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We present a method for defining a lattice realization of the ϕ4 quantum field theory on a simplicial
complex in order to enable numerical computation on a general Riemann manifold. The procedure begins
with adopting methods from traditional Regge calculus (RC) and finite element methods (FEM) plus the
addition of ultraviolet counterterms required to reach the renormalized field theory in the continuum limit.
The construction is tested numerically for the two-dimensional ϕ4 scalar field theory on the Riemann two-
sphere, S2, in comparison with the exact solutions to the two-dimensional Ising conformal field theory
(CFT). Numerical results for the Binder cumulants (up to 12th order) and the two- and four-point
correlation functions are in agreement with the exact c ¼ 1=2 CFT solutions.
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I. INTRODUCTION

Lattice field theory (LFT) has proven to be a powerful
nonperturbative approach to quantum field theory [1].
However the lattice regulator has generally been restricted
to flat Euclidean space, Rd, discretized on hypercubic
lattices with a uniform ultraviolet (UV) cutoff ΛUV ¼ π=a
in terms of the lattice spacing a. Here we propose a new
approach to enable nonperturbative studies for a range of
problems on curved Riemann manifolds. There are many
applications that benefit from this. In the study of
conformal field theory (CFT), it is useful to make a

Weyl transform from flat Euclidean spaceRd to a compact
spherical manifold Sd, or in Radial Quantization [2], a
Weyl transformation to the cylindrical boundary,
R × Sd−1, of AdSdþ1. Other applications that could benefit
from extending LFT to curved manifolds include two-
dimensional condensed matter systems such as graphene
sheets [3], four-dimensional gauge theories for beyond
the standard model (BSM) strong dynamics [4,5], and
perhaps even quantum effects in a space-time near
massive systems such as black holes.
Before attempting a nonperturbative lattice construction,

one should ask if a particular renormalizable field theory in
flat space is even perturbatively renormalizable on a general
smooth Riemann manifold. Fortunately, this question was
addressed with an avalanche of important research [6–9]
in the 1970s and 1980s. A rough summary is that any UV
complete field theory in flat space is also perturbatively
renormalizable on any smooth Riemann manifold with
diffeomorphism invariant counterterms corresponding to
those in flat space [9]. Taking this as given, in spite of our
limited focus on ϕ4 theory, we hope this paper is the
beginning of a more general non-perturbation lattice
formulation for these UV complete theories on any smooth
Euclidean Riemann manifolds.

*brower@bu.edu
†mchengcit@gmail.com
‡george.fleming@yale.edu
§andrew.gasbarro@yale.edu∥timothy.raben@ku.edu
¶chung-i_tan@brown.edu
**weinbe2@bu.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 98, 014502 (2018)

2470-0010=2018=98(1)=014502(26) 014502-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.014502&domain=pdf&date_stamp=2018-07-06
https://doi.org/10.1103/PhysRevD.98.014502
https://doi.org/10.1103/PhysRevD.98.014502
https://doi.org/10.1103/PhysRevD.98.014502
https://doi.org/10.1103/PhysRevD.98.014502
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


The basic challenge in constructing a lattice on a sphere
—or indeed on any nontrivial Riemann manifold—is the
lack of an infinite sequence of finer lattices with uniformly
decreasing lattice spacing [2,10,11]. For example, unlike
the hypercubic lattice with toroidal boundary condition, the
largest discrete subgroup of the isometries of a sphere is the
icosahedron in 2d and the hexacosichoron, or 600 cell, in
3d. This greatly complicates constructing a suitable bare
lattice Lagrangian that smoothly approaches the continuum
limit of the renormalizable quantum field theory when the
UV cut-off is removed. Here we propose a new formulation
of LFT on a sequence of simplicial lattices converging to a
general smooth Riemann manifold. Our strategy is to
represent the geometry of the discrete simplicial manifold
using Regge Calculus [12] (RC) and the matter fields using
the finite element method (FEM) [13] and discrete exterior
calculus (DEC) [14–17]. Together these methods define a
lattice Lagrangian which we conjecture is convergent in the
classical (or tree) approximation. However, the conver-
gence fails at the quantum level due to ultraviolet diver-
gences in the continuum limit. To remove this quantum
obstruction, we compute counterterms that cancel the
ultraviolet defect order by order in perturbation theory.
We will refer to the resultant lattice construction as the
quantum finite element (QFE) method and give a first
numerical test in 2d on S2 at the Wilson-Fisher CFT fixed
point.
While our current development of a QFE Lagrangian and

numerical tests are carried out for the simple case of a 2-d
scalar ϕ4 theory projected on the Riemann sphere we
attempt a more general framework. Since the map to the
Riemann sphere, R2 → S2, is a Weyl transform, the CFT is
guaranteed [18] to be exactly equivalent to the c ¼ 1=2
Ising CFT in flat space and therefore presents a convenient
and rigorous test of convergence to the continuum theory.
More general examples can and will be pursued mapping
conformal field theories in flat Euclidean space Rdþ1 either
to R × Sd, appropriate for radial quantization,

ds2flat ¼
Xdþ1

μ¼1

dxμdxμ ¼ e2tðdt2 þ dΩ2
dÞ

!Weyl ðdt2 þ dΩ2
dÞ; ð1Þ

with t ¼ logðrÞ or to the sphere, Sd,

ds2flat ¼
Xd
μ¼1

dxμdxμ ¼ eσðxÞdΩ2
d→
Weyl

dΩ2
d: ð2Þ

Current tests of the QFE method for the 3-d Ising model in
radial quantization, R3 → R × S2, are underway, so we
take the opportunity here to give a brief introduction to both
geometries. By considering the sphere Sd as a dimensional
reduction of the cylinderR × Sd by taking the length of the

cylinder to zero, both cases are conveniently presented
together in Appendix A.
The organization of the article is as follows. In Sec. II we

review the basic Regge calculus/finite element method
framework as a discrete form of the exterior calculus and
show its failure for a quantum field theory beyond the
classical limit due to UV divergences. The reader is referred
to the literature [13–16] for more details and to Ref. [19] for
the extension to Dirac fermions. In Sec. III we address the
central issue of counterterms in the interacting ϕ4 theory
required to restore the isometries on S2 in the continuum
limit. Sec. IV compares our Monte Carlo simulation for
fourth and sixth order Binder cumulants with the exactly
solvable c ¼ 1=2 CFT. In Sec. V we extend this analysis to
the two-point and four-point correlation functions. We fit
the operator product expansion (OPE) as a test case of how
to extract the central charge, OPE couplings, and operator
dimensions.

II. CLASSICALLIMIT FOR SIMPLICIAL LATTICE
FIELD THEORY

The scalar ϕ4 theory provides the simplest example. On a
smooth Riemann manifold, ðM; gÞ, the action,

S ¼
Z
M

ddx
ffiffiffi
g

p �
1

2
gμν∂μϕðxÞ∂νϕðxÞ

þ 1

2
ðm2 þ ξ̃0RicÞϕ2ðxÞ þ λϕ4ðxÞ þ hϕðxÞ

�
; ð3Þ

is manifestly invariant under diffeomorphisms: x0 ¼ fðxÞ≡
x0ðxÞ. We include the coupling to the scalar Ricci curvature
(ξ̃0Ric), where ξ̃0 ¼ ðd − 2Þ=ð4ðd − 1ÞÞ and an external
constant (scalar) field h. Ric ¼ ðd − 1Þðd − 2Þ=R2 on the
sphere Sd of radius R. The field, ϕðxÞ, is an absolute scalar
or in the language of differential calculus a 0-form with a
fixed value at each point P in the manifold, independent of
co-ordinate system: ϕ0ðx0Þ ¼ ϕðxðx0ÞÞ for x0 ¼ fðxÞ. For
future reference to the discussion in Sec. II B on the discrete
exterior calculus, we identify vold ¼ ffiffiffi

g
p

ddx ¼ ffiffiffi
g

p
dx1 ∧

� � � ∧ dxd, as the volume d-form.
The scalar ϕ4 theory in d ¼ 2, 3 has a (super-)renorma-

lizable UV weak coupling fixed point and a strong coupling
Wilson-Fisher conformal fixed point in the infrared (IR),
as illustrated in the phase diagram in Fig. 1. In passing, we
also note its similarity to 4-d Yang Mills theory with a
sufficient number of massless fermions to be in the
conformal window [5], which is a central motivation for
this research. Both theories are UV complete, perturba-
tively renormalizable at weak coupling, and have a strong
coupling conformal fixed point in the IR. The mass terms
(m2

0ϕ
2 or m0ψ̄ψ, respectively) must be tuned either to or

near the critical surface to reach the conformal or mass
deformed theory.
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To formulate a lattice action, we introduce a simplicial
complex, or triangulation in 2d, as illustrated in Fig. 2, and
a discrete action,

S¼ 1

2

X
hiji

Kij
ðϕi−ϕjÞ2

l2ij

þ
X
i

ffiffiffiffi
gi

p �
1

2
m2

iϕ
2
i þλiϕ

4
i

�
þh

X
i

ffiffiffiffi
gi

p
ϕi ð4Þ

where i labels all vertices and the sum hiji runs over all links
with proper length lij. The technical requirement is to fix the
weights, (Kij,

ffiffiffiffi
gi

p
,m2

i , λi) as functions of bare couplings and
the target manifold, on a sequence of increasingly fine
tessellations so that in the limit of vanishing lattice spacing,
a ¼ OðlijÞ, the quantum path integral converges to the
continuum renormalized quantum theory with a minimal
set of fine tuning parameters. For the ϕ4 theory, there is one
parameter to tune in the approach to the critical surface: the
relevant mass parameter μ20 → μ2�ðλ0Þ, illustrated in Fig. 1.
The construction of our QFE simplicial lattice action can

be broken into three steps:
(i) Simplicial geometry: The smooth Riemann mani-

fold, ðM; gÞ, is replaced by simplex complex,
ðMσ; gσÞ with piecewise flat cells (see Sec. II A).

(ii) Classical lattice action: The continuum field ϕðxÞ is
replaced by a discrete sum over FEM basis elements,
ϕðxÞ → WiðxÞϕi (see Sec. II B).

(iii) QFE: Quantum corrections: Quantum counterterms
are added to the discrete lattice action to cancel
defects at the UV cutoff (see Sec. III B).

A. Geometry and Regge calculus

The Regge calculus approach to constructing a discrete
approximation to a Riemann manifold, ðM; gÞ, proceeds as
follows. First the manifold, M, is replaced by a simplicial
complex, Mσ , composed of elementary simplicies: trian-
gles in 2d as illustrated in Fig. 2, tetrahedrons in 3d, etc.
This graph defines the topology of the manifold in the
language of category theory [20]. Next a discrete metric is
introduced as a set of edge lengths on the graph:
gμνðxÞ → gσ ¼ flijg. Assuming a piecewise flat interpola-
tion into the interior of each simplex, we now have the
Regge representation of a Riemann manifold ðMσ; gσÞ that
is continuous but not differentiable. The curvature is given
by a singular distribution at the boundary of the each
simplex; in 2d, concentrated at the vertices, and in higher
dimensions at the d − 2-dimensional “hinges.” The inte-
grated curvature over the defect is easily computed by
parallel transport of the tangent vector around each defect.
Each simplex is parameterized by using dþ 1 local

barycentric coordinates, 0 ≤ ξi ≤ 1. Using the constraint,
ξ0 þ ξ1 þ � � � þ ξd ¼ 1 to eliminate ξ0, our ϕ4 action in
Eq. (3) on this piecewise flat Regge manifold is given as a
sum over each simplex,

S → Sσ ¼
X
σ∈Mσ

Z
σ
ddξ

ffiffiffiffiffiffi
Gσ

p �
1

2
Gij

σ ∂iϕðξÞ∂jϕðξÞ

þ 1

2
ðm2 þ ξ̃0RicÞϕ2ðξÞ þ λϕ4ðξÞ

�
: ð5Þ

We may choose an isometric embedding into a sufficiently
high dimensional flat Euclidean space with vertices at
y⃗ ¼ r⃗n so a point in the interior of each simplex and its
induced metric are given by

0.6

0.4

0.2

0.0

-0.2

-0.2 0.0 0.2 0.4 0.6

FIG. 1. The phase plane of ϕ4 for d < 4, depicting the
renormalization flow from the repulsive weak coupling ultra-
violet (UV) fixed point at ðμ20; λ0Þ ¼ ð0; 0Þ to the infrared (IR)
Wilson Fisher fixed point at ðμ2�; λ�Þ, parametrized in terms of the
bare parameters, λ0 ∼ λ and μ20 ∼ −m2.

FIG. 2. A 2-d simplicial complex with points (σ0), edges (σ1)
and triangles (σ2) (illustrated in yellow). At each vertex σ0 there is
a dual polytope, σ�0 (illustrated in red), and at each link, σ1, there
is a dual link σ�1 and its associated hybrid cell σ1 ∧ σ�1 (illustrated
in blue).
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y⃗ ¼
Xd
n¼0

ξnr⃗n ¼
Xd
i¼1

ξi ⃗li0 þ r⃗0 ð6Þ

Gij ¼
∂y⃗
∂ξi ·

∂y⃗
∂ξj ≡ ⃗li0 · ⃗lj0: ð7Þ

This defines the volume element,
ffiffiffiffiffiffi
Gσ

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½Gij�

p
and

inverse metric, Gij
σ , as well.

Since we are not considering dynamical gravity, this
piecewise flat metric is frozen (i.e., quenched) and chosen
to conform as closely as possible to our target manifold for
the quantum field theory. For example this can be achieved
by computing the edge length lij, from the proper distance
between points on the original manifold xi, xj or from the
Euclidean distance jr⃗i − r⃗jj in the isometric embedding
space, r⃗i ¼ y⃗ðxiÞ to first order relative to the local curvature
of the target manifold. At this stage, the dynamical
quantum field ϕðxÞ is still a continuum function on the
piecewise flat Regge manifold.

