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Abstract. An immediate non-comprehensive and fast reading three hours immersion in
supersymmetry. Get yourself prepared for the LHC.

1. Introduction
The series of minicourses of the Mexican Schools of Particles and Fields are thought to be an
immediate, non-comprehensive, introduction to a particular field for graduate students, typically
comprising three hours of lectures. Given the complexity of supersymmetry, the task seems
undoable. There is a real benefit in presenting a minicourse if one at the very least attempts to
make clear the main motivation of studying supersymmetry, the main ingredients necessary for
it and the current status of the field, providing a damn good set of references! This is what I
attempt in this contribution.

To begin with, I cite the references which I find really useful. First, the classic “A
Supersymmetry Primer” [1] by S. Martin. Then the book by M. Drees, R. M. Godbole and
P. Roy [2], which I think is an excellent comprehensive book for the serious supersymmetric
student. There are three other references that I like. The first one of these is the very recent
“Cambridge Lecures on Supersymmetry & Extra Dimensions” by F. Quevedo, S. Krippendorf
and O. Schlotterer, [3]. The second one is the classic book by J. Wess and J. Bagger [4]. This
one is a bit cryptic, but may be more useful for the more mathematically inclined mind. The
third one is the report by M. Sohnius [5].

The real motivation of the particle physics community for studying supersymmetry is the
elegant solution to the Hierarchy Problem. That is, if we think the Standard Model (SM) is an
effective theory, broken at the Electroweak scale, and the Planck scale is a fundamental scale,
why are there more than 16 orders of magnitude, in units of GeV, difference among the two
scales? What would cancel the huge corrections to the Higgs mass? What fills the huge desert
between the two scales? I present this motivation in Section 2, which is now, more than ever,
relevant to review giving the exciting time for the possibility of discovering supersymmetric
particles at the LHC (Large Hadron Collider).

The actual mathematical formalism to define entities used in supersymmetry, Superalgebra,
Grassmann variables, superspace and finally supermultiplets are introduced in Sections 3, 4
and 5, respectively. These topics are superbly covered in the book by Wess and Bagger [4]. A
guideline for constructing supersymmetric Lagrangians follows in Section 6. This is done in a
very cryptic way, but hopefully useful enough to equip the reader for understanding the last
Sections. In Section 7 I introduce the minimal supersymmetric extension of the SM (MSSM).
In Section 8, I talk about mechanisms to break supersymmetry in general and in particular in
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Figure 1: One loop contribution from a fermion f coupled to the Higgs field h.

the MSSM. In Section 9, I introduce the general Lagrangian that the MSSM could have after
supersymmetry breaking. Here I also talk briefly about how to obtain realistic masses in the
MSSM and state the current status on limits for such masses. Finally in Section 10, I mention
possible extensions of the MSSM. In each section I mention further references in addition to the
ones above.

2. Motivation: Hierarchy Problem & Quadratic Divergences
Let us consider the Higgs of the Standard Model (SM) 1, Φ, near its vacuum, v, where we can
make the expansion Φ = 1√

2
(h + v). We know that v2 = (

√
2GF )−1, GF = 1.166371 × 10−5

GeV−2 and so v ≃ 246 GeV. The interaction with a SM fermion f is given by the Yukawa
Lagrangian

Lf̄fΦ = − λf√
2
hff − λf√

2
vff. (1)

Via the Higgs mechanism 2 , the fermion f acquires the tree level mass mf (0) = λfv/
√

2 and
the Higgs field obtains the tree level mass squared m2

h(0) = v2/2.
The fermionic one loop (1L) contribution to the scalar two point function reads

Πf
hh(0) = −1

∫
d4κ

(2π)4
Tr

[(
−i λf√

2

)
i

�κ−mf

(
−i λf√

2

)
i

�κ−mf

]

= −2λ2
f

∫
d4κ

(2π)4
κ2 +m2

f(
κ2 −m2

f

)2 = −2λ2
f

∫
d4κ

(2π)4




κ2 −m2
f(

κ2 −m2
f

)2 +
2m2

f(
κ2 −m2

f

)2




= −2λ2
f

∫
d4κ

(2π)4




1

κ2 −m2
f

+
2m2

f(
κ2 −m2

f

)2


 . (2)

The first term in Eq. (2) is quadratically divergent. It is particularly bad because the divergence
does not depend on the mass of h. So what comes to mind is whether or not we can introduce
a cut-off scale just as it is done with the logarithmic divergences. Performing integral of Eq. (2)
with the substitution

∫
d4κ

(2π)4
−→

∫
dΩ

∫ Λ

0
dκE

κ3

8π2

κ3
E

κ2
E +m2

f

, (3)

1 For the most part of this contribution I adopt the notation of [2].
2 See the notes of the lectures by Poul Henrik Damgaard for an enlightening discussion of the term spontaneous

symmetry breaking.
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Figure 2: One loop contribution from a pair of scalars sL and sR coupled to the Higgs field h as in Eq. (5).

we have

Πf
hh(0) = 2λ2

f

Λ2

8π2
i ⇒ m2

h = m2
h(0) + 2λ2

f

Λ2

8π2
. (4)

If the SM was the complete fundamental theory of particle physics, then the cut-off scale Λ could
be anything. For Λ = O(100) GeV the correction would not be orders of magnitude larger than
the tree level value. However if the SM is not regarded as such and we expect to include somehow
gravitational effects, we should then consider Λ = O(MP) ≃ 2.4 × 1018 GeV, the highest scale
known in particle physics. This would be a disaster: the 1L correction to m2

h(0) would be 32
orders of magnitude larger than the tree level value. One can think also on that instead of using
a momentum cut-off, Λ, we could use dimensional regularization where there would be no λ2

piece. However, in this scheme there would enter contributions that cannot be made small if one
makes an ultraviolet completion of the SM. We introduce two additional complex scalar fields
sL and sR, with the coupling to the Higgs field

LsLsRΦ = λS|Φ|2
(
|sL|2 + |sR|2

)
+ (λfAfΦsLs

∗
R + h.c.)

−→Φ= 1√
2
(h+v)

=
1

2
λSh

2
(
|sL|2 + |sR|2

)
+ vλSh

(
|sL|2 + |sR|2

)
. (5)

Then we can calculate for this example the scalar contributions to the self energy of h, produced
by the 1L diagrams of Fig. 2. These are

ΠsL,sR

hh (0) = −iλS

∫
d4κ

(2π)4

[
i

κ2 −m2
sL

+
i

κ2 −m2
sR

]

+ (λSv)
2

∫
d4κ

(2π)4

[
1

(
κ2 −m2

sL

)2 +
1

(
κ2 −m2

sR

)2

]

+ |λfAf |2
∫

d4κ

(2π)4
1

κ2 −m2
sL

1

κ2 −m2
sR

. (6)

