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Abstract

Two-dimensional N = (0, 1) and (0, 2) supersymmetric sigma models can be mainly

obtained in two ways: non-minimal heterotic deformation of N = (1, 1) and (2, 2) sigma

models, and minimal construction which contains only (0, 1) or (0, 2) supermultiplets. The

former deformed models with N = (0, 2) supersymmetries emerge as low-energy world

sheet theories on non-Abelian strings supported in some N = 1 four-dimensional Yang-

Mills theories. The latter, on the other hand, can be regarded as the elementary building

blocks to construct generic N = (0, 1) or (0, 2) chiral models.

In the thesis, we will study both types of sigma models. We start with the deformed

heterotic sigma models with N = (0, 2) supersymmetries. Our investigation is around the

calculation of NSVZ exact β-function of the heterotic models through instanton technique,

and also verifies it by straightforward two-loop calculation and the “Konishi anomaly” of

the hypercurrent. Finally, we also consider isometries on their target spaces, and show

that the heterotic deformation is free of isometry and holonomy anomalies.

Then we turn to analysis of a more fundamental minimal construction of chiral sigma

models with N = (0, 1) and (0, 2) supersymmetries. These minimal models with only

(left) chiral fermions may intrinsically suffer from chiral anomalies that will render the

theories mathematically inconsistent. We focus on two important examples, the minimal

O(N) and CP(N − 1) models, and calculate their isometry anomalies. We show that the

CP(N−1) models with N > 2 has non-removable chiral anomalies, while the O(N) models

are anomaly free and thus exist quantum mechanically. We also disclose a relation between

isometry anomalies in these non-linear sigma models (NLσM) and gauge anomalies in

gauged linear sigma models (GLσM).

Finally, we reveal a relation on anomaly correspondence between NLσM and GLσM to

minimal models on homogeneous spaces. We interpret these anomalies more from geomet-

ric perspectives and relate them to the characteristic classes of the target spaces. Through

explicit calculation of anomalous fermionic effective action, we show how to add a series of

local counterterms to remove the anomalies. We eventually reach a result that the remedy

iii



procedure is equivalent to require the target spaces of theories with trivial first Pontrya-

gin class, and thus demonstrate Moore and Nelson’s consistency condition in the case of

homogeneous spaces. More importantly, we find that local counterterms further constrain

“curable” models and make some of them flow to non-trivial infrared superconformal fixed

point. We also discuss a interesting relation between N = (0, 1) and (0, 2) supersymmetric

sigma model and gauge theories in the spirit of ’t Hooft anomaly matching condition.
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Chapter 1

Introduction

1.1 Background

It is well known that, in the context of quantum field theory, when the system has a

continuous symmetry group G but with the vacuum being invariant only under a subgroup

H of G, the spontaneous symmetry breaking from group G to H will result in massless

modes, known as Nambu-Goldstone bosons, corresponding to those broken symmetries

around the vacuum [1,2]. The interactions among these light scalar fields are described by

sigma models whose Lagrangians are completely determined by the geometry of the target

space manifold G/H. In this sense, sigma models are originally considered as low-energy

effective theories of certain UV theories in four-dimensional spacetime.

In contrast to the story in four dimensions, two-dimensional sigma models can be re-

garded as underlying theories themselves. When the target spaces G/H are symmetric

spaces, the sigma models are renormalizable in the usual sense due to isometries of G/H.

The renormalizability of two-dimensional sigma models on arbitrary Riemann manifold is

also further generalized by Friedan [3] when the models are considered as effective the-

ories on string world sheet. Historically the β-function of two-dimensional O(N) sigma

model was first calculated by Polyakov and the model was shown to be an asymptotic free

theory. More interestingly, due to the wild quantum effects in the IR regime, it is shown

that there is actually no Goldstone bosons in two-dimensional spacetime! Therefore many

two-dimensional sigma models, although starting from massless theories, will eventually
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2

generate a mass gap and restore the full G symmetries in deep infra-red. Moreover, some

types of sigma models, CP(N − 1) for example, also bear non-trivial topological solutions

of classical field equations. These instanton or soliton solutions in turn qualitatively shed

light on the mechanism of mass gap generated in strong coupling regime [4]. Remarkably,

all these features, asymptotic freedom, dynamical mass gap, instanton effect, etc., are

also shared with quantum chromodynamics (QCD), the physics theory in our real world,

while the four-dimensional QCD as well as other non-Abelian gauge theories are far from

completely understood due to their complicated vacuum structures [5, 6]. Therefore two-

dimensional sigma models appear to be a quite natural and ideal “theoretical laboratory”

to model four-dimensional gauge theories, and test ideas and methods to obtain better

understandings of non-perturbative phenomena in four-dimensional gauge theories such as

confinement of color, spontaneous breaking of chiral symmetry, etc.

1.2 Supersymmetry and 2d/4d correspondence

A powerful tool to study non-perturbative physics of 2d/4d quantum field theories is the

use of supersymmetry. In the early time, the invention of supersymmetry in the 1970’s last

century was aimed at solving a series of important phenomenological physics questions,

the hierarchy problem, gauge coupling unification, dark matter candidate and so forth.

However experimental attempts to look for signals of supersymmetry in these years were

not successful. The mass of Higgs boson discovered in Large Hadron Collider (LHC) was

around 125 GeV [7,8], which was not favored by supersymmetry. More recently (December

2015) the Run 2 result at LHC further pushed up the limits on superpartner masses and

thus rendered the possibility of supersymmetry [9], at least in the form we currently think

about, notably smaller. Nevertheless, the theoretical role of supersymmetry in understand-

ing physics at strong coupling regime is significantly important, for in many examples the

Bogomolny-Prassad-Somerfield (BPS) sectors [10, 11] of supersymmetric theories are pro-

tected by supersymmetries from correction down to strong coupling regime. We therefore

can investigate these BPS states in strong coupling regime through calculations in the weak

coupling limit by dualities [12–15]. The close relation mentioned in the previous paragraph

between 2d sigma models and 4d non-Abelian gauge theories, after enhanced by supersym-

metries, expresses the 2d/4d correspondence in a more transparent and quantitative way.
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As an instructive example of the 2d/4d correspondence as well as one of the motivations

for this thesis, we consider the four-dimensional N = 2 U(N) SQCD with N hypermul-

tiplets [16–18]. The theory supports solitonic string vortex solutions in the color-flavor

locked phase, which has internal degree of freedoms forming a CP(N−1) moduli space. To

describe the low-energy dynamics of vortex string, one needs to promote these associated

degree of freedom to oscillate and thus give rise to massless modes classically described as a

two-dimensional CP(N−1) sigma model. Further the string solution is 1/2-BPS saturated

and inherits half of supersymmetries from the bulk 4d gauge theories. Therefore, account-

ing for fermionic zero modes as well, we obtain a two-dimensional N = (2, 2) sigma model

with the target space CP(N − 1). The vortex string solution plays the role of the mapping

between the supersymmetric 4d gauge theories to 2d sigma models. Furthermore the BPS

kinks in 2d sigma models are nothing but confined monopoles in the BPS spectrum of

the 4d gauge theories. The identification of these BPS spectra keeps not only at classical

but even quantum level for they are both protected by supersymmetries. One can try to

extend the correspondence from four-dimensional N = 2 down to N = 1 gauge theories.

This work is initiated and further explored by Edalati-Tong and Shifman-Yung [19, 20].

Roughly speaking, the solitonic solutions in 4d N = 1 gauge theories, called heterotic vor-

tex strings, analogously map the 4d bulk theories to 2d N = (0, 2) heterotic sigma models

deformed from original N = (2, 2) ones. The two-dimensional heterotic sigma models with

N = (0, 2) supersymmetries is thus one of the starting points of the author’s research.

Another advantage benefited from supersymmetries reflects on the loop calculations

under instanton background in supersymmetric field theories. The instanton background,

similar to solitonic solutions above, also preserves half of supersymmetries. These residue

supersymmetries guarantee cancellation between bosonic and fermionic modes for two and

higher loops in instanton background. Therefore only zero modes and the one-loop con-

tribution need to be considered. This observation amounts to the exact Novikov-Shifman-

Vainshtein-Zakharov (NSVZ) β-functions in both 4d N = 1 supersymmetric gauge theories

and 2d N = (2, 2) supersymmetric sigma models [21–24]. In the first part of the thesis, we

will explore how to use instanton technique to also calculate the exact NSVZ β−functions

in the heterotic sigma models with N = (0, 2) supersymmetries, and compare it to that of

N = 1 four-dimensional gauge theories.
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It is obvious and fascinating that, if one could further generalize the above argument

down to N = 0 four-dimensional gauge theories (including the genuine QCD), we will

eventually quantitatively encode, even only in some sectors, the real QCD theory in terms

of data from two-dimensional sigma model where we merely encounter simpler problems

but have much more theoretical tools, like integrability and etc.. Surly, with no help

of supersymmetries, we will return back the origin, and the goal of understanding the full

story of real QCD in strong coupling regime seems still quite far from our current situation.

However after touring with supersymmetries, we can at least acquire some sense how the

non-perturbative physics world looks like and how the exploration of that is challenging

but exciting.

1.3 Perspective from mathematical physics

Besides the general 2d/4d correspondence, two-dimensional supersymmetric sigma model

are also interesting to study on its own right because of their extremely rich mathematical

structures. 2d sigma models can be defined on generic Riemann manifold M , while scalar

fields can be viewed as maps from general Riemann surfaces Σ, not necessarily restricted

to flat space time, to target space M . Therefore geometric data of Σ and M can be quite

naturally introduced in these mathematical physics models. For examples, the general

renormalization group equation, i.e. the β-functions of metric on M , coincides with the

Ricci flow up to one-loop order [3]. When one equips supersymmetries on 2d sigma models,

additional geometric and topological data on Σ and M can be extracted. It is well-known

that extended supersymmetries require additional geometrical structures on M : Kähler or

complex structure are needed for N = (2, 2) or (0, 2) supersymmetries [25, 26]; The con-

struction of generalized complex geometries and bi-hermitian geometries were discovered

because of the appearance of both chiral and twisted-chiral supermultiplets in N = (2, 2)

sigma models [27, 28]. On the other hand, from string perspective, two-dimensional su-

persymmetric sigma models concerned as effective string worldsheet theories are living on

Calabi-Yau manifolds and therefore manifest themselves with superconformal symmetries.

With recent development of super-localization techniques, the partition functions of these

sigma models are calculable and identified to the Kähler potentials of the moduli space of

Calabi-Yau manifolds [29–31]. Many interesting conjectures on Calabi-Yau manifolds can
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be thus investigated and proved, at least in physics sense.

On the topological side, Witten long time ago showed that two-dimensional super-

symmetric sigma models with N = (2, 2) or (0, 2) supersymmetries can be performed

topological twist and related to Floer homology in mathematics [32, 33]. The topolog-

ical twist theories also determine chiral ring structures in sigma models and define the

quantum cohomology ring of target spaces. Very recently, through compactification of su-

perconformal six-dimensional N = (2, 0) theories on 4-manifolds [34–36], a correspondence

was discovered and explored between the building blocks of 4-manifolds and N = (0, 2)

supersymmetric gauge theories whose renormalization group (RG) flow at IR is to some

N = (0, 2) (superconformal) sigma models.

Although N = (0, 2) supersymmetric gauge theories and sigma models are of impor-

tance in constructing heterotic string models, very little is known about the dynamics of

these (0, 2) theories until recent. The main reason is that 2d N = (0, 2) theories often

exhibit dynamical supersymmetry breaking and thus hard to be investigated if there is

no supersymmetric vacua. Partly motivated by the progresses and difficulties mentioned

above, in the thesis we will discuss minimal N = (0, 1) and (0, 2) supersymmetric sigma

models as the fundamental building blocks of the general theories. Here by minimal we

mean that there are only, say, left-handed fermions included in models. Unlike N = (0, 2)

heterotic sigma models which are obtained from deformation of (2, 2) theories and ease of

anomalies, minimal sigma models may intrinsically have chiral anomalies. After discussing

the possibility to remove chiral anomalies, we find that some “curable” models surprisingly

have RG flow to superconformal fixed point and thus no supersymmetry breaking.

1.4 Overview and Summary

The thesis is organized as follows: Chapter 2 studies the general N = (0, 2) heterotic sigma

models deformed from N = (2, 2) sigma models on symmetric Kähler manifolds by adding

chiral fermions [38]. Due to the special feature of additional chiral fermions coupled to

original N = (2, 2) theories, we show, in the instanton calculus, that the number [37] and

eigenvalues of fermionic zero modes are not changed, rather there is a mixing of the new

and old fermions. The holomorphy of coupling constants is thus unbroken and non-zero

modes in the instanton background are canceled beyond one-loop. Therefore, analogue
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to N = 1 four-dimensional Yang-Mills theories, we find the exact NSVZ β-function for

heterotically deformed N = (0, 2) sigma models. We also verify our instanton argument

by straightforward two-loop calculation and the “Konishi anomaly” of the hypercurrent

(supercurrent multiplet). At last, for the self-consistency of chiral fermions, we investigate

isometries on the Kähler spaces, and show that this type of deformation is free of isometry

and holonomy anomalies.

In Chapter 3 we turn to analyze the more fundamental minimal construction of chi-

ral sigma models with N = (0, 1) and (0, 2) supersymmetries. Because only left-handed

fermions are contained in theories, there are strong topological constraints on the target

spaces to keep theories from chiral anomalies. Our investigation started from the minimal

models defined on manifolds SN−1, say the O(N) model, and CPN−1 [39]. We discuss

these models in both non-linear and gauged linear formalism and calculate isometry and

gauge anomalies respect to the two formalisms. We show how removal of anomalies is

implemented in the O(N) case, whereas same strategy does not work for the CPN (N ≥ 2).

We also observe a correspondence between isometry and gauge anomalies from different

formalism. This correspondence is crucial to relate anomalies to topological constraints

on target spaces and leads us to more general holonomy anomalies of minimal models on

generic homogeneous spaces G/H in next Chapter.

Chapter 4 continues the exploration on anomalies of N = (0, 1) and (0, 2) minimal

models on homogeneous spaces [40]. Thanks to the isomery/gauge anomalies correspon-

dence, we focus on the gauge linear formalism. We explicitly obtain anomalous fermionic

effective action of G/H models, and “remedy” it by adding a series of local counterterms.

Through the procedure, we derive that the vanishing of anomalies is equivalent to require

the target spaces with trivial first Pontryagin class. More interestingly, with the help of

local counterterms, we demonstrate two possible scenarios of those cured models in deep

IR region: a. supersymmetry will be broken for symmetric space; b. there exists nontrivial

superconformal fixed point for non-symmetric homogeneous spaces with nontrivial third

cohomology class. At last, in the spirit of the t’Hooft’s anomaly matching condition, we

also find such an analog between two-dimensional N = (0, 1) and (0, 2) gauge theories and

minimal sigma model.



Chapter 2

N =(0, 2) Deformation of (2, 2)

Sigma Models:

Geometric Structure, Holomorphic

Anomaly and Exact β Functions

2.1 Introduction

Heterotically deformed N = (0, 2) sigma models to be considered below emerged as low-

energy world sheet theories on non-Abelian strings supported in someN = 1 four-dimensional

Yang-Mills theories [19,20] (for a recent review see [41]). Particularly, in this case the tar-

get space was CP(N−1) but the heterotic modification could be considered for a wide

class of the Kähler manifolds. The heterotic models, although remaining largely unex-

plored, appear to be important in various problems. Some previous results can be found

in [42,44–47], for a general discussion of (0,2) models see [48–52]. A renewed interest is also

due to the recent publication [53]. Here we report further results in the study of geometric

structure, holomorphic anomaly and exact β functions in these models.

Heterotic N = (0, 2) models have a rich mathematical structure. In perturbation theory

two-dimensional N = (0, 2) models were shown to share some features with N = 1 super-

Yang-Mills theories in four dimensions (e.g. [47]). They are asymptotically free in the

7
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ultraviolet (UV), have different phases in the infrared (IR), and admit large-N solution

[42, 44]. These facts can be interpreted within 2d/4d correspondence (e.g. [19, 20]) and

the Dijkraaf-Vafa type deformation. The same correspondence was noted in more general

2d/4d coupled systems, the study of which requires a thorough knowledge of the two-

dimensional side. A number of insights were obtained from string theory, see [51, 52].

However, considerations of (0,2) models in quantum field theory are scarce. In particular,

beyond chiral operators, nothing was explored until quite recently.

Two-dimensional sigma models present a natural playground for geometric explorations.

They encode the geometry of the target space, that of the worldsheet, and the geometry

of various moduli spaces. Essentially everything is known for the undeformed N = (2, 2)

models. With N = (0, 2) supersymmetry, one can test the robustness of the target space

geometry – whether or not quantization provide us with some kind of geometrical defor-

mation. In particular, the models we will consider have both, isometries and a global

symmetry realized in a nontrivial way. The interplay between geometry and quantum

effects could be enlightening on both sides.

Finally, implications of current algebra in N = (0, 2) theories were discussed more

than once. While the general structure is known [54, 55], explicit examples of how these

current-algebraic relations are implemented in particular models and what they imply for

quantization were not worked out. We emphasize that the current algebra calculation and

the renormalization group (RG) flow of the theory are intertwined [21], and, hence, it is

possible to formulate the current algebra as a way to uncover renormalization of a given

theory. Moreover, the supercurrent supermultiplet (to be referred to as hypercurrent) starts

from the U(1)R current; therefore the overall anomaly is determined by the index theorem

for the appropriate Dirac operator.

To explain the nature of heterotic modifications let us start with reminding geometry

of unmodified N =(2, 2) sigma models. It was pointed out by Zumino [25] that the target

space of these models should have the Kähler geometry. Moreover, to be characterized just

by one coupling g, it should be a symmetric space which can be described as a homogeneous

space G/H for a Lie group G and the stabilizer H. For the projective CP(N − 1) space

G = SU(N) and H = S (U(N−1)×U(1)). It is a particular case of Grassmannian spaces

SU(n+m)/SU(n)× SU(m)×U(1)
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(see, e.g., [24] for a full list of the symmetric Kähler spaces).

In these homogeneous spaces the Ricci tensor Rij̄ is proportional to the metric Gij̄ ,

Rij̄ = b
g2

2
Gij̄ . (2.1.1)

This feature is a definition of the Einstein spaces. The constant b is equal to the dual

Coxeter number TG for the group G.,

bG/H = TG . (2.1.2)

Correspondingly, for the CP(N−1) space

bCP(N−1) = TSU(N) = N . (2.1.3)

The same constant b = TG defines the β function

β
(
N =(2, 2)

)
= µ

dg2

dµ
= −TG

g4

4π
, (2.1.4)

which is exhausted by one loop [23,24] in the (2, 2) theories.

To diminish the number of supercharges from 4 in N =(2, 2) to 2 in N =(0, 2) one needs

to break partially a partnership between bosonic and fermionic fields. In the (2, 2) case

each bosonic field φi has two fermion partners, right- and left-movers, ψiR and ψiL . A simple

way to diminish supersymmetry to (0, 2) is just to discard all ψiR . Such chiral models,

which can be called minimal, generically suffer from internal diffeomorphism anomaly [56].

In particular, only CP(1) out of the entire CP(N − 1) series is anomaly free and presents

a consistent minimal model. For the consistency of minimal chiral sigma models, we will

present our work in following chapters.

Our study is focused on a different heterotic modification. Namely, instead of deleting

right-moving fermions ψiR, one extra right-mover ζR is added to the content of the (2,2)

theory. A new coupling which mixes ζR and ψiR in the background of bosonic field leads

to breaking of the (2, 2) supersymmetry to (0, 2). In contrast to the minimal (0, 2) models

this heterotic coupling can be switched on perturbatively which is sufficient to show an
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absense of internal anomaly problem.

Thus, our task is to analyze the heterotically deformed (nonminimal) N =(0, 2) models.

We present a more complete geometric formulation of the class of nonminimal models which

will be studied in this chapter. Holomorphic properties of such models are revealed. They

have two coupling constants, the original g and the heterotic h . Correspondingly, there are

two β functions. As in four-dimensional Yang-Mills [21], we have to differentiate between

the holomorphic coupling constants which are renormalized at most at one loop, and their

nonholomorphic counterparts. The latter appear in conventional perturbation theory and

are sometimes referred to as canonic.

We calculate both β functions in more than one way. In particular, we derive exact

relations between the β functions and the anomalous dimensions γ, analogous to the NSVZ

relations in four-dimensional Yang-Mills [22] using the instanton calculus. For instance,

for βg it will be shown that to all orders in perturbation theory

βg=µ
dg2

dµ
=− g

2

4π

TG g
2 (1 + γψR/2)− h2 (γψR + γζ)

1− (h2/4π)
(2.1.5)

where γψR , γζ are the anomalous dimensions of the ψR, ζR fields.

We compute the anomalous dimensions up to two loops implying prediction for three

loops in βg . Our two-loop results for anomalous dimensions also confirm the fact that there

exists a fixed point for the ratio ρ ≡ h2/g2. The critical value ρc depends on a manifold

geometry and equals to 1/2 for CP(N−1) [45]. At this point three-loop βg reduces to

β(3)
g =−TG

g4

4π

1(
1− (h2/4π)

) , (2.1.6)

i.e., to the one-loop expression up to the factor 1/(1− (h2/4π)).

Then we prove that despite the chiral nature of the model no anomaly appears in the

isometry currents of CP(N−1) at any N .

Finally, we consider the N = (0, 2) supercurrent supermultiplet (hypercurrent) and its

anomalies, as well as the “Konishi anomaly” [57]. This gives us another method for finding

the exact expression for βg via anomalous dimensions.
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2.2 Heterotic N = (0, 2) models in two-dimensions

2.2.1 Formulation of the model

We start to describe the model to be studied in this chapter by introducing two types of

chiral N = (0, 2) superfields A and B. The first, bosonic superfield A describes a chiral

supemultiplet which on mass shell consists of a complex bosonic field and a left-moving

Weyl fermion,

A(xR + 2iθ†θ, xL, θ) = φ(xR + 2iθ†θ, xL) +
√

2 θ ψL(xR + 2iθ†θ, xL) . (2.2.1)

Here xR,L are light-cone coordinates xR,L = t± x and θ is the one-component Grassmann

variable corresponding to θR (see Appendix A for our notation). The second, fermonic

superfield B refers to the Fermi supermultiplet which on mass shell contains only the

right-moving fermion (F is an auxiliary field),

B(xR + 2iθ†θ, xL, θ) = ψR(xR + 2iθ†θ, xL) +
√

2 θF (xR + 2iθ†θ, xL) . (2.2.2)

Note that in the nonlinear formulation here, the fermionic multiplets are taken to be chiral

in a strict sense. In theN = (0, 2) gauged formulation this condition can usually be relaxed.

Note also that the N =(2, 2) chiral field Φ(xR+2iθ†RθR, xL−2iθ†LθL, θR, θL) decomposes in

the N =(0, 2) superfields A and B as

Φ(xR + 2iθ†RθR, xL − 2iθ†LθL, θR, θL)

= A(xR + 2iθ†RθR, xL − 2iθ†LθL, θR) +
√

2 θLB(xR + 2iθ†RθR, xL, θR).

(2.2.3)

The N = (0, 2) supersymmetry transformations are as follows:

δxR = −2iθ†ε , δxL = 0 , δθ = ε , δθ† = ε† ,

δφ =
√

2 ε ψL , δψL = −
√

2 iε†∂Lφ , (2.2.4)

δψR =
√

2 ε F , δF = −
√

2 iε†∂LψR ,
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where ∂L = ∂t + ∂x = 2 ∂xR .

The undeformed N = (2, 2) model in terms of the N = (0, 2) superfields (2.2.1) and

(2.2.2) contains equal number of bosonic Ai and fermionic Bi superfields. In the particular

case of CP(N−1) we have i = 1, 2, ..., N − 1.

The heterotic deformation to be considered below is induced by adding a singlet fer-

monic superfield B,

B = ζR(xR + 2iθ†θ, xL) +
√

2 θF(xR + 2iθ†θ, xL) . (2.2.5)

The Lagrangian can be written as

L =
1

4

∫
d2θ

[
Ki(A,A

†)
(
i∂RA

i − 2κBBi
)

+ H.c.
]

+
1

2

∫
d2θ

[
Z Gij̄(A,A

†)B†j̄Bi + Z B†B
]
. (2.2.6)

Here K is the Kähler potential viewed as a function of the bosonic superfields. By definition

Ki(A,A
†) ≡ ∂Ai K(A,A†) . (2.2.7)

Moreover, Gij̄ is the metric on the target space,

Gij̄ = Kij̄(A,A
†) ≡ ∂Ai∂A†j̄ K(A,A†) . (2.2.8)

Two Z factors (for the fields Bi and B) are introduced in (2.2.6), in anticipation of their

renormalization group (RG) evolution. In the CP(N − 1) model

K(A,A†) =
2

g2
log

(
1 +

N−1∑
i

A† iAi
)
,

see Eq. (2.2.13).

One can check that the above Lagrangian is target-space invariant. However, the target

space invariance is implicit in Eq. (2.2.6) because Ki(A,A
†) is not explicitly target-space
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invariant. It becomes explicit upon passing to the integration over the Grassmann half-

space in the first line of Eq. (2.2.6),

L = −1

4

∫
dθ Gij̄(A,A

†)(DA†j̄)
(
i∂RA

i − 2κBBi
)

+ H.c.

+
1

2

∫
d2θ

[
Z Gij̄(A,A

†)B†j̄Bi + Z B†B
]
. (2.2.9)

The F-term structure Gij̄(DA
†j̄)i∂RAi in the first line is an analog of that for the gauge

term WαWα in 4D gauge theories, while another F-structure, Gij̄(DA
†j̄)BBi, is an analog

of superpotential in 4D. The chiral nature of these terms plays a crucial role in their

renormalization. Of course, the second line can also be written as an integral over the

Grassmann half-space, so that the Lagrangian takes the form

L = Re

∫
dθF =

1

2

∫
dθF + H.c. ,

F = −1

2
Gij̄(DA

†j̄)
(
i∂RA

i − 2κBBi
)
− 1

2
D
[
Z Gij̄ B

†j̄Bi + Z B†B
]
.

(2.2.10)

In the chiral superfield integrand F the second line of (2.2.9) produces the derivative term

with D which is not protected under renormalization.

The target space invariance is also transparent if one rewrites the Lagrangian in com-

ponents,

L = Gij̄

[
∂Rφ

†j̄∂Lφi + ψ†j̄L i∇R ψiL + Z ψ†j̄R i∇LψiR
]

+ Z Rij̄kl̄ ψ
†j̄
L ψ

i
L ψ
†l̄
Rψ

k
R

+Z ζ†R i∂L ζR +
[
κ ζRGij̄

(
i ∂Lφ

†j̄)ψiR + H.c.
]
+
|κ|2
Z
ζ†R ζR

(
Gij̄ ψ

†j̄
L ψ

i
L

)
(2.2.11)

− |κ|
2

Z
(
Gij̄ψ

†j̄
L ψ

i
R

)(
Gkl̄ψ

†l̄
Rψ

k
L

)
.

Here ∇L,R are covariant derivatives, ∇L,R ψiR,L = ∂L,R ψ
i
R,L + Γikl ∂L,R φ

k ψlR,L . The first

line in this equation refers to the undeformed N = (2, 2) theory, the subsequent terms

bring in the (0,2) deformation.

Actually all the above equations are applicable to the heterotic deformation of any
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Kähler manifold. In the particular case of CP(N−1) the explicit expression for the Fubini-

Study metric and related objects are of the form,

K =
2

g2
logχ , χ = 1 +

N−1∑
m

φ†mφm , (2.2.12)

Gij̄ =
2

g2

(
δij̄
χ
− φ† iφj̄

χ2

)
, Gij̄ =

g2

2
χ
(
δij̄ + φiφ† j̄

)
,

Γikl = −δ
i
k φ
† l + δil φ

† k

χ
, Γīk̄l̄ = −

δī
k̄
φl̄ + δī

l̄
φl̄

χ
,

Rij̄kl̄ = −g
2

2

(
Gij̄Gkl̄ +Gkj̄Gil̄

)
, Rij̄ = −Gkj̄Rij̄kl̄ =

g2N

2
Gij̄ .

2.2.2 Geometry of heterotic deformation

What is the geometrical meaning of the heterotic deformation? For the Kähler manifold

M of the complex dimension d (for CP(N−1) the dimension d = N − 1) we have d right-

moving fermions ψiR , i = 1, . . . , d, plus ζR. They can be viewed as defined on the tangent

bundle T (M × C). Let us denote ζR = ψd+1
R . Similarly, for superfields B = Bd+1. Then,

the Lagrangian for the right-moving fermions can be written as

LB =
1

2

∫
d2θ

{
G

(B)

ij̄
B† j̄Bi +

[
TikB

iBk + H.c.
]}

, (i, k, j̄ = 1, . . . , d+ 1). (2.2.13)

Here the metric G
(B)

ij̄
and antisymmetric potential Tik are functions of the bosonic super-

fields Ai, A†j̄ with i, j̄ = 1, . . . , d. Comparing with the previous definitions we see that

nonvanishing components of G
(B)

ij̄
and Tik are

G
(B)

ij̄
=

 ZGij̄ , i, j̄ = 1, . . . , d,

Z , i = d+ 1, j̄ = d+ 1 ,
(2.2.14)

T(d+1) i = −Ti (d+1) = −κ
2
Ki , i = 1, . . . , d . (2.2.15)
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The potential Tik is not uniquely defined but its curvature

Hikj̄ = Tik,j̄ =
∂Tik

∂A† j̄
(2.2.16)

is a good object. This curvature defines the chiral form for the heterotic modification,

LB =
1

2

∫
d2θ G

(B)

ij̄
B† j̄Bi − 1

2

∫
dθ
[
Hikj̄(DA†j̄)BiBk + H.c.