B. Hilbert space and discrete exterior calculus

The second step is the approximation of the matter field
ϕðxÞ as an expansion,

ϕðxÞ → ϕσðξÞ ¼ E0
σðξÞϕ0 þ E1

σðξÞϕ1 þ � � � þ Ed
σðξÞϕd;

ð8Þ
into a finite element basis on each simplex σd. The simplest
form is a piecewise linear function, EiðξÞ ¼ ξi, on each
simplex. In this case we are using essentially the same
linear approximation for both the metric, gμνðxÞ, and
matter, ϕðxÞ, fields. To evaluate the FEM action, we simply
plug the expansion in Eq. (8) into Eq. (5) and perform the
integration. For the kinetic term, this is particularly simple
because the gradients of the barycentric coordinates are
constant. For 2d, this gives the well-known form on each
triangle,

Iσ ¼
l231 þ l223 − l212

8A123

ðϕ1 − ϕ2Þ2 þ ð23Þ þ ð31Þ

¼ 1

2
Að3Þ
12 ðϕ1 − ϕ2Þ2 þ ð23Þ þ ð31Þ ð9Þ

where Að3Þ
12 is the area of the triangle formed by the sites 1,

2, and the circumcenter, σ�2ð123Þ.
The free scalar action on the entire simplicial complex is

now found by summing over triangles,

X
σ

Iσ½ϕ� ¼
1

2

X
hiji

Aij

�
ϕi − ϕj

lij

�
2

: ð10Þ

Each link hiji receives two contributions—one from each
triangle that it borders—resulting in the total area for

the hybrid cell, Aij ¼ lijjσ�1ðijÞj=2 ¼ jσ1ðijÞ ∧ σ�1ðijÞj, as
illustrated in Fig. 2.
For higher dimensions, a natural generalization of the

kinetic term is

Sσ½ϕ� ¼
1

2

X
hi;ji

Vij
ðϕi − ϕjÞ2

l2ij
þ 1

2

X
i

m
ffiffiffiffi
gi

p
ϕ2
i ; ð11Þ

where Vij ¼ jσ1ðijÞ ∧ σ�1ðijÞj ¼ lijSij=d is the product of
the length of the link (lij) times the volume of the d − 1-
dimensional “surface,” Sij ¼ jσ�1ðijÞj, of the dual polytope
normal to the link hi; ji. A mass term has also been included
weighted by the dual lattice volume

ffiffiffiffi
gi

p ¼ jσ�0ðiÞj. This
elegant form was recommended in the seminal papers on
random lattices by Christ, Friedberg and Lee [21–23] and
subsequently in the FEM literature by the application of the
simplicial Stokes’ theorem for discrete exterior calculus
(DEC). However, we note this generalization is not equiv-
alent to linear FEM for d > 2 (See Ref. [19]).
To appreciate the DEC approach [14–16,24], it is useful

to expand a little on the geometry of a simplicial complex,
S, and its Voronorï dual, S�. A pure simplicial complex S
consists of a set of d-dimensional simplices (designated by
σd) “glued” together at shared faces (boundaries) consisting
of d − 1-dimensional simplices (σd−1), iteratively giving a
sequence: σd → σd−1 → � � � σ1 → σ0. This hierarchy is
specified by the boundary operator,

∂σnði0i1…inÞ ¼
Xn
k¼0

ð−1Þkσn−1ði0i1…îk…inÞ; ð12Þ

where îk means to exclude this site. Each simplex
σnði0i1…inÞ is an antisymmetric function of its arguments.
The signs in Eq. (12) keep track of the orientation of each
simplex. It is trivial to check that the boundary operator is
closed: ∂2σn ¼ 0. On a finite simplicial lattice ∂ is a matrix
and its transpose, ∂T , is the coboundary operator. The
circumcenter Voronorï dual lattice, S�, is composed of
polytopes, σ�0 ← σ�1 ← � � � ← σ�d, where σ�n has dimension
d − n as illustrated in Fig. 2. A crucial property of this
circumcenter duality is orthogonality. Each simplicial
element σn ∈ S is orthogonal to its dual polytope σ�n ∈ S�.
As a consequence, the volume,

jσn ∧ σ�nj ¼
n!ðd − nÞ!

d!
jσnjjσ�nj; ð13Þ

of the hybrid cell, σn ∧ σ�n, is a simple product. Hybrid
cells, constructed from simplices σn in S and their
orthogonal dual σ�n in S�, give a proper tiling of the
discrete d-dimensional manifold with the special case
jσ0ðiÞj ¼ 1 and jσ�0ðiÞj ¼

ffiffiffiffi
gi

p
. This is a first modest step

into discrete homology and De Rham cohomology on a
simplicial complex.
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The discrete analogue of differential forms, ωk, is a
pairing or map,

hωk; σki≡ ωkðσkÞ ¼ ωkði0i1…ikÞ; ð14Þ

to the numerical value of a field from sites in the case of
0-forms, from links in the case of 1-forms, and from
k-simplices in the case of k-forms. Of course this is familiar
to lattice field theory, associating scalars (ω0 ∼ ϕx), gauge
fields (ω1 ∼ Aμdxμ) and field strengths (ω2 ∼ Fμνdxμ ∧ dxν)
with sites, links and plaquettes respectively. This enables us
to define the discrete analogue of the exterior derivative dωk
of a k-form by replacing the continuum Stokes’ theorem by
the discrete map or DEC Stokes’ theorem:

Z
σkþ1

dωðxÞ ¼
Z
∂σkþ1

wðxÞ

→ hdωk; σkþ1i ¼ hωk; ∂σkþ1i ð15Þ

The discrete exterior derivative is automatically closed
(dd ¼ 0) because the boundary operator is closed (∂∂ ¼ 0).
Applying Eq. (15) to the discrete exterior derivative of a
scalar (0-form) field trivially gives,

hdϕ; σ1ðijÞi ¼ hϕ; ∂σ1ðijÞi ¼ ðϕi − ϕjÞ; ð16Þ

the standard finite difference approximation on each link.
Next we need to define the discrete analogue of the

Hodge star (�). This is the first time an explicit dependence
on the metric is introduced. In the continuum, a k-form is an
antisymmetric tensor, ωkðxÞ¼ðk!Þ−1ωμ1;μ2…μkdx

μ1∧dxμ2∧
���∧dxμk , in a orthogonal basis of 1-forms dual to tangent
vectors: dxμð∂νÞ ¼ δμν . The Hodge star takes a k-dimen-
sional basis into its orthogonal complement,

� ðdxμ1 ∧ dxμ2 ∧ � � � ∧ dxμkÞ
¼ dxμkþ1 ∧ dxμkþ2 ∧ � � � ∧ dxμn ð17Þ

where μ1; μ2; � � � ; μn is an even permutation of
ð1; 2; � � � ; nÞ. However the wedge product (or equivalently
the Levi-Civita symbol) is not a tensor but a weight 1 tensor
density [25]. The true volume k-form (or tensor), volk ¼ffiffiffiffiffi
gk

p
dxμ1 ∧ � � � ∧ dxμk , requires a factor of

ffiffiffiffiffi
gk

p
which

under the Hodge star operation in Eq. (17) gives the
identity,

ffiffiffiffiffiffiffiffiffi
gn−k

p ðvolkÞ ¼ ffiffiffiffiffi
gk

p
voln−k, where we have used

orthogonality to factor
ffiffiffi
g

p ¼ ffiffiffiffiffi
gk

p ffiffiffiffiffiffiffiffiffi
gd−k

p
, that is, between

the plane and its dual. Consequently on the simplicial
complex, it is reasonable that the proper definition of the
discrete Hodge star,

hω�
k; σ

�
kijσkj ¼ hωk; σkijσ�kj; ð18Þ

replaces these factors
ffiffiffiffiffi
gk

p
,

ffiffiffiffiffiffiffiffiffi
gn−k

p
by finite volumes jσkj,

jσ�kj respectively. The Hodge star identity in Eq. (18)

uniquely fixes the dual field values, hω�
k; σ

�
ki and the action

of a discrete codifferential, δ ¼ �d� through Stokes theo-
rem in Eq. (15) on S�.
Putting this all together, we consider the DEC

Laplace-Beltrami operator on scalar fields, ðδþ dÞ2ϕ ¼
ðdδþ δdÞϕ ¼ �d � dϕ, is

�d � dϕðiÞ ¼ jσ0ðiÞj
jσ�0ðiÞj

X
j∈hi;ji

jσ�1ðijÞj
jσ1ðijÞj

ðϕi − ϕjÞ ð19Þ

¼ 1ffiffiffiffi
gi

p
X
j∈hi;ji

Vij

lij

ϕi − ϕj

lij
; ð20Þ

which corresponds to the action in Eq. (11). For 2d this is
illustrated in Fig. 3, as the sum of fluxes through the
boundaries ∂σ�0ðiÞ with surface area, Sij=ðd − 1Þ! ¼
Vij=lij ¼ jσ1ðijÞ ∧ σ�1ðijÞj=lij. This is identical to linear
finite elements in 2d. Besides providing an alternate
approach to linear finite elements for constructing the
discrete Hilbert space for scalar fields in d > 2 dimensions,
it provides a useful geometric framework for fields with
spin. We note however that additional considerations are
still needed for non-Abelian gauge fields [22], Dirac
fermions [19] and Chern-Simons terms [26]. The best
geometrization of simplicial field theories and the error
estimates thereof are an active research topic.
To complete the simplicial action, we need to add the

potential term. This may be constructed in a variety of
ways. If one follows strictly the linear finite element
prescription, the expression for the local polynomial
potential (e.g., mass and quartic terms) will not be local

FIG. 3. The discrete Laplacian at a site i is given by the sum on
all links hi; ji (in red) weighed by gradients ðϕi − ϕjÞ=lij
multiplied by the surface Sij ¼ 2Vij=lij (in black) and normal-
ized by the dual volume jσ�oðiÞj ¼ Vi (in yellow).
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but rather point split on each simplex σd. For example, in
2d, after expanding ϕðξÞ ¼ P

d
i¼0 ξ

iϕi and evaluating the
integral over the linear elements, the contribution for the
quadratic term on a single triangle, σ2ð123Þ, isZ

σ
d2ξ

ffiffiffiffiffiffi
Gσ

p
ϕ2
σðξÞ

¼ A123

6
ðϕ2

1 þ ϕ2
2 þ ϕ2

3 þ ϕ1ϕ2 þ ϕ2ϕ3 þ ϕ3ϕ1Þ: ð21Þ

The general expression for a homogeneous polynomial
over a d-simplex with volume Vd ¼ jσdj is given as as sum
over distinct partitions of n:Z

σd

dVdðϕðξÞÞn ¼
Vdd!n!
ðnþ dÞ!

X
ð
P
i

ki¼nÞ
ϕk0
0 ϕ

k1
1 …ϕkd

d : ð22Þ

Nonetheless in the spirit of dropping higher dimensional
operators in a derivative expansion, we choose local terms
approximating the potential at each vertex weighted by the
volume,

ffiffiffiffi
gi

p ¼ jσ�0ðiÞj, of the dual simplex σ�0ðiÞ.
This approximation leads to our complete simplicial

action, combining the DEC Laplace-Beltrami operator for
the kinetic term and the local approximation for the
boundary,

S ¼ 1

2

X
hiji

Vij

l2ij
ðϕi − ϕjÞ2 þ λ0

X
i

ffiffiffiffi
gj

p �
ϕ2
i −

μ20
2λ0

�
2

þ h
X
i

ffiffiffiffi
gi

p
ϕi; ð23Þ

where μ20 ¼ −m2
0=2. We will use this action for our

discussion of S2.
Finally we should acknowledge that there are many other

alternatives in the FEM literature worthy of consideration
which may offer improved convergence and faster restora-
tion of the continuum symmetries. Our goal here is to find
the simplest discrete action on simplicial lattice capable of
reaching the correct continuum theory with no more fine
tuning than is required on the hypercubic lattice.

C. Spectral fidelity on S2

We represent S2 embedded in R3 parametrized by 3-d
unit vectors:

r̂ ¼ ðrx; ry; rzÞ ∈ R3; r2x þ r2y þ r2z ¼ 1: ð24Þ
In order to preserve the largest available discrete subgroup
ofOð3Þ, we start with the regular icosahedron illustrated on
the left in Fig. 4 and subsequently divide each of the 20
equilateral triangles into L2 smaller equilateral triangles.
Then we project the vertices radially outwards onto the
surface of the circumscribing sphere, dilating and distorting
each triangle from its equilateral form, but preserving
exactly the icosahedral symmetries. The total numbers of

faces, edges, and vertices are F ¼ 20L2, E ¼ 30L2 and
N ¼ 2þ 10L2, respectively, satisfying the Euler identity
F − Eþ N ¼ 2.
The images of the vertices on the sphere are then

connected by new links consistent with the unique
Delaunay triangulation [27]. In the triangulation, each
vertex is connected to five or six neighboring vertices by
edges hx; yi. The lengths are set to the secant lengths lxy ¼
jr̂x − r̂yj in the embedding space between the vertices
on the sphere, which approximates the geodesic length
toOðl2xyÞ. The extension to a lattice for the R × S2 cylinder
introduces a uniform (periodic) lattice perpendicular to the
spheres at t ¼ 0; 1; � � � ; Lt − 1. The sequence of refine-
ments as L → ∞ divides the total curvature into vanish-
ingly small defects at each vertex. As an alternative
formulation, we could replace the flat triangles with
spherical triangles [28], introducing spherical areas, geo-
desic lengths, moving the curvature uniformly into the
interior of each triangle. In this formulation, each triangle
would have a vanishing deficit angle in the continuum
limit. Both discretizations are equivalent at Oða2Þ, and as
such we prefer flat triangles due to their relative simplicity.
The first test of our construction is to look at the

spectrum of the free theory,

S0 ¼
1

2
ϕxMx;yϕy ¼

Axy

2l2xy
ðϕx − ϕyÞ2 þ

m2
0

2

ffiffiffiffiffi
gx

p
ϕ2
x; ð25Þ

where x; y ¼ 1; � � � ; N enumerates the lattice sites on a
finite simplicial lattice. The spectrum is computed from the
generalized eigenvalue condition