We cancel the first two terms of Eq. (6) with the first term of the last expression in Eq. (2),

provided that −λS = λ2
f , msL

= msR
= mf . Furthermore, using that

∫
d4κ

(2π)4
i

κ2−m2
sL
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= 2π2
∫ Λ
0

dκE

16π2

κ3

E

κ2

E+m2

f

, we can cancel all the quadratic divergences with the sum of expressions

Eq. (2) and Eq. (6). The remaining logarithmic divergences in Πf
hh(0)+Πs

hh(0) can be cancelled
by replacing the logarithmic divergences by the logarithm of the square of the renormalization
scale µ 3. However by performing the integrals in the second row of Eq. (6), using the

regularization of the divergent integrals as
∫

d4κ
(iπ)2

1
(κ2−m2)2

7−→ − ln
[

m2

µ2

]
,

∫
d4κ

(2π)4

[
1

κ2 −m2
1

1

κ2 −m2
2

]

7−→ (m2
1 −m2

2)B0(0,m
2
1,m

2
2) = m2

1

(
1 − ln

m2
1

µ2

)
−m2

2

(
1 − ln

m2
2

µ2

)

and summing up the fermionic and scalar contributions, where from now own we call

sL,R
.
= f̃L,R, (7)

we obtain the total 1L correction to m2
h(0)

Πf
hh(0) + ΠsL,sR

hh (0) = −2λ2
f

∫
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(2π)4


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κ2 −m2
f
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2m2
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f

)2
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2

∫
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+
1
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]

= i
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f

16π2

[
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f

(
1 − ln
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f
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)
+ 4m2

f ln
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f
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f̃

(
1 − ln

m2
f̃
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− 4m2

f̃
ln
m2

f̃
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]
. (8)

We can see that indeed we need

λf = −λ2
f , mf̃L

= mf̃R
= mf (9)

to cancel exactly the 1L correction to m2
h(0). We have seen that introducing scalar particles with

the same masses to those of the fermions and whose couplings are related to the couplings of
the latter, Eq. (9), quadratic divergences can be cancelled at the 1L level. To cancel these kind
of divergences at all orders in perturbation theory would be remarkable. Well, this is precisely
what supersymmetry does. Despite the fact that we have not yet seen any experimental evidence
of it, in the next sections we will explore why is so fascinating.

3. Supersymmetry Algebra
Since supersymmetric transformations change a particle with integer spin to a particle with
half-integer spin, Q must be a spinor. Then we introduce properly its two spinorial indices

QA, A = 1, 2. (10)

3 Check references [2, 1] for further comments about this.
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However Q should be identified with a four dimensional (4D) quantity and it is indeed a 4D
Majorana spinor, which can be decomposed as 2D Weyl spinors

Qa =

(
QA

QȦ

)
. (11)

The natural question to ask immediately is whether or not Qa can be a generator of the
symmetries of a 4D theory. We know that the Poincaré Group generates the fullest continuous
spacetime symmetries of particle interactions. We recall that its generators can be expressed as
unitary operators

U(a) = eia
µPµ , U(Λ) = e−i/2ωµνMµν , (12)

for translations and for homogeneous Lorentz transformations, respectively. For an infinitesimal
transformation on the 4D coordinates we have xµ → xµ = (δµ

ν + wµ
ν )xν + aµ .

What do we know about the properties of the generators? the Algebra of the generators
which is expressed in terms of commutators, for example

[Pµ, Pν ] = 0, [Mµ,ν , Pρ] = i (ηνρPµ − ηµρPν) ,

[Mµ,ν , Pρσ] = −i (ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ) . (13)

The Coleman-Mandula theorem [6] states that the full Lie Algebra of the S-Matrix in 4D,
described by

[
T a, T b

]
= itab

c T
c, is such that the generators T a are a direct sum of Pµ and Mµ,ν ,

that is to say

[T a, Pµ] = 0 = [T a,Mµν ] . (14)

However a supersymmetric transformation described by Qa is transforming internal degrees of
freedom from a boson into a fermion, or vice versa Q|b, f〉 = |f, b〉, for b a boson with spin n
and f a fermion with spin m/2. Specifically, we are making a transformation of particles of
spin n to particles with spin (n ± 1)/2 and particles with spin m/2 to particles with spin m.
Thus if we want Qa to be indeed a generator of a definite group describing the symmetries of
our 4D theory then we need to specify the Algebra which is satisfied by these generators. From
the Coleman-Mandula theorem we know that it cannot be a simple Lie Algebra and has the
following properties: it cannot commute with rotations but commutes with translations. That
the generator Qa of these transformations cannot commute with rotations can be easily seen
thinking of a rotation about an axis, described by U(2π): U(2π)|b〉 = |b〉 and U(2π)|f〉 = −|f〉,
then we have

U(2π)QU(2π)−1|f〉 = −U(2π)QU(2π)−1U(2π)|f〉 = −U(2π)|b〉 = −Q|f〉,
U(2π)QU(2π)−1|b〉 = −Q|b〉, (15)

that is U(2π)QU(2π)−1 = −Q. But it is easy to see that it commutes with translations because
the generator Q is not affecting the position of the field describing the particle. In order to get
around with the use of Lie Algebras, defined in terms of commutators, then one can think about
using Algebras defined also in terms of anti-commutators. Such mathematical constructions
enter into the classification of the Graded Lie Algebras 4. For our case, we need to expand the
set of commutator relations followed by Pµ andMµν to includeQa in such a way that the Poincaré
Algebra is recovered and the properties described above (that it commutes with translations and

4 For a physics perspective on Graded Lie Algebras and specifically on the Superalgebra, the book by J.F.
Cornwell [7] is great.
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that it cannot commute with rotations) are recovered, by means of anti-commutators. In the
two component notation of Eq. (10), we have the N = 1 Supersymmetry Algebra in 4D

{
QA, QḂ

}
= 2σµ

AḂ
Pµ,

{
Q

Ȧ
, QB

}
= 2σµ

ȦB
Pµ,

{QA, QB} =

{
Q

Ȧ
, Q

Ḃ
}

= 0,

[QA, Pµ] =
[
QȦ, Pµ

]
= 0,

[Mµν , QA] = − (σµν)BA QB,

[
Mµν , Q

Ȧ
]

= − (σµν)Ȧ
Ḃ
QḂ,

[QA, R] = QA,

[
Q

Ȧ
, R

]
= −QȦ. (16)

The last expression in Eq. (16) reflects an invariance under a chiral rotation, that can be
thought of being generated by a U(1) generator R. This will satisfy [Qa, R] = (γ5)abQb.
σµν = σµσν − σνσµ.

The Haag, �Lopuszánski, Sohnius theorem [8] states that the N = 1 Supersymmetry (SUSY)
Algebra in 4D is a unique extension of the Poincaré Algebra in 4D relativistic Quantum Field
Theory (QFT) with one generator QA. This is really just the statement of saying, if there
is another generator QA of a 4D QFT, apart from the translations and homogeneous Lorentz
transformations, then that will define a unique Algebra, the supersymmetry algebra, N = 1 in
4D. But of course this theorem allows for theories with more supersymmetries, that is, there
could be more than one generator QB in a 4D QFT.

4. Grassmann Variables and Superspace
Supersymmetric theories can be defined in terms of anti-commuting or Grassmann variables.
These are such that

{
θ, θ
} .

