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Two-dimensional nonlinear a-models seem to provide a suitable framework 

for studying string propagation in background fields. Recent investigations [l-9] 

of these models have given valuable insight into the structure of string theories. 

A remarkable fact that has emerged is that quantum consistency of these models 

requires the background fields to satisfy equations of motion identical to those 

derived from the field theory limit of strings [2, 7-91. Although these studies have 

used both the Neveu-Schwarz-Ramond (NSR) [lo] and the Green-Schwarz (GS) 

[ll] formulations of the superstring, virtually all detailed quantum calculations 

have been carried out within the NSR formulation. The GS formulation has the 

advantage of being manifestly space-time supersymmetric, but progress with it 

has been hampered by the complicated form of the a-model superfield action and 

by the apparent impossibility [12] f o covariant quantization of the model. In the 

light-cone gauge, however, the flat superspace action (the free GS superstring) 

drastically simplifies and quantization of the theory is then straightforward. One 

might expect a similar simplification in the curved superspace action in this 

gauge. Should this be the case, a study of the quantum properties of the GS 

a-models would then be no more difficult than that of the NSR a-models (al- 

though of course manifest Lorentz covariance would be lost). To investigate this 

possibility one needs a method for obtaining &expansion of curved superspace Q- 

models. The purpose of this paper is twofold. First, we develop a general method 

for obtaining normal coordinate expansion of any curved superspace a-model. 

This method is essentially an extension to superspace of Mukhi’s method [13] for 

normal coordinate expansion of ordinary bosonic a-models. The &expansion is 

then obtained as a special case of the superspace normal coordinate expansion. 

Second, using our expansion rules we argue that in the absence of background 
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fermions the &expansion terminates at order e2 in the light-cone gauge for the 

heterotic string [15]. (Th e argument can be easily generalized to other super- 

strings as well). We also derive the light-cone gauge-fixed action for the heterotic 

string from the covariant action given in Ref.[9] involving background metric, 

torsion and Yang-Mills fields. II1 

Throughout this paper we will use the notation and conventions of Refs.[9] 

and [16]. Consider, then, a curved superspace with points parameterized by 

ZM = (xm, P). For any function of 2 a e-expansion can in principle be ob- 

tained simply by Taylor expanding it around &‘ = 0. Such an expansion is, 

however, noncovariant since the variables @ ‘ are the coordinates of superspace. 

This is the same problem that one faces in carrying out background field expan- 

sion of ordinary bosonic a-models and its resolution, as there, is to use normal 

coordinates. Below we give a supersymmetric version of the ordinary bosonic 

normal coordinate expansion method which is suitable for background field ex- 

pansion of GS a-models.u2 

Consider a point P in superspace with coordinates ZM in some neighborhood 

of the origin 2, M. The point P is connected to the origin by some geodesic Z”(t). 

Specifying which geodesic P lives on and at what value of the affine parameter 

is equivalent to specifying its coordinates. But a geodesic through ZcM can be 

characterized by its tangent vector yA = y”eM A(Z) at Zo”. Therefore, one 

can essentially adopt the components of the tangent vector at the origin and 

the affine parameter to parametrize the neighborhood of Zc”. The connection 

tfl GS o-models in the light-cone gauge have previously been discussed, though not derived 
from a covariant action, in Ref. [6]. 

tj2 For more general applications see the superspace normal coordinate expansion method of 
Ref. [14]. 
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between ZM and these coordinates can be readily written down by solving the 

geodesic equation 

DtVA = 0, (1) 

dZ”(t) 
where VA(t) = dt eM A(Z(t)) is the tangent vector to the geodesic and 

Dt = dz”(t) dt DM is the covariant derivative along the geodesic, subject to the 

boundary conditions 

ZM E z”(t = 1) = z,M + P(&, y) (2) 

yA E vA(t = 0) = ( dZz’t) lt=O) eM A(%) 
(3) 

= y”eM A(~o) . 

The result is 

C”(ZO,Y) = YM - f YLYN rNL M(zo) 
. 

-‘LNP 
3, Y Y Y [aPrNL M(.&) - 2rPN Q(&$--QL M(z’3)] (4 

. 

+ . . . 

where 

rNL M = ! - 2 [DNeL A + (-)[N1[LIDLeN A] EA M . 