]
, (2.2.17)

In the model at hand the nonvanishing components of Hikj̄

H(d+1) ij̄ = −Hi (d+1) j̄ = −κ
2
Gij̄ (i, j̄ = 1, . . . , d ) (2.2.18)

are expressed via the metric tensor Gij̄ . It looks even simpler for Hjik = Hikj̄Gjj̄ :

Hj(d+1) i = −Hji (d+1) = −κ
2
δji (i, j = 1, . . . , d) . (2.2.19)

The chiral field F in Eq. (2.2.10) which defines the total Lagrangian, L = Re
∫
dθF , can

be rewritten in the following generic form:

F = −1

2

[
iGij̄(DA

†j̄)∂RAi +Hikj̄(DA†j̄)BiBk + D
(
G

(B)

ij̄
B†j̄Bi

)]
. (2.2.20)

In differential geometry the heterotic construction presented above can be described as

an action of the C∗ one-dimensional algebra on the odd tangent vector bundle.1 Note that

there is a diagonal U(1) which rotates Bi and B in the opposite directions.

The consideration above is applicable to modifying any Kähler manifold, we are not

limited to CP(N−1). What is less clear, whether or not it is possible to add more right-

moving fermions so that the extra fermionic bundle is not just TC. To this end a three-

form H consistent with the target-space invariance should exist. We are not aware of such

generalizations.

1We are indebted to Alexander Voronov for explanations.
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2.2.3 Holomorphy and its breaking

The deformed (0, 2) theory contains four bare parameters:

1

g2
,
κ

g2
, Z , Z . (2.2.21)

The first two, 1/g2 and κ/g2, enter as coefficients of the F terms in Eq. (2.2.9) and can

be taken to be complex, while parameters Z and Z should be real. The imaginary part

of 1/g2 defines the vacuum θ angle, Im(1/g2) = θ/4π , while the phase of (κ/g2) produces

an addition to this θ angle. These angles do not contribute to physical effects due to the

presence of massless fermonic fields whose phase can be redefined.

Nonrenormalization of superpotential (i.e. the κ term in (2.2.9)) implies the absence

of loop corrections to the holomorphic coupling κ/g2, and, in particular, the absence of its

running,

Muv
d

dMuv

κ

g2
= 0 . (2.2.22)

This means that the curvature Hikj̄ is the renormalization group invariant tensor with no

higher-loop corrections. For a detailed derivation of the nonrenormalization theorem see

Ref. [46].

The situation is more complicated for the “main” coupling 1/g2 appearing in the target

space metric. The coupling in the bare Lagrangian (i.e. at Muv) is holomorphic. This means

that it can receive only one-loop renormalization, implying one-loop β function. Much in

the same way as in four-dimensional N = 1 Yang-Mills theory the holomorphic anomaly

showing up in loops defies this theorem. The coupling constant the running of which is

calculated in conventional perturbation theory is nonholomorphic. For the time being let

us denote it by square brackets 1/[g2], as in [21]. In N = (2, 2) sigma models there is no

holomorphy violation, and 1/g2 and 1/[g2] coincide.

In other words, in the undeformed (2,2) theory, i.e. at κ = 0, the holomorphicity of 1/g2

is maintained. It implies that only one-loop running of 1/g2 is allowed, higher loops are

absent. In the 4D case this phenomenon is also known in N =2 gauge theories. With less

supersymmetry, i.e. in N = 1 gauge theories in 4D, holomorphicity is broken. It happens

usually at two-loop level but in certain cases appears already at the level of the first loop,

see Refs. [58, 59]. Likewise, our κ term leads to breaking of holomorpicity for 1/g2. This
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happens at the level of the first loop. More specifically, the first loop provides a finite |κ|2

correction to 1/g2 which then leads to the nonholomorphic running of g2 in the second

loop.

Iteration in κ involves integration over the quantum ζR and ψR fields in the form of a

polarization operator, see Fig. 2.1.

Figure 2.1: One-loop finite correction to the canonical coupling g. The wave line denotes the
background field A. The solid line denotes the propagator of B, while the solid line with a wavy
line superposed denotes that of B. We shall follow the same notation throughout this chapter.

The polarization operator ΠRR is defined as

Πij̄
RR(x, y) = i|κ|2

〈
T
{
ζR(x)ψiR(x)ψ†j̄R (y)ζ†R(y)

}〉
bck

= i|κ|2Sζ Sij̄ψR , (2.2.23)

where Sζ and SψR are the propagators of ζ and ψR fields in the background of the bosonic

field φ. Referring to the Appendix B for details of calculation we give here the result for

ΠRR ,

Πij̄
RR(x, y) = − |κ|

2

4πZZ 〈x|G
ij̄ ∇R

1

∇L∇R
∇R |y〉 . (2.2.24)

Let us emphasize that there is no ambiguity in the chiral fermion loop for ΠRR due to

its nonzero Lorentz spin. Generally speaking, the polarization operator Πµν can contain

local terms such as gµν or εµν . These terms have zero Lorentz spin and do not contribute to

ΠRR . Note also that in Eq. (2.2.24) the ordering of operators is not important because we

neglect by commutator [∇R,∇L]ik =R i
k mn̄

(
∂Rφ

†n̄∂Lφm−∂Lφ†n̄∂Rφm
)
. Additional terms

with this commutator are infrared ones and do not contribute to the running of couplings

we are after.

In Appendix B we also explore an alternative derivation through a relevant UV regu-

larization via modification of the propagator for the ζ fermion. The result for ΠRR is the

same.
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The fermion loop of Fig. 2.1 then results in the following addition to the action,

∆κS=

∫
d2xd2y Gik̄∂Lφ

†k̄(x) Πij̄i(x, y) ∂Lφ
l(y)Glj̄ =− |κ|

2

4πZZ

∫
d2xGij̄∂Lφ

†j̄∂Rφi .

(2.2.25)

Here we used the relation

∇R ∂Lφ = ∇L ∂Rφ , (2.2.26)

which makes the expression for the heterotic correction ∆κL to the original bosonic La-

grangian local,

∆κL = − |κ|
2

4πZZ Gij̄∂Rφ
†j̄∂Lφi . (2.2.27)

The resulting correction to the metric ∆Gij̄ can be rewritten in a more geometrical

form in terms of the curvature Hikj̄ ,

∆κGij̄ = − |κ|
2

4πZZ Gij̄ = − 1

2π
H lkj̄Hl̄k̄iG(B)ll̄G(B)kk̄ = − 1

2π
H lkj̄H

lk
i , (2.2.28)

where the indices in H= H∗ are raised by the G(B)ij̄ metric tensor (inverse to G
(B)

ij̄
defined

in (2.2.14)).

Equation (2.2.27) clearly demonstrates the breaking of holomorphicity by the fer-mion

loop depicted in Fig. 2.1. This loop is also related to the axial anomaly in the fermionic

current. Indeed, as demonstrated in Appendix B, while classically ∇L
(
ζRψ

i
R

)
= 0,2 for the

regularized loop of ΠRR we get

∇LΠij̄
RR = − |κ|

2

4πZZ 〈x| ∇RG
ij̄ |y〉 . (2.2.29)

Correspondingly we claim the absence of higher-loop corrections to Eq. (2.2.27).

From the above considerations we see that perturbation theory is governed by two real

2 Strictly speaking this divergence is not vanishing classically but additional terms do not contribute to
ΠRR.
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couplings, [g2] and a real nonholomorphic combination 3

h2 =
|κ|2
ZZ . (2.2.30)

We will also use the ratio ρ of the couplings,

ρ ≡ h2

g2
. (2.2.31)

Then Eq. (2.2.27) implies
1

g2
− 1

4π
[ρ] =

1

[g2]
. (2.2.32)

It is convenient to rewrite Eq. (2.2.32) as

1

g2
=

1

[g2]
+

1

4π
[ρ] , (2.2.33)

where the holomorphic coupling (i.e. renormalized only at one loop) on the left-hand side

is presented as a combination of two nonholomorphic terms.

2.3 Beta functions

2.3.1 Generalities

Considering two, introduced above, couplings, [g2] and h2 as functions of the UV cut-off

Muv we define two β functions:

βg ≡
d [g2](Muv)

dL
, βh ≡

d h2(Muv)

dL
, L = log Muv . (2.3.1)

In what follows we will use also the β function for ρ, see Eq. (2.2.31),

βρ ≡
d [ρ](Muv)

dL
. (2.3.2)

3 The definition of h2 in this chapter corresponds to γ2g4 in [20]. The reason for this rescaling of the
deformation parameter compared to [20] is that g2 and h2 as defined here are the genuine loop expansion
parameters.
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We will omit below the square brackets in [g2] dealing with the 1PI definition of couplings.

As was discussed above nonrenormalization of the superpotential in Eq. (2.2.9) implies

that the ratio κ/g2 does not depend on Muv , see Eq. (2.2.22). This equation can be

rewritten as
d

dL

|κ|2
g4

=
d

dL

h2ZZ
g4

=
h2ZZ
g4

[
βh
h2
− 2

βg
g2
− γ
]

= 0 , (2.3.3)

where the anomalous dimension γ is defined as

γ ≡ −d log (ZZ)

dL
= γψR + γζ , γψR ≡ −

d log Z

dL
, γζ ≡ −

d log Z
dL

. (2.3.4)

This fixes the β function for h2 in terms of the β function for g2 and the sum of the

anomalous dimensions for Bi and B fields,

βh = h2

[
2

g2
βg + γ

]
. (2.3.5)

For βρ we get

βρ = ρ

[
1

g2
βg + γ

]
. (2.3.6)

2.3.2 Beta functions at one loop

The relations (2.3.5) and (2.3.6) are exact to all loops. At the one-loop level all β functions

and anomalous dimensions have been calculated earlier [45,46]:

β(1)
g = −TG

g4

4π
, γ

(1)
ζ = d

h2

2π
, γ

(1)
ψR

=
h2

2π
, γ(1) = (d+ 1)

h2

2π
, (2.3.7)

β
(1)
h = −h

2

2π

[
TGg

2 − (d+ 1)h2
]
, β(1)

ρ = (d+ 1)
h2

2π

[
ρ− TG

2(d+ 1)

]
. (2.3.8)

The results are for the Kähler manifolds of the complex dimension d, which are homoge-

neous spaces G/H, and TG is a dual Coxeter number of the group G. It is a straightforward

generalization of calculations of Refs. [45, 46], where the CP(N−1) sigma model was con-

sidered, for which d = N − 1 and TG = TSU(N) = N .

An interesting feature of these one-loop results is that they exhibit a fixed point at
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ρ = ρc = TG/2(d+ 1), which becomes ρc = 1/2 for CP(N−1). At this point

β
(1)
g

g2

∣∣∣
ρ=ρc

=
β

(1)
h

h2

∣∣∣
ρ=ρc

= −γ(1)
∣∣∣
ρ=ρc

= −TGg
2

4π
, ρc =

TG
2(d+ 1)

. (2.3.9)

In terms of the geometrical interpretation we can present all one-loop results as cor-

rections to the bosonic metric Gij̄ , and to the right-moving fermion extended metric G
(B)

ij̄
.

These one-loop corrections are

∆Gij̄
∣∣one−loop

= − 1

2π

{
H lkj̄Hl̄k̄iG(B)ll̄G(B)kk̄ +Rij̄ logMuv

}
,

∆G
(B)

ij̄

∣∣one−loop
= − logMuv

2π

{
4H ikl̄Hj̄k̄lG(B)kk̄G(B)ll̄ +R

(B)

ij̄

}
.

(2.3.10)

As mentioned above there are no loop corrections of any order to the heterotic curvature

tensor Hikj̄ .
Let us parenthetically note that the parameter (κ/g2) is related to δ introduced in

[20,42,44], where the large N solution for CP(N−1) was constructed. Namely,

κ

g
= δ , (2.3.11)

see Erratum to [44]. The δ parameter appears as the coefficient in a superpotential, see

Eq. (C5) in [44], and, as such, is also complexified.

In [44] it is shown that the physical parameter determining (0,2) deformation is

u =
16π

N

δ2

g2
=

16π

Ng2

κ2

g2
, (2.3.12)

implying that (a) u is proportional to κ2/g4 and, hence, is renormalization group invariant,

as was expected; (b) at large N the physical parameter u scales as N0 while κ2 and g2

both scale as 1/N . The anomalous dimension γ (see Eq. (2.3.4)) then scales as O(N0), and

βg becomes one-loop exact in the limit N →∞, see Eq. (2.1.5).
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2.4 Beyond one loop from instanton calculus

In this section we will briefly outline the instanton derivation of the β functions along the

lines of [21, 22, 46, 47]. In particular, we will use the nonrenormalization theorem for the

second and higher loops in the instanton background. Only zero modes and the one-loop

contribution have to be considered. All parameters that will appear in the derivation below

are those from the bare Lagrangian.

To warm up let us briefly review the instanton calculation in [22]. Consider the instan-

ton measure in four-dimensional N = 1 Yang-Mills theory with the SU(N) gauge group.

In the quasiclassical approximation the renormalization group invariant (RGI) prefactor in

the instanton measure is

µ
(1)
inst = M3N

uv exp

(
−8π2

g2

)
. (2.4.13)

The factor in the exponent is the classical instanton action, while the pre-exponential factor

comes from the zero modes. There are nB = 4N bosonic zero modes and nF = 2N fermion

ones to produce MnB/MnF /2 = M3N . In terms of perturbation theory Eq. (2.4.13) gives

us the one-loop running of the holomorphic coupling. What happens in higher loops?

The only change (to all orders in the coupling constant) is the emergence of another

pre-exponential factor g nF /g nB = 1/g 2N , due to normalization of the zero modes, namely,

µexact
inst = M3N

uv

1

[g2]N
exp

(
−8π2

[g2]

)
. (2.4.14)

Simultaneously, 1/[g2] in the exponent becomes nonholomorphic. The combination (2.4.14)

of Muv and [g2](Muv) is renormalization group invariant. Differentiating over logMuv we

arrive at the NSVZ β function for SU(N). Generalization to an arbitrary gauge group G

is just a substitution of N in expressions above by the dual Coxeter number TG.

If matter fields are added, the only further changes in µexact
inst are as follows: (i) the

power of Muv is changed appropriately; (ii) Z−1/2 factor appears in the pre-exponent for

each matter-sector fermion zero mode. The number of such fermion zero modes is given

by 2T (R) where T (R) is the Dynkin index of representation R. In this way one obtains
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the full exact NSVZ β function,

βNSVZ(g2) = − g4

8π2

[
3TG −

∑
matter

T (Ri)(1− γi)
](

1− TG g
2

8π2

)−1

. (2.4.15)

Now, let us see how the same strategy can be implemented in the κ deformed CP(N−1)

sigma model under consideration. Let us start first with the non-deformed (2,2) case. At

the classical level the instanton-generated exponent is

exp

(
−4π

g2

)
, (2.4.16)

see e.g. [6]. At the one-loop level (and at higher loops as well) nonzero modes cancel out.

In the CP(N−1) model there are nB = 2N bosonic zero modes and nF = 2N fermion zero

modes, This produces the MnB/MnF /2 = MN pre-exponential factor. As for normalization

of the zero modes the corresponding factors cancel out between bosonic and fermion modes,

gnB/gnF = 1. Thus, we come to

µinst(2, 2) = MN exp

(
−4π

g2

)
= RGI , (2.4.17)

which leads to the one-loop exact β function and unbroken holomorphicity in the (2,2)

theory.

Now let us switch on the κ modification. As we discussed in Sec. 2.2.3 the holomor-

phicity is broken in perturbation theory already in the order |κ|2. Here comes a surprise:

such breaking does not occur in the instanton background !

Indeed, the κ terms in the Lagrangian (2.2.11) has the form

iκGij̄ ζR ψ
i
R ∂Lφ

†j̄ − iκ∗Gij̄ ψj̄R ζR ∂Lφi ; (2.4.18)

the product of these two terms enters in the fermion loop calculation. After Euclidean

continuation the instanton (or anti-instanton) background leads to vanishing either ∂Lφ
†j̄

or ∂Lφ
i. Therefore, the |κ|2 iteration is not possible. It means that holomorphicity is not

broken in one loop for the instanton, and the instanton action stays 4π/g2 with the original

1/g2. In terms of the running 1/[g2] and [ρ] it means that the combination (2.2.33) enters
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into the instanton exponent,

exp

(
−4π

g2

)
= exp

(
− 4π

[g2]
− [ρ]

)
. (2.4.19)

Moreover, in the instanton background the only effect of an additional right-mover ζR is

its admixture to ψR. This triangle mixing does not change the eigenvlues so the cancellation

of non-zero modes stays the same as in the (2,2) case. Also, the counting of the zero modes

does not change. What appears in the pre-exponential factor is an additional Z−1/2 factor

for each zero mode of ψR because of its normalization [37]. There are N such modes so we

arrive at the following exact expression for the measure:

µexact
inst =

1

ZN/2
MN

uv exp

(
− 4π

[g2]
− [ρ]

)
. (2.4.20)

The Z factor is defined in (2.2.9), see the first term in the second line. All effects due to

two loops and higher, associated with nonzero modes, cancel [46,47] much in the same way

as in the (2,2) case.

Equation (2.4.20) implies

TG logMuv −
TG
2

logZ − 4π

[g2]
− [ρ] = RGI , (2.4.21)

where we substitute N by the Coxeter index to consider a generic Kähler manifold G/H.

Differentiating over logMuv and using Eqs. (2.3.4) and (2.3.6) for βρ we arrive at the

full exact β function (2.1.5), relating βg to the anomalous dimensions, much in the same

way as the NSVZ formula.

Combining the full β function in (2.1.5) with Eqs. (2.3.5) and (2.3.6) we derive the

“secondary” β functions,

βh = − h2

1− (h2/4π)

[
TG

g2

2π

(
1 +

1

2
γψR

)
− γ

(
1 +

h2

4π

)]
,

βρ = − ρ

1− (h2/4π)

[
TG

g2

4π

(
1 +

1

2
γψR

)
− γ

]
.

(2.4.22)
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2.5 Explicit two-loop calculations

2.5.1 Two-loop β function for g2

In this section we will use the superfield method to calculate two-loop beta function for

g2 for the heterotic model at any symmetric Kähler target space. We will use a linear

background field method, setting the background field Abk = fe−ix·k (see the review paper

[60]). The basic method is roughly the same as that of component field. We expand the

action around the chosen background, and calculate all relevant diagrams. To maintain

supersymmetry, we use supersymmetric dimensional reduction, which in turn reduces to

dimensional regularization in our case. Note that since we are only interested in the

renormalization of the canonical coupling, this is compatible. Also we will keep the vector

current of the theory conserved. Due to the computational nature, it would not be beneficial

to show all steps in detail here. Instead, we will offer some intuitive arguments for the

reader to understand our results. For a detailed description of the calculational method

and examples, the reader is referred to [60].

To keep our discussion concise, we will only show those Feynman diagrams that are

of the leading order with respect to target space curvature (i.e. assuming φ and φ† to be

small).

At two-loop level, the correction of the order g4 is obviously absent, as predicted by

the undeformed model. For the correction of the order g2h2 and h4, the relevant diagrams

are those shown in Fig. 2.2 and Table 2.1, at leading order (with respect to the covariant

structure) contributed by the superfield A, which renormalizes g2.

Now it is rather straightforward to show that these diagrams, together with the Her-

mitian conjugated part, give rise to the following expression:

1

g2(µ)
=

1

g2
0

[
1− h2

0

4π
− TG

2
g2

0I

]

+
1

g2
0

[
−TG

4π
g2

0h
2I +

d+ 1

4π
h4

0 I

]
,

(2.5.1)

where

I =
1

2π
log

(
Muv

µ

)
. (2.5.2)
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A:1 A:2 A:3

A:4 A:5 A:6

Figure 2.2: Two-loop correction to the canonical coupling g. The dashed line denotes the quantum
propagator of A.

For a more accurate definition of I in (2.5.2) in terms of a dimensionally regularized loop

integral see Refs. [45, 60].

The first line in (2.5.1) contains the one-loop contributions and the second one is the

result for two-loop diagrams. From (2.5.1) we get the two-loop β function,

β(2)
g = − g

2

4π

[
TGg

2
(

1 +
h2

2π

)
− (d+ 1)

h4

2π

]
. (2.5.3)

This coincides with the corresponding expansion of the master expression (2.1.5). The one-

loop expressions (2.3.7) for the anomalous dimensions are sufficient for this comparison.

2.5.2 Anomalous dimensions at two loops

Now we turn to the calculation of the β function of the deformation coupling h. To this end

we will have to understand anomalous dimensions of the fermionic fields ψR and ζR first.

At one-loop level they are given in Eq. (2.3.7), see Fig. 2.3 for the corresponding diagrams.

Figure 2.3: One-loop correction to wave function renormalization of ψR and ζR.

At two-loop level we know that at the order g4 there is no correction. At the orders
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Diagram Double pole Single pole

A:1 0 −TG g
2
0h

2
0

4π I

A:2 0 TG
g2
0h

2
0

4π I

A:3 0 −TG
2
g2
0h

2
0

4π I

A:4 0 −TG
2
g2
0h

2
0

4π I

A:5 0
h4

0
4π I

A:6 0 d
h4

0
4π I

Table 2.1: Two-loop calculation for the g2 correction. The labeling of the diagrams follows that
in Fig. 2.2.

g2h2 and h4 we have the diagrams (in superfields) shown in Fig. 2.4 and Fig. 2.5 that

contribute to γζ and γψR , respectively.

B:1 B:2 B:3

B:4 B:5 B:6

Figure 2.4: Two-loop corrections in the wavefunction renormalization of ζR .

The renormalization of ζR is easier to understand as Z is obtained by evaluating all

diagrams in Fig. 2.4. Assembling them all we have

Z = 1 + d h2
0I + d

h4
0

4π
I + d TG

h2
0g

2
0

2
I2 − d h

4
0

2
I2 . (2.5.4)
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C:1 C:2 C:3

C:4 C:5 C:6

Figure 2.5: Two-loop corrections to the wavefunction renormalization of ψR .

The two-loop anomalous dimension γζ then can be written as

γ
(2)
ζ = − 1

Z µ
dZ
dµ

= d
h2

0

2π

(
1 +

h2
0

4π

)[
1 + I

(
TGg

2
0 − (d+ 1)h2

0

)]
(2.5.5)

The second factor in r.h.s. (the square brackets) just shifts h2
0 to h2(µ) in accord with the

one-loop βh given in Eq. (2.3.8). Thus, we get

γ
(2)
ζ = d

h2

2π

(
1 +

h2

4π

)
. (2.5.6)

In case of wavefunction renormalization of ψR it should be noted that the diagrams

shown in Fig. 2.5 in fact do not directly contribute to Z, but, rather, to Z/g2. Therefore,

we have
Z

g2
=

1

g2
0

[
1− TG

g2
0

2
I + h2

0I +
h4

0

4π
I − d h

4
0

2
I2 − TG

h2
0g

2
0

8π
I

]
. (2.5.7)

Using Eq. (??) for 1/g2 we get for Z,

Z = 1 + h2
0I + TG

h2
0g

2
0

8π
I − d h

4
0

4π
I + TG

g2
0h

2
0

2
I2 − d h

4
0

2
I2 . (2.5.8)

It leads to the following two-loop anomalous dimension of ψR ,

γ
(2)
ψR

= − 1

Z
µ
dZ

dµ
=
h2

0

2π

(
1 + TG

g2
0

8π
− d h

2
0

4π

)[
1 + I

(
TGg

2
0 − (d+ 1)h2

0

)]
(2.5.9)
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Again, the factor in the square brackets containing I just shifts h2
0 to h2(µ), so

γ
(2)
ψR

=
h2

2π

(
1 + TG

g2

8π
− d h

2

4π

)
. (2.5.10)

2.5.3 Beta functions and fixed point in ρ

The calculated two-loop anomalous dimensions mean that we know βg at three-loop level.

The explicit expression for β
(3)
g follows from substitution of the anomalous dimensions

(2.5.6) and (2.5.10) into the master formula (2.1.5),

β(3)
g = − g2/4π

1− (h2/4π)

[
TG g

2 +
h2

4π

(
TGg

2 − 2(d+ 1)h2
)(

1 + TG
g2

8π

)]
. (2.5.11)

For βh and βρ we get the two-loop expressions,

β
(2)
h = − h2/2π

1− (h2/4π)

[
TGg

2 − (d+ 1)h2 +
h2

8π

(
TGg

2 − 2(d+ 1)h2
)]
, (2.5.12)

β(2)
ρ = (d+ 1)

g2

2π

ρ

1− (h2/4π)

(
ρ− TG

2(d+ 1)

)
. (2.5.13)

The expression for βρ differs from the one-loop expression (2.3.7) only by a factor, so the

fixed point ρc = TG/2(d + 1) stays intact. Certainly, it would be interesting to find a

geometrical interpretation of this fixed point but we do not have an answer for this yet.

At this point

β(3)
g

∣∣∣
ρ=ρc

=−TG
g4

4π

1

1− (h2/4π)
, β

(2)
h

∣∣∣
ρ=ρc

=−TG
h2g2

4π

1

1− (h2/4π)
(2.5.14)

differ only by a factor 1/(1− (h2/4π)) from the corresponding one-loop results.

2.6 Isometries of the model

In this section we study the isometries of the heterotic models and, in particular, address

the question whether they could be broken by loop corrections. For generic sigma model

there are the following symmetry transformations of bosonic fields φ i, φ† j̄ living on the
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Kähler target space:

φ i → φ i + εAV i
A(φ) , φ† ī → φ† ī + εA V

ī
A(φ†) , (2.6.1)

where the vector V i
A is the Killing vector over the target manifold, εA are real infinitesimal

parameters, and the index A labels isometries. Note that in the Kähler cases, the Killing

vector VA has only holomorphic dependence on the bosonic field φ.

We are dealing with symmetric homogeneous spaces G/H . Correspondingly, isometries

arising from the algebra of H are realized linearly, while the remaining generators in the

algebra of the group G are realized nonlinearly, these symmetries are spontaneously broken.

For example, in CP(N−1) = SU(N)/S(U(N−1)×U(1)), we have (N−1)2 linear symmetries

corresponding to U(N−1) rotations of fields {φi, φ†j̄}. The remaining 2N − 2 symmetries

are nonlinearly realized. They can be written as

φi → φi + εij̄φj̄ + βi + (β†φ)φi , φ†j̄ → φ†j̄ − εij̄φ†i + β†j̄ + (βφ†)φ†j̄ , (2.6.2)

where the indices of charts {φi, φ†j̄} locally are raised or lowered by δij̄ or δij̄ .

One can supersymmetrize the above model, and write down the general form in the

N = (2, 2) case. It can be done in terms of superfields by simply promoting φi and φ†j̄ to

chiral and antichiral superfields. In components, the fermions ψi living on tangent space

of CP(N−1) transform as tensors corresponding to isometries

ψiR,L → ψiR,L + εα∂jV
i
A(φ)ψjR,L . (2.6.3)

Turning on heterotic deformation does not change the isometries, the additional fermion

field ζR is a singlet of the group G action. These symmetries can be verified classically

in the geometric formulation of the Lagrangian (2.2.17), as long as the curvature Hikj̄
satisfies:

LAH = 0 , (2.6.4)

where LA is the Lie derivative with respect to the A-th isometry. In the heterotic case, the

only nontrivial components of Hikj̄ are proportional to the metric Gij̄ , see Eq. (2.2.18). It

apparently satisfies the above condition. However, the heterotic coupling leads to a change
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in the expression for the isometry current JAR as compared with the (2,2) model,

JAR =
1

2
V
j̄
AGij̄∂Rφ

i +
i

2
∇kV i

AGij̄ψ
†j̄
R ψ

k
R + iκ V

j̄
AGij̄ζRψ

i
R + H.c. , (2.6.5)

while JAL does not change.

The question to ask is whether or not the deformation under consideration would deform

the classical geometry, since now the chiral fermion ζR enters these currents. To answer

this, we need to see if these isometric currents have anomalies. It could be verified either

by calculating anomalies of these currents or by checking the isometry transformations of

the effective action after the one-loop correction. We will proceed along the second route

because it is easier and more transparent to demonstrate the isometry invariance in the

effective action.

Moreover, even in case when isometry currents happened to be anomalous it does not

imply breaking of isometries, anomaly could be a total derivative and does not lead to

non-conservation for corresponding generators, at least, in perturbation theory. For this

reason examination of the effective action is preferable.

It is worth noting that, if there is any anomaly, it happens due to the fermionic loops.

