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1, INTRODUCTION

The general theme of this paper is fairly difficult to define, as it is
made up of bits and pieces of information which do not appear to have much
in common. This illustrates fairly well the present situation in this branch
of physics called, until recently, physics of elementary particles. In con-
sequence, this is an attempt to develop a picture of the evolution of the ideas
as they developed during the past two years. The order of presentation is
therefore more or less historical though not rigidly so. There will be no
attempt to give a complete picture of the present situation, as this would be
very dull; an up-to-date report will appear in the Proceedings of the 1962
High-Energy Conference held in Geneva and the later issues of the standard
reviews. '

Having thus set up the plan of this paper as being the historical order,
an exception will be made of the comparison between theory and experiment
which will be postponed to the end. Thé general scheme is therefore as fol-
lows: There will be first a summary of the situation of the theory before
the introduction of Regge poles. Then there will be an explanation of how it
came to a deadlock, with more and more paradoxes developing the impossi-
bility of having stable particles of spin greater than one and the impossibi-
lity of having cross-sections going to constants at infinite energy.

At that point, Chew had the idea of generalizing certain features of
Regge®s work on potential theory to the relativistic theory based upon the
Mandelstam representation. Then all these paradoxes vanished.

Having thus formulated the basic hypothesis of Chew, which had practi-
cally no logical support when it was first proposed, we shall discuss the
pros and cons from a mere theoretical standpoint, and finally, we shall ex-
amine the predictions and the experimental verifications. By that time, the
logical weaknesses of the theory should have been sufficiently exposed and
the reader left wondering why the meager experimental results seem to con-
" firm it so well,

2. THE PRE-REGGE DEADLOCK [1]
2.1, Pre-Regge postulates

In the summer of 1960 the last word in elementary particle physics was
the Mandelstam representation. It is assumed that it is thoroughly familiar,
however, it will be l.riefly gone over, if only to define the notation.To sim-
plify matters, only spin zero particles and practically always equally mas-
sive particles, the mass being taken as unit ‘of mass will be considered.
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Furthermore h = 1, ¢ = 1, The basic assumptions are as follows:

(a) The invariant amplitudesfor scattering or production, expressed as
functions of the external momenta, possess the same analyticity properties
‘as the formal sum of corresponding Feynman graphs, where all possible
intermediate particles are taken into account, regardless of whether they
are elementary or composite. This is at least true on one sheet (the "physi-
cal" gheet) of the Riemann surface thus defined (Landau).

(b) The discontinuities of the amplitudes across the cuts are given as
certain (non-linear) functionals of the amplitudes which generalize the physi-
cal unitarity condition (Cutkosky).

(c) In addition, the amplitudes behave at infinite values of the external
momentum variables no worse than polynomials, at least in the physma.l
sheet (Mandelstam).

These three assumptions are implied by the Mandelstam representation.
Consider a world where there is only one type of particle. The scattering
of two particles with momenta p; and ps into particles with momenta -p; and
-p4 depends only upon two variables .

s= (pl +p2)2:
t = (p1+p3)?, s+t+u=4,

u= (p1+pal?, PE= 1.

The scattering amplitude then, as a function of s, t, u, is analytic, (a), ex-
cept for cuts at s, t or u real, greater than 4. The jump across the cut is
then directly given by unitarity, without any Cutkosky generalization, (b),
and the amplitude behaves at infinity in the (s, t, u) space at worst like a
polynomial, (c).

We shall write the Mandelstam representation

_1 NN p(s’, t)ds’'dt
A(s,t,u) 1’28 t f sNt'N (g-g)(t'-t) P

s')ds’ L .

where L, M, N are some integers and R ; , indicates the two terms obtained
from the term written just before by c1rcu1ar permutation of (s,t, u).

We shall call p(s,t) double spectral function, pp(s) single spectral fune-
tion of degree p and p,  coefficient of the residual polynomial of degree p*tq
(Strictly speaking these ''functions' may be distributions). All these quan-
tities are linked together, and to the production amplitudes by an infinite
set of non-linear equations which express the unitarity requirement.

If we consider a theory with a more complicated spectrum, i.e.several
types of particles, the number of independent amplitudes becomes very large,
also the number of spectral functions and even the number of terms may
increase in order to include contributions from complex singularities, How-
ever, we shall reason only on the very simplified case just mentioned and
shall hope that all we say generalizes to more complicated cases. In par-
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ticular, we shall not consider the question of whether there are complex
singularities or not, it being understood that complex singularities are only
supposed to bring in more terms. It is often believed that the representation
(1) and the representations of an analogous type for the other amplitudes,
combined with Cutkosky’s rules which insure unitarity, are sufficient basis
for a dynamical theory. '

2.2. First troubles

Of course, it is very difficult, even with fast computers, to solve these
equations expressing axioms a, b and ¢ even without insisting on quantitative
predictions. The tendency until 1960 had been to try and do everything feasi-
ble by using only functions of one variable: the double spectral functions
were neglected altogether (Cini, Fubini), and approximate systems of equa-
tions involving single spectral functions of lowest degree were solved (Chew,
Mandelstam). By the summer of 1960, all calculations on this scheme had
been carried out, at least all of those which did not lead to divergences.
Mandelstam*has described how this procedure worked and how one ran into
great difficulty as soon as P-wave resonances entered the game. Thus people
started to contemplate the double spectral function, thinking that they might
help somehow. The ideas that they had at that time were fairly simple and
they thought that a fair model of what a double spectral function might look
like were, for example, the double spectral functions as they appear in
Feynman graphs, quite smooth and without much of a structure,

Something did not seem to fit into this picture very well, however, and
that was the occurrence of stable particles with high spins. Indeed, when-
ever there is a particle with spin j and mass m, some of the amplitudes
have a pole of the form P] (cos 6)/(s-m?) where s is an energy squared vari-
able and cos 6 is in general proportional to a momentum transfer squared.
Such a pole, therefore, fits in the Mandelstam representation (1), under
the condition that M be not less than j. This indicates that (1) is valid only
with subtractions at least up to a degree equal to the highest spin of the
stable intermediate particles. One might then wonder if this could not lead
to very large cross-sections at high energy, increasing polynomially with
the energy. But, of course, the experiments, even with the most energetic
cosmic rays, indicate that it is not so, that the cross-sections behave in
a way consistent with a constant within the experimental accuracy.