FIG. 4. The L ¼ 3 refinement of the icosahedron with V ¼
2þ 10L2 ¼ 92 vertices or sites. The icosahedron on the top left is
refined in the top right with L2 ¼ 9 equilateral triangles on each
face, and then on the bottom the new vertices are projected onto
the unit sphere. The resulting simplicial complex preserves the
icosahedral symmetries.
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MxyϕnðxÞ ¼ En
ffiffiffiffiffi
gx

p
ϕnðxÞ ¼ ðEð0Þ

n þm2
0Þ

ffiffiffiffiffi
gx

p
ϕnðxÞ; ð26Þ

where the eigenvalues at zero mass are Eð0Þ
n . Each distinct

eigenvalue En has right/left generalized eigenvectors,
ϕnðxÞ=ϕ�

nðxÞ, with the orthogonality and completeness
relations,

X
x

ffiffiffiffiffi
gx

p
ϕ�
nðxÞϕmðxÞ ¼ δnm; ð27Þ

X
n

ϕ�
nðyÞϕnðxÞ ¼ δxy=

ffiffiffiffiffi
gx

p
: ð28Þ

The spectral decomposition for the free propagator is

Gxyðm2
0Þ≡

�
1

M

�
xy

¼
X
n

ϕnðxÞϕ�
nðyÞ

Eð0Þ
n þm2

0

ð29Þ

Alternatively we may define a Hermitian form, M̃ ¼
g−1=4Mg−1=4, with complex conjugate right and left
eigenvectors, g1=4x ϕnðxÞ ¼ hxjni and ϕ�

nðxÞ ¼ hnjxi,
respectively. In Dirac notation the completeness and
orthogonality are given by 1 ¼ P

xjxihxj, 1 ¼ P
njnihnj

and δx;y ¼ hxjyi, δn;m ¼ hnjmi respectively.
Returning to the example of the FEM sphere, S2, we

have verified that the generalized eigenvalues which lie
well below the cut-off are well fitted by the continuum
spectrum, Elm ¼ lðlþ 1Þ, with the 2lþ 1 degeneracy
m ¼ −l;…l. Indeed, any finite eigenvalue approaches its
continuum value as 1=L2 in the limit of infinite refinement
L → ∞. In addition, we note that the right eigenvectors are
well approximated by the continuum spherical harmonics,
Ylmðr̂xÞ, evaluated at the lattice sites r̂x. This is illustrated in
Fig. 5, where the eigenvalues are estimated by computing
diagonal matrix elements,

El;m ¼ Y�
lmðr̂xÞMxyYlmðr̂yÞP

x
ffiffiffiffiffi
gx

p
Y�
lmðr̂xÞYlmðr̂xÞ

; ð30Þ

against l. On the left of Fig. 5, the lack of 2lþ 1 degenerate
multiplets on a coarse lattice with L ¼ 8, as we approach
the cut-off at large l ∼OðLÞ, shows the breakdown of
rotational symmetry. On the right of Fig. 5, the degeneracy
of the spherical representation holds to high accuracy and
the average of the 2lþ 1 eigenvalues at each l level gives
the correct continuum dispersion relation, lðlþ 1Þ, to
Oð10−5Þ for l ≪ L ¼ 128.
We will refer to the exact convergence of fixed eigen-

values and their associated eigenvectors to the continuum
as the cut-off is removed as spectral fidelity. This is a
theoretical consequence of FEM convergence theorems for
shape regular linear elements as the diameter goes uni-
formly to zero [13]. We do not provide a proof but will
assume that this property holds for our implementation if
we apply the DEC [15] to the Laplace-Beltrami operator.

It is useful to compare the low spectrum of our FEM
operator on S2, shown in Fig. 5, to the corresponding
spectrum on the hypercubic refinement of the torus T 2,
shown in Fig. 6. For a finite Ld toroidal lattice, the exact
hypercubic spectra is given by

En ¼
X
μ

4sin2ðkμ=2Þ þm2
0

≃m2
0 þ

X
μ

�
k2μ −

1

12
k4μ þ � � �

�
; ð31Þ

where the discrete eigenvalues are enumerated by kμ ¼
2πnμ=L for integer nμ ∈ ½−L=2; L=2 − 1�. The eigenvec-
tors can be found by a Fourier analysis, and are given by

ϕnðxÞ ¼
1ffiffiffiffi
N

p e−ik·x; ϕ�
nðxÞ ¼

1ffiffiffiffi
N

p eik·x: ð32Þ

Converting to dimensionful variables (m, p) and holding a
physical mass fixed (m≡m0=a), the dispersion relation is
a2En ¼ m2 þ p2 − 1

12

P
μa

2p4
μ þ � � �. The Lorentz break-

ing term vanishes as a2 ¼ Oð1=L2Þ. Again spectral fidelity
holds for any fixed spectral value En as the lattice

FIG. 5. Top: The 2lþ 1 spectral values for m ∈ ½−l; l� are
plotted against l for L ¼ 8. Bottom: The spectral values averaged
over m fitted to lþ 1.00002l2 − 1.27455 × 10−5l3 − 5.58246 ×
10−6l4 for L ¼ 128 and l ≤ 32.
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converges to the continuum. However, as we approach the
cutoff, it is increasingly distorted.
Clearly the spectral fidelity on the hypercubic torus is

comparable to the FEM spectra on S2. This is not
surprising; indeed the square lattice can also be viewed
as a FEM realization. One simply divides each square into
two right angle triangles and notices that the formula in
Eq. (11) implies a zero contribution on the diagonal links.
This generalizes to higher dimensional hypercubic lattices
when using the DEC form. Of course, the major difference
between the square lattice on R2 and the simplicial sphere
S2 is the former breaks one rotational isometry of the
continuum but conserves two discrete subgroups of trans-
lations, whereas the later breaks all three isometries of
Oð3Þ down to a fixed finite subgroup independent of the
refinement.

D. Obstruction to nonlinear quantum path integral

Having demonstrated the spectral fidelity of our con-
struction on S2 at the Gaussian level, we turn next to the
more difficult problem of an interacting quantum theory,
starting with the FEM action given in Eq. (23). We have
performed extensive Monte Carlo simulations for the path
integral given the FEM action in Eq. (23) on S2 with a
conclusive result: the FEM action does not converge to a
spherically symmetric theory as you approach the con-
tinuum and fails to have a well defined critical surface.
Attempting to locate the critical surface, we monitor the
Binder cumulant. The results are given on the left-hand side
of Fig. 7. As we increase the cut-off (or L → ∞) while
tuning the only relevant coupling, μ20, the fourth Binder
cumulant should stabilize to the known, exact value U�

4 ¼
0.8510207ð63Þ for the Ising CFT (see Sec. IV for details).
Instead we see that there is an alarming instability at large
L ¼ Oð100Þ, which we believe is due to the lack of well-
defined critical surface with a second order phase transition
required to define a continuum limit. A more graphic
indication of this failure is present when we consider the
average value of hϕ2

i i as a function of position on the sphere
as shown on the right-hand side of Fig. 7. Due to a spatial
variation in the UV cutoff, this is not uniform, with
variation that can be seen by comparing the regions close
to and far form the 12 exceptional five-fold vertices of the
original icosahedron. As we will show, this failure is also
evident in a lattice perturbation expansion. At small λ0 a
spherically asymmetric contribution to hϕ2

i i is given by a
UV divergent one-loop diagram.
In conclusion, in the application of FEM to quantum

field theory, we have encountered a fundamentally new
problem. The FEM methodology has been developed to
give a discretization for nonlinear PDEs that converges to
the correct continuum solution as the simplicial complex

FIG. 6. The zero mass spectrum En ¼ 4ðsin2ðkx=2Þþ
sin2ðky=2ÞÞ, kμ ¼ nμπ

L , nμ ∈ ½−L=2; L=2 − 1� for the 2-d lattice
Laplacian on a regular 32 × 32 square lattice plotted againstffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2x þ n2y
q

.

FIG. 7. On the left the Binder cumulants for the FEM Lagrangian with no QFE counterterm. On the right the amplitude of hϕ2
i i in

simulations with the unrenormalized FEM Lagrangian.
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is refined. In the context of a Lagrangian system for a
quantum field, this implies a properly implemented FEM
should therefore guarantee convergence to all smooth
classical solutions of the EOM as the cutoff is removed.
However, quantum field theory is more demanding. The
path integral for an interacting quantum field theory is
sensitive to arbitrarily large fluctuations—even in pertur-
bation theory—on all distance scales, down to the lattice
spacing, due to ultraviolet divergences. This amplifies local
UV cut-off effects on our FEM simplicial action.
Our solution is to introduce a new quantum finite element

(QFE) lattice action that includes explicit counterterms to
regain the correct renormalized perturbation theory. We
conjecture that, for any ultraviolet complete theory, if the
QFE lattice Lagrangian is proven to converge to the
continuum UV theory to all orders in perturbation theory,
this is sufficient to define its nonperturbative extension to the
IR. We believe this is a plausible conjecture consistent with
our experience on hypercubic lattices for field theories inRd,
but it is far from obvious. It needs careful theoretical and
numerical support to determine its validity. In Secs. IVandV
we give extensive numerical test for ϕ4 on S2 on the critical
surface. In particular the new Monte Carlo simulation of the
Binder cumulant U4 on the right-hand side of Fig. 12
including the quantum counter term gives a critical value
of the Binder cumulant,U4;cr ¼ 0.85020ð58Þð90Þ, in agree-
ment with the continuum value, U�

4 ¼ 0.8510, to about one
part in 103. While this is promising, the limitations due to
statistics and the restriction of our studies to the simplest
scalar 2-d CFT is duly acknowledged.

III. ULTRAVIOLET COUNTERTERMS ON
THE SIMPLICIAL LATTICE

To remove the quantum obstruction to criticality for the
FEM simplicial action, we begin by asking if we can add
counterterms to the action Eq. (23) to reproduce the
renormalized perturbation expansion order by order in
the continuum limit at the UV weak coupling fixed point.
On a hypercubic lattice, it has been proven for ϕ4 theory
[29] that this can be achieved by taking the lattice UV cut-
off to infinity, holding the renormalized mass and coupling
fixed. Here we will suggest how this can be achieved on a
simplicial lattice for 2d and 3d. While we do not attempt a
proof, the similarity with the hypercubic example strongly
suggests that a proof could be found at the expense of
increased technical difficulty.
The ϕ4 theory is super-renormalizable in 2d and 3d, with

one-loop and two-loop divergent diagrams, respectively,
only contributing to the two-point function. The one-loop
diagram is logarithmically divergent in 2d and linearly
divergent in 3d. The two-loop diagram is UV finite in 2d,
but logarithmically divergent in 3d. The divergent contri-
butions renormalize the mass via the one-particle irreduc-
ible (1PI) contribution to the self-energy,

Σðx; yÞ ¼ −12λ0G0ðx; yÞδðx − yÞ þ 96λ20G
3
0ðx; yÞ; ð33Þ

as illustrated in the first two panels in Fig. 8. In both 2d and
3d the three-loop diagram, and all higher-order diagrams,
are UV finite. In 4d there is a logarithmically divergent
contribution to the four-point function which contributes to
the quartic coupling λ0; however the complete nonpertur-
bative theory is the trivial free theory with no interesting IR
physics.

A. Lattice perturbation expansion

The perturbation expansion for the ϕ4 theory on our
FEM lattice (or indeed any lattice) starts with the partition
function,

Zðm0; λ0Þ ¼
Z

Dϕie−
1
2
ϕiMi;jϕj−λiϕ4

i ; ð34Þ

by expanding in the quartic term. In our FEM representa-
tion, the action is

S½ϕi� ¼
1

2
ϕiMi;jϕj þ λiϕ

4
i

¼ 1

2
½ϕiKi;jϕj þm2

iϕ
2
i � þ λiϕ

4
i : ð35Þ

For convenience, both bare parameters m2
i ≡ ffiffiffiffi

gi
p

m2
0 and

λi ≡ ffiffiffiffi
gi

p
λ0 include the factor of the local dual volume

ffiffiffiffi
gi

p
.

FIG. 8. The one-loop diagram is logarithmically divergent in 2d
and linearly divergent in 3d, whereas the two-loop is finite and
logarithmically divergent for 2d and 3d, respectively. The three-
loop diagram is finite in both 2d and 3d.
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The quadratic form (Mi;j) includes both the DEC Laplace-
Beltrami operator (Ki;j) and the bare mass (m0).
Following the standard Feynman rules for a perturbative

expansion in λ0, we compute the propagator, hϕiϕji ¼ Z−1R
Dϕϕiϕje−S, to second order:

hϕiϕji ¼ ½M−1�i;j
þ ½M−1�i;i1ð−12λi1 ½M−1�i1;i1Þ½M−1�i1;j
þ ½M−1�i;i1ð96λi1λi2 ½M−1�3i1;i2Þ½M−1�i2;j: ð36Þ

After amputating the external lines, we find the inverse
propagator M̃ijðm0; λ0Þ ¼ Mi;j þ Σijðm0; λ0Þ, where
Σijðm0; λ0Þ ¼ −12λi½M−1�iiδij þ 96λiλj½M−1�3i;j þOðλ30Þ:

ð37Þ
is the 1PI simplicial self-energy.