Therefore, we can choose non-zero only bosonic background, and consider the fermion loop

corrections to the effective action. Up to one-loop order, keeping terms bilinear in fermionic

fields is sufficient. As a result the relevant part of Lagrangian takes the form

Lferm = Z ζ†R
(

1 +
∂µ∂

µ

M2

)
i∂L ζR +Gij̄

[
ψ†j̄L i∇R ψiL + Zψ†j̄R i∇LψiR

]
+
[
κ ζRGij̄

(
i ∂Lφ

†j̄)ψiR + H.c.
]
,

(2.6.6)

where all bosonic fields are background, while fermionic fields are to be integrated out. We

also introduced here regularization for the ζR field by introducing higher derivatives. This

regularization which makes loops with ζR convergent is clearly consistent with isometries.

It proves then that the heterotic modification of the (2,2) theory does not break any (2,2)

isometry.

Our explicit one-loop calculation in Appendix B confirms this. In addition, we also

present here geometry of the target space introducing vielbeins eai and ē b̄
j̄

to factorize the
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metric tensor Gij̄ and make sure our effective action preserves explicit geometric structure.

Since the fermion fields naturally live on the tangent space, we also redefine the fermions

ψ to transform the Lagrangian to the canonical form,

e ai e
i
b = δ ab , ē j̄

ā ē
b̄
j̄ = δ b̄

ā , δab̄ e
a
i ē

b̄
j̄ = Gij̄ ;

ψ a
R,L ≡ eai ψiR,L, ψ̄ b̄

R,L ≡ ψ̄ j̄
R,L ē

b̄
j̄ ,

(2.6.7)

where the tensor indices {i, j̄} of vielbein are lowered or raised by the metric Gij̄ and Gj̄i,

and the frame indices {a, b̄} by the flat metric δb̄a and δab̄. After these redefinitions the

Lagrangian can be rewritten as

L ferm =Zζ†R
(

1+
∂µ∂

µ

M2

)
i∂LζR+ ψ†La i∇̃R ψaL+ Zψ†Rai∇̃LψaR+[iκ ζR ēLa ψ

a
R+H.c.] , (2.6.8)

where

∇̃R,L ψaL,R = ∂R,Lψ
a
L,R + Ω a

R,L c ψ
c
L,R

and

ēLa = ēj̄a∂Lφ
†j̄ .

Moreover, Ωa
R,Lb and ēLa are pull-back spin-connection on the frame bundle and vielbeins,

respectively. We express the fermion kinetic term canonically, and the isometries are real-

ized in terms of the frame bundle indices {a, b̄} rather than {i, j̄}.
Next we find the isometry transformations on fermions, vielbeins and spin-connection.

It is actually clear how the transformation must look like. Geometrically, once we perform

the isometry transformation, there will be effectively an induced rotation on the frame

bundle. Now fermions and vielbeins are matter type fields, while spin-connections are

gauge fields with respect to U(N−1) gauge symmetries. Therefore, the general form of

isometry transformation is

δψ a
R,L = v aA c ψ

c
R,L , δψ̄R,La = −ψ̄R,L c v cA a ,

δe aL = v aA c e
c
L , δēLa = −ēLcv cA a ,

δΩ a
R,L c = −∂R,Lv aA c −

[
ΩR,L , vA

]a
c
.

(2.6.9)
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The explicit expression of vaA c can be found from Eqs. (2.6.2) and (2.6.3), once the vielbeins

are given. However, the explicit form of vac is not significant, Eq. (2.6.9) is all we need.

Now, when isometries of the Lagrangian are verified and regularization provides con-

vergence of fermion loop integration we can claim that all original target space isometries

are preserved under the heterotic modification. Furthermore the transformation rule of

isometries Eq. (2.6.9) is a special case of general holonomy transformations on frame bun-

dle. Therefore the heterotic model is free of holonomy anomaly as well. At last we want

to emphasize that we can always introduce appropriate regulators without breaking target

space isometries, higher derivative for example, so long as the chiral fermion ζR couples to

isometry invariant term, see Eq. (2.6.6). It is essentially different from the situation that

chiral fermions couple to gauge fields or spin-connections where gauge symmetries or target

space symmetries can be only preserved conditionally [39, 40, 56]. We will return to this

topic in later chapters.

2.7 Supercurrent multiplet

In this section we analyze the hypercurrent, a superfield which contains supercurrent and

energy-momentum tensor among its components. For undeformed N = (2, 2) theories the

hypercurrent and its quantum anomalies were studied in Ref. [61]. This study includeds,

in particular, the anomaly in the central charge which does not enter the N=(0, 2) algebra.

The general formulation in case of N = (0, 2) theories was given in Ref. [55]. We present

an explicit superfield form for the hypercurrent and all anomalies in the heterotic models

under consideration.

2.7.1 Hypercurrent in the undeformed N = (2, 2) theory

Let us start with the definition of the hypercurrent Tµ in the undeformed N = (2, 2) theory.

The hypercurrent is the supermultiplet containing a supersymmetry current sµα and an

energy-momentum tensor ϑµν ,

Tµ = vµ +
[
θγ0sµ + H.c.

]
− 2 θ̄γνθ ϑµν + . . . . (2.7.1)
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Here θ is the spinor θ= (θ1, θ2) = (θL , θR) and the lowest component vµ = Gij̄ ψ̄
j̄γµψi is

the fermionic R current.

Introducing spinor indices, Tαβ = (γ0γµ)αβTµ we can write the classical hypercurrent

in terms of the N = (2, 2) chiral superfields Φi(x, θ),

Tβα = Gij̄D̄βΦ† j̄DαΦi , (2.7.2)

where Dα, D̄β are conventional spinor derivatives and the metric G is a function of super-

fields Φi ,Φ† j̄ . Actually, only components T11 and T22, presenting nonzero Lorentz spin, are

associated with the hypercurrent Tµ , the scalar T12 = [T21]† represents the twisted chiral

integrand in the superspace action.

The anomaly equations for the hypercurrent derived in [61] are of the form:4

D1T22 =
1

4π
D2

[
Rij̄D̄1Φ† j̄D2Φi

]
=
TGg

2

8π
D̄2 T12 ,

D̄2T11 =
1

4π
D̄1

[
Rij̄D̄2Φ† j̄D1Φi

]
=
TGg

2

8π
D̄1 T21 .

(2.7.3)

In terms of classification of Ref. [55] it is the RV multiplet, ∂11T22 + ∂22T11 = 0.

2.7.2 Hypercurrent in the heterotic N = (0, 2) theory

As shown in Eq. (2.2.3) transition to diminished N = (0, 2) supersymmetry decomposes

the N = (2, 2) superfield Φ as

Φ = A+
√

2 θ1B , (2.7.4)

where the N = (0, 2) superfields, introduced in Eq. (2.2.1) and (2.2.2), depend on θ 2 = θR.

Correspondingly, the hypercurrent Tµ decomposes into two N =(0, 2) supermultiplets,

JL =
1

2
T22

∣∣∣
θ1=0

=
1

2
Gij̄DA

†j̄DAi ,

T̃RR = −1

2

[
D1, D1

]
T11

∣∣∣
θ1=0

= 2Gij̄

[
∂RA

† j̄∂RAi + i B† j̄∇RBi
]

+ H.c. . (2.7.5)

4 There is a misprint in [61]: the quantum anomalies of the hypercurrent should be multiplied by the
overall factor (−1/2) .
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These supermultiplets introduced in Ref. [55] have the following general structure,5

JL = vL + iθ sL;L + iθ†s†L;L − θθ†ϑLL ,

T̃RR = ϑRR + θ ∂RsR;L − θ†∂Rs†R;L + θθ†∂2
RvL . (2.7.6)

It is clear that the heterotic deformation does not change the expression for JL but

modifies T̃RR supermultiplet where the lowest superfield component represents the ϑRR

component of energy-momentum tensor. Namely, the expression for T̃RR in Eq. (2.7.5) is

modified to

T̃RR =
1

2

{
Gij̄

[
∂RA

†j̄∂RAi+ i ZB†j̄∇RBi+iκBBi ∂RA
†j̄
]
+ iZB†∂RB

}
+ H.c. . (2.7.7)

Quantum anomalies for JL and T̃RR according to [55] have the following general form:

∂RJL =
1

2
DW − 1

2
DW ,

D T̃RR = ∂RW ,

(2.7.8)

where W represents the supermultiplets of anomalies,

W = s†R;L − iθ
(
ϑLR + i ∂R vL

)
− iθθ†∂Ls†R;L . (2.7.9)

At the one-loop level in the heterotically modified models W is the N = (0, 2) chiral

superfield of the following form,

W(1) =
1

4π

{
Rij̄ ∂RA

iDA†j̄ − iD
[
Z(Rij̄ − h2Gij̄)B

†j̄Bi − d h2ZB†B
]}

. (2.7.10)

This expression can be verified through a component calculation of the one-loop graphs in

Fig. 2.6 for vL which is the lowest component of JL. Rewriting Eq. (2.7.10) in terms of the

heterotic curvature H defined in Eqs. (2.2.16, 2.2.18) we arrive at

W(1) =
1

4π

{
Rij̄ ∂RA

iDA†j̄ − iD
[
R

(B)

ij̄
B†j̄Bi − 4Hikl̄ Hj̄k̄lG(B)kk̄Gll̄B†j̄Bi

]}
, (2.7.11)

5 Our notations differ: JL and T̃RR are the same as S++ and T−−−− in [55].
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Figure 2.6: One-loop diagrams for vL current. The dots denote the vL currents, dashed lines are
quantum A fields while wavy lines refer to the background A.

where all right-moving fermions are included in Bi (see Sec. 2.2.2 for details).

Following Eqs. (2.2.10) and (2.3.10) it is simple to verify that the superfield W, which

represents the supermultiplets of anomalies, coincides with the one-loop running of the

superfield F associated with the Lagrangian by Eq. (2.2.10),

W(1) = iMuv
d

dMuv
F
∣∣one−loop

. (2.7.12)

What about higher-loop corrections? They will show up as higher loops in the anoma-

lous dimensions. It means that Eq. (2.7.10) is modified to

W=
1

4π

[
Rij̄∂RA

iDA†j̄− iD
(
ZRij̄B

†j̄Bi
)]

+
i

2
D
[
γψRZGij̄B

†j̄Bi+ γζZB†B
]
. (2.7.13)

2.7.3 Analog of the Konishi anomaly and beta function

Here we will discuss a relation between the hypercurrent anomalies and beta functions.

It is an example of another analog to 4D gauge theories. We mentioned above that the

supermultiplet of anomalies W is given by differentiation of the effective Lagrangian with

respect to logMuv. Let us have a closer look at how it works for βg .

At the one-loop level the running of the metric dGij̄/dL = Rij̄/2π is given by the Ricci

tensor, see Eq. (2.3.10). In W (see Eq. (2.7.13)) it is represented by the term with the A

superfields. The terms with the B fields contribute to the higher loops. We can simplify

these terms using equations of motion plus possible anomalies. Using the equation of
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motion we get

D
(
ZGij̄B

†j̄Bi
)∣∣

class
= −κGij̄DA†j̄BiB ,

D
(
ZB†B

)∣∣
class

= −κGij̄DA†j̄BiB .
(2.7.14)

There is also an anomalous part due to loops in the background of the A field, namely,

D
(
ZGij̄B

†j̄Bi
)∣∣

anom
= − i

4π
Rij̄∂RADA

†j̄ . (2.7.15)

This part is a clear-cut analog of the Konishi anomaly in 4D [57].

Using both, classical equations (2.7.14) and the anomalous one (2.7.15), as well as

Rij̄ = (TGg
2/2)Gij̄ , we come from W of Eq. (2.7.13) to

W =
TGg

2

8π
Gij̄∂RA

iDA†j̄
(

1−TGg
2

8π
+
γψR

2

)
+

(
TGg

2

8π
− γ

2

)
iκGij̄DA

†j̄BiB . (2.7.16)

In the background of the A field the integrating out right-moving fermions in the operator

Gij̄DA
†j̄BiB involves the same polarization operator ΠRR as in Sec. 2.2.3, see (2.2.23) and

Appendix B, and results in

〈
iκGij̄DA

†j̄BiB
〉
A

=
h2

4π
Gij̄∂RA

iDA†j̄ . (2.7.17)

Thus, we get

〈
W
〉
A

=
1

8π
Gij̄∂RA

iDA†j̄
[
TGg

2

(
1−TGg

2

8π
+
γψR

2

)
+ h2

(
TGg

2

4π
−γ
)]

. (2.7.18)

In the above calculations we limit ourselves by one loop (besides higher loops in the

anomalous dimensions γψR , γζ ). To see that the higher loops are needed it is sufficient

to go to the (2,2) case when h = 0 . In this limit γψR = γζ = 0 but the the factor

1−(TGg
2/8π) remains in (2.7.18). It should cancel out eventually for a pure bosonic field

background. Technically it happens in the following way. Accounting for the left-moving

fermion anomaly in ∂R
(
Rij̄DA

†j̄DAi) which cancels in the (2,2) case the one from right-

movers leads to a geometrical progression which turns the factor 1−(TGg
2/8π) into 1/(1+
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(TGg
2/8π)). Then, in the bosonic background this factor will be eaten up by integrating

out left-moving fermions.

At nonvanishing h one more geometrical progression is generated by the factor 1+(h2/4π)

which multiplies TGg
2 in (2.7.18). It is simple to understand this as just a summation of

a chain of insertions of polarization operator ΠRR into a bosonic propagator. Thus, the

multi-loop expression for
〈
W
〉
A

becomes

〈
W
〉multi

A
=

Gij̄∂RA
iDA†j̄

1 + (TGg2/8π)

TGg
2 (1+(γψR/2))− h2γ

8π(1− (h2/4π))
. (2.7.19)

The second factor in this expression is just (−βg/2g2) which gives the same βg as in

Eq. (2.1.5). The normalzation follows from the one loop. The factor 1/(1+(TGg
2/8π)) will

go away in the bosonic background as it was explained above.

2.8 Conclusion

In this chpater, we analyzed various quantum effects in the N = (0, 2) deformed (2, 2)

two-dimensional sigma models. The target spaces we consider generalize CP(N −1) to

symmetric Kähler spaces. The N = (0, 2) deformation thoroughly studied in this chapter

goes under the name of the nonminimal models.

We showed that the isometry currents in the nonminimal models are conserved, which

means quantum effects will not deform geometry. Note that this is in drastic contradistinc-

tion with the chiral models in the minimal case, see later chapters. The absence of anomaly

in the isometry currents in the nonminimal models is a nontrivial fact. Also, since the Lax

relation holds classically, one might expect these classes of models to be integrable, as their

undeformed cousins.

The models we studied are characterized by two independent coupling constants. We

analyzed them in perturbation theory. A crucial role belongs to the graph depicted in

Fig. 2.1 which is associated with the anomaly in the current that mixes the right-moving

fermions. It is also anomalous in the sense that it produces a nonholomorphic contribution

proportional to |κ|2 to the renormalization of 1/g2 at one loop. This effect then penetrates

into higher orders.
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Using nonrenormalization theorems [46], analogous to those in [21,22] in four-dimensional

Yang-Mills, we derive a number of (perturbatively) exact relations between the β functions

and the anomalous dimensions of the fields B and B. Then we calculate the anomalous

dimensions up to (and including) two loops thus obtaining explicit β functions up to three

loops.

Then we study the relation between the perturbative β functions and the general hy-

percurrent analysis of Dumitrescu and Seiberg [55]. We find how the general structure

of [55] is implemented in the nonminimal models under consideration. We demonstrated

that the hypercurrent analysis provides an alternative way for the β-function calculation

provided that the two-dimensional analogs of the Konishi anomaly are taken into account.

Recently the N = (0, 2) models attracted attention in connection with developments in

the studies of surface operators in four dimensions (see e.g. [62]). In the nonminimal models

the protected quantities, i. e. the chiral ring, is preserved under the (0, 2) deformation. It

is interesting to pursue the calculation beyond the chiral sector exploring nonchiral sector

of the world-sheet theory as a part of a 2d/4d coupled system. We hope that the results

presented here can enlighten the very first step in pursuing such a goal.

Two-dimensional asymptotically free sigma models are long known to be excellent lab-

oratories for modeling four-dimensional Yang-Mills theories. It was forty years ago that

A. Polyakov emphasized (in the publication [5]) that asymptotically free two-dimensional

sigma models could be the best laboratory for the four-dimensional Yang-Mills theories.

His anticipation seems to be materializing. The nonminimal (0,2) sigma model discussed

in this chapter presents a close parallel to N = 1 super-Yang-Mills with matter in four

dimensions (see also [47]).



Chapter 3

Isometry Anomalies in Minimal

N = (0, 1) and N = (0, 2) Sigma

Models

3.1 Introduction

As what we have seen in last chapter, nonminimal chiral models are obtained as defor-

mations of N =(2, 2) supersymmetries and contain both left and right-handed fermions.1

They are free of anomaly by construction (see Sec.2.6 of chapter 2). In this chapter, we turn

to consider minimal chiral sigma models with N = (0, 1) and (0, 2) supersymmetries where

by “minimal” we mean that there are only, say, left-handed fermions included in models.

Since these minimal chiral theories generically suffer from anomalies, the no-anomaly con-

ditions become criteria for mathematical consistency of these models per se. In general the

(left-handed) chiral fermions can be defined on arbitrary vector bundles over manifolds on

which bosonic fields live in various dimensions. There are two types of intrinsic anomalies

in the minimal N = (0, 2) sigma models, which can be compared to those in gauge theories

in four dimensions.

First, chiral fermions in four dimensions (4d) can ruin gauge invariance already at one

loop, as it happens, say, in the SU(N) gauge theory with N > 2 and a single chiral fermion

1 Strictly speaking, in two dimensions they are left- and right-movers.

40
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in the fundamental representation. This anomaly does not appear, however, in the SU(2)

gauge theory due to the absence of the d symbols in SU(2). Nevertheless, the SU(2) gauge

theory with one chiral fermion in the fundamental representation does not exist since it

suffers from a “global” Witten’s anomaly [43]. This is the second type of anomalies in

four-dimensional Yang-Mills.

The anomalies in the minimal N = (0, 2) sigma models were discussed by many authors

in different aspects. A number of authors calculated [63–67] chiral anomalies (i.e. obtained

explicit local forms) and discussed the mechanism of the anomaly cancellations. On the

other hand, global feature of anomalies were also thoroughly considered in the works [56,

68, 69]. A well-known no-go theorem [56] establishing a global anomaly due to non-zero

Pontryagin classes over vector bundles in such minimal (0, 2) models such as CP(N−1)

makes them inconsistent (with an exception of CP(1) model).

However, there are two issues that the previous literature failed to cover. Firstly, it is

possible that (chiral nonabelian) global and gauge symmetries are involved in the formula-

tion of the geometric model. Even if the global anomaly is absent, it is still desirable that

one constructs concrete local effective actions to cure local anomaly. Unfortunately, neither

the p1 vanishing condition nor the arguments like Wess-Zumino consistency condition fixes

the two-dimensional effective action and the cure of anomaly uniquely. Unlike the 4d sigma

model case where the low energy effective action is only defined for the phenomenological

consideration, in 2d, the effective action can be computed directly, and the counter term

can be obtained in some concrete cases.

Secondly, the gauge formulation [4] (e.g. variants of the Grassmannian sigma models)

of nonlinear sigma models depends on a choice, and for this reason different formulations

are allowed at classical level. This might cause problems in the quantum level, since

there are different gauge degrees of freedom that chiral fermions might couple to. Note

that in previous literatures (which mostly focuses on the 4d models for phenomenological

interests), there was no discussion about this point. In Moore-Nelson, their criteria do not

quite fixes the gauge formulation precisely because the showing up of gauge formulation

is not universal as in their context, and thus needs a more case dependent study. For

example, the dual formalism for the O(N) models we give in the last section of the current

chapter has not been written down nor studied carefully elsewhere.
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In the present chapter we will discuss the isometries of the target space manifolds O(N)

and CP(N−1) and the corresponding isometry anomalies with multiple formalisms. In the

light of chapter 4 (see also [40]), the isometry symmetries of a gauge formulated sigma model

is a special manifestation of the holonomy anomaly discussed there. The current chapter

provides precise computations and examples. The potential implication of the work, is the

following. It has been known that the O(N) models are integrable in the bosonic cases and

the N = (1, 1) cases. But the minimal N = (0, 1) case has never been studied. Our result

sets a starting point to understand the integrability of the supersymmetric model in terms

of the integrability of the bosonic model, which is of interest in its own right.

A few words on terminology. Sigma models are defined on manifolds which typically

have to be covered by many local patches. One can specify a local chart of the manifold and

then perform the anomaly calculation (typically at one loop). We thus call such anomalies

local.2

In the case of local anomalies offset by counterterms on local patches, one must worry

how to patch these counterterms on different charts. It is essentially a cohomology problem

[70] which thus is tied up with global features of the manifolds under consideration. When

some classes of sigma models admits the gauged formulation, we potentially have to deal

with chiral anomalies in the “small” and “large” gauge transformations (analogous to the

Witten SU(2) anomaly [43]). Here we shall only be dealing with infinitesimal symmetry

transformations. The issue of discrete symmetries also attracts many attentions recently,

and we shall briefly comment and the outlooks of that direction in next chapter.

The target spaces in the problems to be considered are homogeneous symmetric spaces

of G/H type. In this case it was shown [56, 66] that the criterion of local anomalies is

stronger than the global obstruction: the local anomalies imply the global obstruction

and vice versa for 4d cases. In our examples of the O(N) and CP(N − 1) models we

explicitly verify this statement for 2d models. In the first example which is free from the

Moore-Nelson global obstruction, we demonstrate that the O(N) model is free from local

anomalies. The consistency of our argument is also checked by the dual formalism. In

the second example, N = (0, 2) CP(N−1) models, N > 2, in which the first Pontryagin

2 The isometries in the sigma models under consideration are global symmetries analogous to flavor
symmetries in the gauge theories. We will still refer to the isometry anomalies as to local anomalies, to
avoid confusion.
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class is nontrivial, local anomalies are present, and the gauge formulation of the model is

inconsistent.

Note also the local counter term discussion has also been mentioned in previous liter-

atures in the context of gravitational anomalies [71–73]. Similar pattern was shown that

the global anomaly manifests itself as a nonlocal term, and the local counter term, when

possible, makes the local symmetry well-defined. We emphasize that our discussion is not

a simple derivation from those works. The choice of different gauged formulation is a new

complication in our problem, which has no counter-part in those works. Also, the fact that

the global isometry lifts up to quantum level indicates the existence of conserved charges

and their quantum correction, which depends on the metric of the target manifold. It is

due to this reason, that the anomaly cancellation can not be simply achieved by assigning

spurious transformations to the world sheet fluxes. So both our starting point, computation

and conclusion touch more refined data.

As was mentioned, in both cases we examine anomalies in the isometries which decide

whether or not geometry of the classical action can be maintained at the quantum level.

Only if it can be maintained can the theory be self-consistent. In the minimal O(N) models

one can construct anomaly-free isometry currents, while such a construction is impossible

in the minimal CP(N−1) models. The only exception is CP(1) which is equivalent to O(3).

The chapter is organized as follows. In Sec. 3.2 we thoroughly discuss the minimal O(N)

models and demonstrate the absence of the isometry anomalies. Section 3.3 is devoted to

the minimal CP(N−1) models. We derive the CP(N−1) isometry anomalies in this model.

Our analysis in this section is somewhat different from the O(N) case. We examine the

correspondence between the isometry anomalies in non-linear sigma models (NLσM) and

gauge anomalies in gauged linear sigma models (GLσM), and then derive the isometry

anomalies based on the above correspondence. In Sec. 3.4 we consider a dual formalism for

the O(N) models and arrive at the same result as in Sec. 3.2 by using the correspondence

referred in this section. Section 3.5 summarises our results and outlines questions that will

be answered in chapter 4. Appendix C presents details of derivation in Sec. 3.3 through

direct calculation as a verification.
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3.2 O(N) Sigma Model

Let us first study the “linear” version3 of the O(N) model [6], investigate the symmetries

of the model and then pass to the nonlinear description.

The linear O(N) sigma model contains N real fields ni, where i = 1, 2, ..., N , with the

constraint

nini = 1 . (3.2.1)

This means that the target space of the model is the sphere SN−1, which could be viewed

as the coset

SN−1 = SO(N)/SO(N−1) . (3.2.2)

Thus, the model (3.2.3) can equally be referred to as the SN−1 model. In the literature

the first name, O(N), is more common, however. It reflects, in particular, that counting

of isometries is given by O(N). The bosonic part of Lagrangian is

Lb =
1

2g2
0

∂µn
i∂µni + λ(nini − 1) (3.2.3)

where λ is a Lagrange multiplier that ensures the constraint above on the ni fields. As

mentioned above there are N(N − 1)/2 isometry symmetries corresponding to the SO(N)

group. For each point in the target space a stationary subgroup H = SO(N −1) (the

denominator in Eq. (3.2.2)) consists of transformations which do not act at this point. We

fix a particular choice of H specifying an axis, say nN , as associated with the stationary

under SO(N−1) point. For other points the transformations from H are realized linearly.

Thus, the first set of isometries is given by linear transformations,

δεn
i = εijnj , δεn

N = 0, (3.2.4)

where εij = −εji, (i = 1, 2, ..., N−1) are infinitesimal parameters. The remaining N−1

3By linear we mean that the kinetic term of Lagrangian in O(N) model is linear. The model is, for
sure, subject to the constraint nini = 1 which makes it nonlinearly realized when we remove the extra
redundancy by solving the constraint.
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isometries form the second set where the transformations are realized nonlinearly,

δαn
i = αinN , δαn

N = −αini , (3.2.5)

where αi, (i = 1, 2, ..., N−1) are infinitesimal parameters. The sub/superscripts are raised

or lowered by δij or δij .

Now, one can rewrite this sigma model through the standard stereographic projection

to explicitly solve the constraint nini = 1, by setting

φi =
ni

1 + nN
, i = 1, 2, ..., N − 1 . (3.2.6)

By recalculating the infinitesimal transformations of φi with respect to εij and αi, one

obtains

δεφ
i = εijφj ,

δαφ
i =

1− φ2

2
αi + αjφjφ

i .

(3.2.7)

In terms of the field φi the Lagrangian (3.2.3) takes the form,

Lb =
1

2
gij∂µφ

i∂µφj , (3.2.8)

where gij is the metric tensor of SN−1 sphere,

gij =
4

g2
0

δij
(1 + φ2)2

. (3.2.9)

Supersymmetrizing the O(N) Lagrangian by adding left-handed fermions is straight-

forward. We couple N−1 real left-handed chiral fermions ψi ≡ ψiL to the bosonic fields so

that the theory has N = (0, 1) supersymmetry,

L = Lb + Lf =
1

2
gij∂µφ

i∂µφj +
i

2
gijψ̄iγ

µDµψ
j (3.2.10)

where Dµ is the covariant derivative pulled back from the SN−1 sphere. The stereographic

projection (3.2.6) gives us a local chart {φi}, for which one can write down the metric (see
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(3.2.9)) and connections explicitly,

Dµψ
i = ∂µψ

i + Γijk∂µφ
jψk ,

Γijk = − 2

1 + φ2
(δijφk + δikφj − δjkφi) .

(3.2.11)

Now let us pass to the issue of isometry anomalies. To evaluate the anomalies, one

needs to integrate out fermions to find the effective action Γeff [φ]. Then one performs the

isometry transformations (3.2.7). We introduce vielbeins eai on SN−1 to decompose the

metric and rewrite fermion fields in the canonic way,

eai =
2

g0

1

1 + φ2
δai , eib =

g0

2
(1 + φ2) δib . (3.2.12)

Apparently eai satisfy the conditions

eaie
i
b = δab , δabe

a
ie
b
j = gij . (3.2.13)

In Eqs. (3.2.12) and (3.2.13) δab and δab are for raising and lowering indices {a, b, ...}, while

gij and gij for indices {i, j, ...}. Besides, for local chart {φi}, one can still use δij to write

φi ≡ δijφj .

As long as conditions (3.2.13) are met, one still has a residual freedom to make different

choices for eai. This freedom might lead to the so-called holonomy anomalies which we will

discuss in upcoming chapter [40].

Through vielbeins eai we define ψa ≡ eaiψ
i, and thus rewrite the fermion part of the

N = (0, 1) Lagrangian,

Lf =
i

2
gijψ̄iγ

µDµψ
j =

i

2
ψ̄aγµ(∂µδab + ωabi∂µφ

i)ψb , (3.2.14)

where

ωabi = eajDiejb = eaj

[
∂ejb
∂φi

+ Γjike
k
b

]
(3.2.15)

is the spin-connection on the frame bundle, and Di is the covariant derivative on SN−1.
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Now, we integrate out fermions and arrive at an effective action Γeff . This requires cal-

culation of the bi-angle diagram (see Fig. 3.1); higher orders are finite and thus do not

contribute into anomalies. Note that there are only chiral fermions ψaL in Lf coupled to

ψL

ωR ωR

ψL

Figure 3.1: The wavy lines denote external spin-connection fields ωR, and solid lines denote chiral
fermion ψL.

the spin-connection ωR = ωi∂Rφ
i. Therefore, the effective action is a functional of ωR,

iΓeff [ωR] =
i

16π

∫
d2x ωabµ (gµα + εµα)

∂α∂β
∂2

(
gβν − εβν

)
ωbaν +O(ω3

R)

=
i

16π

∫
d2x ωabR

∂L∂L
∂2

ωbaR +O(ω3
R) . (3.2.16)

As we mentioned above cubic and higher term in the action are given by well convergent

integrals in momentum space. It means that these terms are well defined in UV and

anomaly could come only from quadratic in connections terms.

