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Nouvelles methodes de determination 
des parametres cosmologiques 

Durant ces vingt dernieres a.nnees, la cosmologie est passe du statut de science tres qualitative 
et speculative a celui de veritable science quantitative. Recemment cett~ evolutJon s'est consid­
crablement accentue par l'important developpernent des nouvelles methodes de determination du 
parametre de decel~ration (ou plus precis{!ment d'acceleration) a partir des supernovae de type 
Ia, des etudes de l'effet Sunyaev-Zel'dovich dans les amas de galaxies, de !'analyse des lentilles 
gravitationnelles ou des observations du fond cosmique micro-onde . 

. , Dans ce cours, nous etudions clans la premiere partie Jes lentilles gravitationnelles et clans la 
'seconde partie les anisotropies du fond cosmique micro-onde. Nous avons souhaite montrer d'une 
part que ces sujets permettent un tres attrayant tra.itement theorique, et d'autre part souligner que, 
sous certaines hypotheses, les donnees experimentales prevues les prochaines annees permettrons de 
determiner a quelques pourcents pres les parametres cosmologiques tels que la courbure de l'espace, 
le para.metre de Hubble ou la constante oosmologiquc, une nouveaute inouie en cosmologie. 

Nous tenons a remercier notre assistant Martin Kunz pour son aide tres efficace concernant la 
preparation des notes de ce cours, et pour sa lecture soigneuse de la premiere version de ce texte. 
Nos remerciement.s vont aussi a Lukas Grenacher. Enfin nous remercions lo Troisieme Cycle de 
la Suisse Romandc de nous avoir invite a presenter les nouveaux developpements de ce fascinant. 
sujet. 

Ruth Durrer et Norbert Straumann 

I 



Contents 

I Lectures on Gravitational Lensing 3 

Introduction 1 

I Basic lensing equations 3 
1.1 Reduction to a problem of ordinary ray optics, effective refraction index 4 
1.2 Deflection by an arbitrary mass concentration . 6 
1.3 The general lens map . . . . . . . . . . . . 8 
1.4 Magnification, critical curves and caustics 10 
1.5 Time delay . . . . . . . . . . . . . . . . . 10 
1.6 Whitney theorem on generic singularities 12 
1. 7 Classification of ordinary images, orientation and shape 13 
1.8 Appendix: Alternative derivation of the lens equation. 15 

2 Simple lens models 19 
2.1 Axially symmetric lenses: generalities 19 
2.2 The Schwarzschild lens: microlensing . 21 
2.3 Singular isothermal sphere . . . . . . . 23 
2.4 Isothermal sphere with finite core radius 25 
2.5 Lensing experiments 26 
2.6 Extended source . . 27 
2. 7 'I\vo point-mass lens 28 

3 Lensing by galaxy clusters 31 
3.1 Strong lensing by clusters . . . . . . . . . . . . . . . . . . . . . 32 
3.2 Mass reconstruction from weak lensing . . . . . . . . . . . . . . 33 

3.2.1 Relations between mean convergence and reduced shear 33 
3.2.2 Practical difficulties, examples . . . . . . . 35 

3.3 Comparison with results from X-ray observations . 36 

4 Extensions to a cosmological context 39 
4.1 Lens mapping in cosmology . . . . . . . . . . . . . . . . . . 39 
4.2 Hubble constant from time delays. . . . . . . . . . . . . . . 41 
4.3 Bounds on the cosmological constant from lensing statistics 42 
4.4 Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

4.4.1 Statistics of strong gravitational lensing of distant quasars by galaxies 48 
4.4.2 ·Statistics of arcs caused by clusters of galaxies 50 

4.5 Appendix on Lena mapping in cosmology. . . . . . . . . . . . . . . . . . . . . 50 

5 Complex formulation of lensing theory 57 
5.1 Complex formulation . . . . . . . . . . . . . . . . . . . 57 

5.1.1 Mathematical preliminaries . . . . . . . . . . . 57 
5.1.2 The complex lens mapping and its differential . 59 

5.2 Applications . . . . . . . . . . . . . . . . . . . . . 60 

1 



2 

5.2.l 
5.2.2 
5.2.3 

Number of images for a regular lens . . . . . . . . . . . 
Relations between mean convergence and reduced shear 
Other useful reconstruction equations . . . . . . . . . . 

CONTENTS 

60 
61 
62 

II Lectures on Anisotropies in the Cosmic Microwave Background 67 

6 Introduct ion 69 
6.1 Friedma.nn-Lema!tre universes . . . . . . . . . . . . . . . . . . . 69 
6.2 Recombination and the cosmic microwave background {CMB) . 73 

7 Perturbation Theory 77 
7.1 Gauge transformation, gauge invariance 77 
7.2 Gauge invariant perturbation variables . 78 

7.2.l Metric perturbations . . . . . . . 79 
7.2.2 Perturbations of the energy momentum tensor 80 

7.3 Basic perturbation equations 82 
7.3.1 Constraint equations . . 82 
7.3.2 Dynamical equations . . 82 
7.3.3 Conservation equations 82 

8 Simple applications 85 
8.1 The pure dust fluid at x, = 0, A = 0 . . . . . . . . . . . . . . . . . . . . . . . 85 
8.2 The pure radiation fluid, ""= 0, A = 0 . . . . . . . . . . . . . . . . . . . . . 86 
8.3 Adiabatic and isocurvature initial conditions for a matter & radiation fluid 87 

8.3.1 Adiabatic initial conditions . . . . . . 87 
8.3.2 lsocurvature initial conditions . . . . 88 
8.3.3 Vector perturbations of perfect fluids . 90 
8.3.4 Tensor perturbations . . . . . . . . . . 90 

9 CMB anisotropies 93 
9.1 Light.like geodesics 93 
9.2 Power spectra . . . 95 
9.3 The Boltzmann equation . 99 

9.3.1 Elements of the derivation . 99 
9.3.2 The tight coupling limit . . 104 
9.3.3 Damping by photon diffusion 106 

9.4 Polarization . . . . . . . 107 
9.5 Summary . . . . . . . . . 111 

9.5.l Physical processes 111 
9.5.2 Scale dependence . 111 
9.5.3 The main influence of cosmological parameters 112 

10 Observations 115 

A The Ge's from gravitational waves 119 



Part I 

Lectures on Gravitational Lensing 

3 





Introduction 

Gravitational lensing has become one of the important fields in present day astronomy. The enor­
mous activity in this area has largely been driven by considerable improvements of the observational 
capabilities. So far we have, however, only scratched the surface. The rate and quality of the data 
will increase dramatically, thanks to new wide-field cameras and imaging with new telescopes, in 
particular those of the 8m-class. 

Why is gravitational lensing so important? The answer is simple: It has the distinguishing 
feature of being independent of the nature and the physical state of the deflecting mass. Therefore, 
it is perfectly suited to study dark matter at all scales. 

Let me mention, for illustration, just one topic which has recently attracted a lot of attention. 
This concerns the parameter- free reconstructions of projected mass distributions from (weak) 
lensing data, for instance, for rich clusters of galaxies. Fig. 1 shows an example of such data, 
which has been obtained with the wide-field camera (WFPC 2) on HST. Beside arcs one can see 
many arclets which are weakly distorted images of faint distant galaxies. We shall see in these 
lectures how one analyses such data. 

It is always interesting to know something about the history of a field. I will inject historical 
remarks at appropriate places here and there during the course. Let me now mention, however, 
that Einstein discovered gravitational lensing as early as in 1912, before the general theory of 
relativity was formulated. At the time he was working on the static limit of a relativistic theory 
of gravity. Reconstruction of some of Einstein's research notes dating ba.c.k to 1912 reveals that he 
explored the possibility of gravitational lensing. These research notes can be found in [l), see a.lso 
[2].) Einstein did the gravitational lensing calcul-ations during a visit to Berlin where he met the 
astronomer Freundlich at the Konigliche Sternwarte (Royal Observatory). Beside considering the 
possibility of a. double image of a source as a result of gravitational bending, he also computed the 
magnification of the intensity of these images. As is well known, it is this effect which the present 
day MACHO search relies upon. 

The first. who recognized the great potential of gravitational lensing was Fritz Zwicky back in 
1937. In two short and very impressive papers (3) he pointed out. that galaxies can split images 
of background sources by a large enough angle to be observed. I shall later go through Zwicky's 
papers. As you will see, virtually all of his predictions have come true (about 50 years later). 

Let me add a few remarks on the program of these lectures. I want to derive already at t.he 
beginning - as directly as possible - all the important general lensing equations. For this I need one 
simple consequence of general relativity (GR), namely that one can reduce gravitational lensing to 
a problem in ordinary ray optics , with an effective refraction index that is simply given in terms of 
the Newtonian potential (for an almost Newtonian situation, i.e., weak fields). Those of you who 
do not know GR should accept this fact. 

The table of contents gives a more detailed description of the program. 
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Figure 1: Hubble Space Telescope image of the cluster Abell 2218. Beside arcs a.round the two 
centers of the cluster , many arclets can be seen (NASA HST Archive). 
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Chapter 1 

Basic lensing equations 

The conceptual basis of gravitational lensing is extremely simple. At the same time this is the 
main reason why it is so important for the study of mass distributions at all scales. For a ll practical 
purposes we can use the ray approximation for the description of light propagation. In this limit, 
t.he rays correspond to null geodesics in a given gravitational field, a.nd the polarization vector 
obeys the Jaw of parallel transport. 

These laws can be deduced from Maxwell's equations; see, e.g., [4], Section 1.8. Let us briefly 
recapitulate the eikonal approximation for the Maxwell field F. As usual we set 

F = f e's (1.1) 

with a slowly varying f and a real S. (I omit to indicate that the real part on the right has t.o be 
ta.ken.) From dF = 0 we get 

df +if/\. dS = o {1.2) 

and d * F = 0 implies 
d * f + i(*J) /\. dS = 0. (1.3) 

In these equations we neglect the differentials of f and * f, 

fA dS= O, (*f) /\ dS=O. (1.4) 

These relations imply 
0 = i'Vs(f A dS) = (i'Vsf) /\. dS + f ('VS)2

. (1.5) 

Since the second equation in (1.4) is equivalent to i'Vsf = 0, we obtain the general relativistic 
eikonal equation 

(1.6) 

Let me also repeat the Hamilton-Jacobi method for light propagation. Consider rays 1'(>.), i.e., 
t rajectories orthogonal to the wave fronts { S = const.}: 

i'(,\) = \1 S (1' ().)) . (1.7) 

We show that 'Y(>.) is a null geodesic,,\ an affine parameter. First, i' is a null vector, 

g("f,i') =g('VS,'VS) =O. (1.8) 

Secondly, we have 
(1.9) 

Here, the right hand side is 

(1.10) 



4 1 Basic lensing equations 

For sufficiently strong lenses the wave fronts develop edges and self-intersections (see Fig. 1.1). 
An observer behind such folded fronts obviously sees more than one image. From Fig. 1.1 one also 
understands how the time delay of pairs of images arises: this is just the time elapsed between 
crossings of different sheets of the same wave front. Hopefully, this will lead, for instance, to an 
accurate determination of the Hubble constant (see Section 4.2). 

Fig. 1.1 also shows, where strong and weak lensing occurs behind a cluster of galaxies. 

