z _ _) f MO @)de] . (9.97)

Note the difference to the result obtained neglecting polarisation (Eq. 9.49)!
For the polarisation equation, we rewrite the other two matrix elements correspondingly. 'We
find then

M(Q] +nia M(Q]
aoTN, [ M@ 4 —n (M” M(Q)ﬁ)

241 (W* —1/3) (M(“’)(n*)+M(Q (n' )) ag’
() = f M@0 + 3L f MO ()] . (9.98)

The C’,EP)’S for the polarisation are now obtained from M{9) = (%)(Q) in exactly the same way

as the once for the temperature anisotropies from (£7) (5) by Eqn. (9.22). The figure below shows
both, the temperature and polarisation Cy’s as well as the cross correlation, {M(5) (M@ }),
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Figure 9.6: The temperature anisotropy (solid), the polarisation (dashed) and their correlation
(dotted) are shown for a purely scalar standard CMD model.

9.5 Summary

9.5.1 Physical processes

s Before recombination, photons and baryons form a tightly coupled fluid which performs
acoustic oscillations on sub-horizon scales.

s Depending on the initial conditions, these oscillations are sine waves (isocurvature case) or
cosine waves {adiabatic case).

e After recombination, the photons move along perturbed geodesics, only influenced by the
metric perturbations.

o Vector perturbations of the metric decay as a2 alter creation and their effects on CMB
anisotropies are negligible for models where initial Auctuations are created early, e.g. during
an inflationary phase. This is different for models which constantly seed fluctuations in the
geometry, e.g. topological defects.

o Tensor perturbations of the metric have constant amplitude on super-horizon scales and
perform damped oscillations ox a™! once they enter the horizon.

» Scalar perturbations of the metric are roughly constant if they enter the horizon only afler
the time of matter and radiation equality. On scales which enter the horizon belore cquality
they are damped by a factor {z.q/#in)?, where zeq and z, are the redshift of equality and of
horizon crossing, respectively.

s Perturbations on small scales, k g (%A /20){23¢c + 1)2Hq are exponentially damped
by collisional damping during recombination (Silk damping).
9.5.2 Scale dependence

» On large scales (larger than the horizon scale at recombination, ¢ Sy~ /95, with
PH = Mdee/ X% (Mo — NMaec), pPerturbations are dominated by gravitational effects: Inflationary
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models typically lead to k% (| — ®([2(k, nqec)) = const. and k® {H?) ~ const. on these scales.
This implies a flat “Harrison-Zel’dovich” spectrum,

AT

2
(—-—) () = ¢(¢ + 1)C¢ ~ const.,, ¥ = (9.99)

S

T

¢ On intermediate scales, fy < ¢ < {gamp ~ 600, CMB anisotropies mainly reflect the acoustic
oscillations of the photon/baryon plasma prior to recombination. The position of the first
peak is severely aflected by initial conditions (adiabatic or isocurvature), For x = 0, the first
contraction peak is at about €§“) ~ 220 if the initial conditions are adiabatic, while the first
contraction peak is at E’?) ~ 350 for isocurvature initial conditions. The amplitude of and
the distance between the peaks depend strongly on cosmological parameters.

¢ On small scales, fgamp < £, fluctuations are collisionally damped during recombination (“Silk
damping”). The damping scale depends mainly on 2ph and Q.
9.5.3 The main influence of cosmological parameters

e Curvature, h2Q,:

Curvature
in the CMDB

Cuarvaiure and Cosmological Constant
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Figure 9.7: The temperature anisotropy £(f + 1)C;’s are shown as a function of Q. { only the
open case, 3, > 0 is considered). The top panel shows the difference between the action of
curvature and of a cosmological constant for fixed £2,, = 0.8 (Taken from Wayne Hu’s homepage,
http://www,sns.ias.edu/ " whu).

— Mainly affects the inter—peak distance, Af, and, for given initial conditions, the position
of the first peak. Positive curvature lowers A¢ while negative curvature enhances it (see
Fig. 9.7).