= θθ + θθ = 0 and θ = 02 = θ
2
. (17)

From these basic rules we can develop the properties of calculus on these variables. For example,
a function can be Taylor-Grassmann expanded as

f(θ) = f0 + f1θ, (18)

where f0, f1 ∈ C. Then we have the nice properties

∫
dθ θ = 1,

df(θ)

dθ
= f1, θf(θ) = θf0 +���*0

f1θ
2. (19)

We can see why Grassmann Variables could be so useful, the expansion Eq. (18) is finite and
simple differentiation or integration can project out the components of the functions defined on
θ. It happens that supersymmetric Lagrangians and their particle interactions can be written
in a space which is spanned by the coordinates of our 4D space plus two Grassmann coordinates

z
.
= (xµ, θ, θ), (20)

this space is called the Superspace. However the Grassmann variables in Eq. (20) are not as
simple as in Eq. (17), because they will contain two indices, A and B. The indices A and B will
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label two spinor indices in the (1
2 , 0) representation of the Lorenz group, while the indices Ȧ and

Ḃ will label two spinor indices in the (0, 1
2) representation. Accordingly, the tensors ǫA,B and

ǫA,B = Inv[ǫA,B] represent the metric in the space of the (1
2 , 0) representations, while ǫȦ,Ḃ = ǫAB

and ǫȦ,Ḃ = Inv[ǫȦ,Ḃ ] represent the metric in the space of the (0, 1
2) representations 5 .

We can then rise and lower the indices as

θA = ǫA,BθB, θA = ǫA,Bθ
B, θ

Ȧ
= ǫȦ,ḂθḂ , θȦ = ǫȦ,Ḃθ

Ḃ
. (21)

The supersymmetry generators can be represented in a differential form in terms of the

Grassmann variables QA = −i
(
∂A + iσµ

AḂ
θ

Ḃ
∂µ

)
and Q

Ȧ
= i

(
∂

Ȧ − iσµȦBθB∂µ

)
.

Here we note that for the supersymmetry algebra, Eq. (16), to be satisfied, we need

ǫQ = (ǫQ)†. Also we define σµȦB = (12×2,−−→σ ) and σµ

AḂ
= (12×2,

−→σ ). Then we define the
chiral covariant and anti-chiral covariant derivatives

DA = ∂A − iσµ

AḂ
θ

Ḃ
∂µ → in the (

1

2
, 0) representation,

DȦ
= ∂

Ȧ
+ iσµȦBθB∂µ → in the (0,

1

2
) representation. (22)

In the superspace defined by Eq. (20), the infinitesimal supersymmetric transformations act as

(
xµ, θ, θ

)
→
(
xµ − iθσµǫ+ iǫσµθ, θ + ǫ, θ + ǫ

)
, (23)

where ǫ is an infinitesimal Grassmann parameter.

5. Particle Supermultiplets aka Superfields
Being the case that we have an Algebra, we need to find representations, i.e. multiplets, that
satisfy the properties of the Algebra. In the case of supersymmetry, it is necessary to define
them in the superspace. The two classes of such supermultiplets or superfields used in particle
physics are the Chiral superfields and the Vector superfields.

Before describing each kind of superfields, we just state their general definition and properties.
The definition is a generalization of Eq. (18), that is a function F defined in superspace 6

F
(
xµ, θ, θ

)
= f0(x) + fA

1 (x)θA + f2Ȧ(x)θ
Ȧ

+ f3(x)θθ + f4(x)θθ + fA
5 (x)θAθθ + f6Ȧ(x)θ

Ȧ
θθ + f7(x)θθθθ. (24)

There are various things to note. First, since there are two indices for θ, the naive commutation
relations of Eq. (17) will not hold. Instead we have

θθ = −2θAθBǫAB, θθ = −2θȦθḂǫ
ȦḂ . (25)

Second, the functions fi(x) are not all of the same type, some carry spinor indices and some do
not. In Eq. (24) f0, f3, f4 and f7 are scalars, f1 and f2 must be spinors in the (1/2, 0) (left)
representation, while f2 and f6 must be spinors in the (0, 1/2) (right) representation.

5 ǫAB it is the anti-symmetric tensor in two dimensions.
6 The review by S. Martin [1] is a great introduction to these topics and in general for supersymmetric
phenomenology.
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Last, the θ’s with no apparent indices have been left so because we have contracted explicitly
all the spinor indices. Just as in § 4, we can perform simple differentiations or integrations to
project out the components of the superfields, e.g.

∫
d4θF

(
xµ, θ, θ

)
= f7(x),

∫
d4θ[θθθθ] = 1. (26)

Last, there are two terms in Eq. (24) that receive special names: the F term, which is the term
that appears multiplied by θθ, and the D term, which appears multiplied by θθθθ.

The supersymmetry transformations act on F as

δF = F
(
xµ − iθσµǫ+ iǫσµθ, θ + ǫ, θ + ǫ

)
−F(x, θ, θ) = i(ǫQ+ ǫQ)F . (27)

From this last expression we can work out the supersymmetry transformations for each of the
components of F . We will explicitly state them in the next subsections. Finally we note that the
superspace is a fascinating research field on its own. This only for its mathematical structure

5.1. Chiral superfields

A left chiral superfield is defined such that it depends only on yµ and θ and a right chiral
superfield such that it depends only on yµ and θ, where

yµ .
= xµ − iθσµθ , yµ .

= xµ + iθσµθ. (28)

According to this definition we can write

Φ(y, θ) = φ(y) +
√

2θξ(y) + θθF (y), Φ(y, θ)† = φ∗(y) +
√

2θξ(y) + θθF ∗(y), (29)

where the factor
√

2 is introduced for convenience. Both expressions can be put in terms of x

Φ(xµ − iθσµθ, θ) = φ(x) − iθσµθ∂µφ(x) − 1

4
θθθθ∂µ∂µφ(x)

+
√

2θξ(x) +
i√
2
θθ∂µξ(x)σ

µθ,

Φ(xµ + iθσµθ)† = φ(x)∗ + iθσµθ∂µφ
∗(x) − 1

4
θθθθ∂µ∂µφ

∗(x) +
√

2θξ(x)

− i√
2
θθθσµ∂µξ(x) + θθF ∗(x). (30)

What is the important difference between the expressions of Eq. (29) and Eq. (30)? They are two
different representations of the supersymmetry Algebra, Eq. (29) is the chiral representation for
supersymmetric generators, Eq. (30) is the so called symmetric representation, where Q = Q†.
They are completely equivalent. We can project the components of Φ(y, θ), using equally Eq. (29)
or Eq. (30) for the latter we have

φ(x) = Φ(x, θ, θ)|θ=0=θ,
√

2ξA(x) = DAΦ(x, θ, θ)|θ=0=θ, F (x) =
1

4
DDΦ(x, θ, θ)|θ=0=θ. (31)

What is the physics that we can extract from Eq. (29)? There are four real scalar components,
contained in F (x) and φ(x). The spinor ξA contains four real fermionic fields. Thus there is
an equal number of scalars and fermions. This the off-shell description, that means that not all
the degrees of freedom are physical. F are called auxiliary fields and have trivial equations of
motion, that is ∂L

∂F = 0, which can be used to eliminate them from the Lagrangian. After this,
we have two physical scalar degrees of freedom and two physical fermionic degrees of freedom,
both with the same mass. This sets the minimum basis for understanding § 6. To end this
section we state the properties, that can be easily derived using the exposition above, of the
chiral and anti-chiral superfields:
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• DȦΦ = 0, DAΦ† = 0,

• products and linear combinations of chiral superfields are chiral superfields.