0 L s 

····· 

~~~~~H;~ 
~ 

GIANT ARCS 

SMALL ELLIPSES 

Figure 1.1: Wave fronts in the presence of a cluster perturbation. 

1.1 Reduction to a problem of ordinary ray optics, effective 
refraction index 

For the time being, we consider almost Newtonian, asymptotically flat situations. Generalizations 
to the cosmological context are easy and basically amount to interpreting all distances in the 
formulas derived below as angular diameter distances. GR implies then that gravitational lensing 
theory is just usual ra.y optics with the effective refraction index 

n (x) = 1 - 2U (x) /c2
, 

where U (x) is the Newtonian potential of the mass distribution p (x), 

U(x) =-a/ p(x') d3x' . 
lx -x'I 

(1.11) 

(1.12) 

Until we come to cosmological problems, this is the only fact which you have to accept from 
GR. For those of you who have some knowledge of this great theory, I describe briefly how one 
arrives at (1. 11). . 

For an almost Newtonian situation, the metric element of spacetime (in almost Lorentzian 
coordinates) is given by 

g = (1 + 2U /c2
) dt2 

- (1 - 2U /c2
) dx2 (1.13) 

(see, e.g., [4), Section 4.2). 
On the other hand, the spatial part of a light ray satisfies Fermat's principle 

JI du = o. 
.j!jOO 

(1.14) 
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for variations with fixed end points ([4], Section 1.7). Here da 2 denotes the spatial part of (1.13) . 
Hence, we arrive at Fermat's principle in ordinary ray optics 

8 J n(x (s)) Ix (s) jds = o, (1.15) 

where the refraction index n is given by (1.ll)i x(s) is the parametrized light pat.hand Ix (s)i 
denotes the euclidean norm of the tangent vector. 

Let me remind you how one obtains from Fermat's principle (1.15) the basic ray equation in 
optics. You can regard (1.15) as a Hamiltonian variational principle, with Lagrangian 

L (x,x) = n(x)f;;. 

When s is the euclidean pa.th length parameter, we have: 

8L 
-=Vn, ox 

8L . 
ax. =nx. 

This gives for the Euler-Lagrange equation 

the well known ray equation 

!!:_ &L _ 8L = O 
ds 8 x &x 

d ( dx ) ds n ds = V n. 

(1.16) 

(1.17) 

We give another derivation of (1.11) by making use of the eikonal description. For the metric 
(1.13) the eikonal equation g"'"o,. sa,,,s = 0 becomes, by setting S(x) = S(x) - wt , 

2U 
n =l- - 2 , 

c 

where the operations on the left have to be understood in the Euclidean 3-space. 

(1.18) 

Alternatively, one can write the Maxwell equations for the metric g as in Special Relat ivity, 
but with 

2U 
e:=µ'.::::'. 1 -2· 

c 
Hence, Maxwell's relation gives again 

(exercise) 

2U 
n=,;eµ '.:::::1--2 • 

c 

Solution: M axwell eqs. in an almost Newtonian g-field 

(1.19) 

(1.20) 

We decompose F into electric and magnetic pieces, F = E A dt + B The homogeneous equation 
dF = 0 splits into 

dB = 0, dE +8tB = 0. 

If we set *F = D - H /\ dt , we have similarly from d * F = 0: 

dD=O, dH=8tD· 

For a static metric (4)9 = - o:2dt2 + g we obtain the relations 

1 
D = -*E, 

a 
1 

B = - * H. 
a 

(1.21) 

(1.22) 

(1.23) 



6 1 Basic lensing equations 

For an almost Newtonian situation: g ~ a-20 (o: flat metric). Thus 

*E = .!.*E (* : flat star operator) 
a 

and hence 
1 1 -

D=-z*E, B= -z*H. a a 
(l.21), (1.22) and (1.24) are just Maxwell's equations in flat space-time for a medium with 

1 1 u 
c = µ ~ 2 -4 n = .j4i,::::: 2 = 1 - 22 . 

a a c 

1.2 Deflection by an arbitrary mass concentration 

In terms of the unit tangent vector e = dx/ds, Eq. (1.17) can be approximated as 

d 2 
ds e = - c2 VJ.. U, 

(1.24} 

(1.25) 

{l.26} 

where VJ. denotes t.he transverse derivative, VJ. = V - e(e · V). This gives for the deflection 
angle a= e,,. - efino with initial and final directions 0 in and efin1 respectively, 

& = :z 1 V J.Uds, 
u.p. 

(1.27) 

where the integral is taken over the unperturbed path ('U.p.).1 Here, we insert the expression 
(1.12) for the Newtonian potential of a mass density p (x). Parametrizing the unperturbed path 
as x = e + ze ' e = ein ' e fixed, we obtain 

or, setting x' = (e', z') ( i.e., x' = e' + z'e) and using 

v.J.. ( i ) = --e-~e' 
Ix - x'I Ix - x' l3 ' 

1 Alternatively we can proceed from here as follows. From (1.27) we obtain 

V .L ·& =; 1 A.LUds. 
u.p. 

(1.28) 

Here, we can replace the transversal Lapla.cia.n by the three-dimensional one and use the Poisson equation t.U = 
47rGp: 

• 81rG 1 81rG . 
V .L ·a= - 2- pds = - 2-E. 

c "·P· c 
On the other hand, (1.27) can be written as 

& = ~ V L ,ji, ,,j, = { U ds. 
c J ... p. 

Hence, we have 
A.L,/; = 4'11'GE. 

U11ing the Green's function (1.37) below, the potential ,jJ is given by 

1$(e) = 2G I In IE - e' I I:(E')d2E'. 

From this we obtain for the dofiection angle 

which agrees with (1.34). 

& = 4G r e - e' E(E')d2EI, 
c2 JR':l IE - E' I 

{l.29) 

(1.30) 

(1.31) 

{1.32) 

(1.33) 
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we have 

& = 2; I d2(dz' p (e', z') (e - e') I dz 3 2. 

c ((e- e')2+(z-z')2] I 

The z-integration has to be extended over the interval between the source and the observer. Now, 
since the extension of the lens (for instance a cluster of galaxies) is much smaller than the distances 
of the observer and the source to the lens, one is allowed to replace the finite interval for z by all 
of JR. Making use of 

/_
+oo dz 2 

-oo [(e - e') 2 + (z - z1)
2J312 

= le - e'l2 ' 

( note that ~ : ( u 2 ) = [ 2 

1 
2]312 ) , we finally get 

a vu ya.2 + u a + u 

&(e)= 4Gjcfe f. - e' Jdz'p(e',z'). 
c2 le - f.'12 

Only the projected mass density 

E(f.) = f p(!;,z)dz, 

appears on the right hand side. In terms of this, our main result of this section becomes 

&({)=4a r e - e' ~(e')d2~'. 
c2 }R2 If. - f.'12 

(1.34) 

For a point mass M located at the origin of the transversal plane, E ({) is equal to M J2 (e) 
and thus 

,.. (c) 4GM 1 
a "' = ---c2jlj' (1.35} 

which is Einstein's famous result. Consider, more generally, an axially symmetric lens with mass 
M (f.} located inside the cylinder defined by the impact parameter~' we expect from (1.35) that 

&(f.) = 4GM(f.). 
c2 e 

For a simple way to show this, we note first that 

is the Green's function of the 2- dimensional Laplacian2 

(2) D,.() = 6(2). 

2 Proof of AQ = 6; 
It is easy to verify that for !xi > 0 AQ = O holds: in polar coordinates (r, ~) we have 

Alnlxl = ~!. (r&lnr) = 0 for > 0 
r/Jr 8r r · 

Let f be a test function with supp f C DR (disk of radius R). Then 

< A In jxl 1 f >=< In lxl, Af >= lim f In lxl Af d2x. 
<-+O}e<JxJ<R 

For the last integral the second Green's formu la gives 

f A In lxl fd2 x + ( f + f ) (in !xi {){)f - 1 81~ lxl) da = 
J«lxl<R J l><l=t Jlxl=R n vn 

r (-lnlxl ~/ +1~) ds. 
ltxl=• v r 1' 

(1.36) 

(1.37) 

(1.38) 

Here, only the second term survives in the limit e --+ O and becomes equal to 27r f (0). Thi~ shows that 
<A In !x i , f >= 21T" < 6, f > for a.II teat functions/, which proves our claim. 



8 1 Basic lensing equations 

With its help the result (1.34) can be written briefly as the gradient 

& = B7T? V (Q * E) , 
c 

(1.39) 

where the star (*) denotes convolution. Taldng the divergence of this equation gives, with (1.38), 

V · & = 8rrGE/c2
• (1.40) 

We integrate this over the disk with radius { and obtain with the 2-<limensional version of Gauss' 
theorem for an axially symmetric lens 

j V · & d2
{ = j & · n ds = 27r{& (e) = 87TGM ({) 

(n: unit outerward normal to the disk). The last equality just gives (1.36). (You also can obtain 
this result by introducing polar coordinates in (1.34) a.nd working out the angular integration, but 
the above derivation is much simpler.) 

We shall study axisymmetric lens models in detail later, but I want to proceed now with the 
general lens. 

1.3 The general lens map 

Fig. 1.2 summarizes some of the notation we are using. (I will follow as much as possible the 
beautiful monograph [5] by Schneider, Ehlers and Falco, hGreafter quoted as SEF.) Simple geometry 
shows that 

(1.41) 

where 11 is the source position and € is the lens position. This defines a map e -t 11 from the lens 
plane to the source plane. Fig. 1.2 shows also that 

(1.42) 

hence (1.41) can be written as 

{3 = () _ Dds &. (1.43) 
Ds 

This or (1.41) is what is called the lens equation.3 

It turns out, not unexpectedly, that (1.43) holds also in cosmology (see Section 4.1). 
It is convenient to write (1.41) in dimensionless form. Let {0 be a length parameter in the lens 

plane (whose choice will depend on the specific problem), and let 170 be the corresponding length 
in the source plane, T/o = (D8 /Dd) fo. We set x = f./{o, y = 11/rJo, and 

with 

"'(x) = E (~ox), 
Ecrit 

c2 D11 _2 ( 1 Gpc ) 
Ec.-u = 41TG . D11Dds = 0.3S g cm D,iD,is/ Ds . 

Then Eq. (1.41) reads as follows 
y = x - o(x), 

whereby Eq. (1.34) translates to 

a (x) = - . K. (x') d2x' . 1 £ x - x' 
11' • JR2 Ix - x'l2 

3 See the appendix 1.8 for an alternative derivation. 

(1.44) 

(1.45) 

(1.46) 

(1.47) 



1.3 The general lens map 

lane -L 

0 
Observer 

Figure 1.2: Notation adopted for the description of the lens geometry. 

As in (1.39) we ca.n write a as a gradient 

a = V 1/J, 'l/J = 2Q * K. 

From (1.38) it follows that 'ljJ satisfies the 2-dimensional Poisson equation 

The map <.p : x 1-7 y defined by (1.46) is thus a gradient map 

<.p (x) = V (~x2 
- 'ljJ (x)) . 

Explicitly, the second equation in (1.48) reads 

1/J (x) = .!. f ln (Ix - x'I) 11: (x') d2x'. 
7r J11p 

The differential Dr.p will often be used. A standard parametrization is 

( 
l - 11;-1'1 

Dip= 
-")'2 

-')'2 ) 
1 - K + 'Yl ' 

9 

(1.48) 

(1.49) 

(1.50) 

(1.51) 

(1.52) 

where ;1 = H8111/J - 8221/J), /'z = 8121/J = 8211/J. Note, that the matrix elements of D<p are (see, 
e.g., (1.50)) 

(1.53) 

where ai = 8/axi. In particular, t,he trace of (1.52) is chosen correctly (sec (1.49)), a.nd Dip is 
clearly symmetric. The dimensionless projected mass density K is often called the mean Ricci 
curvature, and the 2- dimensional vector 'Y = ('Yi , 72) is the Weyl shear. For a geometrical inter­
pretation, sec Section 1.7. 
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1.4 Magnification, critical curves and caustics 

Next, I show that the magnification µ, that is, the ratio of the ftux of an image to the flux of the 
unlensed source, is given by 

1 
(1.54) 

µ = ldct D<pl . 

In order to derive this result, I recall a simple but important fact from ray optics. 
Consider a ray L and any two points along the ray and construct areas dA1 and dA2 normal 

to the ray at these points. Let dE1 = dE2 be the energy of all rays passing through both dA1 and 
dA2 during the time dt. Since 

where df2 1,2 is the solid angle subtended by dA 2 ,1 at dA1,2, and because dfh = dA2/R2
, df22 = 

dA1 / R2 (R = distance between dA1 and dA2 ), we obtain 

(1.55) 

If there is no frequency shift, the specific intensity is thus constant along a ray 

Iv= const. (1.56) 

This holds also for gravitational light deflection by localized, nearly static lenses, because this does 
not introduce an additional frequency shift between source and observer, beside the cosmological 
one (cosmological effects will be considered later).4 Now, the ftux of an image of an infinitesimal 
source is the product of its surface brightness I and the solid angle dn it subtends on the sky. 
From (1.56) we conclud~ that the magnification µ is the ratio of dfl. and the solid angle d!to for 
the undeflected situation. On the other hand dno/df2 is equal to the area distortion of the lens 
map r.p, and thus equal to the Jacobian ldet Dipl • Thh; proves our claim (l.54). (For a more 
sophisticated derivation, which applies also in cosmology, see SEF, Sections 3.4-3.6, in particular 
eqs. (3.81), (3.82).) 

The lens map r.p becomes singular along critical curves in the lens plane. These are characterized 
by 

det(Dr.p) = 0 (1.57} 

or 
(1 - K;)2 - l"Yl2 = o. (1.58) 

The catJ.Stics are the images of these critical curves5 . 

In the vicinity of these source points the magnification becomes very large. On caustics it 
diverges formally, but this is of no physical significance, because the magnification remains finite 
for any extended source (see Section 2.6 or SEF, Section 6.4). For a point-like source, the ray 
approximation breaks down and we would have to use wave optics. (You find a discussion of this 
in Chapter 7 of SEF.) 

1. 5 Time delay 

The lens map (1.50) can also be written as 

Vx</>(x,y) = 0, (1.59) 

4 More general argument; Without absorption a.nd scattering processes the distribution function f for photons 
satisfies the Liouville equation 

Lx!Jf = 0, 

where X 9 is LI1e vector Ocld of the goonesic ~pray. Si11ce the lntcsity /(w) is proportional tows f, we conclude that 
f((<1)/w 3 remains constant alo11.11 m.1/l-9codesics. 

5 A famous theorem of Sard Lolls us Lltal these cri~ical values of ip form a set of measure zero. 
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with 
1 2 ¢(x,y) = - (x - y) - 1/J. 
2 

11 

(1.60) 

This formulation reflects the Fermat principle. We now show that the delay of arrival times is 
directly given by the Fermat potential </> 

2 D,, ( ) cLlt = ~o D D <P x, y . 
<I els-

The travel time is 1 / c times the integral in the Fermat principle (1.15) 

t = ~ f n(x (s)) lx(s)lds~ 
c .l,,r;.tk 

~ ~- ~1 U(x(s))ds 
C c3 u.p. 

(1.61) 

(1.62) 

(l =path length). In (1.63) we have used the basic formula (1.11) for the effective refraction index. 
It suffices to take the integral along the unperturbed path. (This part describes the "Shapiro time 
delay''.) 

A look at Fig. 1.2 shows that 

l = V DJs+ (e - 'r/)
2 + Je2 + D~ ~Das+ Dd + 2~ds (e - 'r/)

2 + z~d e2 · 
For the potential pa.rt in (1.63) we proceed as in Section 1.2 (using the same notation). We have 

l.p. u ex (s)) ds = ; u ce + ze) dz= (1.63) 

-Gjd2(dz'p(~',z') j dz . 
j(e-e')2 + (z - z')

2 

Now z' varies over a much smaller domain than z. Therefore, the z-integral is approximately equal 
to 

= In(u + Ju2 + (e - e')2
) ~ l

+Do• 

- D.i 
(1.64) 

[ 
2Dtts l [ 2D,t l ~ ln le - e'I +in le-e'I · 

Since the last expression is independent of z', we can do the z' - integral and find 

- :a JU (x (s)) ds = - ~~ j d2{'E (e') In [le ;
0 
{'I] + const. (1.65) 

If we subtract from (1.63) the arrival time for an unlensed ray from the same source, we obtain 
the time delay 

( )

2 
1 DaDs e- Tl 1 ~ 

At= - -- - - - - - tjJ(~) + const, 
c 2D<1s Dd Ds c 

(1.66) 

where 

(1.67) 

The constant in (1.65) is independent of e and 'rl· From the definitions in Section 1.3 one finds 
that 

<e =~ox), (1.68) 
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and in terms of the dimensionless variables x and y one finds that (1.65) agrees with the claimed 
formula (1.61). 

In a cosmological context one has to take into account red-shift effects (see Sect. 4.1). It 
should, however, already be clear that the prefactor in (1.60) involves the Hubble parameter. 

1.6 Whitney theorem on generic singularities 

In a pioneering work of modern singularity theory, H. Whitney [6] studied in 1955 the generic 
properties of smooth mappings of the plane into itself. His results apply directly to realistic lens 
maps, and it is, therefore, interesting to know what he showed. Before telling you, I must explain 
what fold and cusp singularities are. Consider a smooth map f : IR2 ~ 1!2 • We say that x E 1!2 is a 

f (S1 (fJJ 
x3 R2 

'--
X, 

x~ y ~ x 

.. c_ 
x, - - x, 

Figure 1.3: Cusp singularity. The map from the plane (x1, x2) to Xis given by (x1, x2) I-+ (xi, x2, x1x2+ 
x~); Si(!) in coordinates is given by x1 = -3x~ . The map from the plane (x1, x2) to the plane (x1, xa) 
is given by (x1 , x2) H (x1, x 1x2 + x~), a.nd corresponds to the normal form for a cusp point; /{S1(!)) is 

given as t ~ (-3t2
, - 2t5 ). 

regular· point, if the differential D f ( x) is non-singular, i.e. , det D f '# 0 at x. In this situation the 
map is locally differentially equivalent to the identity (x1,x2) i--t (x1,x2) in a sufficiently small 
neighborhood of the origin. (Technically, it is convenient to use germs of maps.) 

If D f (x) is singular at x, one calls x a critical point and its image /(x) a critical value. We 
say that a critical point is a fold if the germ of the map at that point is diffeomorphic to the germ 

(1.69) 

This means that one can introduce local coordinates (x1,x2) in the source plane and (y1,Y2) in 
t he target plane, such that. locally Y1 = x~, Y2 = x2. 

We say that a critical point is a cusp, if the map is locally equivalent to 

(1.70) 

An example of a cusp is shown in Fig. 1.4. Whitney has proven that maps which have only 
fold and cusp singularities are generic. (This means that these contain an open and dense subset 
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of all smooth maps in some natural topology, now called the Whitney topology.) Moreover, those 
maps in this open and dense subset which satisfy a few mild global conditions are also stable. (I 
do not want to give a precise definition for stability.) In higher dimension, things are much more 
complicated. 

1. 7 Classification of ordinary images, orientation and shape 

For a given source position y the images are those points x which satisfy V </> ( x) = 0 (critical 
points of the Fermat potential). This invites us to use some standard mathematical concepts and 
tools for a qualitative discussion of the lens map. 

A critical point of¢ is non- <legenerate, if the Hessian, H ( <P} = ( <P,1;} = Dl.P, is a non-degenerate 
quacb·atic form (equivalently: det D ip ¥ O), that is, the source is not on a caustic. The index of 
such a critical point is just the index of H ( </>) at that point, i.e., equal to the number of negative 
terms in the normal form of H(f). In two dimensions we have three types of non-degenerate 
critical points = ordinary images: 

- type I corresponds to a minimum of <P (index= 0), 
- type !Ito a saddle (index = 1), 
- type III to a maximum (index = 2). 

For a given source position, not lying on a caustic, we denote by n 1, n II, n II 1 the number of 
ordinary images of the indicated type. Using a theorem by Morse, one can show that 

(1.71) 

According to this theorem, the left-hand side of (1.70) is equal to the Euler characteristic of a 
big circle, which is equal to 1. In Chapter 5, I will give an elementary derivation of this result by 
making use of standard tools in complex analysis. 

As a consequence of (1.70) we arrive at the important fact 

n := n1 + nll +nu 1 = l + 2nu. (1.72) 

The number of ordinary images of a regular lens is thus always odd. This number is bigger than 
one, if and only if the arrival time surface { <P = const} has saddle points. A beautiful example is 
shown in Figs. 1.4, 1.5, taken from [7]. R.e~cmber: ordinary images are located at local extrema. 
and a saddle points of the arrival time surface. We say Lhat such an image has positive (negative) 
parity if detD<p > O(< 0). Clearly, type I and III have positive parity, while type II has negative 
parity. There is a simple geometrical meaning of this notion. Consider a source at y and an image 
at x, y = ip (x) . The linearization A := D1.p (x) of <p at x tells us what happens with infinitesimal 
displacements, described by vectors Y at the source and vectors X at the image point x, Telated 
byY=AX. 

Note first, that X · Y = A (X, X) := I;A,JX.;X; > 0 ( < 0) for type I, III, (type II). Thus, 
for images of type I, III the position angle of the image vector differs by no more than rr /2 
from that of the source, while for type II they differ by more than 1f /2. Consider now two pairs 
X (l) I y (l) and x<2> I y <2>, with y (•) = A.X(i). Let x<1> I\ x <2> == det (x<1l, x<2>) J etc. Then 
y(i) I\ Y(2) = (detA)XC1l /\X(2l. This shows that positive parity images preserve the handedness, 
whereas for negative parity (type II) it is reversed. 

Finally, let us see how infinitesimal circles in the source plane are deformed. Thus, consider a 
small circular source with radius Rat y, bounded by the curve 

(
Rcost ) 

c (t) = Y + R sin t 

The boundary of the images is 

d (t) = x +A-1 
( ~ ~::) . 
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Figure 1.4: Five blue arcs, each an image of the same background source at high redshift, lensed by the 
massive cluster CI0024+1654 at z = 0.4 (taken from W. Calley, T. Tyson and E. Turner, 1996 [7] ). 

Inserting the parametrization (1.52) one finds that this describes an ellipse with semi- axis parallel 
to the principle axis of A, with magnitudes 

R 
(1.73) 

and position angles 'P± for the axis given by 

tan 2cp± = -"12/r1. (1.74) 

We leave it as an exercise to derive these results. Hints: Write d (t) in complex form. One finds 
that 

( ~ ) := A- 1 ( ~:: ) (1.75) 

can be written in the form (familiar from optics) 

X ± iY = ~ (E±e- it + E,±eit) , (1.76) 

with 

E = 'Y 
+ (1 - r.:)2 - bl2' E 

_ 1 - K, 
- - 2 2 

{l - 11;) - bl 
(1. 77) 
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The ratio E+/ E_ describes the orientation and shape of the ellipse, and is thus observable. This 
complex number is what is called the complex reduced shear (P. Schneider): 

"I g=--
1-K 

(1.78) 

1.8 Appendix: Alternative derivation of the lens equation 

For the later generalization of the lens equation (1.43) to a cosmological situation (Friedmann 
background), I give here another derivation. 

By making µse of the notation in the figure 1.6, the differential equation for a light ray e = 
e(9, () (0: observing angles) is, to first order in the Newtonian potential (c-+ 1): 

d2e 
d(2 = -2v 1-u(e (9,(),() . (1. 79) 

(Note that d(/ds = 1, up to quadratic terms in the small{») 
With the help of the Green's function G((, (')of the operator cf2 /d(2 , given by 

G((, (') = (( - (')ti(( - ('), (1.80) 
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x3 (qpficaf tZJtis) 

source 
/ 

I 

/ 
I 

~~..___..._ .... _i (!;.~) 

observer 

Figure 1.6: Notation adopted for the description of the lens geometry. 

we transform (1.79) into an integral equation, 

~ (8, (), () = (8 - 2 fo< d('(<;- (')V J.U({ (9, (}, (). (1.81) 

Here, the first term is a solution of the homogeneous equation, which would describe the light ray 
without deflection. Clearly, 

:e<o, ()I = 8. 
~ \=O 

(1.82) 

To first order in U, we can replace the argument in V J.U on the right hand side of (1.81) by the 
unperturbed ray and obtain the explicit solution 

e(e, () = (8 - 2 fo< d(' cc - (') v J.u(('9, ('). (1.83) 

At the source plane (( = (s) this gives, with 71 = {(9,(8 ), 

r<· 
11 =(sO-2 lo d(((s - ()V J.U((6,(). (1.84) 

Since 71 = (6 /3, we obtain the lens equation 

/3 = 9 - 2 [ <• d( (s ,,.- ( V J.U (u.p.)-.::= 8 - DDds2V l.,,fi(Dit6), 
lo ~s ,,__. 6 w (2) 

(1.85) 

(1) slowly varying!'.:::'. <. (."' = %:- , 
(2) ((dO, () = (Dd(J, () , 

where 

(1.86) 

Thus 

(1.87) 

with 
(1.88) 
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From here, we again obtain 

v .L. & = 2 I ll .LUd( = 81rGB, 

ll.L ;/J = 47rGE. 

17 

(1.89) 

(1.90) 
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Chapter 2 

Simple lens models 

It is now high time to study some simple, but important examples of specific types of lenses. 
Although they are simple, they turn out to be very useful to better understand the lensing phe­
nomenon. 

2.1 Axially symmetric lenses: generalities 

If the lens is axially symmetric, our general lensing equations simplify considerably. For the 
deflection angle, this was already shown in Section 1.2. According to (1.36) we have then 

(2.1) 

(only the modulus of the angle counts). For the rescaled angle lk (x) in (1.44) this translates to 

where 

a (x) = m (x), 
x 

(x = (x, 0) , x > 0) , 

m (x) = 2 fo:i:,,, (x') x'dx'. 

The lens equation (1.46) can be written in scalar form 

m(x) 
y = x - o: (x) = x - --, 

x 

where now x E ~and m (x) = m ([xi). From (1.48) we obtain 

d'lj; 
a= dx· 

The Poisson equation (1.49) for 'ljJ becomes 

~!!_ (x d'l/J) = 2K. 
x dx dx 

Insert ing here (2.5) and (2.2) leads to 

dm 
dx = 2xK. (x), 

which of course, follows also from (2.3). From (2.5), (2.2) and (2.3) we have 

: = ~ fo" K (x') x'dx'. 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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In this equation, the right hand side is also equal to 

!2 fox ~(x')x' In(;,) dx' . 

Thus, provided that ~ (x )decreases faster than x- 1, we find 

1/J (x) = 2 for& If- (x') x' In(;,) dx'. 

Let us also look at the differential Drp of the lens map. According to (2.4), rp is given by 

Hence, 

m(x) 
y=x- --2 -x 

x 
(x = lxl). 

D<p = 1 _ m (x) ( x~ - x~ -22x1 x~ ) _ m' (x) ( x~ x1x2 ) 

x4 -2X1X2 X1 - X2 x3 X 1X2 x~ . 

Because of (2.7), the trace is correct (see (1.52)), and the components of the shear are 

1 ( 2 2 ) ( 2m m' ) '/'l = - X2 - X1 - - -2 x4 xS ' 

This gives 

1-r12 
= ( ; - ~r 

and 
det D'P = (1 - 11:.)

2 
- l-Yl 2 

= 

( 1 - ; ) ( 1 + ; - 211:.) = 

= (1 - .!. d'l/J) (1 - d2¢). 
x dx dx2 

The last two factors are the eigenvalues of Dip. 
This implies that there are two types of critical curves 

m (x) 
1 

: 
X2= tangential critical curve; 

dx
d (mx(x)) = l : radial critical curve. 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(The terminology will soon become clear.) The image of a tangential critical curve degenerates 
according to (2.4) into the point y = 0 in the source plane. 

We can look at the crit.ical points on the x1-axis with x = (x, 0), x > 0. Then 

D = 1 _ m ( x) ( -1 0 ) _ m' ( 1 O ) 
<p x2 0 +1 x 0 0 

(2.15) 

and this matrix must have an eigenvector X with eigenvalue zero. For symmetry reasons, the 
vector must be either tangential, X = (0, 1), or normal, X = {1, 0), to the critical curve (which 
must be a circle). 

We see readily that the first case occurs for a tangential critical curve, and the second for a 
radial critical curve. It turns out that the radial critical curve consist of folds. 

For a tangential critical curve {lxl = xt}, we have by (2.14) and (2.3) 

(2.16) 
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With (1.44) this translates to 

1~· 2~E (~) ds = ~ZEc.-it· 
The total mass M ({t) inside the critical curve is thus 

21 

(2.17) 

(2.18) 

This shows that the average density (E) t inside the tangential critical curve is equal to the critical 
density, 

(E} t = ~crit · (2.19) 

(Correspondingly, (K.}t = 1.) 
This can be used to estimate the mass of a deflector if the lens is sufficiently strong and the 

geometry is such that almost complete Einstein rings are formed. If Bo.re is the angular distance of 
the arc, we obtain numerically 

M ((Bare)) 1r (DdlJarc) 2 Ecrit Rj (2.20) 

~ (1.1x1014M0 ) (~~;) 
2 (i gpc). 

(D is defined in (2.31) below.) 

2.2 The Schwarzschild lens: microlensing 

This is the simplest case and is most relevant for the MACHO search. 
We shall soon see that a convenient length scale fo is provided by the Einstein radius 

(2.21) 

Since :E (e') = Mo2 (e), we then have K.(x) = 1f02 (x), according to (1.44), and thus m (x):::::: 1. The 
latter equation follows also from (2.1), (2.2) and (1.44). Thus, since Eq. (2.5) implies 1/; (x) = lnx, 
we have 

and the lens map is given by 

1 
a(x) = -, 

x 

1 
y = x- -. 

x 

(2.22) 

(2.23) 

If the source is on the symmetry axis (y = O), then x = ±1 (Einstein ring). For a given source 
position y, (2.23) has two solutions 

X1,2 = ~ (y ± .jy2 + 4). (2.24) 

The magnifica.t~on µ = ldet Dcpl-1 follows immediately from (2.13) 

µ-1 = !1-:4 I. (2.25) 

which gives for the two images 

1
1 y H+4 I /J,1,2 = 4 .jy2 + 4 + y ± 2 . (2.26) 
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The total magnificat.ion µP = µ 1 + µ 2 is found to be 

·112 + 2 
µp = yJy2+4' 

It is this function which one observes for MACHOs. Note that 

I 1J 17/Da -1 
y = 7J T/o = (Ds/Dd) f,o = f,o/Dd = f3Bs ' 

where ()E = Rs/Dd, i.e., 

(2.27) 

(2.28) 

(2.29) 

is the angular separation corresponding to the Einstein radius, and (3 (see Fig. 1.2) is the angular 
separation of the source from the optical axis. Numerically, (2.29) reads 

l I 

OB = (0.9" · 10-3) (.!:!_) 2 (_!!__)- 2 

M0 10 kpc 
(2.30) 

( 
M ) ! ( D )-! 

= (0.9") io12 M0 l Gpc 

where 

(2.31) 

is the effective distance. 
Even when it is not possible to see multiple images, the magnification can still be detected if 

the lens and source move relative to each other giving rise to lensing-induced time variability. This 
kind of variability is called microlensing. Microlensing was first observed in the multiple-imaged 
QS02237+0305 [81. As is well-known, Paczynski proposed in 1986 to monitor millions of stars in 
the LMC to look for such magnifications in a fraction of the sources. In the meantime, this has 
been successfully implemented. The time scale for microlensing-induced variations is obviously 
given by t0 = DdOs/v, where v is a typical virial velocity of the galactic halo. Numerically 

to= 0.214 yr ( M) ! (~) ~ (Dds) ! (200 km s-
1
). 

M0 10 kpc Ds v 
(2.32) 

(The ratio D ds / D s is close to unity.) 
Typical light variation curves corresponding to (2.27) are shown in Fig. 2.1 and Fig. 2.2. Note 

that to does not directly give the mass. The chance of seeing a microlensing event can be expressed 
in terms of the optical dept.h, defined as the probability that at any instant of time a given star is 
within the angle () E of a lens. This probability r is given by 

(2.33) 

where dV = d!tD3dDd is the volume of an infinitesimal spherical shell with radius Dd which coven; 
a solid angle dO. Indeed, t.he integral gives the solid angle covered by the Einstein circles of the 
lenses, and the probability T is obtained upon dividing this quantity by the observed solid angle 
dO. Inserting the expression (2.29) for ()E gives 

= 1D· 4rrGp DdD.isdD _ 41rGD21
1 

( ). (I_ ) d. 