— Curvature also leads to an integrated Sachs-Wolfe contribution which is especially im-
portant for & > 0 at very low £. Overall, this leads to some enhancement of the Sachs—
Wolfe contribution and therefore (after normalisation to the COBE measurements) to
somewhat lower acoustic peaks,

— Non-zero curvature changes the epoch of equal matter and radiation, leading to an
enhancement of the acoustic peaks if x > 0 and to a decrease if x < 0 (see Fig. 9.7).

s Baryon density, pp = Qgh? - 1072°g/cm?:
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Figure 9.8: The temperature anisotropy £(f + 1}C}’s are shown as & function of the baryon density,
Qgh?. (Taken from Wayne Hu’s homepage, http://www.sns.ias.edu/ whu).

— A high baryonic density enhances the compression peaks and decreases the expansion
peaks via the self-gravity of the baryons,

— It also reduces the damping scale, Ar = 1/{@dec0TMe(Ndec)), leading to an increase in
Edmnp-

~ By its influence on the plasma sound velocity, ¢; = 15(1 + pg/py) ", it prolongs the
oscillation period (cf Iig. 9.8).

» Cosmological Constant, A = %ﬁ%‘; - 10~2%g /cm?:

Cosmological Constant
in the CMB

Figure 9.9: The temperature anisotropy £(£ + 1)Cy’s are shown as a function of the cosmological
constant, 4. (Taken from Wayne Hu’s homepage, http://www.sns.ias.edu/” whu).

The presence of a cosmological constant at fixed Qo = (0, + Q4 delays the epach of equal
matter and radiation. During the radiation dominated era, the gravitational potential is not
constant, but decays as soon as a given scale enters the horizon. If #jeq ~ fdec this induces



114

9 CMB anisotropies

an integrated Sachs—Wolfe (ISW) contribution which boosts mainly the first acoustic peak.
If Qa4 becomes very large % 0.8 it also boosts the late integrated Sachs—Wolfe contribution
and the relative height of the acoustic peaks begins to decrease again (see Fig. 9.9}).

Hubble Parameter, Hy = 100k km/(s Mpc):
For fixed curvature and cosmological constant, lowering the Hubble parameter also delays
the epoch of equal matter and radiation, f)eq — Tec, 8ince

O

Zeqt 1= G 24 10'Q,, K% {9.100)

rad

Therefore the same type of ISW contribution as for A—models boosts the first acoustic peak.

o Initial conditions:

— A tensor contribution enhances the large scales fluctuations but not the acoustic peaks,
thereby lowering their relative amplitude.

— A “blue” fluctuation spectrum, n > 1, enhances fluctuations on smaller scales and raises
thereby the acoustic peaks,



Chapter 10

Observations

In this short, final chapter we want to discuss briefly the experimental situation. It has been clear
for a long tine that, if initial Auctuations have led to the formation of large scale structure by
gravitational instability, they should have induced Huctuations in the cosmic microwave background
{71, 72]. Until spring 1992, however, only the dipole anisotropy had been detected [61, 62). Tts

value is [56]
gy dipole
<(%) > = (1.528 £0.004) x 107° .

After many upper limits, the DMR experiment aboard the COBE satellite measured for the
first time convincingly positive anisotropies [57]. It found

2
( (—’?,—T) > (6) ~ (30uK)? (10.1)

on all angular scales # > 7°. Many more positive measurements have been performed since then.
A complete list until September 1999 is given in the Table 10.1 and indicated in Fig. 10.1.
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Figure 10.1: The measured temperature anisotropies, £(f + 1)C¢ indicated in the table above are
shown in a lin-lin plot (left) and in a log-lin plot with the theoretical curve from a standard,
adiabatic cold dark matter model (right).

As one sees in the above ligure, present data, apart from COBE, is very scattered. Tt may well
be that many of these experiments still have normalization problems which are more severe than
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LExperiment ellective € | AT uK)” | Huk)? [ —(pK)* | Sky Coverage | Reference
COBE1 2.1 11.5 84.0 11.5 U.65 82|
COBE2 3.1 125 4.7 75.5 0.65 ]82]
COBLE3 4.1 184 69.4 69.7 .65 182)
COBI4 5.6 140 458 45.8 0.65 [42]
COBES 8.0 137.6 35.8 35.7 0.65 (82
COBES 10.9 122 3G.8 30.5 0.65 |82
COBE? 14.3 108 33.6 39.6 0.65 82|
COBLES i9.4 173 51 52 0.65 52

