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1. INTRODUCTION

The general them e o f this paper is  fa ir ly  difficu lt to define, as it is  
m ade up o f b its and p ie ces  of inform ation which do not appear to have much 
in com m on. This illu strates fa ir ly  w ell the present situation in this branch 
o f ph ysics  ca lled , until recen tly , ph ysics  of elem entary p a rtic les . In con 
sequence, th is is  an attempt to  develop  a p icture of the evolution o f the ideas 
as they developed  during the past two y e a r s . The ord er  of presentation is 
th ere fo re  m ore  o r  le s s  h is to r ica l though not rig id ly  so . There w ill be no 
attempt to give a com plete  p icture o f the present situation, as this would be 
very  d u ll; an u p -to -d a te  report w ill appear in the P roceed in gs of the 1962 
High-Energy C onference  held in Geneva and the la ter  issu es o f the standard 
rev iew s.

Having thus set up the plan o f th is paper as being the h istorica l order, 
an exception  w ill be  m ade o f the com parison  between theory and experiment 
which w ill be postponed to the end. The general schem e is  th erefore  as f o l 
low s : T here w ill be f ir s t  a sum m ary o f the situation o f the theory before 
the introduction o f R egge p o le s . Then there w ill be an explanation o f how it 
cam e to a deadlock , with m ore  and m ore  paradoxes developing the im p oss i
bility  o f having stable p a rtic le s  o f spin greater than one and the im p ossib i
lity  o f having c r o s s -s e c t io n s  going to constants at infinite energy.

At that point, Chew had the idea o f generalizing certain  features of 
R egge’ s w ork  on potential theory  to the re la tiv istic  theory based upon the 
M andelstam  representation . Then a ll these paradoxes vanished.

Having thus form ulated  the b asic  hypothesis o f  Chew, which had p ra cti
ca lly  no lo g ica l support when it was fir s t  proposed , we shall d iscu ss the 
p ros  and con s fr o m  a m ere  th eoretica l standpoint, and finally , we shall ex 
am ine the p red iction s and the experim ental v er ifica tion s . By that tim e, the 
lo g ica l w eaknesses o f the theory  should have been sufficiently exposed and 
the rea d er  left w ondering why the m eager experim ental resu lts seem  to con 
firm  it so w ell.

2. THE PR E -R E G G E  DEADLOCK [1]

2 .1 . P re -R e g g e  postulates

In the sum m er o f 1960 the last w ord in elem entary particle  physics was 
the M andelstam  representation . It is  assum ed that it is  thoroughly fam iliar, 
how ever, it w ill be b r ie fly  gone ov er , if only to define the notation. To s im 
plify m atters, only spin z e io  p a rtic les  and practica lly  always equally m a s
sive  p a rtic le s , the m ass being taken as unit of m ass w ill be considered .
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F urtherm ore  h = 1, c  = 1. The b a sic  assum ptions are as fo l lo w s :
(a) The invariant am plitudes fo r  scattering o r  production, expressed  as 

functions o f the external m om enta, p o sse ss  the sam e analyticity properties 
as the fo rm a l sum of correspon d in g  Feynm an graphs, where all possib le 
interm ediate p a rtic les  are  taken into account, regard less  of whether they 
are  elem entary o r  com p osite . This is  at least true on one sheet (the "ph ysi
c a l"  sheet) o f  the Riemann su rface  thus defined (Landau).

(b) The discontinuities o f the am plitudes a cro ss  the cuts are given as 
certa in  (non-linear) functionals o f the am plitudes which generalize the physi
ca l unitarity condition (Cutkosky).

(c) In addition, the am plitudes behave at infinite values of the external 
m om entum  variab les no w orse  than polynom ials, at least in the physical 
sheet (M andelstam ).

T hese  three assum ptions are im plied  by the M andelstam representation. 
C onsider a w orld  w here there is  only one type of partic le . The scattering 
o f two pa rtic les  with m om enta p i and P2 into p articles  with momenta -p 3 and 
-p 4 depends only upon two variab les  .

The scatterin g  am plitude then, as a function o f s, t, u, is  analytic, (a), ex 
cept fo r  cuts at s, t o r  u rea l, g reater than 4. The jump a cross  the cut is  
then d irect ly  given by unitarity, without any Cutkosky generalization, (b), 
and the amplitude behaves at infinity in the (s, t, u) space at worst like a 
polynom ial, (c).

W e shall w rite  the M andelstam  representation

w here L, M, N are  som e in tegers and Is.t.u indicates the two term s obtained 
fro m  the term  w ritten just b e fo re  by c ir cu la r  perm utation o f (s ,t , u).

W e shall ca ll p (s ,t )  double sp ectra l function, pp(s) single spectra l func
tion o f degree  p and pp_ q coe ffic ien t o f the residual polynom ial of degree p+ q, 
(S trictly  speaking these "fun ctions" m ay be d istributions). A ll these quan
tit ies  are  linked together, and to the production amplitudes by an infinite 
set o f non -linear equations which exp ress the unitarity requirem ent.

If we con sid er a theory  with a m ore  com plicated  spectrum , i .  e. severa l 
types o f p a rtic le s , the num ber of independent am plitudes becom es very  large, 
a lso  the num ber o f sp ectra l functions and even the num ber of term s may 
in crea se  in ord er  to  include contributions fro m  com plex  singu larities. How
ever, we shall reason  only on the very  s im plified  ca se  just mentioned and 
shall hope that all we say gen era lizes  to m ore  com plicated  ca ses . In par

s=  (P1+P2)2»

t = ( p i  + p3)2. s +t +u= 4,

u = (p i + p4)2, p £ = l.

(1)
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t icu la r , we shall not con sid er  the question o f whether there are com plex 
singu larities o r  not, it being understood that com plex  singularities are only 
supposed to bring in m ore  te rm s . It is  often believed that the representation 
(1) and the representations o f an analogous type fo r  the other amplitudes, 
com bined with Cutkosky’ s ru les which insure unitarity, are  sufficient basis 
fo r  a dynam ical theory .

2 .2 . F irs t trou b les

Of cou rse , it is  very  d ifficu lt, even with fast com puters, to solve these 
equations expressin g  axiom s a, b and c even without insisting on quantitative 
p red iction s . The tendency until 1960 had been to try  and do everything fe a s i
b le  by using only functions of one v a r ia b le : the double spectra l functions 
w ere neglected  altogether (Cini, Fubini), and approxim ate system s of equa
tions involving single sp ectra l functions o f low est degree w ere solved (Chew, 
M andelstam ). By the sum m er of 1960, a ll calculations on this schem e had 
been ca rr ie d  out, at least a ll o f  those which did not lead to d ivergen ces. 
Mandelstam^has d escribed  how th is procedu re  worked and how one ran into 
great difficu lty as soon  as P -w ave  reson an ces entered the gam e. Thus people 
started to contem plate the double sp ectra l function, thinking that they might 
help som ehow . The ideas that they had at that tim e w ere fa irly  sim ple and 
they thought that a fa ir  m odel o f what a double spectra l function might look 
like w ere , fo r  exam ple, the double spectra l functions as they appear in 
Feynm an graphs, quite sm ooth and without much of a structure.

Something did not seem  to fit into this p icture very w ell, how ever, and 
that was the o ccu rren ce  o f stable p a rtic les  with high spins. Indeed, when
ever there is  a partic le  with spin j and m ass m, som e o f the am plitudes 
have a pole of the fo rm  Pj (co s  0 ) / (s -m 2) w here s is  an energy squared v a r i
able and cos  0 is  in general p roportional to a momentum tran sfer squared. 
Such a pole, th ere fore , fits  in the M andelstam representation (1), under 
the condition that M be not le s s  than j. This indicates that (1) is  valid only 
with subtractions at least up to a degree  equal to the highest spin of the 
stable interm ediate p a r tic le s . One might then wonder if this could not lead 
to very  la rge  c r o s s -s e c t io n s  at high energy, increasing polynom ially with 
the energy. But, o f cou rse , the experim ents, even with the m ost energetic 
co sm ic  rays, indicate that it is  not so , that the c ro ss -s e c t io n s  behave in 
a way consistent with a constant within the experim ental accu racy .