T 2 D d - 2 8 p x x x x, 

0 c $ c 0 

where x = DdD;1 and pis the mass density of the MACHOs. It is this density that determines r. 
Observations have shown that r is a few times 10-6 (the statistical errors are still large). We 

will hear more about the present status of this exciting subject. The futui·e looks promising. 
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Figure 2.1: Einstein ring (dashed) and five possible relative orbits of a background star witl1 projected 
minimal distances Umin = {rnin/ Re = 0.2, 0.4, ... , 1.0. 

2. 3 Singular isothermal sphere 

The so- called singular isothermal sphere is often used as a simple model for the mass distribution 
in elliptical galaxies. One arrives at this model by assuming an ideal isothermal gas law p = 
(p/m) ksT for the equation of state, where pis the mass density of stars and m the (average) mass 
of a star. 

The equation of hydrostatic equilibrium then gives 

kBT dp GM(r) 
----p 

m dr - r 2 • 
(2.34) 

If we multiply this by r2 (m/keT) and then differentiate with respect tor, we obtain, using 

dM(r) 
4 2 

~= 7rr p, (2.35) 

the differential equation 
d ( 2 d ) Gm 2 
dr r dr lnp = - keT47rr p. (2.36) 

One arrives at this equation also in the kinetic theory as follows. Start from the Jeans equation, 
which one obtains by taking the first moment of the collisionless Boltzmann equation. In the 
stationary, spherically symmetric case this reads (9] 

d ( 2) 2n ( 2 2) dU -d nar + - <rr - 17t = -n-d ' r r r 
(2.37) 

where n is the density of particles, and <Ir, <1t are, respectively, the radial and transversal, velocity 
dispersions. 

For the special case a~ = a; = a2 =canst, Eq. {2.37) reduces to 

2 dn GM(r) 
u - = -n ' dr r 2 

(2.38) 

which is identical to (2.34) for p = nm, if we make the identification 

kBT == ma2
• (2.39) 
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Figure 2.2: Light curves for the five cases in Fig. 2.1. The maximal magnification is µ = 1.34 or 
~m = -0.32 mag, if the star just touches the Einstein radius {Umin = 1.0). For smaller values of Umin the 
maximal magnification is larger. 

(Note, that. o 2 is the 1-dimensional velocity dispersion.) One solution, with a power dependence 
for p (r), is easily found 

0'2 

p (r) = 21l'Gr2 • (2.40) 

Because the density is singular at the origin, it is called the singular isotherma.l sphere (regular 
solutions a.re only known numerically; [9]). 

The projected mass density for (2.40) is easily found to be 

For the length scale fo we choose 

and obtain from (2.41) and (1.44) 

thus 
m(x) = lxl, 

and 

cr2 1 
E(e) = 2Gf 

1 
~(x) = 2 lxl, 

a(x) = _:._ (.:;. & = 47fa-2/c2 =canst), 
lxl 

x 
y=x-~. 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 
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The Einstein ring is given by jxj = 1, lel = eo. The corresponding angle is thus 

()E = 4rr (~) 2 Dds ~ (29") ( . O' )2 Dds. 
c D8 103 km s- 1 D0 

(2.46) 

This is often used also for clusters of galaxies. 
We also note the mass M ( < ~o) inside the Einstein radius 

M (< fo) = fo1 

K.(x) 'Ecrit2trxdx = 1l'el,Ecrit = (2.47) 

rr (Dd0E)
2 

Ecrit:: 1.1 x 10
14 

M0 ( :O~' r ( l gpc), 
where D is again given by (2.31). 

The magnification for an image at x is easily found from (2.13) 

I 1x1 I 
µ = !xi - 1 · (2.48) 

For IYI > 1 one sees from (2.45) that there is only one image at x = y + 1 (take y > 0). When 
IYI < 1 , there are two images, at x = y + 1 and x = y - 1. Using this in (2.48) we find for the total 
magnification of a point source 

2/y 
(1 + y) /y 

for y $ 1, 
for Y ~ 1. 

Note that the inner image becomes very faint for y -t 1. 

(2.49) 

Finally, we determine the time delay for the two images. This is easily found from (1.61) and 
1/J (x) = lxl (from (2.8)) 

cb.t = [4rr (~fr D~cts 2y. (2.50) 

(Recall that no red-shift effects have been taken into account.) 

2.4 Isothermal sphere with finite core radius 

Since no analytic solutions of (2.36) without a central singularity are known, the surface mass 
density (2.41) is often modified parametrically by introducing a finite core radius f.c 

(2.51) 

Using the same scale length f.o as before, the corresponding dimensionless surface mass density is 

Xe:= f.c/f.o. (2.52) 

With the help of the formulas in Section 2.1, you can easily work out every thing you like. 
When does the lens become critical? Consider, in particular, an extended source near y = 0 and 
discuss the form of the images (arcs and counter arcs, etc.). 

In Chapter 8 of SEF other examples a.re worked out. 
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Figure 2.3: Deflection of a light ray passing through an axially symmetric lens (taken from S. Refsdal and 
J. Surdej, 1994 [lOJ). 

2.5 Lensing experiments 

I show now how one can mimic the deflection of light rays by an axially symmetric gravitational 
lens with an optical lens. Hopefully, some of you will construct such a lens for didactical purposes. 

For simplicity, we choose the lens such that it is fl.at on one side and determine the axially 
symmetric shape of the other side such that t.he deflection angle comes out right. All angles in 
Fig. 2.3 can be assumed t.o be small. If n denotes the refraction index of the lens with respect to 
the air, we have 

sin ( i) i 
--=n~ -
sin (r) r 

The deflection angle e W = i - r ~ r (n - 1) should agree with & ({) = 4GM ({) /c2{: 

r(n-1)= 4G~({)_ 
c ~ 

From Fig. 2.3 we read off that 
db.. 
d{ = -tg (r) ~ - r. 

The shape of the optical lens is thus determined by 

4G M ({) 
c2 (n - 1) { 

D..(oo) =O. (2.53) 

L€t us first mimic the Schwa.rzschild lens, M (€) = M. In this case we get from (2.53) 

4GM 2Rs (Ea) 
b.. ({) = c2 (n _ l ) In~+ const = b.. ({o) + n _ 1 ln 'f , {2.54) 

where Rs is the Schwarzschild radius. The choice of (eo, D..(fo)) is up to you. Example: plexiglass 
with n = 1.49, fo = 14 cm, b.. (fo) = 1 cm, Rs = 0.3 cm (corresponding to one third of the Earth 
mass). The shape is shown in Fig. 2.4a. Let us determine also the shape corresponding to the 
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Figure 2.4: Several examples of a..'Cially symmetric optical lenses simulating the light deflection properties 
due to: (a) a point mass, (b) a singular isothermal sphere, (c) a spiral galaxy, (d) a uniform disk, (e) a 
truncated uniform disk of matter (taken from $. Refsdal and J. Surdej, Rep. Progr. Phys. 1994 [10)). 

singular isothermal lens. From (2.41) we obtain 

(2.55) 

hence 
Li (e) = Li (fo) +I< (~o - e). (2.56) 

This is an axially symmetric cone (Fig. 2.4b). 
Other examples am carried out in the review article by S. R.efsdal and J. Surdej [10). These 

authors describe also a convenient experimental set up. 

2.6 Extended source 

We go back to a general axially symmetric lens (Section 2.1), and study the magnification of 
a source close to the symmetry axis, assuming that there exists a tangential critical curve at 
Xt ( m (xt) = xn. Let us first consider a point source near y = o. The lens equation (2.4), 

m(x) 
y=x - -x-' 

(
d )-l 

has two solutions close to the critical curve at x = Xt+Lix, x = -xt+Ax, where Ax= ~ y. 

Now, we have det Dr.p = !!. ddy , '#... = 1 - R ( x) with K ( x) = m~) ( = mean mass surface density 
x x x x 

within x). Thus 

I dX; I ldetDr.pl ~ 11- ~(±xt + Ax)l ldy/dxl::::: dx x, IYI 

and so the total magnification of the point source is 

(2.57) 

Now, we turn to an extended source with surface brightness profile I (y). Its magnification µe is 
generally given by 

f I (y) ~tp (y) d2 y 
µe = • I I(v)d2y 

(2.58) 
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For an a.xially symmetric lens in polax coordinates centered on a circular source with radius R a.nd 
brightness distribution I ( r / R), we have 

µe = 2n I (r / R) rdr rdr I (r / R) dcp 9
P • [ 100 ]-l 100 12ir (, 

o o o Jy2 + 1·2 + 2ry cos r.p 

Thus 
µe = ~( (y/R) (2.59) 

where 

( (u) = [n f
00 

I (x) xdx]-
1 

• ("I (x) xdx [" . dcp (2.60) 
lo lo lo Jt,2 +x2 +2·uxcoscp 

The function ( (u) is discussed in SEF, p.238. For a uniform brightness its maximum is at u = 0 
where ((0) = 2. At any rate, µe remains finite for y -+ 0. If one computes, as an exercise, µ.r;= for 
Schwarzschild lens, one finds, using (2.27), 

(2.61) 

2.7 Two point-mass lens 

This is an instructive non-axially symmetric lens model. It has also become highly relevant recently, 
because binary microlensing events (OGLE #7, DUO #2,. ..... ) have been discovered (see Fig. 
2.5). For several point masses M, at transversal positions ei the general formula (1.34) for the 
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Figure 2.5: Light curve of a binaty microlensig event (taken from R. Narayan and M. Bartelmann, Lectures 
on Gravitational Lensing, 1995 {111). 

deflection angle gives 

(2.62) 

N 
Let M = 'E Mi be the total mass and Mi = µ;M. For the length scale ~o we choose the Einstein 

i=l 
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Figure 2.6: Imaging of extended sources for the two point- mass lens with lens separation 2x = 1.0. The 
inserts :;how the isophotes of a circular source, together with part of the caustic. The dashed line is the 
critical cur ve. Depending on the source position , t he images can have vastly different shapes (taken from 
SEF, p. 263). 

radius (2.21) fo r t he t otal mass. Then the lens map becomes 

N 
"' / li y = X - L.J 2 (x - Xi) , 
i=l Ix - xii 

(2.63) 

where X i = t,,;,/f,0 . 

Even for the two point-mass lens the analysis of this map is fairly complicated. Fig. 2.6, 
taken from SEF (p. 263), is very instructive. Depending on the position of the source relative to 
the caustic, the image shape varies strongly. If the source lies completely inside the caustic, five 
separate images are produced (one is very close to the line connecting t he two masses). The two 
images close to the critical curve are highly elongated and p oint towards each other. In (b) the 
source lies on a caustic and this leads to the formation of images with internal structure, because 
the inner isophotes still have five separate images, while those which cross the caustic have fewer. 
More complicated images are formed (c) close to a cusp. You should have a careful look at the 
figure. 
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Figure 2.7; Light curve of the first binary microlensing event, OGLE # 7 (taken from the OGLE web 
page http:// www.astro.princeton.edu/ stanek/ ogle/}. 
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Figure 2.8: Binary microlensing event (taken from MACHO Collaboration web page 
http://da.rkstar.astro.washington.edu). 



Chapter 3 

Lensing by galaxy clusters 

Clusters of galaxies show two types of lensing phenomena (see Fig. 1): 

(i) Rich centrally condensed clusters produce sometimes giant arcs when a background galaxy 
happens to be almost aligned with one of the cluster caustics (strong lensing). A famous case is 
thG circular shape arc in 012244-02, shown in Fig. 3.1, which ext.ends over more t.han 100°. 

(ii) Every cluster produces weakly distorted images of a large number of background galaxies 
(weak lensing). A beautiful example is Abell 2218 (Fig. 1) . 

Figure 3.1: Giant arc in CJ2244-02 (ultra- deep B image from CFHT). The lensing cluster is at z == 0.329 
a.nd the source of the arc is a very distant field galaxy at z = 2.238. The stellar content seems normal. 
(Courtesy of G. Soucail, Obs. Midi-Pyr~ntle.s, ESO Messenger 69, September 1992.) 

For the analysis of giant a.res, we have to use (unfortunately) parametrized lens models which 
are fitted to t.be observational data. The situation is much better for weak lensing, because there 
now exist several parameter-free reconstruction methods of projected mass distributions from weak 
lensing data. (For a review, see [29].) In this chapter I will concentrate on this topical issue, and 
providG some of the theoretical background. 
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3.1 Strong lensing by clusters 

Strong lensing occurs when in the central region!: (~) becomes larger than the critical surface mass 
density (1.45). In the ideal case of an axisymmetric mass distribution and a source right behind 
the Jens' center, the deflection angle becomes 

0 ( B) = 4G M (< 0) 
c2 Dde 

(3.1) 

(see (1.36)) , and the lens equation (1.43} reduces to 

BDs = & (8) Dds• (3.2) 

These two equations give 
(3.3) 

The radius Oare of a large arc gives an estimate of the Einstein radius of the cluster and {3.3) for 
B = Bare provides an estimate of the mass enclosed by the arc, if we know the redshifts of the lens 
and the source. Even if no ring- shaped image is produced, a mass estimate with this procedure 
is useful and often surprisingly accurate. For example, a quadrupole image system, such as the 
"Einst.ein cross" (QS02237+0305) allows one to trace approximately the Einstein "circle" and a 
mass estimate can be obtained with (3.3). This is, however, only the first step. For extended 
sources detailed modellings have been made making use of elaborate techniques. (See, e.g. [12], 
and references therein. ) 

One can also get a simple estimate of the velocity dispersion a., by using (2.49), i.e., 

I ; 

av~ 103 km s-
1 
(:;,) ~ (i,~J (3.4) 

Table 1 lists masses, mass- to- blue-light ratios, and velocity dispersions of three clusters with 
prominent arcs. Further results can be found in the review article by Fort and Mellier [13J. 

Let me emphasize the limitations of all this. First the analysis is model dependent and one 
determines the mass only inside a cylinder of the inner part of a lensing cluster. 

As a historical footnote, I should add that the discovery of arcs was a surprise, because people 
thought that clusters are not compact enough to produce critical curves. This was based on 
estimates of core radii from X-ray observations of the intercluster gas which came out larger than 
required for critical cluster. This discrepancy between core radii :5 30 h-1 kpc inferred from arcs 
and the results of X-ray imaging has been discussed a lot, and various explanations have been put 
forward (see, e.g., Ref. (14]). 

Generally speaking, the dark matter and hot gas density profiles do not have to follow each 
other. In particular, an isothermal X-ray gas in hydrostatic equilibrium may develop a flat core 
well outside the radius where giant arcs form. Several reasons, like projection effects, have been 
suggested to explain the apparent discrepancies [15], [16]. 

Another interesting result is worth mentioning. Numerically generated cluster mass profiles by 
Bartelmann, Steinmetz and Weiss [17] show that the probability for forming arcs in these clusters is 
substantially higher than that of more symmetric mass profiles with the same mass. Asymmetries 
and substructure increase the total length of the caustic curves. This is probably related to the 
fact. that the shear is increased by substructure, implying that critical curves can occur also in 
regions where "'is less than unity (see (18]). 

A remarkable phenomenon is the occurrence of so-called radial arcs in galaxy clusters. These 
are radially rather than tangentially elongated, as most luminous arcs are. They are much less 
numerous (examples: MS 2137, Abell 370). Their position has been interpreted in terms of the 
turnover of the mass profile and a core radius ....., 20 h-1 kpc has been deduced, quite independent 
of any details of the lens model. There are, however, other mass profiles which can produce radial 
arcs, and have no fl.at core; even singular density profiles can explain radial arcs (19]. Such singular 
profiles of the dark matter are consistent with the large core radii inferred from X- ray emission 
(see [14]). 
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Table l: Masses, mass-to-blue-light ra.tios, and velocity dispersions for three clusters with prominent 
arcs. 

Cluster 
A370 
A2390 
MS2137-23 

"' 10111 

,...., 1.5 x 1014 

"'5 x 1013 

M/Ls (solar) 
""'200 
,.., 120 
IV 250 

,.., 1550 
,.., 1250 
,..., 1100 

3.2 Mass reconstruction from weak lensing 

There is a population of distant blue galaxies in the universe whose spat ial density reaches 50-
100 galaxies per square arc minute at faint magnitudes. The images of these distant galaxies are 
coherently distorted by any forground cluster of galaxies. Since they cover the sky so densely, the 
distortions can be determined statistically (individual weak distortions cannot be determined, since 
galaxies are not intrinsically round). Typical separations between arclets are ,.., (5 + 10)" and this 
is much smaller than the scale over which the gravitational cluster potential changes appreciably. 

Initiated by an influential paper of Kaiser and Squires [20}, a considerable amount of theoretical 
work on various para.meter-free reconstruction methods has recently been carried out [21} (22}. The 
main problem consists in the task to make optimal use of limited noisy data, without modeling 
the lens. 

Parameter-free inversions can most simply be described by making use of a complex formulation 
of lensing theory. In this formalism, the relevant equations emerge almost automatically [23]. I 
will describe this in detail in Chapter 5. In what follows, I shall, however, only use what we have 
learned in the previous sections. 

3.2.1 Relations between mean convergence and reduced shear 

The reduced she ax g, introduced in Section 1. 7, is in principle o bserva.ble over a. large region. What 
we are really interested in, however, is the mean curvature it, which is related to the surface mass 
density by (1.44). Since by {1.77) 

'Y g=---
1-K. 

we first look for relations between the shear "I and "'· 
Recall that 

1 
71 = 2 ('l/J,11 -1/J,22) :::: Di'I/!, 

where 

Note the identity 

Hence 

/::::.K, = 2 L Di'Yi· 
i=l,2 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

Here, we can substitute the reduced shear, given by Eq. (3.5), on the right for 'Y· This gives the 
important equation 

f::::.1t = -2 L D.:[g; (1 - K)]. (3.10) 
~ 
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For a given (measured) g this equation does not determine uniquely "'' which is a famous mass­
sheet degeneracy (a homogeneous mass sheet does not produce any shear). For a given g , Eq. 
(3.10) remains invariant. under the substitution 

K -+ Alt+ (1 - >.) ' (3.11) 

where>. is a real constant. 
Eq. (3.10) can be turned into an integral equation, by making use of the fundamental solution 

1 
Q = 27r In lxl ' (3.12) 

introduced in (1.37). One solution of (3.9) is 

{3.13) 

with a real constant "'<>· The most general solution corresponds to i'l-0 replaced a.ny harmonic 
function. For physical reasons, this function must, however, be bounded, and it is a constant. 
Replacing "'( again by the reduced shear, we obtain an integral equation for x,. We write this in a 
different form by noting that 

(3.14) 

Since 

we obtain from (3.13) 

(3.15) 

and thus the int.egral equation 

1 1 "'= "-0 - -Vi* [g1 (1 - K)] - - V2 * (92 (1 - K.)]. 
7r 1T 

(3.16) 

Eq. (3.15) appears the first time in [20]. The integral equation (3.16) has been used, for instance, 
in [22] for nonlinear cluster inversions. 

Note also 
v It = ( x;,1 ) = ( t ( 1/1,111 + 1/J,22i) ) = ( 1'1,1 + 1'2,2 ) . 

x;,z 2 ( 'l/J,112 + 1/;,222) 1'2,1 - 1'1,2 
(3.17) 

This expression for the gradient V K in terms of the shear has been translated by Kaiser [24] into 
a relation involving the reduced shear. 

We proceed as follows. Let K = ln (1 - K), then 

(3.18) 

In addition, we have . 

and thus, with (3.17), 

01K = 8n1 + fh')'2 = - (1 - x,) (8191 + 8292) + 91011\'.. + g2/3zK.. 

Hence, we have 
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Similarly, 
81K. {hK 

- 92-
1

- + (1+9i) -
1

- = -0192 + fhg1. 
- K. -K 

The left hand side of this linear system for 'VK./ (1 - K) is given by the matrix 

M == -gz ) 
l + g1 ' 

with the inverse 
M_1 == l ( l + g1 

l-9f-g~ 92 

This, together with (3.18), gives 
VK =u, 

where 
1 ( 1 + Ut 92 

u = 1 - g~ - g~ 92 l - 91 

In principle, the gradient of K = In (1 - K.) is thus observable. 
As was emphasized earlier, this can be done only statistically. by determining 

'Y/ (1 - K) > (for K. << 1, (g) ~ - < "( >). 

3.2.2 Practical difficulties, examples 

35 

(3.1 9) 

(3.20) 

(3.21) 

(3.22) 

(g) - < 

In practice, there are several difficulties that complicate the application of the inversion formulas 
derived so faI". I do not have to tell astronomers that atmospheric turbulence causes images to 
be blurred and thus circularize elliptical images ta.ken by ground- based telescopes. On the other 
hand, anisotropies of the point- spread function can introduce spurious ellipticities. These effects 
have to be taken into account with high precision. 

Another difficulty is that. reconstruction equations of the type (3.15) and (3.16) involve con­
volutions over the entire plane. Real lensing data are, however, always confined to a finite field 
of the sky. For this reason, it is important to find integral formulas in which only integrations 
over bounded domains occur. This is possible [22] 1 as I show in Chapter 5, by using the complex 
formulation. 1 

1 In an ideal world (without measuring errors) equation (3.21), 

VK =u, (3.23) 

(with u given by (3.22) in terms of the reduced shear) can be solved in various ways. For instance, by taking the 
divergence, we get 

t:.I< = V · u inside n, (3.24) 

and by taking the scalar product of (3.23) with the outward unit normal n on en, we find for the normal derivative 

8K 
- = n . u on an. (3.25) au 

Equations (3.24) and (3.25) constitute a Neumann boundary problem for[(, which determines K up to a constant. 
There are efficient and fast methods for a numerical solution of the Neumann problem. 

In reality, however, the vector field u comes from noisy obsorva.Lional data, and hence wi ll not be a gradient field . 
We can, of course, consider a decomposition of uCobs.) into a gradient and a rotational pa.rl, 

(3.26) 

but this is not unique on n. The question is which V f<. should be identified with V K. 
The rotational pa.rt in (3.26) is due to noise and we naturally impose the condition that its mean over n vanishes. 

(It should , of course, also vanish if u is a.lrea.dy a gradient field.) By Gauss' theorem, this condition is equivalent to 

f SC:ij"njdl = 0. 
lan 

A sufficient condition for this is s !Bo = canst. (use againt Gauss' theorem). Then we have besides 

AK = V . u Cobs.) 
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Once the mean curvature K (x} has been reconstructed , we would need red shifts of the source 
galaxies. These are, however, not available. The induced uncertainty is not. very seriom; for low 
redshift clusters, because the influence becomes weak if the sources are at much higher redshifts 
than t.ha cluster. (Note that the relation between "' and 2: involves the ratio D8 / Dr1,6 .) For a 
detailed discussion of including the redshift distribution> see [26]. 

The mass- sheet degeneracy is broken also if we have information, for instance, on thA magnifi-

cationµ, since this t ransforms as µ-t µ/>.2 under (3.11); use -y -+ A'Y andµ. = [ (1 - K.}2 
- -y2r1

. 

The magnification is accessible on a statistical basis by comparing the sizes of galaxies in cluster 
fields with those of galaxies of equal surface brightness in empty fields, or by the change in number 
density of galaxies. 

We now give some results on cluster reconstructions from weak lensing data. 
A typical example is shown in Fig. 3.2. On the left one sees a HST image of the cluster Cl0024, 

overlaid with the shear field obtained from an observation of arclets with the CFHT [27}, and on 
the right the reconstructed surface-mass density from the shear field [28]. This reconstruction was 
obtained with the help of a non- linear, finite- field algorithm (see also the review (11]). 

Figure 3.2: Shear field and surface-mass reconstruction of Cl0024 (taken from R. Narayan and M. Bartel­
ma.nn, Lectures on Gravitational Lensing, 1995 [11]). 

3.3 Comparison with results from X-ray observations 

Beside the lensing techniqua, there are two other methods for determining mass distributions of 
clusters: 
1) The observed velocity dispersion, combined with the Jeans-equation from stellar dynamics (Eq. 
(2.39)) gives t he total mass distribution, if it is assumed that light traces mass. 
2) X-ray observations of the intracluster gas, combined with the condition of hydrostatic equilib­
rium and spherical symmetry leads also to the total mass distribution as well as to the baryonic 
distribution. 

also 
ak - = n . u (ob•.), 
on 

because n;e;;l1Ji; = 0 (Vs is parallel to n). 
These considerations led Seitz and Schneider [25] to identify VI< with t he solution of the Neumann problem 

(3.24), (3.25) with the experimental (noisy) data u(obo.) . For tests of t he method, see t heir pa per. 
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This second method is very topical and will also play an important role in future developments. 
It may, therefore, be appropriate to remind you of the main points. If the hydrostatic equilibrium 
equation for the hot gas 

dPg GMt (r) 
dr =-pg r 2 

is combined with the ideal equation of state P9 = (knTg/µmH) pg, one easily finds for the total 
mass profile 

M ( ) kBT9 (dlnp9 dlnT9 ) tr=-- -- ---+-- r. 
G1;mH dlnr dlnr 

(3.27) 

The right hand side can be determined from the intensity distribution and some spectral informa­
tion. (At present, the latter is not yet good enough, because of relatively poor resolution, which, 
however, will change with the XMM survey.) Note, that we assumed spherical symmetry, and this 
can introduce substantial errors if the cluster is strongly elongated a.long the line of sight. 

Weak lensing, together with an analysis of X- ray observations offers a unique possibility to 
probe the relative distributions of the gas and the dark matter, and to study the dynamical rela­
tionship between the two. 

Let me show an example of such a comparison. The cluster of galaxies A2163 (z=0.201) is the 
hottest and one of the two most massive known so far. GINGA satellite measurements gave an 
X-ray temperature of,..., 14 keV and a X- ray luminosity of 6 x 1045 erg s- 1 . ROSAT measurements 
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Figure 3.3: The radial mass profiles determined from the X-ray and lensing analysis for Abell 2163. The 
triangles display the total mass profile determined from the X-ray data.. The solid squares are the weak 
lensing estimates "corrected" for the mean surface density in the control annulus determined from the 
X-ray data. The conversion from anguhu· to physical units is 60" = 0.127 h- 1 Mpc (taken from G. Squires 
et al., 1997 [29]). 

reach out to 2.3 ·1i- 1 Mpc (,..., 15 core radii). The tot.al mass is 2.6 times greater than that of COMA, 
but the gas mass fraction, "' 0.1 h-312 is typical for rich clusters. A2163 exhibits t,lte Sunyaev­
Zel'dovich effect. It is remarkable in the radio, having the most luminous and extended halo yet. 
detected. The galaxy distribution is irragular and extended , with very high velocity dispersions 
CT = 1680 km s-1

. All data together suggest that there was a recent merger of two large clusters. 
The optical observations of the distorted images of background galaxies were made with the CFHT 
telescope. The resulting lensing and X-ray mass profiles are compared in Fig. 3.3. The data sets 
only overlap out to a radius of 200" ~ 500 h-1 kpc t.o which the lensing studies were limited. It is 
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Figure 3.4: The ratio of lensing (strong and weak) and X- ray masses for those clusters for which a reliable 
and direct compa:rison of these values can be made. The ratios of the strong-lensing and X- ray masses 
are plotted as circles. Strong lensing results a.re only presented fox the cooling-flow clusters. Filled circles 
show t.he results obtained with the detailed lensing models and open circles the results from the simple, 
spherically-symmetric lensing models (which are only used when results from more detailed modelling are 
not available). The weak-lensing results are plotted as triangles (taken from S.W. Allen, 1997 (301). 

evident that the lensing mass estimates are systematically lower by a factor of ~ 2 than the X-ray 
results, but generally the results are consistent with each other, given the substantial uncertainties. 
There are reasons that the lensing estimate may be biased downward. Correcting for this gives the 
results displayed by open squares. The agreement between the lensing and X-ray results becomes 
then quite impressive. The rate and quality of such data will increase dramatically during the 
coming years. With weak lensing one can also test the dynamical state of clusters. By selecting 
the relaxed ones one can then determine with some confidence the relative distributions of gas 
and da.rk matter. One should also select those cases for applying the Sunyaev-Zel'dovich effect in 
determining Ho . 

In addition , it will become possible to extend the investigations to super clust.ers scales, with 
the aim to determine the power spectrum and get information on the cosmological parameters [29]. 
An interesting comparison of mass measurements for clusters of galaxies using ASCA and R.OSAT 
X- ray data and constraints from strong and weak gravitational lensing has recently been made by 
S.W. Allen [31). He showed that for cooling-flow clusters, which are the more dynamically-relaxed 
systems, the X-ray and strong gravitational lensing mass measurements show excellent agreement, 
while for the non-cooling-fl.ow clusters, the mass determined from the strong lensing data exceeds 