In the normal frame, where all geodesics are straight lines, (4) simply reads 

z”(Zo,p) = PM , (5) 

where the bar denotes quantities referred to the normal frame. 
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I 

Now, a general Taylor expansion of a curved-superspace a-model action I[Z] 

about the point 20 related to 2 by (2) has the form 

+ . . . 

where ai = (a’,~‘) are the world-sheet coordinates and [d20] is an appropriate 

invariant measure. The central observation of Ref. [l3] is that in the normal 

frame in which cM is independent of ZO, (5)) th is expansion factors out in the 

form 

w = Wol + / Id24vM(4 az;(u) I[Z01 
0 

+ ; Ijd24vN(4 sz;( . 0 u 
,) 

+ . . . . 

In (6) the operator 

can obviously be replaced by the covariant expression 

J [d2+M(@&‘) 

(6) 

(since at each stage the derivative is acting on a scalar) which may then be 
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referred back to an arbitrary frame, 

The expansion in (6) can then be written in the compact form 

I[Z] = eA[zo~yl I[Zo] , 

where 

A[Zo,y] = 
J 

[d2+/A(+‘A(d 

(7) 

(8) 

and 

DA(a) = EA N(zO(~))~N(~) 

is the functional covariant derivative defined through its action on a vector TB(a’) 

as 

B 0’ 
DATE = EA M(Zo(~)) iTzM((,i + 6(2)(~, o’)(-)[~I~~IT~(o)ucA B(~) , 

0 
(9) 

where 6c2) ( o,o’) is the invariant 2-dimensional &function and UC,4 B is the su- 

perconnection. All we now need to obtain the normal coordinate expansion of I 

is the action of A on the basic constituents of I, together with the equation 

AyA(o) = 
J 

[d2c+B(o’)&++/A(,) = 0 , (10) 

which simply states that the tangent vector yA is covariantly constant along the 

geodesic. 
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A covariant &expansion can be obtained as a special case of the above normal 

coordinate expansion by choosing the origin ZoM and the tangent yM at the origin 

to the geodesic linking ZoM and ZM = (Xm, P) in a specific way. Let us make 

the choices 

z(y = (Xrn, 0) YM = (0, Y’“) , (11) 

and go to the Wess-Zumino gauge in which the 13 = 0 components of the super- 

veilbein take the following form: 

em “(X) 
e&f A(x) = 

em “(X) 

em “(X) = 0 ep “(X) = t!TF 

Then 

ya = Y”eM a(ZO) 

= ypecL “(X) 

= 0 , 

and 

ya = Y”eM *(zO> 

= ype, *(X) 

(12) 

(13) 

Thus, if we set ya = 0 and ya = P and retain only the B = 0 components 

of all the superfields appearing in the expansion in (7), we will end up with a 

manifestly covariant O-expansion for the action I[Z]. 
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Let us now apply this method to the curved superspace heterotic string action 

of Ref.[9]. In the conformal gauge the action is given by 

Here 

and A- E V_BAB is the projection on the world-sheet of the lo-dimensional 

super Yang-Mills potential Ag. The subscript ‘-’ refers to the world-sheet; 

a- E (& - &) and V! G (V,” - Vt). $” are world-sheet fermions representing 

the gauge degrees of freedom of the heterotic string. Also 4(Z) is the dilaton 

superfield and BID (2) are the components of the 2-form potential B in terms 

of which the gauge-invariant S-form field strength H of the supergravity - super 

Yang-Mills system [16, 171 is defined by 

H = dB + C1w3YM 3 (16) 

where wsy~ = tr(AF - f A3) is the super Yang-Mills Chern-Simons 3-form. If 

curvature-squared terms are added to the supergravity Bianchi identities (16) 

gets modified by a Lorentz Chern-Simons piece. We will briefly discuss this case 

at the end. For now we restrict our attention to (16). 

To obtain O-expansion of the action given in (15) we need to know the action 

of the operator A on an arbitrary superfield and on Vi”. A straight forward 

computation gives 

AFBC... = TJ~DAF,BQ::* , PQ... (17) 
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AViA = DiyA + VicpBT~c A , (18) 

where FF,$‘.;; is an arbitrary tensor and TBC A is the supertorsion tensor. Since 

(18) involves a new object, D;yA, we also need to know the operation of A on it. 

This, too, is straightforward to compute and the result is 

A(DiyA) = YBViDyCRGDB A e (19) 

The rules given in (10) and (17) - (19), th e initial conditions (11) - (14) and 

the solutions to supergravity Bianchi identities given in Ref. [16] are sufficient to 

obtain &expansion of the action in (15). With background fermions set to zero 

only even powers of 8 contribute to the expansion. Even so one must derive the 

general expression in each order in 8, before the fermions are set to zero and the 

conditions (11) - (14) used, since the next higher order contribution is obtained 

by a further application of A. Condition (13) is, however, an exception to this 

since Aya vanishes due to (10) and A(Diy’) vanishes if y4 vanishes as can readily 

be seen from (19). Thus y4 can be set to zero at any stage of the e-expansion 

and this considerably simplifies the algebra. 