The m odel one had at that tim e fo r  scattering at high energy was that 
suggested by P om eran chu k : w henever the p articles  interact, they have no 
chance o f recom bining to scatter e lastica lly  because of the com petition of 
the many inelastic channels open at high energy. T h erefore , the scattering 
amplitude becom es purely absorptive and the elastic scattering is  sim ply 
d iffraction  scattering. At very  high en erg ies, this d iffraction  can be treated 
c la ss ica lly , given an absorption  coefficien t which re fle cts  the distribution 
o f m atter in the clouds o f v irtual p a rtic le s . One then gets a constant c r o s s -  
section , a constant d iffraction  scattering peak (m easured in momentum trans
fe r ) in the elastic  amplitude and a constant e lastic c r o s s -s e c t io n . This p ic 
ture was m ore  o r  le s s  in agreem ent with the experim ents which w ere not

*  These proceedings.
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very  p re c ise  and which, fo r  som e reason , w ere in general fitted by com 
parison  with c la ss ica l d iffraction  scattering by a uniform ly gray d isc , o r  
sphere, but never with a m ore  sophisticated distribution o f the absorption 
coe ffic ien t.

2 .3 . G ribov ’ s paradox

This p icture was shown by G ribov  to be inconsistent with the Mandelstam 
representation. The essen ce  o f G ribov ’ s idea was the follow ing : the mathe
m atica l expression  of Pom eranchuk’ s m odel is that the amplitude A (s, t) in 
the physica l region , fo r  large  positive s and sm all negative t has the asym p
totic form

w here f(t)determ in esth e shape of the d iffraction  pattern, and the factor s 
is  there to can ce l kinem atic coe ffic ien ts  in ord er  to have a constant total 
c r o s s -s e c t io n . f(t) in these c ircu m stances has the t-cu t o f the Mandelstam 
representation , and we assum e that this asym ptotic fo rm  is  valid fo r  t p o s i
tive , at least up to som e value greater than 4. Unitarity in the t channel 
reads, accord in g  to M andelstam :

A s is  the absorptive part o f A with respect to the s-channel. Substituting 
the asym ptotic fo rm  (2), taking into account that f(t) is  purely im aginary, 
i A s(s, t) ■ A (s , t ) :

The integration takes p lace in the hyperbola uj u2 < (t -4 ) /4 , asym ptotically 
and d iverges logarith m ica lly , except that the term  0 (s3/2)cuts o ff the inte
gration, thereby introducing a i n s  term  which we cannot calculate exactly 
as it involves non-asym ptotic reg ion s. W e th ere fore  have the behaviour 
p (s ,t )  ~ co n s t .s  In s|f(t) |2. This is  incom patible with p (s ,t) * s • Im f(t). We 
shall see la ter in a m uch m ore  transparent fashion the deep reasons fo r  
this paradox.

One may gen era lize  this reasoning and one finds that the paradox takes 
p lace fo r  any asym ptotic behaviour of the form

(2)

(3)

K(t; s, Sj, s2) = (t -4 )(s2 + s 2 + s| - 2 Sĵ  s2-2 s s x - 2 s s2) - 4 s s1 s2. (4)

(5)

Change v a ria b les , putting S! = u 1s1/ 2, s 2 = u2s 1/'2:

If s2dux du2 u1u2[f(t)|2
(6)
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A (s , t) a s“ in 0 (s) • f(t), (7)

if a is  rea l and Re ß ^ -1 .
G rib ov ’ s suggestion  was to take a * 1, ß < -1 , but this is  already a little 

d ifficu lt as it im p lies  c r o s s -s e c t io n s  which go to ze ro  at infinity and again, 
the prob lem  of how to accom m odate pa rtic les  with large spins stays there 
as the behaviour o f  the p o les  corresp on d s to a rea l and ß = 0.

2 .4 . Bound on the asym ptotic behaviour in the physical region

Another difficu lty a rose  in this connection, when the author proved that 
the c r o s s -s e c t io n s  in the fram ew ork of the M andelstam representation cannot 
in crea se  fa ster  at infinity than i n 2s . The intuitive basis fo r  the theorem  is 
the fo llow in g : con sid er the Pom eranchuk m odel c la ss ica lly . We may very 
w ell suppose that the absorption  coefficien t changes with energy. However, 
the distribution of m atter in the cloud of virtual particles  fa lls  off essentially 
exponentially, the range o f the exponential being given by the m ass o f the 
lightest virtual p a rtic le . T h ere fore , a ll we may expect is  an absorption c o 
efficien t o f the fo rm  g e _Kr where g may vary with energy. If the impact pa
ram eter b o f a co llis ion  is  such that g e "Kb « 1 ,  there is  practica lly  no e f 
fe c t . If g e _Kb >>1 there is  com plete  absorption. The c ro s s -s e c t io n  is  d e 
term ined  then by the value a o f the im pact param eter so that g e ‘ Ka^  1 or 
a =  ( l /K )ln g ,< jtot =  ff/K 2(ln g )2.E ven  if we assum e that g grow s polynom ially 
with the energy, a in crea ses  only logarithm ica lly  and the c ro s s -s e c t io n  
in crea ses  thus like the square of In s.

A  very  elegant derivation  of this theorem  was given by M artin. The 
only assum ption o f M artin is  that the Legendre polynom ial expansion of the 
amplitude con verges fo r  s > s 0 up to som e positive value t0 o f t and that, at 
that value o f t.the asym ptotic behaviour o f A (s, t) is  polynom ial in s. This 
is  autom atically guaranteed by the M andelstam  representation [1 ].The reason 
ing of M artin u ses the fact that the im aginary part o f partial waves is  p o s i
tive and bounded and that the Legendre polynom ials Pf (z) are positive in 
crea s in g  functions o f £ fo r  z rea l, z > 1. Let us then w rite the absorption 
part o f  the am plitude :

As (s, t) * £(2Ü + l ) Im  at(s) Pf (cos  0), (8)

()■$ Im a{ (s) ^ ^ s (s -4 ) , c o s  0 = 1 + 2 t / ( s -4 ) .  (9)

If one wants to m axim ize A s(s, 0), holding A s(s ,t0)fixed , as Pc [1 + 2 to/ (s -4)] 
is  an in creasing  function o f £ w hereas Pp(l) * 1, one has to take as sm all 
values o f £ as p oss ib le  :

Im  a{ (s) = 0 , £ > £0 and Im a,j(s) = N/s /( s -4 )  ; £ < £0.

The value o f £q is  determ ined by

<k
As( s , t 0) - L  ( 2 i  + lW s / ( s -4 )P f f l  + 2 to /(s -4 )]=  </S7Ti-4) (I?o+1+ P jt ).
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A ssum e that A s(s, to) x  C sa; Re a > 1. We use the follow ing estim ate 

P{ [1 + 2 t 0/( s -4 ) ] ~  I0( V 2 t 0/( s -4 )  (m odified B esse l function)

and th ere fore  :

P'fo = i Q>/( s -4 ) /8 t 0 1 ^  s/2t0/ ( s -4 ) .