the X-ray value by factors 2 ~ 4. On larger spatial scales, comparisons of the X- ray mass results 
with measurements from weak gravitational lensing show excellent agreement for both cooling-flow 
and non-cooling-flow· dusters. 

A summary of these comparisons is shown in Fig. 3.4, which however does not contain the 
strong lensing data for the non-cooling-flow clusters, since the hydrostatic equilibrium is not 
expected to hold for these non-relaxed systems. For more information, I refer to the original paper 
[31] and [32]. 



Chapter 4 

Extensions to a cosmological context 

So far, we considered only almost static, weak localized perturbations of Minkowski spacetime. In 
cosmology the unperturbed spacetime background is given by a Robertson- Walker metric, and this 
induces various changes in our previous discussions. Fortunately, the final results for the lens map 
and the time delay look practically unchanged. As it turns out, we only have to insert some obvious 
redshift factors and interpret all distances as angular diameter di8tances, which is presumably, not 
really surprising. 

4.1 Lens mapping in cosmology 

I now describe in more detail the relevant modifications. Let me recall (1.66) (for c = 1) 

( )

2 
DdDs e 11 A 

t:..t = -- - - - -1/J(~) +const. 
2Drts Dd Ds 

Note tbaL ( f - {/;) = (9 - (3). This was the time delay for an almost Newtonian situation. 
If the clistances involved are cosmological, we must multiply the whole expression by the redshift 
(1 + zd) of the lens. In addition all distances must be interpreted as angular diameter distances. 
A systematic derivation is given in the appendix 4.5 to this chapter. Our st.arting point is thus 

(4.1) 

Tha prefactor of the first terms is, clearly, proportional to 1/ Ho (Ho is the present Hubble param­
eter). We shall come back to this. 

For cosmological applications, it is convenient to rewrite the potential term slightly. Using the 
length scale fo = Dd in (1.65), as well as (} = ~/ Dd, we have 

where R,, = 2G M is the Schwarzschild radius of the total mass M of the lens, and 

{; (9) = j d2flfJ (O') ln IO - O' I, (4.2) 

with 

(4.3) 

This quantity gives the fraction of the total mass M per unit solid angle as seen by the observer. 
We can now write ( 4.1) in the form 

.6.t = ~(0, {3) +const, (4.4) 
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where¢ is the cosmological Fermat potential 

(4.5) 

I should probably stress that in cosmology Ds f:. Dd + Dd$ (space-time is curved). 
It is elementary to work out the angular diameter distance D (z1, z2) between two events at 

red shifts z1 and z2 (z1 < z2). For a Friedmann-Lemaitre model with density parameter 0 0 and 
vanishing cosmological constant A, one finds 

(4.6) 

where 

R ( ) 
_ Doz - no + 2 

1 z - 2 1 

(1 +z) 
n ( ) _ v'noz + 1 

2 z - 2 
(1 + z) 

(4.7) 

The formulas (4.4-7) provide the basis for determinations of the Hubble parameter with gravita­
tional lensing. Some results will be presented later. 

From (4.5) we obtain the cosmological lens mapping using Fermat's principle, which implies 
that 8¢/80 = 0. This gives 

Drl.s 8~ 
{3 = 9 - 2Rs Dt1Ds ao· 

For comparison, we write this also in terms of { = Dc1.9, '11 = Dsf3 and 

(4.8) 

& (e) = 2Ra a{l (4.9) 
Dd 88 

as 

(4.10) 

This looks identical to (1.41), but with the present meaning of the symbols it holds for arbitrary 
redshifts. 

Consider two images at the (observed) positions (Ji , fh, with separation 8 12 = 91 - lh and 
time delay 6.t12 . From the lens equation (4.8) we obtain 

Dd,. [ 8-if; I a;j; I l 
8 12 = 2Rs DctDs 89 81 - {)(} 92 . {4.11) 

The time delay .6.t12 = ¢( (} 1,(3) - ef>( 62, (3) contains the unobservable angle (3, but this can be 
eliminated with the lens equation (4.8) and ( 4.11): 

(4.12) 

Given a model (i.e. E(O)), then (4.11) gives a relation 

dimen1ionleu quimtities 

and (4.12) relates .6.ti2 directly to Rs (D, Ho, Zs do not appear). 
The combination of the two gives Rs and Ho for given n, Zd, Zs· Fortunately, the dependence 

on n is in practice not strong. 
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Illustration 

Consider the simple case of a point source lensed by a point mass (Schwarzschild lens). Then 
·;fi(O) = ln IOI and (4.11) gives 

impliying 

101821==2Rs ~~8 • 
On the other hand, equation (4.12) becomes 

At12 ~ 2Rs(l + Zd) { ~ ( ;
1 

+ :J 812 - (In 181' - ln IB:·d)} 

= 2Re(1 + Zd) { ~10~0:r + ln I:: I} . 
We write this in terms of the ratio v of the magnifications. Using (2.26) one finds 11 = Jn(B2 /01) 2 

and thus 

4.2 Hubble constant from time delays 

The first term in (4.5) is proportional to H01 (see (4.6)). As first noted by Refsdal back in 
1964, time delay measurements can yield, in principle, the Hubble parameter. (Note that the lens 
equation is dimensionless and does thus not provide any constraint.) 

Unfortunately, the use of (4.5) requires a reliable lens model. This introduces systematic uncer­
tainties. Beside that and Ho, the cosmological Fermat potential involves the density parameter n0 
(see (4.6,7)) and A (set equal to 1,ero in (4.6) a.nd {4.7)). The dependence on Do and A is, however, 
not strong, at least in some redshift domains (z8 ~ 2, Zd ;S 0.5). 

Table 4.1: Observed a.nd predicted uncertainties in the time delays between images in four gravitation­
ally lensed systems with most secure measured time delays. The best estimate for the Ho is quoted in the 
first three cases. 

Lens system Al/t observed At/t predicted best estimate of Ho 
Q0957+561 1 10 61 
PG1115+080 10 15 53 
B0218+357 25 30 70 
B1830-211 20 ? ? 

There is, of course, also the astronomical problem of measuring the time delay. This is not straight­
forward, as the history of the famous double QS00957+561 demonstrates. This quasar has been 
monitored since 1980 both in the optical and radio wavebands, but conflicting claims for At have 
been made. Soine of the difficulties are: (i) the QSO has not varied strongly, (ii) some of the 
variability is due to microlensing; (iii) from the ground the QSO is observable only for 8 months 
a year at optical telescopes (this does not apply to radio observations, but in practice there are 
also gaps, as a. result of changing configurations of the VLA). Fortunately, the time delay for 
QS00957+561 is now well known: At = 417 ± 3 days {33). Modelings gave the best estimate, 
Ho ~ 61 km s-1 Mpc- 1. For this example there are constraints for modeling the lens. For exam­
ple, VLBI images show a core and a radio jet with five blobs, each of which is also doubly imaged. 
These constraints are really needed, because the lens consists of a galaxy plus a. parent cluster 
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and hence requires more parameters for even minimal modeling. 1 It is difficult to assess an error 
for the value of Ho. Another example is the Einstein ring system B0218+357. A single galaxy is 
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Figure 4.1: Lightcurves of the two images of the gravitationally lensed quasar Q0957+561. Note the 
sudden decrease of image A at the beginning of the 1995 season (taken from T. Kundic et al., 1997 131]). 

responsible for the small image splitting of 0.3". The time delay was reported to be 12 ± 3 days and 
the value Ho"" 70 km s-1 Mpc- 1 was deduced (34]. Further results became known morn recently 
(see Table 4.1; taken from (35).) The ongoing CLASS survey will hopefully uncover new lenses 
that possess the desirable characteristics for a reliable determination of H0 • Having discussed the 
problems, I should also mention the advantages of determining Ho through gravitational lensing 
over other methods: 
(i) The method can be used for large redshifts("' 0.5). 
(ii) It is absolutely independent of any other method. 
(iii) It is based on fundamental physics, while other methods rely on models for variable stars 
(Cepheids), or supernova explosions (type JI), or empirical calibrations of standard candles (Tully­
Fisher distances, type I supernovae). We repeat, however, that a parametrized lens model is 
required. 

4.3 Bounds on the cosmological constant from lensing statis­
tics 

The volume per unit redshift of the universe at high redshifts increases for a large A. This implies 
that the relative number of lensed sources for a given comoving number density of galaxies increases 

1 Note that the image positions depend on the derivatives of the potential, while the potential itself determines 
the time delays. Reconstructing the potential from a small number of derivatives is an ill-posed problem. 
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Figure 4.2: The lightcurve of image A of Fig. 4.1 is advanced by the optimal value of the time delay, 417 
days (taken from T. Kundic et al., 1997 [31]). 

rapidly with A. This can be used to constrain A. by making use of the observed probability of 
lensing. Various authors have used this method and came up with a limit ni\ ;S 0.6 for a universe 
with 0 0 + nA = 1. It remains to be seen whether such bounds, based on lensing statistics, can be 
improved. 

Let me now add a few details. The mentioned volume increase can be seen by looking at. the 
angular distance D (z; no, >.o) . For !to + >.o = 1 this is given by: 

1 l:: dz' 
HoD(z) = -- -======= 1 + z 0 Jno (1 + z')3 + (1 - no) 

(4.13) 

In Fig. 4.3, one sees how D 6 (z) varies with varying cosmological parameters. For the same four 
cases, Fig. 4.4 shows the (normalized) probability of a beam encountering a lens for a source at Zs 

j36l . This is obtained as follows. Let <:T be the cross section for "strong" lensing, taken to be 7rR2E:, 
where R5 is the Einstein radius. For a singular isothermal lens this is (see (2.46)) 

<r = 16rr3 (<r;) 
4 

( D~~d) 
2 

(4.14) 

The optical depth for a beam of light from a source (zs) due to lensing is, using nd (z) = 
nd (0) (1 + z)3 = number density of defiectors, 

r (z6 ) = t· n4cadt = t• nd (0) (1 + Zd) 3 ucddt dzd. lto Jo Zd 

From the Friedmann Eq. one obtains (-\o :: n,..) 
1 1 ~ 

cdt=--- . 
Ho (l + z) Jn0 (1 + z)3 + (1 - O.o - >-o) (1 + z)2 +.Ao 

( 4.15) 
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Figure 4.3: Angular diameter distance (Da) as a function of redshift (z) (in units of Ro= c/Ho). The 
four cases A- D correspond to: .Qo = 1, flA = 0 (A), no = 0.1, Oh = 0 (B) , flo = 0.1, n,.. = 0.9 
(C), S1o = 0, flA = 1 (D) (t a.ken from M. Fukugita, T. Futamase, M. Kasai and E.L. Turner, 1992 [34)). 

Thus 

Exercise 

Equation (4.16) reads 

where 

1 t· (1 + z)2 

r(zs) = nd(O) Ho Jo a-(z) E(z) dz, 

E 2(z) = no(l + z)3 + (1 - no - nA)(l + z)2 + nA· 

Let 7"Adllcinl be the result for no = 1, nA = 0 and show that for a singular isothermal lens 

r(zs) = 15 [l - 1 J-3 t· (1 +z)
2 

H 2 (D11(0,z)D11(z,zs) )
2 

dz. 
rfld 4 Jl +Zs Jo E(z) 0 DA (0, Zs) 

The result is plottet in figure 4.4. 

Solution 

Recall: 

Thus 

Dds a(ts)S(xs - Xd), 

Dd = a(ta)S(xJ), 
Ds = a(ts)S(xs)· 

(4.16) 
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Figure 4.4: Probability for observing a. gravitational lens, as contours in t he (!'lM , n .... ) plane, normalized 
to unity for the case !'lM = 1, ~h = 0. 

The optical depth r for a singular isothermal lens (cross section (4.14)) can be written as follows. 
Start from the equation below (4.14): 

r = j nct(O) (1 + Z<1)3 er dtd , 
.......___, '-v-' 
(a.o/.i(td))S a (t,}dXd 

where a= rr&2(DdsDd/ Ds) 2 with & = 4rr(av/c)2
, to find 

_ {x. (O) a ~z(S(xd)S(xs - Xd) ) 2 d 
T - f o n.t aQ11'a S(Xs) Xd· 

For the fiducial case k = 0, nM = 1, ~h = 0 we have S(x) = x and 

Hence, 

and with dx = ao1Ho Etz) dz 

..::._ = 15 (i - 1 ]-
31"'• (1 +z,)

2 
[HoDA(O,z)HoDA(z,z,) ]

2 
dz . 

r 6d 4 J[+"Z; 0 E(z ) HoDA(O,zs) 
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In Fig. 4.5, the cross section ( 4.12) has been chosen, in which the D's were taken to be 
the angular distances ((4.11) for !10 + ..\0 = 1). There is actually a problem as to which of the 
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Figure 4.5: Normalized optical depth (see text; ta.ken from M. Fukugita., T. Futamase, M. Kasai and E.L. 
1\1rner, 1992 [34)). 

redshift-distance relations is the relevant one. This is associated with the fact that the light 
propagates through an inhomogeneous spacetime, rather than the averaged smooth Friedmann­
Lemaitre spacetime; the light rays thus feel the local metric. This point has been discussed a Lot 
and causes a significant uncertainty. Various choices have been used in (36). The main out.come 
of this investigation was, that the cosmological constant, if it dominates over the mass density, 
increases the optical depth greatly (Fig. 4.4), and that its effect is much larger than the uncertainty 
arising from the choice of the redshift-distance relation. 2 (I guess that Monte-Carlo studies are 
needed to reduce this inherent uncertainty.) Fl:om r (zs) one can predict lensing frequencies if 
the redshift distribution of quasars is known. In (36) a detailed discussion of the uncertainties, 
both theoretical and observational, is given. An observational problem is that quasar samples arc 
needed which are homogeneous surveys for lenses. So far, in practice there are biases against lens 
images with certain 6.8. 

Another interesting quantity is the mean image separation 6.8 (zd) at a given Zd, and its average 
over the lens redshift distribution: 

( 4.17) 

Consider, as an example, again a singular isothermal lens sphere. From the discussion in Section 

2.3, we know that the lens produces two images for f3 < f3crit = 4rr(:11 )2 ~dss = & ~:8 • The 

separation 6.x = 2 translates into 

All= 2(3 . = 2 47TO~ Dds 
uu crit 2 D · c s 

Since this is independent of the impact parameter, the right hand side is the value of 6.6. Thus 

~ 4 ((J'11 )2 
a= 7r 7 . ( 4.18) 

2The para.meter Fin Fig. 4.4 is defined by F = 1611'3nd (0) (u.,/c)4 (c/ Ho)3 and is a measure for the effectiveness 
of matter iu producing double images. 
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It turns out [36), that the image separation is relatively insensitive to the choice of the cosmological 
parameters (and to the choice of the distance formula). 

As an exercise, compute < 6.B > for flo + nA = 1. The result is 

< 60 >= &. (4.19) 

It has been pointed out by several authors, that the mean separation does become sensitive to A, 
when it is used together with other information (lens redshift, lens magnitude, velocity dispersion 
oflens galaxy). For a recent paper {with references) see [37]. These authors compare the theoretical 
prediction of the critical radius Bcrit as a. function of Z 8 , Zd, and the apparent magnitude, mtt, of 
the lens with observations of elliptical (field) galaxies acting as strong gravitational lenses. 

For the function Bcrit (zd, Zs, md) they use the singular isothermal model, for which we found 

In addition they make use of the Faber- Jackson relation 

Besides this, use the fact that the angular diameter distance D is related to the luminosity distance 
Dtv.m by D = Div.ml (1 + z)2

. Introducing now the magnhudes 

L/L,,. = 10- l<M-M. ), m - M = 5log10 (D1um (Mpc)] + 25, 

one gets 

(4.20) 

To this one has to add the /(- correction and an evolutionary correction. Fig. 4.5 below shows the 
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Figure 4.6: Bcrit - z relation for two gravitational lenses HST14156+5226 and HST12531-2914 (see text; 
ta.ken from M. Im, R.E. Griffiths and KU. Ratna.tunga., 1997 !35]). 
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Bcrit - z relation for the strong gravitational lens system HST12531-2914 and HST14176+5226, 
adopting the parameter.s a.,,.,f3 , etc. described in the pa.per, and two choices of the cosmological 
parameters. As one can see, Bcrit is quite sensitive to A for sufficiently large redshifts z8 • The 
measured values of Ocrit are also shown. Unfortunately, the redshifts of the two sources are not 
known. There are, however, other good examples where Zs is known. On the basis of a likelyhood 
analysis of seven strong lenses, satisfying certain selection criteria, the authors come up with the 
result 

('\ - 0 64+0.15 
HA - · -0.26 1 for 

Stronger contra.ints should become possible with future HST observations when new lens systems 
with measured values of zd, md, Zs are discovered. For a discussion of the intrinsic systematic 
uncertainties, I refer to the quoted paper. 

4.4 Updates 

4.4.1 Statistics of strong gravitational lensing of distant quasars by 
galaxies 

I discuss here mainly a recent re-analysis of M. Chiba and Y. Yoshii [38}; see also Yu-N. Cheng 
and L. M. Krauss [40]. 

We saw already that the number of mult.iply imaged QSOs in lens surveys is a sensitive function 
of nA. Observationally there are only a few lenses among hundreds of QSOs. 

The re-analysis (38] is based on an improved luminosity function (LF) of E/SO galaxies and 
updated knowledge of internal dynamics (velocity dispersions and light profiles). It turns out 
(as was known before) that spiral and irregular galaxies mal<e negligible contributions to lensing 
st.a.tistics. This may, however, be questioned, since spiral galaxy lenses have been found (e.g. 
B1600+34 in the CLASS sample). 

The lens model used by the authors is an isothermal sphere with finite core, 

2 (! 

p(r) = I 

27TG (r2 + r2 ) COl'O 

that we discussed brieftly in section 2.4 (see also (41]). 
For the number density of E/SO galaxies, the luminosity function </>9 in 

is parameterized in the form proposed by Schechter 

Such a Schechter function is also used for the quasar LF </>Q· 

(4.21) 

(4.22) 

(4.23) 

We are interested in the probability p(LQ, z,,) that a QSO with redshift Z8 and luminosity LQ 
is multiply lensed. This is given by the expression 

(4.24) 

where S is the selection function and the last fraction is the number of QSOs that are amplified 
tot.he luminosity LQ (magnification bias). 

The differential cross section is given by 21ride, where e = (Dd/ Ds)T/ is the impact parameter 
of the unlensed rays in the lens plane. The integration is restricted to f < e0(L0 , Zs), where fo is 
the critical e with 3-fold images for e < f..o. 

(Exercise: Determine eo as a function of a, rcore·) 
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The observational material and fitting procedure entering in (4.24) are described in the original 
paper [38). I discuss only some of the main results. Throughout, a flat cosmology (OM + nA = 1) 
is assumed. 

The upper plot of fig. 4.7 shows the results of model calculations with different LFs for the 
adopted surveys (about 900 QSOs at z. > 1 with 5 lensed cases). The three different lines for 
a particular LF (such as LPEM) correspond to three different values of a faint cutoff magnitude 
appearing in the parameterization. The lower figure shows the prediction of image~separation, 
compared with the observational histogram. 
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Figure 4.7: (a) Predicted total number of lenses n with t:::..8 ~ 4" in the adopted optical lens surveys, 
compared with the observed five lenses (thin solid line) . (b) Predicted image-separation distribution n(t:::..0) , 
compared with the observed image-separation distribution in the optical sample (histogram) and in the 
optical lenses (asterisks located at their respective separations ti.8). 

Fig. 4.8 gives the result of a maximum likelihood analysis for reproducing both the total number 
of optical lenses n with D..8 ~ 4" and the image separation n(D..8) of optical and radio lenses. 

These results are interesting, systematic uncertainties (galaxy luminosity functions, dark matter 
velocity dispersions, galaxy core radii) remain. Further observational work is required before 
reliable values for nM and nA can be obtained with this method. At the moment the LF based 
on the Stromlo-APM survey (LPEM) fits best, and a value nM ~ 0.3 is favored. This luminosity 
function has, however, recently been criticized by Kochanek et al [39). 
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Figure 4.9: Likelihood contour plots for fl.at cosmologies in the two dimensional parameter space (u•, Qo) , 
for the standard model using LPEM's LF with NI""\= -17mag. 

4.4.2 Statistics of arcs caused by clusters of galaxies 

Clusters with 0.2 ;S Zc ;S 0.4 are efficient lenses for background sources at z8 ....., l. For several 
reasons one can expect that the probability for the formation of pronounced arcs is a. sensitive 
function of nM and nA. First, it is well-known that clusters form earlier in low density universes. 
Secondly, t.he proper volume per unit redshift is larger for low density universes and depends 
strongly on A for large redshifts (see fig. 6 in [42)). 

An extensive numerical study of arc statistics has recently been performed by Bartelmann et 
al (43], while we have. studied this with semi-analytical methods [44, 45]. 

4.5 Appendix on Lens mapping in cosmology 

In section 4.1 the basic equation (4.8) was obtained by an educated guess. Below we give an ab 
initio derivation and also prove the time delay formula (4.4), (4.5). 
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The null geodesics of the perturbed Friedmann metric (in longitudinal ga.uge), 

g = a 2 (17) (-(1+2</>)d772 + (1 - 2¢)1] 

51 

(4.25) 

(')': metric for a space of constant curvature k = 0, ± I, </> «: 1), are, after a change of parameter, 
the same as for the conformally flat metric 

g = -(1+2<f>)drJ2 + (1 - 2</>)t (4.26) 

or 
g = -d112 + n 2

'"'(, n:::: 1 - 2</>. (4.27} 

Note that we have for g -(1 + 2</>)i/2 + (1 - 2¢hijXixj = 0 and (1 - 2¢)1]2 = const, thus 
"YiJXixj = 1 for an appropriate normalization of the affine pe:u-ameter. 

The ray orbits x'(s) thus satisfy the Hamiltonian principle 

o j n(x(s))V/'ijx'(s)i) (s)ds = 0. (4.28) 

The corresponding Euler-Lagrange equations are easily found to be 

xi+ r;kxj:i' = (In n)'i - (xk8k In n)xi , (4.29) 

where q,. denote the Crhistoffel symbols for the unperturbed metric 'Yi]. (The index on the right 
is raised with 'Yii.) 

This result also follows from the following exercise: Let x"(5.) be a. geodesic for the Riemannia.n 
metric [J with affine parameter 5. (91.w d;; ~ = 1): 

d2xJ• - 1, dxo: dxf3 _ 
- -- + rap---- - o. 
d>.2 d)... d>. 

(4.30) 

Consider the conformally related metric g, g = e2<Pg, and let)... be a new parameter with d5.jd>. = 
2¢ . e , 1.e., 

(4.31) 

1. Show that 
d2µ dcxd{j _x_ rµ. _::...._ _::...._ - 2¢ µv A. 
d)..2 + a/3 d>. d>. - e g '!',v (4.32) 

(r~13 : Christoffel symbols for g). 

2. Change>. t.o s, with 9µ,v d:: d::; = 1 and derive the equation 

rflx1• dx°' dxf3 (dxv ) dxJL 
ds 2 + I'~.e dS ds = g"v ¢,v - ds ¢,v ds · (4.33) 

Solution 

l. One finds readily 

Thus equation (4.32) is correct. 
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2. We find immediately (4.33) hy using 

dxli· 

d>. 
<12x'' 
d).2 

dx1' = e"' ­ds 

<1> !!.. ( "'dx
1
') _ 2"' [cl</>(:r;(s)) dx

1
' <i?x''] = e ds e ds - e ds ds + ds2 · 

In abstract notation, the orbit c(s) thus satisfies the equation 

V' cc = V' </> - (V' <:</>) c ::: V' .L <f>. 

(g(c,c) = 1). 

(4.34) 

For our problem § = n 2'Y, g = -y: standard metric of S3 , P 8 3 , R3 ; V': covariant derivative for 
'Yi 

(eq. (4.29)) 

or, with n = 1 - 2</>, 
(4.35) 

Consider now a bundle of light rays intersecting at the observer. Each of these rays is char~ 
acterized by the angles () it encloses with some fiducial ray (see Fig. 4.10). The angles 6 are all 
assumed to be small. 

fiducial 
ray 

~polar axis of unperturbed 
space (k == 0, :1:1) 

light ray with 
observing angles (} 

Figure 4.10: Situation under consideration. 

The metric 'Y is one of the standard coodrinates 

"I= dx2 + s(x)d0.2. 
{ 

sinx 
S(x ) = X 

sinhx 

For small angles (} we can approximate dfl2 of 82 by dB? + dB~, 

(k = 1) 
(k = 0) 

(k = -1). 
(4.36) 

(4.37) 

In this aproximation, the parameter s satisfies x = 1, up to quadratic terms. Neglecting such 
terms also in (4.29) or (4.35), we find 

(4.38) 

(This is best derived from (4.28).) 
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It is useful to write these equations also in term8 of Xi = S(x)O., We have 

xi S'(x)x.o, + s8, ~ s'x)Oi +soi, 
.ii = 2S'iJi + S"Oi + Sii;. 

Since S" + kS = 0 we obtain (up to higher orders) 

or 

.. k 1 (s20·)· 21 8</> Xi+ X; = S i = - S ()();, 

.. k 2 {)</J Xi+ Xi= - -
8 

· Xi 
We write this in two-dimensional vector notation 

<£2x 
dx.2 + kx = -2V Lif>· 
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(4.39) 

(4.40) 

For k = 0 this reduces to the basic equation (1.26). (From this one also obtains immediatfily the 
Jacobi equation.) 

Now, we proceed as in the appendix 1.8. Since S(x) satisfies 

S" + kS = 0, S(O) = 0, S'(O) = 1, (4.41) 

the distribution 
G(x, x') = S(x)B(x. - x') ( 4.42} 

is a fundamental solution for the operator cP/dx2 + k and thus we obtain for x(O,x) the integral 
equation 

x(O, x) = S(x)O - 2 fox S(x - x')V L¢(x(O, x'), x') dx'. (4.43) 

The first term on the right is the unperturbed homogeneous solution of (4.40). 
Under the integral we replace x(8, x') by the unperturbed solution S(x')O (weak lensing) 

x(8,x) = S(x)O- 2 fox S(x - x')V .L.ef> (S(x')O.x') dx_'. 

Note that this approximate solution satisfies, as it should, 

dxl =0 
dX x=O . 

Let TJ = x(O, Xs) for a source at x = X.s· From (4.44) we get 

TJ = S(xs)8 - 2 fox. dx'S(x - x') V L¢(u.p.) 

(4.44) 

(4.45) 

(where 'u.p.' denotes (S(x)O, x )). Setting 17 = S(x.a)f3 (/3: unperturbed position angles of the 
source), we can write this a.a 

1x. S(xd - x) 
~ = O - 2 dx S( , ) v L¢(u.p.). 

o Xa 
(4.46) 

The first factor under the integral is often slowly varying over the dimensions of the lens3 and can 
thus be replaced by the ratio Dds/ D6 of angular diameter distances 

3't'his is not true for weak lensing produced by large scale structures. Then one has to work with (4.46). 
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In this thin lens approximation we finally obtain 

{3 -(J D.tsA - --o:, 
Ds 

with 

~ = J tJ>(u.p .)dx. 

This agrees with (4.8}, as we now show. 
From the last two equations we obtain again 

i.e., 

Hence, 

V .L · & = 26..1,./fi = 2 J 6.J.tJ>(u.p.)dx = 2 J ~ dx ~ 8rrGEa{td), 

411Gpa2 (t) 

?j}(x) = 2G J ln Ix - x'la(ta)E(x') ~ 
s2(x.i)d29•=a-2(td)Da1flo1 

= a(!d) 2G J In 18 - 9'IE(Da8')d28' + "const" (indep. of 8). 

As a result, we finally get 
A 2 a~ 2Rs8~ 

0 = s(x") ao (S(xct)D) = Dd ao' 
where 

;/1(8) = J In 19 - 8'1 I:.(~;O') D~d26'. 
(4.47), (4.50) and (4.51) agree with the basic formulae (4.26), (4.27), (4.32) and (4.33). 

Exercise 

(4.47} 

(4.48) 

(4.49) 

(4.50) 

(4.51) 

Let 'Y be the standard metric on M = S3 , PS3 or JR3 • Let. c : I ~ M be a geodesic, and X a 
Jacobi field along c perpendicular to c. Write the Jacobi equation 

x + R(X,c)c = o, 
where X = 'VtX, etc., in terms of the components {i(s) of X relative to an orthonormal basis 
e1, ez orthogonal t.o i:, which is parallel along c. Result: 

(i + ke =a. 

Next, we derive the time delay formulas (4.4) and (4.5). For light rays we have dr,Z = 
n2'Yi;dxidxj, and thus the conformal light travel time is (as in (1.61)) 

(4.52) 

Here f is the path length measured with the unperturbed metric 'Yii. We show below that the 
corresponding conformal time delay, 6.'l]geom, is given by 

(4.53) 
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The last integral in (4.52) is~ = (R8 /ad);jJ. Therefore, t,he total conformal time delay (relative to 
the unlenseci situation) is 

(4.54) 

Since this is small in comparison to the Hubble time H01
, we have D.t = ao.6.ri. Using also the 

angular diameter distances 

Dd = adS (xd), Ds = asS (xs), Dds = a,uS(xs - Xd) , 

we obtain the important result which we guessed in (4.4) and {4.5): 

1 DdDs 2 -
D.t = 2(1 + zd) Dd.JJ (8 - {J) - 2Rs(l + za)t/J(8). 

Geometrical time delay 

We still have to show that for small & 

1 DdDs ( 2 
D.tgeom = (1 + Za)2 Drts 8 - {3) . 

(4.55) 

(4.56) 

(4.57) 

We give the proof for k = 0 in such a way that it can be translated verbatim to k = ±1 by using 
the corresponding cosine and sine theorems for spherical and hyperbolic geometries, respectively. 

deflection 

Figure 4.11: The geodesic triangle. 

We compute 

6.?faeom = CTds + CTd - CT,, 

of figure 4.11, and use afterwards D.tgeorn = ao.6.1Jgeom• 
The cosine theorem gives 

Thus (for small 0:) 

Hence, 

(4.58) 
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The sine theorem gives for small&, (8 - /3) 

Together we obtain 

2 

(8- f3)as = QO'ds-+ &2 = a2, (8- (3)2. 
flds 

.6.?Jgeom = rr2<Ws (8 - /3)2. 
O'd8 

Now, the angular diameter distances are fork= 0 

Inserting this gives {with ao/ad = l + Za) indeed (4.57). 

Exercise 

Translate the argument to the case k = 1 and show that 

A _ sin ad sin O's (8 (3)2 
w.'l}ge<>m -

2 
. - · 

Sill CTds 

For k = -1 one has to replace sin by sinh. 

(4.59) 

(4.60) 

(4.61) 



Chapter 5 

Complex formulation of lensing theory 

This chaptE>.r contains parts of my paper [23). What follows is the abstract. 
The elegance anrl 'IJ.Sejulncss of a complex formulation of the baJJic lensing equations is demon­

strated with a number of applications. Using standard tools of complex function theory, we present, 
for instance, a net11 pmof of the fact that the number of images produced by a regular lens is always 
odd, provided that the source is not located on a caustic. Several differential and integral relations 
between the mean curvature and the (reduced) shear are also derived. These emerge almost au­
tomatically fmm complex differentiations of the differential of the lens map, together with Stokes' 