The model one had at that time for scattering at high energy was that
suggested by Pomeranchuk : whenever the particles interact, they have no
chance of recombining to scatter elastically because of the competition of
the many inelastic channels open at high energy. Therefore, the scattering

. amplitude becomes purely absorptive and the elastic scattering is simply
diffraction scattering. At very high energies, this diffraction can be treated
classically, given an absorption coefficient which reflects the distribution
of matter in the clouds of virtual particles. One then gets a constant cross-
section, a constant diffraction scattering peak (measured in momentum trans-
fer) in the elastic amplitude and a constant elastic cross-section, This pic-
ture was more or less in agreement with the experiments which were not

¥ These proceedings.
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very precise and which, for some reason, were in general fitted by com-
parison with classical diffraction scattering by a uniformly gray disc, or
sphere, but never with a more sophisticated distribution of the absorption
coefficient,

2,3. Gribov’s paradox

This picture was shown by Gribov to be inconsistent with the Mandelstam
representation, The essence of Gribov?’s idea was the following : the mathe-
matical expression of Pomeranchuk’s model is that the amplitude A(s, t) in
the physical region, for large positive s and small negative t has the asymp-
totic form

A(s,t) = sf(t) | (2)

where f(t)determinesthe shape of the diffraction pattern, and the factor s

is there to cancel kinematic coefficients in order to have a constant total
cross-section. f(t) in these circumstances has the t-cut of the Mandelstam
representation, and we assume that this asymptotic form is valid for t posi-
tive, at least up to some value greater than 4, Unitarity in the t channel
reads, according to Mandelstam:

. L ds1dsg As (s, t)4% (sg, t)
p(s,t) mﬁff it e o0, (3)

K(t; s, sy, 89) = (t-4)(s2 + s§+ s% -28,84,258; - 285y - 455 5. (4)

A, is the absorptive part of A with respect to the s-channel. Substituting
the asymptotic form (2), taking into account that f(t) is purely imaginary,

iAg(s,t) = A(s, t) :
ds; dsg slszlfml
pls,t) = nft ff K2(t; s, 51, s9) oK) - ©)

Change variables, putting s, =4u151/2, Sg = u,s1/2:

. o1 8% duy dup uy up (1) |2
pls,t) = Tt ff (t-4)[s2 + 0(s3/2) - 4 s2u uy)/2 B{K). (®)

The integration takes place in the hyperbola u uy < (t-4)/4, asymptotically
and diverges logarithmically, except that the term 0 (s8/2cuts off the inte-
gration, thereby introducing a £nsterm which we cannot calculate exactly
as it involves non-asymptotic regions. We therefore have the behaviour
p(s,t) =const.sIn s|f(t)|2. This is incompatible with p(s,t) = s - Imf(t). We
shall see later in a much more transparent fashion the deep reasons for
this paradox.

One may generalize this reasoning and one finds that the paradox takes
place for any asymptotic behaviour of the form
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A(s,t) = s*2nf (s) - £(t), (7)

if ¢ is real and Re 8 > -1,

Gribov's suggestion was to takea = 1, 8 < -1, but this is already a little
difficult as it implies cross-sections which go to zero at infinity and again,
the problem of how to accommodate particles with large spins stays there
as the behaviour of the poles corresponds to a real and § = 0.

2.4. Bound on the asymptotic behaviour in the physical region

Another difficulty arose in this connection, when the author proved that
the cross-sections in the framework of the Mandelstam representation cannot
increase faster at infinity than £n2s. The intuitive basis for the theorem is
the following : consider the Pomeranchuk model classically, We may very
well suppose that the absorption coefficient changes with energy. However,
the distribution of matter in the cloud of virtual particles falls off essentially
exponentially, the range of the exponential being given by the mass of the
lightest virtual particle, Therefore, all we may expect is an absorption co-
efficient of the form ge K where g may vary with energy. If the impact pa-
rameter b of a collision is such that ge'Kb <<1, there is practically no ef-
fect, If geKb >>1 there is complete absorption. The cross-section is de-
termined then by the value a of the impact parameter so that geXa>1 or
az (1/K)ng,g, = 7/K2(Ing)2 Even if we assume that g grows polynomially
with the energy, a increases only logarithmically and the cross-section
increases thus like the square of ln s.

A very elegant derivation of this theorem was given by Martin, The
only assumption of Martin is that the Legendre polynomial expansion of the
amplitude converges for s>s; up to some positive value ty of t and that, at
that value of t,the asymptotic behaviour of A(s,t) is polynomial in s, This
is automatically guaranteed by the Mandelstam representation[1].The reason-
ing of Martin uses the fact that the imaginary part of partial waves is posi-
tive and bounded and that the Legendre polynomials B, (z) are positive in-
creasing functions of £ for z real, z > 1, Let us then write the absorption
part of the amplitude :

A (s,t) = %(21 +1)Im ay(s) P, (cos 6), (8)
0< Im ay(s) < Js(s-4) , cos 6 =1+2t/(s-4)- (9)

If one wants to maximize A (s, 0), holding As(s,'to)fixed,. as B {1+24/(s-4)]
is an increasing function of £ whereas Py(1) = 1, one has to take as small
values of £ as possible:

Im ay(s) =0 , £> 4 and Im ay(s) = Js?(sI) ; 2< £g.

The value of £; is determined by

&
A, (s, o) EZO (22+1)J5](5-8) B, [1 +21t,/(s-4))= J5](5-4) (F},., + P ).
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Assume that Ay(s,tg) ® Cs%; Rea > 1. We use the following estimate-
P'?o [1+2ty/(s-4)]= Io(Lp2To/(s-4) (modified Bessel function)

and therefore:

P, = L(s-4)/8 1, 1,(4 V21, /(s-9).