We thus determ ine i 0 by

£0 N/( s -4 ) /2 t 0 I^ Q  ^/2t0/( s -4 )  = C s “

F o r  Re a  > 1 the solution o f this equation is  asym ptotically fo r  large s : 

£o ~  (a -  1) In s o r  : i 0 % (a- 1) s ^ 2 ln (s/JZ t0)

which gives

A (s , 0) 3 l f ( 2 i  + 1 ) n/ s / ( s - 4 )  ^  ^  (a -1 )2 sln 2(s /2 t0)

This corresp on d s to"the c la s s ica l p icture given above. One may also e s ti
m ate the asym ptotic behaviour o f the amplitude in the physical region, either 
at fixed  m om entum  tra n sfer , o r  at fixed  angle. The resu lts are the follow ing:

|a (s, t)|< M(t) s ln2s , t < 0, (10a)

|A(s, (s -4 )(c o s  0-l))| < N(0) s 3?4 ln 3/%  0 < 0 < n. (10b)

2. 5. Independence o f the single spectra l functions

An in teresting  question about the M andelstam representation was, b e 
sid es how many subtractions are  to be m ade, whether o r  not it was possib le  
to change the content o f the theory by making "more subtractions. This was 
very  in teresting  particu larly  in view  of the w ell-know n CDD ambiguity which 
a r ise s  when one tr ie s  to en force  unitarity on the single spectra l functions.
It cou ld  be that by m aking m ore  and m ore  subtractions, it becom es possib le  
to introduce m ore  and m ore  p a rtic les  with higher and higher spins into the 
theory by introducing CDD p oles , just as one may introduce m ore and m ore 
com plex  te rm s into a Lagrangian.

H ow ever,it is  p oss ib le  to show, using conditions (10), that this is  not 
so . The single sp ectra l functions of degree greater than one and a ll c o e f 
fic ien ts  o f the residual polynom ial o f degree  greater than z e ro  are com plete
ly  determ ined  by the double sp ectra l function and the conditions (10).

T o  m ake th is c le a r , suppose that there are  two different amplitudes 
with the sam e double sp ectra l function. T h e ir  d ifferen ce  sa tisfies (10), and 
is  exp ressed  by

M L

A A (s ,t ,u )  -  1C tP—  / \ ° ? (SAd? ' + P, t u + L t P s Q a  (11)P=0 TT J  (s '-s )(sM ) ‘ .'.u  p ^ o  p.q
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The idea is  now to prove  that a ll o f these term s must obey conditions (10) 
individually, in other w ords that there cannot be any cancellation  between 
different te rm s . The details o f the p roo f w ill not be d iscu ssed  but the prin 
c ip le s  w ill be outlined.

Let us take different d irection s in the (s, t, u) plane, corresponding to 
different values o f the angle 0, and show that an expression  like (11) cannot 
satisfy  (10b) fo r  3M + 2L + 1 different values of c o s  6 unless

Op(s) < C s 'P ^ ^ ln 3/^ ,

°p.q = 0 except ct00.

In that ca se , if s is  fixed  negative and t variab le , the largest term  which 
contributes to the asym ptotic behaviour is

t M rgM(s')ds'
J (s '-s )

This term  v io la tes  (10a) if M >  1 and th ere fore  must vanish on the negative 
rea l s axis and th ere fore  it vanishes everyw here by analytic continuation. 
Thus we prove  that M = 1 and L =  0 in Eq. (11).

In the sam e way, this method allow s in prin cip le  to com pute the single 
sp ectra l functions of degree grea ter  than one from  the double spectra l fu n c
tion . T h is is  in p ra ctice  very  difficu lt to ca rry  out because of the analytic 
continuation m entioned above.

Even in prin cip le , it appears very  difficu lt to prove that the partial 
w aves obtained by th is method w ill satisfy  unitarity. At any rate, it is  su f
fic ien tly  dem onstrated that p a rtic les  with spin greater than one cannot be 
elem entary, in the sense that one cannot introduce arbitrary  CDD poles 
fo r  the h igher w aves (j > 1) as there is  no N /D  equation in that ca se . In that 
sense, w e shall say that a ll p a rtic les  with spin greater than one are "dyna - 
m ic a l" . It is  in teresting to note that the condition just obtained looks quite 
s im ila r  to the o ld -fash ion  "ren orm a liza b ility " condition. The connection 
may be deeper in the sense that these two conditions both re flect the fact 
that, unless very  pecu lar cancellations take p lace, unitarity is  strongly 
v iolated  at high en erg ies  if  one in troduces a p r io r i high spin particles  into 
the th eory . Now the paradox is  com plete  : we have proved that the behaviour 
o f the amplitude in the physica l regions is  com pletely  different from  that 
in the "s p e c tr a l"  reg ion s : we have an upper bound in the physical region 
due to unitarity and we have a la rg e r  low er bound in the unphysical region 
as a resu lt o f po les  of p a rtic les  with high spin.

How this be re con ciled  with the analyticity p rop erties  ? There must 
be som e kind o f o sc illa t ion  of the amplitude in the spectra l region so that 
the d isp ers ion  in tegra ls expressin g  the amplitude in the physical region 
do not in fact behave at a ll like  th eir  integrands, but in crease  m ore slowly 
as a resu lt of cancellations inside the integral.

A  very  natural kind of function with just such a behaviour is , fo r  ex 
am ple :

A(s, t) = ß(t)s“(t) (12)
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w here o (t) is  rea l, le s s  than one fo r  t < 0, has a cut fo r  t > 4 and is  such 
that Re o (t) stays bounded in the cut plane ; ß(t) is  any function satisfying 
a d isp ersion  relation  in the cut t plane.

Such a function would indeed reso lv e  a ll paradoxes above. It may be 
shown (the reader may do this as an ex erc ise ) that the G ribov paradox, a l
though holding fo r  any rea l a,  ce a se s  to hold as soon as a is  n on -rea l. This 
is  p re c ise ly  the result o f the cancellations introduced by the oscilla tions 
d escrib ed  by phase [ s “ ^ ]  ■ Im a  Ins.

3. THE INTRODUCTION OF REGGE POLES

Having been com pelled  to con sid er am plitudes of the form  (12) Chew 
looked around and found R egge ’ s paper [2] which predicted  an asym ptotic 
behaviour o f p re c ise ly  this fo rm  in potential scattering with a momentum 
tra n sfer  and t energy variab le . This coin ciden ce  was very  striking because, 
to reach  the fo rm  (12) from  the re la tiv istic  theory, we constantly used the 
cro ss in g  sym m etry o r  equivalently, unitarity in all three channels, which 
is  very  sp ec ific  o f the re la tiv istic  th eory . On the other hand, one may argue 
that a fter a ll it is  not so surprising , as the unitarity equation reads much 
the sam e fo r  potential scattering sind fo r  the e lastic regions of the re la tiv is 
t ic  p rob lem . At any rate, it was very  intriguing, and still is , to see whether 
o r  not the R egge poles  have a lo g ica l p lace in the fram ew ork  o f S -m atrix  
th eory . It is  very  difficu lt now to expose as nobody yet has produced any
thing very  convincing.

Let m e start by d escrib in g  the way people agree to ch oose  the "b est" 
interpolation .

3 .1 . D efinition o f the partial-w ave amplitude

In the theory  o f scattering by superposition  of Yukawa potentials (see 
R egge ’ s lectures*) the amplitude a ( i ,q 2) has the follow ing p rop erties . It 
is  h olom orph ic fo r  Re £ > N. It d ecrea ses  exponentially with Re i  and in 
c re a s e s  at m ost like a polynom ial with Im £. F urtherm ore, it is  unitary 
a ll along the rea l ax is, even fo r  non -in teger points.

If we start from  the M andelstam  representation , we have a d ispersion  
relation  in co s  0, which we can w rite  as

We have exp ressed  now the amplitude A and its absorptive parts in cos  0, 
At , in term s o f q2 = (s -4 ) /4  and co s  0 = 1 +  2 t / ( s -4 ) .