5.2. Vector superfields

A vector superfield in superspace is defined such that

V (x, θ, θ) = C(x) +
√

2θξ(x) +
√

2θξ(x) + θθM(x) + θθM∗(x)

+ θσµθAµ(x) + θθθλ(x) + θθθλ(x) +
1

2
θθθθD(x), (32)

where M(x) is a complex scalar. Here ξ and ζ are left-handed Weyl spinors and χ and λ are
right-handed Weyl spinors.

From the definition of a vector superfield, Eq. (32), we can easily obtain its most important
property:

• V = V †.

6. Construction of a Supersymmetric Langrangian
6.1. General considerations

From the properties of the chiral superfields, Eq. (5.1) and Eq. (5.2), we can extract a very
useful recipe for the construction of supersymmetric Lagrangians:

(i) Take all the possible products of chiral superfields which satisfy the symmetries of the
proposed model, the F term it will be always part of the Lagrangian, as it transforms as a
total derivative under supersymmetric transformations.

(ii) The D term of the product ΦΦ† also transforms as a total derivative under supersymmetric
transformations.

From the observations above enumerated, we see that we need to put a limit on the product of
chiral superfields, because of renormalizability, obviously then we have that the quantity

W (Φi) = hiΦi +
1

2
mijΦiΦj +

1

3!
yijkΦiΦjΦk. (33)

called superpotential, it is the most general combination of products of superfields that we
can have. We say that the superpotential is holomorphic because, since each term is a chiral
superfield, W can be entirely defined in terms of two different coordinates in superspace: y and
θ Eq. (28).

The holomorphicity property of the superpotential, excludes explicitly then combinations of
the form BB, where B is the supermultiplet defined as B = B†γ0 so it not only carries the
opposite quantum numbers of B but the supermultiplet B obviously contains the anti-particles
of the supermultiplet B! I emphasize this because of the extended vicious notation in the
supersymmetric literature where there are expressions of the form

W =
1

2
mijBiBj . (34)

Well the authors here abuse the notation and the harm done here it is that we are introducing
a chiral superfield B with opposite quantum numbers to those of B but that it does not contain
their anti-particle!, i.e. in these cases B 6= B†γ0. The careful reader will note that anyway... If
we have terms in the superpotential such as

ABC ∈W, (35)
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for A, B, C chiral superfields, then terms of the form

ABC, (36)

are also excluded because for B = B†γ0 this is an anti-chiral superfield and destroys explicitly
the holomorphicity of W , that is why the emphasis in the notation W (Φi). The L of the theory
can at most change under a SUSY transformations into itself plus a total space-time derivative.

The D term of the product Φ†
iΦj is

[
Φ†

iΦj

]
D

= θθθθ

(
F ∗

i Fj +
1

2
∂µΦ∗

i ∂
µΦJ − 1

2
Φ∗

i ∂µ∂
µΦj + iξjσ

µδµξi

)
, (37)

which is so special because after the supersymmetric transformations it transforms indeed as a
total derivative: δD = iδµ

(
ζσµǫ+ λσµǫ

)
.

We can show that [W (Φi) + h.c.]F transforms as a total derivative, then we can construct
the following supersymmetric Lagrangian

L =
[
Φ†

iΦi

]
D

+
[
W (Φi) +W (Φ†

i )
]
F
. (38)

Would it be possible to define other quantity rather than W , such that its D or F part could
supersymmetrically transform exactly into itself or up to a total derivative? The answer is no and
this has profound consequences, in particular it restricts the matter content of supersymmetric
theories and the way they are coupled, as we will see in § 7. Let us state this in another way. If
a given Lagrangian is supersymmetric, then it can be decomposed in the form of Eq. (38) and
W (Φi) is uniquely defined.

6.2. Interaction Free Lagrangian

The simplest supersymmetric model is the one proposed by Wess and Zumino (WZ). The action
of this model can be written as

S =

∫
d4z (LS + LF + LA) , LS = −∂µφ∗∂µφ, LF = iψ†σµ∂µψ, LA = F ∗F. (39)

The transformations of bosons into fermions and vice versa, are given by

δφ = ǫψ,

δψA = −i
(
σµǫ†

)
A
∂µφ+ ǫAF,

δψ†
Ȧ

= i (ǫσµ)Ȧ ∂µφ
∗ + ǫ†

Ȧ
F ∗,

δF = −iǫ†σµ∂µψ,

δF ∗ = i∂µψ
†σµǫ. (40)

Recall that the auxiliary fields F should disappear in the expression for the physical Lagrangian.
We can calculate the supersymmetric transformations of LS and LF , ignoring at the moment
the auxiliary fields

δLS = −δ (∂µφ∗∂µφ) ,

= −
(
∂µ(δφ∗)∂µφ

† + ∂µφ∗∂µ(δφ)
)
,

= −ǫ†∂µψ†∂µφ− ǫ∂µψ∂µφ
∗,

δLF = −ǫσµσµ∂µψ∂µφ
∗ + ψ†σνσµǫ†∂µ∂νφ, (41)
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rearranging terms:

δLS + δLF = ǫ∂µΦµφ
∗ + ǫ†∂µ − ∂µ

(
ǫσνσµψ∂µφ

∗ + ǫψ∂µφ∗ + ǫ†ψ†∂µφ
)
. (42)

It can be shown that including the auxiliary fields, the variation can also be written as a total
derivative δS =

∫
d4x (δLS + δLF + δLA) = 0.

6.3. Interacting Lagrangian

We need to check how we can construct an interacting Lagrangian. The easiest example are the
U(1) gauge transformations, under which the superfields transform as

Φi −→ e−2igtiΛ(z)Φi, Φ†
i −→ Φ†

ie
2igtiΛ

†(z), (43)

where g is the coupling constant, ti are U(1) charges and Λ is a complex function specifying the
local gauge transformations, defined in superspace, z = (x, θ, θ). Now we need to get a term of
the sort Φ†V Φ, where V is a vector superfield, in order to have an interaction term. Then we
can show that

Φ†
ie

2gtiV Φ (44)

is gauge invariant. To preserve the chirality of the gauge transformations, we need DAΛ† =

0, DȦ
Λ = 0, that is Λ and Λ† are chiral and anti-chiral respectively. Now defining

TA
.
= −1

4
DDDAV, T Ȧ

.
= −1

4
DDDAV. (45)

Note that TATA is a left chiral superfield, then we can construct the following interacting
Lagrangian

L =
1

4

[
TATA + T ȦT

Ȧ
]

F

+
[
Φ†

ie
2gtiV Φi + 2ηV

]
D

+ [W (φi) + h.c.]F , (46)

in component form, in the Wess-Zumino (WZ) gauge, once D and F are projected out, we have:

L =
1

2
D2 + ηD + gti|φi|2D − 1

4
FµνF

µν + iλσµ∂µλ+ iξiσ
µD†

µiξi

+ Dµ
i ξiD

†
µiξi + F ∗

i Fi +

[
1

2
ξiξjWij(φ) + h.c.

