
A fully unprivileged CernVM-FS

Jakob Blomer1,∗, Dave Dykstra2, Gerardo Ganis1, Simone Mosciatti1, and Jan Priessnitz1

1CERN, Geneva, Switzerland
2Fermilab, Chicago, U.S.

Abstract. The CernVM File System provides the software and container dis-
tribution backbone for most High Energy and Nuclear Physics experiments. It
is implemented as a file system in user-space (Fuse) module, which permits its
execution without any elevated privileges. Yet, mounting the file system in the
first place is handled by a privileged suid helper program that is installed by the
Fuse package on most systems. The privileged nature of the mount system call
is a serious hindrance to running CernVM-FS on opportunistic resource and su-
percomputers. Fortunately, recent developments in the Linux kernel and in the
Fuse user-space libraries enabled fully unprivileged mounting for Fuse file sys-
tems (as of RHEL 8), or at least outsourcing the privileged mount system call to
a custom, external process. This opens the door to several, very appealing new
ways to use CernVM-FS, such as a generally usable "super pilot" consisting
of the pilot code bundled with Singularity and CernVM-FS, or the on-demand
instantiation of unprivileged, ephemeral containers to publish new CernVM-FS
content from anywhere. In this contribution, we discuss the integration of these
new Linux features with CernVM-FS and show some of its most promising,
new applications.

1 Introduction

The CernVM File System (CernVM-FS) provides the software and container distribution
backbone for most High Energy and Nuclear Physics experiments [1, 2]. In order to access the
contents of CernVM-FS repositories, worker nodes and end-user laptops mount the CernVM-
FS client under the /cvmfs name space. In contrast to software distribution techniques that
use pre-built bundles (such RPM packages or container tarballs), the mounted file system
allows on-demand loading of the usually small subset of binaries that is really accessed at
any given moment.

The CernVM-FS client uses the File System in User Space (Fuse) framework [3]. Fuse
is a standard component of all major Linux distributions and available as an extra package
for macOS. Fuse implements a minimal, forwarding kernel-level file system that issues up-
calls to a user space Fuse module that in turn implements the actual file system logic. This
architecture permits execution of the file system client without any elavated privileges. Yet,
mounting the file system in the first place requires administrative privileges, as the mount()
system call is restricted.

∗e-mail: jblomer@cern.ch

FERMILAB-CONF-20-109-SCD

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359
with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

On fully opportunistic resources, such as supercomputers or containers in a commercial
cloud, this has led to various approaches to circumvent the restriction. The CernVM-FS par-
rot connector [4] wraps applications in a gdb-like sandbox that emulates a mounted volume.
On some HPC systems, users prepare a copy of the file system tree on the shared storage, of-
ten comprising millions of small files. Other systems deploy “fat containers” that can grow to
hundreds of gigabytes and contain a substantial part of all the available experiment software.
These approaches tend to be fragile and cumbersome.

In this contribution, we review the current and future state of mounting Fuse file systems.
We show how the latest Linux and Fuse developments lift restrictions on mounting Fuse file
systems and the implications of this development for opportunistic CernVM-FS deployments.

2 Privileges for file systems in user space

As mounting a file system is a restricted operation on Linux systems (except for recent ker-
nels), even Fuse user-space modules require some help from a system administrator in order
to be used. In the case of the CernVM-FS client, a system administrator needs to

• Either install the CernVM-FS distribution-specific package. This will setup the client such
that it starts as privileged user and drops the privileges immediately after the mounting.

• Or enable a privileged helper program that comes with the Linux distribution’s Fuse pack-
age and that takes care of the mounting on the users behalf (see Figure 1).

cmsRun

glibc

VFS
inode cache
dentry cache

Fuse

libfuse

CernVM-FS
Fuse Module

/bin/fusermount

(suid binary) user space

kernel space
syscall /dev/fuse

¶ callout

· mount()

¸ mount
point

� unprivileged

� privileged & trusted

� privileged, potentially restriced

Figure 1. A successful Fuse mount returns a file descriptor to /dev/fuse, which is subsequently used by
the fully unprivileged Fuse module.