The in tegra l extends on the rea l axis, som ew here outside o f [ -1 , +1). 
The partia l wave com puted fro m  this is ,fo r  integer i  :

A(q*. C O S e )  = ± c o s N e j  + Polynom ial. (13)

+ PN.j (c o s  0) . (14)

Let us com pute the partia l w aves fo r  i > N  only.

* These proceedings.
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Then we can integrate :

f +1 r o s N ß

V - i d cos  6 Pf (cos  e) xN(x -Tos e ) = Q« (x) (15)

w here Q{ (x) is  that L egendre function o f second kind which is  rea l fo r  x > l  
rea l and we get

af (q2) =  ̂Jdx Ai(q2> x)<^(x). (16)
This in tegra l con verges , as Q{ (x) l / (2 x )* +1 fo r  la rg e  x.

W e note at this point that equations (14) and (16) are  equivalent only fo r  
in teger values o f £ . F urtherm ore  we note that in genera l A t(q2, x) gives con 
tributions to  (16) fro m  the side o f x  > 1 and fro m  the side o f x <-1, thereby 
introducing te rm s which behave like e i,r8which do not satisfy our conditions. 
If how ever, we introduce the fo llow ing functions :

= v j ' d *  Q*(x) [ A t ( ^ x) ±  A t ( ^ . - X)], (17>
X>1

we get an asym ptotic behaviour in the half-p lane Re £ > N  which is  exactly 
what we w an t: polynom ial at m ost in Im £ ,  and exponentially decaying with 
Re £.  The ph ysica l a{ is  equal to either a+ o r  a‘  a ccord ing  to whether £ is 
even o r  odd.

Now we m ay introduce a theorem  [3] which is  very  useful fo r  the f o l 
low ing.

3 .2 . C arlson ’ s T heorem

Let f(z ) be regu lar and o f the fo rm  o (e alImz!+ßRez) in Re z > 0 ,  a and ß
rea l, a < w; let f(z ) ■ 0 fo r  z = 0, 1 , 2 . . .  Then f(z) is  identically ze ro .

P ro o f

W e can w rite  the Cauchy th eorem  (Re z > 0) fo r  the regu lar fu n ction :

e ẑf(z ) 1 r 0+1’c f(x)dx ^  |lmX|<?r-a,
sin 7r z 2 7rijo-ioo sin n x (x -z ) ‘ Re X < -ß .

Both s ides are analytic in the whole strip  | Im X | < n - a  and the equation holds 
th ere . But on the rea l X axis, the right hand side is  bounded; the left-hand 
side can only be bounded if  f(z ) = 0.

It is  c le a r  that this th eorem  guarantees the uniqueness o f the interpola
tion  a j that we have defined, w hich satis f ie s  very  com fortably  the conditions 
o f the th eorem , as Qf(x) ~  1 / (x + ^ x 2 -l)t+i f o r  la rge  £.

This th eorem  is  a lso  usefu l to  prove  that, fo r  the regions o f energy 
w here the partia l wave is  unitary (e lastic region ), the interpolations aj are 
unitary each on the rea l £ a x is . T o  show this fo r  a j, let us w rite i= 2z + 2N 
and b u ild :
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a.+2z+2N

f(z ) vanishes fo r  every  in teger value o f z , as at that.point ä{ takes on a physi
ca l value at an even angular m om entum . On the other hand f(z ) is regular 
and sa tis fies  C a rlson ’ s asym ptotic condition and is  th erefore  identically zero, 
aj sa tis fies  unitarity in the com plex  half-p lane everyw here in the sense that

The reason ing is  the sam e fo r  aj and leads to the sam e result.
The reader may show as an e x ce r c is e  that if one is  to take only one 

interpolation, valid  fo r  both even and odd partia l w aves, fo r  example 
(a++ a ') /2  + eln* (a+ - a ') /2 ,  C a r lson 's  theorem  does not apply any m ore  to prove 
unitarity and in fact the amplitude thus obtained is  not unitary in general.

W e have so fa r  established a num ber of p rop erties  which are quite in 
terestin g  in the sense that they rem ind us strongly of the potential scattering 
ca se . N otice a lso  that if one has the Schrödinger equation with an exchange 
potential, one obtains tw ice  the R egge behaviour: once with the even partial 
w aves and an e ffective  potential which is  the sum of the d irect and exchange 
parts, and once with the odd partia l waves with the d ifferen ce . Therefore 
in that ca se  one a lso  obtains two distinct interpolations a} and a"f with the 
sam e p rop erties .

3. 3. C onnection between asym ptotic behaviour in co s  0 and singularities
in the I - plane,

W e have not yet reached  the interesting part o f the i-p lan e, in the sense 
that we are  still on the right o f any R egge pole  (if there is  any) in the region 
w here E q .(17) con v erg es .

Indeed, if A  d isp lays a behaviour like (cos  Bf-, the integral (17) only 
con v erg es  fo r  Re S. > Re a .

If how ever A  (q2, c o s  8) ß(cp)IJC(q2 ) (cos  8) + 0 [(c o s  6)a']whereRear'< Rea» 
then w e may analytically continue the integral by w r itin g :

and continuing th is term  by its exact expression , and the rem ainder con 
v e rg e s  fu rth er to  Re £>  Re a 1. T h ere fore  we may again get Regge poles 
as a consequence o f the behaviour (12).

Incidentally, it might help to see what kind of singularities other asym p
totic  behaviours may lead to .C on sid er fo r  exam ple

a t -  = 2 1  -J ( s - 4 ) / s  a j ( a ^ f . (1 8 )

(1 9 )

A (q2, c o s  0) c o s a0 In8co s  6 + 0  [(co s  0)“ ’].

W rite
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the in tegra l being taken around a.  W e might as w ell rep lace  cos^ 0by I£(cos0) 
and in sert into (17) and (19) thus getting the leading singularity

{ß l/ß a+im i/U - af*1].

This singularity fo r  ß in teger negative b ecom es o f logarithm ic type. We 
may rem ark  then that the pow er in c o s  0 w ill determ ine the location  of the 
singularity, w hereas the nature o f the singularity w ill depend upon the depar
tu res fro m  a s im ple pow er behaviour. It is  th ere fo re  to be expected that 
any attempt to determ ine the nature of the singularity by using Eq. (17) is 
very  delica te  and it b e com es  dubious whether it does not at the same tim e 
determ ine the exact location  o f the singularity.

On the other hand, if  one knows by other ways that there are only poles, 
then the analytic continuation of Eq. (17) is  fa ir ly  p oss ib le  : identify the poles 
by the asym ptotic behaviour, and subtract them  out. This has been done in 
p ra ctica l ca lcu lations [4 ], in p articu lar in potential scattering [5] where one 
knows that there a re  only p o le s .

3 .4 .B a rda ck i's  method

R ecently , BARDACKI [6] has com pleted  som e very  interesting work 
which is  probably the fir s t  step tow ards a p roo f o f the existence o f Regge 
p o les  in re la tiv istic  S -m atrix  th eory . His basic idea is  the fo llow in g : we 
assum e that the ov era ll num ber o f subtractions fo r  the M andelstam r e p re 
sentation is  fin ite, N . T h ere fore , fo r  any q2, a j(q2) is  regu lar in the half 
plane Re i  > N. On the other hand, we have seen that fo r  s rea l and negative, 
the m axim um  pow er adm issib le  fo r  c o s  0 was one (unitarity in the crossed  
channel). It is  very  easy to see that, in fa ct , th is holds a lso  in an in fin i
tes im a l neighbourhood o f the negative s a x is . W e th ere fore  have another 
dom ain o f regu larity  s negative, Re i  > 1. W e may take the holom orphy enve
lope  o f these two dom ains which prov ides a la rg er  domain of holom orphy 
fo r  Q£(q2).