We can now expand (15) t o arbitrarily high orders in fI (the expansion of 

course terminates at the 16th order). The zeroth order contribution is trivially 

obtained from (15) by simply setting 8 = 0 in it. For vanishing background 

fermions we get 

.I(‘) = 
I 

d2a[ f ~i’~V~(X)V’a(X) + ~~jVid(X)Vje(X)Bed(X) + $J”D!~+~ ] 9 (20) 

where now Vi’(X) = diXm em “(X) and the superscript ‘(0)’ denotes the order 

in 8. The second order contribution is also not hard to compute. We only quote 
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the result which can be written in the following compact form: 

1(2) = 
/ 

d2+j(x) (e jqx)fi+e) 

+ f (e y-(x)Pe) p~,“bt(+$ (21) 

Cl 
--6 

2 ii (0 /v,(x)rube) tr (Aj(X)Fab(X))] , 

where Fat, (X) is the Yang-Mills field strength, Ti(X) = V:(X)I’, and 

(h+e)a = a+ea + f eP(rbyp v;(x)l;jubc(x) . 

The connection Gabc(X) is defined by 

C;fabc(X) = “J&(X) + Tube(X) - (45(X))-1’74[bDc]~(X) * (22) 

In this equation wabc (X) is the 0 = 0 component of the superconnection appearing 

in the Bianchi identies of Ref. (16). Also the bracket [ ] denotes antisymmetriza- 

tion normalized to unit weight. In obtaining (21) we have used the gauge for the 

superfield AB (2) in which Aa = 0 and DIPA,] = 0. Such a gauge choice 

is allowed by the (super) gauge symmetry of (15), under which AB(Z) transforms 

as JAB(Z) = DBA(Z), where A( 2) is a scalar superfield.13 

The last term in (21) comes from the Chern-Simons piece in (16). The 

appearance of this term may at first seem surprising, especially since the zeroth 

order action I(O) in (20) is gauge-invariant due to the anomalous transformation 

law of B,.d implied by (16). B u in fact its presence is easily explained. The point t 

fl3 Note that this does not fix a gauge for the x-space gauge invariance of the theory. 
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is that in the total action I(‘) + 1c2) the effective gauge field that couples to the 

chiral fermions @ ’ is 

A- = A- - $(e prabe)Fub 

and ,not just A-. As a result the $-anomaly, which is given by 

contains a piece equal to 

& 1 d2acijtr[diA (0 ,V’I’4be) Fub] 

in addition to the one that is cancelled by the anomalous variation of the B,d 

term in I(‘). This extra anomaly precisely cancels the variation of the non- 

gauge- invariant piece in (21) under the gauge transformation 6Ai = DiA, if we 

use that cl = - 1/167r [9]. It may be remarked here that a non-gauge-invariant 

counterterm, similar to the one under discussion, was also required in Ref. [3] for 

one-loop gauge invariance of the heterotic a-model in the NSR formulation. In 

the present case this term arises naturally as a consequence of having ensured 

gauge invariance and K-symmetry of the original superfield action (15). 

Calculation of the 4th and higher order contributions to the O-expansion 

becomes increasingly laborious with increasing order (since terms involving an 

increasing number of fermionic derivatives on background superfields appear and 

calculating these in terms of physical fields is rather tedious), but no subtleties 

are involved. In the light-cone gauge, however, there is a dramatic simplification 

- the expansion terminates at order 0 2. In the following we present an argument 
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to show that in the light-cone gauge and with background fermions set to zero 

I(O) + 1c2) is all that remains of the superfield action (15). To simplify matters 

a little bit we will present the argument only for the pure supergravity case. An 

identical argument can be given when background super Yang-Mills fields are 

also present. 

Our starting point is the following expansion for the (2n)th order contribution 

to the B-expansion of (15): 

12n = /d2uZ g2n(2n-p-11)!(*-p)!p! 

1.c AZn-*-'~) (A*-P+‘V,a) (APV-,) (23) 

+ f (AP(yr&X)) (Azn-*-‘Vf) (A*--p Vi)] . 

Equation (23) can be obtained by applying the operator 1 ADa-1 to 
m 

before setting the background fermions to zero, and using the Leibnitz rule. In 

(23) the conditions (ll), (12) and (14) and the condition of vanishing background 

fermions must be used only after all the A operations have been performed. 