FIRS 1u 137.6 82.7 64.6 - 83
Tenerife 20.1 185 160.5 110.8 0.0124 84

1AC/Bartol 33.0 1996 2989 1366 - 25

IAG/Bartol 53.0 481 588 308 - 85

PYTHONVY 5 84 23.4 20.5 0.01 86

PYTHONY 74 107 357 30. 0.01 (886}

PYTHONVY 108 153 53.3 37 0.01 |ﬁﬁ|

PYTHONV 140 125 BL.5 67.3 0.01 [85]

PYTHONV 172 464 LBR 170 0.01 |&6]

PYTHONY 203 1467 494 423 0.01 j8o]

PYTHONY 233 1318 1090 B71 0.01 86

BAW 74 492 604 108 - 387
QMADP-IF14+2Ka Bu 351 95 a7 0.01 B8
QMADP-F14+2Ka 126 5h4 118 124 0.01 58]

QMAP-Q 111 430 87 79 0.01 88
Sonth Pole 91 57 145 a8 48 0.005 jise]
Souih Pole 94 57 210 187 65 0.005 89|
Y THON g 464 271 183 - 9UJ
PYTHON 177 535 313 213 - [90]
ARGO Hercules a5 243 120 06 0.0024 I101|
ARGO Aries 05 349 156 157 0.0024 9]
Saskatoon Y6 382 125 T8 0.0037 92

Saskatoon 166 758 161 126 0.0037 [92]

Saskatoon 236 1150 288 206 0.0037 [92]

Saskatoon 285 1177 518 258 0.0037 [92]

Saskatoon 348 758 475 450 0.0037 a2

IAM 125 1421 1535 979 - 93
TOUO 128 481 367 252 - o4
TOCO ib2 1070 306 268 - a4]
TOCO 226 109G 193 201 - a4]
TOCO 780 223 245 247 - 94]

MEAMS4 143 612 a3 333 0.0007 95]
MSAMS4 248 581 351 322 0.0007 95
MSAM95 160 398 295 156 0.0007 06
MSAMSOS5 270 672 424 242 0.0007 96
MAX HR 145 17U 132 K] D.0002 a7
MAX PH 145 473 373 161 3.0002 [97]

MAX QUM 145 473 227 170 0.0002 [97]

MAX ID 145 341 kitr 171 0.0002 [97]
MAX SH 145 334 416 214 0.0002 [97]
CAT1 396 411 287 1 0,0001 [99]
CAT2 608 352 309 218 0.0001 {99]
RINGSm 5E9 499 163 111 - | 100}

Table 10.1: The published CMB anisotropy detections until Septernber 1999. The 3., 4. and 5,
column denote the value of the anisotropy and the upper and lower 1-o errors respectively.
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indicated in the error bars. So far only one experiment sees a rather well distinguished ’raise and
fall’ which may be due to the first acoustic peak. All the other experiments on small scales only
indicate an acoustic peak when compared to COBE. This situation will change drastically once
the data from the second BOOMERanG flight will be analyzed or when the MAP data arrives (see
below).

The experiments can be split into three classes; Satellite experiments, balloon—borne experi-
ments and ground based experiments. The techmical and economical advantages of ground based
experiments are obvious. Their main problem is atmospheric fuctuation, This can be reduced by
two methods;

s Choose a very high altitude and very cold site, ¢.g. the south pole. Several experiments like
SP, Python and White Dish have chosen this site.

» Measure anisotropies on very small scales, preferably by interferometry (CAT, VSA, Jodrell
Bank).

Balloon-borne experiments flying at about 40km altitude have less problems with the Earths
atmosphere but they face the following difficulties:

¢ They are limited in weight.

» They cannot be manipulated at will in fight.

s They have a rather short duration.

¢ To secure all the data taken on the balloon, they have to be recovered mtact.

Yel the advantages of overcoming the atmosphere are so significant that many groups have
chosen this approach, like e.g. MAX, FIRS, MSAM, QMAP, TopHat, etc. The BOOMERanG
experiment even combined the two advantages and performed a long-duration Hight (10 days) on
the south pole in December 1998. (Unfortunately it will still take a considerable amount of time
until the data will be fully analyzed. But preliminary maps look very promising and indicate that
this dataset is an entirely different quality than everything we have so far. The BOOMERan(G-98
data should reveal the Cys from ¢ ~ 60 to £ ~ 600 with about 15% errors!)

The third possibility are satellite experiments. They avoid atmospheric problems altogether,
but this solution is very expensive. So far only one satellite has been launched {namely COBE in
1989) and two more are planned: MAP (Microwave Anisotropy Probe, a NASA MIDEX mission, to
be launched in 2001) and PLANCK, an ESA medium size mission of the “Horizon 2000” program,
to be launched in 2006.