We thus determine £; by

2, (s-8)/ 2ty 1) (452 15/ (s-4) = C 5%
For Re a > 1 the solution of this equation is asymptotically for large s:

L2t [(s-4) = (@-1) Ins or: f£,x(e-1) sl/? In(s\2%,)

which gives

N

A(s, 0) = %5’(21 +1)Js/(s-4) = B = (2-1)®sln¥(s/2t,)

This corresponds to'the classical picture given above. One may also esti-
mate the asymptotic behaviour of the amplitude in the physical region, either
at fixed momentum transfer, or at fixed angle. The results are the following:

|a(s, < Mt)s1n2s , t<o, (10a)
|A(s, (s-4)(cos 6-1) < N(6)s¥4 In3/%  0< 6< . (10b)
2.5. Independence of the single spectral functions

An interesting question about the Mandelstam representation was, be-
sides how many subtractions are to be made, whether or not it was possible
to change the content of the theory by making more subtractions. This was
very interesting particularly in view of the well-known CDD ambiguity which
arises when one tries to enforce unitarity on the single spectral functions.

It could be that by making more and more subtractions, it becomes possible
to introduce more and more particles with higher and higher spins into the
theory by introducing CDD poles, just as one may introduce more and more
complex terms into a Lagrangian.

However,it is possible to show, using conditions (10), that this is not
so. The single spectral functions of degree greater than one and all coef-
ficients of the residual polynomial of degree greater than zero are complete-
ly determined by the double spectral function and the conditions (10),

To make this clear, suppose that there are two different amplitudes
with the same double spectral function. Their difference satisfies (10), and
is expressed by

L

AA(s,t,u) = Z tp (—:g‘%)(%s‘ﬁ) Ku ZtF psqo- K (11)
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The idea is now to prove that all of these terms must obey conditions (10)
individually, in other words that there cannot be any cancellation between
different terms, The details of the proof will not be discussed but the prin-
ciples will be outlined.

Let us take different directions in the (s, t, u) plane, corresponding to
different values of the angle 6, and show that an expression like (11) cannot
satisfy (10b) for 3M + 2L + 1 different values of cos 6 unless

o(s)<C sPR/41nd/2g,
Op,q = 0 except oy

In that case, if s is fixed negative and t variable, the largest term which
contributes to the asymptotic behaviour is

thaM(s')ds’ .

(s"-8)

This term violates (10a) if M> 1 and therefore must vanish on the negative
real s axis and therefore it vanishes everywhere by analytic continuation.
Thus we prove that M=1 and L=0 in Eq. (11).

In the same way, this method allows in principle to compute the single
spectral functions of degree greater than one from the double spectral func-
tion. This is in practice very difficult to carry out because of the analytic
continuation mentioned above.

Even in principle, it appears very difficult to prove that the partial
waves obtained by this method will satisfy unitarity. At any rate, it is suf-
ficiently demonstrated that particles with spin greater than one cannot be
elementary, in the sense that one cannot introduce arbitrary CDD poles
for the higher waves (j > 1) as there is no N/D equation in that case. In that
sense, we shall say that all particles with spin greater than one are ''dyna -
mical". It is interesting to note that the condition just obtained looks quite
similar to the old-fashion "'renormalizability' condition. The connection
may be deeper in the sense that these two conditions both reflect the fact
that, unless very pecular cancellations take place, unitarity is strongly
violated at high energies if one introduces a priori high spin particles into
the theory. Now the paradox is complete: we have proved that the behaviour
of the amplitude in the physical regions is completely different from that
in the ""spectral" regions: we have an upper bound in the physical region
due to unitarity and we have a larger lower bound in the unphysical region
as a result of poles of particles with high spin.

How this be reconciled with the analyticity properties ? There must
be some kind of oscillation of the amplitude in the spectral region so that
the dispersion integrals expressing the amplitude in the physical region
do not in fact behave at all like their integrands, but increase more slowly
as a result of cancellations inside the integral.

A very natural kind of function with just such a behaviour is, for ex-
ample :

A(s,t) = B(t)s"® (12)
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where a(t) is real, less than one for t < 0, has a cut for t> 4 and is such
that Re «(t) stays bounded in the cut plane ; B(t) is any function satisfying
a dispersion relation in the cut t plane.

Such a function would indeed resolve all paradoxes above. It may be
shown (the reader may do this as an exercise) that the Gribov paradox, al-
though holding for any real o, ceases to hold as soon as o is non-real, This
is precisely the result of the cancellations introduced by the oscillations
described by phase [s®®}] = Im o lns,

3. THE INTRODUCTION OF REGGE POLES

Having been compelled to consider amplitudes of the form (12) Chew
looked around and found Regge®’s paper [2] which predicted an asymptotic
behaviour of precisely this form in potential scattering with & momentum
transfer and t energy variable. This coincidence was very striking because,
to reach the form (12) from the relativistic theory, we constantly used the
crossing symmetry or equivalently, unitarity in all three channels, which
is very specific of the relativistic theory. On the other hand, one may argue
that after all it is not so surprising, as the unitarity equation reads much
the same for potential scattering and for the elastic regions of the relativis-
tic problem. At any rate, it was very intriguing, and still is,to see whether
or not the Regge poles have a logical place in the framework of S-matrix
theory. It is very difficult now to expose as nobody yet has produced any-
thing very convincing.

Let me start by describing the way people agree to choose the "best'
interpolation.

3.1. Definition of the partial-wave amplitude

In the theory of scattering by superposition of Yukawa potentials (see
Regge’s lectures®) the amplitude a(£, q2) has the following properties, It
is holomorphic for Re £ > N, It decreases exponentially with Re £ and in-
creases at most like a polynomial with Im £. Furthermore, it is unitary
all along the real axis, even for non-integer points.