To evaluate the isometry anomalies from Γeff , we will examine δεΓeff and δαΓeff under

isometry transformations (3.2.7). Invariance of Γeff under linear transformations, δεΓeff = 0

is evident because these symmetries are explicitly maintained. As for nonlinear transfor-

mations we will see that for spin-connections they have the gauge form,4

δvω
a
bµ = −∂µvab − [ωµ, v]ab , (3.2.17)

4 Since the spin-connections have similar transformation behavior to that of the gauge fields, one should
impose the Wess-Zumino consistency condition [63] to obtain correct consistent anomalies. However, in 2d
gauge theories, consistent anomalies have only two independent candidates [?] :

Av =

∫
dx2 vα(c1∂

µAαµ + c2ε
µν∂µA

α
ν ) .

In our sigma model, the left-handed chiral fermions only couple to ωR. Therefore, the anomalies are similar
to those in the gauge theory, and will not reduce to a purely topological term.
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where the gauge function v, linear in parameters αi, depends on fields φj . Then the

anomalies can be obtained by varying Eq. (3.2.16),

I total
v = δvΓeff =

1

8π

∫
d2xTr v ∂LωR

=
1

8π

∫
d2xTr (v ∂µωµ − v εµν∂µων) . (3.2.18)

In Eq. (3.2.18), the first term can be removed by introducing a local counterterm

Sc.t. = − 1

16π

∫
d2xTr ωµω

µ . (3.2.19)

This counterterm is in essence equivalent to adding heavy Pauli-Villars (PV) fermions to

Lf ,

LPV =
i

2
HaL∇RHa

L +
i

2
HaR∇LHa

R + iMHaLH
a
R , (3.2.20)

where Ha
L,R are real Weyl-Majorana fermions,

∇R,LHa
L,R ≡ ∂R,LHa

L,R + ωabR,LH
b
L,R ,

and M is the PV mass. At the very end M → ∞. One can check that, after integrating

out the PV fermions Ha
L,R, one recovers Eq. (3.2.19).

The second term in Eq. (3.2.18) is purely topological. For simplicity, one can write it as a

pulled-back form from SN−1 where we defined our sigma model by mapping φ : Σ→ SN−1,

Iv = − 1

8π

∫
Σ
d2xTr (vεµν∂µων) = − 1

8π

∫
Σ
φ∗( Tr (vdω))

= − 1

8π

∫
φ(Σ)

Tr (vdω) . (3.2.21)

The explicit expression for ωab = ωabµdx
µ can be calculated from Eqs. (3.2.12) and (3.2.15),

ωab =
2φidφj

1 + φ2
E a
ij b , E a

ij b = δ a
i δjb − δ a

j δib . (3.2.22)

Here the Eij ’s are the generators of the so(N−1) Lie algebra in fundamental representation,
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the holonomy group of SN−1 is SO(N−1). Then variation of spin-connection ω with respect

to αi transformations of Eq. (3.2.7) has the form (3.2.17) with v given by

vab = −αiφjE a
ij b . (3.2.23)

Therefore the anomaly is given by Eq. (3.2.21) with v from Eq. (3.2.23).

With vab being φ-dependent the integrand in (3.2.21) does not look as a total derivative.

However, it can be rewritten, using integration by parts, as follows:

δαΓeff =
1

8π

∫
φ(S2)

dvab ∧ ωba =
1

8π

∫
φ(S2)

2αiφj
1 + φ2

dφi ∧ dφj

=
1

8π

∫
φ(S2)

d
[
log(1 + φ2)αidφ

i
]
. (3.2.24)

Then we see that the variation is, in fact, an integral of a total derivative. Therefore, the

local anomalies of isometries in the O(N) models vanish.

3.3 CP(N−1) Sigma Model

Our second example is the CP(N−1) = SU(N)/S(U(N−1)×U(1)) sigma model [4]. The

model involves N complex fields ui (i = 1, 2, ..., N) with the constraint

ūiu
i = 1 .

In addition we need to impose a local U(1) gauge invariance under

ui → eiα(x)ui . (3.3.1)

To this end one introduces an auxiliary vector field Aµ , and the Lagrangian takes the form

Lb =
2

g2
0

(∂µ + iAµ)ūi(∂
µ − iAµ)ui + λ(ūiu

i − 1) . (3.3.2)

Similarly to the O(N) case, to pick up a patch we can chose a “complex”axis, e.g.,

uN . The isometries of the model fall into two groups: linear transformations which do not
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transform uN ,

δεu
i = εij̄uj̄ , δεu

N = 0 ; i, j̄ = 1, 2, ..., N − 1 , (3.3.3)

and nonlinear ones which rotate uN ,

δβu
i = βiuN , δβu

N = −β̄iui ; i = 1, 2, ..., N − 1 . (3.3.4)

In the above expressions, εij̄ is an anti-Hermitian matrix and thus has (N − 1)2 real

parameters while βi are N − 1 complex parameters. The indices can be locally raised or

lowered by δij̄ or δij̄ . The total number of isometries is N2 − 1 corresponding to SU(N)

symmetries of the CP(N − 1) model. Furthermore, since Aµ is nondynamical, we can

eliminate it in favor of the ui fields,

Aµ = − i
2

(ūi∂µu
i − ∂µūiui) . (3.3.5)

Now, we can fix the gauge by condition ImuN = 0, and solve the constraint by choosing

a set of local coordinates {φi, φ̄j̄},

φi =
ui

uN
, i = 1, 2, ..., N − 1 . (3.3.6)

In terms of the new coordinates the isometry transformations of the model are

δεφ
i = εij̄φj̄ ;

δβφ
i = βi ,

δβ̄φ
i = (β̄φ)φi . (3.3.7)

Parallelizing our discussion of the O(N) model, we can write down the Lagrangian in

terms of the fields φi, φ̄j̄ . We then supersymmetrize it to form a N = (0, 2) CP(N−1)

model by coupling complex left-handed Weyl fermions ψi ≡ ψiL,

L = Lb + Lf = gij̄∂µφ̄
j̄∂µφi + gij̄ ψ̄

j̄iγµDµψ
i , (3.3.8)
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where

gij̄ =
2

g2
0

(1 + φ̄iφ
i)δij̄ − φ̄iφj̄

(1 + φ̄iφi)2
(3.3.9)

is the standard Fubini-Study metric for CP(N−1).

To explore the isometry anomalies, one can introduce vielbeins as in the O(N) model,

but the calculation is lengthy and tedious. We present the calculation details in Appendix.

Here, instead, we will find a relation between the gauge anomaly in the gauged linear model

and the isometry anomalies in the nonlinear formulation.

The full N = (0, 2) CP(N − 1) gauged model is obtained by adding N complex left-

handed fermions ξiL with constraints uiξ̄iL = 0. The corresponding Lagrangian takes the

form

L = Lb +
2

g2
0

ξ̄Li(i∂R +AR)ξiL +
2

g2
0

(
κRξ̄iLu

i + H.c.
)
, (3.3.10)

where κR is a Lagrange multiplier. The one-loop effective fermionic action following from

the bi-angle diagram similar to Fig. 3.1 is

iΓeff [AR] = − iN
8π

∫
d2x AR

∂L∂L
∂2

AR . (3.3.11)

This action obviously suffers from a U(1) anomaly. Similarly to Eq. (3.2.18), this anomaly

has longitudinal and topological parts. Since the anomaly in the longitudinal term is always

cancelable by a counterterm, as Eq. (3.2.19), we will focus on the topological part.

Keeping in mind that the gauge transformation has the form

Aµ → Aµ + ∂µα(x) (3.3.12)

we obtain the anomaly

Aα = −N
4π

∫
αdA , (3.3.13)

where for simplicity we presented the anomaly via a one-form, A = Aµdx
µ.

Now let us connect the nonlinear isometry anomalies with the gauge anomaly. To

write the nonlinear sigma model, we need fix a gauge and choose a local chart to solve

the constraints, see Eq. (3.3.6). Once the gauge and the chart are chosen, the isometries
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of rotation around uN are linear, while those rotating the uN axis have to be nonlinearly

realized, see Eqs. (3.3.3) and (3.3.4).

Equation (3.3.5) implies that, since Aµ is isometry invariant, so is the fermion effective

action (3.3.11). The only anomaly that exists in the gauged CP(N−1) formulation is the

gauge anomaly. Then how can we have isometry anomalies produced? Notice that, within

the fixed gauge, the uN field must be real. However, after rotations of uN this field becomes

complex again. Therefore, to satisfy the reality condition for uN , the non-linear isometry

transformations must be accompanied by a corresponding gauge transformation to offset

the imaginary part of uN . This leads to the gauge anomaly, or equivalently, isometry

anomalies in geometric formulation. We also verify that it is indeed the anomalies of the

nonlinear isometries by straightforward calculation in Appendix C.

Following the discussion above, we want to find a gauge parameter α, such that δαu
N +

δβu
N is real. Since

δαu
N + δβu

N = iαuN − β̄iui (3.3.14)

where i = 1, 2, ..., N−1, the reality condition is

iαuN − β̄iui = −iαuN − βiūi . (3.3.15)

Therefore, we can find α in terms of φi and φ̄i, namely,

α =
i

2
(βφ̄− β̄φ) . (3.3.16)

Furthermore, we rewrite the gauge field A in terms of φi and φ̄i as well,

A = − i
2

φ̄dφ− dφ̄φ
1 + φ̄φ

, (3.3.17)

what gives for dA

dA =
ig2

0

2
gij̄ dφ

i ∧ dφ̄j̄ . (3.3.18)
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In this way obtain the nonlinear isometry anomalies,

Iβ = Aα =
i

8π

∫
(β̄φ− βφ̄)

[
iN

(1 + φ̄φ)δij̄ − φ̄iφj̄
(1 + φ̄φ)2

dφi ∧ dφ̄j̄
]

=
i

8π

∫
(β̄φ− βφ̄) c1 , (3.3.19)

where c1 is the first Chern class of CP(N−1).

In contradistinction with the O(N) sigma model (with the exception of CP(1), see

below) all other CP(N−1) sigma models suffer from the isometry anomalies which are

neither a total derivative nor cancelable by adding local counter terms. For CP(1), the

situation is identical to the O(3) model.

3.3.1 CP(1) is a special case

We find from Eq. (3.3.19) it is indeed total derivative and consistent with previous discus-

sion on O(N−1) model. The specialty that distinguish CP(1) from other CP(N−1) models

is its low dimension. Since CP(1) is geometrically a two dimensional sphere, locally we

only have one φ and one φ̄ on one local chart. Equation (3.3.19) can be greatly simplified

in this case and written as an integral over total derivative:

ACP(1) = −N
8π

∫
β̄φ− βφ̄
(1 + φ̄φ)2

dφ ∧ dφ̄ = −N
8π

∫
d

(
β̄dφ+ βdφ̄

1 + φ̄φ

)
. (3.3.20)

On the other hand, globally CP(1) sigma model is known to have zero first Pontryagin

class p1, because it at most supports nonzero two-form while p1 is an element in the fourth

de Rham cohomology group. So far the local anomalies calculations are consistent with

the global analysis of [56].

In this section we found the relation between isometry anomalies I and gauge anomaly

A. The isometry anomalies in geometric formulation can be understood as gauge anomaly

of a special gauge transformation, see Eq. (3.3.16). Following this clue, one can prospect the

correspondence of holonomy anomaly versus arbitrary gauge anomaly, and further global

anomaly versus “large” gauge anomaly, in geometric and gauge formulations respectively.
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S2N−1

CP(N−1)

π

U(1)-fiber

Figure 3.2: The sphere denotes S2N−1, while the solid line below is for CP(N−1). The vertical
circles are U(1)-fibers, each of which is projected to a point on CP(N−1).

3.3.2 A closer look at the correspondence between isometry and gauge

anomalies

In this subsection, we want to discuss the correspondence between the isometry and gauge

anomalies in a more rigorous mathematical way. It will also help us to apply these results

in calculating the isometry anomalies in the general coset G/H minimal sigma model in

our subsequent work.

First, we want to rephrase the construction of CP(N−1) sigma model in the language

of fiber bundle. The Lagrangian, Eq. (3.3.10) or (3.3.8), is constructed through the famous

Hopf fibration, see Fig. 3.2 below, by considering CPN−1 as the base space of the U(1)

principal bundle of S 2N−1, i.e.

U(1)
i // S2N−1 π // CP(N−1) .

Equation (3.3.6) and the gauge condition that uN is fixed to be real actually assign a map,
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or, say, a local section, from a local chart Us ⊂ CPN−1 to S2N−1,

s : Us // S2N−1

(φi, φ̄j)
� // (ui, uN , ūi, ūN ) =

(φi
ρ
,

1

ρ
,
φ̄j
ρ
,

1

ρ

)
for i, j = 1, 2, ..., N − 1 ,

with

ρ = (1 + φ̄iφ
i)1/2 .

Therefore it defines a local trivialization Φ of S2N−1, so that S 2N−1 locally looks like a

product space of Us ×U(1)

Φ : Us ×U(1) // S2N−1

(φi, φ̄j ; e
iα) � // s(φ, φ̄)eiα ≡

(φi
ρ
eiα,

1

ρ
eiα,

φ̄j
ρ
e−iα,

1

ρ
e−iα

)
. (3.3.21)

It is easy to see that the U(1)-action on fiber π−1(φ, φ̄), is just the gauge transformation

(3.3.1). We want to point out that, the U(1)-gauge Aµ in Eq. (3.3.5) is exactly a choice of

connection 1-form defined on the bundle S 2N−1.

To see this, one needs to recall how to define a U(1)-connection on the principal bundle

S 2N−1. First, the U(1)-action moves any point p ∈ S2N−1 along the fiber, which defines a

one-dimensional subspace of the tangent space TpS
2N−1, called vertical space Vp (see the

tangential direction of the vertical circles in Fig. 3.2). The corresponding tangent vector

σp spanning Vp is called the fundamental vector, and is given by the trivialization (3.3.21)

as

σp = iui
∂

∂ui
− iūi

∂

∂ūi
, for i = 1, 2, ..., N

subject to the constraint ūiu
i = 1. Now we are about to assign a U(1) connection on

S2N−1, or a 2N−2 dimensional horizontal subspace H, so that the tangent space of bundle

S2N−1 can be decomposed as direct sum of horizontal and vertical spaces:

TpS
2N−1 = Hp ⊕ Vp, for p ∈ S2N−1.
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Equivalently, using a more familiar language, H is determined by a 1-form

Ã ∈ Ω1(S2N−1)

globally defined on S2N−1, so that

Hp = Span{Xp ∈ TpS
2N−1|Ãp(Xp) = 0} = kerÃp

with Ã satisfying

Ãp(σp) = 1 and R∗αÃp = Ãpeiα for p ∈ S2N−1 . (3.3.22)

In the second equation R∗α is the pullback induced by the U(1) action on fibers, which

guarantees the equivariance of Ã.

Generically there are various ways to choose the horizontal space Hp corresponding to

different connection 1-forms Ã. However, for CPN−1 as the quotient space of S2N−1 by

U(1), the projection map is a Riemann submersion once we assign the standard round

metric g̃ on S 2N−1. Its tangent space at π(p), i.e. Tπ(p)CPN−1 = π∗Hp, is an orthogonal

complement to Vp.

The metric g̃ defined on the standard sphere S2N−1, with the coordinates (ui, ūi), is

given by

g̃ =
1

2
(dūi ⊗ dui + dui ⊗ dūi), with ūiu

i = 1 .

Since we choose the horizontal space Hp = V ⊥p = (Span{σp})⊥, the connection 1-form Ã

is thereby proportional to g̃(σp),

Ã ∼ g̃(σp) = −i
(
ūidu

i − dūiui
)
.

To meet the condition (3.3.22), we fix the coefficient of Ã as

Ã = − i
2

(
ūidu

i − dūiui
)
.

One can see that this is just Eq. (3.3.5).

Finally, the connection Ã is pulled back from S2N−1 to the local chart Us of CPN−1 by



57

section s. i.e.

s∗ : Ω1(S2N−1) // Ω1(Us) ,

Ã � // A = s∗Ã = − i
2

φ̄dφ− dφ̄φ
1 + φ̄φ

. (3.3.23)

Once we assign a new section

s′ : Us′ → S2N−1 ,

it is clear that, on the intersection Us ∩ Us′ , any two points on one and the same fiber

mapped by s and s′ are related by a U(1) action, i.e.

s′(φ̄, φ) = s(φ̄, φ)eiα(φ̄,φ), for (φ̄, φ) ∈ Us ∩ Us′ .

Similarly, s′ will also pullback the connection Ã to A′ = s′∗Ã. Moreover, A′ and A are

related by our familiar U(1)-gauge transformation

A′ = A+ dα .

Based on the discussion above, the Lagrangian, Eq. (3.3.10) and Eq. (3.3.8), could be

interpreted as CPN−1 model constructed on the bundle S2N−1 or a local patch Us ⊂ CPN−1.

Now, when we consider an isometry transformation f on a local patch, say, Us, the isometry

will induce a change of Us and thus a gauge transformation of A. Therefore when we

calculate the isometry anomalies of CPN−1 localized on Us, they are naturally associated

to the gauge anomalies of A locally defined on Us.

To address the idea in a rigorous manner, we need the concept of the bundle isomor-

phism. A bundle isomorphism is a 1 − 1 bundle map F such that the following diagram

commutes:

S2N−1

π
��

F // S2N−1

π
��

CPN−1 f // CPN−1

where f is an induced isomorphism on base space CPN−1, and F satisfies the equivariant
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condition:

F (peiα) = F (p)eiα . (3.3.24)

As for the isometry transformations, one needs to consider the corresponding isometric

bundle isomorphism, i.e. isomorphisms preserving given metric g̃ on the bundle S2N−1 and

satisfying equivariance Eq. (3.3.24). For the bundle S2N−1, there are 2N2 − 2N isometries

as we discussed in Sec. 3.2, while only the transformations (3.3.3) satisfy the condition

(3.3.24) and induce the isometries on CPN−1.

Now we are interested in the transformation of the connection A with respect to iso-

metric bundle morphisms. Generically a bundle isomorphism F will “pushforward” the

horizontal space H to

HF ≡ F∗H .

Therefore the corresponding connection 1-form for HF is

ÃF = (F−1)∗Ã .

We want to calculate the difference of AF from A pulled back to the base space CPN−1,

e.g. at the point b ∈ Us ⊂ CPN−1. Note that the isometric bundle morphism F , i.e.

Eq. (3.3.3), also induces an isometric morphism f on CPN−1, see Eq. (3.3.7). Isomorphism

f moves the point b = (φ, φ̄) to c = f(b), located on a different fiber π−1(c). One thus needs

to further pullback the connection by f∗ to compare their difference, see the commuting

diagram below,

S2N−1 S2N−1F−1
oo

Us′

s′

OO

f // Us

s

OO Ω1(S2N−1)

s′∗

��

(F−1)∗// Ω1(S2N−1)

s∗
��

Ω1(Us′) Ω1(Us)
f∗oo

The variance of connection

f∗ ◦ s∗ÃF − s∗Ã = (F−1 ◦ s ◦ f)∗Ã− s∗Ã

respect to point b = (φ, φ̄), will be considered. However, the combination of maps s′ ≡
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F−1 ◦ s ◦ f defines another section,5

s′ : Us′ → S2N−1 .

Therefore one has

s′(b) = s(b)eiα(b), ∀ b ∈ Us ∩ Us′ , (3.3.25)

and therefore

s′∗Ã− s∗Ã = A′ −A = dα . (3.3.26)

Given Eq. (3.3.3) and Eq. (3.3.7) for infinitesimal versions of F and f , we can calculate the

infinitesimal transformation of Eq.(3.3.26). We only consider transformations correspond-

ing to the parameters β and β̄. Since

eiα(φ,φ̄) ∼ 1 + iα(φ, φ̄, β, β̄) ,

the infinitesimal transformation of Eq. (3.3.26) and Eqs. (3.3.3) and (3.3.7) lead us back to

Eq. (4.2.43). After a short calculation, we obtain

α(φ, φ̄, β, β̄) =
i

2
(βφ̄− β̄φ) ,

which coincides with the previous result (3.3.16).

So far we revisited the anomaly of the CP(N−1) sigma model. The lesson one can draw

is that the nonlinear formalism Lagrangian, see Eq. (3.3.8), is defined on the local patch Us

of CP(N−1). An isometric transformation f , or F on the bundle will result in a change

of the local patch to Us′ , or equivalently a change of the local section to s′. Therefore

the pulled-back connection, or the gauge field (3.3.5), will transform as in Eq.(3.3.26). If

there are chiral fermions coupling to the gauge field nontrivially, there must be anomalies

produced. In this sense, these anomalies measure the failure of bundle reparametrization

from the section s to s′ induced by isometric transformation.

5 It is the the pulled-back section of s by F , and hence depends on the bundle map.
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3.4 Dual formalism for the O(N) Model

In Sec. 3.3 we demonstrated that the isometry anomalies in the nonlinear realization of

the CP(N − 1) is in one-to-one correspondence with the U(1) anomaly in its gauged linear

formulation. This section is motivated by further consistency checks of the gauge versus

isometry anomalies. Another motivation is the large-N argument regarding the gauge

anomaly in the linear gauged sigma models.

A crucial difference between the O(N) and CP(N−1) sigma models is that the latter

has a U(1) gauge field, and eventually suffers from the U(1) anomaly. At the same time,

the O(N) sigma model has no gauge redundancy and therefore is expected to have no

isometry anomalies after the passage to its nonlinear formulation.

In Sec. 3.2 we considered the O(N) model (which can also be called the SN−1 model)

using the realization of the target space in terms of N real fields ni with the constraint

(3.2.1). The real Grassmann model prompts us a dual form of the O(N) model.

The same target space, SN−1, can be implemented as follows. Consider real bosonic

matrix fields

Nα
a , α = 1, 2, ..., N , a = 1, 2, ..., N − 1 , (3.4.1)

and gauge the SO(N−1) symmetry. The index α in (3.4.1) will play the role of the “color”

index of the gauged group SO(N − 1). The index a is the “flavor” index of global SO(N)

symmetry. Then we add a constraint

(NT )a αN
α
b = δab . (3.4.2)

We also add left-handed fermions ψαLa with appropriate constraints to supersymmetrize the

model. In this way we arrive at the Lagrangian

L =
1

2g2
0

Tr[(DµN)TDµN + iψ̄LDRψL] ,

NTa
αN

α
b = δab , (NT )a αψ

α
Lb = 0 . (3.4.3)

where

(DµN)αa = ∂µN
α
a −Nα

bA
b
µa , (3.4.4)
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and the matrix fields Abµa are the SO(N−1) gauge fields. As previously mentioned, the

above gauge fields are nondynamical and can be eliminated in favor of the N fields,

Aaµb =
1

2

(
NT∂µN − ∂µNT ·N

)a
b
. (3.4.5)

Similarly to Eqs. (3.3.5) and (3.3.6) in the CP(N−1) model, one can fix an SO(N−1)

gauge, and choose local charts to write down a nonlinear sigma model. For example, we

treat

Nα
a =

(
V i
a

ρa

)
, a, i = 1, 2, ..., N − 1 , (3.4.6)

where ρa ≡ NN
a is an additional row vector.

Now, we fix the gauge in such a way that V i
a becomes symmetric real matrix. Then

we define a local chart,

φi = ρa

(
1

1 + V

)a
i

. (3.4.7)

After solving the constraint, one obtains

V i
a =

(
δij −

2

1 + φ2
φiφj

)
δja ,

ρa =
2φi

1 + φ2
δia ,

Aaµb =
2φi∂µφ

j

1 + φ2
E a
ij b . (3.4.8)

The generators E a
ij b were defined in Eq. (3.2.22).

One can easily convince oneself that the gauge fields Aµ are just spin connections ωµ in

nonlinear formulation of the SN−1 model, see Eq. (3.2.22). Thus, the nonlinear Lagrangian

following from (3.4.3) after gauge fixing is in fact identical to that presented in Eq. (3.2.10).

At the perturbative level, the gauge anomalies in the present section and the isometry

anomalies in Sec. 3.2 will match each other too. We will discuss only those isometry

transformations that involve an interplay between V i
a and ρa,

δαV
i
a = αiρa , δαρa = −αiV i

a , (3.4.9)
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since they would induce gauge anomalies for the fixed gauge, see the remark after Eq. (3.4.6).

To keep the matrix V i
a symmetric, a gauge transformation must accompany (3.4.9), namely,

δλV
i
a = V i

bλ
b
a, with λT = −λ . (3.4.10)

Solving equation

δα+λV = (δα+λV )T , (3.4.11)

we arrive at

λab = vab , (3.4.12)

where the matrix vab is given in Eq. (3.2.23). Therefore, the induced gauge anomalies are

Aλ = − 1

8π

∫
Tr (λdA) . (3.4.13)

Equations (3.4.8) and (3.4.12) show that Aλ is just the nonlinear isometry anomalies,

the same as in Eq. (3.2.21). The theory can be “mended” just in the same way as it

was discussed in Sec. 3.2. As a consistency check, we remark that, if one follows the

computation in next chapter, see also [40], with unfixed gauge, one could immediately

write down a counter term which explicitly contains the gauge field A, and the counter

term is not necessarily of the form as given in Eq. (3.2.19). But the special gauge fixing in

the dual formalism we high-lighted here, evacuates the possibility, and thus here the counter

term is forced to be the same as the one in Sec. 3.2, which can be checked explicitly.

3.5 Conclusions

Two-dimensional chiral sigma models with various degrees of supersymmetry present an

excellent theoretical laboratory. While the (2, 2) models were thoroughly explored in the

1980s, chiral models received much less attention. Recently non-minimal chiral models

reappeared in the focus of theorists’ attention because of their special role as world-sheet

models on topological vortex solutions supported in certain four-dimensional N = 1 Yang-

Mills theories. This fact naturally raised interest to the minimal chiral models which serve

the fundamental building blocks to compose general N = (0, 1) and (0, 2) chiral sigma



63

models.

In this chapter the minimal chiral two-dimensional models are revisited. We demon-

strate that the Moore-Nelson consistency condition [56] revealing a global anomaly in

CP(N−1) (with N > 2) due to a nontrivial first Pontryagin class is in one-to-one corre-

spondence with the local anomalies in isometries. These latter anomalies are generated by

fermion loop diagrams which we explicitly calculate.

At the same time the first Pontryagin class in the O(N) models vanishes [56] and, thus,

these models are globally self-consistent. We show that the divergence of the isometry

currents in these models is anomaly free. Thus, there are no obstructions to quantizing

the minimal N = (0, 1) models with the SN−1 = SO(N)/SO(N−1) target space. CP(1)

is self-consistent and presents an exceptional case from the CP(N −1) series: both the

first Pontryagin class vanishes and the local anomalies are absent too. We discuss a re-

lation between the geometric and gauged formulations of the CP(N−1) models. From

the standpoint of the principal fiber bundle, the isometry anomalies on a local patch just

reflect the failure of gauge invariance of the theories in passing from one local patch to

another. Therefore it relates the local anomalies to global topological criteria [56, 66]. In

our next chapter, we will follow this clue to discuss anomalies in general minimal G/H

sigma models in both local and global aspects. The obvious distinction between the O(N)

and CP(N−1) target spaces is the fact that in the first case the factor H is a simple group,

while in the second case it is a product two factors, SU(N−1)×U(1). One can conjecture

that the non-simple character of H is behind the emergence of anomalies. For the simple

H group the first Pontryagin class of G/H vanishes. We will address this issue and prove

it soon [40].

The dual formalism of O(N) models was also discussed carefully. This is not just a

crucial statement to enhance our result, but also a hopeful tool to further explore dualities

and integrabilities in relevant models. The comparison with the usual formulation shows

that the geometric model is essentially defined by the global symmetry together with the

topology type while independent of the gauging process. So classically the dual model

is equivalent to the normal O(N) formalism by implementing the equation of motion of

Aµ, see Eq. (3.4.8), and the ease of anomalies of dual O(N) model at UV regime can be

reduced to the discussion in Sec. 3.2. However, quantum mechanically gauge fields are used
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to acquire kinetic terms and cannot be integrated out as auxiliary fields [4], one should also

worry about the genuine gauge anomalies for the dynamical gauge fields, i.e. Eq. (3.4.13),

in its own right in IR regime. This has been implied that the gauge dynamics is more

involving. In next chapter, we will also take the first step [40] to attack this issue. We will

systematically consider this problem with general external gauge fields universally in every

reasonable gauge.



Chapter 4

Anomalies in Minimal N = (0, 1)

and N = (0, 2) Sigma Models on

Homogeneous Spaces

4.1 Introduction and summary

In this chapter, we will continue to focus on minimal supersymmetric models with N =

(0, 1) or N = (0, 2) supersymmetry. As we have seen that such models, generally speaking,

exhibit chiral fermion anomaly which imposes severe constraints on the topology of the

target manifold [50, 56, 74]. Due to this reason, such minimal supersymmetric models are

explored to a lesser extent than non-chiral models. The guiding principle established [56],

as well as cases checked in last chapter, for the chiral N = (0, 1) or N = (0, 2) sigma

models is the first Pontryagin class.