It turns out that the calcu lation  is  fa ir ly  tr iv ia l. If one m akes a con - 
fo rm a l m apping to  map the s-plane cut from  - oo to 0 and from  4 to + oo onto 
a s t r ip :

S * 2 + 2 sin  z , -1 <  Re z < 1.

We can alm ost use the tube th eorem , saying, not rigorou sly , that we have 
analyticity in the r e g io n :

- K R e z C l ,  Re i  > N,

Re z * - 1, Re i  > 1.

W e use the tube th eorem , taking the convex hull o f the base of the tu b e :

Re jC > (N + l)/2  + [(N -l) /2 ]R e  z , o r

Re t  > (N + l) /2  + [(N -l) /2 ]R e  arc  sin (s -2 ) /2 .  (20)
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This is  not quite r ig orou s  becau se Re z = -1 is  not a dom ain. H ow ever, it 
m ay be m ade r ig o ro u s . The extension o f the domain o f holom orphy stops 
there and one cannot go fu rth er. T here is , how ever, a way to extend the 
analytic p rop ertie s , but not holom orphy, only m erom orphy. This consists 
in taking exactly  into account the tw o-body unitarity as fa r  as it is  valid.
It is  known that Schw arz’ s re flection  princip le  allow s one to continue through 
the tw o-body  e lastic  cut analytically or , alternatively, to w rite down a func
tion  o f the partia l-w ave amplitude which does not have the tw o-body cut.

T o  be m ore  sp e c if ic , con sid er  the partia l wave at threshold copying 
E q. (17) in the fo rm

a.(q2) = f  Q (x )A t(q2, x)dx. (21)
1 A » 1 *

We should keep in mind that x  ■ 1 + t /2q2 . Only large  values o f x w ill con 
tribute near threshold . Below threshold , at q2= |q|2e i,r, A t(q2, x) is  real, 
and th ere fore  the phase o f as(q2) is  that of Qj(x) = Qe[l+ t/(2 |  q ^ e 1*)]. It is 
±  exp iir£. A bove threshold  q2 =| q|2, Q j(q2) is  unitary, so that Im l / fq ^ q 2)] 
=q/J 1 + q 2.T his g ives us the w hole set of ru les to continue a*(q2)around q = 0 
any num ber o f tim es . The construction  o f the function

Rg(q2) “ q2i/ at(q2) + 2i q2{+1/[  I + exp(2uri)]Jq2 + 1. (22)

so that it turns out to be rea l fo r  both q2 = ±| q|2 is  left to the reader. Further
m ore , it is  bounded at q2 = 0, because

at(q2) q2lJ \ (q 2, x) dt/t*+1, (Re £ > N).

It is  th ere fo re  regu lar at the orig in  as a function of q2.A t any rate it is  m e - 
rom orp h ic w h erever a ifq2) is .

Now if we assum e (which is  nearly rigorou s) that the rules fo r  c o m 
pletion o f m erom orphy dom ains are the sam e as fo r  holom orphy domains, 
we can play the sam e gam e as b e fore  except that the initial domain has a 
cut starting from  the firs t  inelastic threshold (som ew here between 4 and 16), 
say 16. Then we get, fo r  at (q2) the m erom orphy domain as defined by

R e (i)> (N + l) /2  + (N-1 ) /2  R e [a rc  s in (s -8 ) /8 ] .  (23)

W e see  c lea r ly  that we are  prevented from  going further only by our lack 
o f a b il ity : we do not know how to elim inate the further cuts on the real axis.
It is  con ce ivab le  that som eone who could  m aster the 4-body unitarity con 
dition could  ca rry  on the program m e up to the 6 -body cut, and so on. At 
any rate, it is  com fortin g  to see a domain o f m erom orphy which is  larger 
than the dom ain o f holom orphy, as this introduces a kind of p roof which 
depends very  little  on E q. (17) as fa r  as the nature of the singularities is 
con cern ed . H ow ever, it might very  w ell turn out that the 4-body cut in tro
duces other kinds o f singu larities in the i-p lan e and that the reason that 
potential scattering  has only p o les  is  p re c ise ly  the absence of inelastic con 
tributions. This is  of cou rse  an open question. If how ever, one makes ad hoc 
hypotheses on the in elastic contributions, fo r  exam ple, if one assum es [7] 
analyticity p rop erties  o f the absorption coefficien t rj(-£,qz), then it is possible
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to ca rry  out the reason ing with threshold  o f infinity, thus getting m ero  - 
m orphy fo r  Re £ > 1, but it looks a little  like assum ing what one wants to 
p rove . Another interesting try has been m ade recently  by MANDELSTAM 
[8 ] ,in which he studies a p rob lem  w here the kinem atics are re lativ istic, 
the potential energy independent and w here there are no inelastic p rocesses . 
He then su cceed s in prov ing  that fo r  a potential weak enough, the R egge- 
Som m erfeld -W atson  form ula  is  applicable down to Re I  = 0, without using 
the unitarity condition  in the c ro sse d  channel.

4. DISCUSSION OF CHEW'S HYPOTHESIS

We have seen in the last section  how one might think of establishing 
the existence  o f R egge poles  in S -m atrix  theory and that a long way still 
lie s  in front o f us. H ow ever, CHEW [9] was bold enough to overcom e this 
lack  of lo g ica l support and to assum e that the only singularities lying in 
the £ -plane are poles  and that the partia l waves w ere given even fo r  sm all 
£ by the analytic continuation o f  af (q2) as defined by [17],

Let us exam ine how this hypothesis so lves  and helps to understand the 
paradoxes encountered in the firs t  section .

G rib ov ’ s paradox is  now very  c le a r . We have seen that a behaviour 
of the form  c o s a0 lnö (cos  0) brings in a singularity in the £ -plane at i  = a, 
o f the kind {£ -a)'<s+1) . The content of G rib ov 's  paradox is  that no such sin 
gularity may lie  on the rea l ax is, w here af is  bounded by the unitarity con 
dition unless ß< -1 , whatever the rea l value of a js .  But, of cou rse , we 
assum e now that the Regge poles m ove and if  a (q2) is  the position of the pole, 
accord in g  to E q. (22) near the threshold  :

Ra(q2) = 2 iq 2ot+y [ l  + exp(2üra)] +qY.

The solution  o f th is equation, a,  m oves out o f the rea l axis just at threshold 
with an im aginary part [7] o f the ord er  o f q2ao+1, a 0 being a (q2= 0). This is 
exactly  what we need to avoid G rib ov 's  paradox.