If we start from the Mandelstam representation, we have a dispersion
relation in cos 6, which we can write as

Ac(q?, x)dx

1
A(g?, cos g) = - cosN ef (x-c05 0

) + Polynomial. (13)

We have expressed now the amplitude A and its absorptive parts in cos 8,
A,, interms of 2 = (s-4)/4 and cos 6 = 1 + 2t/(s-4).
The integral extends on the real axis, somewhere outside of [-1, +1].
The partial wave computed from this is,for integer £:

Ac(q?, x)dx

1 1
2) = = N +
Q9% 27{]: dcos 6 K (cos 6) [cos 6 N(x-cos 8) B, (cos 9)]. (14)
Let us compute the partial waves for £> N only.

* These proceedings.
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Then we can integrate:

+1 N
1 __cosT8 _
2_[1 dcos 6 F, (cos 6) N(x-cos ) Q,(x) (15)

where Q,(x) is that L.egendre function of second kind which is real for x>1
real and we get

ay(a) =2 fdx A (a2, X)Qy (). (16)

This integral converges, as Q,(x) ~ 1/(2x)*4 for large x.

We note at this point that equations (14) and (16) are equivalent only for
integer values of £. Furthermore we note that in general A,(q?, x) gives con-
tributions to {16) from the side of x> 1 and from the side of x <-1, thereby
introducing terms which behave like ei™which do not satisfy our conditions.
If however, we introduce the following functions:

() = 7 [ax QuIaf, ) £ Ay, ), (17)
x>1

we get an asymptotic behaviour in the half-plane Re £ >N which is exactly
what we want : polynomial at most in Im £, and exponentially decaying with
Re £. The physical a, is equal to either a* or a* according to whether £ is
even or odd, :

Now we may introduce a theorem [3] which is very useful for the fol-
lowing. ’

3.2. Carlson’s Theorem

Let f(z) be regular and of the form 0(ealmzl*8Re2) i Re 230, o and B
real, a < 7; let f(z) = 0 forz = 0, 1, 2... Then f(z) is identically zero.

Proof

We can write the Cauchy theorem (Re z > 0) for the regular function:

[Imkl< T-a,
- for:
0-iw Sin 7 x(x-z) Re < -8.

sinw z 27i

fz) 1 f"““’ e f(x)dx

Both sides are analytic in the whole strip |Im>\ | <7m-a and the equation holds
there. But on the real A axis, the right hand side is bounded; the left-hand
side can only be bounded if f(z) = 0.

It is clear that this theorem guarantees the uniqueness of the interpola-
tion af that we have defined, which satisfies very comfortably the conditions
of the theorem, as Qy(x) ¥ 1/(x+Jx2-1)*1for large 4.

This theorem is also useful to prove that, for the regions of energy
where the partial wave is unitary (elastic region), the interpolations aj are
unitary each on the real £ axis. To show this for aj, let us write £=2z +2N
and build :
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s [

(azith) - 21

+ =
Boze2N ~ 23,4 on (Boton f =1

f(z) vanishes for every integer value of z, as at that.point a} takes on a physi-
cal value at an even angular momentum. On the other hand f(z) is regular
and satisfies Carlson’s asymptotic condition and is therefore identically zera.
aj satisfies unitarity in the complex half-plane everywhere in the sense that

a, - () = 21 J(5-4)7s af(al,)*. (18)

The reasoning is the same for a; and leads to the same result.

The reader may show as an excercise that if one is to take only one
interpolation, valid for both even and odd partial waves, for example

(a*+a-)/2 + el (at -a")/2, Carlson’s theorem does not apply any more toprove
unitarity and in fact the amplitude thus obtained is not unitary in general.

We have so far established a number of properties which are quite in-
teresting in the sense that they remind us strongly of the potential scattering
case, Notice also that if one has the Schrodinger equation with an exchange
potential, one obtains twice the Regge behaviour: once with the even partial
waves and an effective potential which is the sum of the direct and exchange
parts, and once with the odd partial waves with the difference. Therefore
in that case one also obtains two distinct interpolations aj} and a, with the
same properties.

3.3.Connection between asymptotic behaviour in cos 8 and singularities
in the £-plane,

We have not yet reached the interesting part of the £-plane, in the sense
that we are still on the right of any Regge pole (if there is any)in the region
where Eq.(17) converges.

Indeed, if A displays a behaviour like (cos 6F, the integral (17) only
converges for Re £ > Re «.

If however A (q, cos 6) = B(qZ)Pa(qz) (cos 6) + 0[(cos 6)""]where Rea'<Reas
then we may analytically continue the integral by writing:

-

[E (x) Q,(x)dx = 1/(£-a)(£+a+1) (19)

and continuing this term by its exact expression, and the remainder con-
verges further to Re £> Re a’. Therefore we may again get Regge poles
as a consequence of the behaviour (12).

Incidentally, it might help to see what kind of singularities other asymp-
totic behaviours may lead to.Consider for example

A(q2, cos 6) ™ cos®8 InPcos 8 + 0 [(cos )],
Write

cos® InPcos 6 = 27r1f cos‘Gdg +0 [(cos 6)%],

’ (g a)B +1
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the integral being taken around o. We might as well replace cos® 6 by E(cos6)
and insert into (17) and (19) thus getting the leading singularity

[81/(2a+1))f 1/ (2-a P,

This singularity for 8 integer negative becomes of logarithmic type. We
may remark then that the power in cos 6 will determine the location of the
singularity, whereas the nature of the singularity will depend upon the depar-
tures from a simple power behaviour. It is therefore to be expected that
any attempt to determine the nature of the singularity by using Eq.(17) is
very delicate and it becomes dubious whether it does not at the same time
determine the exact location of the singularity.

On the other hand, if one knows by other ways that there are only poles,
then the analytic continuation of Eq. (17) is fairly possible: identify the poles
by the asymptotic behaviour, and subtract them out. This has been done in
practical calculations [4], in particular in potential scattering [5] where one
knows that there are only poles.