theorem for complex valued 1- forms. 

5.1 Complex formulation 

In this section we translate the basic lensing equations into a complex formulation. It will turn 
out that this is not only elegant, but also quite useful, because ono can then apply various tool~ 
and techniques of complex analysis. This has also been noted before by other authors. 

5.1.1 Mathematical preliminaries 

We use standard notation when identifying JR2 with C, by writing z = x + iy for (x, y) E IR2 and 
dz = d.'l; + idy, dz = da; - idy for the corresponding basis of 1-forms. In terms of the WirLinger 
derivatives, 

a 1(a .a) 
Oz = 8z = 2 ox - i Oy ' (5.1) 

the differential of any smooth complex function f on C has the representation 

of &f _ 
df = -dz + - di. az 8z 

(5.2) 

We shall also write f z and f z for Ozf and 8zf, rt:spectivcly. A function f is holomorphic if and 
only if 8zf = 0. In terms of the Wirtinger derivatives, the Laplacian is given by 

(5.3) 

We shall make repeated use of Stokes' theorem for complex-valued differential forms on C (or 
an open subset of C): If n is a compact subset of C with a smooth boundary an, then for every 
complex differential 1- form w 

{ dw = { w. 
lo lan (5.4) 

An immediate corollary of Eq. (5.4) is the Cauchy- Green formula: For a smooth function f we 
consider 

dz 
w= f--, 

z -( 
(5.5) 
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and apply Stokes' theorem (5.4) for n minus an E- disk with center (. In the limit E ~ 0 we obtain 

f (() = ~ r f (z) dz + ~ r f :s (z) dz/\ dz. 
2ni Jan z - ( 2ni Jn z- ( 

For holomorphic functions th1~ second integral is absent. (Note that dz/\ dz= -2·idx /\ dy.) 
The dilatation or Beltrami coefficient 11 = v f of a smooth function f is defined by 

and this equation is also called Beltrami equation. Since the Jacobian 11 off is given by 

(5.6) 

(5.7) 

(5.8) 

we conclude that lvil < 1 if f preserves orientation and 111 = 0 if and only if f is conformal. For 
the interpretation of v 1 we consider the infinitesimal ellipse field by assigning to each z E C the 
ellipse that is mapped to a circle by f. As indicated in Fig. 5.1, the argument of the major axis 
of this infinitesimal ellipse is (7r + axg (v1 )] /2, and the eccentricity Eis 

- 11 .. 1 - 11~ 1 - 1 - 11111 
€- - . 

lf~:I + lhl i + lv1I 
(5.9) 

Solving the Deltra.mi equation (5.7) is then equivalent to finding a. function f whose associated 
ellipse field coincides with a prescribed v. We shall see that this is just the inversion problem in 
gravitational lensing. Weak gravitational lensing corresponds to quasiconformal maps. A smooth 
map f is k- confm""mal if its Beltrami parameter v f satisfies Iv 1 I :$ k < 1. Geometrically, this means 
that there is a fixed bound on the stretching of f in any given direction compared to any other 
direction. 

We now quote an existence and uniqueness theorem for the Beltrami equation. For a. fixed k 
with 0 < k < 1 let L00 (k> R) denote the measurable functions on C bounded by k and supported 
in {z E Cllzl < R}. 

Figure 5.1: Geometrical interpretation of the Beltrnmi parameter. 

Theorem: For v E ~00 (z, R), there is a complex function f on C, normalized so that f (z) = 
z + 0(1/z) at oo, with distributional derivatives .~atisfying the Beltrami equation f : = 11f.,, and 
such that b and f z - l belong to V for a p > 2 sufficiently close to 2. Any such f is unique. The 
sofotion f is ri lwmeomorphiJm of C, which is holormorphic on any open set on which v = 0. If 
v E C 1 and Vz E C1 • then f E C 1 . 

A proof of this theorem can, for instance, be. found in [46]. 
The reconstruction problem (for noncritical lensing) will lead to the inhomogeneous Cauchy­

Riemann equation 
8zf=h. (5.10) 
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In case the smooth function h has compact support, the Cauchy-Green formula (5.6) provides one 
solution: 

f (() = ~ r h (z~ dz /\dz. 
2?ri Jc z - ~ 

(5.11) 

Obviously, f is only detel'mined up to an additive holomorphic function. If the solution is assumed 
to be bounded, f is unique up to an additive constant. 

From Lhe solution (5.11) we see that (11'z) - 1 is a fundamental solution of the differential operator 
8z, 

because (5.11) can be written as 
1 

f = - *h. 
1fZ 

(5.12) 

(5.13) 

A special case of the so-called Dolbaut Lemma in several complex variables implies that one 
may drop the assumption that h has compact support: 
Theorem: For any smooth fu nction h on C them exists a smooth function f such that (5. 10) 
holds. 
For a complete proof, see Chapter 2 of (47). 

As an easy consequence we have the 
Corollary: For any smooth ftmction h there exitits a smooth solution of the Poisson equation 
D.f = h. 

In the following we often use the abbreviations a:= Bz, 8 := az. 

5.1.2 The complex lens mapping and its differential 

The lens mapping tp : R.2 t-t Ill2 

y = tp (x) = x - V?/J (x) , 

is now written as f: Ci--+ C, w = f (z) with z = x 1 + ix2, w = t11 + iy2. We have 

f (z) = z - 28'1/J 

or 
f = B(zz - 2'1/J). 

Eq. (1.49) becomes 
288¢ = K,. 

The differential off will be very important. From (5.15) and (5.17) we obtain 

df = (1 - r.) dz - 2[J21f;dz. 

But 
-2 1 ( 2 82) i 1 ( . ) 8 'ljJ = 4 01 - 2 'ljJ + 28182t/J = 2 'Yl + t"}'2 1 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

according to the original definition (1.52) of the shear vector. Introducing the complex shear 

we obtain 
df = (1 - K-) dz - "fdz. 

Hence, the Beltrami parameter 111 of the lens map is given by 

i 
llJ = - - -. 

1- 11: 

(5.18) 

(5.19) 

(5.20) 
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This agrees with the reduced shea.r introduced by Schneider and Seitz [48). The examples (2.23) 
and (2.45) become 

Schwarzschild lens: 
1 1 I (z) = z - - v1 = -z' z2 (5.21) 

singular isothermal lens : (5.22) 

For reference, we note that, according to (1.54), (5.8) and (5.19) the amplification µ,is given by 

(5.23} 

5.2 Applications 

The usefulness of the complex formulation will be illustrated in this section with several applica­
tions. No new results an! obtained, but some of the derivations become simpler and more natural. 

5.2.1 Number of images for a regular lens 

The important fact that the number of images for a regular lens is always odd, provided the source 
does not lie on a caustic, is traditionally proven with the help of some elements of Morse theory [5). 
We now give a proof which uses only standard tools of complex function theory that are used, for 
example, in the derivation of the theorem of residues. In particular, we make use of the following 
analytic formula for the index of a closed (rectifiable) curve 'Y relative to a point a¢"{: 

ind.r (a) = ~ r ...!!!_, 
2m J'Y z - a 

(5.24) 

This index is equal to the winding nurnher of 'Y around a and hence an integer. Fhrthcrmore, it is 
a homotopic invariant, changes sign under orientation reversion, and is additive Wlder composition 
of closed curves (see, e.g., Chapter IV of [49}). 

Consider now a point w0 in the source plane with images 1-1 (w0 ) = {z1, •••• ZN} in the lens 
plane. The complex 1-form 

l df W=----
2ni J - Wo 

(5.25) 

is regular on C\UjDe (zj), where De (a) denotes the closed disk with center a and radius e. It is 
also closed, and therefore Stokes' theorem (5.4) gives 

1( df Nl1 df 
21Ti lavR(O) f - Wo = 'f; 2rri &D.(zl) f -wo · 

(5.26) 

Now, for a dosed curve 'Y we have by the transformation formula of integrals and (5.24) 

lldf lj dw. () -2 . -
1
-- = -

2 
. = indfo'Y Wo • 

. rri "f - Wo 1T'f, fO"f w - Wo 
(5.27) 

Asymptotically the lens map approaches the identity, and hence the left hand side of (5.26) is equal 
to 1 for sufficiently large R. Therefore, we have 

N 

1 = L indfooD.(zl) (wo) = n1 - n-1 + 2 (n2 - n_2) + ... , 
j=l 

(5.28) 

where n>. denotes th~ number of Zj in {z1, ..... .,ZN} for which the index in (5.28) is equal to>.. 
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For the special case, wh~n w0 is not on a caustic, the Jacobians J1 (z;) do not vanish and all 
indices are thus equal to ±1 ( + 1 if f is orientation preserving and -1 if it is orientation reversing 
at z.i). Hence 

(5.29) 

implying that 
N = 1 +2n- t (5.30) 

is odd. 

5.2.2 Relations between mean convergence and reduced shear 

The Beltrami parameter (reduced shear) 111 of a lens map is in principle observable. What we are 
really interested in is, however, the mean curvature K. which is related to the surface mass density 
by (1.44). 

In view of (5.18) it is natural to look first for relations between the complex sheai· 'Y and "-· 
Eq. (5.19) for the differential of the complex lens map and (5.15) give 

'Y = -8! = 2[J21/J. (5.31) 

In order to get a useful relation we differentiate (5.31) and use (5.17) 

(5.32) 

This can be regarded as an inhomogeneous Cauchy- lliemann equation for tt. With the results in 
Subsection 5.2.1 we conclude 

K = ~ ( ~) * 8~ +Ko = ~8 ( ~) * "( + ~ 
or 

1 1 
K. = --- * 'Y +Ko. (5.33) 

1r z2 

The additive constant K.o reflects the fact that a homogeneous mass sheet does not produce any 
shear ("mass sheet degeneracy"). The real form of (5.33) appeared the first time in (20]. In making 
use of (5.20), we obtain an integral equation for n. when v is known 

1 I 
K = --2 * [v(l - K.)] + tco. 

7T z 

This has been used, for instance, in (22] for nonlinear cluster inversions. 

(5.34) 

We add that (5.34) has an inverse, that also appeared in the influential pa.per (20] of Kaiser 
and Squires. From (5.31), (1.48) we obtain 

""{ = 4[j2g * n.. 

Since the fundamental solution g of the two-dimensional Laplace operator ls 

we find 

1 1 
g = -

2 
In lz l = - ln (zz), 

11" 411" 

1 1 ""{ = --2 * /\,, 
11' z 

Note that (5.32) has the real form (11; is real) 

'V"' = ( 8t ""f1 + 8:21"2 ) • 
81 /I + ~"fl 

(5.35) 

(5.36) 

(5.37) 

(5.38) 
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Let us differentiate (5.32) once more 
(5.39) 

giving 
(5.40) 

from whel'e we could again arrive at (5.34). The mass-sheet degeneracy is reflected in the following 
invariance property: Eq. (5.40), for given v, remains invariant w1der the substitution 

K, -? ).,K, + (1 - )..) , 

where>. is a real constant [26j. 
We can use (5.32) in a different manner. First, we write this equation as 

8K = 8 [v (1 - 11:)] = (1 - tc) 811 - I/OK. 

This becomes simpler in terms of K :=In {l - K) 

8K-v8K =ov. 

(5.41) 

(5.42) 

To this we add its complex conjugate. Noting that K is real, we again obtain an inhomogeneous 
Cauchy-Riemann equation, this time for K: 

(JJ( = h (11). (5.43) 

whereby the inhomogeneity 

(5.44) 

is, in principle, ob~ervable. 
The real form of this equation was obtained by Kaiser (24) and has often been used in the 

analysis of cluster data. The complex version appears also in (50). 
The utility of the complex formulation should now be clear. The relations, derived in this sub­

section, emerge almost automatically by just applying 8 and 8 to the coefficients of the differential 
of the lens map. 

5.2.3 Other useful reconstruction equations 

Real lensing data are always confined to a finite field of the sky. Therefore, the solution of (5.43} 
in the form (5.11), for example, involving an integration over all of IC, is not very pra.ctical. On 
the other hand, one can obtain integral formulas in which only integrations over bounded domains 
occur. In order to anive at the latter, we write the inhomogeneous Cauchy-Riemann equation in 
terms of differential forms: 

d11 g = w. (5.45) 

Here w is a 1-form and we use the standard decomposition d = d' + d" oft.he exterior derivative, 
satisfying 

d1 
0 d1 = o, d11 

0 d1
' = o, d' 0 d" + d" 0 d' = 0 (5.46) 

(see, e.g., [47)). We also make use of the *-operator, which is related to complex conjugations as 
follows: If a I-form a is decomposed as a:= o 1 + a 2 , where o:1 is of type (1, 0) and o:2 of type (0, 
1), then 

The following identities are useful 

* *a: = -a:, *O: = *ct, 

d * (0:1 + 0:2) = id'a1 - id
11
a2, 

*d!g = id"g, *d"g = -id!g, 

(5.47) 
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d * dg = 2id'd"g = i::l.gdx I\ dy, (5.48) 

where g is a function. 
Now let 0 c C be a bounded domain with smooth boundary an and A= lr!I. We show that 

g minus its average g over n, 
g = _!:_ r gdx I\ dy, 

A Jo 
can be represented in the following form 

g - g = k *a /\w. 

The 1-form a: in the integral is given by 

a= -2<f'H 

in terms of the real Green's function H, defined by 

1 
i::l.H-A =-o, 

together with the Newna.n.n boundary condition on an. 
This is a consequence of Stokes' theorem. The integrand in {5.50) is 

*a /\ w = *a /\ d" g = -d!1 (g * a) - 2gd" ( *d" H) . 

By making use of (5.48) we obtain for the last term 

2gd" (*d" H) = -2ig<f'd' H = gi::l.Hdx /\ dy, 

while the first term is given by 

d" (g * d" H) = d (g * d11 H) . 

Hence, 

J *a/\ w = hog * du H + g - g. 

(5.49) 

(5.50) 

(5.51) 

(5.52) 

This is just (5.50) since the last. integral vanishes, due to the Neumann boundary condition for H. 
Formulas equivalent to (5.50) have been used often by S. Seitz and P. Schneider (22]. 

The starting point for the derivation of another useful relation is (5.19) in the form 

d(f - z) = -K,dz - 7dz, 

If we wedge this with dz and subtract the complex conjugate of the resulting equation, we find 

1 
K-dz /\dz= 2d [it (zdz - zdz) - "'fidz + "{zdz]. 

Taking the average according to (5.49) we arrive at 

R. = (K-} _ f ("Yzdz - "(zdz) 
f (zdz - zdz) ' 

where 0 denotes the average along the boundary an: 
(K-) = f "'(zdz - zdz) ~ 

f (zdz - zdz) 

(5.53) 

(5.54) 

(5.55) 

For the special case of a. disk Dr, we have along the boundary z = reiv> zdE - zdz = -2ir2drp, 
hence 

K, = <~) - (l't) ' (5.56) 
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where 'Ye denotes the tangential component of the shear 

'Yt = 1'1 cos 2i:p + '}'2 sin 2rp. 

This relation is not new (see Ref. [21]). Noting that 

and thus 

- 1 1T ( I ) 'd 1,1,~ K. =-2 K.r,'{>r rwr. 
?rr o 

dR, -
-dl = 2 (1") - 2K, 

nr 

we can use (5.56) to obtain the interesting connectio..n 

dR, 
dlnr = 2 ('Ye)· 

(5.57) 

(5.58) 

(5.59) 

(5.60) 

This has recently been used in an analysis of weak lensing data. [20]. A useful integral form of it 
is, in obvious notation, 

(5.61) 

The left hand side of this equation is what Kaiser and Squires call the (-statistics, ( (r1, r2). One 
can use general weight functions for the average process [21] and try to optimize the choice for 
the detection of mass overdensities [22]. Note also, that the integral on the right in (5.61) can be 
written as 

(5.62) 

We conclude by pointing out another appearance of a Beltrami parameter in lensing theory. An 
often used method for describing the shape of a galaxy image uses the second brightness moments 

(5.63) 

where J(x) is the surfo.c.:e brightness distribution and x is the center of light of the ga.la..xy image. 
Now regard Q = (Qii) as a linear map of JR.2 • If this is interpreted as a map z i-+ w (z) of C it 
reads 

w = ~ (Qu + Q22} z + ~ (Qu - Q22 + 2iQ12) z = ~trQ [z + xz] . (5.64) 

where 
Qu - Q22 + 2iQ12 

X = trQ · (5.65) 

x is called the complex ellipticity and is clearly just the Beltrami parameter of the map (5.64). 
The intrinsic brightness moments Q~;> of the galaxy are defined correspondingly and it is easy to 
see that Q(s) = Dip· Q · Dcp, Dv> being the differential (1.52) of the lens map. The interpretation 
of x given above, allows us to easily find the corresponding relation between x and x<s). One just 
has to compose the map (5.64) on the right and on the left with the linearized lens map 

W = (1 - K) Z - ')'Z. {5.66) 

This readily gives 
(s) _ -2v + x + v 2x x - 2 , 

1 + Jvl - 2~ (11x) 
(5.67) 

with the inverse 
211 + ;y(8) + v2 x(s) 

X = 1+lvl2 +2!J? (vxCsl)' 
(5.68) 
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A reaJ derivation of these formulas is quite akward. They are used in applications by averaging 
over a set of galaxy images, together with statistical assumptions about the intrinsic ellipticity 
distribution (for instance (x<sl) = 0), to determine the reduced shear v of the lens map. Here, 
we just wanted to point out that x has the interpretat.ion of a Beltrami parameter, and that the 
relations (5.67) and (5.68) are very easily obtained in the complex formalism. 

We hope that the reader will find other examples of such simplifications. After this paper was 
made public, I learnt more about the related work of T. Schramm. As a supplement to what 
was discussed above, I refer especially to his study of the Beltrami equation with the help of the 
corresponding characteristic equations [51). 
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Chapter 6 

Introduction 

In these lectures I would like to show you the importance and the power of measurements of 
anisotropies in the cosmic microwave background (CMB). 

CMB anisotropies are so useful mainly because they are small: For a given model, they can 
be calculated within linear perturbation theory, to very good approximation. They are influenced 
only little by the non-linear processes of galaxy formation. This allows us to compute them very 
precisely (to about 1 %, which is high precision for present cosmological standards). For given 
initial fluctua tions, the result depends only on the cosmological parameters. If we can mea..'lure 
OMB anisotropies to a precision of, say 1 %, this allows us therefore to determine cosmological 
parameters to about 1 %. An unprecedented possibility! Consider that at present, after the work 
of two generations> e . .r/. the Hubble parameter is known only to about 25%, the baryon density is 
known within about a factor of 2 and the uncertainties in the dark matter density, the cosmological 
constant and the space curvature are even larger. 

This somewhat too optimistic conclusion has however throe caveats which we want to mention 
before entering the subject of these lectures. 

1. Initial conditions: The result depends on the model for the initial fluctuations. Inflationary 
scenarios contain in general three to four free parameters, like the ratio of tensor to scalar 
perturbations (t·) and the spectral index of the scalar and tensor perturbations (ns and tir }, 
so a few more parameters need to be fitted additionally to the data. 

If the perturbations are generated by active sources like, e.g., topological defects, then the 
modeling is far more complicated, and the analysis is too different to be included in these 
lectures. 

2. Degeneracy: Even though we can measure over 1000 independent modes (Ct 's) of the 
GMB anisotropy spectrum, there are certain combinations of the cosmological parameters 
that lead to degeneracies in the CMB spectrum. The result is, e.g., very sensitive to the sum 
Om!<ttCl' + nA, but not to t.he difference ("cosmic confusion"). 

3. Cosmic variance: Since the fluctuations are created by random processes, we can only 
calculate expectation values. Yet we have only one universe to take measurements ("cosmic 
variance"). For small-scale fluctuations we can in general assume that the expect.ation value 
over ensembles of universes is the same as a spatial average (a kind of ergodic hypothesis}, 
but for large scales we can't escape large statistical errors. 

6.1 Friedmann-Lemaitre universes 

Friedmann-Lemaitre universes are homogem~ous and isotropic solutions of Einstein's equations. 
The hyper-surfaces of constant time are homogeneous and isotropic, i.e., spaces of constant cur­
vature with metric a2 (71)"y,jdx1dxJ 1 where 'Yii is the metric of a spoce with constant curvature 
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/(, 

' 
"/\jdXidxJ 

x2(1'} 

= 

= 

6 Introduction 

dr2 + x2(r} (di?2 + sin2'!9d1/') (6.1) 

{"' • K=O 
sin2 r K=l (6.2) 
sinh2 1· ' K=-1, 

where we have rescaled a(17) such that"'= ±1 or 0. (With this normalization the scale factor a has 
the dimension of a length and 1J and r arc dimensionless for "':f:. 0.) The four-dimensional metric 
is then of the form 

(6.3} 

Here rt is called the con/ ormal time. 
Einstein's equations reduce to ordinary differential equations for the function a(rt) (with · = 

d/d11): 

(~r +K = 

(~)' -

87rG 2 lA 2 --a p+- a 
3 3 

1 (") (. )
2 

-411'Ga2 (p+ 3p) + 3Aa2 = ~ - ~ , 

(6.4) 

(6.5) 

where p = .:.....T8, p =Ti (no sum!) and all other components of the energy momentum tensor have 
to vanish by the requirement of isotropy and homogeneity. A is the cosmological constant. 

Energy momentum "conservation" (which is also a consequence of (6.4) and (6.5) due to the 
contracted Bianchi identity) reads · · 

(6.6) 

After these preliminaries (which we suppose to be known to the audience) let us answer the 
following question: Given an object with comoving diameter ..\1 at a redshift z(17} = (a0 /a} - 1. 
Under which angle'!?(.,\, z) do we see this object today and how does this angle depend on nA and 
n,..? 

We define 

n,. = 

Aa2 

3 (!!a. )2 
'l='lo 

-K I 
(~) 2 11=110 , 

(6.7) 

where the index o indicates the value of a given variable today. FHedmann's equation (6.4) then 
requires 

(6.8) 

Back to our problem: Without loss of generality we set r = 0 at our position and thus r = r 1 = 
1Jo -111 at the position of the flashes, A and B at redshift z1 • If .,\ denotes the comoving arc length 
between A and B we have..\= x(ri}'!J = X(1Jo - 17i)'l1, i.e. 

>. 
'19 = X(1Jo - ?h)' 

(6.9) 

1 or physical size a( '1 ),\ = d 
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z=z., Tl=rt1 
n z=O .... -----)A • 10 ' - --···-·-······ -··-·1···· &::········· $. 

·······-------- • A. 
···-···········-·····------ B 

Figure 6.1: The two ends of the object emit a flash simultaneously from A and Bat z1 which reaches us 
today. 

It remains to calculate (77o - tJt)(zi}. 
Note that in the case K. = 0 we can still normalize the scale factor a as we want, and it is 

convenient to choose a0 = 1, so that comoving scales today become physical scales. However, for 
K. f= 0, we have already normalized a such that ic = ± 1 and x = sin r or sinh r. We have in principle 
no normalisation constant left. 

From the Friedmann equation we have 

·2 811"0 4 1 4 " a = -
3
-a p+ 3Aa - K-a ... (6.10) 

We assume that p is a combination of "dust" (cold, non- relativistic matter) with Pd = 0 and 
radiation wit.h Prad = 1/3Pnid• 

From (6.6) we find that Prad ex a-4 and Pd oc a-3 • Therefore, with Ho = (~) (1Jo), we define 

87rG 4 --at> 
3 

~Aa4 
3 
-K.a2 

The Friedmann equation then implies 

so that 

= 

= 

= 

H~ (a~O,,.c1 + O"aa~) 

HSS1Aa4 

2 2 2 H0 011-a a0 • 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

1 r 1 dz 

77o - 'lJl = Hoao Jo [Or.,d (z + 1)4 + Ot,1(.z + l)S + OA + O~(z + 1)2) ~, (
6
.l

5
) 

Here we have introduced the cosmological redshift z + 1 == a.0 /a. (In principle we could of course 
also add other matter components like, e.g. "quint,essence" (58}, which would lead to a somewhat 
different form of the integral (6.15), but for definiteness, we remain with dust, radiation and a 
cosmological constant.) 

In general, this integral has to be solved numerically. It determines the angle t?(>., z1) under 
which an object with comoving size >. at z1 is seen. 

On the other hand, the angular diameter distance to an. object of physical size d seen under 
angle '19 is given by 'IJo -171 = r 1 == x- 1 (d/at/t?). If we are able to measure the redshift and the 
angular diameLer distance of a. certain class of objects comparing wit.h Eq. (6.15) allows in principle 
to determine t.he parameters nm , nA. n,. and Ho. 

We have 1[2"'2 = n., => Hoao = ~ for n,.. f= O. 
oo.o ylONI 

Observationally we know 10- 5 < flr"d $ 10- 4 as well as 0.1 $ nd .:S 1, lflAI .:S 1 and IOI(! .:S 1. 

If we are interested in small redshifts, z1 ;S 10, we may safely neglect. Orad· In this region, 
Eq. (6.15) is very sensitive to nA and provides a.n excellent mean to constrain the cosmological 
constant (see part I). 
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n,. .. o; n,- -o.e, -0.3, o, o.3, o.a 
6.....---.-.-"""'r-rrrm,.-,"TTTm.--.,...,.,...,,,,...,.., ....... r-T""TTT1 

100 1000 
z 

Figure 6.2: The function x(rio -T/1) as a. function of the redshift z for different values of the cosmological 
parameters !'2" (left, with !'2A::::0) and .0A (right, with !'2,.=0), namely -0.8 (dotted], -0.3 [short-dashedJ, 
0 (601id], 0.3 (dot-dashed], 0.8 ~01tg-dashed]. 

At high redshift, z1 ~ 1000, neglecting radiation is no longer a. good approximation. 

We shall later need the opening angle of the horizon distance, 

= 

711 = 

{6.16) 

(6.17) 

(Clearly this integral diverges if f2rad = nd = 0. Th.is is exactly what happens during an inflationary 
period and leads there to the solution of the horizon problem.) 

n,.- o; n1 = -o.e. -0.3, o. o.s. o.e 

100 

~10 ,. 

10 100 1000 

100 

~ 10 .,,• 

n. n O; oA- - 0 .8, - D.3, 0, 0.3, 0.8 

10 100 1000 

Figure 6.3: t9 lf(Z1) (in degrees) for difforent values of the cosmological parameters n,. and ih as in 
Fig. 6.2. 
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The value of the radiation density is well known, 

This gives 

Pr"d = 7.94 x 10- 34 (To/2.737K)4g/cm3 
. 

nradh2 = 4.2 · 10-5 (To/2.737K)4 
, 

km 
Ho=lOOh-M . s pc 
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(6.18) 

(6.19) 

Exercise: Neglecting nrad, show that. for nA = 0 and small curvature, 0 < 1n,.1 « nd 
at high enough redshift, z1 ~ 10, rro - '71 '.:::'. 2J1n1<1/nd. Conclude that t'J(>.,z1) IX vTid so that 
t'J '.:::'. vnd1?1 (>., z) . Calculate "?91 (>., z) = t'J(>., z) ln.,:::1,0 .. =0" =0,.<1=0 explixitely. 

6.2 Recombination and the cosmic microwave background 
(CMB) 

Dw·ing its e>..i>ansion, the universe cools adia.ba.tkally. At early times, it is dominated by a thermal 
radiation background with p = C/a4 = g,,rro.saT4 ,2 and we find that T IX a- 1 . Here geff = 
nb + 7 /BnF is the effective number of degrees of freedom, bosons counting as 1 and fermions 
counting as 7 /8 (see e.g. 159]). At temperatures below 0.5MeV only neutrinos and photons are 
still relativistic leading to the density parameter given in Eq. (6.18). (Neutrinos have a. somewhat 
lower l;emperature than photons, T,, = (4/11)113T, since they have already dropped out of thermal 
equilibrium before e± annihilation which therefore reheats the photons but not the neutrinos, see 
e.g. (59, 60}.) 

The photons obey a Planck distribution, 

1 
f ( W) = e"' /T - 1 . (6.20) 

At a temperature of about T,..., 4000K "'0.4eV, the number density of photons with energies 
above the hydrogen ionisation energy drops below the baryon density of the universe, and the 
protons begin to (re-)combine to neutral hydrogen. (Helium has already recombined earlier.) 
Photons and baryons are tightly coupled before (re-)combination by non- relativistic Thomson 
scattering of electrons. During recombination the free electron density drops sharply and the mean 
free path of the photon grows larger than the Hubble scale. At the temperature '.fc1ec ,.., 3000K 
(corresponding to the redshift Zdec :::= 1100 and the physical time tdec = ao'Y/d~c '.:::'. 105years) photons 
become free and the universe becomes transparent. 

After recombination, the photon distribution evolves according to Liouville's equation (geodesic 
spray): 

oa f ri ...JJ. II 8 f - L f - 0 p 'I - 1wP P {)pi = Xu - ' (6.21) 

where i = 1, 2, 3. Since the photons are massless, IPl2 = 'E~=l PiP' = w2 (w = ap0 ). Isotropy of 
the distribution implies that f depends on pi only via IPI = w, a.nd so 

8J 8w 8f P' 8f 
{)pi = 8pi aw = w aw. (6.22) 

In a Friedmann universe (also if"'-:/= O!) we find for p1'p1, = - w2 + p 2 = 0 (exercise!] 

ri ..,J• ,, s (a) 
1wY P Pi = -w a2 · (6.23) 

2 We will use units with Ii. = c ::: ka = 1 throughout these leetures. The Stefan-Boltzmann constant is then given 
by ass= 11'2 k~/(60l!.3c2 ) = 1f2/60. 
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Inserting this result into (6.21) leads to 

(a) af a,,,J + w ~ aw = o, (6.24) 

which is satisfied by an ;u·bitrary function f = f(wa.). Hence the distribution of free-streaming 
photons changes just by redshifting the momenta. Therefore, setting T oc a- 1 even after recombi­
nation, the blackbody shape of the photon distribution remains unchanged. 

Note however that after recombination the photons are no longer in thermal equilibrium and 
the T in the Planck distribution is not a temperature in the thermodynamical sense but merely a 
parameter in the photon distribution function. 

:3 itim ~ltll'lt I !tirfl !>~0 11rr. 
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Figure 6.4: Spectl'um of the cosmic ba<',kgl'ound radiation. The graph 011 the left shows the measurements 
of the FIRAS experiment on COBE (the vertical bars), overlaid by a blackbody spectrum at a temperature 
of 2. 73 K. The enor bars are 20 times magnified! The ima.ge on the right shows a larger number of 
measurements. The FIRAS data is represented by the fat line around the peak of the spectrnm {60). 

The blackbody spectrum of these cosmic photons which are called the "cosmic microwave back­
ground" (CMB) is extremely well verified observationally (see Fig. 6.4). The limits on deviations 
a.re often parameterized in terms of three parameters: The chemical potential µ, the Compton 
y parameter (which quantifies a well defined change in the spectrum arising from interactions 
with a non-relativistic electron gas at a different temperature, see e.g. [60]) and Yff (describing a 
contamination by free-free emission). 

The present limits on thc8e parameters are (at 95% CL, [56)} 

lit! < 9 · 10-5
, IYI < i .2 · 10-5

, IYtrl < 1.9 · io-5
• (6.25) 

The CMB Photons have not only a very thermal spectrum, but they are also distributed very 