B. One loop counterterm

Since there is no analytic spectral representation of the
free FEM Green’s function, we compute the one loop
diagram in coordinate space by numerical evaluation of the
propagator. To be concrete, for 2d on S2 and for 3d on
R × S2, the Gaussian term is

ϕx;t1Mx;t1;y;t2ϕy;t2

¼ ϕx;t1Kx;yϕy;t1 þ
ffiffiffiffiffi
gx

p ðϕx;t − ϕx;t�1Þ2 þm2
0

ffiffiffiffiffi
gx

p
ϕ2
x;t;

ð38Þ
where the sites are now labeled by i ¼ ðx; tÞ. The 2-d
geometry, S2, can be viewed as a special case with a single
sphere at t ¼ 0. The integer t labels each sphere along the
cylinder, and x indexes the sites on each sphere. Kx;y is
non-zero on only nearest neighbor links hx; yi. To take the
continuum limit we need to define the normalization
convention of our lattice constants:

XN−1

x¼0

ffiffiffiffiffi
gx

p ¼ N and
X
hx;yi

Kx;y ¼ ð2=3ÞE; ð39Þ

where in this specific contextE refers to the number of edges
on the simplicial graph. The extra factor of 2=3 is introduced
to compensate, on average, for the six nearest neighbors per
site on the sphere relative to a conventional square lattice
with four nearest neighbors. In flat 2-d space this factor of
2=3 for the triangular lattice gives the same dispersion
relation, E ¼ m2

0 þ k2 þOðk4Þ, as the square lattice.
In lattice perturbation theory on a 2-d FEM simplicial

lattice, we expect the logarithmically divergent one-loop
term to give a site-dependent mass shift,

m2
0 → m2

0 þ Δm2
x: ð40Þ

The numerical computation of the one-loop diagram on S2

does indeed have the appropriate form,

½M−1�xx ≈
ffiffiffi
3

p

8π
log

�
1

m2a2x

�

¼
ffiffiffi
3

p

8π
logðNÞ þ

ffiffiffi
3

p

8π
log

�
a2

a2x

�
þOð1=NÞ: ð41Þ

The logarithmic divergence is regulated by the IR mass,m2.
Of course on the lattice, at fixed dimensionless bare mass,
m2

0 ¼ a2m2 and bare coupling, λ0, there is no actual UV
divergence. The renormalized perturbation expansion is
defined by fixing the physical mass (m), which in the
continuum limit (N → ∞) corresponds to a vanishing
effective lattice spacing, a2m2 ¼ Oð1=NÞ. On a hypercubic
lattice, there is a universal cut-off (π=ax ¼ π=a), whereas
on a simplicial lattice the one-loop term separates into
two terms on the right side of Eq. (10): (1) a position
independent divergence and (2) a finite (scheme dependent)
constant for each site x.
We have checked numerically, to high accuracy, that the

first divergent term is independent of position. This is a
crucial observation which we believe is a general conse-
quence of the FEM prescription. Spatial dependence for a
divergent term would imply the need for a divergent
counterterm to restore spherical symmetry. This departs
from the standard cutoff procedure on regular lattices and
would be very difficult if not impossible to implement.
Moreover, we show in Fig. 9 that the fit coefficient is
accurately determined to be

ffiffiffi
3

p
=ð8πÞ, which is the exact

continuum value.
A heuristic argument for the value of this constant follows

from our S2 tessellation as a nearly regular triangular lattice.
In flat space, relative to a square lattice, the density of states
on a triangular lattice is N−1P

n →
R
d2kρTðkÞ, where

ρT ¼ ffiffiffi
3

p
=ð8π2Þ. The extra factor of ffiffiffi

3
p

=2 is due to the area
jσ�0j of the dual lattice hexagon relative to the dual lattice
square on a hypercubic lattice. However, since this constant
defines the local charge in the 2-d Coulomb law and our
linear elements do not implement local flux conservation,

FIG. 9. The numerical fit of the lattice one loop log divergent
determining coefficient Q compared to the continuum value:
Q ¼ ffiffiffi

3
p

=ð8πÞ ¼ 0.0689161….
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this is surprising result. Nonetheless in Sec. III C we will
prove this based on the FEMprinciple of spectral fidelity and
the renormalization group for the mass anomalous dimen-
sion. To the best of our knowledge this is a novel extension
of FEM convergence theorems.
Next consider the finite spatial dependence term in

Eq. (41). As illustrated in Fig. 10, it is almost exactly a
linear function of log½ ffiffiffiffiffi

gx
p �. Again there is a heuristic

explanation for this. An almost perfect analytic expression
can be found by considering the dilatation incurred by the
projection of our triangular tessellation of the icosahedron
onto the sphere. The icosahedron is a manifold with a flat
metric except for 12 conical singularities at the vertices.
Our choice of the simplicial complex began with flat
equilateral triangles on each of the 20 faces of the original
icosahedron. The radial projection onto the sphere is aWeyl
transformation to constant curvature with conformal factor
(or Jacobian of the map),

ffiffiffiffiffiffiffiffiffi
gðxÞ

p
¼ eσðxÞ ¼ ðx21 þ x22 þ 1 − R2

cÞ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2

c

p ; ð42Þ

where Rc is the circumradius for one of the 20 icosahedral
faces and x1, x2 the flat coordinates on that face. This
formula gives a line coinciding with the linear data in
Fig. 10. Although this is an extremely good approximation
to the counter term, it is not perfect since it neglects the
conical singularities in the map near the 12 exceptional
vertices of the original icosahedron. These exceptional
points are visible in the upper left corner of Fig. 10. We find
that the true numerical computation does give better results
and, moreover, it is a general method not requiring our
careful triangulation procedure. A more irregular procedure
should also be allowed. The lesson is that the simplicial
metric, gij ¼ flijg, on a given Regge manifold not only
defines the intrinsic geometry but also a co-ordinate system
breaking diffeomorphism explicitly. The set of lengths
includes both a definition of curvature and the discrete
coordinate system. The counterterm must compensate for
this arbitrary choice.

The QFE one loop counterterm is introduced to cancel
the finite position dependence in Eq. (41) that violates
rotational invariance to order λ0. To project out the spherical
component of a local scalar density, ρx, we average over the
rotation group R ∈ SOð3Þ,

1

volOð3Þ
Z

dRρðRr̂Þ ¼ 1

4π

Z
dΩρðθ;ϕÞ ≃ N−1

X
x

ffiffiffiffiffi
gx

p
ρx:

ð43Þ
Applied to ρx ¼ ½M−1�xx, the subtracted lattice Green’s
function is

δGxx ¼ ½M−1�xx −
1

N

XN
x¼1

ffiffiffiffiffi
gx

p ½M−1�xx: ð44Þ

This removes completely the logarithmic divergence,
leaving the position dependent finite counterterm which
adds a contribution to the FEM action,

SFEM → SQFE ¼ SFEM þ 6
X
x

ffiffiffiffiffi
gx

p
λ0δGxxϕ

2
x: ð45Þ

In 2d ϕ4 theory this is the only UV divergent term. We also
computed the two-loop contribution to the 1PI simplicial
self energy Eq. (37) which in coordinate space is given by
the third power of the Green’s function, ½M−1�3xy, between
the vertex at x and y. The position dependence,

δ½Gx�3 ¼
X
y

�
½M−1�3xy −

1

N

XN
x¼1

ffiffiffiffiffi
gx

p ½M−1�3xy
�
; ð46Þ

is found again by subtracting the average contribution on
the sphere. The result is plotted in Fig. 11, against log½ ffiffiffiffiffi

gx
p �

which demonstrates that it vanishes rapidly in the con-
tinuum limit as 1=L2 ∼ 1=N consistent with naïve power
counting in continuum perturbation theory. While we do
not attempt a general analysis of the simplicial lattice
perturbation expansion, it is plausible based on analogous
studies on the hypercubic lattice [30,31] that after canceling

FIG. 10. One loop counterterm plotted against logð ffiffiffiffiffi
gx

p Þ. FIG. 11. The contribution of the two loop term in 2d.

LATTICE ϕ4 FIELD THEORY ON RIEMANN … PHYS. REV. D 98, 014502 (2018)

014502-11



cut-off dependence in the one loop UV divergent term the
entire expansion restores the renormalized perturbation
series in the continuum limit. However our test on the
2-d Riemann sphere simplicial lattice goes further. Namely
we give numerical evidence that this 2-d QFE lattice action,
when tuned to the critical surface, approaches the non-
perturbative continuum theory in the IR for the Ising CFT
field theory.

C. Universal logarithmic divergence

The success of our QFE action prescription depends on
the coefficient of the logarithmic divergence being exact in
the continuum limit. On S2 or any maximally symmetric
space, this implies the coefficient is also independent of
position. At first, this observation appears surprising. After
all, the UV divergence is sensitive to the local, short
distance cut-off which is not uniform. We claim this is a
consequence of the observed spectral fidelity of the DEC
Laplace-Beltrami operator and renormalization group (RG)
for a logarithmic divergence relating UV divergences to the
IR regulator. Adapting the argument to a general 2-d
Riemann manifold is in principle straight forward, match-
ing the local divergence to the one loop renormalization of
the continuum theory [7] at each point x.
Let us first apply this renormalization group (RG)

argument to the hypercubic lattice, where we already know
and understand the answer. Suppose that the one-loop
diagram has a logarithmic term,

GxxðmÞ ≃ cxlogð1=m2a2xÞ þOða2m2Þ: ð47Þ
with an unknown position dependent coefficient cx. To
isolate this coefficient, we take the logarithmic derivative,
finding

γ1ðm2Þ ¼ −m
∂
∂mGxxðm2Þ

¼ 2

ZZ
π=a

−π=a

d2p
ð2πÞ2

m2

ð4a−2Pμsin
2ðapμ=2Þ þm2Þ2 :

ð48Þ
so that γ1ðm2Þ ¼ 2cx þOða2m2Þ. This is the one-loop
contribution to the anomalous dimension of the ϕ2 oper-
ator. (To clarify scaling, we have reintroduced the lattice
spacing a so that p ¼ k=a, m ¼ m0=a have mass dimen-
sions.) By power counting, the integral resulting from the
logarithmic derivative is UV finite in the continuum limit.
We may now introduce a new cutoff, Λ0, separating the IR
from the UV: m ≪ Λ0 ≪ π=a. To estimate the integral, we
can take the continuum limit π=a → ∞,

γ1ðm2Þ ≃ 2

ZZ
Λ2
0

0

dp2

4π

m2

ðp2 þm2Þ2 þOðm2=Λ2
0Þ

¼ 1

2π

1

1þm2=Λ2
0

þOðm2=Λ2
0Þ; ð49Þ

followed by taking the IR regulator to zero: m2=Λ2
0 → 0.

This proves that the coefficient cx ¼ 1=ð4πÞ is independent
of position and identical to the continuum value on R2.
Of course, this is not surprising for flat space.
Now we can apply the same reasoning to the simplicial

sphere S2, beginning with the spectral representation of
the Green’s function,

Gxxðm2Þ ¼
X
n

ϕ�
nðxÞϕnðxÞ
Eð0Þ
n þm2

0

: ð50Þ

On the basis of FEM spectral fidelity, assume the low
eigenspectrum for l ≤ L0 is well approximated to Oð1=NÞ
by spherical harmonics,

En ≃ a2R−2lðlþ 1Þ þm2
0; ð51Þ

ϕnðxÞ ≃
ffiffiffiffiffiffi
4π

p
ffiffiffiffi
N

p Ylmðr̂xÞ; ð52Þ

where R=a is the radius of the sphere in units of the lattice
spacing. Matching the area of the sphere with N triangles
we have 4πR2 ¼ a2N

ffiffiffi
3

p
=2. For R ¼ 1 the spectrum is

lðlþ 1Þ, but with our convention of setting a ¼ 1, we find
R ¼ ffiffiffi

3
p

N=ð8πÞ. Next, we fix the eigenvector normaliza-
tion by requiring

P
x

ffiffiffiffiffi
gx

p jY00j2 ¼ N=4π.
By splitting the spectral sum at the cut-off L0, and using

the addition formula, 4π
P

mY
�
lmðr̂xÞYlmðr⃗yÞ ¼ ð2lþ 1Þ

Plðrx · ryÞ for l < L0, we have

Gxyðm2
0Þ ≃

ffiffiffi
3

p

8π

XL0

l¼0

ð2lþ 1ÞPlðrx · ryÞ
lðlþ 1Þ þ μ2

þ
XN

n¼ðL0þ1Þ2

ϕ�
nðxÞϕnðyÞ
Eð0Þ
n þm2

; ð53Þ

where we introduced μ2 ¼ R2ðm2
0=a

2Þ. The first term is
indeed rotationally invariant. At x ¼ y, the asymptotic limit
of the first term is

ffiffiffi
3

p
logðL0Þ=ð8πÞ, which is the desired

behavior. As with the infinite, flat lattice, we wish to
convert the sum of the first term to an integral in the limit
N → ∞:

X
l

→
Z

dEρðEÞ; ρðEÞ ¼ dl
dEn

¼ R2

2lþ 1
ð54Þ

so that

Gxxðm2
0Þ ≃

ffiffiffi
3

p

8π

XL0

l¼0

ð2lþ 1Þ
lðlþ 1Þ þ μ2

→

ffiffiffi
3

p

8π

Z
Λ2
0

0

dEð0Þ

Eð0Þ þm2
0

ð55Þ

with Λ2
0 ¼ a2L0ðL0 þ 1Þ. Again, if we take a logarithmic

derivative, we have a UV convergent integral that is
saturated by rotationally invariant contributions up to
power corrections at Oðm2

0=Λ2
0Þ,
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γðm2
0Þ ¼ −m0

∂
∂m0

Gxxðm2
0Þ

≃
ffiffiffi
3

p

4π

Z
Λ2
0

0

dEð0Þ m2
0

ðEð0Þ þm2
0Þ2

¼
ffiffiffi
3

p

4π

1

1þm2
0=Λ2

0

: ð56Þ

In the limit Oðm2
0=Λ2

0Þ → 0, we isolate the coefficient in
Eq. (47) and prove that the divergence is both independent
of position on the sphere with its coefficient identical to the
continuum one loop diagram on the sphere. The essential
assumption we have made is the spectral fidelity property
of the discrete DEC Laplace-Beltrami operator. In
Appendix A we provide the exact continuum propagator
on the sphere,

Gðθ; μÞ ¼ 1

4π

X∞
l¼0

ð2lþ 1ÞPlðcosðθÞÞ
ðlþ 1=2Þ2 þ μ2

¼ 2

4π

Z
∞

0

cosðμtÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 coshðtÞ − 2 cosðθÞp

≃
1

4π

�
log

�
32

1 − cosðθÞ
�
− 14ζð3Þμ2

�
þOðθ2; μ4Þ;

ð57Þ

and identify the coefficient of the logarithmic divergence
by relating the angle to the lattice cutoff by θ2 ∼ 1=L2

0 ¼
Oð1=NÞ.