3.4, Bardacki’s method

Recently, BARDACKI [6] has completed some very interesting work
which is probably the first step towards a proof of the existence of Regge
poles in relativistic S-matrix theory., His basic idea is the following: we
assume that the overall number of subtractions for the Mandelstam repre-
sentation is finite, N. Therefore, for any q%, a;(q? is regular in the half
plane Re £ > N, On the other hand, we have seen that for s real and negative,
the maximum power admissible for cos 6 was one (unitarity in the crossed
channel). It is very easy to see that, in fact, this holds also in an infini-
tesimal neighbourhood of the negative s axis. We therefore have another
domain of regularity s negative, Re £> 1. We may take the holomorphy enve-
lope of these two domains which provides a larger domain of holomorphy
for Q3(q?).

It turns out that the calculation is fairly trivial. If one makes a con-
formal mapping to map the s-plane cut from - o to 0 and from 4 to + « onto
a strip:

S=2+2 sin z, -i<Rez<1,
We can almost use the tube theorem, saying, not rigorously, that we have

analyticity in the region:

~-1<Rez<1, Re £> N,
Rez = -1, Re > 1.

We use the tube theorem, taking the convex hull of the base of the tube:

Re £> (N+1)/2 +[(N-1)/2]Re z, or
Re £ > (N+1)/2 +[(N-1)/2]Re arc sin (s-2)/2, (20)
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This is not quite rigorous because Re z = -1 is not a domain, However, it
may be made rigorous. The extension of the domain of holomorphy stops
there and one cannot go further. There is, however, a way to extend the
analytic properties, but not holomorphy, only meromorphy. This consists
in taking exactly into account the two-body unitarity as far as it is valid,
It is known that Schwarz’s reflection principle allows one to continue through
the two-body elastic cut analytically or, alternatively, to write down a func-
tion of the partial-wave amplitude which does not have the two-body cut.

To be more specific, consider the partial wave at threshold copying
Eq.(17) in the form

a,(d?) =LQ?I(X)At(q2. x)dx. (21)

We should keep in mind that x * 1 +t/2q2. Only large values of x will con-
tribute near threshold. Below threshold, at g2= |q|2 eir, A(q? x) is real,
and therefore the phase of aQ('qz) is that of Qy(x) = Q,[1+t/(2| q?eiM]. It is
+ exp irf. Above threshold g2 =|q|2, Q,(q? is unitary, so that Im 1/{q/q?)]
=q/,{1 +q2.This gives us the whole set of rules to continue ag(q%around q=0
any number of times. The construction of the function

Ry(a®) = ¢?*/a (q?) + 21 q®*/[1 +exp(2ind)JqZ+1. (22)

so that it turns out to be real for both g2 = i] q|2 is left to the reader, Further-
more, it is bounded at g2 = 0, because

a,(a?) ~ q2 A (g2 x)dt/t#4, (Re £ > N).

it is therefore regular at the origin as a function of 2. At any rate it is me-

romorphic wherever ay(q? is.

i Now if we assume (which is nearly rigorous) that the rules for com-
pletion of meromorphy domains are the same as for holomorphy domains,

we can play the same game as before except that the initial domain has a

cut starting from the first inelastic threshold (somewhere between 4 and 16),

say 16. Then we get, for a,(qz) the meromorphy domain as defined by

Re(£)>(N+1)/2 + (N-1)/2 Re[arc sin(s-8)/8]. . (23)

We see clearly that we are prevented from going further only by our lack

of ability : we do not know how to eliminate the further cuts on the real axis.
It is conceivable that someone who could master the 4-body unitarity con-
dition could carry on the programme up to the 6-body cut, and so on, At
any rate, it is comforting to see a domain of meromorphy which is larger
than the domain of holomorphy, as this introduces a kind of proof which
depends very little on Eq. (17) as far as the nature of the singularities is
concerned. However, it might very well turn out that the 4-body cut intro-
duces other kinds of singularities in the £-plane and that the reason that
potential scattering has only poles is precisely the absence of inelastic con-
tributions. This is of course an open question. If however, one makes ad hoc
hypotheses on the inelastic contributions, for example, if one assumes [7]
analyticity properties of the absorption coefficient n(£, %), then it is possible
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to carry out the reasoning with threshold of infinity, thus getting mero -
morphy for Re £> 1, but it looks a little like assuming what one wants to
prove. Another interesting try has been made recently by MANDELSTAM
[8],in which he studies a problem where the kinematics are relativistic,

the potential energy independent and where there are no inelastic processes.
He then succeeds in proving that for a potential weak enough, the Regge-
Sommerfeld-Watson formula is applicable down to Re £ = 0, without using
the unitarity condition in the crossed channel.

B

4. DISCUSSION OF CHEW’S HYPOTHESIS

We have seen in the last section how one might think of establishing
the existence of Regge poles in S-matrix theory and that a long way still
lies in front of us. However, CHEW [9] was bold enough to overcome this
lack of logical support and to assume that the only singularities lying in
the £-plane are poles and that the partial waves were given even for small
£ by the analytic continuation of al(q2) as defined by [17].

Let us examine how this hypothesis solves and helps to understand the
paradoxes encountered in the first section.

Gribov’s paradox is now very clear. We have seen that a behaviour
of the form cos® In®(cos 6) brings in a singularity in the £-plane at £ = a,
of the kind (£-a)¥8*) , The content of Gribov’s paradox is that no such sin-
gularity may lie on the real axis, where a, is bounded by the unitarity con-
dition unless < -1, whatever the real value of o is. But, of course, we
assume now that the Regge poles move and if «(q2) is the position of the pole,
according to Eq. (22) near the threshold:

R,(q? = 2iq®**Y[1 +exp(2ima)] 1+ q°.

The solution of this equation, o, moves out of the real axis just at threshold
with an imaginary part [7] of the order of g2%*} «, being a(q2=0). This is
exactly what we need to avoid Gribov's paradox.