S im ilarly , it is  now ea s ie r  to see through the com plexity of the 
dependence o f single sp ectra l functions upon the double spectra l functions. 
F o r  negative rea l s, the partia l w aves obtained without subtractions (£> 1) 
a re  indeed the analytic continuation from  the region  o f Re i > N. T herefore, 
if  this analytic continuation is  unique When one analytically continues them 
to p ositive  values of s, they a re  still the analytic continuation o f at as de
fined by E q. (17) and th ere fore  are unitary by virtue of Eq. (18). If there are 
only p o le s , the analytic continuation is  unique and th erefore  Chew’ s hypo
th esis  explains the kind o f m agic which takes p lace  here very  w ell. F urther
m ore , it m ay be m uch ea s ie r  to continue analytically in £ rather than in s, 
as the continuation path m ay be sh orter, and we have seen that the analytic 
continuation in £ is  rela tively  easy when there are only poles which one can 
separate out. If th is connection  is  true, we see  that the second part of Chewte 
hypothesis is  fo r ce d  upon us by unitarity in the c ro sse d  channels fo r  in ter
m ediate partia l w aves (2 I  <  N), and th ere fore  it is  very  natural to extend 
it to  the S and P -w a v es .
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4 .1 . P o ss ib le  range o f coupling constants

Let us m ake a little  ph ilosoph ical d ig ress ion  at this point which may 
illustrate the p oss ib le  depth o f Chew’ s hypothesis pretty w ell. Let us con 
s id er  that, as in potential theory , the stron ger the interactions are, the 
la rg e r  are the values o f angular m om enta o f R egge p o les . This is  of cou rse  
without p roo f o f any kind. If, how ever, one adm its this postulate as w ell 
as Chew’ s hypothesis, one is  faced  with the follow ing situation: the in ter
actions cannot be stron ger than they are  in the physica l w orld , as this would 
corresp on d  to  am plitudes in creasing  like  S“, a>  1 in the physical region, 
which con trad icts the unitarity condition. Chew ca lled  this circum stance 
"saturation  o f u n itarity". It seem s that the interactions in nature are "a s  
strong as p o ss ib le "  On the other hand, can they be w eaker ? Perhaps, but 
not vanishingly sm all, s in ce , accord in g  to C hew 's hypothesis, if one wants 
to  have one p a rtic le , one has to  bring at least one R egge pole up to ze ro .
The fr e e - f ie ld  theory  in particu lar does not satisfy  Chew’ s hypothesis, as 
its scattering am plitude has no poles  and th ere fore  no stable p a rtic les . It 
look s  thus as if there w as a fin ite  range o f in teractions p oss ib le . If one is  
very  op tim istic , one m ay even hope that there is  only one theory possib le  
by th is system , but this b ecom es  s c ien ce -fic tion .

4 .2 . A ccum ulation  of R egge po les

It has been pointed out by G ribov  and Pom eranchuk and independently 
by W ilson  that som etim es the R egge p o les  clu ster  around som e accumulation 
poin ts. They have used this fact to  d erive  a low er bound on the asym ptotic 
behaviour of c r o s s -s e c t io n s .

The f ir s t  ca se  [10] o f such an o ccu rren ce  is  essentia lly  kinem atic and 
a r ise s  [11] a lso  in potential scattering [5] .W e can easily  derive  it from  
E q. (22) in the neighbourhood of the threshold  q = 0. The equation of theRegge 
p o les  reads

Ra(q2) = 2 iq 2“ +y[l+exp(2 i7ra)]N/q2+ 1. (24)

T h is  equation has an infinite num ber o f solutions near = - £ :  this is  best seen 
by taking the logarithm  :

~1 + exp(2i7TQ')'
2iIn R(x(q ) + ln + i  ln [q2 + 1] = (2 a + l ) ln  q+2m i7T,

ln  R + ln f-T fa  + £)] = (2 a + 1) In q+2  m in + 0(a + i ) .  (25)

W e thus have an infinite num ber o f p o les  labeled  by m , going to roughly 
like  -1 /2  + 2 m iff /In  q, neglecting a fa cto r  o f the ord er  ln| lnq|.

T his resu lt leads to a p red iction  concern ing the behaviour of A(q2, c o s  6) 
fo r  q2= 0, c o s 6  oo : A (0, c o s 0 )  cannot fa ll o ff fa ster  than ( c o s 0 ) '1/2.It is 
to  be expected  that such a behaviour w ill take p lace at every threshold, at
i  = - I  fo r  tw o-body th resh olds, possib ly  at other values o f £ fo r  m any-body 
th resh olds, as it depends upon the p h ase-sp ace  threshold behaviour.
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A nother point o f accum ulation o f R egge po les  [10] is  a consequence of 
a very  sp ecia l feature o f re la tiv istic  theory , i . e .  the existence o f a double 
sp ectra l function at negative energy.

C onsider the partia l-w ave am plitude as defined by E q .(1 7 ).F o rq 2= 
near z e ro , a f(q2)h a s  a constant ph ase±  e1'r{,th a to fQ { (l + t /2 q 2).F o r q 2< - t 0/4 , 
a cut appears as a resu lt of the co in ciden ce  of the lim it o f integration 
Xq = 1 + to /2q2 with - 1, which is  a branch  point fo r  Qc .

The im aginary part o f b{ (q2) = q '2{Q {(q 2) above this cut is

, rx°
Im  b .(q 2 + ie ) = __ L_ / Im [At(q2+ ie , x  -  ie)Q { (x -  ic) e"1*1]. (26)

)T|q|2J
This is , in general

I m b {(q2 + ie) [m  At(q2+ ic,x -ie)R e[Q t(x -  ie)e"1,T{] dx

Wef  R e A t(q2+ic*x ' ie Îm lQ ^ x ’  ie )e ‘ i,r<!] dx

Im b {(q2) = ^ j - 2^T ptiU( q2, x) G4( x ) d x R e  A t(q2,x )P ( (-x )d x . (27)

w here p _ (q2, x) is  the sp ectra l function which lie s  in t > 0, u > 0, and where

Qi(x) =  Re Q f(x) , -1 < x < 1.

The second  term  is  very  quiet and, indeed, it is  an entire function o f i . I t  is 
the only one which ex ists  in potential scattering and its n ice analytic p r o 
perties  have been used by MANDELSTAM [8] in a recent study where he 
d e scr ib e s  a m odel o f re la tiv istic  theory which does not exhibit cross in g  
sym m etry . M andelstam  p rov es  there that Chew’ s hypothesis is  verified .

The f ir s t  term , how ever, is  not regu lar, but has the poles  o f Q f(-x ) 
which are  at every  negative in teger I .  In particu lar, the firs t  pole at £= -1 
is  very  unlikely to vanish, as its residue is

^ ^ t ,u ( q 2.x )d x .

T h is can be checked  in p ra ctice  by putting the prop er threshold behaviour 
o f pt u(q2, x)  in every  p articu lar ca se  o f in terest. Let us sim ply assum e that 
the residu e is,not z e r o . (In any ca se , a ll residues cannot be sim ultaneously 
z e r o , as th is would im ply pt u = 0, because o f the com pleteness of Legendre 
polynom ials which are  the residu es of Q f(-x ).

C onsider now the function

f(q2) = i i m ( i + l ) b ( q 2).-i 1

It has a n o n -ze ro  left-hand cut, but, if af (q2) is  m erom orph ic down to i  = -1 , 
at(q2) is  bounded by unitarity on the rea l positive q2 axis f(q2) = 0 there. This 
is  a con trad iction  and p roves  that at (q2) cannot be m erom orph ic along the 
rea l SL ax is down to t  = -1 .



3 9 4 M. FROISSART

A  p oss ib le  explanation o f this phenom enon was furnished by G ribov.
A s S. goes to  -1 , the im portance o f the left-hand cut in crea ses . This has 
the effect in many instances o f pulling p o les  out o f the right hand cut ("bound 
sta tes") in o rd e r  to counteract the strong left-hand cut. G ribov  suggests 
that m ore  and m ore  o f these poles  com e  out as A -* -1 , until their residue 
d istribution  exactly  ca n ce ls  the left hand cut of f(q2) at the lim it £ = - l .T h is  
im p lies  an accum ulation  point o f R egge po les  around £ = -1 , each of which 
attains -1  only when q2 is  infin ite. N otice  that in potential scattering with 
a regu lar potential, the R egge poles go to negative in tegers at infinite en er
g ie s . If G rib ov ’ s m echanism  is  right, the o ccu rren ce  of the "th ird " spectral 
function would only m ean that an infinite num ber o f R egge poles reach  each 
negative in teger. O bviously th is reason ing only applies to the firs t  non
vanishing pole o f E q. (27), but it may be expected  that the result holds fo r  
a ll non-vanishing p o le s .