]
−

√
2 gti

(
λξi + h.c.

)
, (47)

where of course the superpotential W (φi) needs to respect gauge invariance and η is a real
constant 7. In expression Eq. (47) we have used

F ∗
i = −Wi =

δW

δφi
, Fi = −W i =

δW †

δφ†i
, W i =

δW

δΦi
, W ij = mij + yijkΦi. (48)

7 The corresponding action to Eq. (46) is

S =

Z

d8z
h

Φ†
i e

2gtiV Φi + 2ηV
i

+

Z

d6z

»

1

4
T ATA + W (Φ)

–

+

Z

d6z̄

»

1

4
T

Ȧ
T Ȧ + W †(Φ)

–

.
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We note that the D component of V is real and its gauge invariant:

[V ]D =

∫
d2θV (x, θ, θ) =

1

2
D(x), (49)

exactly because V must transform under the adjoint representation of U(1), which is scalar and
thus D(x) must be a scalar left invariant under U(1). Note that this only happens in a U(1)
gauge theory because the expression Eq. (49) is not gauge invariant for a non-Abelian vectors
superfield, since they have to be in the adjoint and so the vector field carries indices of the
adjoint, VIJ = 2gV aT a

ij.

We have that ∂L
∂D = 0 then D is another auxiliary field and it can be expressed as

D = −gφ∗i tiφi − η. (50)

Then we can write the scalar potential as

U = Wi(Φi)W
i
(Φi) +

1

2
D2,= F ∗

i Fi +
1

2
D2, (51)

and it is gauge invariant. When projecting the D term we have

Lint =

(
−1

2
W ijψiψj +W iFi + xijFiFj + c.c.

)
− U, (52)

where we can see that the left-hand side is not a symmetric quantity because the interchange
of indices i, j with respect to the second term of the right-hand side, where we need to vary all
possible indices k. The first part in the right-hand side of Eq. (48) is a symmetric quantity as
it is explicitly given by Eq. (33).

7. The Minimal Supersymmetric Standard Model (MSSM)
The Minimal Supersymmetric Standard Model (MSSM) is as its name states the minimal
possible way in one the SM can be supersymmetrized. The recipe seems obvious: just embed
each of the SM particles in a supermultiplet. Since supersymmetry does commute with the
gauge symmetries of the theory, the quantum numbers associated to them will be the same in
the whole supermultiplet, except that the supersymmetric particles will have different spins.
The consequences are then that:

• For each SM fermionic multiplet with spin 1/2, there will appear a scalar (sfermion) with
spin 0.

• For each SM gauge boson, with spin 1, it will appear a fermion, better known as gaugino,
with spin 1/2.

• Instead of having just one Higgs supermultiplet, there will be two! These supermultiplets
will contain each one scalar boson of spin 0 and their fermionic superpartner called higgsino

with spin 1/2 .

O.k. the last consequence is the non obvious part of the extension. But it is very easy
to understand. From Eq. (33) we can see that the only possible way that could enter in
a supersymmetric Lagrangian, Eq. (38), is to be defined as a holomorphic function of the
superfields. We need to obtain from the Lagrangian of Eq. (38) the couplings of the Higgs
field to both kinds of quarks: up and down. How do we do it?

We have said that each of these fields are embedded in different chiral supermultiplets

Q =

(
uL

dL

)
∈ Q, u†R ∈ u, d†R ∈ d and H =

(
H+

u

H0

)
∈ H, (53)
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Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6)

(×3 families) u ũ∗R u†R ( 3, 1, −2
3)

d d̃∗R d†R ( 3, 1, 1
3)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2)

(×3 families) e ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2)

Hd (H0
d H−

d ) (H̃0
d H̃−

d ) ( 1, 2 , −1
2)

spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y
gluino, gluon g g̃ g ( 8, 1 , 0)

winos, W bosons W W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B B̃0 B0 ( 1, 1 , 0)

Table 1: Chiral and gauge supermultiplets in the Minimal Supersymmetric Standard Model. For the chiral
superfields, the spin-0 fields are complex scalars, and the spin-1/2 fields are left-handed two-component Weyl
fermions. The gauginos are spin-1/2 fields which are also left-handed two-component Weyl fermions, note however
that they sit in the adjoint representations of the gauge groups, as opposed the SM fermions which sit in the
fundamental or trivial representations of each gauge group.

note the name u, this is a left-chiral superfield because it contains u†R. Obviously also Q is chiral

and H is defined to be so, that means in superspace we have: H(y)
.
= H(y)+

√
2θξH̃(y)+θθFH ,

where H is our well known Higgs scalar from the SM and H̃ is a left-chiral fermion. Then
the combination

ǫαβQ
αHβu ∈W (54)

it is indeed allowed inW . Here ǫαβ is the anti-symmetric tensor in two dimensions, so the SU(2)L
indices of Q and H are properly contracted. Then as we have said § Eq. (6), we cannot have at
the same time a term ǫαβQ

α
(
iσ2H∗β)d because H∗(y) = H∗(y) +

√
2θH̃†(y) + θθF ∗

H(y) spoils

the holomorphicity thatW is required to have, i.e. such that [W+W ]F could supersymmetrically
transform as a total derivative. Then it happens that we need indeed another Higgs field from
which eventually masses to d quarks could be obtained

−ǫαβQ
αHβ

dd ∈W. (55)

This time for everything to work out properly, the hypercharge, Y , of Hd must be −1/2, since
we need to preserve U(1)Y transformations and so YHd

+ YQ + Yd̄ = −1
2 + 1

6 + 1
3 = 0.

Furthermore this is indeed the requirement that we must impose for the cancellation of the
triangular anomalies in the theory. The ones relevant to the hypercharge are proportional to
Tr[T 2

3 Y ] and Tr[Y 3], where T3 is the third component of weak isospin. The trace is a sum
over all the fermionic degrees of freedom. We know that the SM is anomaly free, that is
Tr[T 2

3 Y ] = Tr[Y 3] = 0. Then with only one Higgs superfield, we would have only one higgsino

with hypercharge 1/2, and since already the SM fermionic fields have zero contribution to the
traces above, we would have anomalies such that Tr[T 2

3 Y ] ∝ 1/2 and Tr[Y 3] ∝ 8. We can see
that the problem is solved with the superfield Higgs Hd of exactly −1/2 hypercharge.

We have identified the MSSM and for concreteness we borrow the idea from [1] of encoding its
content and most commonly used notation in a Table 1. Then the most general superpotential
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that can be written with these MSSM multiplets is:

W = Y ij
l ǫαβH

α
dE

c
iL

β
j + Y ij

d ǫαβH
α
dD

c
iQ

β
j − Y ij

u ǫαβH
α
uU

c
iQ

β
j

+ µǫαβH
α
uHβ

d

+
1

2
λijkLiLjek +

1

2
λ′ijkLiQjdk + µ′iLiHu

+
1

2
λ′′ijkuidjdk, (56)

Note that we are using the so called Left-Right notation for the Yukawa couplings. The previous
line to the last violates the lepton number L by one unit, while the last one violates the baryon
number B also by one unit. These are the famous undesired couplings that make possible proton
decay p+ → e+π0, e+K0, µ+π0, µ+K0, etc. Then it was invented a symmetry that could
forbid the last two lines of Eq. (56), R parity [9] or matter parity [10, 11, 12, 13] such that we
could remain only with the desired part of W . Models where R parity is violated have been
some what less studied.

