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In this Letter we compute a canonical set of cuts of the integrand for maximally helicity violating
amplitudes in planar N ¼ 4 supersymmetric Yang-Mills theory, where all internal propagators are put on
shell. These “deepest cuts” probe the most complicated Feynman diagrams and on-shell processes that can
possibly contribute to the amplitude, but are also naturally associated with remarkably simple geometric
facets of the amplituhedron. The recent reformulation of the amplituhedron in terms of combinatorial
geometry directly in the kinematic (momentum-twistor) space plays a crucial role in understanding this
geometry and determining the cut. This provides us with the first nontrivial results on scattering amplitudes
in the theory valid for arbitrarily many loops and external particle multiplicities.
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Introduction.—The past decade has revealed a variety of
surprising mathematical and physical structures underlying
particle scattering amplitudes, providing, with various
degrees of completeness, reformulations of this physics
where the normally foundational principles of locality
and unitarity are derivative from ultimately combina-
toric-geometric origins. An example is the amplituhedron
[1], a geometric picture for scattering amplitudes in planar
N ¼ 4 supersymmetric Yang-Mills (SYM) theory. All
tree-level amplitudes and loop integrands in this theory
correspond to the differential forms with logarithmic
singularities on boundaries of the amplituhedron geometry.
The original definition was based on a generalization of
the positive Grassmannian, centrally connected to on-shell
diagrams [2] and loop level recursion relations [3]. More
recently, a more intrinsic definition of the amplituhedron
was found [4], directly in momentum-twistor space, using
certain topological notions—winding numbers and sign
flip patterns—associated with projections of the momen-
tum-twistor data. The amplituhedron has been extensively
studied from many angles including mathematical aspects
[5–7], positive geometry and volume interpretation [8,9],
triangulations [10–13], connections to on-shell diagrams
[14,15], and geometric structures in the final amplitudes
[16,17]. Some early steps in extending this circle of ideas
well beyond the planar N ¼ 4 SYM theory have been
taken in Refs. [18–20].

There has also been an ongoing effort to use the
amplituhedron picture to make all-loop order predictions
for loop integrands. This effort was initiated in Ref. [10],
which calculated certain all-loop order cuts for four point
amplitudes that were impossible to obtain using any other
methods. In this Letter, we go much further and use the
new topological definition of the amplituhedron [4] to
calculate a particular cut of n-point MHV amplitudes to
all loops. This cut places on-shell internal propagators,
which are arbitrarily deep in the interior of contributing
Feynman diagrams. Thus, we aptly refer to this as the
“deepest cut.” It appears hopelessly difficult to calculate
this cut using standard unitarity-based methods, as almost
all diagrams contribute as we increase the loop order.
However, we will show that the new topological formu-
lation of the amplituhedron allows us to easily understand
the geometry of the facet associated with this cut and
leads to a strikingly simple, one-line expression for the
cut valid to all loops and all multiplicities. This is the
first calculation giving us nontrivial access to the regime
of arbitrarily large loop order and particle multiplicities in
the theory.
Amplitudes from sign flips.—The original definition of

the amplituhedron refers to the auxiliary space of extended
kinematical variables constrained by positivity conditions.
Recently, an equivalent definition was provided directly in
the momentum twistor space using the conditions on sign
flips [4].
For the n-point amplitude, the kinematics is given by n

momentum twistors ZI
a, a ¼ 1; 2;…; n, I ¼ 1;…; 4. The

SLð4Þ dual conformal symmetry acts on the I index. We
define the SLð4Þ invariants habcdi≡ ϵIJKLZI

aZJ
bZ

K
c ZL

d .
The space for the NkMHV amplituhedron is described
by the set of Za for which all hiiþ1jjþ1i ≥ 0 [with twisted
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positivity for ð−1Þkþ1hn1jjþ1i > 0], and the following
sequence:

fh123iig for i ¼ 4;…; n has k sign flips: ð1Þ

For example, for n ¼ 6 the sequence has three terms,

fh1234i; h1235i; h1236ig;