On fully opportunistic resources, no such system-level installation or configuration
change can be assumed.

3 Custom mount helpers

As of the Fuse version 3 user space libaries, the task of mounting /dev/fuse can be handed
off to a trusted, external helper (see Figure 2). Fuse 3 support has been added to CernVM-FS
version 2.7 and later. We furthermore backported the Fuse 3 libraries to Red Hat Enterprise
Linux (RHEL) version 6 and 7 compatible platforms and made them available in the Extra
Packages for Enterprise Linux (EPEL) package repository.

While a custom mount helper is still a privileged program, it can be a utility that fits better
into the environment at hand1. For supercomputers that already use and trust Singularity [5],

1For detailed information, search for “pre-mounting” in the CernVM-FS technical documentation at https://
cvmfs.readthedocs.io

cmsRun

glibc

VFS
inode cache
dentry cache

Fuse

libfuse 3

CernVM-FS
Fuse Module

Trusted Helper
e. g. Singularity

user space

kernel space
syscall /dev/fuse

¶ mount()

· mount
point

� unprivileged

� privileged & trusted

Figure 2. As in Fuse vanilla deployments, a privileged helper program takes care of mounting the file
system. But in contrast to Fuse version 2, in Fuse version 3 this program can be a custom one different
from /bin/fusermount.

for instance, we added support to Singularity version 3.4 and later to act as a Fuse mount
helper. In this way, Singularity can start a container and hand over the mount point to an
unprivileged CernVM-FS file system client within the container.

4 Unprivileged mounting using namespaces
Namespaces are a Linux kernel mechanism to provide kernel resource isolation between pro-
cess groups. Namespaces are an enabling technology for Linux containers, giving each con-
tainer the illusion of running exclusively on the system. As of Linux kernel version 4.18
(available for instance in RHEL version 8), Fuse file systems can be mounted within names-
paces (see Figure 3).

user ns
0→ uid

mount ns
detach /

pid ns
new process tree

mount()
confined /cvmfs

user ns
uid→ 0

Figure 3. In order to enable Fuse mount points to be private to a namespace, a certain set of names-
paces has to be created in order. In the process, mounting takes place as “fake root user”, i.e. as a
privileged user whose actions are confined to a namespace. Consequently, mount points created within
a namespace are invisible to processes outside the namespace.

Effectively, Fuse file systems within namespaces allow for unprivileged containers that
can mount the CernVM-FS client without any further host support by making the /dev/fuse
device available to the container. At the timing of this writing, popular container tools such as
Docker and kubernetes do not yet start unprivileged containers with Fuse namespace mounts
enabled by default but they can be enabled optionally.

5 Applications
The means to mount the CernVM-FS client without administrator assistance enables new,
promising applications.

5.1 Universal pilot

The experiment pilot job is a placeholder grid job that, upon landing on a worker node, con-
nects to the experiment task queue in order to fetch and execute actual payloads. Experiment
pilot jobs typically expect to find a working CenVM-FS client in order to spawn the environ-
ment for the payload. Given the possibility to mount CernVM-FS as a pilot user, however, the
CernVM-FS client can be bundled to provide a “universal pilot”. This self-extracting bundle
would

1. create a new user namespace

2. mount the experiment CernVM-FS repository

3. run the experiment pilot jobs from the CernVM-FS mountpoint

4. the pilot job can optionally mount additional CernVM-FS repositories

5. the pilot job runs Singularity from the CernVM-FS mountpoint

6. the payload job runs inside the Singularity container

We have written a package called cvmfsexec [6] that makes it easy to do steps 1, 2, and
4. The package even works with older kernels (such as on RHEL 7) if unprivileged user
namespaces and fusermount are available, but then it has a limitation that the Fuse mount-
points go into the system-wide mount namespace and do not get unmounted if the program
is sent a hard kill signal.