8. Mechanisms to Break a Supersymmetric Lagrangian
8.1. General Considerations and Spontaneous Breaking

Just as in a normal field theory, in supersymmetric field theories matter and gauge fields cannot
acquire vacuum expectation values (VEV) different from zero. But as it happens in the SM,
scalar fields can do the job. As usual then the supersymmetry breaking part must be coming
from the scalar potential. From Eq. (51) we can see that it is in general written by D and F
contributions, hence effectively one needs to make one of these non-zero when the scalars acquire
VEVs different from zero.

The bad news are that for the MSSM or any of its extensions there is not a single working
model where one breaks the N = 1 supersymmetry and generates at the same time, the mass
terms and trilinear parameters for all the fields of the MSSM. The good news is that there is a
way to account for all the possible terms that may appear after the breaking of supersymmetry.
This is because these terms can be restricted by imposing the absence of quadratic divergences
of the effective theory obtained after supersymmetry breaking. We will check out this in the
next section, § 9. Here we will just state how D and F terms can be made non zero.

Spontaneous breaking of the supersymmetry occurs by definition when the vacuum is not

invariant under superymmetric transformations, that is QA|0〉 6= 0 and Q†
A|0〉 6= 0. In

supersymmetry this happens when the ground state energy is lifted from zero. This is very
easy to see because for any state |α〉,

H =
1

4

{
Q1, Q1̇

}
+

1

4

{
Q2, Q2̇

}
=⇒

〈α|H|α〉 =
1

4

∑

A=1

∑

n

[
|〈α|QA|n〉|2

]
+
[
|〈α|QȦ|n〉|2

]
, (57)

which is a positive definite quantity except for |α〉 = |0〉, which is zero.
Is nice to break supersymmetry this way since the Lagrangian does not change its form. Once

the supersymmetry is broken there is a split in the supermultiplets, generating a difference in
mass between superpartners. In this case the D or F terms do not vanish in the vacuum state.
Recall that the N = 1 supersymmetry, that we have introduced in the first sections and the
one that the MSSM satisfies, is a global supersymmetry. According to Goldstone’s theorem
when it is broken the resulting theory will contain a Nambu-Goldstone massless particle with
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the same quantum numbers of the broken symmetry generator 8, QA. This is a two component
Weyl spinor, therefore the Nambu-Goldstone goldstino will be a massless two component Weyl
fermion.

8.2. D Term Supersymmetry Breaking

D term supersymmetry breaking happens when a D term in the scalar potential is lifted from
zero. An example of this is the Fayet-Iliopoulos Mechanism, which assumes the existence of a
U(1) gauge factor in the theory. As we have seen from Eq. (47), in a supersymmetric U(1) gauge
Lagrangian, the following terms contain the scalar D

LU(1) ⊃
1

2
D2 + ηD + gti|φi|2D, LFI

.
= ηD, (58)

where exaclty ηD is the Fayet-Iliopoulos part of the Lagrangian. Obviously D should be a gauge
singlet. The D term itself is given by Eq. (50). In this mechanism it is assumed that there are
n scalars with charges ti = qi under U(1), which may or may not have masses, mi, coming from
the superpotential. Then in general we can write

U = −1

2
D2 − ηD − g

i=n∑

i=1

qi|φi|2D +m2
i |φi|2 =

1

2

[
−η − g

i=n∑

i=1

qi|φi|2
]2

+m2
i |φi|2, (59)

where for the last expression of U we have used Eq. (50) and Eq. (51). This cannot vanish and
therefore supersymmetry must be broken. Note that the scalars will have masses m2

i + gqiη
while their fermion partners will have masses m2

i .
Unfortunately the U(1)Y gauge factor of the MSSM cannot help to break supersymmetry, in

this case because its fermions do not have superpotential mass terms, the mi’s. We see that even
in the absence ofmi’s, U (Eq. (59)), one may think to use the effective U to break supersymmetry,
but it has been shown that does not and instead it does break color and electromagnetism.

However this mechanism can be used to break realistic extensions of the MSSM, which include,
other than U(1)Y , U(1) gauge factors. It is also very useful in supersymmetry family symmetry
theories where we have different U(1) charges for each family of fermions and at least two scalars

θ and θ′ with charges 1 and −1. They can be coupled to QHuu
†
R and QHdd

†
R, generating the

hierarchical Yukawa couplings and by means of the U of Eq. (59) fix the order of the VEVs of
θ and θ′.

8.3. F Term Supersymmetry Breaking

F term supersymmetry breaking is easier to achieve because one only requires that there exist at
least one F∗i = δW

δφi
6= 0, among n possible Fi terms. If supersymmetry needs to be broken in the

global minimum of the potential 9 then Fj = 0 ∀j 6= cannot simultaneously be solved for Fi = 0.
In this case supersymmetry is indeed broken because U =

∑n
k=1 F

∗
kFk 6= 0. A consequence of

Fi = 0 is that any superpotential without a linear term in Φ, first term in Eq. (33), cannot
produce an F type symmetry breaking because given that F ∗

k = mkjφj + 1
3fkstφsφt can be made

zero, once we take VEVs, 〈Fk〉 = 0, ∀j for 〈φj〉 = 0, then we will have U = 0
An example of a successful F type supersymmetry breaking is the O’Raifeartaigh model. In

this model one needs a minimum of three chiral fields, Φi with the superpotential of the form

W = mΦ2Φ3 + λΦ1(Φ
2
3 − µ2), (60)

8 We are used to bosonic symmetry generators because of the standard U(1) bosonic example of a complex scalar
field. After symmetry breaking the Nambu-Goldstone massless particle is a boson.
9 Local minima can generate the so called metastable vacua which can have very large lifetimes and therefore
under some conditions are suitable for candidates of the “observed” vacua of a given theory.
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for µ a given mass parameter. If m, µ, and λ are real then F ∗
1 = λ(φ2

3 − µ2), F ∗
2 = −mφ3 and

F ∗
3 = −mφ2 − 2λφ1φ3. Then as O’Raifeartaigh showed, the system of equations Fi = 0, i =

1, 2, 3, has no simultaneous solution. The minimum of the potential U in this model has two
different behaviours when µ2 < m2/2λ2 and µ2 > m2/2λ2. It is often easy to find global minima
that break supersymmetry in models which are characterized by the first case.

8.4. Mechanisms for Supersymmetry Breaking in the MSSM

It so happens that just with the superfields of the MSSM it is not possible to achieve neither D
nor F term breakings. Then additional superfields that break supersymmetry must be included,
but since many fermionic components can induce dangerous couplings 10 with the MSSM fields,
these couplings should be really small. The set of fields that break the MSSM supersymmetry
in this way, is called the Hidden Sector. Now, it is not enough to break the supersymmetry, it is
also necessary to obtain a realistic mass spectrum for the supersymmetric particles. There are
two popular mechanisms to attempt it, which we describe in what it follows.