One additional result that we will need is 

eaeP = & (rabc)@  (erabce) . 

This follows from the Majorana-Weyl nature of P and the properties of the 16 

x 16 dimensional representation that we are using for the y-matrices. Now, the 
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light-cone gauge-fixing is achieved by imposing the conditions 

r$ep = 0 z+(u)=z+ + *+a0 . (25) 

We will additionally assume that the background fields depend only on transverse 

directions and that tensors have only transverse components nonvanishing. In 

the light-cone gauge (24) reduces to 

eaeP = & (r+r,i)@ (er-r$q , (26) 

where a tilde on an index indicates that it takes transverse values only. Moreover, 

in this gauge the only e2 contribution that is non zero is the bilinear 

Qi” - (er-r”ig) . (27) 

An immediate consequence of (26) is that the following is true: 

Qii’;Q?i = 0 . 
(28) 

At this stage it may seem that because of (28) the o-expansion terminates at 

the 2nd order. An examination of our expansion rules, however, makes it clear 

that this need not necessarily be the case since these rules also involve covariant 

derivatives on 8, Die, and bilinears of these with 8 do not satisfy equations similar 

to (28). Th e o f 11 owing more detailed analysis is, therefore, needed. 

To evaluate (23) f or arbitrary n we need to compute A2m-1 (yI’,I’bX) for 

m = 1, 2, . . . and A2m~ and A 2mVi4 for m = 0, 1, 2, . . . . In the light-cone 

gauge the first two of these are especially simple to analyse. Each of them is 

13 



(2m) th order in 8 and by using (26) we can write the 8’s as m bilinears of the 

form given in (27) ( since no DiO’s can appear here). It then follows from (28) that 

they must both vanish for m 2 2. Actually things are even simpler since A2q5 

also vanishes. This is true because the indices of the e-bilinear in A24 must be 

contracted with some background tensor (which has only transverse components) 

and. because BI’%I = 0 as a consequence of the light-cone condition on 8. Thus 

we have 
A2m~=0, m 2 1 

(29) 
A2m-l(yr4rbA) = 0 , m 2 2 . 

The result is that the double sum in (23) reduces to the following single sum: 

J 
2n-1 

I(2m) = d2a c 
1 

p=. 2n(2n - p - l)!p! P ( A2n-p I’+“) (A” IL,) 

(30) 

+ ;A(yT,rd) (A2”-P-‘Vz) @P-l VJ)] . 

So, we now only need to analyse the quantity A2mVz. From our e-expansion 

rules it is clear that the general expression for A2,Vi4 must be of the form 

A2mVa = WabVib $ W4 pD@ . (31) 

Now since P is the only fermion around, we must also have 

wa p = e”wzp . 

Moreover, the most general r-matrix structure of W$ is 

wtp = Sabrbap + Mabcd (I&d)@ -t Gabcdef (bcde& - 

(32) 

(33) 
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Substituting (32) and (33) in (31) we get: 

AamV = WabVib + Sab (BITbDi~) + Mabcd (tKbcdDiO) 

+ Gabcdef (81YbcdefDit9) . 

Thus the terms involving Did that appear in AamViu have been explicitly sep- 

arated out.. The argument leading to (29) can now be applied to the tensor 

coefficients W, S, M and G appearing in (34) to conclude that each of these 

can only be at most of order e2. The index structure of the last three terms 

in this equation is, however, such that potential e4 terms actually vanish. To 

see this observe that the bilinear (tXab...Di8) vanishes in the light-cone gauge 

unless exactly one of the indices a, 6,. . . takes the value ‘+’ and all the rest 

are transverse, namely, only the bilinear (BI’+I’g,...DiB) = (OI’T~e_e ..DiB) is 

nonvanishing. Then (34) reduces to 

AarnVt = WabVib + S4+ (BITDie) + 3M4+“’ (N’TEiDiO) 

> . 
(35) 

Remembering now that the background tensors have only transverse components 

we conclude that the last three terms in (35) contribute only if Sa+ = q4+$, 

MU+“2 = t7Q+j@i and G4+“&j = ,.,4+&%&f. 

Equation (35) then becomes 

A2mV.a a = WabVib + q4+,$ @I’-Die) + 3A? (8r-rdDill) 

(36) 
+ 5&Z&j or-r EiijDiO) . 