D. Comments on structure of the counterterms

In spite of our very limited example of the QFE
counterterms on S2, we hazard a general interpretation
which we hope will guide extensions to any smooth
Riemann manifold. This is based in part on current study
of counterterms in 3-d ϕ4 theory on R × S2. Nonetheless,
we acknowledge the fact that our examples so far may have
very special features not shared more generally.
The first special feature is that the S2 manifold is an

example of a maximally symmetric manifold. This property
is shared by flat space, spheres, and anti-de Sitter space
with constant curvature. On a d-dimensional maximally
symmetric manifold, there is a full set of dðdþ 1Þ=2
isometries implying that all points have identical metric
properties. A consequence is in these cases, the counter-
terms can be easily defined by projecting out the average
over the full set of isometries as in Eq. (43) above. While
these maximally symmetric manifolds are actually of
paramount interest, we are also confident that this restric-
tion is not necessary. On a general manifold, the procedure
would be to compute the continuum UV divergence at each
site and subtract it before defining the counterterm.

The second special feature of the one-loop diagram in
2d in ϕ4 theory is that it is both local on the lattice and
logarithmically divergent in the continuum. In 3d the
situation changes. First the one-loop term in the continuum
is linearly divergent. However on the lattice such a
divergence is not manifest because it enters as a dimen-
sional factor of 1=a, which in the bare lattice action is
chosen implicitly to be 1=a ¼ Oð1Þ. Also all UV power
divergent diagrams are finite in the IR so that there is no
need for a dimensionless mass regulatorm0 ¼ am. We have
computed the one-loop diagram on the simplicial cylinder
R × S2, and found numerically that the counterterm is
almost identical to the 2-d case. This is easy to understand.
The spectral decomposition of the 3-d Green’s function,

Gxt;yt0 ðm2
0Þ ≃

ffiffiffi
3

p

8π

XL0

l¼0

X
k

ð2lþ 1ÞPlðrx · ryÞeiωkðt−t0Þ

lðlþ 1Þ þ ω2
k þm2

0

þ
XN

n>ðL0þ1Þ2

X
k

ϕ�
nðxÞϕnðyÞeiωkðt−t0Þ

Eð0Þ
n þ ω2

k þm2
0

; ð58Þ

is a natural generalization to the case on S2 given in
Eq. (53). We see that the breaking of rotational invariance
on R × S2 is very similar to the case of S2 for each mode
ωn and as such the overall breaking term will also be very
similar to the 2-d case.
Next, in 3d, there is a new, logarithmically divergent

two-loop term. Again, a comparison between 2d and 3d is
interesting. The one-loop term in Hamiltonian form can be
viewed simply as a problem of normal ordering: ϕ4ðxÞ≕
ϕ4ðxÞ∶þ ϕ2ðxÞhϕ2ðxÞi0. The diagram has no unitarity cuts
and can be simply dropped when defining a normal ordered
perturbation expansion. In 3d, the two-loop term introduces
a nonlocal contribution with essential unitarity cuts that
must be preserved in a renormalized perturbation theory.
On the lattice, the continuum position space two-loop
diagram is replaced by the element-wise third power of
the Green’s function,

λ20Gðt1 − t2; cosðθxyÞÞ → λ20½M−1�3x;t1;y;t2 : ð59Þ

Again, we must subtract the rotationally invariant contribu-
tion at fixed t1 − t2 and jr̂x − r̂yj2 ¼ 2 − 2 cosðθxyÞ.We have
found numerically that although the rotationally invariant
part has a power fall-off dictated by naïve dimensionality, the
residual breaking term, δμ2xy;t2−t1ϕx;t1ϕy;t2 , falls off exponen-
tially in lattice units. Consequently, in physical units, it is
exponential in ðt2 − t1Þ=a and jr̂x − r̂yj=a and therefore to
leading order may be replaced by a local counter term in
the QFE action. We postpone further analysis of counter
terms to future publications.
We are also considering alternative methods that avoid the

difficulty of computing individual UVdivergent perturbative
diagram. For example, as a proof of concept, we have
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implemented the Pauli-Villars (or Feynman-Stuekelberg)
approach. It introduces an intermediate scale of Pauli-
Villars mass, MPV ≪ π=a separating the IR from the UV
and protects the UV diagram from the dependence of the
variable cutoff of the simplicial lattice. This separation of
scales is another way to exploit the spectral fidelity of the low
spectrum, but this time to all orders in perturbation theory.
The implementation amounts to the addition of a ghost field
giving a simplicial equivalent of the continuum propagator,

1

p2
→

1

p2
−

1

p2 þM2
PV

¼ 1

p2 þ p4=M2
PV

: ð60Þ

Now, reaching the continuum requires a double limit: a → 0
at fixed aMPV, followed by aMPV → ∞. We have imple-
mented this on S2 by adding a quadratic PV term,
−M−2

PVϕxKxzKzyϕy=
ffiffiffiffi
gz

p
, to the FEM action in Eq. (23),

seeing qualitatively that this doeswork. However, in addition
to the cost of the double limit, in the context of our currentϕ4

simulations, the PV term has the technical disadvantage that
it prevents the use of the very efficient cluster algorithm
of Ref. [32].
We are also exploring extensions of the renormalization

group approach in our demonstration of the one-loop
logarithmic divergences in 2d in Sec. III C. For asymp-
totically free theories in 4d, such as the non-Abelian gauge
theory, the Lagrangian, F2=g2, has a dimensionless cou-
pling with a logarithmic divergence. We anticipate the use
of the RG approach and perhaps the scale setting properties
of Wilson flow [33] to correct the scheme dependence of a
simplicial lattice. As demonstrated in the classic paper by
A. Hasenfratz and P. Hasenfratz [34] for pure non-Abelian
gauge theory, the lattice scheme dependence is a one-loop
effect which on a simplicial lattice should be replaced by a
local site dependent multiplicative counter term for F2.

IV. NUMERICAL TESTS OF UV
COMPETITION ON S2

Here we present our first test of our QFE simplicial
lattice construction for the nonperturbative study of quan-
tum field theories on curved manifolds. The Monte Carlo
simulation of the 2-d scalar ϕ4 theory on the Riemann
sphere, S2, must agree within statistical and systematic
uncertainties with the exact solution of the Ising or c ¼
1=2minimal CFT in the continuum limit. The first test is to
fine-tune the mass parameter to the critical surface illus-
trated in Fig. 1 and to compare the Monte Carlo compu-
tation of bulk Binder cumulants with analytic values. In
Sec. V, we extend our tests to the detailed form of the
conformal two-point and four-point correlators.

A. Ising CFT on the Riemann S2

Let us begin by defining the Euclidean correlations
functions

Gnðx1; � � � ; xnÞ ¼ hϕðx1Þ � � �ϕðxnÞi

¼ 1

Z½0�
δ

δJðx1Þ
� � � δ

δJðxnÞ
Z½J�jJ¼0; ð61Þ

for our scalar field theory as a derivative expansion of the
partition function,Z½J�¼R ½Dϕ�exp½−S½ϕ�þR

ddxJðxÞϕðxÞ�,
in the current JðxÞ. Likewise replacing the current by a
constant magnetic field, JðxÞ ¼ h

ffiffiffiffiffiffiffiffiffi
gðxÞp

, the derivatives of
the partition function give the magnetic moments,

mn ¼ hMni

¼
Z

d2x1…d2xn
D ffiffiffiffiffiffiffiffiffiffiffi

gðx1Þ
p

ϕðx1Þ � � �
ffiffiffiffiffiffiffiffiffiffiffi
gðxnÞ

p
ϕðxnÞ

E

ð62Þ

where M ¼ R
d2x

ffiffiffi
g

p
ϕðxÞ. From these moments, defining

homogeneous quotients,Q2n ¼ hM2ni=hM2in, the first three
Binder cumulants are [35]

U4 ¼
3

2

�
1 −

1

3
Q4

�

U6 ¼
15

8

�
1 −

1

2
Q4 þ

1

30
Q6

�

U8 ¼
315

272

�
1 −

2

3
Q4 þ

1

18
Q2

4 þ
2

136
Q6 −

1

630
Q8

�
: ð63Þ

These are just the connected moment expansion of the free
energy,

F½h� ¼ log

�Z
½Dϕ�e−S½ϕ�þh

R
ddx

ffiffi
g

p
ϕðxÞ

�
; ð64Þ

divided by appropriate factor of hM2ni. Therefore they
vanish in the Gaussian limit. The overall normalization
has been chosen so that the Binder cumulants are unity in
the ordered phase. We designate the exact value of Binder
cumulants for the critical Ising CFT by U�

2n.
On the sphere S2 the exact value of the Binder cumulants

U�
2n can be computed from the solution for the conformal

n-point functions on R2. This a consequence of the special
property for conformal correlators under a Weyl trans-
formation of the flat metric: gμνðxÞ ¼ Ω2ðxÞδμν on S2. For
example the CFT correlators of a primary operator ϕ with
dimension Δ obey the identity [18]

hϕðx1Þ…ϕðxnÞigμν
¼ 1

Ωðx1ÞΔ
� � � 1

ΩðxnÞΔ
hϕðx1Þ � � �ϕðxnÞiflat: ð65Þ

As also pointed out in Ref [18], even the Weyl anomalies
will cancel in homogeneous ratios of CFT correlators.
Consequently as noted in Ref. [36] homogeneous moments
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in the Binder cumulants are computed by integration over
the n-point function on the compact manifold.
In our current application, the Weyl transformation is a

stereographic projection from R2 to the Riemann sphere,
S2, which can be explicitly parametrized by

w ¼ ðrx þ iryÞ=ð1þ rzÞ ¼ tanðθ=2Þeiϕ; ð66Þ

r̂ ¼ ðsin θ; cosϕ; sin θ sinϕ; cos θÞ; ð67Þ

where w is the complex coordinate w ¼ xþ iy in the R2

plane and r̂ is unit vector in R3 in Eq. (24). The resulting
metric on S2 is

ds2S2 ¼ 2

ð1þ ww̄Þ2 dwdw̄ ¼ cos2ðθ=2Þds2R2 : ð68Þ

with Ω2ðθÞ ¼ cos2ðθ=2Þ. After the Weyl rescaling the two-
point function on S2 is

hϕðr̂1Þϕðr̂2Þi ¼
1

ð2 − 2 cos θ12ÞΔ
; ð69Þ

where θ12 is the angle between the two radial vectors,
r̂1, r̂2, on the surface of the sphere. Incidentally a pedestrian
proof uses standard trigonometric identities to show that
Ωðθ1Þjw1 − w2j2Ωðθ2Þ ¼ jr̂1 − r̂2j2 ¼ 2ð1 − cos θ12Þ. We
have chosen the normalization of ϕ so that the numerator
is unity. Just as Poincare invariance on the plane implies
that correlators are a function of the length (or Euclidean
distance on the plane, jw1 − w2j), rotational invariance on
the sphere fixes the correlator to be a function of the
geodesic distance, θ12.
On R2 the conformal n-point correlation functions of the

2-d Ising model can be constructed, in principle, to any
order [37–41] and in practice have been computed up to
sixth order [37,38,42]. To normalize the ratios Q2n we use
the analytic result,

m2 ¼
Z

dΩ1

4π

Z
dΩ2

4π
hϕðΩ1ÞϕðΩ1Þi

¼
Z

1

−1

1

2ð2 − 2 cos θ12Þ1=8
d cos θ12

¼ 211=4

7
; ð70Þ

withΔ ¼ 1=8 for the Ising model. This allows us to find the
relationship between the normalization of the continuum
field ϕðxÞ and the normalization of our discretized field ϕx
in a QFE calculation. Similarly, higher moments can be
computed numerically as integrals over the n-point corre-
lators on S2.
The integral of the four-point function on the sphere was

performed byDeng andBlöte in Ref. [36]. The computation

of m4 is naïvely an eight-dimensional integral, but after
utilizing rotational invariance the integration is reduced to a
five-dimensional integral. The numerical four-point inte-
gral evaluation in Ref. [36] used 1000 independent
Monte Carlo estimates, yielding an estimate of
m4 ¼ 1.19878ð2Þ, leading to a prediction of the critical
value for the fourth Binder cumulant U�

4 ¼
0.8510061ð108Þ after error propagation.
We computed both the four- and six-point integrals

numerically using the MonteCarlo method of
Mathematica’s Integrate[] function. For the four-point
integral, we set AccuracyGoal → 4, which yields a
Monte Carlo distribution with standard deviation approx-
imately 10−4. We repeated the Monte Carlo estimation of
the integral 100 times. The quoted error is the standard
error on the mean of this sample distribution. We findm4 ¼
1.1987531ð116Þ and the corresponding Binder cumulant
is U�

4 ¼ 0.8510207ð63Þ. We again used the Mathematica
MonteCarlo integrator to compute m6. We set
AccuracyGoal → 3, which yields a Monte Carlo dis-
tribution with standard deviation approximately 10−3. We
repeated the Monte Carlo estimation 50 times. We find
m6 ¼ 1.632851ð253Þ, and a corresponding critical Binder
cumulant value of U�

6 ¼ 0.7731441ð213Þ.

B. Finite scaling fitting methods

To compute these cumulants, we must obtain estimates
for the even moments of the average magnetization. On the
lattice we define the moments of the field on the simplicial
complex by

mn ¼ hðN−1
X
x

ffiffiffiffiffi
gx

p
ϕxÞni

¼ 1

Nn

X
x1;���;xn

h ffiffiffiffiffiffi
gx1

p
ϕx1…

ffiffiffiffiffiffi
gxn

p
ϕxni ð71Þ

where h� � �i denotes the ensemble average and the spatial
average is shown explicitly by a summation. Numerically,
these moments are easy to compute by a weighted sum of
the field over the complex on each field configuration, with
the weights

ffiffiffiffiffi
gx

p
defined to be the areas of the Voronoï cells

[43] as computed on the flat triangles and normalized to
one per site on average, i.e., our convention

P
N
x¼1

ffiffiffiffiffi
gx

p ¼
N in Eq. (39).
In our Monte Carlo calculations, the finite size of our

simplicial complex will break conformal invariance. If the
bare lattice parameters are tuned sufficiently close to the
critical point, finite-size scaling (FSS) relations can be used
to extract CFT data by fitting the volume dependence of
moments or cumulants of average magnetization [44]. We
give the key details below, and in Appendix B we give
further details of the FSS analysis used to parametrize our
numerical data as we take the infinite volume limit.
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It begins by expanding the free energy in a finite lattice
volume N around the critical point ðg�σ; g�ϵ ; g�ωÞ. By Z2

symmetry the critical point for the Z2 odd operator is
g�σ ¼ 0. Of course, we cannot directly vary the renormal-
ized couplings ðgσ; gϵ; gω; � � �Þ but instead can vary our bare
couplings ðh; μ20; λ0Þ defined in our cutoff theory. The
expansion then for the Z2 odd operator takes the form

gσ ¼ hα1 þ h3α3=3!þ h5α3=5! � � � ; ð72Þ
and without loss of generality, we can rescale h so that
α1 ¼ 1. There is mixing between the two even operators so
that

�
gϵ − g�ϵ
gω − g�ω

�
¼

�
Rϵμ Rϵλ

Rωμ Rωλ

��
μ20 − μ2�
λ0 − λ�

�
þ � � � : ð73Þ

Since our current simulations were performed at a single
fixed λ0, we cannot directly determine the coordinate
transformation R. Instead, we define the derived quantities.