In the Gravity Mediated Supersymmetry Breaking mechanism, the hidden sector is
communicated only through gravitational interactions to the MSSM fields. That is, the breaking
or any coupling to MSSM fields can only be felt via gravity.

Another mechanism to attempt supersymmetry breaking in the MSSM is the Gauge
Mediated Supersymmetry Breaking, this is just as the gravity mediated supersymmetry
breaking but this time the interactions are the same gauge interactions of the MSSM. In order
construct realistic models in this scenario, the couplings of the hidden sector must come from
loop effects.

Is sad to say it, but up to date there is not a single full working model for supersymmetry
Breaking in the MSSM.

9. Soft SUSY Breaking Lagrangian and Mass Spectrum of the MSSM
9.1. Soft SUSY Breaking

As we have mentioned in the previous section, with the MSSM fields alone, it is not possible
to break the N = 1 supersymmety. However, given the particle content of the MSSM, it is
possible to write down all the possible terms that, after symmetry breaking, could exist. These
terms can be restricted by imposing the absence of quadratic divergences of the effective theory.
Having said so, in the MSSM with R parity, the most general soft supersymmetric Lagrangian
that can be written is

−Lsoft = q̃†Li(m
2
Q̃
)ij q̃Lj + ũRj(m

2
ũ)jiũ∗Ri + d̃Rj(m

2
d̃
)jid̃∗Ri

+ l̃†Li(m
2
L̃
)ij l̃Lj + ẽRj(m

2
ẽ)

jiẽ∗Ri + ν̃Rj(m
2
ν̃)

jiν̃∗Ri +m2
hd
h†dhd +m2

hu
h†uhu

+(b hdhu + h.c.) +
(
−aij

d hdd̃
∗
Riq̃Lj + aij

u huũ
∗
Riq̃Lj − aij

l hdẽ
∗
Ri l̃Lj + aij

ν huν̃
∗
Ril̃Lj

+
1

2
M1B̃B̃ +

1

2
M2W̃

aW̃ a +
1

2
M3G̃

aG̃a + h.c.

)
, (61)

where SU(2) indices are not written explicitly. They are contracted by ǫαβ and δαβ , respectively,

i.e. AB := ǫαβA
αBβ and A†A := A†

αAα for SU(2) doublet fieldsA,B. As we see it is an incredible
task to study constraints on all the parameter space of the general MSSM, counting the number
of parameters we arrive at an incredible number of 109! Not only this but also the fact that we
need to set up typically three main scales

MUV > M
�S
> MEW, (62)

10 That, for example, could mediate decay of particles at a rate that is not observed, etc.
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which describe the scales at which one should put boundary conditions of all the parameters in
Eqs. (56) and (61). MUV represents the Ultra Violet completion (UV) of the model, coming from
a definite supersymmetric model, M

�S
is the scale at which supersymmetric particles decouple

where we need to match to SM parameters and MEW the Electroweak (EW) scale. On then
should employ the appropriate Renormalization Group Equations (RGE) between two different
scales and work out appropriate matching conditions 11. This is a formidable numerical task
and there are several computer codes that have been developed for addressing this enterprise
[15, 16, 17] and several people managing their own code.

Even when the RGE evolution can be done numerically, there are still formidable hitches to
worry about. The strategy followed in the last more than twenty years to tackle this problem is
to simplify the number of parameters based on the following guidelines.

(i) Minimal MSSM. General couplings in Eq. (61) will easily induce flavour violating processes
12 at a rate that is much above the experimental bounds or measured values. Then we can
think a set up where

m2
Q̃ij

= m2
ũij = m2

d̃ij
= m2

ẽ ij = δijm
2
0,

m2
Hd

= m2
Hu

= m2
0, b = Bµ,

aij
u = AY ij

u , aij
d = AY ij

d , aij
e = AY ij

e ,

M1 = M2 = M3 = M1/2. (63)

The Constrained MSSM (CMSSM) adopts this strategy 13. The conditions Eq. (63) are
set up as a boundary condition at MUV identified with the GUT scale, MG. Then the bread
and butter free parameters of the CMSSM community are

sign[µ], A, m0, M1/2 and tan β. (64)

The parameters B and µ are obtained by the requirement of the Electroweak symmetry
breaking conditions. That is to say, they are fitted such that with the spectra obtained
from the running of the CMSSM from MG to MEW (passing through M

�S
) it so happens

that there is a minimum for the scalar potential of the theory such that the EW symmetry
is broken. The only degrees of freedom that are run from MG down to MEW are those of
the MSSM, any theory that was above MG is assumed to be decoupling exactly at that
scale.

(ii) Minimal Supergravity mSUGRA
Here we are entering into a fascinating realm of supersymmetry that we have not
yet mentioned, that of local supersymmetric transformations (14). An N = 1 local
supersymmetry transformation turns out to describe a theory which contains a particle
of spin 2 that can be identified with a graviton and its superpartner, of spin 3/2, the
gravitino. This local supersymmetry is called Supergravity (SUGRA) [].
Supergravity theories apart from having a superpotential, have two other unique functions
that are relevant. First, the so called Kähler potential, K, which it is a real function of scalar

11 Two loop beta functions of the MSSM can be found in [14].
12 Among the most pressing ones are the mixing in the K0

− K0 system whose CP violation parameter, ǫK , has
been precisely measured, the leptonic decays ℓ−i → ℓ−j γ, the decay b → sγ, known to a good precision.
13 In practice, since the Yukawa matrices cannot be uniquely determined, when one comes across a CMSSM

analysis, it is common that the analysis is assuming particular forms of the Yukawa matrices. The most used is
that all Yukawa couplings, except those of the heaviest families, are zero. That is, it just takes into account the
RGE running of the heaviest fermionic families, i.e. instead of running the 27 parameters from aij

u , aij
d and aij

e

and the 27 from Y ij
u , Y ij

d and Y ij
e , it just runs the 3 parameters Au,d,e and the three Yukawa couplings yt,b,τ .

14 Check out [18] for a great introduction.
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fields of the theory. Its metric, Kij∗ = ∂2K/(∂φi∂φ
∗
j ), appears in terms like Kij∗ψ

i∗
γµ∂µψ

j .
Second, the gauge kinetic functions, fab, which appear in the supergravity Lagrangian, for
example in the terms: LSUGRA ∝ Re[fab]F

a
µνF

bµν +iIm[fab]F
a
µν F̃

bµν . The gauge kinetic
functions are arbitrary analytic functions of the scalar fields of the theory.
There are two remarkable features of this theory. The first is that it is not renormalizable!
The second is that a limit, where MP → ∞ and the mass of the gravitino (m3/2 ∝ 1/MP) is
fixed, produces a supersymmetric theory, free of quadratic divergences and such that those
parameters which were free in the soft-supersymmetry breaking Lagrangian of Eq. (61), can
be calculated in terms of scalar fields of the hidden sector of the theory, the same on which
Kij and fab depend on.
Minimal Supergravity (mSUGRA) really refers to the choice

Kij = δij , ∀ fields in the theory,

fab = δab, ∀ gauge fields in the theory. (65)

Independently of the choice of a particular superpotential W , there will be simplifications
among the quantities of Eq. (61), in fact those of Eq. (63) plus relations among A, M1/2,
B and m3/2.
Now, the CMSSM is a framework to study what happens when parameters in Eq. (64)
are varied, while in mSUGRA those parameters should be identified with some underlying
supergravity model. Explicitly in the context of the MSSM, mSUGRA, encompasses all
the models which propose a definite superpotential for the hidden sector of the theory. An
example of these is the Polonyi Model 15. The defining characteristic of these models is
obviously the superpotential of the hidden sector. For example, the Polonyi superpotential
is W = m2(Φ+β), both m and β are mass terms. In particular the choice β = (2−

√
3)MP

produces the following simplifications

A = (3 −
√

3)m3/2, m2
0 = m2

3/2, M1/2 = O(m3/2). (66)

For the different approaches mentioned here, a good state of the art can be found in
[20, 21, 22] and references therein.