MAP will perform measurements at five [requencies in the range from 22 to 90 GHz, while
the instruments of PLANCK will operate at nine frequencies, covering 20 to 800 GHz. At low
frequencies (below 100 GHz) rudio receivers are used (so called “HEMTY", high electron maobility
transistors) while the high frequency instruments are bolometers. Recent progress in detector
technologies should enable the two new satellites to perform significantly better than COBE - the
radio receivers of PLANCK, e.g., are supposed to be 100D times more sensitive than the ones used
for COBE, and the angular resolution has improved from seven degrees to four arc minutes. For
more details see

¢ http://astro.estec,esa.nl/PLANCK

» http://map.gsfc.nasa.gov

http://www.gsfc.nasa.gov/astro/cobe/cobe_home.html

http://spectrum.1lbl.gov/www/max.html

http://oberon,romal.inin.it/boomerang/
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Appendix A

The C,’s from gravitational waves

We consider metric perturbations which are produced by some isotropic rendom process (for ex-
ample during inflation). After production, they evolve according to a deterministic equation of
motion. By reasons of isotropy and due to symmetry, the correlation functions of h;;{k, 7} have to
be of the form

this(beymibi, (k7YY = [RikskikmH (R, n7) +
(kikpim + kikmdy + kikibon + kjkmtsg‘g)Hz(}z, 7,7+
kskjémes(k,m 7?!) + k!kmaing(kv "?,17}) +
+(5"j5£mH4(k, 73 ‘q") + (5,‘1 ﬁjm + §,‘m5ﬂ)H5 (k,‘q, Tf]] . (A.l)
Here the functions H, are functions of the modulus k& = |k| only. Furthermore, all of them except
Hj are hermitian in ¢ and ¢'. This is the most general ansatz for an isotropic correlation tensor

satisfying the required symmetries. To project out the tensorial part of this correlation tensor we
act on hy; it with the tensor projection operator,

Ti_;a' mn _ _P‘;]rlr"ljn,;l - (1/2)P|3Pmn with P,;j: = 5,';‘; — .E'i;'-j . (AQ)
This yields

ET e, MR (k, ) =

i3 Im
Hy (k0,0 [6ibim + 6im8jt — 6i36im + k2 (8ijkikm +
Simkik; — Sitkikm — Simkiky — Oj0kikem — Symbkik;) +
k™4 kikikikm] - (A.3)

From Eq. (9.17), we then obtain
AT AT, 1 AT AT,
(FeFa) =g [ (Fanww) -

1 8 L] o . ‘
(E) /k2dkd-nﬁ/. dn dn’ exp(zk ' n(no —_ n)) exp(__zk . n(no _ n!)) X
fNdes Tdee

[ 0D o K ymamgmins, | (A4)

Here d; denotes the integral over directions in k space. We use the normalization of the Fourier
transform

fo0 = — [resptix WIS = T [ Erexp(-ix-x) i)
where V' is an (arbitrary) normalization volutne.
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We now introduce the form (A.3) of < ATRT) >, We further make use of the assumption
that the perturbations have been created at some early epoch, e.g. during an inflationary phase,
after which they evolved deterministically. The function Hs{k,,%') is thus a product of the form

Hs(-'ﬂ,?h’-"f) = H(ka n) H*(kv??r) . (A°5)
Introducing this in Eq. (A.4) yields

AT, AT, ,
(Fmiran)=
3
(%) / K2akaQy [(n-0')? — 1+ p + p® — 4 (- 0') + p2?) -

o Ho . . ) .

[ [ ot [Ae A ) explibutn - myesp(—iki'o ~)] (4.6
dac Ndee

where g = (n-k) and ¢’ = (n’ - k). To proceed, we use the identity [102]

o

exp({ikulo — n)) = D _(2r + 1)i"5, (k(no —m)) Pr(u) - (A7)

r=0

Here j, denotes the spherical Bessel function of order » and P, is the Legendre polynomial of
degree r.