Our present chapter is motivated by the following consideration. Firstly, in super-

symmetric theories rather often simplicity of the theory increases with the number of

supercharges. By simplicity we mean that the theory under consideration can have special

properties allowing one to obtain exact results or uncover elegant mathematical struc-

tures. On the other hand, theories with less supersymmetry, presenting more difficulties

for theoretical analysis, are sometimes closer to physical phenomena, and as such must

be thoroughly studied. Now we can interpret these minimal modes with N = (0, 1) and

65
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(0, 2) supersymmetries in such a critical region: They are more closed to the real physics,

meanwhile highly restricted by anomalies and topological constraints. Therefore study of

them is closer to non-supersymmetric world but with relatively more theoretical tools.

Secondly, the global anomaly cancellation condition does not touch the local behavior

of the theory. Even when one has a “good” theory, which has no global anomaly [56], it

does not automatically mean that one gets the well-defined theory for free. Ease of global

anomaly only implies that one is able to introduce “local counterterms” to correctly inte-

grated out chiral fermions and find the anomaly-free fermionic effective action. The “local

counterterm” here is not to be confused with the terms added to absorb various divergences

in the process of renormalization, since the quantization of fermions in two dimensions is

insensitive to RG flow. In fact the roles played by what we call local counterterms are

similar to that of the contact term in gauge theories, which is added to keep the transver-

sality of certain polarization operators. Since the latter is sometime also referring to the

Schwinger term, we refrain from using it here. Moreover, by explicitly curing such a theory

(i.e. adding appropriate local counterterms), one can exhibit many quantum aspects of

the theory in a more understandable way, thus enabling one to initiate a discussion of the

infrared (IR) behavior of the theory, which was not carried out previously.

Thirdly, many sigma models have more than one equivalent formulations: a nonlinear

description based on the Riemannian metric that encodes geometric information, an em-

bedding into a larger linear target space and then imposing extra gauge symmetries, or

constraints, or a hybrid way lying between the above two formulations as what we dis-

cussed last chapter [39]. Although classically all these formulations are equivalent, at the

quantum level one could have different considerations depending on the formulation. For

example, in the nonlinear formulation it is easy to understand the global chiral fermion

anomaly, while using the gauge formulation, one will be focused on the gauge anomaly.

Work has been done on these aspects [56, 63–69, 74], providing us with starting positions.

The precise relation between the gauge anomaly and global anomaly for different formu-

lations of the very same model was not thoroughly discussed previously. In this chapter,

we will down-to-earth study of the chiral sigma models on homogeneous spaces, for which

both nonlinear and gauge formulations are present. We reveal the relation between differ-

ent anomalies. Our result also provides us with a generalized context for the determinant
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line bundle consideration of the fermion anomaly. In non-homogeneous spaces one can not

compare global and gauge anomalies on the nose, but an analogous structure was revealed

in the case of the Kähler manifold. This chapter generalizes and extends the results of the

work [39].

Finally, we would like to emphasize possible applications of our results in model build-

ing. Models with large supersymmetry may be viewed as being composed of theories with

less supersymmetry. In this regard, understanding of the minimal supersymmetric models

as the building blocks for all supersymmetric theories is of importance.

In practice, the usual situation is opposite. For example, N = (2, 2) theories are always

better understood than N = (0, 2) and explored earlier. Softly broken to N = (0, 2)

theories (free from chiral anomalies) they are easier for explorations [19, 20, 35, 36, 38, 41,

42, 44, 45, 47, 53]. We hope that our work on the minimal models can give insights for

understanding of more complicated models.

We discuss at length the IR behavior for many models and observe a new connection

with superconformal models [36,51,52].

The chapter is organized as follows. In Sec. 4.2, we will first construct bosonic and

N = (0, 1) supersymmetric sigma models on homogeneous spaces by virtue of a hidden

gauge formulation. The calculation of their isometry anomalies is given in Sec. 4.2.3.

As discussed in the previous chapter, we show that the isometry anomalies reflect the

failure of bundle re-parameterization from local section s to s′ induced by the isometry

transformations, where s, s′ : Us ∩ Us′ ⊂M → G.

To offset these aforementioned anomalies, we are led to consider (Sec. 4.3) more generic

holonomy anomalies, of which isometry anomalies are a special class. We give criteria

ensuring holonomy as well as isometry anomalies to be removed by adding well-defined

local counterterms (Sec. 4.3.1). With these criteria, and after adding appropriate local

counterterms, we discuss the low-energy behavior of the minimal N = (0, 1) sigma models

(Sec. 4.3.2). In Sec. 4.3.3 several concrete examples are given to illustrate the idea. We

review appropriate tools that we had developed before. The topological origin of the

anomalies and counterterms are discussed in Sec.4.3.4.

In Sec. 4.4 we begin to relate the holonomy and isometry anomalies to topological

anomalies in a general context. In Sec. 4.4.1 a discussion of the isometry anomalies in
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the general Kähler sigma models is given, parallel to the relation between the non-Abelian

gauge anomaly and chiral anomaly in gauge theories. In Sec. 4.4.2 we show how the

isometry anomaly in pure geometric formulation relates to the topological chiral fermion

anomaly in terms of the determinant line bundle discussed by Moore and Nelson, and Freed.

In Sec. 4.4.3 we give the determinant line bundle description for the holonomy anomaly

for sigma models over homogeneous spaces. This completes a unified picture showing that

the holonomy (gauge) anomaly and the topological anomaly are due to the nontriviality of

a single determinant line bundle over the space of fields.

4.2 Isometry anomalies

We will formulate this section by following the logic line of our previous work [39] where we

construct sigma models on S2N−1 and gauge its U(1) factor to deduce the corresponding

CPN−1 models by the fiberation:

U(1)
i // S2N−1 π // CPN−1 .

Similarly for homogeneous spaces, we also have a canonical fiberation:

H
i // G

π //M .

Therefore we first construct sigma models on group manifold G, and gauge certain subgroup

H to obtain sigma model on homogeneous spaces M . Analogue to CPN−1 case, to define

a sigma model on M , one needs to specify a local patch Us ⊂M and a section s : Us → G.

To discuss isometry anomalies on model M , we will show that an isometric transformation

lk : M → M will induce a change of section s to s′, and thus, a H-gauge transformation.

For chiral fermions non-trivially coupled to these H-gauge, there will be isometry anomalies

produced. We will calculate them by the end of this section. For simplicity, we only consider

G as a connected, compact and semi-simple Lie group and H is its closed Lie subgroup.
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4.2.1 Sigma models on M through gauge formulation

For sigma model on M , the construction can be traced back to 70’s due to Callan-Coleman-

Wess-Zumino (CCWZ) coset construction [1]. In this subsection, we will review this con-

struction but from the so-called “hidden” local gauge formulation, which will be eventually

explained in the language of principal bundle.

To have sigma model on M , as mentioned in the beginning, one first construct sigma

model on group manifold G, and then “gauge” it down to that of space M . We will see

soon that such a construction is just the formulation with a “hidden” local right-H gauge,

see [2], in which the Nambu-Goldstone bosons are taking values in the group G instead of

M , and the right local H-gauge help eliminate redundant degree of freedom. Each time

that one chooses a fixed gauge is equivalent to choose a local section to “pullback” the

model defined on bundle G to base space M , and thus the language of principal bundle

will be an ideal mathematical framework to interpret the model and further anomalies if

there are any.

Since G is semi-simple, one can always use the Killing form K : g × g → R, which

is negative definite, to define the metric γ̄ of G. We consider the Lie algebra g in its

fundamental representation,1 and normalize the anti-hermitian generators FA as:

K(FA, FB) = Tr(FAFB) = −δAB . (4.2.1)

In most of the note, we focus on sigma models defined on simple groups G. For bosonic

sigma model on such a group G, the action is given by

SG =
1

2λ2

∫
Σ

d2xTr(∂µg
−1∂µg) = − 1

2λ2

∫
Σ

d2xTr(g−1∂µgg
−1∂µg), (4.2.2)

where Σ is the two-dimensional spacetime manifold, g = g(x) taking value on matrix group

G, and λ2 is a coupling constant.2 It is seen in Eq. (4.2.2) that g−1∂µg is the Maurer-Cartan

1 It is true that Killing form is defined by means of adjoint representation of G, but for semi-simple
Lie algebra one is free to rescale a constant for each simple factor and thus we can choose fundamental
representation as our bench mark.

2 For a semi-simple Lie group G, there are as many coupling constants λ2
i as the number of its simple

factors Gi, and the Killing form K is the direct sum of Ki for each Gi.
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form θg ≡ g−1dg pullback to the cotangent space of spacetime Σ. For g−1dg ∈ T∗G on G

defines map:

θg = Lg−1∗ : TgG→ TeG = g , (4.2.3)

where Lg−1∗ is the pushforward map induced by left translation Lg−1 , and TeG is the

tangent space of G at group identity e, we thereby have the metric γ̄ defined as

γ̄ (Xg, Yg) ≡ −K(Lg−1∗Xg, Lg−1∗Yg) = −L∗g−1K(Xg, Yg) , (4.2.4)

where Xg and Yg are two vector fields at point g ∈ G.

On a local chart {U, φα} near identity e ∈ G, we can use exponential map to express

g(x) as 3

g(x) = Exp(δAαφ
α(x)FA), for A,α = 1, 2, ...,dim G ,

where φα(x) are Nambu-Goldstone bosons. Therefore one can express θg and γ̄ in a more

familiar way as

θ(φ) = θAα(φ)dφαFA ,

γ̄αβ(φ) = δABθ
A
αθ

B
β ,

(4.2.5)

where θAα is the vielbein to decompose γ̄αβ. Notice that the vielbein one-form is left

invariant, and right equivariant,

L∗g0
θ = (g0g)−1d(g0g) = θ

R∗g0
θ = (gg0)−1d(gg0) = g−1

0 θg0, for g0 ∈ G .
(4.2.6)

The metric γ̄ defined above is consequently left and right invariant,

L∗g0
γ̄ = R∗g0

γ̄ = γ̄, for any g0 ∈ G .

Therefore, the action SG has isometries GL ×GR .

3 We use Greek and capital letters to distinguish the indexes of curved coordinates and that of flat vector
space g
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Now we consider group G as a principal bundle with fiber H and base space M≡G/H,

H
i // G

π //M

with the projection

π : G //M

g � // gH
(4.2.7)

and H-group action acting from right on G, satisfies π(gh) = π(g).

To define a sigma model on M , we notice formula (4.2.7) that H-group action is from

right to obtain M coset space. It motivates us to gauge part of right isometries H ⊂ GR of

sigma model on group G. Consider, g(x)→ g(x)h(x) for a right h(x) ∈ H transformation,

the Maurer-Cartan form changes as:

g−1dg → h−1(g−1dg)h+ h−1dh . (4.2.8)

To make it gauge invariant, we introduce gauge fields

A(x) = Aiµ(x)dxµHi , (4.2.9)

where Hi ∈ h for i = 1, 2, ...,dimh, taking values on Lie subalgebra h. It transforms as

A→ h−1Ah+ h−1dh

to remedy the additional h−1dh part of gauge transformation of g−1dg. Therefore

g−1dg −A→ h−1(g−1dg −A)h

is gauge covariant. The action on M is thus given by

SM = − 1

2λ2

∫
Σ

d2xTr
[
(g−1∂µg −Aµ)(g−1∂µg −Aµ)

]
. (4.2.10)
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After an appropriate gauge fixing, the action above will give usual CCWZ coset construc-

tion. To see this, let us work out the action near group identity e, where we will decompose

Maurer-Cartan form θg = g−1dg locally, see Eq. (4.2.5), along vertical space h and a hori-

zontal space complimentary to h.

Firstly, for a connected, compact and semi-simple Lie group G with its closed subgroup

H, the coset space M is reductive homogeneous space, i.e. the Lie algebra g of G can be

decomposed as

g = h⊕m , (4.2.11)

where h is the subalgebra corresponding to the subgroup H, and m is a transverse subspace

that is preserved by the adjoint action of H, i.e.,

adHm = m . (4.2.12)

In principle, subspace m complimentary to h is quite arbitrary. However, similar to the

discussion of CPN−1 embedded into S2N−1 [39], we can utilize the Killing form K, see

Eq. (4.2.1), to define

m = h⊥ ,

so that homogeneous space M is a Riemann submersion of G, and the tangent space ToM ,

with o ≡ π(e), is identified with m. Under this decomposition, for Hi ∈ h and Xa ∈ m, we

have

Tr(HiHj) = −δij , Tr(XaXb) = −δab, and Tr(HiXa) = 0 . (4.2.13)

Now θg is decomposed as

θg(φ) = eg(φ) + ωg(φ) ≡ eagXa + ωigHi , (4.2.14)

where eg are called basic forms and ωg is canonical connection for bundle π : G→M .

Now we can use gauge fields to eliminate redundant degrees of freedoms. For CCWZ

construction, the unitary gauge is chosen to remove all Nambu-Goldstone bosons on h, i.e.,

g(φ) = Exp(δaαφ
αXa),
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on a local chart {φα ∈ Us ⊂ M} near o ∈ M . Such a choice, geometrically speaking, is

equivalent that we specify a local section s : Us ⊂M → G ,

s(φ) ≡ g(φ) = Exp(δaαφ
αXa) . (4.2.15)

Therefore, one can use s∗ :T∗G→ T∗M pullback basic forms eg to M ,

eφ ≡ s∗eg = eaαdφ
αXa ,

and thus define the vielbein one-form eφ on M . Similarly, canonical connection ωg is also

pullback:

ωφ ≡ s∗ωg = ωiαdφ
αHi

as connection one-form locally defined on M .

After fixing the gauge by Eq. (4.2.15), we localized the Lagrangian on a local chart

{φα ∈ Us ⊂M}:
SM = − 1

2λ2

∫
Σ

d2xTr(eaµXa + ωiµHi −AiµHi)
2 ,

where

eaµ = eaα∂µφ
α, ωiµ = ωiα∂µφ

α

are vielbeins and connection one-form further pullback to spacetime Σ by the map φα :

Σ→ Us ⊂M .

Since gauge fields Aµ classically is non-dynamical, one can solve and express them in

terms of goldstone fields φα by equations of motion, and we get

Aiµ = ωiα∂µφ
α . (4.2.16)

Getting this expression back to action Eq. (4.2.10), we find the action SM by CCWZ

construction,

SM = − 1

2λ2

∫
Σ

d2xTr(eaαXae
b
βXb)∂µφ

α∂µφβ

=
1

2λ2

∫
Σ

d2x δabe
a
αe
b
β∂µφ

α∂µφβ ≡ 1

2λ2

∫
Σ

d2x γαβ∂µφ
α∂µφβ .

(4.2.17)
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With that

γαβ = δabe
a
αe
b
β, for a, b, α, β = 1, 2...dim m

is the metric on M and eaα is its vielbeins correspondingly.

4.2.2 N = (0, 1) supersymmetric sigma model on M

In this subsection we will supersymmetrize the action of sigma model on M = G/H,

see Eq. (4.2.10). In two-dimensional spacetime, we have Weyl-Majorana Grassmannian

variable θR which helps form the smallest representation of supersymmetry, i.e. (0, 1)

supersymmetry. The superderivative in superspace is defined as 4

DL = −i ∂

∂θR
− θR∂LL

satisfying

{DL, DL} = 2D2
L = 2i∂LL

where ∂LL denotes the partial derivative along light-cone coordinate xL, and ∂RR for that

of xR in what follows. The integration over Grassmannian variable θR is equal to differen-

tiation: ∫
dθR =

∂

∂θR
= iDL|θR=0 .

An ordinary bosonic field φ will be promoted to its superversion Φ, which is consisted

of φ and a left-moving fermion ψL:

Φ = φ+ iθRψL

To supersymmetrize the action Eq. (4.2.10), beside scalar superfield g(Φ), we also need (0, 1)

supergauge multiplets {VL, VRR} [78]. It is true that one can directly supersymmetrize the

local form of Lagrangian in Eq. (4.2.17), which is already localized on certain patch of M ,

without introducing any auxiliary gauge fields. However, with the help of gauge fields, it is

quite easy to track the information of isometric transformations on different local charts,

4We here consider N = (0, 1) supersymmetry, so the notation is different from that in Appendix A. θR
is real Grassmannian variable parameterizing one-dimensional superspace.
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and also facilitate discussion of holonomy anomalies in next section.

The (0, 1) supergauge potential {VL, VRR} are given as

VL = ηL − θRALL ,

VRR = ARR + iθRχR .
(4.2.18)

Under supergauge transformation

VL → H−1VLH+H−1DLH ,

VRR → H−1VRRH+H−1∂RRH ,
(4.2.19)

where H is an arbitrary scalar superfield, one can remove field ηL by choosing Wess-Zumino

gauge. After this choice of supergauge the residual is normal gauge transformations on

gauge field Aµ = (ALL, ARR) and gaugino field χR,

Aµ → h−1Aµh+ h−1∂µh ,

χR → h−1χRh ,
(4.2.20)

where field h is the bosonic component of superfield H.

Now we have all ingredients needed to supersymmetrize Lagrangian Eq. (4.2.10). We

promote bosonic field g(x) to be scalar superfield G(x, θR) taking values on group G. The

bosonic part of G is g(x) while fermionic part is defined such as

ψL = ψALFA ≡ G−1DLG|θR=0 , (4.2.21)

and thus,

G = g + iθRgψ
A
LFA ,

where FA are the generators of Lie algebra g in fundamental representation as before. Un-

der this definition, the fermionic action of S
(0,1)
M becomes canonical. Gauge fields Aµ are

also enhanced to {VL,VRR} taking values on Lie algebra h.
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The (0, 1) supersymmetric action now written in superspace is given as

S
(0,1)
M =

i

2

∫
Σ

d2x

∫
dθRTr

[
(G−1DLG − VL)(G−1∂RRG − VRR)

]
. (4.2.22)

Superfield G admits a H super-gauge transformation as designed,

G → GH .

To obtain the action in components, we impose Wess-Zumino gauge to remove ηL,

VL = −θRALL .

Integrating θR out, we get

S
(0,1)
M =− 1

2

∫
Σ

d2xTr[(g−1∂LLg −ALL)(g−1∂RRg −ARR)]

− i

2

∫
Σ

d2xTr[ψL(∂RR + g−1∂RRg +ARR)ψL]

− i

2

∫
Σ

d2xTr(χRψL) .

(4.2.23)

The action still has ordinary H-gauge invariance,

g → gh , ψL → h−1ψLh ;

Aµ → h−1Aµh+ h−1∂µh ,

χR → h−1χRh .

(4.2.24)

As before we decompose g−1∂µg and ψL along horizontal and vertical directions,

g−1∂µg = eaµXa + ωiµHi ,

ψL = G−1DLG|θR=0 = ψaLXa + ψiLHi .
(4.2.25)

Since Aµ and χR are non-dynamical, we solve these constraints by varying Aµ and χR ,
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and have

AiRR = ωiRR ,

AiLL = ωiLL +
i

2
Ciabψ

a
Lψ

b
L ,

ψiL = 0 ,

(4.2.26)

where we have used Eq. (4.2.13), the anti-symmetric property of ψaL, and the commutator

relations,

[Hi, Hj ] = CkijHk , [Hi, Xa] = CciaXc , [Xa, Xb] = CkabHk + CcabXc . (4.2.27)

From the first two formulas in Eq. (4.2.27) above, we see that, under this decomposition,

Lie subalgebra h reducibly acts on g, or say, the adjoint representation of g restricted to h

is decomposed as

(ad g)|h = ad h⊕ % , (4.2.28)

where % denotes the representation of h acting on subspace m. We will see soon that this

observation is very important to determine if anomalies produced by chiral fermions can

be removed, and for us to write the most general action.

Substituting Eq. (4.2.26) back to action (4.2.23), we have

S
(0,1)
M =

1

2

∫
Σ

d2x δabe
a
LLe

b
RR

+
i

2

∫
Σ

d2x ψaL(∂RRδac + ωiRRCaic +
1

2
ebRRCabc)ψ

c
L .

(4.2.29)

It is not the final result yet because we should assign coupling constants λ2, which is

related to how vielbein eaµ and fermion ψaL transforms under gauge transformation. From

Eq. (4.2.24) and (4.2.25), writing the transformations in components:

eaµ → ρ(h−1)abe
b
µ , ψaL → ρ(h−1)abψ

b
L ;

ωiµC
a
ib ≡ ωaµb →

(
ρ(h−1)ωµρ(h) + ρ(h−1)∂µρ(h)

)a
b
,

(4.2.30)
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where ρ denotes the H-isotropy representation on m corresponding to %, i.e.,5

h−1Xah ≡ ρ(h) b
a Xb for Xa,b ∈ m . (4.2.31)

Equation (4.2.30) implies that the tangent bundle TM is identified to the associated H-

principal fiber bundle with vector space m ,

TM ' G×% m , (4.2.32)

on which vielbeins ea and fermions ψaL are the basic form, and ωab is the connection in %

representation. Now if ρ, or equivalently % , is further reducible on m ,

ρ =
⊕
ra

ρra ,

we can assign different coupling constant λ2
a to each independent representation 6 ra of H

on m. Based on the argument above, we rescale vielbein eaµ and fermion ψaL in respect to

the representations they belong to,

eaµ →
1

λa
eaµ, ψaL →

1

λa
ψaL , (4.2.33)

and the action changes to

S
(0,1)
M =

1

2λ2
a

∫
Σ

d2x δabe
a
LLe

b
RR

+
i

2λ2
a

∫
Σ

d2x ψaL

(
∂RRδac + ωiRRCaic +

λa
2λbλc

ebRRCabc

)
ψcL ,

(4.2.34)

where we used the fact that connection ωiRRCaic is block diagonal and thus indexes a and c

are forced in the same representation, say λa = λc. Further, anticommutativity of fermions

5 Since we chose normalized and orthogonal bases {Xa}, ρ is in fact orthogonal real representation of H
on m, i.e. ρ(h)ab = ρ(h−1) ab , by which Eq. (4.2.30) can be verified.

6 If there exists right isometries after we gauge out H ⊂ GR, the number of coupling constants will
be as many as the independent representation of normalizer of H. For more details, we refer readers to
reference [79].
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ψa,cL requires us to antisymmetrize the indexes a and c of term 7 λa
2λbλc

Cabc ,

τabc ≡ −
1

2

λa
λbλc

Cabc → κabc ≡
1

2

( λb
λaλc

− λc
λbλa

− λa
λbλc

)
Cabc .

We finally have

S
(0,1)
M =

1

2λ2
a

∫
Σ

d2x δabe
a
LLe

b
RR

+
i

2λ2
a

∫
Σ

d2x ψaL
(
∂RRδac + ωiRRCaic − ebRRκabc

)
ψcL

=
1

2λ2
a

∫
Σ

d2x
[
δabe

a
LLe

b
RR + iψaL

(
∂RRδac + ω̃RRac

)
ψcL

]
,

(4.2.35)

where κ term is absorbed into connection ω to define:

ω̃ac ≡ ωac − κac ,

as the Levi-Civita connection of homogeneous spaces M . Since field κab is tensorial, under

H-gauge transformation, we still have

eaµ → ρ(h−1)abe
b
µ , ψaL → ρ(h−1)abψ

b
L ,

ω̃aµb →
(
ρ(h−1)ω̃µρ(h) + ρ(h−1)∂µρ(h)

)a
b
.

(4.2.36)

4.2.3 Isometry anomalies of sigma model on M

In this subsection, we will disclose the relation between isometric and H-gauge transfor-

mations, see Eq. (4.2.30), and then calculate isometry anomalies of the action Eq. (4.2.35).

For brevity, in what follows, including also the next section, we will only label one, instead

of two, “R ” or “L” as the subscription of all quantities when it leads to no confusion.

7 τ and κ are respectively the torsion and contorsion of homogeneous spaces M , see also in [79].



80

Now let us consider isometries of the action. We start from the fiberation:

H
i // G

π //M ,

that all (left) isometries lk : M →M are induced from left translations 8 Lk:

Lk : g(x) 7→ kg(x), for k ∈ G , (4.2.37)

and we have the following commuting diagram:

G

π
��

Lk // G

π
��

M
lk //M

with π ◦ Lk = lk ◦ π (4.2.38)

It is easily seen that these left translations keep action Eq. (4.2.23) invariant trivially since

k ∈ G is a constant group element.

When investigating isometric transformation lk on M , we are required to choose a local

trivialization, or say, a local section s : Us ⊂M → G. Physically speaking, we fix a gauge,

for example the CCWZ coset construction where unitary gauge is chosen (see Eq. (4.2.15)),

and localize the action S
(0,1)
M on Us by the coordinates {φα} ∈ Us ⊂ M . More explicitly,

we have

g = s(φ) . (4.2.39)

Therefore, vielbeins eaµ, connection ωaµb as well as fermions ψaL are pullback to Us ⊂M and

8 As mentioned, there may be also right isometries on M induced by right translation on G if the
normalizer of H is larger than H itself. There are also corresponding right isometry anomalies, but the
discussion of them are similar to that of the left. More detailed can be found in [67].
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expressed by Eqs. (4.2.39) and (4.2.25) as

s∗(eaµ) = eaα∂µφ
α = −Tr

(
Xas−1 ∂s

∂φα

)
∂µφ

α ,

s∗(ωaµb) = ωaαb∂µφ
α = −Tr

(
H is−1 ∂s

∂φα

)
∂µφ

αCaib , (4.2.40)

s∗(ψaL) = −Tr
(
Xas−1 ∂s

∂Φα

)
DLΦα|θR=0 = eaαψ

α
L .

From now on, we will not label s∗ to distinguish these quantities as forms on bundle G×ρm
or locally pullback to Us ⊂ M . It should lead no confusion in contexts. Thanks to the

gauge fixing, the action localized on Us is given as

S
(0,1)
Us

[φ, ψL] =
1

2λ2
a

∫
Σ

d2x δabe
a
αe
b
β∂Lφ

α∂Rφ
β

+
i

2λ2
a

∫
Σ

d2x ψaL
(
∂Rδac + ∂Rφ

αω̃αac
)
ψcL .

(4.2.41)

This action should be invariant under isometric transformation

lk : φ 7→ lk(φ) . (4.2.42)

We will show that vielbeins, connections and fermions are transformed under lk as a special

type of H-gauge transformation, see Eq. (4.2.30). Then the invariance of action (4.2.41) is

guaranteed.

To see this, one can directly calculate their Lie derivatives respect to isometries lk

(cf. [67] for example). Here instead, we interpret this issue in language of fiber bundle,

which we presented and explained in great details for CPN−1 case in last chapter [39]. For

a given section s, or a fixed gauge, we map the local patch Us to G by

s(φ) = g ∈ G .

A left translation Lk acting on s(φ) not only induces isometric transformation lk on chart

{φα} but also changes the fixed gauge. When we consider the isometric transformations

of quantities eaµ, ωaµb and ψaL under the original fixed gauge, we are required to accompany
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them by a H-gauge transformation h(φ, k) to compensate the change:

Lks(φ)h(φ, k) = s(lk(φ)), for k ∈ G . (4.2.43)

Or equivalently to say, the composition of L−1
k ◦ s ◦ lk define another section s′, see the

commuting diagram:

G G
L−1
koo

Us′

s′

OO

lk // Us

s

OO

Sections s′ and s are related by a H-gauge transformation h(φ, k), i.e. Eq. (4.2.43),

s′(φ) = s(φ)h(φ, k) .

Now, after isometric transformation lk, vielbeins, connections and fermions are pullback to

Us′ by s′∗ and are related to those pullback by s∗ as

eaµ → e′aµ = ρ(h−1
φ,k)

a
be
b
µ, ψaL → ψ′aL = ρ(h−1

φ,k)
a
bψ

b
L ,

ωaµb → ω′aµb =
(
ρ(h−1

φ,k)ωµρ(hφ,k) + ρ(h−1
φ,k)∂µρ(hφ,k)

)a
b
,

(4.2.44)

where hφ,k ≡ h(φ, k) for short. Infinitesimally one can expand,

lk ' 1 + εAKA(φ) , Lk−1 ' 1− εAFA , and h(φ, k) ' 1 + αi(φ, ε)Hi ,

and get them back to Eq. (4.2.43) to explicitly solve KA , the Killing field for isometries

lk , and αi. However it is unnecessary to know their explicit expression. We only need to

know, infinitesimally,

δαe
a
µ = −%(α)abe

b
µ , δαψ

a
L = −%(α)abψ

b
L ,

δαω
a
µb = ∂µ%(α)ab + [ωµ, %(α)]ab ,

(4.2.45)

where

%(α)ab ≡ αi%(Hi)
a
b = αiCaib .
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One can further show that contortion κab transforms tensorially,

δακ
a
µb = [κµ, %(α)]ab and thus δαω̃

a
µb = ∂µ%(α)ab + [ω̃µ, %(α)]ab .

Now, for isometry anomalies, we use action S
(0,1)
Us

[φ, ψL] to calculate the effective action.