isotropically, apart from a dipole which is (most probably) simply due to our motion relative to 
the surface of last scattering: 

An observer moving with velocity v relative to a source emitting a photon with proper momen­
tum p = -wn sees this photon redshifted with frequency 

w' = -yw(l - nv), (6.26) 

in first ord~r in v this is just a dipole perturbation. This dipole anisotropy, which is of the order 
of 

(D..T) '.:::'. 10-3 
T dipole 

has already been discovered in the 70ties [61, 62]. Interpreting it as due to our motion with respect 
to the last scattering surface implies a velocity for the solar-system bary-center of v = 371 ±0.5km/s 
at 68% CL {l56]}. 
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The COBE3 DMR experiment (Differential Microwa:ve Radiometer) has found fluctuations of 

(6.27) 

on all angular scales (} ~ 7° [57). On smaller angular scales many experiments have found fluctua­
tions (that we shall describe in detail later), but all of them are::, io-4 • 

As we shall see later, I.he CMD fiuctuatious on large scales provide a measm·e for the deviation 
of the geometry from the Ftiedmann-Lemattre one. The geometry pcrturbat.ions are thus small and 
we may calculate their effects by linear pertt£rbation theory. On smaller scales, 6.T /T reflects Lbe 
fluctuations in the energy density in the baryon/radiation plasma prior to recombination. Their 
amplitude is just about right to allow Lhe formation of the presently observed non- linear sLrucLures 
(like gaJaxics, clusters, etc.) ouL of small initial fluctuations by gra.viLat.ional instability. 

These findings strongly support the hypothesis which we will assume dming these lectmes, 
namely I.hat. the large scale structure (i.e. galaxy dist.ribution) observed in 1,he universe formed by 
gravitational instability from relatively small (,..... 10- 4 - 10- 5) initial Ouctuations. As we shall see, 
such initial fluctuations leave an interesting "fingerprint" on the cosmic microwave background. 

3 Cosmic Background Explorer, NASA satellite launched 1990. 
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Chapter 7 

Perturbation Theory 

The tool for the analysis of CMB anisotropies is cosmological perturbation theory. We spend 
therefore sorne time on this subject, especially on the fundamental level. 

Once all the variables are defined, we will be rather brief in what concerns the derivation of 
the basic perturbation equations. First of all , because these derivations are in general not very 
illuminating and secondly because nowadays all of you can obtain them very easily by setting 

(7.1) 

(!hw being the unperturbed Friedmann metric) and asking Mathematic or Maple to calculate the 
Einstein Tensor using Lhe condition c2 = 0. We conventionally set (absorbing the "smallness" 
parameter e into h1w) 

T µ - T_,, ()µ. V - II+ I/I 

§oo = -a2, 

=<iT -0 = -p, 

lhµ.vl « 1 

10~11.o « 1. 

7.1 Gauge transformation, gauge invariance 

(7.2) 

The first fundamental problem we want to discuss is the problem of 'choice of gauge' in cosmological 
perturbation theory: 

For linear perturbation theory to apply, the spacetime manifold M with metric g and the 
energy momentum tensor T of the real, observable universe must be in some sense close to a 
Friedmann universe, i.e., the manifold M with a Robertson-Walker metric g and a homogeneous 
and isotropic energy momentum tensor T. It is an interesting, non-trivial unsolved problem how 
to construct g and T from the physical fields g and T in practice. There are two main difficulties: 
Spatial averaging procedures depend on the choice of a hyper-swface of constant time and do not 
commute with derivatives, so t.hat averaged fields g and T will in general not satisfy Einstein's 
equations. Secondly, averaging is in practice impossible over super-horizon scales. 

Even though we cannot give a constructive prescription, we now assume that. there exists an 
~tveraging procedw·e which leads to a Fl'iedmann universe with spatially averaged tensor fields Q, 
such that. the deviations (T,w - T,, 11 )/ max{o,B} {!Ta11I} and (g1"' - g1lv)/ ma.x{l'l'.8} {Bap} are small, 
and g and T sat.isfy F1:iedmann's equal,ions. Let us call such an averaging procedure 'admissible'. 
There may be i:nany other admissible averaging procedures (e.g. over a. dillercnt hyper- surface) 
leading t.o slightly different Fhedmann backgrounds. Dut since lg - §I ls small of order <=, the 
difference of the two Friedmann backgrounds must also be small of order € and we can regard it 
as part of the perturbation. 

We consider now a fixed admissible Friedmann background (g, T) as chosen. Since the theory is 
invariant. under diffeomorphisms (coordinate l.ransformations), the perturbations are not. unique. 
For an arbitrary diffeomorphism ¢ and iLs pullback ¢•, Lhe two met..rics g and </l'(g) describe the 
same geometry. Since we have chosen the background metric g we only allow diffeomorphisms which 
leave g invariant i.e. which deviate only in first order form the identity. Such an 'infinitesimal' 

77 
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i:;omorphisrn can be represented as the infinitesimal fl.ow of a vector field X, ¢> = </>f. Rememb«i>-r 
the definition of the flow: For the integral curve "l'x(s) of X with starting point x, i.e., "l'x{s = 0) = x 
we have </>f (x) = "Y.~(s). In terms of the vector field X, to first order in£, its pullback is then of 
the form 

<//' =id+ eLx 

(Lx denotes the Lie derivative in direction X). The transformation g ~ ,p•(g) is equivalent to 
g + w 2h ~ g + €.(a2h + Lxg), i.e. under an 'infinitesimal coordinate transformation' the metric 
perturbation h transforms as 

h -t h + a-2 Lxg . (7.3) 

In the context of cosmological perturbation theory, infinitesimal coordinate transformations are 
called 'gauge transformation'. The perturbation of a arbitrary tensor field Q = Q + eQ<1) obeys 
the gauge transformation law 

(7.4) 

Since every vector field X generates a gauge transformation </> = </>f, we can conclude that 
only perturbations of tensor fields with LxQ = 0 for all vector fields X, i.e., with vanishing (or 
constant) 'background contribution' are gauge invariant. This simple result is sometimes referred 
to as the 'Stewart Walker Lemma' [52). 

The gauge dependence of perturbations has caused many controversies in the literature, since 
it is often difficult to extract the physical meaning of gauge dependent perturbations, especially on 
super-horiwn scales. This has led to the development of gauge invariant perturbation theory which 
we are going to use throughout these lectures. The advantage of the gauge-invariant formalism is 
that the variables used have simple geometric and physical meanings and are not plagued by gauge 
modes. Although the derivation requires somewhat more work, the final system of perturbation 
equations is usually simple and well suited for numerical treatment. We shall also see, that on 
sub-horizon scales, the gauge invariant matter perturbations variables approach the usual, gauge 
dependent ones, and one of the geometrical variables corresponds to the Newtonian potential, so 
that the Newtonian limit can be performed easily. 

First we note that since all relativistic equations are covariant (Le. can be written in the form 
Q = 0 for some tensor field Q), it is always possible to express the corresponding perturbation 
equations in terms of gauge invariant variables (53, 54, 55J. 

7.2 Gauge invariant perturbation variables 

Since the { 11 = const} hyper-surf aces are homogeneous and isotropic, it is sensible to perform 
a ha.rmonic analysis: A (spa.tia!) tensor field Q on these hyper-surfaces can be d~composed into 
components with transform irreducibly under translations and rotations. All such components 
evolve independently. For a scalar quantity fin the case K = 0 this is nothing else than its Fourier 
decomposition: 

(7.5) 

(The exponentials Yk(x) = eikx are the unitary irreducible representations of the Euclidean trans­
lation group.) For K = 1 such a. decomposition also exists, but the values k are discrete, k2 = f(€+2) 
and for K. = -1, they are bounded from below, k2 > 1. Of course, the functions Yk a.re different 
fol' I\,¥ 0. 

They are always the complete orthogonal set of eigenfunct.ions of the Laplacian, 

,6.}"'(S) = -k2y(S). (7.6) 

In addition, a variable (at fixed position x) can be decomposed into irreducible components 
under the rotation group S0(3). 

For a vector field, this is its decomposition into a gradient and a rotation, 

(7.7) 
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where 
B{; = 0, (7.8) 

where we used x1i to denote the three-dimensional covariant derivative of X. <p is the Rpin 0 and 
Bis the spin 1 component of V. 

For a symmetric tensor field we have 

(7.9) 

where 
(7.10) 

Here H L and Hr are spin 0 components, H,(v) is a spin 1 component and Hffl is a spin 2 
component. 

We shall not, need higher tensors (or spinors) in these lectures. As a basis for vector and tensor 
modes we use the vector and tensor type eigenfunctions to the Laplacian, 

D.Y~v) , = -k2y,(V) , (7.11) 

and 
,6.y(I') 

JI = -k2y.<,T) 
Ji ' 

(7.12) 

where lj(V) is a transeverse vector, Yj(V )I; = 0 and Yj~T) is a symetric transverse traceless tensor, 
y(T)j = y,(_T)li = O. 

J )I 

According to Eqs. (7.7,7.9) we can construct scalar type vectors and tensors and vector type 
tensors. To this goal we define 

y~S) 
J - -k- lY.(S) 

. Ii (7.13) 

y,(.S) 
•3 - k - 2y;(S) + ~")'· .y(S) 

ltJ 3 iJ (7.14) 

y,C.V) 1 (V) -(V) (7.15) iJ - - 2k(~lj + yjli ) . 

In the following we shall extensively use this decomposition and write down the perturbation 
equations for a given mode k. 

The decomposition of a vector field is then of the form 

B; = BY;_(S) + B(V) Y;_(V) . 

The decomposition of a scalru' field is given by (compare 7.9) 

H;; = HLy(S)/•j + HrV.~S) + H(V)Y;_~v) + H(T)Y;_~T)' 

7.2.1 Metric perturbations 

Perturbations of the metric are of the form 

We parameterize them as 

h1wdx1'dxv = -2Ad712 + 2Bid71dxi + 2Hijdxidxj, 

and we decompose the perturbation variables B1 and H ,j according to (7.16) and (7.17). 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

Let us consider t.he behaviour of h1.,, und<~r gauge transformations. We set the vector field 
defining the gauge transformation to 

(7.20) 
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Using simple identities from cliffcr!'.ntial geometry like Lx(df) == d(Lxf) and 
(Lx'Y)ij = XilJ + XJlii we obtain 

Lxg = a2 [-2(~T+t)<l112 +2(ii-T.•)d11dxi 

+ ( 2~T/'ij + Lilj +Lili) dxidxi] . (7.21) 

Comparing this with (7.19) and using (7.3) we obtain the following behaviour of our perturba­
tion variables wider gauge transformations (decomposing Li= LY/5

> + L<V>fi(v»: 

a . 
(7.22) A ~ A +-T+T 

a 
B ~ B-i-kT (7.23) 

B(V) ~ B(V) - i<V) (7.24) 

HL 
a k 

{7.25) ~ HL + -T+ -L a. 3 
Hr -+ Hr-kL (7.26) 

H(V) ~ H(V) - kL(V) (7.27) 
H(T) ~ H(T). (7.28) 

Two scalar and one vector variable can be brought to disappear by gauge transformations. 
One often chooses kL = Hr and T == B + i, so that the variables Hr and B vanish. In this 

gauge (longitudinal gauge), scalar perturbations of the metric are of the form (Hr= B = 0): 

(7.29) 

q; and <I> are the so called Bardeen potentials. In general they are given by 

w = A a k-1 k-1. (7.30) -- a-· a 
a 

~ 
1 a 1 (7.31) = Hi+ -Hr - -k- o 
3 a 

with a= k-1 Hr - B. A short calculation shows that they are gauge invariant. 
For vector perturbations it is convenient to set kL(V) = H(V) so that H(V) vanishes and we 

have 
(7.32) 

We shall call this gauge the "\'ector gauge". In general aCV) = k-1 jJ(V) - B(V) is gauge invariant1• 

Clearly there are no tensorial (spin 2) gauge transformation and hence H}J> is gauge invariant. 

7.2.2 Perturbations of the energy momentum tensor 

Let Tt• = T~ + 0~ be the full energy momentum tensor. We define its energy density p and its 
energy flow 4-vet'tor u as the timelike eigenvalue and eigenvector of Tt: 

Tt•uv = -pu1', u2 = -1. (7.33) 

We then define their perturbations by 

(7.34) 

1 ~}v l u<V l is the sheal' of the hyper-surfaces of constant time. 
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u0 is fixed by the normalisat.ion condition, 

0 l ( u = - 1 - A). 
a 

(7.35) 

We further set 
. 1 . (V) . ( 

u• = -v; = vY('s) + v l(v)· 7.36) 
a 

We define Pi• =: u''uv + 6~, the projection tensor onto the part of t angent space normal to u 
and set the stress tensor 

r1"' = P~' P5T0ttJ . (7.37) 

In the unperturbed case we have -r8 = 0 1-rj = iJJj. Including perturbations, to first order we 
still obtain 

.,.0 - ,..0 - ,..i - 0 •o - 'i - •o - · 

But rj contains in general perturbations. We set 

rj = p ((1+Ili)6J + n}] ' with n: = 0. 

We decompose n~ as 

(7.38} 

(7.39) 

(7.40) 

We shall not go in detail through the gauge t ransformation properties, but just state some 
results which can be obtained as an exercise; 

• Of the variables defined above only the n<s,V,T) are gauge invariant; they describe the 
anisotropic stress tensor, Il~ = rt' - lf3rgtJi,;. They are therefore gauge invariant due to 
the Stewart-Walker lemma, since fi = 0. For perfect fluids n~ = 0. 

• A second gauge invariant variable is 

f = 1fL - c; 6, 
w 

(7.41) 

where ~ =: p/ p is the adia.ba.tic sound speed and w =: p/ p is the enthalpy. One can show 
that r is proportional to the divergence of the entropy flux of the perturbations. Adiabatic 
perturbations are therefore characterised by r = 0. 

• Gauge invariant density and velocity perturbations can be found by combining '51 v and v!V) 
with metric perturbations. 

We shall use 

v - v - ~Hr= v (Jong) 
k 

(7.42) 

Do - o + 3(1 + w} ( HL +~Hr)= 15(loug) + 3(1 +w)cf1 (7.43) 

D - 6(1ong) + 3 ( 1 + w} ( ~) v 
a k 

(7.44) 

yO') - vWl _ ~ f{(V) = v(veo) 
k 

(7.45) 

n - vW> - B(V) = 'V{vec) - B (V) (7.46) 
n-v(v) = O'(V). (7.47) 

Here v(loug), o<Ioug) and v;vec) are the velocity (and density) perturbations in the longitudinal and 
vector gauge respectively and u<Vl is the metric perturbation in vector gauge (see Eq. (7.32)). 
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These variables can he interpreted nicely in terms of gradients of the energy density and the shear 
and vorticity of the velocity field [63). 

But we just want to show that on scales much smaller than the Hubble scale, k17 » 1, the 
metric perturbations are much smaller than o and v and we can thus "forget them" (which will be 
important when comparing experimental results with calculations in this formalism): 

The perturbations of the Einstein tensor a.re given by second derivatives of the metric pertur­
bations. Einstein's equations yield the following order of magnitude estimate: 

o(~) ~ = 0(;2 h+~h+k2h) (7.48) 

o(~ )2
=0(11-2) 

0(
0
;) = o(h+krth+(k11)2h) . (7.49) 

For krt » 1 this gives 0( 6, v) = 0 ( 6:J) » 0( h). On sub-horizon scales the difference between o, 
15(tong), D9 and D is negligible as well as the difference between v and V or v(V), V(V) and oW>. 

Later we shall also need other perturbation variables like the perturbation of the photon bright­
ness (energy-integrated photon distribution function), but we shall introduce them as we get there 
and discuss some applications first. 

7.3 Basic perturbation equations 

As already announced, we do not derive Einstein's equations but just write down those which we 
shall need later: 

7.3.1 Consfraint equations 

4nGa2pD (k2 - 2K)if1 (00) } 
(scalar} (7.50) 

47rGa.2(p + p)V = k((~)~-~) (Oi) 

8rrGa2(p + p)O = ~ (211: - k2) O"(V) 
2 

(Oi) (vector) (7.51) 

7.3.2 Dynamical equations 

-k2 ((>+Ill) 81!'Ga2pIT(s) (scalar) (7.52) 

k ( if(V) + 2 ( ~) lT(V)) = 87rGa2pnW> (vector) (7.53) 

f[(T) +2 (~) iI(T) + (211:+ k2) H(T) = 8nGa2pn~T) 
. $) (tensor) (7.54) 

Note that for perfect fluids, where II) : 0, we have qi = -'1i, o<v) ex I/a2 and H obeys a 
damped wave equation. The damping term cao be neglected on small scales (over short time 
periods) when 11-2 ::S 2K + k2 , and Hij represents propagating gravitational waves. For vanishing 

curvature, these are just the sub-horizon scales, k17 .?:. 1. For K. < 0, waves oscillate with a somewhat 
smaller frequency, w = J2K- + k2 , while for"'> 0 the frequency is somewhat larger. 

7 .3.3 Conservation equations 

(scalar) (7.55) 
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· ( 2) (a.) _ v ( 21>;) CV) n, + 1 - 3cs ~ ni - 2(p + 1>) k - k ni (vector) (7.56) 
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Chapter 8 

Simple applications 

We first discuss some simple applications which will be import.ant for the CMD. We could of course 
also write (7.55) in terms of D, but we shall just work with the relation 

(8.1) 

8.1 The pure dust fluid at "' = 0, A = 0 

We assume the dust to ha.ve w = c; = p = 0 and IT = r = 0. The equations (7.55), (7.52) and 
(7.50) then reduce to 

Dg = -kV (energy conservation eqn.) (8.2) 

v + (~) v = kiJ! (gravitational acceleration eqn.) (8.3) 

<J? -ifl (8.4) 

-k2if! = 47rGa2 p (D9 +3 ( iI! + (~) k- 1v)) (Poisson eqn.). (8.5) 

In a pure dust universe p ex a - 3 => (a/a) 2 ex a- 1, which is solved by a ex r]i. The Einstein 
equations then give immediately 47rGpa2 = B/J.(a/a)2 = 6/172

• Setting k11 = x and ' = d/dx, the 
system (8.2-8.5) then becomes 

D' g = -V 

V' + ~V = If 
x 

: 2 (D9 +a(w+~v)) = -if!. 

We use (8.8) to eliminate if! and (8.6) to eliminate D 9 , leading to 

(18 + x2
) V" + (~ + 4x) V' - (:; + 4) V = 0. 

The genera.I solution is then found to be 

Vi 
V =Vox+ 4 . 

x 

(8.6) 

(8.7) 

(8.8) 

(8.9) 

(8.10) 

Since the perturbations are supposed to be small initially, they cannot diverge for x -7 O, and we 
have therefore to choose Vi = 0 (the growing mode). Another way to argue is as follows: If the 
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mode Vi has to be small already at some eat:ly initial time 71in, it will be even much smaller at later 
times and may hence be neglected. The perturbation variables are then given by 

v = 
Dg = 
\} 

Vox 
1 2 -15Vo - -Vox 
2 

3Vo. 

(8.11} 

(8.12} 

(8.13) 

The constancy of the gravitational potential '11 in a matter dominated universe and the growth 
of the density perturbations like the scale factor a led Lifshitz to conclude 1946 (64} that. pure 
gravitational instability cannot be the cause for structure formation: H we start from tiny thermal 
fluctuations of the order of io-ss, they can only grow to about 10-30 through this process during 
the matter dominated regime. Or, to put it differently, if we do not want to modify the process 
of strncture formation, we need initial fluctuations of the order of 10-::;. One possibility to create 
such fl.uctua.tions is due to quantum particle production in the classical gravitational field during 
inflation. The rapid expansion of the universe blow them up from microscopic scales to cosmological 
scales. 

We distinguish two regimes: 
i) super-horizon, x « I where we have 

D9 -15Vo 

'If = 3Vo 

V = Vox 

and ii') sub-horizon, x » 1 where the solution is dominated by the terms 

v Vox 

Dy 1 2 
-2Vox 

'If 3Vo = const 

(8.14) 

(8.15) 

(8.16) 

(8.17) 

(8.18) 

(8.19) 

Exercise: Write and discuss this system in terms of the variables D, V and 1I!. Compare the 
results! 

8.2 The pure radiation fluid, "' = 0, A = 0 

In this limit we set w = c~ = 1/g and TI= 0. We conclude from p ex: a-4 that a cx: 'IJ and CJ? = -IJ!" 
and the perturbation equations become (with the notation as above): 

4 
D' = --V 

g 3 

V' 2'II +~Du 
12 

-2x2 '11 = 3D9 + 12'11 + -V 
x 

The general solution of this system is 

V = -~D' 4 9 

-3D9 - (12/x)V 
12 + 2x2 

(8.20) 

(8.21) 

(8.22) 

(8.23) 

(8.24} 

(8.25) 
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Again, regularity at x = 0 implies Di = O. 
In the super-horizon, x « 1 regime we obtain 

2 2 
~=\I.lo, D9 =Do - 3Vox , V = Vox 

with 

Do = -6Wo = -D2 
1 1 

Vo = 2'110 = -
12

Do. 

87 

(8.26) 

(8.27) 

(8.28) 

On sub-horizon, x » 1 scales we find oscillating solutions with constant amplitude with a 
frequency of l/VS: 

v V2sin (~) (8.29) 

Do = ( k~) D2cos J3 iis - 3 -2 D ---x fl 
2 

(8.30) 

D2 = ~· (8.31) 

We conclude therefore that perturbations outside the Hubble hori1.on are frozen to first order. 
Once they enter the horizon they start to collapse, but pressure resists the gravitational forC',e and 
the radiation fluid starts to oscillate. The perturbations of the gravitational potential oscillate and 
decay like l /a2 inside the horizon. 

8.3 Adiabatic and isocurvature initial conditions for a matter 
& radiation fluid 

In this section we want to investigate a system with a matter and a radiation component that are 
coupled only through gravity. The matter component acts therefore as dark matter, since it does 
not interact directly with the radiation. 

Since the matter and radiation perturbations behave in the same way on super-horizon scales, 

D~r) = A + Bx2 , D~m) = A' + B' x2 , v<r> ex v<rn) , (8.32) 

we may require a. constant relation between matter and radiation perturbations. As we have seen 
in the previous section, inside the hori1.on (x > 1) radiation perturbations starL to oscillate while 
matter perturbations keep following a power law. On sub-horizon scales a constant ratio can thus 
no longer be maint.runed. There are two interesting possibilities: 

8.3.1 Adiabatic initial conditions 

Adiabaticity requires that matter and radiation perturbations are initially in perfect thermal equi­
librium. This implies that their velocity fields agree (see below, section of the Boltzmann eqn.!) 

v{r) = v<m) , (8.33) 

so the energy fllJ.X in the two fluids is coupled initially. 
Let us investigate the radiation solution in the matter dominated era, when the corresponding 

scale is already sub-horizon. Since w is dominated by the matter contribution, we have w ::::'. const = 
%. We neglect the (decaying) contribution from the sub-dominant radiation to w. Energy­
momentum conservation for radiation then gives 

D~r)) i = -~V(r) (8.34) 

y<r) = 211! + ~D~r>. (8.35) 
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Now \Ii is juist a constant given by the matter perturbations, and we assume that it acts just 
like a constant source term. The full solution of this system is then found to be 

D~r) Acos(:a)- }aBsin(:a)-8\li[cos(~)-1] (8.36) 

v<r> = B cos ( ~) + '7 A sin ( Js) -2\1'3\lisin ( Js). (8.37) 

Our adiabatic initial conditions require 

v<r) v<m) 
Jim -- =Vo= Jim -- < oo. 
x-+0 X x-+0 X 

Therefore B·= 0 and A= 4V0 - 8\li. Using in addition '11=3Vo (see (8.19)) we obtain 

D~r) = -~\licos(~)+sw 

v<r) = ~\l! sin ( ~) 
1 

D~m) = -\li(5 + 6x2) 

1 
y(m) = -'11x 

3 
\li = 3Vo. 

On super-horizon scales, 3; « 1 we have 

D~r) ~ - 2
3
° \Ii and v<"> ~ ~x\li . 

8.3.2 Isocurvature initial conditions 

{8.38} 

(8.39) 

(8.40) 

{8.41) 

{8.42) 

(8.43) 

(8.44) 

Here we want to solve the system (7.50) and (7.55) for dark matter and radiation under the 
condition that the metric perturbations vanish initially, i.e., '1' = 0, 

\li = -~ (~) 
2 

k-2 [n9 + 3(1+w)w+3(1 + w) (~) k-1v] = o. (8.45} 

In principle, we have four evolution and one constrafot equations. We therefore have four 
constants to adjust. Condition (8.45), however, requires an entire function to vanish. This may be 
impossible. Let us nevertheless try: 

If '11 = 0 the solutions of the radiation dominated equations are simply 

D~r) = A cos ( ~) + Bsin ( ~) (8.46) 

v(r) = ~A sin(~) - ~ Bcos (-is). (8.47) 

For the ma.tter perturbations we find 

y(m) = Vo 
a 

n<ml = c<m) _ ~~ 
9 /3-la 

w = 0 implies with 

D9 = ~ (p,.D~r) + PmD~m)) and 

V = p ! p ((Pr+ p,.) y(r) +Pm y(m)) 

(8.48) 

(8.49) 

(8.50) 

(8.51) 
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that 

(8.52) 

Since vCm) oc l/a it can compensate, for small values of x, the term oc cos(x/./3) of V(r), 

which behaves like l/a as well, due to the pre-faclor Pr/ Pm· This Lerm can also be compensated 
in D~r) by the term Vox/a of Dbm). However, there is no way to compensate C(m) or the tenn 
proportional to A. We have to choose therefore A= C(m) = 0 and 

B = Pm ./3Vo. 
ap,. 

(The compensation of the smaller terms D1r) and D1m) is only complete if f3 ::::::'. 2.) 
With C8 = 1/ ./3 we find 

D(r) Pm Vr . ( ) (isocurvature) ~ -- osm CsX g 
aprCs 

n<r) 
[) ~ II! ( 8 - ~4 cos (c.x)) (adiabatic) 

(8.53) 

(8.54) 

(8.55) 

(8.56) 

The CMB anisotropies, which we are going to determine in the next chapter , contain a term 

A: (k, 110, n) = · · · + ~D~.o) {k, 77dec) eikn(tJo-71d••> · · • (8.57) 

On scales where this term dominates the CMB anisotropies, the peaks in D9 translate into peaks 
in the angular power spectrum of CMB anisotropies. 

For isocurvature initial conditions, we find a first peak in D9 at 

(1) - (1) - l ?T' 
X· - k· f'/dec - --, 

• ' C8 2 
211" dl) 4 "• = k~l) = Cst1<1ec1 
1 

(8.58) 

Here 11i1l is the angle under which the comoving scale >.~1 ) at comoving distance 'l}o - 7Jdec is seen. 
In the next chapter, we will expand the temperature fluctuations in terms of spherical harmonics. 
An fluct.uation on the angular scale t9 then shows up a.round the harmonic £ ,...., 7f /(2'1'J). As an 
indication, we note that for A = "' = O, the harmonic of the first isocurvature peak is 

In the adiabatic case the first "peak'' is at ki1) = 0. 
Since D~r) is negative for small x, the first peaks are "expansion peaks", and due to the gravi­

tational attraction of the baryons (which we have neglected in this simple argument) they a.re less 
pronounced than the second ("compression") peaks. 

These second peaks are usually called the "first acoustic peak". (It is the first compression 
peak and we shall adopt the convention to call it the "first peak" mainly for consistency with the 
literature.) They correspond to wavelengths and angular scales 

>. ~2) 4 t9(2) ,...., ( 4/ 3 }cs7Jdec i 2),...., 350 (isocurvature) (8.59) = 3Cs1Jdec , ' i - X (Tlo - '17dec) 
1 t . 

,\ (2) 
a = 2C6'1Jdec , 

'19(2) ,...., 2Csf7de<: 

a - X (?Jo - 17ctec) 
e< 2) ,...., 220 a (adiabatic). (8.60) 

Here the indicated harmonic is the one obtained in the case A = " = 0, for a typical baryon density 
inferred from nuclosynthesis. 
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In is interesting to nore that the distance between consecutive peaks is independent of the 
initial condition. It is given by 

D.:& = 2Cs'l'/dcc ' l:::..f ,.... 220 , 
X ( 'l7o - 1'/dec) 

(8.61) 

Again , the numerical value indicated for l:::..l corresponds to a universe with A= K. = 0. The result 
is strongly dependent especially on K.. This is the reason why the measurement of the peak position 
(or better of the inter~peak distance) allows an accurate determination of curvature. 

From our analysis we can hence draw the following important conclusions: For scales where 
this term dominates, the CMB a.nisotropiE'.s show a series of acoustic oscillations with spacing l:::..k, 
the position of the first significant peaks is at k = k~% depending on the initial condition. 

The spacing l:::..k is in<lepen<lenl of initial conditions. The angle l:::..t9 onto which this scale is 
projected in the sky is determined entirely by the matter content and the geometry of the universe. 
According to our findings in Chapter I, 19 will be larger if n,. < 0 (positive curvature) and smaller 
if n,. > o (see Fig. 6.3). 

In our analysis we have neglected the presence of baryons, in order to obtain simple analytical 
results. Baryons have two effects: They lead to (p+ 3Plrad+br1r > O, and therefore to an enhancement 
of the compression peaks (the first, third, etc. acoustic peak). In addition, the bai:yons slightly 
decrease the sound speed c6 , increasing thereby t.>.k and decreasing l:::..fJ. 

Another point which we have neglected is the fact that the universe became matter dominated 
at r/eq, only shortly before decoupling: 1'1dec :::::'. 477eq, for nm = 1. As we have seen, the gravita­
t.ionnl potential on sub-horizon scales is decaying in the radiation dominated era.. If the radiation 
dominated era is not very long ago /l.t decoupling, the gravitational potential is still slightly decay­
ing and free streaming photons fall into a deeper gravitational potential than the have to climb 
out of. This effect, called "early integraU>.d Sachs Wolfe effect" adds to the photon temperature 
fluctuations at scales which are only slighty larger than the position of the first acoustic peak for 
adiabatic perturbations. It therefore 'boosts' this peak and, at the same time, moves it to lightly 
larger scales (smaller angles) Since r/eq ex: h-2 , the first acoustic peak is larger if his smaller. 

A small Hubble parameter increases therefore the acoustic peaks. A similar effect is observed 
if a cosmological constant or a negative curvature are present, since tJeq is retarded in those cases. 

8.3.3 Vector pei-tm·bations of perfect fluids 

If II(V) = 0 equation (7.56) implies 
0 <X asc; - 1, (8.62) 

For t>f i> = c~ S 1Ja, this leads to a non-growing vorticity. The dynamical Einstein equation implies 

a(V) oc a.- 2 , 

and the constraint (7.51) reads (at early times, so we can neglect curvature) 

!l,..., x 2a(V). 

(8.63) 

(8.64) 

If perturba.tions are created in the very early universe on super-horizon scales (e.g. during an 
inflationary period), vector perturbations of the metric decay and become soon entirely negligible. 
Even if O, remains constant in a radiation dominated universe, it has to be w small on relevant 
scales at formation (iin « 1) that we may safely neglect it. 

8.3.4 Tensor perturbations 

The situation is different for tensor perturbations. Again we consider the perfect fluid case, rr~J> = 