āk1 ¼ ak1Rϵμ; b̄k1 ¼ bk1Rωμ; c̄k1 ¼ ck1Rϵμ;

ð74Þ

μ2a ¼ μ2� −
Rϵλ

Rϵμ
ðλ0 − λ�Þ; μ2b ¼ μ2� −

Rωλ

Rωμ
ðλ0 − λ�Þ;

ð75Þ
where ak1, bk1, and ck1 are defined in Eq. (B12) and
Eq. (B13) in Appendix B. Future simulations varying the
bare coupling near to the Wilson Fisher fixed points will
improve the finite volume parametrization. The result of the
finite volume and scaling expansion is to parametrize our
data by

m2 ¼ L−2Δσ ½a20 þ ā21ðμ20 − μ2aÞLd−Δϵ

þ b̄21ðμ20 − μ2bÞLd−Δω � þ c20L−d þ � � � ; ð76Þ
m4 ¼ L−4Δσ ½a40 þ ā41ðμ20 − μ2aÞLd−Δϵ

þ b̄41ðμ20 − μ2bÞLd−Δω � þ c40L−3d

þ α3L−2dm2 þ 3m2
2 þ � � � ; ð77Þ

m6 ¼ L−6Δσ ½a60 þ ā61ðμ20 − μ2aÞLd−Δϵ

þ b̄61ðμ20 − μ2bÞLd−Δω � þ c60L−5d

þ 15m4m2 − 30m3
2 þ α3L−2dðm4 − 3m2

2Þ
þ 3α5L−4dm2 þ � � � ; ð78Þ

where we introduce the length parameter L ¼ ffiffiffiffi
N

p
in accord

with the FSS analysis summarized in Appendix B. The
ellipses are a reminder that our expansion drops higher order
terms in the fitting expressions, leading to a systematic error
in the included parameters. For the d ¼ 2 Isingmodel,Δσ ¼
1=8 andΔω ¼ 4, so the b̄21 termscales likeL−9=4whereas the
c20 term scales like L−2. Interestingly, the leading irrelevant

correction to scaling is not due to a conformal quasiprimary
operatorω, but rather a breaking of conformal symmetry due
to a finite volume. We know of no other example of a CFT
where this occurs.
Finally, to compare our simplicial calculations to the

precise analytic results described in Sec. IVA, we can fit
our estimates of the magnetization moments and use the
fitted parameters to estimate the critical Binder cumulants.
Note that even though we chose to approach the critical
surface along a line of constant λ0 and were therefore
unable to determine the linear coordinate transformation R
of Eq. (73) leading to some of that dependence being
absorbed into redefinitions of fit parameters, e.g., ā21 vs.
a21, our estimates of the critical Binder cumulants U�

2n are
free of this ambiguity.

C. Monte Carlo results near the critical surface

For the Monte Carlo simulation, we use the embedded
dynamics algorithm of Brower and Tamayo [32], mixing a
number of embedded Wolff cluster updates [45] with local
updates consisting of one Rosenbluth-Teller sweep [46]
and one over relaxation sweep [47–50]. Table I shows our
empirically determined number ofWolff cluster updates per
local update such that on average OðNÞ spins are flipped
between local updates. We can approximately locate the
critical surface of the Wilson-Fischer fixed point by
computing the Binder cumulants at fixed λ0, varying the
volume N ¼ L2 ¼ 2þ 10L2 and the bare mass μ20, search-
ing for the region of parameter space where U4 ≈ 0.851.
We can understand the approximate behavior of the Binder
cumulants by substituting the FSS expressions in Sec. IV B
and reexpanding [51], giving

U2nðμ20Þ¼U�
2nþ Ā2nðμ20−μ2aÞLd−Δϵ

þ B̄2nðμ20−μ2bÞLd−Δω þC2nL2Δσ−dþ��� : ð79Þ
Since Δϵ ¼ 1, the Ā2n term will cause the cumulant to
diverge from its critical value if μ20 is not tuned to μ2a as
L → ∞. Importantly, the direction of the divergence will
depend on the sign of ðμ20 − μ2aÞ. At smaller L, the C2n term
will tend to dominate since Δσ ¼ 1=8 and Δω ¼ 4 as
previously noted. It is our experience that Eq. (79) should

TABLE I. The number of Wolff cluster updates totaling OðNÞ
spins near criticality.

Lattice size
Wolff/local update

ratio

L < 15 4
15 ≤ L ≤ 42 5
43 ≤ L ≤ 99 6
100 ≤ L ≤ 200 7
201 ≤ L ≤ 364 8
L > 364 9

RICHARD C. BROWER et al. PHYS. REV. D 98, 014502 (2018)

014502-16



not be used to actually fit the Binder cumulant data to
accurately determine U�

2n since there tend to be delicate
cancellations that occur in the expansion of the ratio.
Instead, the moments should be analyzed separately using
the parameterization in Eq. (76).
In the left panel of Fig. 12, we show the cumulants for a

fixed size of the simplicial complex (L ¼ 200) as we sweep
through the critical region by varying μ20 holding λ0 ¼ 1

fixed. Higher order cumulants are statistically noisier but
since they pass through the critical region with a steeper
slope [35] they have comparable statistical weight in
determining the critical coupling μ2a ≈ μ2cr. On the right
we show the cumulant U4 vs. simplicial complex size L for
fixed values of μ20 in the critical region. As expected, the
divergence at large L changes sign as μ20 passes through the
critical region.
We will now proceed to describe our data fitting and

analysis procedure. To estimate quantities like U�
4 as

accurately as possible, we use an iterative procedure to
determine which ensembles, labeled by ðμ20; λ0; LÞ, to
include in the fits to various moments of magnetization.

We start by getting a rough fit to the data using some
initial data selection window μ20 ∈ ½μ2min; μ

2
max� and L ∈

½Lmin; Lmax� and then form the following quantities

δak1 ¼
���� āk1ðμ

2
0 − μ2aÞLd−Δϵ

ak0

����
δbk1 ¼

���� b̄k1ðμ
2
0 − μ2bÞLd−Δω

ak0

����
δc20 ¼

���� c20L
2Δσ−d

a20

���� ð80Þ
Subsequently we adjust the range of data to be fit for each
moment of magnetization mn enforcing the data cuts: δak1,

FIG. 12. The left panel shows Binder cumulants up to twelfth
order vs. μ20 for fixed simplicial complex size, L ¼ 200 and
λ0 ¼ 1. The vertical dashed line indicates μ2a ≈ μ2cr. The right
panel shows the cumulant U4 vs. simplicial complex size L in the
pseudocritical region holding λ0 ¼ 1 fixed. Each point represents
a calculation and connecting lines indicate constant μ20. Con-
tinuum estimate: U�

4 ¼ 0.8510207ð63Þ.

FIG. 13. A subset of the data used in a simultaneous fit to the
three lowest even moments for data selection parameter w ¼ 0.03.

LATTICE ϕ4 FIELD THEORY ON RIEMANN … PHYS. REV. D 98, 014502 (2018)

014502-17



δbk1, δc20 ≤ w, where w is the width of the window, for all
k ≤ n. It makes sense that lower moments of magnetization
should have larger data selection regions since they vary
more slowly in the critical region relative to the higher
moments, as indicated in Fig. 12. We then refit the new data
selection and reselect the data for the same w using the new
fit values and then iterate until the process converges to a
stable data set for that w. We expect that fit parameters like
ak0 will have systematic errors of Oðw2Þ due to higher
order terms in the Taylor series expansion of the moments
of the free energy which we did not include in our fit. So,
we would like to take w to be as small as possible but also
have enough data left to adequately constrain all of the
important fit parameters, particularly the ak0.
In Fig. 13 we see a subset of the data selected with w ¼

0.03 and curves with error bands computed from the best fit
values of parameters shown in Table II. Using the values
shown in the table for w ¼ 0.03, we get U4;cr ¼
0.85020ð58Þð90Þ and U6;cr ¼ 0.77193ð37Þð90Þ where the
first error is statistical from the fit and the second is
systematic.
In summary, the comparison of our Monte Carlo estimate

on the QFE S2 with the exact solution are the following:

Monte Carlo Values∶

U4;cr ¼ 0.85020ð58Þð90Þ U6;cr ¼ 0.77193ð37Þð90Þ
ð81Þ

Analytic CFT Values∶

U�
4 ¼ 0.8510207ð63Þ U�

6 ¼ 0.7731441ð213Þ ð82Þ

We see Oð10−3Þ agreement within the error estimates.
Although even more stringent tests can be made, with the
development of faster parallel code and a more extensive
use of FSS analysis, we feel this is substantial support for
the convergence of our QFE method to the exact c ¼ 1=2
minimal CFT. In the next section we give further tests for
the two-point and four-point correlation functions.

V. CONFORMAL CORRELATOR ON S2

With our results for the Binder cumulants, we are
confident that the QFE lattice action on S2 has the correct
critical limit. Our analysis of magnetization moments and
cumulants involves global averages over n-point correla-
tors. Here we turn to correlators to examine more closely
other consequences of conformal symmetry and to provide
more stringent tests for our QFE lattice action. We begin
with the two-point functions S2, and explain how, with
rotational invariance, the exact analytic result can best be
tested against our numerical result via a Legendre expan-
sion. We next move to the exact four-point correlator,
which takes on a relatively simple form as a sum of
Virasoro blocks. Finally we use this as a toy example to
learn how to compute CFT data (dimensions and cou-
plings) from the conformal block operator product expan-
sion (OPE). In particular, we extract the central charge c
from the energy momentum tensor contribution to the
scalar four-point function.

A. Two-point correlation functions

In the continuum CFT on the Riemann sphere S2,
the conformal two-point function, already mentioned in
Eq. (69), is

gðθ12Þ ¼ hϕðr̂1Þϕðr̂2Þi

¼ 1

jr̂1 − r̂2j2Δ
¼ 1

ð2 − 2 cos θ12ÞΔ
; ð83Þ

where r̂1, r̂2 are unit vectors in the embedding space R3

defined earlier in Eq. (24) and θ12 is the angle between them.
The projection of the two-point function onto Legendre
functions, Plðcos θ12Þ, can be computed analytically,

ccontl ¼
Z

1

−1
dz

�
2

1− z

�
1=8

PlðzÞ

⇒
8

7
;
8

105
;
24

805
;
408

24955
;
680

64883
;
22440

3049501
; � � � ð84Þ

integrating over z ¼ cos θ12 for l ¼ 0; 1; 2; � � �.
In Fig. 14, we compare the analytic value to the moments

of our correlation data. The fit is excellent showing only
slight deviations at high l due to cutoff effects. Our
simplicial calculation of the two-point function is made
at a fixed value of μ20 closest to the pseudocritical values μ

2
a

in Table II. In Fig. 14, the normalization of the simplicial

TABLE II. Best fit values for the parameters described in
Sec. IV B and Appendix B for data selection window with the
ratios in Eq. 80 bounded by w ¼ 0.03.

w 0.03

α3 −22.9ð4.7Þ × 103

α5 12.4ð3.3Þ × 1010

a20 0.47895(11)
ā21 0.1873(41)
a40 −0.39006ð20Þ
ā41 −0.357ð12Þ
a60 1.3570(11)
ā61 1.876(71)
b̄21 −18ð2106Þ
b̄41 −23ð2629Þ
b̄61 115(13187)
c20 −19.9ð3.1Þ
μ2a 1.82241324(70)

μ2b 4(274)

χ2=dof 1.001
dof 1195
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Legendre coefficients clðLÞ are chosen so that c0ðLÞ ¼
ccont0 ¼ 8=7. In the left panel, we see that for any fixed value
of L the difference between the simplicial and continuum
values is small at small l but increases with increasing l. Yet
as L increases, all simplicial coefficients converge towards
their continuum values. The right panel shows how the
simplicial coefficients behave at fixed l as we approach the
continuum limit. The scaling curves shown assume a naïve
1=L scaling of simplicial artifacts, which turns out to be a
good description of the data.
More generally in a CFT on the sphere, we will fit the

two-point function to determine the operator dimension,
Δσ. This can be done directly in coordinate space by fitting
to Eq. (83) up to an overall normalization, or numerically to
the Legendre coefficients, ccontl ðΔσÞ ¼

R
1
−1 dzð2=ð1 − zÞÞΔσ

PlðzÞ, which obey the closed form recursion relation,

ccontl ðΔσÞ ¼
l − 1þ Δσ

lþ 1 − Δσ
ccontl−1 ; ccont0 ðΔσÞ ¼

1

1 − Δσ
:

ð85Þ
The overall normalization ccont0 is of course proportional to
m2 defined in Eq. (62). With our current simulations of

ϕ4 theory on S2, both methods agree with the exact value
Δσ ¼ 0.125 at the percent level.
From our analysis of the two-point function, we have a

direct demonstration of how rotational symmetry is restored
in the continuum limit. Because the two-point function can
be represented as an expansion in Legendre functions, it is a
function of only the angle between any two points on the
sphere and therefore rotationally invariant. For any fixed
finite l, no matter how large, the simplicial coefficient clðLÞ
converges to the continuum one as L → ∞.