In sill ca se s , how ever, we see that it is  im possib le  fo r  the amplitude 
to fa ll o ff fa ste r  than l / s  as we must have a singularity at least at I  = -1 .
This should be experim entally  checked.

5. CONNECTION WITH THE PHYSICAL WORLD [12]

T here  a re  b a sica lly  two kinds o f im m ediate tests of the whole Regge 
pole  story . The f ir s t  approach con sists  in looking in one channel at the Regge 
p o les  o f the sam e channel going through physica l values o f the spin, o r  n ear
by, thus producing stable o r  unstable p a rtic le s . The second  approach con 
s is ts  in studying the asym ptotic behaviour o f the am plitudes in one physical 
region , thus getting in form ation  on the R egge po les  o f c ro sse d  channels.
It is  obvious that we cannot get com plete in form ation  on Regge poles by these 
m ethods, but we may get enough to decide whether o r  not the R egge poles 
have anything to do with nature.

5 .1 .F irs t  approach : ph ysica l £

C onsider a w ell defined channel, that is  a w ell-defined  set of quantum 
num bers, baryon  num ber, charge, parity, strangeness and isotop ic spin.
In th is channel, the S -m a trix  w ill be con sidered  expressib le  in term s of 
the total angular m om entum  j and any other set of variab les . We assum e 
that, as a function of j, it is  m erom orph ic down to Re j = 0 and that this 
analytic continuation furn ishes the right value o f the partial w aves.O f cou rse , 
we know already that even fo r  2 -body am plitudes, it is  not possib le  to define 
one am plitude, but rather two, accord in g  to Eq. (17). We thus assum e that 
these two are  enough and that every physical S -m atrix  elem ent is either 
equal to the value o f the interpolation  by the S+ m atrix o r  by the S" m atrix, 
it being understood that angular m om enta differing by two are related to 
the sam e in terpolation . The sign put in su perscrip t w ill be called , follow ing 
G ell-M ann, the signature.

In each channel, then, we may o rd er  a ll stable p articles  and all r e 
sonances a ccord in g  to th e ir  signature. Then we could expect these states 
to belong to the sam e R egge tra je cto ry , o r  at least to belong to a finite num
b er (sm a ller  than the num ber of states) o f R egge tra je c to r ie s . The first
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attempt in th is d irection  w as m ade by CHEW and FRAUTSCHI [9 ] .They made 
a diagram  o f a ll then known p a rtic les  with the squared m ass in abscissa  and 
the spin in ord inate. Only one pa ir o f p a rtic les  could be f it te d : the nucleon 
Pi/2 and the th ird  nucleon resonance F5/ 2.T h is  corresp on d s to an average 
slope Bar/9s o f 1 /50  m|. T his, quite rem arkably, fits  with a form ula of p o 
tential scatterin g  which e x p resses  Safas as Rzv/4 (2 a + l) , w here R av is  som e 
average  radius o f the wave function . If we take it to  be 1 /  2 m„, we get the 
resu lt. T h is, o f co u rse , should not be taken too  seriou sly  as we are in the 
re la tiv is t ic  reg ion . H ow ever, th is figure  o f l / 5 0 m 2 should be retained as 
we shall encounter it many tim es .

F o r  exam ple, the poss ib ility  has been m entioned at the 1962 Geneva 
C on ference  o f the existence  o f a resonance at 1920 MeV, B = 1 S= 0 ,1 = 3 /2 .
If the other quantum num bers turn out to be c o r re c t , this could correspon d  
to the sam e R egge pole  as the w ell-know n (3,3) reson an ce . In the sam e way, 
the excited  hyperon o f m ass 1815, which appears to have 1 = 0, could be 
the sam e pole  as the A. T hese two ca se s  would corresp on d  to an average 
9 a /9 s  o f 1 /5 0 m| in the sam e way."

T his is  about a ll the in form ation  we can get from  this firs t  point of 
view  and is  pretty m ea ger. H ow ever, the sp ectroscop y  o f h igh-energy r e 
sonances is  a sc ien ce  in fu ll b loom  and the num ber of pa irs associated  to 
the sam e R egge p o les  may in crea se  beyond expectation in a few y ea rs .

5. 2. Second approach : asym ptotic p rop erties  of c r o s s -s e c t io n s

The study o f the asym ptotic p rop erties  o f the c ro s s -s e c t io n s  at fixed 
m om entum  tra n sfer  as a function of the energy can a lso  help checking the 
R egge pole  hypothesis. This has to be done in a fa ir ly  indirect fashion, as 
we have seen that it is  very  d ifficu lt to determ ine from  the asym ptotic b e 
haviour whether one has to do with poles  o r  with other singu larities. How
ever, a num ber o f n on -tr iv ia l p red ictions can be made and checked against 
experim ent.

The total c r o s s -s e c t io n s , being given by the optica l theorem  as the 
im aginary part of the am plitude up to som e kinem atical fa ctor , are  a very 
convenient to o l. It should be p oss ib le  to exp ress them in the f o r m :

a tot( s ) ^  (l/s )E ß a (0 )P a K(0 ) ( l+ s /2 ) / (28)

the sum m ation being ca rr ie d  out ov er  a ll R egge poles having the appropriate 
quantum num bers, that is  the quantum num bers of the p articles  which could 
be exchanged in the scatterin g  p r o c e s s . At th is point a very  tem pting a s 
sum ption can be m ade, that o f fa ctoriza tion  [13].

The idea is  the fo llow in g . C onsider a m atrix  M, function o f som e para
m eters  [X ], If th is m atrix  is  m erom orph ic in [A.}; the poles are m ost likely 
to be sim ple and th e ir  res id u es  to be of rank one in the follow ing sense.

If we con sid er  the in verse  m atrix  N = M"1, Det N has a ze ro  at the pole 
and this z e r o  is  m ost likely  to be sim ple, i. e . we may vary the elem ents 
o f N by sm all amounts related  by only one condition and still keep a sim ple 
z e r o . If we wanted to keep a double z e ro , we could only vary the elem ents 
o f N by sm all amounts related  by 2 conditions and so on. If the ze ro  is  sim ple
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N has only one eigenvalue z e r o  and th ere fore  M has only one eigenvalue 
infinite o r , what is  the sam e, the rank o f the residue is  one.

If this is  accepted , then, we find that the S -m atrix , as expressed  as a
function o f com plex  j, is  m ost likely  to have residues which are of rank 
one.

T h is  im p lies  that the fa c to rs  ß in an expression  like (28) may be written 
as fo llo w s .

A ssum e that the reaction  under consideration  is  among p articles  a and h. 
Then w e h a v e :

M o >  = f $ ° >  • $ < » ■

This has very  strong experim ental im plications, fo r  exam ple, if we assum e 
that the leading term  in (28) corresp on d s to

ß l (0 )  = 1 ("Pom eranchuk p o le") (29)

which leads to constant c r o s s -s e c t io n s  at infinity, then

o’ tot (a+a) . fftot (b+b) = [crtot (a+b)]2. (30)

No such rela tion s has yet been experim entally checked, as they always n e
cessita te  targets  which are d ifficu lt to p repare . H ow ever, it is  possib le  
that in the future c r o s s -s e c t io n s  like <rtot ( tt +  it) might be m easured by som e 
in d irect way : extrapolation  o r  the like.