Similarly to the discussion before, anomalies are only produced from fermionic integration

effective action. We thereby integrate out the fermionic part of action Eq. (4.2.41) and

have

iWs
f [ω̃R] =

i

16π

∫
Σ

d2x Tr(ω̃R
∂L∂L
∂2

ω̃R) +O(ω̃3
R) , (4.2.46)

where the superscript s denotes that our perturbative calculation is performed on the local

chart Us. Varying Ws
f , we produce isometry anomalies Iα ,

Iα = δαWs
f = − 1

8π

∫
Σ

d2x Tr(α∂Lω̃R) . (4.2.47)

To conclude, in this section we have calculated isometry anomalies of generic (0, 1)

supersymmetric sigma models defined on manifold M = G/H. To perform perturbative

calculation, we need to specify a local chart Us on M to define the model and thus a section

s from Us to G. After integrating out fermions, we find the effective action Wf which is

also defined on the local patch Us. However in many cases the effective action does not

bear isometries lk , for k ∈ G, it had before and thus produces isometry anomalies. We

established a correspondence between the isometry anomalies and some specific H-gauge

anomalies when considering to define the effective action Wf on the intersection of two

local patch Us ∩ Us′ , where local patch Us′ = l−1
k (Us) induced by isometries. This obser-

vation actually inevitably leads us to consider anomalies not only localized on a specified

coordinates or local chart, but also to evaluate if the effective action Wf can be consis-

tently defined on different local patches and their intersections. If so, one is able to transit

Wf from patch to patch without producing any H-gauge anomalies, or called holonomy

anomalies. Since isometry anomalies is a specific type of H-gauge anomalies, they will for

sure vanish in this situation. Otherwise when a model is suffered from holonomy anomalies,

it is not even possible to globally define the theory quantum mechanically, and thus makes
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no sense to consider its isometry anomalies. Therefore in the next chapter, we will focus on

holonomy anomalies and the criteria when they vanish or can be canceled by counterterms.
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4.3 Holonomy anomalies

In last section, we have argued that, to define sigma models on Homogeneous spaces

M = G/H, it is required that, prior to consider isometry anomalies, the theory should

be independent of the choices of sections s : Us ⊂ M → G, or say the ease of holonomy

anomalies. The holonomy anomalies will arise when we change from a section s to another

s′, or physically speaking, from a fixed gauge to another. Therefore they correspond

to an arbitrary H-gauge transformation, see Eq. (4.2.24) and Eq. (4.2.30), while isometry

transformations are a special type of H-gauge transformation, see Eq. (4.2.44). Therefore,

once holonomy anomalies are removed, isometry anomalies will automatically vanish as

well. We will thus focus ourselves on holonomy anomalies and their cancellation condition.

4.3.1 Anomaly matching condition

From Eq. (4.2.47), we know that α and ω̃R are taking values in the % representation of h

Lie subalgebra. On the other hand, we will show that counterterms that can be introduced

is in the F (g|h) representation, say the fundamental representation F of g representation

restricted on h. Choosing the fundamental representation F is merely of convention, since

we are free to redefine our coupling constants corresponding to other different representa-

tion. Roughly speaking, the counterterm we can introduce is an analog of gauged WZW

term Wc.t[g,A], which is well-known to produce gauge anomalies when the gauge fields A

taking values in h are not in a “safe” representation [80]. When certain matching condition

on % and F (g|h) is satisfied, these two anomalies are canceled. From now on to distinguish

the difference between representation % and F (g|h), we will use Tr% and TrF to label under

which representation we take the trace.

First we will explore more on the structure of effective fermionic action Wf . In what

follows, we will not fix ourselves in any specific gauge, and will not solve gauge field A

in terms of g as Eq. (4.2.26), because it will help better track the information of gauge

transformations on Wf and, more importantly, give us an explicit expression of fermionic
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effective action. We thus use Eq. (4.2.23) and rewrite the fermionic part as

Sf = − i
2

∫
Σ

d2x
[
TrF ψL(∂RψL + [AR, ψL]) + TrF ψL(g−1∂Rg −AR)ψL

]
(4.3.1)

with

ψL = ψaLXa , and AR = AiRHi .

The two parts of above equation are separately gauge invariant classically. However the

second term, g−1∂Rg − AR coupling to fermions, transforms tensorially under a H-gauge

transformation,

g−1∂Rg −AR → h−1(g−1∂Rg −AR)h ,

while in the first term chiral fermions ψL couple to gauge fields AR and will produce

genuine anomalies. If we can find counterterms to offset the anomalies from the first term

in Eq. (4.3.1), the anomalies from the second one can be removed also by an analog of

Bardeen like counterterm in two dimensions. Let us see how it works.

In fact we can ask more for an explicit structure on the anomalous part of Wf in two-

dimensional spacetime due to Polyakov and Wiegmann [81]. In two dimensions, one can

parameterize gauge fields as

AR = h̃−1∂Rh̃ and AL = h̃′−1∂Lh̃
′ , (4.3.2)

where fields h̃(x) and h̃′(x) are elements in H and under gauge transformation

h̃→ h̃h , and h̃′ → h̃′h .

Notice that, since h̃ 6= h̃′, Aµ are not flat connection. One can solve h̃ and h̃′ in terms of

the Wilson lines of AR and AL, although the expressions is surly non-local,

h̃(x) = −P e−
∫
Cx

dξLAR , and h̃′(x) = −P e−
∫
Cx

dξRAL ,

where Cx is a path from certain fixed point to x and P denote path ordered integral. With

the help of h̃, one can explicitly write down the anomalous part of Wf . Let us first rewrite
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term g−1∂Rg −AR as

g−1∂Rg −AR = g−1∂Rg − h̃−1∂Rh̃ = g−1∂R(gh̃−1)(gh̃−1)−1g . (4.3.3)

Clearly gh̃−1 is gauge invariant. Actually, if we redefine fermions ψL as

ψL = h̃−1ζLh̃ or in components ψaL = ρ(h̃−1)abζ
b
L , (4.3.4)

the action Sf changes to

S′f = − i
2

∫
Σ

d2x TrF

[
ζL∂RζL + ζL(gh̃−1)−1∂R(gh̃−1)ζL

]
. (4.3.5)

Notice now that both ζL and gh̃−1 are gauge invariant. After integrating out ζL, the

effective fermionic action is guaranteed to be gauge invariant as well,

W ′f [gh̃−1] = −ilog

∫
DζL eiS

′
f . (4.3.6)

Therefore, we can interpret that the anomaly Eq. (4.2.47) is raised in a functional deter-

minant when we change fermionic measure,∫
DψL =

∫
Det−1

[δψL
δζL

]
DζL ,

and we will calculate the determinant above. The method we will use is mainly based

on [81].

The determinant is an integrated version of anomaly Eq. (4.2.47). Now since we keep

gauge fields explicitly, the anomaly equation becomes:

Aα = − 1

8π

∫
Σ

d2x Tr%α∂L

(1

2
AR +

1

2
ωR − κ

)
= − 1

8π

∫
Σ

d2x Tr%α∂LAR −
1

16π

∫
Σ

d2x Tr%α∂L(ωR −AR)

(4.3.7)
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where, in the second equality, we use

Tr%ακ =
1

2

( λb
λaλc

− λc
λbλa

− λa
λbλc

)
αiebCciaC

a
bc = 0 ,

because of Tr%,FHiXb = 0, see Eq.(4.2.13). The first term in anomaly Eq. (4.3.7) corre-

sponds to the first part of action Eq. (4.3.1):

S1
f = − i

2λ2
a

∫
Σ

d2x TrF ψL(∂RψL + [AR, ψL]) =
i

2λ2
a

∫
Σ

d2x ψLa(∂Rψ
a
L +AiRC

a
ibψ

b
L) ,

where we write the action in components and rescale fermions to make the coupling con-

stants explicit. For AR parameterized as h̃−1∂Rh̃, we now aim to find an effective action

W1
f [h̃] which corresponds to S1

f and satisfies

δαW1
f [h̃] = A1

α = − 1

8π

∫
Σ

d2x Tr%(h̃
−1δh̃)∂L(h̃−1∂Rh̃) ,

where we also put α = h̃−1δh̃ . Due to Polyakov and Weigmann, the effective action can

be solved as

W1
f =WPW[h̃] ≡ 1

16π

∫
Σ

d2x Tr%(h̃
−1∂Rh̃)(h̃−1∂Lh̃)− 1

24π

∫
h̃(B)

Tr%(h̃
−1dh̃)3 , (4.3.8)

where, in the second term, h̃ = h̃(x, t) has been extended 9 to bulk B bounded by Σ. It is

well-known that the second term is multi-valued and can be rewritten as a local form on

spacetime Σ, and thus we still have a local theory defined on Σ rather than the bulk B.

Beside this part, there is also the second term left in anomaly Eq. (4.3.7),

A2
α = − 1

16π

∫
Σ

d2x Tr%α∂L(ωR −AR) .

We have argued that g−1∂Rg − AR, as well as ωR − AR, transform tensorially and thus

do not produce anomalies themselves, unless they are coupled to gauge fields as probes.

9 The extension of h̃(x, t), and also that of g(x, t) later, are always assumed to exist. For situations when
π2(H) or π2(G) are non-trivial, we will present in our future work on global anomalies.
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Therefore we can easily verify that, a Bardeen-like counterterm,

W2
f [h̃, ωR −AR] =

1

16π

∫
Σ

d2x Tr%(ωR −AR)(h̃−1∂Lh̃) , (4.3.9)

satisfies

δαW2
f = A2

α ,

and, thus, is the second part of the anomalous effective action.

Overall we explicitly solve the anomalous part of effective action Wf , and the whole

effective action Wf is given as

Wf =W1
f [h̃] +W2

f [h̃, ωR −AR] +W ′f [gh̃−1]

= − 1

24π

∫
h̃(B)

Tr%(h̃
−1dh̃)3 +

1

16π

∫
Σ

d2x Tr%ωR(h̃−1∂Lh̃) +W ′f [gh̃−1] ,
(4.3.10)

Now, based on the anomalous effective action above, we are seeking conditions and coun-

terterms Wc.t.[g,AR]. The key hint from Eq. (4.3.10) is that we need an analog of term

Tr%(h̃
−1dh̃)3. It should first have same gauge transformation rule as h̃−1dh̃ ,

h̃−1dh̃→ h−1(h̃−1dh̃)h+ h−1dh, for h̃→ h̃h .

and secondly be able to pullback to spacetime Σ to define our theory in two dimensions.

However the only ingredient we have to satisfy the two conditions is

Wc.t. ∼ TrF (g−1dg)3 .

An infinitesimal H-gauge transformation, c.f. Eq. (4.2.24), is given as:

δα(g−1dg) = dαiHi + [g−1dg, αiHi], for δαg = gαiHi ,

where we explicitly display α above taking values in F (g|h). Therefore we have:

δαTrF (g−1dg)3 ∼ Tr αd(g−1dg) ∼ αidωjTrHiHj .



90

Since we have already normalized generators Hi in Eq. (4.2.13), as

TrFHiHi = −δij , for any Hi,j ∈ h

the anomaly matching condition, under our conventions, is

Tr%HiHj = cTrFHiHj = −c δij , for any Hi,j ∈ h , (4.3.11)

with some constant c. So long as the anomaly matching condition is satisfied, we can

construct the counterterms Wc.t. as

Wc.t. =
c

24π

∫
g(B)

TrF (g−1dg)3 − c

16π

∫
Σ

d2x TrFAR(g−1∂Lg) . (4.3.12)

One can verify that, when Eq. (4.3.11) is met,

δαWc.t. +Aα = 0 .

At last, combining Eq. (4.3.12) and Eq. (4.3.10), we would expect the modified fermionic

action Weff is gauge invariant,

Weff =Wf +Wc.t. =
c

24π

∫
gh̃−1(B)

TrF

[
(gh̃−1)−1d(gh̃−1)

]3
+W ′f [gh̃−1] . (4.3.13)
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4.3.2 Comments on counterterms

So far we derived the anomaly matching condition Eq. (4.3.11), based on which the gauge

invariant effective action, Eq. (4.3.13), is constructed above. There are some interesting

results and comments we want to put.

i. Anomaly matching condition

The anomaly matching condition is a group theoretical result. In principle, if we un-

derstand how a subgroup H is embedded to G, we can determine, by Eq. (4.3.11), whether

a minimal (0, 1) supersymmetric sigma model can be well-defined. Actually the statement

is topological, when we will show in subsection 4.3.4, that Eq. (4.3.11) will be satisfied if

and only if the first Pontryagin form of M vanishes, i.e. p1(M) = 0.

ii. Weff incorporated with (0, 1) supersymmetry

Till now, besides requiring (0, 1) supersymmetry on model building, we did not fully

consider the role supersymmetry may play in the game. The counterterm Wc.t. we added

is apparently non-supersymmetric, but it is required to define our theory. Now we want

to proceed one step more, when we find the gauge invariant fermionic action Weff . For

brevity, we use ϕ ≡ gh̃−1 as the gauge invariant field, and Weff is rewritten as

Weff [ϕ] =
c

24π

∫
ϕ(B)

TrF (ϕ−1dϕ)3 +W ′f [ϕ] .

The second term is due to a path integral over fermions ζL, see Eq.(4.3.5) and Eq. (4.3.6),

eiW
′
f [ϕ] =

∫
DζL exp

∫
Σ

d2x
(
− i

2λ2

)
TrF

(
ζL∂RζL + ζLϕ

−1∂RϕζL
)
,

which has its supersymmetric counterpart Sb, see Eq. (4.2.10). On the other hand, the first

term, as a combination of anomalous and anomaly-counterterms,

WWZW ≡
c

24π

∫
ϕ(B)

TrF (ϕ−1dϕ)3 ,
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has no its supersymmetric pair. Therefore we will supersymmetrize this term. Actually

the N = (1, 1) supersymmetrization of WWZW is well-known in literatures back to 80’s,

c.f. [82] and [83] for example. Here we do the similar to equip WWZW with a N = (0, 1)

supersymmetry. Since field ϕ is now gauge invariant, its (0, 1) super-partner is also gauge

invariant, and thus must be ζL. The supersymmetrization of WWZW can be formally

performed in (0, 1) superspace as Eq. (4.2.22):

WsWZW =
c

16π

∫
B

d2xdt

∫
dθR TrF

(
Ψ−1∂tΨ[Ψ−1DLΨ,Ψ−1∂RΨ]

)
=

c

24π

∫
ϕ(B)

TrF (ϕ−1dϕ)3 − ic

16π

∫
Σ

d2x TrF
(
ζLϕ

−1∂RϕζL
)
,

where we define superfield Ψ, c.f. Eq. (4.2.21):

Ψ|θR=0 ≡ ϕ and Ψ−1DLΨ|θR=0 ≡ ζL .

As what we mentioned, for now all fields are gauge invariant, one should not worry about

anomalies for the fermionic part WsWZW. Overall we have a supersymmetric effective

action:

S(0,1) = Sb + S′f +WsWZW (4.3.14)

iii. Renormalization flow and superconformal fixed point in IR region

Now we want to investigate some non-perturbative behaviors of the modified theories

in deep infrared region. It is interesting to realize that the modified theory contains super-

symmetric “WZW” term with gauge invariant variable ϕ = gh̃−1. We are trying to argue

that, in an ad-hoc gauge:

(a) for M is a symmetric space, the “WZW” action vanishes and the theory is equivalent

to a bosonic sigma model with left fermions decoupled. Therefore supersymmetry should

be broken in IR region;

(b) for M is a non-symmetric homogeneous spaces with non-trivial third cohomology

H3(M) 6= 0, the “WZW” term corresponds to an element in H3(M). The theory would
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flow to a (super)conformal fixed point in IR region.

To illustrate part (a), we fix the gauge on variable ϕ, so that

ϕ−1dϕ ∈ Ω1(M)⊗m, or say ϕ−1dϕ = eaXa , (4.3.15)

where ea will be shown as vielbein 1-forms on M soon. This gauge is alway possible to

choose, although ϕ cannot be expressed in terms of exponential map. It is because that, if

we notice g = ϕh̃, ϕ is exactly a coset representative for M = G/H, and thus ϕ−1dϕ is a

1-form on T∗M .

Now under this gauge, by the property of symmetric space

[m,m] ⊂ h,

and the orthogonality Eq. (4.2.13), one verifies that:

TrF (ϕ−1dϕ)3 = 0, and TrF
(
ζLϕ

−1∂RϕζL
)

= 0 ,

for ζL = ζaLXa as well. Therefore the fermion ζL is totally decoupled and free. Now let us

turn to bosonic part, see Eq. (4.2.10). We rewrite the action in the light-cone coordinate

as

SM = − 1

2λ2

∫
Σ

d2xTrF

[
(g−1∂Rg −AR)(g−1∂Lg −AL)

]
.

By using Eqs. (4.3.3) and (4.3.2) we further express the action in terms of ϕ, h̃ and AL:

SM =− 1

2λ2

∫
Σ

d2xTrF

[
(ϕ−1∂Rϕ)(ϕ−1∂Lϕ) + (ϕ−1∂Rϕ)(∂Lh̃h̃

−1)− (ϕ−1∂Rϕ)(h̃ALh̃
−1)
]
.

The last two terms vanish because of orthogonality again. Therefore we finally have

S
(0,1)
M = − 1

2λ2

∫
Σ

d2xTrF

[
(ϕ−1∂Rϕ)(ϕ−1∂Lϕ) + i(ζL∂RζL)

]
. (4.3.16)

It is well-known that the bosonic theory is asymptotic free. In the deep infrared region,

there is a mass gap generated, while the free fermions ζL is chiral, and thus no way to pair

mass term. Thereby the supersymmetry will be broken.
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For sure when we use Eq.(4.3.2) to parametrize gauge fields, there are functional de-

terminants raised, ∫
DARDAL =

∫
(Det∇R)(Det∇L)Dh̃Dh̃′ ,

where∇R,L ≡ ∂R,L+[AR,L, ]. The two determinants combining together is gauge invariant,

and gives an additional Polyakov-Wiegmann functional [84,85],

(Det∇R)(Det∇L) = exp(−icHWPW[h̃h̃′−1])∂R∂L ,

where cH is the eigenvalue of second Casimir operator for h in its adjoint representation.

Nevertheless, this additional term will not affect our argument above.

Now we are aiming to argue part (b) under the same gauge Eq. (4.3.15). Since for

non-symmetric homogeneous spaces, the Lie algebra structure constant Cabc is non-zero,

we will have non-vanishing WZW term and fermionic interaction, see Eq. (4.3.14). The

WZW term
c

24π
TrF (ϕ−1dϕ)3 ∼ Cabcea ∧ eb ∧ ec

is a closed and horizontal basic 3-form, which vanished under action of h-Lie derivative Lh.
Therefore it is an element in H3(M), when H3(M) 6= 0, c.f. [86] and [87]. Combining this

term with original bosonic action, see Eq. (4.3.16), we have

SM,b = − 1

2λ2

∫
Σ

d2x TrF (ϕ−1∂Rϕ)(ϕ−1∂Lϕ) +
c

24π

∫
ϕ(B)

TrF (ϕ−1dϕ)3 .

By standard argument, we know, that for 10

λ2c

8π
= 1 (4.3.17)

the bosonic theory will be conformal invariant. Now let us temporarily reside at this

critical point, and check the fermionic action. Combining Eq. (4.3.5) and the fermionic

10 For simplicity, we only assume one coupling constant, say λ2, even though % may be reducible.
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part of Eq. (4.3.14), we get

SM,f = S′f −
ic

16π

∫
Σ

d2x TrF
(
ζLϕ

−1∂RϕζL
)

= − ic

16π

∫
Σ

d2x TrF
(
ζL∂RζL + 2ζLϕ

−1∂RϕζL
)
.

(4.3.18)

Similar to Eq. (4.3.4), we further rotate ζL to define a new fermionic variable ξL satisfying

ζL ≡ ϕ−1ξLϕ .

We obtain a free fermionic action on ξL as:

SM,f = − ic

16π

∫
Σ

d2x TrF ξL∂RξL .

Certainly such a redefinition on chiral fermions will lead us to the Polyakov-Wiegmann

functional as before, although our theory has been gauge invariant as it was modified. Such

an additional functional seems only to contribute a shift to the level c of the conformal

theory. In sum, because of the existence of WZW term, the theory will flow to a non-

trivial infrared conformal fixed point, where fermionic fields are free, while due to conformal

symmetries, there is no mass gap for bosonic sector, and thus the (0, 1) supersymmetry

seems to hold.
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4.3.3 Examples

In this subsection, we turn to use anomaly matching condition Eq. (4.3.11) to analyze some

examples.

i. Simple Lie group G

Our first example is sigma models defined on simple Lie groups G. Although we con-

struct sigma models on M = G/H by gauging a subgroup H of G, see Eq. (4.2.22), Lie

group G itself is a symmetric space as well, i.e.

G ' GL ×GR/GV .

The Lie algebra of GL ×GR is

gL ⊕ gR, with that gL = gR = g .

We label the generators LA ∈ gL and RA ∈ gR, their commutators are

[LA, LB] = CCABLC , [RA, RB] = CCABRC , [LA, RB] = 0 .

The diagonal group GV acting on GL ×GR gives its Lie subalgebra HA ∈ gV ,

HA = LA +RA .

By using Killing form with normalization

Tr(LALB) = −δAB, Tr(RARB) = −δAB, and Tr(LARB) = 0 ,

we find other generators belonging to m , complimentary to h = gV ,

XA = LA −RA ,
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and their commutator relationship given by

[HA, HB] = CCABHC , [HA, XB] = CCABXC , and [XA, XB] = CCABHC .

Therefore G ' GL ×GR/GV is a symmetric space with isotropy representation % ,

(ad gL ⊕ gR)|gV = ad gV ⊕ % = ad gV ⊕ ad gV .

And we see that

Tr%(HAHB) = −TGδAB =
TG
2

TrF (HAHB) ,

where TG is the dual Coxeter number of Lie algebra g. By anomaly matching condition,

we know that sigma model is well-defined on simple group manifold G.

Another motivation for us to consider sigma model on G is that: we want to argue that

ease of holonomy anomalies, independence of the theory on choices of section s is prior to

that of isometry anomalies. To illustrate this point, we first look at the action Eq. (4.2.23),

without gauge and gaugino fields Aµ and χR ,

S
(0,1)
G = − 1

2λ2

∫
Σ

d2x Tr(g−1∂Lg)(g−1∂Rg) + iTr
(
ψL(∂R + g−1∂Rg)ψL

)
. (4.3.19)

For this action, in fact, we already fix a gauge, or say a section s : Us ⊂ G → GL × GR.

Near the identity of GL × GR, one can assign coordinates {φ} ∈ Us and use exponential

map to write s explicitly,

g = s(φ) = e2φALA . (4.3.20)

From the above equation, we also know that the gauge fixing is to remove degrees of

freedom on GR. Let us keep it in mind. In the following we will show, under this gauge

fixing, there is no isometry anomaly.

We consider isometries of the action Eq. (4.3.19). One can either interpret these isome-

tries as left isometries of GL and right ones of GR, or as all left isometries acting on

Eq. (4.3.20). Isometries of GR, parameterized by eε
ARA , acting on s(φ) from left, break the

fixed gauge,

eε
ARAs(φ) = eε

ARA+2φALA .
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Therefore we need compensate it by a GV -gauge transformation h = e−ε
AHA ,

eε
ARAs(φ)h = e2φALAe−ε

ALA ,

where in the two equations above we used the fact that LA and RB commutes, and thus

it is equivalent to a right GR group action. Since isometries from GL need no gauge

compensation, whereas isometries from GR need a constant gauge compensation, say h =

e−ε
AHA , both GL and GR isometries do not produce isometry anomalies in the choice of

section s. One can also confirm this statement directly from the fermionic part of action

Eq. (4.3.19),

for g → kg, g−1∂Rg → g−1∂Rg ;

for g → gk̃, g−1∂Rg → k̃−1(g−1∂Rg)k̃ ,

where k, k̃ ∈ GL, GR are constant group elements. We get the same result that g−1∂Rg is

invariant under left isometries, and tensorially transformed under right ones. Hence, after

integrating out fermions from action Eq. (4.3.19), the fermionic effective action will not

produce isometry anomalies.

From the analysis above, it seems that the theory is well-defined even with no need to

add counterterms. However in what follows, we will argue that introducing counterterms

as Eq.(4.3.12) is a must. First we notice that there is a discrete symmetry classically held.

On bosonic part of the action Eq. (4.3.19), we realize that

g → g−1, SG,b → SG,b .

On the other hand, the fermionic part is changed to

SG,f → −
i

2λ2

∫
Σ

d2x Tr
[
ψL(∂R + g∂Rg

−1)ψL
]
.

To get it back to SG,f , one need rotate chiral fermions ψL simultaneously with g,

g → g−1, and ψL → gψLg
−1 .
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Now since the transformation of chiral fermion is x-dependent, such a rotation will produce

an integrated anomaly at quantum level, which is a WZW-like term that breaks this sym-

metry explicitly. Adding a WZW-like counterterm as Eq. (4.3.12) is exactly to offset this

anomaly and keep the discrete symmetry above. So far it is still not adequate to require a

counterterm, for there is no priori to admit this discrete symmetry in our theory. In fact,

on the contrary, a four-dimensional sigma model describing goldstone bosons denies the

symmetry g → g−1, but require it accompanied by parity inversion on spacetime, c.f. [88].

Nevertheless, in our case, the anomaly of this discrete symmetry is a signal of non-

equivalence of different choices of sections, or gauge fixings. To see this, let us recall

CCWZ coset construction on group G manifold, i.e. the unitary gauge Eq. (4.2.15),

s′(φ) = eφ
AXA = eφ

ALA−φARA . (4.3.21)

Under this gauge, we describe our theory by writing its vielbeins and connection. From

Eq. (4.2.14) and Eq. (4.2.41), we have the pullback Maurer-Cartan 1-form

s′−1ds′ = e−φ
ALAdeφ

ALA + eφ
ARAde−φ

ARA

for LA and RB commute. Further, because LA and RB satisfy the same commutation rules,

we will have same functional form, θ(φ) for example, for the two terms with arguments up

to a minus sign, i.e.,

s′−1ds′ = θA(φ)LA + θA(−φ)RA =
1

2

[
θA(φ) + θA(−φ)

]
HA +

1

2

[
θA(φ)− θA(−φ)

]
XA .

From it, we can read off the vielbein and connection 1-form under unitary gauge,

e′A(φ) =
1

2

[
θA(φ)− θA(−φ)

]
, ω′A(φ) =

1

2

[
θA(φ) + θA(−φ)

]
.

Apparently, e′A(φ) and ω′A(φ) are odd and even 1-forms separately. One can check that,

with the help of the parities of e′ and ω′, the theory indeed has the discrete symmetry

mentioned above, which in coordinates φ and fermions ψL is given as:

φ→ −φ, ψL → −ψL . (4.3.22)
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Since the fermions is intact, at quantum level, this discrete symmetry is still hold. On the

other hand, if we choose the section as Eq. (4.3.20), the Maurer-Cartan 1-form is

s−1ds = θA(2φ)LA =
1

2
θA(2φ)HA +

1

2
θA(2φ)XA ≡ ωA(φ)HA + eA(φ)XA .

In this gauge, vielbeins and connection 1-form coincide 11 with each other, but their parities

are sacrificed.

Now we are in the situation that we do not ask for the theory to have or deny the

symmetry (4.3.22), but rather require it to be equivalently described in different choices

of sections, e.g. s or s′. We know that sections (4.3.20) and (4.3.21) are connected by a

H-gauge transformation,

s′(φ) = s(φ)e−φ
AHA .

Therefore the theory Eq. (4.3.19) is required to be H-gauge invariant even it has been

shown to have vanishing isometry anomalies.

Furthermore, with the counterterm (4.3.12) added, applying the result of Sec.4.3.2, we

know that the N = (0, 1) supersymmetric sigma model defined on simple Lie group G is

equivalent to its bosonic principal sigma model plus a free chiral fermions, which is also

different from the one predicted by action Eq. (4.2.2).

ii. Oriented real Grassmannian manifolds

Our second example is oriented real Grassmannian manifolds:

M =
SO(p+ q)

SO(p)× SO(q)
.

We have known from chapter 3 that, for p = 1 (or q = 1), the manifolds is just sphere

S q with vanishing isometry anomalies [39]. Now we will consider the more general case by

anomaly matching condition Eq. (4.3.11).

11 It should be noticed that, although they have the same form, but they follow different transformation
rules, see Eq. (4.2.30). This difference will not be detected by isometric transformation, for they only induce
constant gauge transformation as what we showed.
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In the Grassmannian case, G = SO(p + q) and H = SO(p) × SO(q) with standard

embedding. We choose generators TAB in the fundamental representation of Lie algebra

g = so(p+ q) as:

(TAB)CD = −δACδBD + δADδBC , with A,B,C,D = 1, 2, ..., p, p+ 1, ..., p+ q .

Their commutators are

[TAB, TCD] = δACTBD + δBDTAC − δADTBC − δBCTAD ,

and the normalized by Killing form is

Tr(TABTCD) = −2(δACδBD − δADδBC) .

For Lie subalgebra h = so(p)⊕ so(q) ≡ hp ⊕ hq we label generators as

Hi ≡ Tij ∈ so(p) , for i, j = 1, 2, ..., p ,

Ha ≡ Tab ∈ so(p) , for a, b = p+ 1, p+ 2, ..., p+ q ,

where we use subscripts “i” and “a” to label two indices for brevity. The rest of generators

forms subspace m complimentary to h, where we label them as

Xia ≡ Tia , for i = 1, 2, ..., p ; a = p+ 1, p+ 2, ..., p+ q .