B. Four point functions

The c ¼ 1=2 minimal CFT has only three Virasoro
primaries 1, σ, ϵ, with an OPE expansion,

σ × σ ¼ 1þ ϵ; ϵ × σ ¼ ϵ; ϵ × ϵ ¼ 1: ð86Þ
In our earlier paper [19], we constructed a simplicial
Wilson representation of Dirac fermions S2. The map to
the holomorphic, ψðzÞ, and antiholomorphic, ψ̄ðz̄Þ, com-
ponents of free Majorana fields on all 2-d Riemann surfaces
[52] allowed us to define ϵ ¼ ψ̄ψ and therefore compute
the four-point functions: hϵ1ϵ2ϵ3ϵ4i and hσ1ϵ1σ2ϵ1i without
Monte Carlo simulations. Here we test our QFE ϕ4

construction on S2 to compute the hσ1σ2σ3σ4i correlator.
In the continuum limit the leading behavior of the lattice
field is the primary operator: ϕx ∼ σðxÞ þOð1=LΔσ−Δ0

σ Þ.
The four-point function hϕðr̂1Þϕðr̂2Þϕðr̂3Þϕðr̂4Þi is a func-
tion invariant under any of the 24 permutations of the four
positions. This permutation invariance is easily enforced
even on a finite lattice. In the continuum, the eight real
coordinates can be reduced to five real coordinates using
rotational invariance alone.
Conformal symmetry allows for a further reduction to

four real coordinates, the two angular variables θ13 and θ24
defined as in Eq. (83), plus two real conformal cross ratios
u and v

u≡ jr̂1 − r̂2j2jr̂3 − r̂4j2
jr̂1 − r̂3j2jr̂2 − r̂4j2

¼ jzj2; ð87Þ

v≡ jr̂1 − r̂4j2jr̂3 − r̂2j2
jr̂1 − r̂3j2jr̂2 − r̂4j2

¼ j1 − zj2; ð88Þ

or equivalently a single complex variable z.

z ¼ ðw1 − w2Þðw3 − w4Þ
ðw1 − w3Þðw2 − w4Þ

ð89Þ

⇒ 1 − z ¼ ðw2 − w3Þðw1 − w4Þ
ðw1 − w3Þðw2 − w4Þ

ð90Þ

where w is the complex variable for the R2 prior to the
stereographic project to S2 in Eq. (67). In these variables,
the four-point function can be written

FIG. 14. On the top, we show the simplicial two-point functions
clðLÞ projected into Legendre coefficients for various values of
L, with the naïve dependence on l scaled out for clarity of
presentation. On the bottom, we show the relative difference
between the simplicial and continuum Legendre coefficients as
we take the continuum limit for fixed l.
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GðzÞ ¼ hϕ1ϕ2ϕ3ϕ4i
hϕ1ϕ3ihϕ2ϕ4i

: ð91Þ

where the dependence on θ13 and θ24 cancels in the ratio.
While GðzÞ has the exchange symmetries in the t-channel
(1 ↔ 3, 2 ↔ 4), combining this properly with the Möbius
map z → 1 − z, z → 1=z gives 24 copies, transforming the
blue fundamental zone on the left-hand side of Fig. 15 to
the entire complex z plane. In the specific case of the c ¼
1=2 minimal model, the explicit form of GðzÞ is known in
polar coordinates z ¼ reiθ as

Gðu;vÞ¼ vΔgðu;vÞ

¼ 1

2jzj1=4j1− zj1=4 ½j1þ
ffiffiffiffiffiffiffiffiffiffi
1− z

p jþj1− ffiffiffiffiffiffiffiffiffiffi
1−z

p j�

¼ 1

2jzj1=4j1− zj1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− zÞð1− z̄Þ

p
þ2

ffiffiffiffiffi
zz̄

pq
:

ð92Þ
The first form is a sum of the two Virasoro blocks and the
second form, given in Ref. [36], is the explicitly crossing
symmetric form. For visualization, we plot GðzÞ in Fig. 15.
Given that independent field configurations on our sim-

plicial complexes can be generated in nearlyOðL2Þ time, the
dominant cost of computing the four-point function would
naïvely be computing the product of four fields which scales
as OðL8Þ and would be intractable for large L close to the
continuum limit. We can reduce the cost by only sampling a
subset of values of the four-point function on each indepen-
dent configuration we generate. This is achieved by drawing
OðL2Þ quartets of random points on the simplicial complex.
This balances the computational cost equally between
generating independent field configurations and sampling
the four-point function.
We then determine the product of the four simplicial fields,

the unique coordinates ðθ13; θ24; zÞ under the permutations of
the positions, and finally an estimate ofGðzÞ by dividing our
product of simplicial fields by the continuum two-point
function, Eq. (69), which is justified by our success of the
previous section in showing that the simplicial two-point
function converges correctly in the continuum limit,

GðzÞ¼ hϕ1ϕ2ϕ3ϕ4i
gðθ13Þgðθ24Þ

→
hϕ1ϕ2ϕ3ϕ4i
hϕ1ϕ3ihϕ2ϕ4i

as L→∞: ð93Þ

For convenience when studying the four-point function, we
bin the data by coordinate on the complex plane.We partition
the unit disk jzj ≤ 1 on the complex plane into a radial grid
of N2

0 bins of equal area. The angular width of each bin is
Δθ ¼ 2π=N0 and we choose N0 mod 4 ¼ 0 so that the
bins are centered at θn ¼ 0, π=2, π, 3π=2. This arrangement
is ideal for using standard discrete cosine transforms (DCT-I)
for computing Fourier coefficients. For this study we chose
N0 ¼ 64.

We present a subset of our results for the conformal
portion of the four-point function, Eq. (92), in Fig. 16.
Here, we consider the fixed slice r ∈ ½0; 1� for θ ¼ 0. We
see that, even for moderately small values of L, the
measured four-point function converges well to the ana-
lytic, continuum result.

C. Operator product expansion

In Sec. V B, we calculated the simplicial approximation
to the scalar four-point function which, after taking a ratio

FIG. 15. We visualize the conformal function GðzÞ in contour
and surface renderings. The outermost contour starts at GðzÞ ¼
0.6 and increases by steps of 0.1. Two symmetry planes are
apparent: ReðzÞ ¼ 1=2 and ImðzÞ ¼ 0. These are related to
certain permutations of the four-point function. The entire set
of permeations maps the blue zone exactly to the entire complex
plane.
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with a product of two-point functions respecting t-channel
symmetry, is described by a conformal function GðzÞ
invariant under z → 1 − z and z → z̄. We computed the
function everywhere in the unit circle, which can then be
extended to the whole complex plane utilizing the permu-
tation symmetry of the full four-point function. Our
representation of the function GðzÞ is a tabulation of values
on an equal area grid in polar coordinates ðr; θÞ.
In the conformal bootstrap the expansion around z ¼ 0

is used based on the operator product expansion (OPE). It is
interesting to ask how well our Monte Carlo simulation on
S2 can determine the data in an OPE expansion,

GsðzÞ¼
hϕ1ϕ2ϕ3ϕ4i
gðθ12Þgðθ34Þ

¼ jzjΔσGðzÞ¼
X
ΔO;l

λ2OgΔO;lðzÞ; ð94Þ

where GsðzÞ is s-channel symmetric, i.e., symmetric under
interchange 1 ↔ 2 and 3 ↔ 4, ΔO are the scaling dimen-
sions of conformal primary operators O, and l labels the
spin. The functions gΔO;lðzÞ are called conformal blocks
whose functional form is completely determined by con-
formal symmetry. In d ¼ 2, there is an explicit representa-
tion of the conformal blocks in terms of hypergeometric
functions,

gΔ;lðzÞ ¼
1

2
½zh2F1ðh; h; 2h; zÞ�½z̄h̄2F1ðh̄; h̄; 2h̄; z̄Þ�; ð95Þ

where h ¼ Δþl
2
, h̄ ¼ Δ−l

2
. The expansion in Fourier modes is

given by

gΔ;lðr; θÞ ¼
X∞
m¼0

cosðmθÞ
�
rΔ

X
jn−n0þlj¼m

ðhÞ2nðh̄Þ2n0
ð2hÞnð2h̄Þn0

rnþn0

n!n0!

�
;

ð96Þ
using the Pochhammer symbol ðaÞn ¼ Γðaþ nÞ=ΓðaÞ.

With a conserved energy momentum tensor T, there are
special terms in the OPE expansion of the scalar four-point
function which have integer powers: 1þ λ2TgT;2ðr; θÞ. The
identity operator term is normalized to unity by convention.
The conformal block for the energy momentum tensor has a
closed form expression,

gT;2ðzÞ¼−3
�
1þ1

z

�
1−

z
2

�
logð1−zÞ

�
þ c:c:

¼ 1

2
r2 cosð2θÞþ1

2
r3 cosð3θÞþ 9

20
r4 cosð4θÞþ �� � ;

ð97Þ
and the OPE coefficient λ2T is related to the central charge of
the CFT,

λ2T ¼ Δ2
σd2

CTðd − 1Þ2 →
1

16CT
for d ¼ 2; ð98Þ

where CT ¼ 2c ¼ 2ð1=2Þ ¼ 1 for the d ¼ 2, c ¼ 1=2
minimal model.
We can extract an estimate of the central charge c from

our simplicial calculation of the scalar four-point function
by modeling the result with the first few terms in the OPE
expansion

FIG. 16. Results for the conformal part of the QFE scalar four-
point function of the Ising universality class on S2.Gðr; θÞ should
only depend on a single complex coordinate z ¼ reiθ. We have
computed the four-point function in the entire complex plane in
ϕ4 theory and show the function for r ∈ ½0; 1� at fixed θ ¼ 0 as it
converges to the continuum result.

FIG. 17. On the top, a fit to them ¼ 0 Fourier component of the
s-channel symmetric conformal part of the four-point function.
On the bottom, a fit to the m ¼ 2 Fourier component. A
simultaneous fit to both components can be used to fix the
normalization of the four-point function and determine the central
charge.
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Gsðr; θÞ ∝ 1þ λ2ϵgϵ;0ðr; θÞ þ λ2TgT;2ðr; θÞ: ð99Þ

We used a DCT-I to Fourier transform the data, simulta-
neously fitting m ¼ 0, 2 to four parameters: the overall
normalization, λ2ϵ , λ2T and Δϵ. We choose a single value of
μ2 ¼ 1.822410 which is close to the pseudocritical value,
and we restrict the fitting range in r around 0.5 where the
data shows the least discretization error. A fit for L ¼ 36 and
0.25 ≤ r ≤ 0.75 is shown in Fig. 17. A summary of several
fits is shown in Table III. As expected, the fit values converge
towards the continuum CFT results ðΔϵ ¼ 1; λ2ϵ ¼ 1=4; c ¼
1=2Þ as L increases toward the continuum limit and as the fit
range in r is confined to a narrower region around r ¼ 0.5
where the discretization artifacts appear smallest.

VI. CONCLUSION

We have set up the basic formalism for defining a scalar
field theory on nontrivial Riemann manifolds and tested it
numerically in the limited context of the 2-d ϕ4 theory by
comparing it against the c ¼ 1=2 Ising CFT at the Wilson-
Fisher fixed point. This test is at a sufficient accuracy
compared with the exact result to encourage us that we are
able to define this strongly coupled quantum field theory on
a curved manifold, in this case S2. Faster parallel code
could push these tests to much higher precision. While this
may be pursued in future works, our goal here was to sketch
a framework for lattice quantum field theories on a non-
trivial Riemann manifold as a quantum extension of FEM
which we refer to as quantum finite elements (QFE).
Whether or not this has generally applicability remains, of
course, to be proven.
Our construction first relies on theoretical issues in the

application of FEM that, in spite of the vast literature, are not
to our knowledge proven in enough generality. Nonetheless,
the documented experience with FEM for PDEs does argue
that this framework likely extends when properly formulated

to convergence to the classical limit of any renormalizable
quantum field theory on a smooth Euclidean Riemann
manifold [19]. A rather nontrivial extension of the classical
finite element/DECmethod for the lattice Dirac fermion and
non-Abelian gauge fields on a simplicial Riemannian mani-
fold is provided in Ref. [19] and Ref. [22] respectively.
The local spin and gauge invariance on each site is achieved
by compact spin connections and compact gauge links. This
we believe provides the basic tools for classical simplicial
constructions.
Second, and most importantly, we show that reaching the

continuum for a quantum FEM Lagrangian requires a
modification of the action by counterterms to accommodate
UV effects. We conjecture that for a superrenormalizable
theory with a finite number of divergent diagrams, a new
QFE lattice action can be constructed by a natural gener-
alization of ϕ4 theory example presented here that removes
the scheme dependence of the FEM simplicial lattice UV
cutoff. The detailed generalization of this conjecture needs
to be investigated with many more examples and most
likely alternative approaches.
Third, once we have successfully constructed the QFE

action with UV counterterms consistent with the continuum
limit to all orders in perturbation theory, we conjecture that it
represents a correct formulation of the nonperturbative
quantum field theory on a curved Riemann manifold. This
parallels the conventional wisdom for LFTs on hypercubic
lattices that when lattice symmetries are protected (Lorentz,
chiral, SUSY) only a finite set of fine tuning parameters are
need to reach the continuum theory. Further research is need
to establish the range of applicability of our QFE proposal.
More examples are obviously need to support this proposal.
There are many more direct extensions of this formu-

lation that we are currently entertaining. The first is to apply
QFE to the 3-d ϕ4 theory in both radial quantization and the
3-d projective sphere, S3. Our current software relies on a

TABLE III. A summary of the simultaneous fits to the m ¼ 0, 1, 2, 3 Fourier components of the OPE expansion
parameterized in Eq. (97) for the s-channel symmetric conformal four-point function. The normalization (norm)
fixes the vacuum term to be 1, consistent in the continuum limit with the normalization in Eq. (83) of the two point
function.