0. There (7.54) implies (if"' is negligible) 

H"· + 2/3 H~. + H,; = 0 , 
•J x •J 

(8.65) 
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with /3 = 1 in the radiation dominated era and /3 = 2 in the matter dominated era. The less 
decaying mode solution to Eq. (8.60) is Hii = e;;x1! 2-8 J112- p(x), where Jv denotes the Bessel 
function of order v and e,; is a transverse traceless polarisation tensor. This leads to 

= const for x « 1 
1 = - forx~l. 
a 

(8.66) 

(8.67) 
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Chapter 9 

CMB anisotropies 

9.1 Lightlike geodesics 

After decoupling, 1J > l'Jdec, photons follow to a good approximation lightlike geodesics. The 
temperature shift is then given by the energy shift of a given photon. 

The unperturbed photon trajectory follows (x11) = (17, n(17 - '7o) + x0) , where :xo is the photon 
position at time 110 and n is the (parallel transported) photon direction. With respect. to a geodesic 
basis (e)~=1 , the components of n are coast.ant. If"' = 0 we may choose ei = 8/ux'; if,.. =j:. 0 
these vector fields are no longer parallel transported and therefore do not form a geodesic basis 
(\7e1 e; = 0). 

Our metric is of the form 

ds2 a2ds2 
, with 

ds2 = {"Yµ,, + hµ.,) dx"dx,,, 'Yoo = -1, ")';o = 0, "{ij = "Yji 

as before. 

(9.1) 

(9.2) 

We make use of the fact tha.t lightlike geodesics are conformally invariant. More precisely ds2 

and ds2 have the same lightlike geodesics, only the corresponding affine parameters are different. 
Let us denote the two affine parameters by ~ and >. respectively, aJ1d the tangent vectors to the 
geodesic by 

dx _ dx 2 _ 2 0 2 
n = d>. , n = d>. , n = n = 0 , n = 1 , n = 1. (9.3) 

We set n° = 1 + 5ri0 • The geodesic equation for the perturbed metric 

{9.4) 

yields, to first order, 

j_c5n1' = -or1• n"'n/J (9.5) d). Ot/J • 

For the energy shift, we have to determine on°. Since g01J = -1 · c50"' +first order, we obtain 
0 • 

5r a/J = - 1/2(h0t.Q,/J + hpo,et - hafJL so that 

d.r0_h /JOI }h. a(3 
d). un - ao,{Jn n - 2 a{Jn n . (9.6) 

Integrating this equation we use hao,f'n/3 = l'A (haona), so that the change of n° between some 
initial time 1'/i and some final time 1'/f is given by 

(9.7) 

93 
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On the other hand, the rat.io of the energy of a photon measured by some observer at t f to the 
energy emitted at t; is 

Er (n · 1i)1 T1 (n · u)1 
Ei = (n · u), = Ti (n · u), ' (9.8) 

where u1 and ut are the four-velocities of the observer and emitter respectively, and the factor 
T1 /Ti is the usual (unpertW'bed) redshift, which relates n and n. The velocity field of observer 
and emitter is given by 

(9.9) 
An observer measuring a temperature To receives photons th.at were emitted at the time r/dec 

of decoupling of matter and radiation, at the fixed temperature Tdec· In first-order perturbation 
theory, we find the following relation between the unpertW'bed temperatures T1, ~, the measurable 
temperatures T0 , T.iec , and the photon density perturbation: 

(9.10) 

where o<r> is the intrinsic density perturbation in the radiation and we used pH oc T 4 in the 
last equality. Inserting the above equation and Eq. (9.7) into Eq. (9.8), and using Eq. (7.19) 
for the definition of h1w, one finds, after integration by parts [55] the following result for scalar 
perturbations: 

(9.11) 

Here D~.,.) denotes the density perturbation in the radiation fluid, and y(b) is the peculiar velocity 
of the baryonic matter component (the emitter and observer of radiation). The final time values 
in the square bracket of Eq. (9.11) give rise only to monopole contributions and to the dipole due 
to our motion with respect to the CMB, and will be neglected in what follows. 

Evaluating Eq. (9.11) at final time 'T'1o (today) and initial time r/dec, we obtain the temperature 
difference of photons coming from different directions n and n' 

with temperature perturbation 

AT _ JT(n) JT(n') 
y=-;y---T-

AT(n) [1 ( l {bl . ] 1110 . . -T- = 4D9"' + Vj n' + 11' - cI> (7'/.teciXttec) + ('11- 'P)('T],X(f1))dTJ, 
'Idec 

(9.12} 

(9.13) 

where x(17) = Xo - (1'/o - 17)n is the unperturbed photon position at time '1 for an observer at Xo, 
and Xdec = x(?Jdec)· The first term in Eq. (9.13) describes the intrinsic inhomogeneities on the 
surface of last scattering, due to acoustic oscillations prior to decoupling. Depending on the initial 
conditions, it can contribute significantly on super-horizon scales. This is especially important in 
the case of adiabatic initial conditions. As we have seen in Eq. (8.44), in a dust+ radiation universe 
with n = 1, adiabatic initial conditions imply D;(k, t"J) = -20/3\J!(k, 17) and V(b) = V(.,.) « D~•·) 
for kt]« 1. With cJ? = - \[I the the square bracket of Eq. (9.13) gives 

(
AT(n)) (OBW) 1 
- T-- . . = 3'11(7'/dec,Xd.,c) 

&d1abat1c 

on super-horizon scales. The contribution to 6:{ from thP. last scattering surface on very large 
scales is called the 'ordinary Sachs Wolfe effect' (OSW). It has been derived for the first time by 
Sachs and Wolfe [71). For isocurvature perturbations, the initial condition D9 (k, 11)-+ 0 for 'fJ -+ 0 
is satisfied and the contribution of D9 to the ordinary Sachs Wolfe effect can be neglected. 

(
AT(n)) (OSW) 

T . =2'1l('f/dec1 Xdcc) 
1socurvature 
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The second term in (9.13) describes the relative motions of emitter and observer. This is the 
Doppler contribution to the CMB anisotropies. It appears on the same angular scales as the 
a.caustic term, and we thus call the sum of the acoustic and Doppler contributions "acoustic peaks''. 

The last two terms are due to the inhomogeneities in the spacetime geometry; the first con­
tribut.ion <let.ermines the change in the photon ene1·gy due to the difference of the gravitational 
potenl.i.al at the position of emitter and observer. Together with the part contained in D~r) they 
represent the "ordinary" Sachs-Wolfe effect. The integral accowits for red-shift or blue-shift caused 
by the time dependence of the gravitational field along the path of the photon, and represents 
the so-called integrated Sachs-Wolfe (ISW) effect. In a n = 1, pure dust wiiverse, the Bardeen 
potentials are constant and there is no int.egrated Sachs-Wolfe effect; the blue-shift which the pho­
tons acquire by falling into a gravitational potential is exactly canceled by the redshift induced 
by climbing out of it. This is no longer true in a universe with substantial radiation contribution, 
curvature or a cosmological constant. 

The sum of the ordinary Sachs Wolfe term and the integral is the full Sachs-Wolfe contribution 
(SW). 

For vector perturbations 15<r) and A vanish and Eq. (9.8) leads to 

(E1/Ei )(V) = (ai/a1)[l - v)m)njl{ +if 0-jnjd,\]. (9.14) 

Again we obtain a Doppler term and a gravitational contribution. For tensor perturbations, i.e. 
gravitational waves, only the gravitational part remains: 

T f f. I . (E1 / E;)< ) = (aif a1 )(1 - i H11n n'd.XJ . (9.15) 

Equations (9.11), (9.14) and (9.15) are the manifestly gauge invariant results for the Sachs-Wolfe 
effect for scalar vector and tensor perturbations. Disregarding again the dipole contribution due 
to our proper motion, Eqs. (9.14,9.15) imply the vector and tensor temperature fluctuations 

(
t:::.TT(n)) (V) = ff 

V;(m)(1Jdec. Xdec)n; + }; &j(?J,X('?))nid,\ {9.16) 

(
ATT(n)) (T) = [f - . , Hii (11, x(17) )n1nj d..\] . (9.17) 

Note that for models where initial fluctuations have been led down in the very early universe, 
vector perturbations are irrelevant as we have alea.dy pointed out. In this sense Eq. (9.16) is here 
mainly for completeness. However, in models where perturbations are sourced by some inherently 
inhomogeneous component (e.g. topological defects) vector perturbation can be important. 

9.2 Power spectra 

One of the basic tools to compare models of large scale structure with observations are power spec­
tra. They are the "harmonic transform" of the two point correlation functions. If the perturbations 
of the model under consideration are Gaussian (a relatively generic prediction from inflationary 
models), then the power spectra contain the full statistical information of the model. 

One important power spectrum is the dark matter power spectrum, 

(9.18) 

where (} indicates a statistical ave.rage over "initial conditions" in a given model. Pv(k) is usually 
compared with the observed power spectrum of the galaxy distribution. 

Another power spectrum is given by the velocity perturbations, 

(9.19) 
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For=:::: we have used that lkV[(170 ) = b~m)(170)....,, H0 ft.0 ·6 D9 on sub-horizon scales (see e.g. [601). 
The power spectrum we are most interested in is the CMB anisotropy power spectrum. It is 

defined as follows: llT /T is a function of position :xo, time r;o and photon direct.ion n. We develop 
the n-dependence in terms of spherical harmonics. We will suppress the argument TJo and often 
also x0 in the following calculations. All results are for today (r/O) and here (xo}. By statistical 
homogeneity expectation values are supposed to be independent of position. 

llT T (xo, n, ?Jo) = L a.tm(xo)Yim (n), (atm · a;'m'} = 6w5mm'Ct 
~.m 

(9.20) 

The Ct's are the CMB power spectrum. We assume that the perturbations are generated 
by a homogeneous and isotropic process, so that Ct depends neither on xo nor on m, and that 
(aem . a.t'm'} vanishes for e ;;/; R.' or m ;;/; m'. 

Let us, at this point insert a. comment on t.he problem of cosmic variance: Even if our 'ergodic 
hypothesis' is correct and we may interchange ensemble and spacial averages, we cannot obtain 
very precice averages for measurements of large scale characteristics, due to the fact that we can 
observe only the universe around a given position. For example, let us assume tha.t temperature 
fluctuations are Gaussian, as they are in most inflationary models. The functions atm are then 
also Gaussian distributed, and we t>.xpect a variance of 

l 

1 2e~ 1 L latml2 
- Gel= icrs -Ctl = 2ec~ 1 , 

m=-l 

on the average of the 2e + 1 values a1.m which can in principle be measW'ed from one point. For 
simplicity, we neglect here the additional reduction due to the fact that our own milky ways blocks 
a portion of sky (about 20%). Wick's theorem now gives 

(Ct} - (Ct}2 = (latml4
} - (latm]2

)
2 = 2(!alml2

)
2 

For a given multipole ewe then expect a variance of 

J<ctsp - C'f = V 2 . 
Ct 2f + 1 

(9.21) 

The two point correlation function is related to the Ct's by 

e 
L Ce L Ylm(n)Yt:n(n') = 4~ L(2e + l)C.ePe(µ), 

t m=-t e 
(9.22) 

~P,(n·n') 

where we have used the addition theorem of spherical harmonics for the last equality. 
Clearly the aim's from scalar, vector and tensor perturbations are uncorrelated, 

( 
(S) (V) ) _ ( (S) (T) ) _ ( (V) (T) ) _ 

alm ae'm' - a,m al'm' - atm af'm' - 0. (9.23) 

Since vector pert~rhat.ions <focay, their contribnt.ions, the c;v>, are negligible in models where 
initial perturbations have been laid down very early, e.g., after an inflationary period. Tensor 
perturbations are constant on super-horizon scales and perform damped oscillations once they 
enter the horizon. 

Let us fil'st discuss in somewhat more detail scalar perturbations. We suppose the initial 
perturbations to be given by a spectrum, 

(9.24) 
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(We mulLiply by \.be const.ant 173- 1 in orJer to keep A dimensionless for all values of n.) 
On su1>e1·-h01-izon scales we t,lw.n have, for adiab"tic pcrlurbations: 

1 5 ( -D
9
(r) = - -lll + O(x2), Vb) = V( .. l = O(x) (9.25) 

4 3 

The dominant contribution on super-horizon scales (neglecting the integrated Sachs Wolfe effect 
J tf! - i1' ) is then 

AT l 
y(:xo, n, ?Jo} = 3 '1'(Xdec117dec)• (9.26) 

The Fourier transform of (9.26) gives (setting µ = kn) 

AT 1 T (k, n, ?]o) = 3 '11(k, '17dec) . e•KD(•10-'l)dao) • (9.27) 

Using 
00 

e •kn(t)o-1/dec) = L(2l + l)i(jt(k(rio - 'IJdec))Pt(µ.)' 
l=O 

we obtain 

( 6.: (xo, n, ?70) 6.: (xo, n', fJo) J 

= ~ j d3xo (~(xo,n,1Jo) A: (xo,n',rio)J 
l I 3 I AT (AT) .. I \ = (27r)3 d k \ T(k, n, 1Jo) T (k, n, 1Jo) I 

= (2:)39 f d3 k (1~12 ) tt.o (2e + l )(:U' + l)je(k(rio - 11dec))jl(k(170 - ?Jdec))ie- 1.' 

·Pt (kn) · P!(I{n') . (9.28) 

Insert.ing Pt(kn) = 21:1 Lm l't~n(k)Ytm(n) and Pi(kn') = 2i~1 Lm' lt~m1(k)Yt1m1 (n'), integra­
tion over the clh"cctions dflk gives 5w6mm' Lm Yt~,,(n)l'tm(n'). Using as well Lm l~':n_(n)Ytni(n') = 
2!~1 Pt(µ,) , where nowµ,= n · n', we find 

(~(xo,n,170)!:::.:(xo,n',,-/O))nn'=µ = 

"' 2l + 1 ) 2 I dk I l 2 \ 3 ·2 )) 7 ~Pe(J~;;: k \91~1 / k Ji(k(fJo -'?dee . (9.29) 

Comparing this equation with Eq. (9.22) we obtain for adiabatic perturbations on scales 2 ~ e 
« X(f'Jo - '7dec)/t'Jdec "' 100 

c~sw) ~ c~osw) ~ ~ .[XJ d: (l~wl2) k9ff (k ('70 - '17dec)). (9.30) 

If 11' is a pure power law and we set k(rio - t/dec) ,..., krio, the integral (9.30) can be performed 
analytically. For the ansatz (9.24) one obtains for - 3 < n < 3 

c<swi _ ~ I'(3 - n)I'(l- ! + ¥) 
t - 9 23-nr2 (2 - I)r(t + ~ - ~) · (9.31) 

Of special interest is the scale invariant spectrum, n = 1. This spectrum with a time and scale 
independent gravitational potential has first been investigated by Harrison and by Z€l'dovich [73]. 
It is therefore called the Harrison-Zel'dovich spectrum and leads to 

t(e +1)C}8w> = const.~((~cfJt))
2

), {)t=7r/i. (9.32) 



98 9 CMB anisotropies 

This is precicely (within the accuracy of the experiment) the behaviour observed by the DMR 
experiment aboard COBE [57]. 

Inflationary models predict very generically a HZ spectrum (up to logarithmic corrections). The 
D MR discovery has therefore been regarded as a great success, if not a proof, of inflation. There 
are however other models like topological defects [75, 76, 77) or certain string cosmology models 
{78] which also predict scale-invariant, i.e., Harrison Zel'dovich spectra of fluctuations. These 
models do however not belong to the class investigated he1·c, since in these models perturbations 
are induced by seeds which evolve non-linea.rly in time. 

For isocurvature perturbations, the main contribution on large scales comes from the integrated 
Sachs Wolfe effect and (9.30) is replaced by 

c~isw) ~ ~ J d: k3 (![,~:., 2~(k, r,)jl(k(??o - 11))d1f). (9.33) 

Inside the horizon Yi is roughly constant (matter dominated). Using the ansatz (9.24) for Yi inside 
the horizon and setting the integral in (9.33),..., 2'11(k,1] = 1/k)jF(kr;o), we obtain again (9.31), but 
with A/9 replaced by 4A. The Sachs Wolfe temperature anisotropies coming from isocurvature 
perturbations are therefore about a factor of 6 times larger than those coming from adiabatic 
perturbations. 

On smaller scales, e ~ 100 the contribution to 6.T /Tis usually dominated by acoustic oscilla-
tions, the first two terms in Eq. (9.13). Instead of (9.33) we then obtain 

C (AC) ,..., 
e -

~ fo00 ~ k3 (I ~D~r>(k, rldec)ie(k11o) + v<r>(k, 1Jdec)J~(kt1o)J2) (9.34) 

On !>uh-horizon scales D~r) and v<rl ~re oscillating like sine or cosine wave~ depending on the 

initial conditions. Correspondingly the c;AC) will show peaks and minima. On very small scales 
they a.re damped by the photon diffusion which takes place during the recombination process (see 
next section). 

For gravitational waves (tensor fluctuations), a formula analogous to (9.31) can be derived (see 
appendix), 

c(T) = ~ ;· dkk2 (I ro d H( k) Jt(k(f/o - 11)) 12) (e + 2)! . 
t 11' },Idec 

17 11' (k(~1o - 77})2 (i - 2)1 
(9.35) 

To a very crude approximation we may a.ssume ii= 0 on super-horizon scales and J d17Hje(k(110-
17)) ""H(r1 = l/kje(krto). For a pure power law, 

this gives 

C(T) 
i 

~ 2 (e + 2)! Ar I d.'C xnr j[(x} 
rr (e-2)! x xii 

(e+2}!A r(6-nr)r(e-2+ T ) 
(e- 2)! T z6-nrr2G - nr)r(l + 4 - -TY 

For a scale invariant spectrum (nr = 0) this results in 

(T) e(e + 1) 
e(e + l)Ce '.::'. (e + 3}(e - 2) 

(9.36) 

(9.37) 

{9.38) 

The singularity at, e = 2 in this crude approximation is not real, but there is some enhancement of 
e(e + i)cfl at e,..., 2. 
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Figure 9.1: A ~ple adiabatic( solid line) and isocurvature (dashed line) CMB anisotropy spec­
trum, l(l + l)Ce, are shown on the top panel. The quantity shown in the bottom panel is propor­
tional to their ratio (from Kanazawa et al. [79]). 

Since tensor perturbations decay on sub-horizon scales, f. ~ 60, they are not very sensitive to 
cosmological parameters. 

Again, inflationary models (and topological defects) predict a scale invariant spectrum of tensor 
fluctuations (nT ,.... 0). 

On very small angular scales, e ~ 600, fluctuations are damped by collisional damping (Silk 
damping). This effect has to be discussed with the Boltzmann equation for photons derived in the 
next section. 

9.3 The Boltzmann equation 

9.3.1 Elements of the derivation 

When particles are not very tightly coupled, the fluid approximation breaks down and they have 
to be described by a Boltzmann equation, 

(9.39) 

C[f] is a collision integral which describes the interactions with other matter components. The left 
hand side of (9.39) just requires the particles to move along geodesics in the absence of collisions. 

Let us first. consider the situation where collisions are negligible, C[f] = O. The unperturbed 
Boltzmann equation implies that f be a function of v = ap only. Setting f = f(v) + F(17, x, v 1 n) , 
where n denotes the momentum directions, leads then to the perturbation equation 

(9.40) 

(S) , 
Here r Jk • are the Christ.offel symbols of the space of constant cur~ture it. 

To derive (9.40) we have used p2 = 0. The Liouville equation for particles with non- vanishing 
mass can be found in Ref. [55]. 
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Figure 9.2: Some sample isocurvature CMD anisotropy spectra arc shown. The variable Tt = 
T0 je(e + l)Ct/(21T) is plotted for the Peebles model (from [801}. 

The ansatz 

f(x,p) = J ( g<;~:::}t) = ! (T(;,n)) (9.41) 

with T(x, n) = T(17) + b.T(x, 11) leads to 

(9.42) 

Integrating (9.41) over photon energies, we can also write 

b.T 1 
-=-·t T 4' (9.43) 

where i is the brightness perturbation, 

411" 100 
i = -=4 Fv3 dv. 

pa 0 
(9.44) 

Comparing Eq. (9.42) with (9.40) , we find 

( a7') 
()fl ( D.:) + n'81 ( D.:) -r;f> 'njnk 

8 a: = - [n' A,; - ( Bilj - H;;) n1n1 + HL] . (9.45) 

The fact that gravitational perturbations of Liouville's equation can be cast purely in temper­
ature perturbations of the original distribution is not astonishing. This is just an expression of 
gravity being "achromatic", i.e. independent of the photon energy. 

We now decompose (9.45) into scalar, vector and tensor components. Even though D.T /T is 
just a function, it can be represented in the form 

b.T ~ . . 
T(x,n) = .L .. /l!>1 , ... ,1,(x)n'1 

• • ·n'', 
i=O 

(9.46) 
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Figure 9.3: Adiabatic scalar and tensor CMB anisotropy spectra are shown (top panels). The 
bottom panels show the corresponding posarization spectra (see Section 9.4). (from [81]). 

where the C:tii, ... ,it a.re symmet.ric traceless tensor fiP-lds that contain scalar, vector, 2-tensor and in 
principle also higher tensor components. Since spin components larger than 2 are not sourced by 
the right hand side of equation (9.45) and since they are suppressed at early times, when collisions 
arc important, we neglect them here. 

For the scalar contribution to tlT /T we obtain from (9.45) 

(
6.T) (S) (6.T) (S) . . D(~T)(S) 

8 - + kµ, - -r<.5l•n3nk r . == 11 T T ,,. on' 

- [kµA + mu
2k2 (s-iIT) + HL + ~k2Hr]. (9.47) 

where we have introduced the direction cosine µ defined by niY,i = kµY . Note that in flat space, 
"' = 0, we have just µ. = ik · n. 

This equation is not manifestly gauge-invariant. However, setting 

(9.48) 

it reduces t.o 

(9.49) 

where <I> and ~ are the Bardeen potentials. If n:l are components with respect to a geodesic basis 
(or K ' = 0), the third term on the left hand side of Eq. (9.49) vanishes. For simplicity we now 
concentrate on the case ,;, = 0. We can then integrate the equation and obtain 

M(rio,n,k) = exp[ik · n(rlin -?Jo)]M(1Jin,n,k) 

+ ["ID i exp[ik · n(ri - rio)]n · k (<P - 'I!) dri . 
}tl ln 

Integration by parts and neglecting the monopole term ( <P - \I!) ( rio), leads to 

M(110, n, k) == 

(9.50) 
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exp[ik · n(1Jin - 17o)] [M(tJi,., n, k) + (il> - '11) (17in,k)] 

1
110 

- •un exp[ik · n(rJ - ?lo)) ( <i> - ~) d'Yl • (9.51) 

Comparing this equation with (9. 13), we see again that M = (a/)(S) (up to gauge dependent 
monopole and dipole contributions) if the initial condition is 

which is equivalent to requit'e that M(tUn) has no higher than first moments. As we shall see 
below, this assumption is quite reasonable since collisions suppress the build up of higher moments 
before recombination. 

Since the right hand side of (9.49) is gauge invariant, the left hand side must be so as well 
and we conclude that M is a gauge-invariant variable (a direct proof of this, analysing the gauge 
transformation properties of the distribution function, can be found in Ref. [55)). 

M coincides with the scalar temperature fluctuations up a to a gauge dependent monopole and 
dipole contribution. 

The vector and tensor pa1·ts of D.T/T are gauge- invariant by themselves and we denote them 
by M(V) and Af(Tl for consistency. In the absence of collisions, they satisfy the equat,ions 

_M(VJ +iµkM(V} -r~8)'nink 8M(.V) = -in.enmk~u~) 
Jk on.' (9.52) 

('!') 
.i0fC7') + iµkM(T) - r<.S) injnk BM -inlnm Hm.e· 

Jk on• (9.53) 

The components of I.he energy momentum tensor are obtained by integrating the second mo­
ments of the distribution function over the mass shell, 

2 n 
riw = r pl' p" f (p,x)p dpd i> ' 

JP,..,(:x:) 7>0 
(9.54) 

where nf> denotes the angular integration over momentum directions. One finds for K = 0 and 
setting µ = n · k: 

D(r) 
!J ;1 MdCT (9.55) 

v <r) == 3i J µ.Mdn (9.56) 
411" 

rrCr) = 2~ J (µ.2 
- ~) Mdn (9.57) 

r(r) = 0 (9.58) 

v<VJ = _!:.._I n ·M(V)dn (9.59) • 471' • 

fI(V) = ~ J µn ·M(V)cm (9.60) 
3 

'Ir ' 

rrP") 
•J = ~ J n,n;M(T)dn. (9.61) 

Let us now turn to the collision term. At recombination (wh<ln t.he fluid description ofradiation 
breaks down) the temperature is,...,, 0.4 cV. The electrons and nuclei are non-relativistic and the 
dominant collision process is non- relativistic Thomson scattering. Since collisions are important 
only before and during recombination, where curvature effects are entirely negligible, we set K = 0 
in the reminder of this section. 
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The collision term is given by 

C(/] = ~; - d~ , (9.62) 

where f + and f- denote the distribution of photons scattered into respectively out of the beam 
due to Compton scattering. 

In the matter (baryon/ electl'On) rest frame, which we indicate by a prime, we know 

df~ (p ) _ urne J f'(p' ') ( ')d('\' dt' , n -
4

71" , n w n, n u. , 

where ne denotes the number density of free electrons, or is the Thomson cross section, and w is 
the normalized angular dependence of the Thomson cross section: 

with 

In the baryon rest frame which moves with four velocity u, the photon energy is given by 

P1 = PµUµ. 

We denote by p the photon energy with respect to a. tetrad adapted to the slicing of spacetime into 
{ 71 = constant} hyper- surfaces: 

p = p1,nµ, with n = a-1 [(1 - A)a., + B'81] . 

The unit vector n is the normal the the hyper-surfaces of constant time. The lapse function and 
the shift vector of the slicing axe given by a= a(l + A) and f3 = -Bio; . In first order, 

and in zeroth order, clearly, 
Pi= apn,. . 

Furthermore, the baryon four velocity has the form u.0 = a-1 (1 - A) , u' = u0v• up to first 
order. This yields 

p' = p1,u1' = p(l + ni(vi - B')) . 

Using this identity and performing the integration over photon energies, we find 

dt,4 (n) [ ( .; B;) 1 J ( ') ( ') '"''] P1· --;u;- = PrCTTne l + 4ni v - + 
4

71" i n w n, n dH . 

The distribution of photons scattered out of the beam, has the well known form 
(see e.g. Lifshitz and Pitajewski [1983]) 

df _ f'(p' ) (iii = urne , n , 

so that we finally obtain 

C, ~br ' Id (df+ df-} 3 [r ( i Bi) 3 I ( ') 1 dn'J = Pra4 P (iii - di P = arne or - l + 4ni v - + 1611' nij 1. n nij a , 

where Or= (l/411') J t(n)dn is the photon energy density pert.urbation. 
Using the definitions of the gauge-invariant variables M and v<11> for the photon brightness 
perturbation and the baryon velocity potential, we can write C' in gauge-invariant form. 

(9.63) 
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with D~r) = (1/11') J MdD. and 

Mi; = 8~ J M(n')n~jdO' . 
Since the term in square brackets of (9.63) is already first order we can set dt' = dt which yields 
C = !ffic' = ;&c1 = aC'. The Boltzmann equation for scalar perturbations expressed in terms of 
the gauge invariant variable M then becomes 

. . . l ( ) . (!>) 1 .. 
M + n'8iM = n'8i(<p - 11') + a<Trne[4Dit - M - n•a,v + 2n,iM'3J. 

For vector and tensor perturbations we get 

.i~(V) + iµkM(V) 

Af (T) + iµk}vt(T) 

9.3.2 The tight coupling limit 

Before recombination, when ne :=PB /m,,, 
1 8 _a > 

'f}T := -- "'--(1 + z) ~11«:1], Z...., Zdec· 
aarne nsh 

To lowest order in 11T, collisions force the photon distribution to be of the form 

1 i (b) 1 ,. 
M=4Dg+n v,; + 2n 3M;j, 

the building up of higher moments is strongly suppressed by collisions. 

(9.64) 

(9.65) 

(9.66) 

(9.67) 

(9.68) 

During recombination, the number density of free electrons, ne, decreases rapidly and the 
collision term becomes less and less important. Higher moments in the photon distribution develop 
by free streaming. 

The collision term C[M] of equation (9.64) also appears in the equation of motion of the baryons 
as a drag. The Thomson drag force is given by 

with 3 j' Mj =- n;Md!l. 
471' 

This yields the following scalar baryon equation of motion in an ionized plasma 

oj\f(b) + (aja)8,V{b) = 8,if! - 4°'CT;nep,. (Mj + 8,V(b)), 
Pl> 

where we have added the drag force to the second eq. of (7.55) with w = c; = 0. 

(9.69) 

(9.70) 

We now want to discuss equations (9.64,9.70) in the limit of very many collisions. The comoving 
photon mean free path is given by f/T = lr = (aarne)-1• In lowest order rrr/11 and lr/>., 1 Mis 
given by (9.68), and eq. (9.70) implies 

Mj +aiv<b) = o. 
Inserting the solution (9.68) in the Boltzmann equation (9.64) and integrating over directions this 
implies 

(9.71) 

1 Here >. is a typical size of a perturbation. For a given Fourier mode k, it is>.,..., 1T/k. 
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Implying especially v<0> = y(r) = V. Eq. (9. 71) is equivalent to the energy conservation equation 
(7.55) for radiation. Using also (7.55) for baryons, w = 0, we obtain 

iJ(r) = ~6 v<0> = ~b(b) 
!J 3 3 g • 

This shows that entropy per baryon is conserved, r = 0. Before recombination, when the collisions 
are sufficiently frequent, baryons and photons are adiabatically coupled. Insert ing (9.68) in (9.64) 
we find up to first order in rtr 

M = D(r) - 4n i8.V + ~n .. Mii - t'lr[b<.,.) - 4n'8·V + ~n· .Jl,fii g I 2 l.1 'I 9 t 2 ~J 

+ni81D~r) - 4ninifV)1 V + ~ninkJOiMki - 4ni8;(<.ll - '1!)] . (9.72) 

Using (9.72) to calculate the drag force yields 

Inserting Fi in (9.70}, we obtain 

This is equivalent to momentum conservation, the second equation of (7.55) for p = Pb + p.,., 
p = p.,./3 and r = II= 0, if we use 

Du = PrD~r) + PbD~b) 
Pb+ Pr 

In this limit therefore, baryons and photons behave like a single fluid with density p = p.,. + Pb and 
prel:lsure p = p.,./3. 

From (7.55) we can derive a second order equation for D9 . T his equation can be simplified if 
expressed in terms of the variable D rela.Led by (8.1). To discuss the coupled matter radiu.Lion fluid 
we consider a plane wave D = D(t) exp(ik • x). We then obtain 

jj + ~k2 D + (1+3c; - 6w)(a/a)D - 3[w(a/a) - (a/a)2(3(c; -w) - (1/2)(1 + w))]D = o. 

For small wavelengths (sub-horiwn), which are however sufficiently large for the fluid approxi­
mation to be valid, 1/1'/r ~ c8 k ~ l/11, we may drop the term in square braclmt.s. The ansa.tz 
D(t) = A(t) exp(- i J kc8 dt) then eliminates the term of order c~ki. For Lhe Lenns of order C6 k/7J 
we obtain the equation 

2A/ A+ (1 - 3c; - 6w)(a/a) + cs/c8 = 0 . (9.73) 

For the case c~ = w =const. 1 t his equation is solved by A oc (kfJ)l-v with v = 2/(3w + 1), i.e., 
the short wave limit. In our situation we have 

w = 
Pr 

3(Pr +Pb) 

:t Pr (4/3)Pr and CB = = 
3(fi,. + fi11) 4pr +3Pb 

Cs/c~ = -3/2(a/a) 4 Pb 3 . 
Pr+ Pb 

Using all this, one finds that 
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solves (9.73) exactly, so that we finally obtain the approximate solution for the, tightly coupled 
matter radiation fluid on sub-horizon scales 

1/2 

D(t) <X ( p -~~ ) exp(-ikf c8 d7J). 
CsP a, 

(9.74) 

Note that this short wave approximation is only valid in the limit 'f/ » 1/(c8 k), thus the limit to the 
matter dominated regime, Cs -t 0 cannot be performed. In the limit to the radiation dominated 
regime, c~ -t 1/3 and p <x: a-4 we recover the acoustic waves with constant amplitude which we 
have already found in the last subsection. But also in this limit, we still tu'!ed matter to ensure 
'fJT = l/(ao-rne) « 'f/. In the opposite case, 'fJT » 'f/, radiation does not behave like an idea! fluid 
but it becomes collisionless and has to be treated with Liouville's equation ((9.64) without the 
collision term). 

9.3.3 Damping by photon diffusion 

In this subsection we discuss the Boltzmann equation in the next order, (IJr/rJ)2 • In this order we 