Now we will investigate the isotropy representation of h on m. For

[hp, hq] = 0 ,

we have the decomposition by Eq. (4.2.28),

(ad g)|h = (ad h)⊕ % = (ad hp ⊕ ad hq)⊕ % . (4.3.23)

Actually we only need to care about Tr%(HiHj), Tr%(HaHb) and Tr%(HiHb). From Eq. (4.3.23),
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we have the equality

Tr% = Trad g − Trad h , (4.3.24)

while the latter two traces are easy to calculate by the commutation relationship and

normalization above. After a short calculation,

Trad g(HiHj)=−2(p+q−2)δij , Trad g(HaHb)=−2(p+q−2)δab , Trad g(HiHb) = 0 ;

Trad h(HiHj) = −2(p− 2)δij , Trad h(HaHb) = −2(q − 2)δab , Trad h(HiHb) = 0 .

Thus, we have

Tr%(HiHj) = −2q δij , Tr%(HaHb) = −2p δab , Tr%(HiHb) = 0 .

Therefore, to meet anomaly matching condition, we have only two cases when minimal

N = (0, 1) supersymmetric sigma models exist.

Case 1: p = 1, M = S q : Tr%(HaHb) = TrF (HaHb).

Case 2: p = q, M = SO(2p)/(SO(p)× SO(p)) : Tr%(HiHj) = pTrF (HiHj) .

The result on case 2 should have no further difficulty to be generalized to the case that H

contains more than two identical factors, H ' H1 ×H2 × · · · ×Hn.

For the anomaly on oriented real Grassmannian manifolds M , there is also another

interesting observation that helps verify our anomaly matching condition. Instead of con-

structing sigma models on SO(p+ q) followed by gauging its subgroup SO(p)× SO(q), one

can consider another fiberation,

SO(p)
i // Vq(Rp+q)

π //M ,

where Vq(Rp+q) ' SO(p+q)/SO(q) is the Stiefel manifold which is the set of all orthonormal

q-frames in Rp+q. Sigma models built on Stiefel manifold is always well-defined which

we will show in our next example. Here let us just assume it and consider how a real

Grassmannian sigma model can be constructed in the fiberation above.

In previous chapter, we introduced a dual formalism for O(N) model. With a little
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modification, we can work out the N = (0, 1) supersymmetric action on Grassmannian

manifold,

SM =
1

2g2
0

∫
d2xTr

(
(∇Rn)T∇Ln+ iψTL∇RψL

)
,

(nT )aαn
α
b = δab , (nT )aαψ

α
Lb = 0 ,

(4.3.25)

where nαa and ψαLa (α = 1, 2, ..., p + q), (a = 1, 2, ..., p), are real bosonic fields and their

chiral fermions partners, and the covariant derivative ∇ is defined as

(∇R,Ln)αa = ∂R,Ln
α
a − nαbAbR,La .

The model is obtained by gauging the color symmetries, i.e. those on indexes “a, b...”, of

the action on Stiefel manifolds. Thus action on Stiefel manifolds is obtained by removing

gauge fields, and loosing the constraints on n and ψL as

nTψL + ψTLn = 0 .

In standard (0, 1) superspace construction, one can introduce a super Lagrange multiplier

ΛaR b,

ΛaR b = λaR b + θRσ
a
b ,

with indexes a, b symmetrized. Thus, the super-constraint term is

Sc =

∫
d2x

∫
dθRTr ΛR(NTN − I) ,

where

N = n+ iθRψL

is the superfield version of fields n and ψL and I is the p×p unit matrix. The sigma model

on Stiefel manifold is given by

SV =

∫
d2x

∫
dθR

[
− 1

2g2
0

Tr
(
(DLN)T∂RRN

)
+ Tr ΛR(NTN − I)

]
.

Correspondingly, after gauging its “color” symmetry SO(p), we obtain sigma model on
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Grassmannian manifold M ,

SM =

∫
d2x

∫
dθR

[
− 1

2g2
0

Tr
(
(DLN −NVL)T (∂RRN −NVRR)

)
+ Tr ΛR(NTN − I)

]
,

where supergauge multiplets VL,RR were introduced in Eq. (4.2.19).

In fact the above two sigma models can be obtained by considering the (classically) low

energy limit ofN = (0, 1) two-dimensional gauge theories and Yukawa theories respectively.

We build the Yukawa theories as

SY =

∫
d2x

∫
dθR

[
− 1

2g2
0

Tr
(
(DLN)T∂RRN

)
+ Tr ΛR(NTN − I)

]
+

∫
d2x

∫
dθR

[
− 1

2λ2
0

Tr(ΛTRDLΛR)
]
.

(4.3.26)

It is noticed that the coupling constant λ0 has mass dimension for ΛR has mass dimension

3/2. In the low energy limit, we put λ0 → ∞, and obtain the action SV . In the sense

we can interpret the UV completion of the sigma model on Stiefel manifold is a Yukawa

theory, although the sigma model itself can be considered as a renormalizable theory in

two-dimensions.

Similarly, let us find the UV completion of SM by gauging the Yukawa theory SY and

adding gauge sectors. Noticing that the Yukawa interaction Sc is gauge invariant, we have

SY+V =

∫
d2x

∫
dθR

[
− 1

2g2
0

Tr
(
(DLN −NVL)T (∂RRN −NVRR)

)
+ Tr ΛR(NTN − I)

]
+

∫
d2x

∫
dθR

[
− 1

2λ2
0

Tr
(
ΛTR(DLΛR + [VL, ΛR])

) ]
+

∫
d2x

∫
dθR

[
− 1

4e2
0

Tr (WR(DLWR + [VL, WR]))
]
,

(4.3.27)

where WR is field strength of gauge potential VL,RR,

WR ≡ [DL + VL , ∂RR + VRR ] .

Couplings e0 and λ0 are of the same nonvanishing dimensionality, so in a low energy limit
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the last two terms fade away, and we obtain the sigma model SM on Grassmannian M .

Now due to the observation of t’Hooft’s consistency condition, we should expect that

SY+V and SM produce same anomalies or be anomaly-free. Therefore we focus ourselves on

the gauge fields and bi-fermions interactions of action SY+V and calculate their anomalies.

The relevant part of the Lagrangian is

Lf.A.f =
i

2g2
0

(ψTL)aα(∂RψL − ψLAR)αa +
i

2λ2
0

λaR b(∂Lλ
b
R a + [AL, λR]ba)

+
i

2e2
0

χR i(∂Lχ
i
R +Aj

LC
i
jkχ

k
R) . (4.3.28)

To see if there are gauge-anomalies produced, we need to consider a vector rotation and

compare the gauge anomalies from left and right fermions. For the right, since gauge fields

are in the fundamental representation and we also need sum up flavors, say α indexes, we

finally have:

AR ∼ (p+ q)TrF (HiHj) = −2(p+ q)δij .

On the other hand, gauge fields interacting with gauginos are in adjoint representation of

SO(p), and with λR are in the fundamental representation. We have:

AL ∼ Trad(HiHj) + (p+ 2)TrF (HiHj) = −4p δij

Therefore gauge anomaly vanishes only when p = q consistent with the result we obtained

for the sigma model.

This observation on the correspondence of anomalies in two-dimensional gauge theo-

ries and sigma models could be useful for considerations theories in deep infrared region.

We made some predictions in Sec. 4.3.2. We expect to verify them in anomaly-free gauge

theories, by considering Large N -expansion as well. We will present this work somewhere

else in the future.
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iii. (G×Ur(1)) /H for group G semi-simple and H simple, Toric varieties G/T r

Our third example is inspired by Eq. (4.3.24), by which we will show that for homoge-

neous space M=(G×Ur(1))/H with G semi-simple and H simple, the anomaly matching

condition Eq. (4.3.11) will be satisfied. Therefore, there always exists minimal N = (0, 1)

supersymmetric sigma model on them.

The proof of the above statement is quite transparent when both G and H are simple

groups. Since G and H are simple, their Lie algebras g and h will be simple, and, thus,

contain no non-trivial ideals. Therefore, their adjoint representation ad g and ad h are

irreducible respectively. By choosing an appropriate basis, generators Hi ∈ h will satisfy

to the following relations,

Trad g(HiHj)=−TGδij , Trad h(HiHj)=−THδij ; TrF (g|h)(HiHj)=−δij , (4.3.29)

where TG and TH are the dual Coxeter numbers of g and h respectively. Combining

Eq. (4.2.28) and Eq. (4.3.24), we have

Tr%(HiHj) = −(TG − TH)δij = (TG − TH)TrF (HiHj) . (4.3.30)

Now we can easily improve the above result. For G is semi-simple, the only differ-

ence is that we have distinguished normalization for its each simple factor. By assigning

independent coupling constants for each simple factors Gα ⊂ G, we can still normalize,

TrF (g|h)(HiHj) = −δij ,

as our convention. For adjoint representation of g, we have

ad g = ⊕αad gα .

Therefore, the first relation in Eq. (4.3.29) turns out to

Trad g(HiHj) = −
(∑

α

TGα

)
δij .
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On the other hand, since H is simple as before, the second relation of Eq. (4.3.29) holds.

Therefore

Tr%(HiHj) =

((∑
α

TGα

)
− TH

)
TrF (HiHj) .

At last, the subgroup H contains no U(1) factors, so the above result is thus unchanged.

Now let us apply this result to some typical examples. We simply enumerate some clas-

sical homogeneous (symmetric) space, satisfying the above condition, on which minimal

N = (0, 1) supersymmetric sigma model can be constructed.

1. G×Ur(1) with G semi-simple: For those chiral fermions on U(1) are free;

2. Real, complex and symplectic Stiefel manifolds:

SO(p+ q)/SO(p), SU(p+ q)/SU(p), and Sp(p+ q)/Sp(p) ;

3. SU(n)/SO(n), SU(2n)/Sp(n), and SO(2n)/Sp(n): All are symmetric spaces.

From the argument above, we see that the condition H is simple is crucial. In fact,

as we mentioned earlier, the anomaly matching condition is actually topological. In next

subsection, we will show, for example when H is simple, the first Pontryagin class p1(M)

will always vanish.

iv. H containing U(1) factors

Before proceeding to give a topological (characteristic class) explanation on anomaly

matching condition Eq. (4.3.11), we want to consider another type of homogeneous space

where the subgroup H in turn contains U(1) factors. We are motivated by realizing that,

when H contains U(1) factors, the homogeneous spaces will have complex structure, and

thus N = (0, 1) supersymmetry will be enhanced to N = (0, 2). Unfortunately, however,

we will see soon that many of these sigma models are suffered from non-removable anoma-

lies and thus do not exist.
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First we want to make some clarification on the method used in Sec. 4.3.1 to de-

rive the anomaly matching condition. Although the Polyakov-Wiegmann functional, see

Eq. (4.3.10), was given in the context of non-Abelian gauge theories, it is also true when

we have some Abelian U(1) gauge fields. For these Abelian gauge fields, labeled by Bi
R,LTi

for example, Ti ⊂ h commute with all other generators in h, and forms non-trivial center

of Lie algebra h. Therefore, in the fermionic anomalous effective action Eq. (4.3.10), there

is no WZW-like terms for them, but only the second one exists, i.e.,

Wanom. = − 1

24π

∫
h̃(B)

Tr%(h̃
−1dh̃)3 +

1

16π

∫
Σ

d2x Tr%ωR(h̃−1∂Lh̃+ ∂Lu
iTi) ,

where h̃ as before parameterize those non-Abelian gauge fields AR, while ui for Bi
R satisfies

Bi
RTi = ∂Ru

iTi .

Meanwhile, the counterterm (4.3.12), which we are able to add, will be also transformed

under Abelian gauge rotation. Therefore, the anomaly matching condition will be the same

as before.

Nevertheless it is because of the discrepancy above, we will show in the following that

the anomaly matching condition can never be fulfilled for H = H ′×Ur(1) with H ′ is semi-

simple. Therefore lots of minimal N = (0, 2) supersymmetric sigma models, for example

complex Grassmannian manifolds U(p+ q)/(U(p)×U(q))(except for CP1), are ruled out.

The proof is quite straightforward. With no loss of generality, let us only consider

H = H ′×U(1) with that both G and H ′ are simple Lie groups. From a previous result,

Eq. (4.3.30), we see that, for H ′i,j ∈ h′

Tr%(H
′
iH
′
j) = (TG − TH′)TrF (HiHj) ,

for [H ′i , T ] = 0 and has no contribution to above equation, where T is the generator of

U(1). For the same reason,

Tr%T
2 = Trad gT

2 − Trad hT
2 = Trad gT

2 = TGTrFT
2 .
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The anomaly matching condition is, thus, not satisfied. This finishes our proof.

A corollary we can obtain is that, for homogeneous spaces M = G/T r with T = U(1)

the torus group, anomaly matching condition Eq. (4.3.11) is satisfied. Therefore minimal

N = (0, 2) supersymmetric sigma models on G/T r can be well-defined.

4.3.4 Topological origin of anomaly cancellation

In this subsection, we will establish a relation between the (local) anomaly matching con-

dition and the global topological property of homogeneous spaces M = G/H. More con-

cretely, we will show that the anomaly matching condition Eq. (4.3.11) will be satisfied if

and only if the first Pontryagin class on M vanishes, i.e. p1(M) = 0, which thereby agrees

with Moore-Nelson’s constraint in case of homogeneous spaces [56].

The main argument is based on a proposition in [89], see Prop. (3.2), and a main

theorem due to Borel and Hirzebruch, see Theorem 10.7 in [90]. We here only rephrase

the result in terms of anomaly matching condition Eq. (4.3.11). The idea can be intuitively

interpreted by Eq. (4.3.24),

Tr%(HiHj) = Trad g(HiHj)− Trad h(HiHj) .

Since we always can, by rescaling coupling constants, require the equality

Trad g(HiHj) = c′TrF (HiHj) ,

the anomaly matching condition is thus equivalent to

Trad h(HiHj) = c′′TrF (HiHj) ∼ Trad g(HiHj) , (4.3.31)

where c′ and c′′ are some constants. Now that we evaluate the traces in h and g-adjoint

representations, one can express them by means of group theoretical invariants, say sym-

metric functions of roots for h and g respectively. These symmetric functions are directly

related to characteristic classes of M . We will explain that, when Eq. (4.3.31) is satisfied,

the first Pontryagin class p1(M) = 0 .

In the following, G is assumed to be a compact connected Lie group, H a closed
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subgroup of G, and T ⊂G and S ⊂ H are maximal tori of G and H respectively, chosen

properly so that S⊂T . Let s⊂ t be corresponding Lie algebras of S and T , say the Cartan

algebra of H and G. We further set {β1, ..., βs} ⊂ s∗ and {α1, ..., αt} ⊂ t∗ as positive roots

in respect to H and G, and arrange them satisfying

β1 = α1|s , β2 = α2|s , . . . , βs = αs|s ,

and define

γ1 ≡ αs+1|s , γ2 ≡ αs+2|s , . . . , γt−s ≡ αt|s ,

which are called the roots complimentary to H. With the help of roots, one can rewrite

the traces in Eq. (4.3.31) on generators Si ∈ S ⊂ H and Ti ∈ T ⊂ G as

Trad h(SiSj) =
s∑
b=1

βb(Si)βb(Sj), and Trad g(TiTj) =
t∑

a=1

αa(Ti)αa(Tj) .

Therefore the trace operator can be expressed in terms of quadratic symmetric polynomials

on
∑
α2
a or

∑
β2
b on Cartan algebra s and t respectively. Actually it is sufficient to focus

ourselves only on the Cartan algebra s and t. It is because that, in our case, Lie algebra h

and g can be always regarded as direct sum of several simple algebras and u(1) factors. For

each simple factor, with proper basis (Cartan-Weyl basis for example), evaluation of trace

on Cartan algebra and other generators can be normalized same, but not same among

different simple factors.

On the other hand, one can identify {γc}, the set of complimentary to H roots,

with H1(S;Z), the first cohomology class of tori S, since they are integral functionals

in Hom(π1(S), Z) = Hom(H1(S;Z), Z). The H1(S;Z) can be further identified with

H2(BS;Z) via transgression, where BS is the classifying space of tori S. Therefore, com-

plimentary roots {γc} will be considered as elements in H2(BS;Z). In what follows we will

only work under real cohomology which will considerably simplifies our argument. First,

the inclusion map

i : S → H
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induces an isomorphism i∗ on the cohomology rings of BH and BS ,

i∗ : H∗(BH;R) ' H∗(BS;R)W (S,H) , (4.3.32)

where H∗(BS;R)W (S,H) denotes those elements invariant under Weyl group W (S,H). Sec-

ondly, from the universal fiberation:

G
i // EG

π // BG ,

we have the fiberation by module H,

G/H
j // BH

q // BG .

It induces the exact cohomology classes chain

H∗(BG,R)
q∗ // H∗(BH;R)

j∗ // H∗(G/H;R) .

Since T(G/H) is the vector bundle associated to H-principle bundle, see Eq. (4.2.32),

the total Pontryagin classes p(G/H) are pullback elements from some universal elements

a ∈ H∗(BH;R) ,

p(G/H) = j∗(a) .

Now, with the identification in Eq. (4.3.32), we can express elements a ∈ H∗(BH;R) in

terms of symmetric functions of complimentary roots γc in H∗(BS;R)W (S,H) ,

a =

t−s∏
c=1

(1 + γ2
c ) .

Specific to the first Pontryagin class p1(G/H), we have

p1(G/H) = j∗
( t−s∑
c=1

γ2
c

)
.
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From the exact sequence a vanishing p1 is equivalent to

t−s∑
c=1

γ2
c ∈ Im q∗ .

At last, it is noticed that
t−s∑
c=1

γ2
c =

t∑
a=1

α2
a|s −

s∑
b=1

β2
b ,

while similar to Eq. (4.3.32), we have an isomorphism on BG and BT ,

H∗(BG;R) ' H∗(BT ;R)W (T,G) .

Since
∑
α2
a is always in H∗(BG;R), the condition p1(G/H) = 0, or say

∑
γ2
c ∈ Im q∗, is

equivalent to requirement
∑
β2
b ∈ Im q∗. It is just the anomaly matching condition (4.3.31).

4.4 The determinant line bundle of homogeneous space sigma

models

The aim of this section is twofold. On the one hand, we would like to see in the nonlinear

formulation, how much our understanding of gauge anomalies can benefit us in understand-

ing anomalies in a pure geometric model. Isometries on Riemannian manifolds come in

various cases, where some gauge formulation is far from reaching. Still one would like to

understand, for example, the relation between chiral anomalies, isometry anomalies and

topological anomalies. On the other hand, so far as sigma models on homogeneous spaces

are concerned, we would like to see how could the gauge-like holonomy anomalies rise in

a view toward determinant line bundle of certain Dirac operators parameterized by the

space of bosonic field. The hope is to gain a full picture that touches each of the four cor-

ners: local vs global, gauge vs nonlinearity. A context like this can be useful in exploring

interesting mathematical structures that closely tied up to each corners.
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4.4.1 A digression on Kähler sigma model anomaly

in Fujikawa’s method

Here we shall look at the issue of local anomaly in geometric formulation. Isometries in

our system form a subset of the diffeomorphism group of the target manifold, which is ac-

complished via field-redefinition alone. We would like to explore, whether such symmetries

remain in the quantized system, and what does the anomaly imply. Since we shall not be

dealing with unphysical degree of freedom, this is similar to the case of axial anomaly and

thus Fujikawa’s method can be generalized to our current situation.

We first clarify the types of manipulations we shall use in the discussion. Consider a

vector field on X, which locally is given by V = Ki(x)∂i, where xis are the local coordinates

on X. There are two possible manipulations that can be induced by V — namely the field

redefinition and the infinitesimal diffeomorphism. The former is via

φi → φi + εKi(φ)

where φ ∈ C∞(Σ, X) is a bosonic field. Since this does not correspond to any symmetry in

the action, this shall generally change the interaction. However, the field redefinition is a

valid manipulation in field theories which should not cause any observational phenomena.

The reason is that one can always get a contribution from the Jacobian of the path integral

measure to overcome the change. The diffeomorphism transformation, on the other hand,

is the aforementioned field redefinition together with the induced tensorial transformation

for all geometric quantities. For example, under such transformation, the metric tensor

transforms according to

gij(φ)→ gij(φ)
∂φi

∂φk + εKk(φ)

∂φj

∂φl + εK l(φ)
,

and ∂φi transforms as a tangent vector. This definitely preserves the Lagrangian at the

classical level. But in field theory language, when one interprets gij as a function of the

field φ, there will also be an accompanying transformation for the “coupling constants”

of φ in gij . To make sense of those, one can view those (infinite number of) constants

as background fields damped at classical values. The path integral measure would need
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further justification. This, however, is not the case that we are interested in.

The isometry symmetries are a subset in both classes. Defined solely by field redefini-

tion, it satisfies the property that

gij(φ)
∂φi

∂φk + εKk(φ)

∂φj

∂φl + εK l(φ)
= gkl(φ+ εK(φ)) +O(ε2) (4.4.1)

and hence preserves the Lagrangian at the classical level. The same is true for the quantum

bosonic model, and this is a pure consequence of the property of field redefinition. Indeed,

we are forced to have that the Jacobian from path integral measure cancels the anomalous

effective action. But a perturbative calculation shows that the effective action respects the

isometry, thus forcing the path integral measure to respect the same symmetry up to an

overall factor. Indeed, one can see this explicitly by writing down explicitly the measure,

where we have used a standard volume form [Dφ] on X associated to the metric g,

[Dφ] =
√

det gij dφ
1∧ · · · dφn . (4.4.2)

If our model is coupled with chiral fermions, the path integral measure might not

preserve such symmetries, and if this is true, nor shall the effective action after integrating

out the fermions. This is the anomaly that we are interested in.

In supersymmetric models with target manifold X, fermions take value in the tangent

bundle TX. To build the path integral measure, one has to contract the indexes on TX

using a standard volume form. Together with the contribution from the bosonic part, we

have that

[Dψ] =
1√

detgij
dψ1

L · · · dψnLdψ1
R · · · dψnR . (4.4.3)

Note that ψR are decoupled from our system, and we write them down to show the com-

parison between our case, and the nonchiral case. Also to use Fujikawa’s method, it is

important to have Dirac fermions. Now we perform the isometry transformation induced
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PLψ
i PRψ

i

ψ̄j̄PL 0 δij̄

ψ̄j̄PR gij̄ 0

Table 4.1: The metric used in fermion path integral measure in curved indices.

by the Killing vector field KA, where the index A labels isometries:

φi(x)→ φi(y) + εA
∫

d2xKi
A[φ(x)]δ(x− y) ,

ψiL(x)→ ψiL(y) + εA
∫

d2x ∂jK
i
A[φ(x)]δ(x− y)ψjL(y) .

(4.4.4)

Note that the transformation is linear with respect to the fermionic degrees of freedom.

Indeed, we can learn from the case of chiral anomaly that, as far as only the local anomalies

are concerned, it is really the phase factor of such transformation that matters.

Let us suppose we have Weyl fermions. Also from here to the end of this section,

we shall assume the target manifold to be Kähler, to get the most elegant result. Write

explicitly the path integral measure as

[Dψ] =
1√

detG
dψ̄1̄dψ1 · · · dψ̄n̄dψn , (4.4.5)

where each ψ has two components ψL and ψR. The metric G expanded in basis of

PLψ, PRψ, ψ̄
j̄PL, ψ̄

j̄PR is given by Table. 4.4.1. Hence

detG = det gij̄ . (4.4.6)

Now under the transformation

ψi(x)→ψi(y)+εARe(∂jK
i
A[φ(y)])PLψ

j(y)+iεAIm(∂jK
i
A[φ(y)])PLψ

j(y) ,

ψ̄ī(x)→ ψ̄ī(y) + εARe(∂j̄K̄
ī
A[φ̄(y)])ψ̄j̄(y)PR + iεAIm(∂j̄K̄

ī
A[φ̄(y)])ψ̄j̄(y)PR

= ψ̄i(y) + εARe(∂jK
i
A[φ(y)])ψ̄j̄(y)PR − iεAIm(∂jK

i
A[φ(y)])ψ̄j̄(y)PR .

(4.4.7)

Recall that the Jacobian, as in the pure bosonic case, has only nontrivial real part, which

cancels the change of dψ and dψ̄ induced by Re(∂jK
i
A[φ(y)]). But the transformation
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induced by Im(∂jK
i
A[φ(y)]) is anomalous. The situation here is precisely the same as in

case of chiral anomaly, and for the time being, we take the bosonic degrees of freedom to

be external, or classical.

In Fujikawa’s method, infinitesimal isometry transformation gives the following extra

factor for the fermion integral measure:

δεA (det iD) [φ, φ̄] = exp
(
− iεA

∫
d2xTr[Im(∂jK

i
A[φ(x)])γ5]

)
, (4.4.8)

where the trace is taken over the basis from the right eigenstates of the Dirac operator

iDij̄ ≡ i
(
gij̄ /∂ + gjj̄Γ

j
ik
/∂φk
)
PL + i/∂δij̄PR = i /DPL + i/∂PR (4.4.9)

and its left eigenstates. Evaluation of Eq. (4.4.8) is in general hard, due to the nonflatness

of gij̄ and the bosonic degree of freedom. But for the result in 2d, as an analog to the

gauge theory case [68], we obtain that, up to the lowest order in external fields,

δεiΓeff [φ] =
iεA
4π

∫
Im(∂kK

l
A)R k

ij̄l dφ
i ∧ dφ̄j̄ + higher order terms in Γi

jk . (4.4.10)

Indeed, we only need the leading term from ∂̄j̄Γ
k

il , which is also, up to a sign, the leading

term of the curvature tensor Rij̄kl̄. Note that there is a special feature of nonabelian

anomaly (or, correspondingly, the linear isometry anomaly)— if one only cares about the

lowest order in the “gauge” field A (or, correspondingly, the Christoffels Γ), then the

contribution for nonabelian anomaly is, up to a constant factor, the same as the abelian

anomaly [68, 92]. This shows why the anomaly diagram in perturbative calculation looks

similar to the one involved in axial anomaly. The constant factor, in 2n dimensional

spacetime, might depend on the kinematics of the (n + 1)-gon Feynman diagrams. But

in 2d case this is extremely simple. To determine the full structure of such anomaly, one

can either do a thorough calculation of Eq. (4.4.8), or use an argument like Wess-Zumino

consistency condition as mentioned in [68].

Now we calculate the explicit form of Eq. (4.4.10) using the second method. Recall that

the abelian anomaly for a nonlinear sigma model over a Kähler target manifold in 4d is
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given by

Tr
[
R2
]

= (R m
ij̄ nR n

kl̄ m +R n̄
ij̄m̄R m̄

kl̄n̄ )dφi ∧ dφ̄j̄ ∧ dφk ∧ dφ̄l̄ . (4.4.11)

This combination is invariant with respect to isometry transformation, and lifts up to a

cohomology class. So locally there is a 3-form ω0
3 such that dω0

3 = Tr
[
R2
]
. Note that

making use of Kähler geometry, the bootstrapping procedure is similar to that of non-

abelian gauge theories [63], if we consider the following relation:

R m
ij̄ ndφ

i ∧ dφ̄j̄ = −dΓmn − Γmb ∧ Γb n , Γmn ≡ gmā∂ignādφi . (4.4.12)

The isometry transformation is induced by the Killing vector field on the target manifold,

which gives,

δεA = dKA +KAd , (4.4.13)

where the vector field is of the form

KA = Ki
A∂i + K̄ ī

A∂̄ī . (4.4.14)

Using the fact that the Kähler metric is compatible with the Killing vector fields, we get

that

δεAΓmn = −∂(∂nK
m
A )− ∂nKa

AΓma + ∂aK
m
A Γa n ≡ −d(∂mK

n
A)− [Γ, ∂KA]mn . (4.4.15)

Finally we have that δεAω
0
3 = dω1

2[KA], which bears the form

ω1
2 ∝

(
∂mK

n
AdΓmn − ∂̄n̄K̄m̄

A dΓ̄ n̄
m̄

)
. (4.4.16)

This, at the first order level, coincides with Eq. (4.4.10).

4.4.2 Global vs local anomalies from geometric point of view

In this subsection we shall discuss technical points of the previous calculation, and then

deduce the relation between global and local anomalies.

Indeed, we cheated a little in the previous calculation of the anomaly, and what has been
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hidden is the discussion on geometric condition for the anomaly. Notice that the Dirac

operator D, when restricted to the spin bundle on worldsheet, changes the helicity and

hence maps ψL to ψR. However it is not self-composable. This is because in our definition

for D, ψL lives in the tangent space of a curved target space, while ψR lives in a flat space.

One consequence of this problem is that we actually do not have a precise definition for

the functional determinant of D. This problem can be easily cured by choosing a local

diffeomorphism E [φ, 0] : TX → TCm and E−1[0, φ] : TCm → TX.12 Note the parameter 0

and φ in E merely indicates that ψR is decoupled, and ψL is coupled to φ. Then we can

compose D to obtain an elliptic operator whose image and source are the same Hilbert

space:

D2 := E /DPLE−1/∂PR + E−1/∂PRE /DPL . (4.4.17)

The functional determinant can now can be defined, and a regulator is introduced, by

having that

δεA (detiD) [φ, φ̄] = limM→∞exp
(
− iεA

∫
d2xTr

[
Im(∇jKi

A[φ(x)])γ5f
(
D2/M2

)])
(4.4.18)

for a smooth function f(x) on R such that f(0) = 1 and f(∞) = 0.