It should a lso  be p oss ib le  to go farther than that and estim ate the next 
term s of E q .(2 8 ). One gets into trouble h ere . Take, fo r  exam ple, the case  
of (p, p) and (p, p) and (p, p) scattering. The total c ro s s -s e c t io n s  look as if 
they w ere  going down slow ly tow ards their lim it, the d ifferen ce decreasing 
like S '0,5. H ow ever, <jpp is  m uch n earer to it than ctpp. This is  very  n ice and 
we hope that it could  be the influence o f the R egge pole o f the p resonance. 
H ow ever, th is p resonance (or the u resonance), because o f its quantum 
num bers, only contributes to  he d ifferen ce  app- p pp .T h e re fo re  one needs 
another, as yet unknown, R egge pole which has about the sam e a and ß and 
which has the p rop er quantum num bers so that it contributes to the sum
CTpp + a pp.

5. 3 .N on -forw ard  scattering

If this last pole  ex ists , one may wonder why it does not correspond  to 
any known p a rtic le . T h is is  a lso  true of the dominant ("Pom eranchuk") pole . 
In fa ct , the signature o f the Pom eranchuk pole  is  + and th erefore  it should 
go through 0 fo r  som e negative value of t w here a partic le  should appear. 
This has been investigated by G ell-M ann and, though not understood in full 
detail, the situation is  pretty w ell c la r ified .

The idea, which has been checked by G ell-M ann in a 3 -body m odel, is 
that fo r  every  in teger j, there a re  two different fam ilies  o f Legendre func
tions which b ecom e  com plete ly  independent. T here  are those with singula
r it ie s  and th ose without. The Legendre functions without singularities are
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connected with the representations o f the rotation group. The Others may 
a lso  be connected  with the rotation group, but they do not form  a basis fo r  
a representation  becau se o f th eir  s ingu larities.

A s a parenthesis, W igner has shown what the representations of the 
P o in ca re  group look  like  fo r  im aginary m a s s * . The d ifferen ce  lie s  in the 
fact that, fo r  im aginary m a ss , the relevant surface is  not a sphere, but 
a hyperboloid , and the conditions fo r  the absence o f singularities on the 
h yperboloid  are quite d ifferent from  those fo r  the absence o f singularities 
on a sphere.

F o r  exam ple I ,  a ll Legendre functions have singu larities on the sphere. 
When one fo llow s a R egge pole , as a function of i. and reaches an integer 
value of j, one expects the relevant "w ave functions", whatever that means 
p re c ise ly , either to  keep th eir  s in gu larities on the sphere, o r  to lo se  them . 
In the fir s t  ca se , one w ill not get any p a rtic le  o r  resonance with that spin 
and th is is  what happens in the ca se  of the "gh ost" o f the Pom eranchuk pole 
at j = 0. In the second ca se , it w ill furnish  an honest p a rtic le  which can be 
seen .

Thus, it is  getting fa ir ly  d ifficu lt to tra ce  the R egge poles in their own 
channel, one may m iss  them  fa ir ly  frequently . The behaviour indicated by 
E q. (12) A (s , t) = ß(t)A°W which leads to a d ifferentia l e lastic  c ro s s -s e c t io n  
o f the fo rm

dael(s , t ) /d t  «  |j3(t) |2s2[«<')-i3 (31)

has been experim entally  checked, o r  at least, that it is  not incom patible 
with experim ent.

5 .4 . C la ss ica l p icture o f h igh -energy scattering - the puzzle o f heavy nuclei

Equation (31) can be in terpreted  c la ss ica lly , as at very-high energies 
the wave length o f the p a rtic le s  is  m uch sm a ller  than any of the dim ensions 
involved in (31). It is  th ere fore  tem pting to do so . We m ay rew rite  (31), 
putting 2 9«/8t = a.

dcxel/d t  | ß (t) |2exp [ -a 111 In s ], (32)

The pattern is  that o f a shrinking d iffraction  peak. This correspon ds to an 
in creasin g  s ize  o f the target. H ow ever, the total c r o s s -s e c t io n  being con 
stant, we end up with a target which b low s up like a puff of sm oke, as the 
energy in crea ses , becom ing  b igger and thinner.

This is  a very  strik ing feature o f this whole analysis. One may start 
w ondering what happens when the target is  a heavy nucleus. It is known that 
the scattering  o f a high-energy proton  by ä heavy nucleus is essentially p ro 
portional to the area  of the nucleus, th ere fore  going like A2/3, and is  essen 
tia lly  constant up to co s m ic  ray en erg ies .

But what i f  a ll the nucleons inside the nucleus start blowing up, thus
becom ing  m ore  and m ore  transparent? G ell-M ann and Udgaonkar have p ro -

*  These proceedings.
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posed  such a m odel and they show that at very  high energies, the c r o s s -  
section  should be p roportional to A , rather than A 2/ 3, as there is  no s creen 
ing effect any m ore . The transition  of one set o f c r o s s -s e c t io n s  to the other 
should take p lace very  slow ly, as the in crea se  in s ize  of the nuclei, and 
fina lly , we end up with a c r o s s -s e c t io n  which tends tow ards its lim it as 
l / l n s ,  w hich leads to a cut in the i  -p lane.

A nother p ossib ility  is  interesting to investigate. Let us use the fa c 
toriza tion  hypothesis in equation (32). W e get fo r  the amplitude

A (s , t) = isß (a) (t)ßW (t)exp ^ |  |t|lns^ . (33)

W e now con s id er  that this is  pure d iffraction  scattering, which o ccu rs  with 
a very  weak absorption  over a large  su rface . We can th erefore  tr^ce back 
the absorption  density p(b) as a function o f the im pact param eter b : p(b) 
is  the two d im ensional F o u rr ie r  tran sform  o f A (s , t) as expressed  in term s 
of the tw o-d im ensiona l tra n sverse  mom entum  tra n sfer .

The product (31) is  tran sform ed  into a convolution by this F ou rr ier  
tra n sfo rm a tion :

p(b) = p ^ (b )  * p̂ b) (b) * (27r/a ln .s)exp (-b2/2 a l n  s). (34)

Now it seem s that th is way of w riting p (b) is  fa ir ly  natural and represents 
a part involving the target and only the target, a part involving the incident 
p a rtic le  and only it and a part involving the P om eram chuk pole and only it. 
A ll these parts could  be rep laced  by another of a s im ila r  nature and it would 
only d e scr ib e  another ph ysica l phenom enon.

The c la s s ic a l interpretation  o f (34) is  obvious : p(a) (b) and p(b)(b) r e 
p resen ts  the net probability  o f em itting o r  absorbing a Pom eranchuk pole 
at a p la ce  b, integrated along the line of flight, o f p a rtic les  a and b r e -  
pectively .

The exp ress ion  [?r/a In s] e x p [-b 2/2  a In s] is  the probability , again inte
grated along the line o f flight, fo r  a Pom eranchuk pole  em itted at the origin, 
to be absorbed  at a d istance b from  the orig in .

W e may a lso  think that in fact, all these probab ilities should be sp er i- 
ca lly  sym m etrica lly  d istr ibu ted ; it is  an easy m atter then to compute the 
3 -d im en sion a l d istributions out of the integrated ones (A bel’ s problem ).

In th is ca se , how ever, the puzzle of the heavy nuclei disappears, as 
only the Pom eranchuk pole blow s up and thins out. The screen ing effect 
still takes p la ce  inside p^and P(b)a n d  the c r o s s -s e c t io n  goes like A2/ 3, even 
asym p totica lly .

In con clu sion , one should bear in mind the amount o f guesses and con 
je ctu re s  which have been used in this whole study. This is  a very  unscienti
f ic  situation, in which the bases are  so fa r  away from  the prediction  of ex 
p erim ents that there is  no such thing as a d ecis ive  experim ent to test this 
o r  that b asic  postu late. It is  th ere fore  pretty fra il and it would be in many 
w ays a m ira c le  if  a ll th is is  s t ill true in 10 y e a rs  from  now.
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