Similarly, it is now easier to see through the complexity of the
dependence of single spectral functions upon the double spectral functions.
For negative real s, the partial waves obtained without subtractions (£>1)
are indeed the analytic continuation from the region of Re £> N, Therefore,
if this analytic continuation is unique when one analytically continues them
to positive values of s, they are still the analytic continuation of a; as de-
fined by Eq.(17) and therefore are unitary by virtue of Eq.(18). If there are
only poles, the analytic continuation is unique and therefore Chew’s hypo-
thesis explains the kind of magic which takes place here very well. Further-
more, it may be much easier to continue analytically in £ rather than in s,
as the continuation path may be shorter, and we have seen that the analytic
continuation in £ is relatively easy when there are only poles which one can
separate out. If this connection is true, we see that the second part of Chew'%s
hypothesis is forced upon us by unitarity in the crossed channels for inter-
mediate partial waves (2 ¢ £ € N}, and therefore it is very natural to extend
it to the S and P-waves.
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4.1, Possible range of coupling constants

Let us make a little philosophical digression at this point which may
illustrate the possible depth of Chew’s hypothesis pretty well. Let us con-
sider that, as in potential theory, the stronger the interactions are, the
larger are the values of angular momenta of Regge poles. This is of course
without proof of any kind. If, however, one admits this postulate as well
as Chew’s hypothesis, one is faced with the following situation: the inter-
actions cannot be stronger than they are in the physical world, as this would
correspond to amplitudes increasing like 5% o> 1 in the physical region,
which contradicts the unitarity condition. Chew called this circumstance
"saturation of unitarity". It seems that the interactions in nature are "as
strong as possible" On the other hand, can they be weaker ? Perhaps, but
not vanishingly small, since, according to Chew’s hypothesis, if one wants
to have one particle, one has to bring at least one Regge pole up to zero.
The free-field theory in particular does not satisfy Chew’s hypothesis, as
its scattering amplitude has no poles and therefore no stable particles. 1t
looks thus as if there was a finite range of interactions possible. If one is
very optimistic, one may even hope that there is only one theory possible
by this system, but this becomes science-fiction,

4,2, Accumulation of Regge poles

It has been pointed out by Gribov and Pomeranchuk and independently
by Wilson that sometimes the Regge poles cluster around some accumulation
points. They have used this fact to derive a lower bound on the asymptotic
behaviour of cross-sections.

The first case [10] of such an occurrence is essentially kinematic and
arises [11] also in potential scattering {5] . We can easily derive it from
Eq.(22) in the neighbourhood of the threshold q = 0. The equation of theRegge
poles reads

R,(q?) = 21 q2=*Y[1 +exp(2ira) Q2 T 1. (24)

This equation has an infinite number of solutions near = -%: this is best seen
by taking the logarithm:

In Ry(q®)+1n [Eﬂg{?ﬂl}% In[q?+ 1] = (2a +1)In q* 2mir,
In R+In[-7(a+ 3)]=(2a+ 1) Inq+2mir+0(a + 3). (25)

We thus have an infinite number of poles labeled by m, going to -z roughly
~ like -1/2 + 2min/1ln q, neglecting a factor of the order In|ln al.
This result leads to a prediction concerning the behaviour of A{qZ, cos 8)
for g2= 0, cos6 - w0 : A(0, cos 0) cannot fall off faster than (cos §)"1/2,1t is
to be expected that such a behaviour will take place at every threshold, at
£= -1 for two-body thresholds, possibly at other values of £ for many - body
thresholds, as it depends upon the phase-space threshold behaviour.
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Another point of accumulation of Regge poles [10] is a consequence of
a very special feature of relativistic theory, i.e. the existence of a double
spectral function at negative energy.

Consider the partial-wave amplitude as defined by Eq.(17).For g2= eirlal
near zero, a}(q?) has a constant phase+ i, that of Q,(1+t/2q?).For g2<-ty/4,
a cut appears as a result of the coincidence of the limit of integration
%9 =1 +1t3/2q2 with - 1, which is a branch point for Q,.

The imaginary part of by(q?) = q'ﬂQl(q?) above this cut is

Xp )
Im bﬂ (q2 +i€) = ——3—2\/‘ Im[A[ (q2+ if, X- IE)QQ(X = 16) e'l‘"ﬂ]. (26)
7iql '
<1
This is, in general-

2, . - 1 0. R . . -img
Im b!(q +ie) = - W’ﬁm A(q?+ig,x- 1e)Re[QQ(x -ie)e™™] dx

Xo
- WfRe A[q2tie,x-i€)Im [Qy(x - i€)ei™] dx
1 *o o 1 %o
Im ba(qz) =ﬂ—ai-2f pt'u(q2, x)G,(x)dx - Wf Re A,(q? x)Py(-x) dx. (27)
-1 1

where P, _u(qz, x) is the spectral function which lies int >0, u >0, and where
Qi(x) = Re Qg(x) , -1<x<1.

The second term is very quiet and, indeed, it is an entire function of £.1t is
the only one which exists in potential scattering and its nice analytic pro-
perties have been used by MANDELSTAM [8] in a recent study where he
describes a model of relativistic theory which does not exhibit crossing
symmetry. Mandelstam proves there that Chew’s hypothesis is verified.

The first term, however, is not regular, but has the poles of Qp(-x)
which are at every negative integer £. In particular, the first pole at £= -1
is very unlikely to vanish, as its residue is

1
; ﬁt,u (q2: x)dx.

This can be checked in practice by putting the proper threshold behaviour
of pt,u(qz, x) in every particular case of interest. Let us simply assume that
the residue is,not zero. (In any case, all residues cannot be simultaneously
zero, as this would imply p., = 0, because of the completeness of Legendre
polynomials which are the residues of Q(-x).

Consider now the function

f(q?) = £im (£+1)by(q?).