5.2 CernVM-FS on-demand publisher node

The CernVM-FS publisher node is a machine that is used by repository owners to main-
tain the repository content. On the publisher node, a union file system is used to create the
writable CernVM-FS mountpoint. The publisher nodes are typically carefully maintained
and dedicated to a certain repository. As a result, software build products are typically copied
from build nodes to the publisher node, instead of publishing directly from the build nodes.
While the CernVM-FS storage gateway services [7] synchronizes multiple publisher nodes
that operate on the same repository, the required effort to maintain each of the publisher nodes
does not change.

Unprivileged Fuse namespace mounts in concert with fuse-overlayfs [8] can provide a
simpler way to publish to a CernVM-FS repository. Instead of a set of dedicated publisher
nodes, any node can temporarily become a publisher. Such an on-demand publisher spawns
an ephemeral container that provides a writable CernVM-FS mountpoint connected to the
repository gateway services (see Figure 4). In this way, software builder nodes could directly
publish their build products provided repository access keys are available.

Unprivileged, on-demand publishing has been shown as proof-of-concept and is expected
to be released in CernVM-FS version 2.8.

6 Conclusion

Being a Fuse file system, using the CernVM-FS client has always been relatively non-
intrusive. The inherently privileged nature of mounting file systems, however, turned out to
be a burden for certain client deployments, in particular in opportunistic environments such
as HPC centers and commercial container clouds. Fortunately, recent developments in the

$> cvmfs enter hsf.cvmfs.io /users/joe
. . . opens a shell in an ephemeral container
with write access to the repository

$> cvmfs publish
. . . back to read-only mode

Figure 4. The cvmfs enter command creates an isolated environment through namespaces as de-
scribed in Section 4. The writable mountpoint inside this mini container is provided by the CernVM-FS
client and the Fuse implementation of the OverlayFS union file system.

Linux kernel and the Fuse user space libraries have largely lifted the restrictions for mount-
ing Fuse file systems. The CernVM-FS client as of version 2.7 is fully integrated with these
developments. As these changes find widespread use in Linux distributions and container
management tools, we expect major simplifications to use CernVM-FS on opportunistic re-
sources as well as simplifications in the management of repository publisher nodes.

References

[1] J. Blomer, C. Aguado-Sanchez, P. Buncic, A. Harutyunyan, Journal of Physics: Confer-
ence Series 331 (2011)

[2] J. Blomer, B. Bockelman, P. Buncic, B. Couturier, D.F. Dosaru, D. Dykstra, G. Ganis,
M. Giffels, H. Nikola, N. Hazekamp et al., The cernvm file system: v2.7.0 (2019), https:
//doi.org/10.5281/zenodo.3608672

[3] N. Rath et al., “libfuse” [software], version 3.9.0 (2019), https://github.com/
libfuse/libfuse

[4] J. Blomer, G. Ganis, N. Hardi, R. Popescu, Delivering LHC Software to HPC Com-
pute Elements with CernVM-FS (Springer, 2017), p. 724–730, Number 10524 in Lecture
Notes in Computer Science

[5] G.M. Kurtzer, cclerget, M. Bauer, I. Kaneshiro, D. Godlove, Vanessasaurus, WestleyK,
Y. Cote, E. Arango, G. Vallee et al., sylabs/singularity: Singularity 3.4.0 release (2019),
https://doi.org/10.5281/zenodo.3382358

[6] D. Dykstra, “cvmfsexec” [software], version 2.3 (2020), https://github.com/
cvmfs-contrib/cvmfsexec

[7] A. Forti, L. Betev, M. Litmaath, O. Smirnova, P. Hristov, eds., Towards a serverless
CernVM-FS, Vol. 214 (2019)

[8] G. Scrivano et al., “fuse-overlayfs” [software], version 0.7.5 (2020), https://github.
com/containers/fuse-overlayfs