Furthermore, we replace each factor of u in Eq. (A.6) by a derivative of the exponential
exp(ik(no — n)) with respect to k(no — 1} and correspondingly with g'. We then obtain

(FwiFa) =

1 ’ (-’
(5) 2 @r e + 1) [ K2 dkdS Py (1) Py (1) X

0t

[2t0 )2 [ a5t — ) (ko — DA B o)

- ] drdn’ [5-(k(no — 0))dw (k(no — 0)} + 37 (ko — n))dee (Blmo — 1)) +
ek — )ik (k(no — 1)) — 3l (k(no — m))gis (k(no — 0" ))}H (ko) H™ (B, ')
—4{(n -n') ] dndn’ §;,(k(rio — n})jp (k(no — ")) H (k,m)H *(k.n’)] - (A.8)

Here only the Legendre polynomials, Py (i) and P, (1) depend on the direction k. To perform the
integration df2;, we use the addition theorem for the spherical harmonics Y.,

P.() = (T“—}—ﬂ T Vulm¥ith. (a.9)

The orthogonality of the spherical harmonics then yields

(2r + 1)(2¢' + 1) [ 4 Py () P () =

16778, > Yre(n)Yy(n'} =

a=—r

478, Po(n - n') . (A.10)

In Eq. (A.8) the integration over df}; then leads to terms of the form (n - n")P,(n:n') and
(n-n')2P.(n-n'). To reduce Lhem, we use

r+1 r
mprﬂ + 5Py (A.11)

oPr(z) = 11
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Applying this and its iteration for z%P,(z), we oblain

w5 ) =

2_71-272(2r+ 1)/kzdk/dndn'H(k,n)H"’(k,n’){
2(r 4 1}r + 2} 1 2r(r — 1)
[(27‘4— 1}(2r +3)P"+2 T ar - D2r + 3)P” T - Dl + 1)P"2] X
Jr (k{0 — n)):n (k o =) — P k(no n J r (ko —9'))
+3=(k(m0 — 1"))57 (k(no —n)) — 37 (ko — ) js (k(no — 7' ))]

4[5 Tle + ;ﬁ—lﬁ_l] J1(kCr0 )ik — 1) } (a.12)

where the argument of the Legendre polynomials, n - n’, has been suppressed. Using the relations

. r+1
P : A,
Ir 2r+13+1+2 +1 (A.13)

for Bessel functions, and its iteration for 7", we can rewrite Eq. {A.12} in terms of the Bessel
functions j._g to jraz.
We now insert the definition of Cy:

AT, . AT 1
< = (n)- ?(n)>(nnq-ma = - Le(2¢+ 1)CePy(cos ) , (A.14)

and compare the coeflicients in Eqs. (A.12} and (A.14). We obtain the somewhat lengthy expres-
sion

Ce =
2 [ awi [ oy e, B ' {0 — )t =)
( 1 N 20202 +20 - 1) (262 + 20 - 1)?
(20— )20+ 3) " (26=D{26+3) ' (20 —1)2(2 + 3)?
4¢8 48 +1)°
TRE-DHA+ 1) 20+ 1)(2£+3)2)
— [Fe(k{no — m}dese(k{m — 0"} + Jera (ko — n))ge(k{mo — '))] X
1 (2(!? 1IN +20 1) 200+ 1)(E+2)  B(E+LP(E+ 2))
2A+1 (2¢ — 1)(2¢ + 3)2 (2¢ +3) (20 + 3)*
— [e(k(no —n))je—2 k(o — ') + je—2(k(mo — 7)) Je(k(no —n'))] X
1 (ZE{L’— L}{20% + 24 — 1) 2000-1) 8¢ - 1))

2+ 1 (26 = 1)2(2¢ + 3) @i - 02 (20-1)

+ie+2(k(no — 7))ier2(k(no — ")) x

( 20+2)(£+1)  4L+1)(¢+2)? {£+1)%(¢+2)*

20+ 1)(20+3) (26 + 120+ 3) (204 1)%(20+3)°
+ie-2{k(no — 7)) je—2(klno — 7)) x
286 - 1) o Ae- 1)? £L—-1)2

((2£ T4 D -1+ D T (=122 £ 172 (A.15)

An analysis of the coefficient of each term reveals that the curly bracket in this expression is

just
e delk(mo —m)\
{}=rc 1)(€+1}(€+2)((k(?}‘0*ﬂ])2)
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and the resuli is equivalent to
2
Co = = /dk.k2|I(€, E)|2 (¢ — 1)+ 1){£+2), (A.16)
m
with

ek = [ ’ i, 2 =) (A.17)
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