It has a non-zero left-hand cut, but, if a,(q2) is meromorphic down to £=-1,
a,(q2) is bounded by unitarity on the real positive g2 axis £(q2) = 0 there. This
is a contradiction and proves that a;(q2) cannot be meromorphic along the
real £ axis downto £=-1.
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A possible explanation of this phenomenon was furnished by Gribov.
As £ goes to -1, the importance of the left-hand cut increases. This has
the effect in many instances of pulling poles out of the right hand cut ("bound
states") in order to counteract the strong left-hand cut. Gribov suggests
that more and more of these poles come out as £ = -1, until their residue
distribution exactly cancels the left hand cut of £(q2) at the limit £= -1, This
implies an accumulation point of Regge poles around £=-1, each of which
attains -1 only when @2 is infinite. Notice that in potential scattering with
a regular potential, the Regge poles go to negative integers at infinite ener-
gies. If Gribov’s mechanism is right, the occurrence of the "third" spectral
function would only mean that an infinite number of Regge poles reach each
negative integer. Obviously this reasoning only applies to the first non-
vanishing pole of Eq. (27), but it may be expected that the result holds for
all non-vanishing poles.

In all cases, however, we see that it is impossible for the amplitude
to fall off faster than 1/s as we must have a singularity at least at £=-1,
This should be experimentally checked.

5. CONNECTION WITH THE PHYSICAL WORLD [12]

There are basically two kinds of immediate tests of the whole Regge
pole story. The first approach consists in looking in one channel at the Regge
. poles of the same channel going through physical values of the spin, or near-
by, thus producing stable or unstable particles. The second approach con-
sists in studying the asymptotic behaviour of the amplitudes in one physical
region, thus getting information on the Regge poles of crossed channels.

It is obvious that we cannot get complete information on Regge poles by these
methods, but we may get enough to decide whether or not the Regge poles
have anything to do with nature.

5.1.First approach: physical £

Consider a well defined channel, that is a well-defined set of quantum
numbers, baryon number, charge, parity, strangeness and isotopic spin.
In this channel, the S-matrix will be considered expressible in terms of
the total angular momentum j and any other set of variables. We assume
that, as a function of j, it is meromorphic down to Re j = 0 and that this
analytic continuation furnishes the right value of the partial waves.Of course,
we know already that even for 2-body amplitudes, it is not possible to define
one amplitude, but rather two, according to Eq.(17). We thus assume that
these two are enough and that every physical S-matrix element is either
equal to the value of the interpolation by the S* matrix or by the S” matrix,
it being understood that angular momenta differing by two are related to
the same interpolation. The sign put in superscript will be called, following
Gell-Mann, the signature.

In each channel, then, we may order all stable particles and all re-
sonances according to their signature. Then we could expect these states
to belong to the same Regge trajectory, or at least to belong to a finite num-
ber (smaller than the number of states) of Regge trajectories. The first
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attempt in this direction was made by CHEW and FRAUTSCHI [9]. They made
a diagram of all then known particles with the squared mass in abscissa and
. the spin in ordinate. Only one pair of particles could be fitted: the nucleon
P,/ and the third nucleon resonance Fys. This corresponds to an average
slope Ba/as of 1/50 m%. This, quite remarkably, fits with a formula of po-
tential scattering which expresses dof9s as RZ%,/4(2a+1), where R,  is some
average radius of the wave function. If we take it to be 1 /2m,, we get the
result, This, of course, should not be taken too seriously as we are in the
relativistic region. However, this figure of 1/50 m?r should be retained as
we shall encounter it many times.

For example, the possibility has been mentioned at the 1962 Geneva
Conference of the existence of a resonance at 1920 MeV, B=1S5=0,1= 3/2.
If the other quantum numbers turn out to be correct, this could correspond
to the same Regge pole as the well-known (3,3) resonance. In the same way,
the excited hyperon of mass 1815, which appears to have 1 = 0, could be
the same pole as the A. These two cases would correspond to an average
da/ds of 1/50m?2 in the same way.,’

This is about all the information we can get from this first point of
view and is pretty meager., However, the spectroscopy of high-energy re-
sonances is a science in full bloom and the number of pairs associated to
the same Regge poles may increase beyond expectation in a few years.

5.2.8econd approach: asymptotic properties of cross-sections

The study of the asymptotic properties of the cross-sections at fixed
momentum transfer as a function of the energy can also help checking the
Regge pole hypothesis. This has to be done in a fairly indirect fashion, as
we have seen that it is very difficult to determine from the asymptotic be-
haviour whether one has to do with poles or with other singularities. How-
ever, a number of non-trivial predictions can be made and checked against
experiment. '

The total cross-sections, being given by the optical theorem as the
imaginary part of the amplitude up to some kinematical factor, are a very
convenient tool. It should be possible to express them in the form:

Tror (8) = (1/8)E Ba(0)Paqo) (1 +5/2), (28)

the sumimation being carried out over all Regge poles having the appropriate
quantum numbers, that is the quantum numbers of the particles which could
be exchanged in the scattering process. At this point a very tempting as-
sumption can be made, that of factorization [13]. ‘

The idea is the following. Consider a matrix M, function of some para-
meters {A}. Ifthis matrix is meromorphic in {A}; the poles are most likely
to be simple and their residues to be of rank one in the following sense.

If we consider the inverse matrix N = M1, Det N has a zero at the pole
and this zero is most likely to be simple, i.e. we may vary the elements
of N by small amounts related by only one condition and still keep a simple
zero. If we wanted to keep a double zero, we could only vary the elements
of N by small amounts related by 2 conditions and so on. If the zero is simple
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N has only one eigenvalue zero and therefore M has only one eigenvalue
infinite or, what is the same, the rank of the residue is one.

If this is accepted, then, we find that the S-matrix, as expressed as a
function of complex j, is most likely to have residues which are of rank
one.

This implies that the factors 8 in an expression like (28) may be written
as follows,

Assume that the reaction under consideration is among partlcles aand b
Then we have:

B,(0) = £2k0) . o).

" This has very strong experimental implications, for example, if we assume
that the leading term in (28) corresponds to

24(0) = 1 (""Pomeranchuk pole')’ - (29)
which leads to constant cross-sections at infinity, then
oelata) o o (bb) = [org (atb)]2 (30)

No such relations has yet been experimentally checked, as they always ne-
cessitate targets which are difficult to prepare. However, it is possible
that in the future cross-sections like o, (7 +7) might be measured by some
indirect way : extrapolation or the like.