An argument similar to the one leading to (29) now enables one to conclude that 

s, $@ and 6Jzf must be order zero in 8. Consequently APmVt = 0 for m 2 2. 
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In fact the following more specific statement is true and can be easily verified 

from (36): 

A2mV+ = 0 
i , m21 , (37) 

A2,Vi- = ,ZmVt = 0 , m 2 2 . (38) 

Using these results, (28) and the fact that A(yI’41’bX) vanishes unless either one 

of the two indices a, b is ‘+’ and the other is transverse, it is now straightforward 

to see that 1(2n) = 0 f or n 1 2. We omit the details but would like to point out 

that the specific structure of (23), which is of course governed by the covariant 

superfield action (15), is primarily responsible for this result. In other words it 

is possible to construct actions in the light-cone gauge with nonzero e4 terms, 

but these cannot be derived from a Lorentz-covariant and n-invariant action like 

(15). 

From the expressions given in (20) and (21) we can now write down the light- 

cone gauge-fixed action for the heterotic string in background fields. With the 

resealing tJa + P/e the action we get is 

- : (or+e)tr(A+ - A-)Fz6] , 

where Vi” = aiXk eh ;(X) and the connection appearing in 5+ is given in (22), 

restricted to transverse indices only. To determine how this connection is related 

to the ordinary connection and torsion, we use the definition of supertorsion, 
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TAB c = -2D1~Eq MeM c, and the solution for H4bc of the supergravity Bianchi 

identities given in Ref. [16]. Using the 8 = 0 components of these equations in 

(22) we get 

kbc = aabe - 4-‘rlapQ~4 - 4-%tx , (40) 

where 

n abc = E[b nE,j m&ema + El4 “EC] m&&emb - El4 “Eq m&emc , (41) 

is the torsionless connection. Equation (40) can be simplified by the resealing 

em 4 + 4-1/2em u. The second term then disappears and in terms of the resealed 

veilbeins the connection appearing in D+ becomes 

&bc = %bc - &aac , (42) 

where, in terms of B, H4bc is defined by (16) and is given by 

Habe = E4 ‘Eb mEc “Hem n 9 

(43) 
H.tmn = 3 dltBrnn.1 -f 6Cl(WQY M)[tmnI . 

The resealing of the veilbeins also has the effect that the factor of 4 in the first 

term in (39) disappears while the last two terms get multiplied by 4 due to the 

presence of F,.; = Ei hEi %Fhk in them. As a result all the e2 terms in (39) 

have a factor of 4 after the resealing and so it can be absorbed in a redefinition 

of 0. We then end up with the following expression for the light-cone gauge-fixed 
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action 

I@-) = 
/ 

d2* [f r)ijVizVjz + &$“‘BEi + $“Df# 

- (er-5,e) + i (er-rzie)$v$bt (44 

- F (er-rESe)t+4+ - A-)F~~)] . 

The connection now appearing in fi+ is given by (42) and (43), restricted to 

transverse directions only. It may be remarked here that precisely such a con- 

nection has been previously advocated [3,6] for the gauge invariance of the NSR 

a-model action. The analysis carried out here suggests that the K-symmetry and 

gauge-invariance of the superfield action (15) are responsible for the appearance 

of this specific connection in (44). 

To summarize, in this paper we have developed a simple procedure for ob- 

taining manifestly covariant e-expansion of any curved superspace a-model. On 

the basis of our expansion rules we have argued that for the heterotic string in 

background fields the expansion terminates at the 2nd order in the light-cone 

gauge (for vanishing background fermions). It is perhaps worth mentioning that 

in obtaining the e-expansion we have explicitly used the constraints of supergrav- 

ity - super Yang-Mills theory and the solutions to the Bianchi identities. This 

is not a limitation of our procedure since n-symmetry of the a-model anyway 

requires these conditions. But what it does signify is that the action (44) is con- 

sistent only if the background fields satisfy classical equations of motion, since 

we have used the K-symmetry to go to the light-cone gauge. Also, in analogy 

with what happens in the case of the free superstring we expect the action (44) 

to possess some physical supersymmetries which must be a combination of the 

K-symmetry and the N = 1 supersymmetry of the background. Of course, since 
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background fermions have been set to zero in (44), the requirement of N = 1 

supersymmetry (and hence that of physical supersymmetries of the action (44)) 

will impose constraints on the background. n4 We must also point out that (44) 

has a Lorentz anomaly. One expects that this problem will be cured by includ- 

ing curvature-squared terms in the supergravity Bianchi identities. A detailed 

calculation of the solutions of these modified Bianchi identities is underway. It 

would be interesting to see whether the resulting modification in (44) actually 

gets rid of the Lorentz anomaly. It would also be interesting to know precisely 

what connection appears in the corvariant derivative fi+ since this question has 

important implications for compactified solutions of string theory [6]. Work in 

these directions is in progress. 
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