Before proceeding to calculation, we immediately sense a problem, that the maps E
and E−1 are only locally defined. Now if we want to patch the map to make it fibers

nicely over the space of bosonic field C∞(Σ, X) without ambiguity, we would have to view

δεA (detiD) [φ, φ̄] firstly as a complex line bundle, and impose the trivialization condition.

In fact, one needs no worry here, if the aforementioned model is free of Moore-Nelson

anomaly [56]. In their work, the condition to trivialize the line bundle (det iD) [φ, φ̄] has

been given. Suppose our model satisfies their condition, then (det iD) [φ, φ̄] is a function

of φ ∈ C∞(Σ, X), so is δεA (detiD) [φ, φ̄]. To conclude here, the vanishing of Moore-Nelson

anomaly implies that there is no global obstruction for isometry.

Next, we shall look into the local anomaly. Now we consider the functional determinant

(det iD) [φ, φ̄] to be a function of φ ∈ C∞(Σ, X), then the variation of δεA was induced by

a vector field on C∞(Σ, X). Locally we need that there exists a Lie algebroid structure

on TC∞(Σ, X) induced by the infinitesimal isometry on X, i.e., there is a subspace of

12 The diffeomorphisms E and E−1 are precisely the isomorphisms T (+) and T (−) used in Section 2 of [56].
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TC∞(Σ, X) over C∞(Σ, X), which has a Lie bracket coming from the Lie brackets of Killing

vector fields on X. This says that, the Lie algebra action can be realized on (det iD) [φ, φ̄],

i.e., [δεA , δεB ] = fCAB[φ, φ̄]δεC . Solving the Wess-Zumino consistency condition is equivalent

to writing down the explicit form of the effective action (with a counterterm added) as a

local functional.

4.4.3 The determinant line bundle analysis

In previous section, we have seen that the relation between isometry anomaly, and the

global anomalies for Kählerian manifolds is the following. Once the global anomaly is

absent, the functional determinant can be viewed as a function, as opposed to a section of

a complex line bundle, over the space of bosonic field. Then, the isometry variation of the

theory is via some selected vector fields acting on the determinant (ie, the effective action).

The Wess-Zumino condition is then automatically satisfied. In the process of canceling the

isometry variation, the counterterm is predicted indeed by the trivialization of a 4-form

which represents the first Pontriyagin class.

We want to clarify here when we have Hermitian vector bundles over a Kähler manifold,

what do we mean by the first Pontryagin class. Indeed, the argument of [56] gave the

anomaly in terms of a second real Chern character, which by definition is defined on real

vector bundles by taking the complexification first, and then apply the complex Chern

character. In this way, one verify that for real vector bundles, this second real Chern

character precisely gives p1 of the bundle, and in case of a complex vector bundle, this

gives 2 ch2 of the complex bundle.

Using Chern-Weil construction, choosing a connection Θ over the bundle E one sees

clearly that the 4-form representing the obstruction is∫
Y×Σ

ev∗tr
[( i

2π
RΘ
)2]

,

where Y is an arbitrary 2-cycle in the space of bosonic field C∞(Σ, X) and ev is the

evaluation map

ev : Σ× C∞(Σ, X)→ X .

We want to trivialize the expression, and one of the sufficient condition is that ch2
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vanishes before we pulling it back. This Chern-Weil form of ch2 can always be locally

trivialized by the Chern-Simons transgression 3-form CS(Θ) on X. Moreover, if ch2 is

trivial, the Chern-Simons form is globally defined on X. Then we there is guarantee that

the isometry variation of CS(Θ) is trivialized by a 2-form, which is able to compensate the

anomalous transformation of the functional determinant ,

δαCS(Θ) = d(ω2) , ω2 = tr(αdΘ) ∼ δαΓeff .

So the counterterm in this case is given by CS(Θ). If further more the Chern-Weil form

turns out to be trivial, then CS(Θ) is a closed form, representing a cohomology class

in H3(X;Q). Then the counterterm to be added is genuinely 2-dimensional, which is

determined by

CS(Θ) = dΩ2 ,

δαCS(Θ) = d(δαΩ2) = d tr(αdΘ) .
(4.4.19)

Next we explain why holonomy anomaly, as arise genuinely from a gauge description,

can be viewed as the nontriviality of certain determinant line bundle, the latter been

discussed extensively by [56] and [74].

Starting with the bosonic field g ∈ C∞(Σ, G) of the theory, we have that

ev : C∞(Σ, G)× Σ→ G , (g, x) 7→ g(x) ,

and at the level of differential forms, we also have a pushforward map

e∗ : Ω∗(C∞(Σ, G)× Σ)→ Ω∗(C∞(Σ, G))

induced by integration along Σ. The classical action of the theory should be viewed as a

dimΣ-form on C∞(Σ, G)×Σ pushed down to Ω∗(C∞(Σ, G)), and hence is a function of the

field. Path integral quantization amounts to say that there is also a certain pushforward

map by integrating along C∞(Σ, G). As we do not have applicable mathematical tools to

rigidify the process, we shall just consider it as given by the canonical quantization.

To build a coset model using chiral gauge method, we introduce a gauge field A coming
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from a connection in Conn(adhP ) for an adjoint h-bundle of H→P→Σ , and now the

bosonic field g is promoted to smooth sections g∈Γ(Σ, P×HG). When the bundle P has

a global section, g can be viewed as a G-valued smooth map from Σ. In the following

analysis, we shall use a local trivialization of P to write g as a smooth map U → G for

U ⊂ Σ while keep in mind the nontrivial gluing of g across open covers of Σ.

The infinite dimensional topological group C∞(Σ, H) acts on the space of fields:

C∞(Σ, H)× Γ(Σ, P ×H G)→ Γ(Σ, P ×H G)) : (h, g) 7→ gh ,

and

C∞(Σ, H)× Conn(adhP )→ Conn(adhP ) : (h,A) 7→ h−1Ah+ h−1dh .

The action is a functional over the space of field, which is invariant with respect to gauge

transformation, and thus is a functional over the orbit space of diagonal action of gauge

transformation, which we call the reduced space of field

Γ(Σ, P ×H G)×C∞(Σ,H) Conn(adhP ) .

Note that the gauge group acts on the bosonic field freely, so the quotient space can be

taken as the honest orbit space without invoking ghost degree of freedom.

Now the gauge fixing is a local functional f over the un-reduced space of field whose

critical locus intersects C∞(Σ, H)-orbits transversely. By solving out the gauge fixing con-

dition, one picks out a unique element in Γ(Σ, P ×HG) for each orbit, and correspondingly

the action functional will be restricted to Crit(f)×Conn(adhP ), which models the reduced

space of bosonic fields. In the gauged formalism of bosonic homogeneous space sigma mod-

els, one fixes the gauge by asking the connection to be particular one pulled-back via g from

the principal H-bundle π :G → G/H. Note that G → G/H is a Riemannian submersion,

and hence this gives a subbundle π∗T (G/H) ⊂ TG. Now the Maurer-Cartan form splits

into spin connection on G/H and the vielbein 1-form

g−1dg = ωiHi + eaXa . (4.4.20)

We now describe the fermions coming from (0, 1) supersymmetry. Those are, from the
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target side, sections of vector bundles associated to the principal H-bundle via the isotropic

representation % where adg = adh⊕ % as before.

Let SL, SR denote the bundles associated to Spin(Σ) with half spin representation, and

we have that

ψ ∈ Γ(Σ, SL ⊗ g∗G×% m) , g ∈ Γ(Σ, P ×H G) ;

DRR : Γ(Σ, SL ⊗ g∗G×% m)→ Γ(Σ, SR ⊗ g∗G×% m) .

There is also a linear gauge group action on fermions induced from the isotropic H-

actions on %. And due to the pull-backing of g ∈ Γ(Σ, P ×H G), the gauge connection A

is coupled to ψ. The Dirac operator we need to consider comes from a Dirac operator on

the pulled-back bundle of TG

D%⊕ad h
RR = ∂RR + g−1∂RRg +ARR ,

whose component in the isotropy representation is

(D%
RR)ab = ∂RRδ

ab +
1

2
Cabi (AiRR + ωiRR) +

1

2
Cabc e

c
RR . (4.4.21)

The operator is parameterized by Γ(Σ, P ×H G)×Conn(adhP ) and is gauge covariant.

If there is no chiral fermion anomaly, taking the functional determinant of it should result

in a gauge invariant expression, and thus descending down to a functional over Γ(Σ, P ×H
G)×C∞(Σ,H) Conn(adhP ). The presence of fermionic anomaly is because of the fact that

the fermionic effective action might be a section of a nontrivial complex line bundle over

the space of fields for two reasons. Firstly, it is possible that the effective action is a line

bundle already over the un-reduced total space Γ(Σ, P ×H G) × Conn(adhP ) even before

we check the gauge invariance; and secondly, it is possible that the nontriviality of the

anomaly comes from the failure of descent condition at quantum level.

Repeating the analysis in [56], one knows that the line bundle is characterized by its

first Chern class, which, upon integrating over a two-cycle in the space, gives the Chern

number. In this way, one reduce the task of understanding the infinite dimensional space

of field Γ(Σ, P ×H G)×C∞(Σ,H) Conn(adhP ) to an arbitrary 2-dimensional 2-cycles in it.

We need to be more specific about the choice of 2-cycles. It is hard to lift up a 2-cycle
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from the base to the larger space precisely because the interaction between the 2-cycle

in the base, and the gauge group. But here we have some convenient choice because of

the special form of the Dirac operator. Note that the connection-dependence of the Dirac

operator decouples into two parts

A1 =
1

2
(ωRR −ARR) , A2 = ARR|% +

1

2
eRR ,

the former is covariant with respect to gauge transformation, while the latter is not. In

fact, A1 is the difference of two connections on the very same bundle P → Σ . This is

based on two facts: 1) ω is a principal H-connection on G→ G/H; and 2) a section of the

associated bundle P ×H G → Σ can be used to pull the connection back to P → Σ. To

understand how the connection can be pulled back, it is enough to see that the sections

pullback via g ∈ Γ(Σ, P ×H G), which is obvious. Along this line, one can view an element

in Γ(Σ, SL ⊗ g∗G ×% m) as one in Γ(Σ, SL ⊗ P ×% m). A characteristic computation at

rational cohomology level would not depend on A1. Now the analysis from determinant

line bundle says that the anomaly is given by∫
Y×Σ

Â(Y × Σ) · ev∗ch(FA2) .

The space Y is a 2-cycle in the space of bosonic fields. On the one hand, if we ask

Y to be a 2-sphere in Γ(Σ, P ×H G) which intersects gauge orbits transversely, then this

expression gives rise to the known p1 anomaly condition. If we take Y to be a 2-sphere

suspended from gauge orbit [68], and use ARR as a representative for A2, this gives the

condition on non-abelian chiral gauge anomaly as shown in Sec. 4.3.1.
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4.5 Conclusion and outlooks

In this chapter we systematically study the anomalies in minimal N = (0, 1) and (0, 2)

supersymmetric sigma models on homogeneous spaces. The investigation starts from our

previous obersvation [39] on isometry/gauge anomalies correspondence for the sigma mod-

els realized in non-linear/linear gauged formalisms respectively. It leads us to consider

more general holonomy anomalies and how to remove them.

Following Polyakov and Wiegmann, we systematically explore the anomalous fermion

effective action and obtain its explicit form. Later, in the procedure of mending the anoma-

lous action, we derive an anomaly matching condition as criteria to sieve out ill-defined

models. This condition is equivalent to the global topological constraint of p1(G/H) thor-

oughly discussed by Moore and Nelson [56]. More importantly and surprisingly, we demon-

strate that these local counterterms will further modify and constrain the behavior of the

“curable” theories in deep IR region. Supersymmetry will be broken in some theories,

whereas some others flow to nontrivial infrared superconformal fixed points.

In addition to the general discussion above, we also analyzed various concrete examples,

applying the anomaly matching condition to different types of G and H. We find that most

survived minimal models are N = (0, 1) supersymmetric, while N = (0, 2) minimal models,

due to their nontrivial center in H, are typically topologically obstructed.

We also reveal an interesting correspondence between two-dimensional N =(0, 1) mini-

mal sigma models and gauge theories, analogous to t’Hooft’s anomaly matching observation

in the four-dimensional case. Finally, we discussed the isometry/holonomy anomalies and

the anomaly matching condition from the standpoint of determinant line bundle. We ob-

tained a more general expression on the anomaly equation with the help of a more powerful

mathematical tool operative in fields configuration spaces.

Because of the simplicity of the fermion sector in the minimal models we should expect

that these models would be either destroyed or strongly constrained by anomalies. This

expectation is more or less substantiated in this chapter: our refined treatment of the

anomalies and their remedies displays very interesting features of the minimal N = (0, 2)

and (0, 1) sigma models. Our subsequent work will continue along these lines. It should be

interesting to work out some solid examples to further verify our results on the low-energy
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behavior of the minimal sigma models. Good candidates include models on G/T r (not nec-

essarily maximal tori), since the complex structures on them will enhance supersymmetry

to N = (0, 2), which makes them particularly easy to handle.

On the other hand, it is also noteworthy that the N = (0, 1) minimal sigma model on

SO(2p)/(SO(p) × SO(p)) corresponds to a N = (0, 1) two-dimensional gauge theory with

the gauge group SO(p). It is, thus, interesting to ask whether or not every curable minimal

model will have its corresponding gauge theory, and how to find them. Investigating these

gauge theories may also shed light on the minimal sigma models, and vice versa. We expect

to answer some of these questions in the subsequent works. If one further considers the

dynamics of gauge fields, we’d expect that the different formulations (nonlinear v.s. gauge

formalism v.s. dual formalism, etc) leads to different quantum theories, which are possibly

connected by phenomena like dualities, which indicates an interesting direction to pursue.

Especially, for O(N) models, it has been known that both the bosonic and the N = (1, 1)

theories are integrable at quantum level. It is thus interesting to consider the integrability

for N = (0, 1) models. With the help of gauge freedom, the problem is actually easier, the

dual formalism deserves more thorough study in this respect.

Besides, the gauge/isometry anomalies correspondence also highlights for us the consis-

tency check of sigma models from its linear gauge formalism. In the case of the fibration:

U(1)→ S2N−1 → CPN−1,

as we have shown, the inconsistency of the CP(N − 1) model can be interpreted as a

non-removable U(1) gauge anomaly. Following this line of reasoning, we may consider, for

example, the following fibration

Z2 → SN−1 → RPN−1.

It requires one to gauge the discrete Z2 symmetry to define sigma models on RPN−1 dis-

tinguished from SN−1. We hence can ask if there are any further esoteric global anomalies,

due to chiral fermions, that exists for minimal N = (0, 1) sigma models defined on these

manifolds. It is quite an analog of Witten’s global SU(2) anomaly in four-dimensional

gauge theories as we mentioned in the beginning of last chapter 3. In literatures similar
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problems on anomalies of global (gauge) symmetries have been considered both in field

theories and condensed matter [43, 75–77]. It is worth asking, both physically and mathe-

matically, to investigate if discrete gauges also produce anomalies and their criteria raised

in the context of both chiral gauged linear and nonlinear sigma models.

Last but not least, there is also a seemingly interesting geometric problems arising from

RG flow constrained by anomalies. In the beginning of the chapter, we mentioned that the

isotropy representation on G/H are usually reducible. Physically speaking, each irreducible

summand corresponds to a coupling constant. The isometric invariant metrics on G/H are

thus modulied by these constants. The argument of conformal fixed point seems to imply

that these parameters are further constrained. On the other hand, RG flow is nothing but

Ricci flow, at least up to one-loop order. It hence might be legitimate to ask if geometries

on G/H are also modified quantum mechanically through the renormalization flow.
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Appendix A

Notation

We define the left-moving and right-moving derivatives as

∂L ≡ ∂LL ≡ ∂t + ∂z , ∂R ≡ ∂RR ≡ ∂t − ∂z . (A.1)

Correspondingly, the light-cone coordinates are

xL = t− z ≡ x0 − x1 , xR = t+ z ≡ x0 + x1 . (A.2)

We use the following definition for the superderivatives:

DL =
∂

∂θR
− iθ†R∂LL , DL = − ∂

∂θ†R
+ iθR∂LL . (A.3)

Their anticommutator gives {DL, DL} = 2i∂LL .

In the bulk of the paper we do not use θL and DR. Hence we can omit the indices in

(A.3),

θR → θ , DL → D =
∂

∂θ
− iθ† ∂L , DL → D= − ∂

∂θ†
+ iθ ∂L . (A.4)

We will consistently use the notation (A.4). Our normalization of the Berezin integral is∫
dθ θ = 1 , (A.5)
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and ∫
d2θ ≡

∫
dθdθ† . (A.6)

In passing from the ordinary to the light-cone coordinates we must also change the

components of Lorenz vectors, tensors, etc. For instance, for the supercurrent we have

sL;L = sLLL = (s0
L + s1

L)/2 , sR;L = sRRL = (s0
L − s1

L)/2 . (A.7)

Moreover, for the energy-momentum tensor Tµν ,

TLL = TLLLL = T00 + T10 + T11 + T01 ,

TLR = TLLRR = T00 + T10 − T11 − T01 ,

TRL = TRRLL = T00 − T10 − T11 + T01 ,

TRR = TRRRR = T00 − T10 + T11 − T01 . (A.8)



Appendix B

Calculation of ∆κL

In this Appendix a detailed calculation of the crucial diagram presented in Fig. 2.1 is given.

In the coordinate space it proceeds as follows (the target space indices which go through

are suppressed). We start from the |κ|2 correction to the action,

∆κS =

∫
d2x∆κL =

∫
d2x d2y ∂Lφ

†k̄(x)Gik̄(x)Πij̄
RR(x, y)Glj̄∂Lφ

i(y) , (B.1)

where the polarization operator and its expression via Green function is defined in Eq. (2.2.23).

We choose the background field φi in the form of the plane wave,

φi(x) = f i e−ikx , (B.2)

where f i are constants. In such field the fermionic part of the action takes a form,

SF =

∫
d2x
[
Zζ†R

(
1 +

∂µ∂
µ

M2

)
i∂LζR + Zψ†j̄Gij̄

(
iδik∂L + ΓikkL

)
ψk

+
(
κe−ikxζRψiRGij̄f

†j̄kL + H.c.
)]
.

(B.3)

Here Gij̄ = Gij̄(f, f
†) and Γik = Γilk(f, f

†)fk are x-independent matrices. Here we also

introduced an UV regularization by higher derivatives in the propagator of ζR. The Fourier
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transform of this propagator is

Sζ(p) =
i

Z pL
M2

M2 − p2
. (B.4)

The Fourier transform of the ψR propagator is

Sij̄ψR =
i

Z

[
1

pL I + kL Γ

]i
k

Gkj̄ (B.5)

Then for the Fourier transform of the polarization operator Πij̄
RR we have

Πij̄
RR(k) = ih2

∫
d2p

(2π)2

M2

M2 − p2

1

pL

[
1

(pL + kL I − kL Γ

]i
k

Gkj̄ . (B.6)

It is simple to do integration which results in

Πij̄
RR(k) = − |κ|

2

4πZZ

[
K2
R

KµKµ

log(1−KµK
µ/M2)

(−KµKµ/M2)

]i
k

Gkj̄ , (B.7)

where we introduced the matrix

[Kµ]ik = kµ [I − Γ]ik , (B.8)

representing the covariant derivative i∇µ .

For momenta k �M the expression is simple,

Πij̄
RR(k) = − |κ|

2

4πZZ
k2
R

kµkµ
Gij̄ . (B.9)

Substituting this into Eq. (B.1) we come to the result (2.2.27) for ∆κL .

The expression for Πij̄
RR(k) is related to anomaly in the polarization operator. The way

we derived it could be called infrared, the p-integration was contributed dominantly by

p ∼ k. The ultraviolet derivation follows from

[KL]ki Πij̄
RR(k) = ih2

∫
d2p

(2π)2

M2

M2 − p2

[
1

pL
− 1

pL +KL

]k
l

Glj̄ . (B.10)
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Integration here is dominated by p ∼M and gives for k �M ,

[KL]ki Πij̄
RR(k) = − |κ|

2

4πZZ [KR]kl G
lj̄ , (B.11)

what corresponds to Eq. (2.2.29) in the text.



Appendix C

Vielbeins and Anomalies in

CP(N−1)

The Fubini-Study metric gij̄ on CP(N−1) is

gij̄ =
(1 + φ̄iφ

i)δij̄ − φ̄iφj̄
(1 + φ̄iφi)2

. (C.1)

The indices of charts {φi, φ̄j̄} locally are raised or lowered by δij̄ or δij̄ . To explicitly find

vielbein of the metric, it is convenient to define

r2 ≡ φ̄iφi , ρ2 ≡ 1 + r2 ,

Pij̄ ≡ δij̄ −
φ̄iφj̄
r2

,

Qij̄ ≡
φ̄iφj̄
r2

, (C.2)
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one can easily check the following properties:

δij̄ = Pij̄ +Qij̄ ,

Pij̄φ̄
j̄ = Pij̄φ

i = 0 ,

Qij̄φ̄
j̄ = φ̄i, Qij̄φ

i = φj̄ ,

P 2 = P, Q2 = Q, PQ = QP = 0 . (C.3)

As a result, the metric and vielbein could be written as

gij̄ =
1

ρ2
(Pij̄ +

1

ρ2
Qij̄), gij̄ = ρ2(P ij̄ + ρ2Qij̄) ,

eai =
1

ρ
(P ai +

1

ρ
Qai), eia = ρ(P ia + ρQia) ,

e b̄
j̄ =

1

ρ
(P b̄

j̄ +
1

ρ
Q b̄
j̄ ), e j̄

b̄
= ρ(P j̄

b̄
+ ρQ j̄

b̄
) ,

eaie
i
b = δab, e j̄

ā e
b̄
j̄ = δ b̄

ā , δab̄e
a
ie

b̄
j̄ = gij̄ . (C.4)

Similarly to the O(N−1) model, the symbols δab̄ or δab̄ are used to lower or raise frame

indices {a, b̄, ....}. Since CP(N−1) are the Kähler manifolds, there are two sets of vielbein,

and correspondingly two sets of spin-connections one-form on the frame bundles Hol(1,0)

and Hol(0,1),

ωab = ωabidφ
i = eajDie

j
b dφ

i ,

ω̄ ā
b̄ = ω̄ ā

b̄ j̄dφ̄
j̄ = Dj̄e

ī
b̄ e ā

ī dφ̄
j̄ ,

ω† = ω̄ . (C.5)

Redefining ψa = eaiψ
i, one can present the fermionic part of the CP(N−1) Lagrangian
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as

igij̄ψ̄
j̄γµ(∂µψ

i + Γijk∂µφ
jψk) = iψ̄āγµ(∂µδāb + Ωābµ)ψb , (C.6)

Ωābµ = ωābi∂µφ
i − ω̄ābj̄∂µφ̄j̄ , (C.7)

where Ω is the pulled-back connections from frame bundle Hol(1,0)⊕Hol(0,1) of CP(N−1).

Identically to the discussion of O(N−1) models, one can evaluate linear and non-linear

isometry transformations on connection Ω, and imposes the Wess-Zumino consistency con-

dition to find consistent anomalies. However the calculation are much more cumbersome

than O(N−1) case. The details will be neglected, only main results are listed.

Firstly, the number of isometries of CP(N−1) are N2−1 = (N−1)2 + 2(N−1), in which

there are (N−1)2 linear symmetries corresponding to U(N−1)-rotations of fields {φi, φ̄j̄}.
It also implies the holonomy group of CP(N−1) is U(N−1). The rest of 2N−2 symmetries

are non-linearly realized,

δε = εij̄(φj̄
δ

δφi
− φ̄i

δ

δφ̄j̄
) ,

δβ = βi
δ

δφi
+ (βφ̄)φ̄j̄

δ

δφ̄j̄
,

δβ̄ = β̄ j̄
δ

δφ̄j̄
+ (β̄φ)φi

δ

δφi
. (C.8)

Further, we calculate the variation of spin-connection Ω. According to the experience from

O(N−1), it is not curious that linear symmetries give no anomalies to effective Lagrangian.

Therefore only non-linear symmetries are considered as below. Since Ω is anti-Hermitian,

one can only evaluate δβΩ, and take hermitian conjugation to get δβ̄Ω. After explicit
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calculations following Eq.(C.4) and (C.5) we arrive at

ωab =
(
− 1

2ρ2
φ̄iδ

a
b −

1

2ρ2
φ̄iQ

a
b −

ρ− 1

ρr2
φ̄bP

a
i

)
dφi

=
(
− 1

2ρ2
φ̄iδ

a
b −

ρ− 1

ρr2
φ̄bδ

a
i +

1

2

(ρ− 1)2

ρ2r4
φ̄iφ

aφ̄b

)
dφi

≡
[
−G(r2)φ̄iδ

a
b − F (r2)φ̄bδ

a
i +

1

2
F 2(r2)φ̄iφ

aφ̄b
]
dφi ,

ω̄ ā
b̄ =

[
−G(r2)φj̄δ

ā
b̄ − F (r2)φb̄δ

ā
j̄ +

1

2
F 2(r2)φj̄φb̄φ̄

ā
]
dφ̄j̄ , (C.9)

where real functions G and F are defined as

G(r2) ≡ 1

2ρ2
, F (r2) ≡ ρ− 1

ρr2
. (C.10)

Varying Ωa
b = ωab − ω̄ab, one must have

δβΩa
b = −dv a

β b − [Ω, vβ]ab . (C.11)

To find v a
β b in the easiest way one can consider variation of the torsion equation on CP(N−

1). Since there is no torsion on CP(N−1), one has

dea + Ωa
b ∧ eb = 0, (C.12)

where ea = eaidφ
i is frame one-form. Acting δβ on both sides, one can obtain Eq.(C.11) if

δβe
a = v a

β be
b . (C.13)

Explicitly calculating δβe
a, we derive v a

β b,

v a
β b = −βφ̄

2
δab −

βφ̄

2
Qab −

ρ− 1

r2
φ̄bP

a
iβ
i

= −βφ̄
2
δab − ρFβaφ̄b −

βφ̄

2
ρ2F 2φaφ̄b . (C.14)

Now the non-linear isometry anomalies of CP(N −1) can be assembled together by
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using the Wess-Zumino consistency condition. Similar to the O(N −1) case, anomalies

with respect to parameter β are

δβΓeff = − 1

4π

∫
φ(S2)

v a
β bdΩb

a (C.15)

= − 1

4π

∫
φ(S2)

{
Aβīφj̄dφ̄

j̄ ∧ dφ̄ī + [B(βφ̄)δij̄ + C(βφ̄)φ̄iφj̄ +Dφ̄iβj̄ ]dφ̄
j̄ ∧ dφi

}
,

where the functions A, B, C and D are

A(r2) = −1

4
ρr2F

(
F 2 + 2

dF

dr2

)
,

B(r2) = NG+ F (1− Fr2) ,

C(r2) = N
dG

dr2
+
(

2
dF

dr2
− F 2

)(
1− 1

2
ρF
)

+
F

r2

(
1− 2ρF − 2r4 dF

dr2

)
,

D(r2) =
1

2
ρr2F

(
2
dF

dr2
− F 2

)
+ 2ρF 2 . (C.16)

One can simplify Eq. (C.15) integrating by parts. First note∫
φ(S2)

A(r2)βīφj̄dφ̄
j̄ ∧ dφ̄ī

=

∫
φ(S2)

A(r2)βīdr
2 ∧ dφ̄ī −A(r2)βīφ̄jdφ

j ∧ dφ̄ī

=

∫
φ(S2)

d
( 1

ρ
+ log ρ− 2 log(1 + ρ)βīdφ̄

ī
)

+A(r2)βj̄φ̄idφ̄
j̄ ∧ dφi

=

∫
φ(S2)

A(r2)βj̄φ̄idφ̄
j̄ ∧ dφi . (C.17)
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In addition, for the function C term,∫
φ(S2)

C(r2)(βφ̄)φ̄iφj̄dφ̄
j̄ ∧ dφi

=

∫
φ(S2)

C(r2)(βφ̄)φ̄idr
2 ∧ dφi

=

∫
φ(S2)

d
Nr2 + 2(ρ− 1)

2ρ2r2
(βφ̄)φ̄idφ

i

=

∫
φ(S2)

−Nr2 − 2(ρ− 1)

2ρ2r2
[(βφ̄)δij̄ + βj̄φ̄i]dφ̄

j̄ ∧ dφi

≡
∫
φ(S2)

C̃(r2)[(βφ̄)δij̄ + βj̄φ̄i]dφ̄
j̄ ∧ dφi . (C.18)

Combining the above two terms into Eq.(C.15), one can find

δβΓeff = − 1

4π

∫
φ(S2)

{
[B − C̃](βφ̄)δij̄ + [A+D − C̃]βj̄φ̄i

}
dφ̄j̄ ∧ dφi

=
N

4π

∫
φ(S2)

βj̄φ̄i

2(1 + φ̄φ)
dφ̄j̄ ∧ dφi

= − i

8π

∫
φ(S2)

(βφ̄) c1 . (C.19)

We also need to add the variation of action with respect to β̄, which is obtained by Her-

mitian conjugation of Eq.(C.19). Finally we have the result identical with Eq.(3.3.19),

Iβ =
i

8π

∫
(β̄φ− βφ̄)c1 . (C.20)
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