- It should also be possible to go farther than that and estimate the next
terms of -Eq. (28). One gets into trouble here. Take, for example, the case
of (p, p) and (p, p) and (p, P) scattering. The total cross-sections look as if
they were going down slowly towards their limit, the difference decreasing
like S™0-5, However, opp is much nearer to it than opp. This is very nice and
we hope that it could be the influence of the Regge pole of the p resonance.
However, this p resonance (or the w resonance), because of its quantum
numbers, only contributes to "he difference opp- ppp- Therefore one needs
another, as yet unknown, Regge pole which has about the same o and 8 and
which has the proper quantum numbers so that it contributes to the sum

opp topp.

5.3.Non-forward scattering

If this last pole exists, one may wonder why it does not correspond to
any known particle. This is also true of the dominant ("' Pomeranchuk') pole.
In fact, the signature of the Pomeranchuk pole is + and therefore it should
go through 0 for some negative value of t where a particle should appear.
This has been investigated by Gell-Mann and, though not understood in full
detail, the situation is pretty well clarified.

The idea, which has been checked by Gell-Mann in a 3-body model, is
that for every integer j, there are two different families of Legendre func-
tions which become completely independent., There are those with singula-
rities and those without. The Legendre functions without singularities are
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connected with the representations of the rotation group. The others may
also be connected with the rotation group, but they do not form a basis for
a representation because of their singularities.

As a parenthesis, Wigner has shown what the representations of the
Poincaré group look like for imaginary mass*. The difference lies in the
fact that, for imaginary mass, the relevant surface is not a sphere, but
" a hyperboloid, and the conditions for the absence of singularities on the
hyperboloid are quite different from those for the absence of singularities
on a sphere,

For example £, all Legendre functions have singularities on the sphere.
When one follows a Regge pole, as a function of £ and reaches an integer
value of j, one expects the relevant "wave functions', whatever that means
precisely, either to keep their singularities on the sphere, or to lose them.
In the first case, one will not get any particle or resonance with that spin
and this is what happens in the case of the "ghost’ of the Pomeranchuk pole
at j = 0. In the second case, it will furnish an honest particle which can be
seen.

Thus, it is getting fairly difficult to trace the Regge poles in their own
channel, one may miss them fairly frequently. The behaviour indicated by
Eq.(12) A(s,t) = B(t)A°®) which leads to a differential elastic cross-section
of the form

do®Y(s, t)/dt | B(t) [2s 2101 (31)

has been experimentally checked, or at least, that it is not incompatible
with experiment.

5.4, Classical picture of high-energy scattering - the puzzle of heavy nuclei

Equation {31) can be interpreted classically, as at very-high energies
the wave length of the particles is much smaller than any of the dimensions
involved in (31). It is therefore tempting to do so. We may rewrite (31},
putting 23a/dt = a.

do®Ydt a8 () [2exp[-at]1n 5]. (32)

The pattern is that of a shrinking diffraction peak. This corresponds to an
increasing size of the target. However, the total cross-section being con-
stant, we end up with a target which blows up like a puff of smoke, as the
energy increases, becoming bigger and thinner.

This is a very striking feature of this whole analysis. One may start
wondering what happens when the target is a heavy nucleus. It is known that
the scattering of a high-energy proton by a heavy nucleus is essentially pro-
portional to the area of the nucleus, therefore going like A%/3, and is essen-
tially constant up to cosmic ray energies.

But what if all the nucleons inside the nucleus start blowing up, thus
becoming more and more transparent? Gell-Mann and Udgaonkar have pro-

* These proceedings.
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posed such a model and they show that at very high energies, the cross-
section should be proportional to A, rather than A2/3, as there is no screen-
ing effect any more. The transition of one set of cross-sections to the other
should take place very slowly, as the increase in size of the nuclei, and
finally, we end up with a cross-section which tends towards its limit as
1/4ns, which leads to a cut in the £-plane.

Another possibility is interesting to investigate. Let us use the fac-
torization hypothesis in equation (32). We get for the amplitude

As, 1) = isB® ()0 (t)exp(-§ Itllns) . (33)

We now consider that this is pure diffraction scattering, which occurs with
a very weak absorption oyer a large surface. We can therefore trace b; back
the absorption density p(b) as a function of the impact parameter b: p(b)
is the two dimensional Fourrier transform of A(s,t) as expressed in terms
of the two-dimensional transverse momentum transfer.

The product (31) is transformed into a convolution by this Fourrier
transformation:

o(B) = p® (B)  p® (b) « (27/a In s)exp(-bY2aln s). (34)

Now it seems that this way of writing p(t-;)) is fairly natural and represents

a part involving the target and only the target, a part involving the incident
particle and only it and a part involving the Pomeramchuk pole and only it.
All these parts could be replaced by another of a similar nature and it would
only describe another physical phenomenon.

The classical interpretation of (34) is obvious: p(3) (b) and p(b)(b) re-
presents the net probability of emitting or absorbing a Pomeranchuk pole
at a place b integrated along the line of flight, of particles a and b re-
pectively.

The expression [7/a In 5] exp[-b?%2a In s]is the probability, again inte-
grated along the line of flight, for a Pomeranchuk pole emitted at the origin,
~ to be absorbed at a distance b from the origin.

We may also think that in fact, all these probabilities should be speri-
cally symmetrically distributed; it is an easy matter then to compute the
3-dimensional distributions out of the integrated ones (Abel’s problem).

In this case, however, the puzzle of the heavy nuclei disappears, as
only the Pomeranchuk pole blows up and thins out. The screening effect
still takes place inside p(a)and Py and the cross-section goes like A2/3, even
asymptotically.

In conclusion, one should bear in mind the amount of guesses and con-
jectures which have been used in this whole study. This is a very unscienti-
fic situation, in which the bases are so far away from the prediction of ex-
periments that there is no such thing as a decisive experiment to test this
or that basic postulate. It is therefore pretty frail and it would be in many
ways a miracle if all this is still true in 10 years from now.
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