(iii) Supersymmetric Family Symmetries They put specific relations among all the parameters in
Eqs. (56) and (61) such that apart from reproducing the hierarchy of masses and mixing in
the quark and lepton sector, they minimize the processes that change flavour. Generically
they do not produce simple relations as Eq. (63), but the couplings of the supersymmetric
theory are controlled also by the Family Symmetry [23].

9.2. MSSM Mass Spectrum

Having a look at Table 1 we can classify the following sets of supersymmetric particles: [i] scalar

particles (ũ∗R, d̃∗R, ẽ∗R, Q̃∗
L and Q̃∗

R), [ii] charged, under U(1)em, fermions (H̃+
u , H̃−

d , W̃± ), [iii]

neutral fermions (H̃0
d , H̃0

u, B̃0, W̃ 0) and [iv] the very special gluino, g̃. Due to the couplings that
can be derived from the superpotential of Eq. (56), once the MSSM Lagrangian is constructed
via a generalization of Eq. (46) and the contribution from the soft breaking Lagrangian, Eq. (61),
there will be mixings among some particles in each set.

Once the mass matrices form the mixing states and we obtain the mass eigenstates of these
sets are called Charginos (χ±

i ) for set [ii] and Neutralinos (χ0
i ) for set [iii]. For the set [i], there

are indeed 6 ũ∗i (coming from ũ∗R and Q̃L) different particles which will mix, the same for d̃∗i
and analogously for ẽ∗i . The mass eigenstates of these different particles are called respectively
up-type squarks (aka s-ups) , down-type squarks (aka s-downs) and s-electrons.

15 For more examples, check out [19].
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The masses of these particles must be RGE evolved from MUV down to MEW. After this
is achieved we can obtain tree level masses of the physical mass-eigenstates mentioned above.
That is not all, we have to calculate loop corrections to these masses, fortunately for some cases,
there are computer programmes to do so.

Note that a crucial part of obtaining a realistic MSSM mas spectrum is to obtain EW
symmetry breaking. The MSSM scalar potential is a bit more complicated than that of the
SM. Assuming that at the minimum of the potential, the charged parts of the Higgs scalars are
zero, as in the SM, H+

u = 0, at the minimum of the potential (∂UH/∂H
+
u = 0), we must also

have H−
d = 0. Then at the minimum of the potential electromagnetism is unbroken, since the

charged components of the Higgs scalars do not get VEVs. With these constraints the MSSM
Higgs scalar potential can be written as

UH =(|µ|2 +m2
Hu

)|H0
u|2 +(|µ|2 +m2

Hd
)|H0

d |2 −(bH0
uH

0
d + c.c.) +

(g2 + g′2)

8
(|H0

u|2 − |H0
d |2)2.(67)

It can be shown that a minimum of this potential requires that b, H0
u and H0

d to be real and
positive, so 〈H0

u〉 and 〈H0
d 〉 must have opposite phases. We can therefore use a U(1)Y gauge

transformation to make them both real and positive without loss of generality, since Hu and
Hd have opposite weak hypercharges (±1/2). Then CP cannot be spontaneously broken by the
Higgs scalar potential, since the VEVs and b can be simultaneously chosen real. This means
that the Higgs scalar mass eigenstates can be assigned well-defined eigenvalues of CP, at least
at tree-level. CP-violating phases in other couplings can induce loop-suppressed CP violation
in the Higgs sector. After the spontaneous symmetry breaking the VEVs of the CP even Higgs,
vu = 〈H0

u〉, vd = 〈H0
d 〉, need to satisfy v2

u +v2
d = 2462/2 GeV2. The ratio of these VEVs is known

as tan β = vu/vd. In the SM we will have just one real Higgs, h after spontaneous symmetry
breaking, in the MSSM there are four other physical Higgs particles: the other CP even Higgs,
H0, a CP odd neutral Higgs, A0 and two charged Higgs fields, H±. The phenomenology of this
zoo on its own is fascinating, for a great book check out [24, 25].

As we have said in the previous section it is a phenomenal task to analyse the full parameter
space of the MSSM. As the LHC is running, we would like to have an idea of some reasonable
assumptions about the parameters defining the MSSM. The following assumptions are a good
starting point: (i) χ0

i are the lightest supersymmetric particles, (ii) R-parity is conserved,

(iii) with the exception of t̃ and b̃ all squarks are degenerate in mass and the masses of the
superpartners of left-handed quarks and right-handed quarks are equal at MG and (iv) there is
gaugino mass unification at MG.

Then some bounds [26], all at CL = 95%, can be obtained on the masses for the sparticles:

(i) for the lightest neutralino χ0
1 (coming from mixtures of B̃0, Z̃0, and H̃0

i ), mχ0

1

> 46 GeV;

(ii) for χ̃±
i (mixtures of W̃± and H̃± and tan β < 40, mχ̃±

1

−mχ̃0

1

> 3 GeV), m
eχ±

i
> 94 GeV;

(iii) mee > 107 GeV, meµ > 94 GeV (here the bounds are assuming that the left parts of the
sleptons do not play a significant rôle and that 1 ≤ tan β ≤ 40, meµ −meχ0

1

> 10 GeV) and

meµ > 82 GeV (meτ −meχ0

1

> 15 GeV);

(iv) meb
> 89 GeV (meb1

−meχ0

1

> 8 GeV);

(v) met > 96 GeV (obtained from the decay t̃→ cχ0
i , met −meχ0

1

> 10 GeV) and

(vi) meg > 308 GeV in general (assuming gauge coupling unification at MG). There are more
specific bounds for particular relations among other sparticles.

10. Glimpse of Extensions of the MSSM
During the last decade neutrino physics, after the observation of their oscillations [27], has
become a central arena for studies beyond the SM. They are massive, though we do not yet
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know their overall mass, so any model BSM should worry about them. There are ways to think
that they cannot affect the basic behaviour of the MSSM. For example in scenarios where the
see-saw mechanism explains through heavy right-handed neutrino masses, the small masses of
oscillating energy neutrinos, the right-handed neutrinos could decouple before MG. There are
other models in which it is interesting to decouple right-handed neutrinos after MG. Then the
running of the mass spectrum of the MSSM is altered and all the sector which produces neutrino
masses should also be taken into account in the running. I find cute the generic name νMSSM
for this kind of models.
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