will obtain the damping of fluctuations in an ionized plasma due to the finiteness of the mean free 
path; the non-perfect coupling. We follow the treatment by Peebles (1980) (65] (using our ga.uge­
invariant approach instead of synchronous gauge). Again we consider Eqs. (9.64) and (9.70), but 
since we arc mainly interested in collisions which take place on time scales flT « 17, we neglect 
gravitational effects and the time dependence of the coefficients. We can then look for solutions of 
the form 

Vex: Moc exp(i(k • x -wr1)) . 

In (9.64) and (9.70) this yields (neglecting also the angular dependence of Compton sca.ttering, 
i.e., the term n;; Mij} 

1 o<r> - iknV M = ___ o ____ _ 
4 1 - irtr(w - k · n) 

(9.75) 

and 
(9.76) 

with M = (3/411') J nMdO. Integrating (9.64) over angles, one obtains b~1·) + (1/3)&,Mi = 0. 
With our ansatz therefore k • M = 3wD~r). Using this after scalar multiplication of (9.76) with 
k, we find, setting R = 3pt,/4pr, 

(3/4)wD(r) 
V= o 

11rk2 Rw - ik2 

Inserting this result for V in (9. 75) leads to 

D(r) l + 31:·w/k 
M = _9_ 1-wn•wR 

4 1 - i'flT(W - kµ) ' 

where we have set µ = k · n. This is the result of Peebles (1980) 165), where this calculation is 
performed in synch.ronous gauge. Like in there (§92), one obtains in lowest order W'f/T the dispersion 
relation. Using 

l (r) l } + 3j,LW/k 11 Md Do h' h . ld 11 l-n1·rWR -2 J.t = -- , W lC y1e S l = -2 . ( k ) djJ. 
_ 1 4 _ 1 1 - i·11r w - µ 

one finds 

w = Wo - h with wo = k/[3(1 + R)] 112 and 'Y = (k2'1Jr/6) R
2 

~ ~~)~ l) (9.77) 
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In the baryon dominated regime, R ~ 1, therefore 

(9.78) 

(If I.he angular dependence of Thompson sca.tLering is not neglected, the term HR+ 1) becomes 
~(R + 1). If also polarization is ta.ken into account, one obt.ains ~~ (R + 1).) 

Posing ~amp17r/6 = 1, this leads to a damping scale Actn111p "''1Jr(11dec), which is projected in 
the microwave sky to an angle 

.o 'IJT(?Jdec) 
'Udamp "" ( ) X 1]o - 17dec 

For K, = 0 this corresponds to a few arc minutes and to the harmonic number 

0 j·o 1rt/O ,..., (1 + Zdec)
2

,.... h 
tdl.\tup = 7r lldamp '.::::: - Hb · 

10rJr(1'/dec) 10 
(9.79) 

This estimate is very crude since we are using the the approximation for rn- from the tight coupling 
regime just where coupling stops to be tight, and we assume an arbitrary value of nc ,..., O.ln 8 at 
the moment of decoupling. Both these effects lowei· lc1amp somewhat and numerical results give 

in a K- = 0 universe. In open (closed} universes, this scale (which of course also depends on !11i) is 
moved to larger (lower) e due to projection. A reasonable approximation for the damping harmonic 
is 

edi.mp rv 600 ( 0.0~~~/2) ' 

Temperature ftuct.uations on smaller scales, e > t'damp are exponentially damped by photon diffu­
sion. 

9.4 Polarization 

Thomson scattering is not isotropic. And what is more, for a non- isotropic photon distribution 
it depends on the polarisation: Even if the incident photon beam is unpolarised, the scattered 
beam will be, unless the incident disLl'ibution is perfectly isotropic. In the previous sect.iou we 
have neglected this effect by summing over the initial polarizations and averaging over final po­
larizations. Now we want to derive the difference in the Boltzmann equat.ion ta.king into account 
polarisation. For simplicity (and since this is by far the most relevant case) we concentrate on 
scalar perturbations. 

Polarisation is usually characterized by means of the Stokes parameters (66, 67, 68]. 
For a harmonic electromagnetic wave with associated electric field 

(9.80) 

where n, e1 and e2 form an orthonormal basis and the complex field amplitudes are parameterised 
as Ei = a;ei~;, the Stokes parameters are given by 

I = a2 +a2 l 2 (9.81) 

Q = a~ - ~ (9.82) 

u = 2a1 a2 cos( <52 - ~1) (9.83) 

v = 2a1a2 sin(62 - 51). (9.84) 

I is the intensity of the wave (whose perturbation i has been introduced in the previous section), 
while Q is a measure of the strength of linear polarisation (Lhe ratio of the principal axis of the 
polarisation ellipse). U and V give phase information (the orientation of the ellipse). One can 
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show that U and V are not coupled to I and Q by Thomson scattering. For scalar perturbations 
U and V even vanish. We therefore ignore them here. 

Since Q vanishes in the background, to first order it obeys the unperturbed Liouville equation, 

8 M(Q) + in1 ktJ'vt(Q) - r<.5> injnk BM(~) = 0. 
,., Jk an• {9.85) 

The differential cross section of Thomson scattering for a photon with incident polarisation e(i) 

and outgoing polarisation S(s) is 

(9.86) 

n 

Figure 9.4: Definition of the angles and vectors for Thomson scattering in the (n, e2 ) plane. 

It is often convenient to introduce the two 'partial' intensities /1 := ar = (I + Q)/2 and 
12 = a~ = (I - Q)/2. A wave scattered in the (n, e2) plane (see Fig. 9.4) by an angle 8 has the 
intensities 

/s) 
1 = 

30"r I(i) 
81!" l 

J(s) 
2 = 3£Tr J(i) 2 e 

87r 2 COS I (9.87) 

or, expressed in terms of the Stokes parameters, 

( 
J (B) ) = 3aT ( 1 + COS

2 0 Sin
2 0 ) ( J(i) ) 

Q(s) 161T sin2 () 1 + cos2 () Q(i) · 
(9.88) 

To rotate a wave into a common coordinate system, one uses that a rotation in the (e1, e2) plane 
by an angle ef>. According to the general transformation of the Stokes parameters under rotation, 
this brings (/, Q) into (/', Q') given by 

I' =I, Q' = Q cos(2</>), or (9.89) 

(9.90) 

If we start with a wave (/(i), Q('>) propagating in the direction n that is scattered into a wa:ve 
(J<s>, Q(s>) in direction n', then we need to go through the following steps (we will use the plane 
(z, y) as reference plane, see Fig. (9.&} for definitions of the angles and vectors): 

1. Rotate the plane (n, n') around n into the plane (z,n). One needs to apply the rotation 
(9.89) for</>= o: to the Stokes parameters. 

2. Rotate the new plane (n, n') around z into the reference plane. This operation does not 
influence the scattering. 

3. Now we are in the known case of (9.87} and (9.88). Hence we can apply one of those scattering 
matrices. 

4. We rotate the scatt.<>,ring plane back arnund z into the old (z, n') plane. This does again not 
change the Stokes parameters. 
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Figure 9.5: Definition of t.he angles and vectors for Thomson scattering in the general case. The 
polarisation vectors a.re oriented like in Fig. 9.4. 

5. Finally we rotate around n' by the angle ci to reach the original state. To do this, we have 
to apply the rotation matrix (9.89) again, but for </> = a'. 

The scattering matrix for an incoming photon with direction n that is scattered into direction 
n' for a reference frame with k = z and for the scalar part is then given by: 

( 
J(6> ) _ 3ar ( 1 + (n · n')2 (n · n')2 

- (n · k) 2 
) ( J (i) ) 

Q(s) - l67r (n · n')2 - (n' · k)2 1 + (n · n')2 - (n · k)2 - (n'. k)2 Q(i) (
9.9l) 

To calculate the collision term including polarisation effects, we change into the (li ,12 ) basis. 
For each of the two intensities >. E { 1, 2} we then have the collision term given by 

(9.92) 

where 1i>.> and !~>.) denote the distribution of photons in the polarisation state >. scattered into 
respectively out of the beam due to Compton scattering. 

In the matter (baryon/electron) rest frame, which we indicate by a prime, we know that 

dlf(>.)t 
_+_ (p n) = arne J 1<0)1(p' n')w>.(n n')dn' 

dt' ' 4rr ' 6 
' ' 

where ne denotes the electron number density, ar is the Thomson cross section, and wt is the 
normalised Thomson scattering matrix (9.91), but in the basis {/i, 12}. 

Using the Lorentz transformation from the baryon rest frame to the laboratory frame (like in 
the previous section) and performing the integration over photon energies, we obt.ain 

d1,(>.)(11) [ 1 I ] 
P-y ~t' = p'Yarne 1+4n;(v' - B') + 

4
rr · 1,Co) (n')wi{n, n')dn' . 

The distribution of photons scattered out of the beam is like in the previous section, 

(>.) 
df _ 1<>.)t(pl } ---;Ji/" =arne ,n , 
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so that we finally have 

c(.~)' drf(>.) d" (:\.) 
= ~1 d (-~-I_ - _II-- ) 3 

p
1

a4 p dt' dt' p 

= ~urn., [- i.<>.> + 4n;(ti' - B') + 4~ J i«5>(n')wg(n , n')dn'] 

We convert this result. to the normal Stokes parameters by setting c<n = C(l) + c<2> and 
C(Q) = c<1> - c<2) as well as /, = i(l) + iC2> and q = i<1> - t<2>. The resulting collision integrals are 
then 

cU)t = urne [-(, + 4ni(vi - B') +:Tr I (w11i + W1zq) dn'] 
c(Q)I = urne [-q + 4~ / (w21£ + W22q) dn'] 

(9.93) 

(9.94) 

where w is the normalised scattering matrix for I and Q from Eq. {9.91). Clearly, q = M(Q). The 
term w11 is as in the previous section, 

w11 (n, n'} = 3/4[1 + (nn'}2
] = 1 + ~nijn~3 with (9.95) 

Using o'Y = (l/47r) J i(n)dO (the photon energy density pertul'bation) and the definitions of the 
gauge-invariant variables M(S) and V(b) for the photon brightness perturbaLion and the baryon 
velocity potential, we can write cU>1 in gauge-invariant form. 

cU>1 = u rne [D~r) - M(S) + 4n,a;V(b) + ~n,jMij + 4~ I W12 q dn'] ' (9.96) 

The scattering matrix element w12 = 3/4[(nn')2 - (nk)2] can be rewritten as 3/4[(nn')2 - l/s] -

3/4[(nk)2 - lfa]. The first part then gives l/zniiM(Q)ij just like for the brightness pert.urbation. 
Since the term in square brackets of (9.94) and (9.96) is already first order we can set dt' = dt 

which yields C = ~C' = ~C' = aC'. The Boltzmann equation for scalar perturbations expressed 
in terms of the gauge invariant va1'iable M(S) then becomes 

M(S) + ni8iM(S) = 4n'81(cf! - '11) + auTne [D~1) - M(S) - 4ni8; y(b) 

+~n,; (M'i +M<Q)ij)- ~ ((nk)2
- ~) 4~ j M<Q>(n')dn']. (9.97) 

Note the difference to the result obtained neglecting polarisation (Eq. 9.49)! 
For the polarisation equation, we rewrite the other two matrix elements correspondingly. We 

find then 

Ni<Ql + nia.M<Ql = 
aO'Tne [ - M(Q) + ~n;; ( M'i + Af(Q)•i) 

- ~ 4~ j (µ.12 
- 1/3) ( M{S) (n ') + M(Q) (n ')) cID' 

-~ (Cnk)2 - I /3) ~ j M (Q) (n')dO' + ~ ~ J M(Q) (n')dn'] (9.98) 
4 ~ 2~ 

The cVl 's for the polarisation are now obtained from M(Q) = ( ~T) (Q) in exactly the same way 

as the once for the temperature anisotropies from ( tJ;f ) (S) by Eqn. (9.22). The figure below shows 
both, the temperature and polarisation Ge's as well as the cross correlation, (M(S) (MCQ>)*). 
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Figure 9.6: The temperature anisotropy (solid), the polarisat.ion (dashed} and their correlation 
(dotted) are shown for a purely scalar standard CMD model. 

9.5 Summary 

9.5.1 Physical processes 

• Before recombination, photons and baryons form a tightly coupled fluid which performs 
ac:oustic osdllations on sub-horizon scales. 

• Depending on the initial conditions, these oscillations are sine waves (isocurvature case) or 
cosine waves (adiabatic case). 

• After recombination, the photons move along perturbed geodesics, only influenced by the 
metric perturbations. 

• Vector perturbations of the metric decay as a-2 after creation and their effects on CMB 
anisotropies are negligible for models where initial fluctuations are created early, e.g. during 
an inflationary phase. This is different for models which constantly seed fluctuations in the 
geometry, e.g. topological defects. 

• Tensor perturbations of the metric have constant amplitude on super-horizon scales and 
perform damped oscillations ex a-1 once they enter the horizon. 

• Scalar perturbations of the metric a.re roughly constant if they enter the horizon only aft.er 
the time of matter and radiation equality. On scales which enter the horizon before equality 
they are damped by a factor ( Zeq/ Zil, ) 2 , where Zeq and Zin are the redshift of equality and of 
horizon crossing, respectively. 

• Perturbations on small scales, k ~ kr ~ (fhh/20)(zde<: + 1)2 Ho are exponentially damped 
by collisional damping during recombination (Silk damping). 

9.5.2 Scale dependence 

• On large scales (larger than the horizon scale at recombination, e ~ i H ~ 7r /iJ H, with 
{)H = rJctedX('fJO - T/de<:), perturbations are dominated by gravitational effects: Inflationary 
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models typically lead to k3 (Ill> - cJ.>j2(k, ?)dee))~ const. and k3 (H2 ) ~ const. on these scales. 
This implies a flat "Harrison-Zel'dovich" spectrwn, 

( tlT)
2 

T ('l?t) '.::= e(e + l)Ct ~ const., 
7r 

flt=-. 
l 

(9.99) 

• On intermediate scales, eH < e < fdamp...., 600, CMB anisotropies mainly reflect the acoustic 
oscillations of the photon/baryon plasma prior to recombination. The position of the first 
peak is severely affected by initial conditions (adiabatic or isocurvature). For"'= 0, the first 
contraction peak is at about ei•» ..,_, 220 if the initial conditioms am adiabatic, while the first 
contraction peak is at eii) ,..., 350 for isocurva.ture initial conditions. The amplitude of and 
the distance between the peaks depend strongly on cosmological parameters. 

• On small scales, t'damp < e, fluctuations are collisionally damped during recombination ("Silk 
damping"). The damping scale depends mainly on ODh and 0. 

9.5.3 The main influence of cosmological parameters 

• Curvature, h20n: 

Curvature and Cosmological Constant 

T!lj I i I i iihj I I I ilihj i 

~ nD o.n _/~~ . 
. ~. I ;;:;--·­

t.t 
.~. 

Curvature 
in the CMB 

Figure 9.7: The temperature anisotropy e(e + l)Ct's are shown as a function of n~ ( only the 
open case, On 2: 0 is considered). The top panel shows the difference between the action of 
curvature and of a cosmological constant for fixed Om = 0.8 (Taken from Wayne Hu's homepage, 
http://www.sns.ias.edu;-whu). 

- Mainly affects the inter-peak distance, tlf., and, for given initial conditions, the position 
of the first peak. Positive curvature lowers Ae while negative curvature enhances it (see 
Fig. 9.7). 

- Curvature 'also leads to an integrated Sachs-Wolfe contribution which is especially im­
portant for "' > 0 at very low f.. Overall, this leads to some enhancement of the Sachs­
Wolfe contribution and therefore (after normalisation to the COBE measurements) to 
somewhat lower acoustic peaks. 

- Non-zero curvature changes the epoch of equal matter and radiation, leading to an 
enhancement of the acoustic peaks if K- > 0 and to a. decrease if"'< 0 (see Fig. 9.7) . 

• Baryon density, PB = nBh2 . 10-29g/cm3 : 
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Figure 9.8: The temperature anisotropy l( e + 1 )Ct's are shown as a function of the baryon density, 
nsh2

• (Taken from Wayne Hu's homepage, http://www.sns.ias.eduFwhu). 

- A high baryonic densit.y enhances the compression pealcs and decreases the expansion 
peaks via the self-gravity of the baryons. 

- It also reduces the damping scale, )"r = 1/(adecOTne(?Jdec)), leading to an increase in 
edamp· 

- By its influence on the plasma sound velocity, c8 = 1/s(l + PB/P-y )- 1 , it prolongs the 
oscillation period (cf Fig. 9.8). 

• Cosmological Constant, A= ~~~\~ . 10-29g/cm3 : 

Cosmological Constant 
in the CMB 

Figure 9.9: The temperature anisotropy e(e + l)Ct's are shown as a function of the cosmological 
constant, fiA. (Taken from Wayne Hu's homepage, http:/ / www.sns.ias.eduF whu) . 

The presence of a cosmological constant at fixed ntot = nm + nA delays the epoch of equal 
matter und radiation. During the radiation dominated era, the gravitational potential is not 
constant, but decays as soon as a given scale enters the horizon. If fleq ,..., 1Jdec this induces 
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an integrated Sachs-Wolfe (ISW) contribution which boosts mainly the first acoustic peak. 

If DA becomes very large 2:. 0.8 it also boosts the late integrated Sachs-Wolfe contribution 
and the relative height of the acoustic peaks begins to decrease again (see Fig. 9.9). 

• Hubble Parameter, Ho= lOOh km/(s Mpc): 

For fixed curvature and cosmological constant, lowering the Hubble parameter also delays 
the epoch of equal matter and radiation, f1eq -t '?dee, since 

Om 4 2 
Zeq + 1 = n- ::::'. 2.4 · 10 f2mh . 

Hrad 
(9.100) 

Therefore the same type of ISW contribution as for A- models boosts the first acoustic peak. 

• Initial conditions: 

- A tensor contribution enhances the large scales fluctuations but not the acoustic peaks, 
thereby lowering their relative amplitude. 

- A "blue" fluctuation spectrum, n > 1, enhances fluctuations on smaller scales and raises 
thereby the acoustic peaks. 



Chapter 10 

Observations 

In this short, final chapter we want to discuss briefly the experimental situation. It has been clear 
for a long time that, if initial fluctuations have led to the formation of large scale structure by 
gravitational instability, they should have induced fluctuations in the cosmic microwave background 
(71, 72). Until spring 1992, however, only the dipole anisotropy had been detected [61, 62\. Its 
value is {56] 

( ( ';?') ') d'pok = (1.528 ± 0.004) x 10-• . 

After many upper limits, the DMR experiment aboard the COBE satellite measured for the 
first time convincingly positive anisotropies [57]. It found 

( ( ':) 

2

) (0),.., (30µK) 2 (10.1) 

on all angular scales B ?: 7°. Many more positive measurements have been performed since then. 
A complete list until September 1999 is given in the Table 10.1 and indicated in Fig. 10.1. 

2000 

1600 

~ 
31000 
+ 
~ 

600 

0 

._1 •H 

-

.... 

.... 
_, 
-r-r 
0 

I 

._ 
-~ 

·- r-< 
r ,.-. 

_, 

t-&-c 
I 

200 

I 
I -

-
~ 

-

T 
,_l._, 

2000 ......... , ...... , 
I 
I 

lGOO I 
I 

~ 1000 

I 
I 

+ I s-
I 

r;oo I 
"i· 

-
I I 

0 

400 600 10 100 

Figure 10.1: The measured temperature anisotropies, e(e + l)Ce indicated in the table above are 
shown in a lin-lin plot (left) and in a log-lin plot with the theoretical curve from a standard, 
adiabatic cold dark matter model (right,) . 

As one sees in the above figure, present data, apart from COBE, is very scattered. It may well 
be that many of these experiments still have normalization problems which a.re more severe than 
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Bxperimenl errective t 6..T"(µK)~ +(µ.K)" -(µ[() '.! Sky Coverage l:left'lrence 
UOBEl 2.1 11.5 84.0 ll.5 0.65 1821 
COBE'.l 3.J 125 74.7 75.5 0.65 [82J 
COBE3 4.1 184 69.4 69.7 0.65 1821 
COI3E4 5.6 100 45.8 45.8 0.65 (821 
COBE5 8.0 137.6 35.8 35.7 0.65 (82J 
COBE6 10.9 122 36.8 36.5 0.65 1821 
COBE7 14.a 108 39.6 39.6 0.65 1821 
COBE8 HIA 173 51 52 0.65 1s21 

FIIlS 10 137.6 82.7 6:.!.6 - 183 
Tenerife 20.1 185 160.5 110.8 0.0124 184 

!AC/Bartol 33.0 199() 2989 1566 - (85 
IAC/Bartol 5.1.0 481 588 308 - f85 
PYTHONV 50 84 23.4 20.5 0.01 [86 
PY'l'HONV 74 107 35.7 30. 0.01 [86J 
PY'l'HONV 108 153 53.3 37 0.01 l86J 
PYTHONV 140 125 81.5 67.3 0.01 l8CJj 
PYTHO NV 172 464 188 170 0.01 [8GJ 
PYTHONV 203 1467 494 42.~ 0.01 [llCll 
PYTHONV 233 1318 1000 871 0.01 1861 

l:IAM 74 492 601 158 - 1871 
QMAI'-J71+2Ka 80 3.51 95 97 0.01 [88J 
QMAP-Fl+2Ka. 126 554 118 124 0.01 [88] 

QMAP-Q 111 430 87 79 0.01 1881 
South Pole 91 57 145 98 48 0.005 TB91 
South Pole 94 57 210 187 65 0.005 [891 

PYTHON 92 464 271 183 - [90] 
PYTHON 177 535 313 213 - (90] 

ARGO Hercules 95 243 120 !lo 0.0024 1101 
AR.GO Aries 91i 349 156 157 0.004!4 1911 

8Mkatoon 911 382 125 78 0.0037 (92J 
Saskatoon 166 758 161 126 0.0037 [92J 
Saskatoon 236 1150 286 206 0.0037 [92) 
Saskatoon 285 1177 518 258 0.0037 [921 
Saskatoon a4S 758 475 490 0.0037 [92) 

JAM 125 1121 1535 979 - 193 
TOCO 128 481 367 252 - (94] 
TOCO 152 1070 306 268 . 194] 
TOCO 226 1096 193 201 - 1941 
TOCO 780 223 24.5 247 . l94i 

MSAM94 143 612 503 353 0.0007 (95j 
MSAM94 248 581 351 322 0.0007 l95l 
MSAM95 160 398 295 156 0.0007 [!lOl 
MSAM95 270 672 424 242 0.0007 1961 
MAX HR 145 170 132 75 0.000:.! [971 
MAX PH 145 473 373 161 0.0004! [971 

MAX C UM 145 473 227 170 0.0002 [97) 
MAX ID 145 341 397 171 0.0002 [97) 
MAX SH 145 384 416 214 0.0002 [971 

CATl 396 411 287 211 0.0001 1991 
CAT2 608 382 309 218 0.0001 199] 

RING5m 589 499 163 111 - 1100 

Table 10.1: The published CMil anisotropy detections until September 1999. The 3., 4. and 5. 
column denote the value of the anisotropy and the upper and lower 1-0' errors respectively. 
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indicated in the error bars. So far only one experiment sees a rather well distinguished 'rajse and 
fall' which may be due to the first acoustic peak All the other experiments on small scales only 
indicate an acoustic peak when compared to COBE. This situation will change drastically once 
the data from the second BOOMERanG flight will be analyzed or when the MAP data arrives (see 
below). 

The experiments can be split into three classes: Satellite ~periments, balloon-borne experi­
ments and ground based experiments. The technical and economical advantages of ground based 
experiments are obvious. Their main problem is atmospheric fluctuation. This can be reduced by 
two methods: 

• Choose a very high altitude and very cold site, e.g. the south pole. Several experiments like 
SP, Python and White Dish have chosen this site. 

• MeCIBure anisotropies on very small scales, preferably by interferometry (CAT , VSA, J odrell 
Bank). 

Balloon-borne experiments flying at about 40km altitude have less problems with the Earths 
atmosphere but they face the following difficulties: 

• They arc limited in weight. 

• They cannot be manipulated at will in flight. 

• They have a rather short duration. 

• To secure all the data taken on the balloon, they have to be recovered intact. 

Yet the advantages of overcoming the atmosphere are so significant that many groups have 
chosen this approach, like e.9. MAX, FIRS, MSAM, QMAP, TopHat, etc. The BOOMERanG 
experiment even combined the two advantages and performed a long- duration flight (10 days) on 
the :south pole in December 1998. (Unfortunately it will still t.ake a considerable amount of time 
until the data will be fully analyzed. But preliminary maps look very promising and indicate that 
this dataset is an entirely different quality than everything we have so far. The BOOMERanG-98 
data should reveal the Cts from f. "' 60 to f. "' 600 with about 153 errors!) 

The third possibility are satellite experiments. They avoid atmospheric problems altogether, 
but this solution is very i>,xpensive. So far only one satellite has been launched (namely COBE in 
1989) and two more are planned: MAP (Microwa;ve Anisotropy Probe, a NASA MIDEX mission, to 
be launched in 2001) and PLANCK, an ESA medium size mission of the "Horizon 2000" program, 
to be launched in 2006. 

MAP will perform measurements at five frt>,quencies in the range from 22 to 90 GHz, while 
the instruments of PLANCK will operate at nine frequencies, covering 20 to 800 GHz. At low 
frequencies (below 100 GHz) radio receivers are used (so called "HEMTs'', high electron mobilit,y 
transistors) while the high frequency instruments are bolometers. Recent progress in detector 
technologies should enable the two new satellites to perform significantly better than COBE - the 
radio receivers of PLANCK, e.,q., are supposed to be 1000 times more sensitive than the ones used 
for COBE, and the ruigula.r resolution has improved from seven degrees to four arc minutes. For 
more details sec 

• http://astro.estec.esa .nl/PLANCK 

• http://map.gsfc.nasa.gov 

• http://www.gsf c.nasa.gov/astro/cobe/cobe_home.html 

• http://spectrum.lbl.gov/www/max.html 

• http://oberon.roma1.infn.it/boomerang/ 
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Appendix A 

The Ge's from gravitational waves 

We consider metric perturbations which are produced by some isotropic random process (for ex­
ample during inflation). After production, they evolve according to a deterministic equation of 
motion. By reasons of isotropy and due to symmetry, the correlation functions of hij (k, 71) have to 
be of the form 

(hij(k,ri)h7m(k,711
)) = [kikjk1kmH1(k1 ri,ri') + 

(kiklDjm + kikmOjl + kjktOim + kj kmOi1)H2(k,ri,r/) + 
~kj&1mHs(k,rpi') + k1k.nc5i;H3(k,r/,'f/) + 
+J,ic5tmH4(k, fl, ri') + (c5;1'5jm + 5imt5;i)Hs(k, 11, 171

)] • (A.1) 

Here the functions H,. are functions of the modulus k = lkl only. Furthermore, all of them except 
Hs are hermitian in t and t'. This is the most general ansatz for an isotropic correlation tensor 
satisfying the required symmetries. To project out the tensorial part of this correlation tensor we 
act on h1; it with the tensor projection operator, 

This yields 

{hij>(k,17)hi~*(k,rl)) = 
Hs(k, t}, 17')[6i16;m + OimDj! - OijOtm + k-2 (c5ij ktkm + 
Otmkikj - Oilk;km - O;mklkj - '5j1k;km - Ojmk1ki) + 
k-4 kik; ktkm] . 

From Eq. (9. 17), we then obtain 

(A: (n)~ (n')) = ~ / JJx (A: (n,x)': (n',x)) = 

(2~)
3

/k2dkdnk r0 

dri f'1° dr/ exp(ik·n('l')o-?J)) exp(-ik·n(no-ri'))· 
j '1.Jec } 'Idec 

(A.2) 

(A.3) 

[(h~Jl(11, k)h};!?* (77', k)}n;n;n;n~] . (A.4) 

Here dnk denotes the integral over directions in k space. We use the normaliza.tion of the Fourier 
transform 

A 1 I f(k) = JV JJxexp(ix · k)f(x), /(x) = (2~)3 J d3kexp(-ix · k)f(k), 

where Vis an (arbitrary) normalization volume. 
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We now introduce the form (A.3) of< h<T)h(T) >. We further make use of the assumption 
that the perturbations have been created at some early epoch, e.g. during an inflatioruuy phase, 
after which they evolved deterministically. The function H5 (k, t7, rl') is thus a product of the form 

Hs(k, ?p/) = H(k, ri) · H*(k, 171
) • (A.5) 

Introducing this in Eq. (A.4) yields 

\ ~: (n) A: (n')) = 

(2~) 
3 J k2dkdflff. [(n · n')2 

- 1 + µ'2 + µ2 
- 4µµ'(n · n') + µ2µ'2]. 

f'1° dr1 fi
0 

dr/ [Ii(k,11)H"'(k,111)exp(ikµ(rio - 11))exp(- ikµ '(rJo - 11'))] , 
} "Idec }"Idea 

(A.6) 

where µ. = (n · k) and µ' = (n' · k). To proceed, we use the identity [102] 
00 

exp((ikµ.(rio - 17)) = ~)2r + 1Wj,.(k(1'/o -'T}))P,.(µ) . (A.7) 
r=O 

Here j,. denot.es the spherical Bessel function of order r and Pr is the Legendre polynomial of 
degree r. 

Furthermore, we replace each factor of µ in Eq. (A.6) by a derivative of the exponential 
exp( ikt£( t7o - ?J)) with respect to k( '7o - fJ) and correspondingly with µ,'. We then obtain 

\A: (n) ATT (n')) = 

(2~) 
3 

f,;(2r + 1)(2r' + l)i(r·.,·') / k2dkdn1cP,.(µ)Pr• (µ') x 

[2(n · n')2 J dr1d1,'j,.(k(rJo - rq)}j,.1 (k(rro - 11'))H(k, 11)H"'(k, r/} 

-J dr,d1]'[j,.(k(rio -17))j,.1 (k(?Jo -17')) + j;(k(rio - 17))j,.1 (k(rio -171
)) + 

j.,(k(110 - 11))j::, (k(710 -1'1')) - j; (k(rro - 1'/))j:,', (k(110 - rr') )JH (k, r,)H* (k, 11') 

-4(n · n') J d17d171j;(k(110 -17))j;,(k(110 - r11))H(k,1'/)H*(k,1'/')] . (A.8) 

Here only the Legendre polynomials, P,.(µ) and P,.,(µ') depend on the direction k. To perform the 
integration dni<, we use the addition theorem for the spherical harmonics Yrs, 

4~ r ~ 
P,.(µ} = (2r + l) f ,. Yrs(n)Y,.~(k) . (A.9) 

The orthogonality of the spherical harmonics then yields 

(2r + 1)(2r' + 1) J dO.kP,.(µ)P,.1(µ.1
) = 

r 

16?r2J.,,.., Z:: Y,..6 (n)Y,.:(n') = 
s=-r 

(A.10) 

In Eq. (A.8) the integration over dnk then leads to terms of the form (n · n')P,.(11 · n') and 
(n · n')2 P,.(n · n'). To reduce them, we use 

r + 1 1' 
xP.,.(x) = -

2
--Pr+I + -

2
- - Pr- 1 . 

r+l r+l 
(A.11) 



Applying this and its iteration for x2 Pr(x), we obtain 

(LJ.T (n) LJ.T* (n')} = 
T T 

2~2 ~)2r +1) J k2dk J dridt}'.H(k,11)H''(k,r/){ 
r 

[
2(r+l)(r+2) l 21·(r- l) ] 
(2r + 1}(2t· + 3) pr+2 + (2r - 1)(2t· + 3) Pr+ (2r - 1)(2r + 1) Pr-2 

X 

Jr(k(r1t1 -17))j,.(k(rio -171
)) - Pr(jr(k(11o - 'f])j;(k('IJo - ri')) 

+Jr(k(1Jo - tl'})j;(k(rio - 17)) - j; (k(1Jo - 'fJ))j ;,(k(rto - 171
))] 
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-4[:r:
1
1 

Pr+l + 2r ~ l Pr-1] J;(k(1Jo - 17))j;(k(17o -17'))} , (A.12) 

where the argument oft.he Legendre polynomials, n · n', has been suppressed. Using the relations 

~ r+l. r . 
Jr = - 2r + I Jr+l + 2r + 1 Jr-l (A.13) 

for Bessel functions, and its iteration for j", we can rewrite Eq. (A.12) in terms of the BE'.'lSCl 
functions Jr - 2 to Jr+2• 

We now insert the definition of C1: 

(
LJ.T LJ.T I ) 1 y(n) · y(n ) = 4 Et(2f + l)CtP1(cos 9) , 

(n·n')=co~ 8 11' 

(A.14) 

and compare the coefficients in Eqs. (A.12) and (A.14). We obtain the somewhat lengthy expres­
sion 

Ct= 

~ j dkk2 J dr;dri'H(k,r1)H*(k,r/){J1(k(tJo -ri))j1(k(tJo-11')) x 

( 
1 2(2€2 + 2e - 1) (2f2 + 2£ - l )2 

(2t- 1)(2e+ 3) + (2e - 1)(2€ + 3) + (U -1)2(2f + 3)2 

1e3 4(e+ 1)3 
) 

cu - 1)2(2e + 1) - cze + i)(2e + 3)2 
- lit(k(110 - tJ))jt+2(k(1Jo - ry')) + Jt+2(k(T}O - 71))jt(k(110 -171

))] x 
_1_ (2(e + 2)(C + 1)(2e2 + 2f- l) 2(C + l)(e + 2) _ a(e + 1)2 (e + 2)) 
2l + 1 (2e - 1)(2l + 3)2 + (2e + 3) (2e + 3)2 

- fie(k(rio -1]))Jt-2(k(110 - 111
)) + it- 2(k('7o - 'fJ))je(k(tJo -r/))] x 

1 (U(t-1)(2e2 + 21. - 1) U(e - 1) se2(t - 1)) 
2l+l (2e - 1)2(2t+3) + (2e-1)(2 - (U-1)2 
+Jt+2(k(1Jo - ry))Jt+2(k(ryo - 171

)) x 

( 
2ce + 2)(e + 1) 4(£ + i)(e + 2)2 (e + i)2(e + 2)2 ) 
(U + 1)(2e + 3) - (2f + 1)(2l + 3)::1 + (2f + 1)2(2£ + 3)2 

+J·t-2(k(rio -11))ie- 2(k(rio -111
)) x 

( 
2l(l- 1) 4l(f- 1)2 f2 (i-1)2 

)} 

(U - 1)(2£ + 1) - (U - 1)2(2f + 1) + (2f - · 1)2 (2l + 1)2 
(A.15) 

An analysis of the coefficient of each term reveals that the curly bracket in this expression is 
just 

{-. ·} = e(e - I)(e + I)(t + 2} (ie(k(770 - ri))) 
2 

(k(T"/Q - 17))2 
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and the result is equivalent to 

·) I Ce=; dkk2II(f ,k)l2e(f - l)(f+ 1)(£+2), (A.16) 

with 
J(e k) = 1•10 dr,H (ry k)je ((k(r/o - ri)) 

I 1lko I (k(110 - ']))2 ' 
(A.17) 
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