μ2 L rmin ≤ r ≤ rmax Norm Δϵ λ2ϵ c

1.82241 9 0.25 ≤ r ≤ 0.75 0.2900 1.075 0.2536 0.4668
1.82241 9 0.30 ≤ r ≤ 0.70 0.2901 1.075 0.2533 0.4704
1.82241 9 0.35 ≤ r ≤ 0.65 0.2902 1.077 0.2533 0.4738
1.82241 9 0.40 ≤ r ≤ 0.60 0.2902 1.016 0.2427 0.4747
1.82241 18 0.25 ≤ r ≤ 0.75 0.2051 1.068 0.2563 0.4866
1.82241 18 0.30 ≤ r ≤ 0.70 0.2051 1.056 0.2544 0.4878
1.82241 18 0.35 ≤ r ≤ 0.65 0.2051 1.050 0.2535 0.4904
1.82241 18 0.40 ≤ r ≤ 0.60 0.2051 1.046 0.2526 0.4884
1.82241 36 0.25 ≤ r ≤ 0.75 0.1457 1.031 0.2528 0.4926
1.82241 36 0.30 ≤ r ≤ 0.70 0.1458 1.026 0.2519 0.4932
1.82241 36 0.35 ≤ r ≤ 0.65 0.1458 1.018 0.2508 0.4931
1.82241 36 0.40 ≤ r ≤ 0.60 0.1458 1.007 0.2486 0.4933
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serial code and the very efficient Brower-Tamayo [32]
modification of the cluster algorithm. We are in the process
of developing parallel code that will allow for large lattices
and higher precision, which will also be a necessity in
going beyond 2d and scalar fields. Although new software
requires substantial effort, we believe that all of the
fundamental data parallel concepts and advanced algo-
rithms utilized in lattice QCD will still be applicable here.
We note there are advantages to studying CFTs on spherical
Sd simplicial lattices. There are no finite volume approx-
imations. The entire Rd is mapped to the sphere. For radial
quantization the only finite volume effect is the one radial
dimension along the R × Sd−1 cylinder. With periodic
boundary conditions, the finite extent of the cylinder is
also an interesting parameter for the study of CFTs at finite
temperature. Radial quantization on R × Sd−1 allows direct
access to the Dilatation operator to compute operator
dimensions and the OPE expansion. Even our 2-d example
is worth further investigation at higher precision, and with
an emphasis on new studies enabled by a fully non-
perturbative formulation of the ϕ4 theory on S2. For
example, we can consider new ways to compute the
renormalization flow of the central charge from the UV
to the IR. Further research is on going to hopefully justify
this optimism.
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APPENDIX A: FREE THEORY ON SPHERE
AND CYLINDER

Here we collect a few analytic expressions for the free
scalar theory that are useful in establishing convergence of
the simplicial propagators to the exact continuum on the S2

and R × S2 manifolds.
a. Free scalar on a sphere: The Green’s function on the

sphere is given by spectral sum,

Gðθ; μÞ ¼
X∞
l¼0

Xl

m¼−l

Y�
lmðr̂1ÞYlmðr̂2Þ

lðlþ 1Þ þ 1=4þ μ2

¼ 1

4π

X∞
l¼0

ð2lþ 1ÞPlðcos θÞ
ðlþ 1=2Þ2 þ μ2

; ðA1Þ

where r̂1 · r̂2 ¼ cosðθ12Þ ¼ z. For generality we have added
a dimensionless “mass” term m2

0 ¼ μ2 þ 1=4 to regulate
the IR. The series can also be summed to get

Gðθ; μÞ ¼ 1

4π
½Q−1=2þiμðzÞ þQ−1=2−iμðzÞ�: ðA2Þ

in term of associated Legendre functions. This Green’s
function (A2) can also be written in compact integral
representation,

Gðθ; μÞ ¼ 1

4π

Z
∞

−∞
dteiμtGðt; θÞ

¼ 1

2π

Z
∞

0

cosðμtÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 coshðtÞ − 2 cosðθÞp ; ðA3Þ

exhibiting clearly the logarithmic singularity as 1 − z →
θ2=2. Expanding the integral we find,

Gðθ; μÞ ≃ 1

4π

�
log

�
32

1 − cosðθÞ
�
− 14ζð3Þμ2

�
þOðθ2; μ4Þ;

ðA4Þ

in agreement with Eq. (57) in Sec. III C.
b. Conformal propagator on a cylinder: Next, we

consider the 3-d conformal propagator for radial quantiza-
tion on R × S2,

Gðt; θÞ ¼ hϕðx1Þϕðx2Þi

¼ ðr1r2ÞΔ
1

jx1 − x2j2Δ

¼ 1

½r1=r2 þ r2=r1 − 2 cosðθÞ�Δ

¼ 1

½2 coshðtÞ − 2 cosðθÞ�Δ ; ðA5Þ

where t ¼ t2 − t1 ¼ logðr2=r1Þ. Note by setting t ¼ 0, this
is exactly the conformal two point function on the sphere
Eq. (69) as expected by dimensional reduction. (In the rest
of the Appendix, we also drop the factor of 1=ð4πÞ to
coincide with the normalization convention in Sec. V.)
However, if we return to the 3-d free theory, setting

Δ ¼ ðd − 2Þ=2 ¼ 1=2, the dimensional reduction by set-
ting t ¼ 0 in the 3-d conformal propagator fails to give the
2-d propagator. To understand this we recall that in 2d,
the scalar field, ϕðxÞ is not a primary operator. As is well
known in string theory, conformal primaries are given by
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vertex operators : exp½ikϕ�∶. Instead, to reach the free
Green’s function from the cylinder, we proceed as follows.
The multipole expansion of the Coulomb term is

1

jx1 − x2j
¼ 1ffiffiffiffiffiffiffiffiffi

r1r2
p

X
l

ðr1=r2Þlþ1=2Plðcos θÞ ðA6Þ

for r2 > r1 or r2 > r1, after interchanging r1 and r2. Thus
the Green’s function is

Gðt; θÞ ¼
X
l

½θðtÞe−ðlþ1=2Þt þ θð−tÞeðlþ1=2Þt�Plðcos θÞ

ðA7Þ

rescaling by
ffiffiffiffiffiffiffiffiffi
r1r2

p
as in Eq. (A5) above. In Fourier space

this becomes

G̃ðω; θÞ ¼
Z

∞

−∞
dteiωtGðt; θÞ

¼
Z

∞

0

dteiωt
X
l

e−ðlþ1=2ÞtPlðcos θÞ

þ
Z

0

−∞
dteiωt

X
l

eðlþ1=2ÞtPlðcos θÞ; ðA8Þ

so

G̃ðω; θÞ ¼
X∞
l¼0

�
1

lþ 1=2þ iω
þ 1

lþ 1=2 − iω

�
Plðcos θÞ

¼
X
l

ð2lþ 1ÞPlðcos θÞ
ðlþ 1=2Þ2 þ ω2

: ðA9Þ

By fixing the frequency ω2 ¼ μ2 we regain the free propa-
gator on the sphere. We take the value μ ¼ 0 as our standard
IR regulated propagator which has an appealing interpreta-
tion as constant line source in 3d. Of course in practice on
the lattice for our 3-d simulations, we will introduce a finite
cylinder of length T ¼ aLt, with periodic boundary con-
ditions. This corresponds to the thermal propagators, with
periodic t ∈ ½0; T� represented by a discrete sum,

Gðt; θÞ ¼
Z

dω
2π

e−iωtG̃ðω; θÞ → 1

T

X
n

e−iωntG̃ðωn; θÞ

ðA10Þ

over frequencies, ωn ¼ 2πn=T.

APPENDIX B: FINITE SIZE SCALING FOR
CUMULANTS AND MOMENTS

This follows the renormalization group arguments first
presented in [44] and reviewed in [51]. We begin with the
free energy Eq. (64),

F ðgσ; gϵ; fgω; � � �g; aÞ ¼ logZ; ðB1Þ

Z ¼
Z

½Dϕ�e−Sþh
R

ddxϕðxÞ ðB2Þ

expressed not as a function of the bare couplings h, μ20, λ0
but rather the relevant couplings gσ, gλ and the irrelevant
couplings fgω; � � �g of the Wilson-Fisher fixed point. For
the lattice spacing, we assume a ∼ 1=L. Under a change of
scale by a factor l, the free energy renormalizes

F ðgσ; gϵ; fgω; � � �g; aÞ
¼ l−dFðlyσgσ; lyϵgϵ; flyωgω; � � �g; laÞ þ Gðgσ; gϵÞ ðB3Þ

where yO ≡ d − ΔO, F is the singular, or scaling, part of
the free energy and G is the regular part. In what follows,
we will continue to use yO instead of ΔO for compactness
of notation.
If we choose L≡ ffiffiffiffiffiffi

Ωd
d
p

, where Ωd is the volume of the
d-dimensional manifold, and differentiate the free energy k
times with respect to gσ and then take the limit gσ → 0 we
get

∂kF
∂gkσ ¼ F ðkÞðgϵ; fgω; � � �g; 1=LÞ

¼ Lkyσ−dFðkÞðLyϵgϵ; fLyωgω; � � �g; 1Þ þGðkÞðgϵÞ:
ðB4Þ

We compute derivatives of the free energy with respect to
the bare parameter h and then take the limit h → 0, to get
cumulants of the magnetization

κk ¼ lim
h→0

1

Ωk−1
d

∂kF
∂hk ; ðB5Þ

and put them in the form of Binder cumulants,

U2n ∝ lim
h→0

κ2n
κn2

; ðB6Þ

with the normalization to be determined as described in
Sec. IVA. We note that the symmetry ϕ → −ϕ guarantees
that all odd cumulants vanish, κ2nþ1 ¼ 0 and that h is an
odd-function of gσ . To take advantage of the RG scaling
properties of the free energy near the critical point, we must
rewrite the cumulants carefully using the chain rule. To
make the following manageable, we define α2nþ1 and
understand that all expressions are in the limit gσ , h → 0,

α2nþ1 ≡ lim
h→0

∂2nþ1gσ
∂h2nþ1

; ðB7Þ

L2Δσ κ2 ¼ α21½Fð2Þ þ L−dþ2ΔσGð2Þ�; ðB8Þ
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L4Δσ κ4 ¼ α41½Fð4Þ þ L−3dþ4ΔσGð4Þ�
þ α1α3½L−2dþ2ΔσFð2Þ þ L−3dþ4ΔσGð2Þ�; ðB9Þ

L6Δσ κ6 ¼ α61½Fð6Þ þ L−5dþ6ΔσGð6Þ�
þ α31α3½L−2dþ2ΔσFð4Þ þ L−5dþ6ΔσGð4Þ�
þ ðα23 þ 3α1α5Þ½L−4dþ4ΔσFð2Þ þ L−5dþ6ΔσGð2Þ�

ðB10Þ

L8Δσ κ8¼α81½Fð8ÞþL−7dþ8ΔσGð8Þ�
þ56α51α3½L−2dþ2ΔσFð6ÞþL−7dþ8ΔσGð6Þ�
þð280α21α23þ56α31α5Þ½L−4dþ4ΔσFð4ÞþL−7dþ8ΔσGð4Þ�
þð56α3α5þ8α1α7Þ½L−6dþ6ΔσFð2ÞþL−7dþ8ΔσGð2Þ�

ðB11Þ

At this point, the pattern is clear and the only difficulty
extending the calculation to higher cumulants is computing
the associated chain rule factors which are relatively straight-
forward to compute using a program like Mathematica.
For example, D[f[g[h]],{h,8}] will give all the terms
needed for ∂8F=∂h8, remembering to set to zero odd
derivatives of F and even derivatives of g.
Before we continue, we point out an important physical

concept. At finite L, the difference between the lattice scalar
operator ϕ and the conformal primary operator σ is indicated
by the presence of higher derivative terms α2nþ1 in the
cumulant expressions. But, in the scaling limit L → ∞ all
those terms vanish and the cumulants are dominated by the
moments of the free energy with respect to the coupling gσ
of the conformal primary operator σ. In this sense, the
simplicial operator ϕðxÞ becomes the primary operator
σðxÞ in the scaling limit.
We can now apply the important physical principle that

close to the critical point we can expand the derivatives of
the free energy in a Taylor series

FðkÞ ¼ ak0 þ ak1ðgϵ − g�ϵÞLyϵ þ � � �
þ bk1ðgω − g�ωÞLyω þ � � � : ðB12Þ

GðkÞ ¼ ck0 þ ck1ðgϵ − g�ϵÞ þ � � � ðB13Þ

Substituting these expressions into those for the cumulants
defined in Eqs. (B8)–(B11) nearly gives us an expression
we can fit to computed data. Of course, we cannot directly
vary the renormalized couplings ðgσ; gϵ; gω; � � �Þ but instead
can vary our bare couplings ðh; μ20; λ0Þ defined in our cutoff
theory. Near the Wilson-Fisher fixed point we can relate the
two sets of couplings by expanding

�
gϵ − g�ϵ
gω − g�ω

�
¼

�
Rϵμ Rϵλ

Rωμ Rωλ

��
μ20 − μ2�
λ0 − λ�

�
þ � � � ðB14Þ

So, substituting Eq. (73) first into Eq. (B12)–(B13) leads to
expressions that can be used to model cumulant data
computed in a cutoff theory close to the Wilson-Fisher
fixed point.
Often it is more convenient in the cutoff theory to

compute moments instead of cumulants. The expansion
of moments in terms of cumulants is well known sowe only
write the first few even moments here

m2 ¼ κ2 ðB15Þ

m4 ¼ κ4 þ 3κ22 ðB16Þ

m6 ¼ κ6 þ 15κ4κ2 þ 15κ32 ðB17Þ

m8 ¼ κ8 þ 28κ6κ2 þ 35κ24 þ 210κ4κ
2
2 þ 105κ42 ðB18Þ

m10 ¼ κ10 þ 45κ8κ2 þ 210κ6κ4 þ 630κ6κ
2
2

þ 1575κ24κ2 þ 3150κ4κ
3
2 þ 945κ52 ðB19Þ

m12 ¼ κ12 þ 66κ10κ2 þ 495κ8κ4 þ 1485κ8κ
2
2

þ 462κ26 þ 13860κ6κ4κ2 þ 13860κ6κ
3
2

þ 5775κ34 þ 51975κ24κ
2
2 þ 51975κ4κ

4
2 þ 10395κ62:

ðB20Þ
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