and possible sign sequences fþ þþg, fþ þ −g, fþ − −g,
and fþ −þg. The first sequence corresponds to k ¼ 0, the
next two to k ¼ 1, and the last to k ¼ 2 kinematics. In
general the k ¼ 0 MHV amplitude has the sign pattern
fþ þ � � � þg and zero sign flips, while for higher kwe have
various sign patterns which have k sign flips in total.
At loop level, in addition to the external momentum

twistors Za, we also have lines Lα ¼ ðABÞα corresponding
to loop momenta. For each line we can write ðABÞα ¼
AαBα, where Aα, Bα are two points on that line. The
line ðABÞα is in the one-loop amplituhedron if all
hðABÞαiiþ 1i > 0 [again with twisted positivity
ð−1Þkþ1hðABÞαn1i > 0] and if the sequence

fhðABÞα1iig for i ¼ 2;…; n has ðkþ 2Þ sign flips:

ð2Þ

The collection of l lines, fðABÞαg is in the l-loop
amplituhedron if each line satisfies Eq. (2) and, in addition,
the mutual positivity conditions (independent of n, k)

hðABÞαðABÞβi > 0 for all α; β ¼ 1;…;l: ð3Þ
The n-point NkMHV l-loop integrand is given by a degree
4ðkþ lÞ differential form on fZa; ðABÞαg space, deter-
mined by the property of having logarithmic singularities
on boundaries of the intersection of this space with a
canonical (4 × k)-dimensional affine subspace in the con-
figuration space of momentum twistors fZag.
The amplituhedron geometry for the MHV case when

k ¼ 0 is especially simple. The space is simply that of l
lines ðABÞα in momentum twistor space subject to Eq. (3).
The sign-flip conditions (2) can be rewritten in an appa-
rently different but equivalent form, in terms of inequalities
on each ðABÞα:
hðABÞαði − 1 iiþ1Þ ∩ ðj − 1 jjþ1Þi > 0 for all i; j:

ð4Þ
This condition is the same for every loop—we can say
that this just demands that each ðABÞα lives in the one-loop
amplituhedron. The interaction between different loops
is then captured by the mutual positivity properties
hðABÞαðABÞβi > 0.
Definition of the deepest cut.—In Ref. [10] we focused

on cuts where Lα ¼ ðABÞα passed through Zi or cut lines

ZiZiþ1. Here we consider an opposite case where none of
the external propagators hðABÞαiiþ 1i are cut while all
internal propagators are on shell:

hðABÞαðABÞβi ¼ 0 for all α; β ¼ 1;…;l: ð5Þ

Prior to any detailed investigation, the geometry of the
amplituhedron makes an amazing prediction for the struc-
ture of this cut. Owing to the trivialization of the mutual
positivity by setting all the hðABÞαðABÞβi → 0, the only
remaining constraint of the geometry is that all the lines
ðABÞα live in the one-loop amplituhedron. This leads us to
expect that the all-loop geometry should be expressible as l
independent copies of the one-loop geometry, associated
with a formula for the cut with the structure of a product
over independent pieces determined by this one-loop
problem. We will see this expectation borne out perfectly
in our analysis.
It is easy to show that we have to impose 2l − 3

conditions in order to satisfy Eq. (5). There are two
solutions to this problem, each with a different geometrical
meaning: in the first solution, all-in-point, all lines intersect
in a common point A while in the second solution, all-in-
plane, all lines lie on the same plane P.

These configurations are mapped into each other by the
usual projective duality interchanging points and planes,
which also reflects parity; had we been discussing MHV
amplitudes the cuts associated with the pictures would be
reversed. In the first solution the lines ðABÞα can be
parametrized

ðABÞα ¼ ABα; ð6Þ

where Bα and A are arbitrary. The common intersection
point A has three degrees of freedom (d.o.f.) while each Bα

has two d.o.f. as the geometry only depends on the lines
ABα. As a result, the configuration is ð2lþ 3Þ dimen-
sional. We now have a simple geometry problem. Given a
point A, we want to identify all the lines ðABÞ passing
through A, which lie in the one-loop amplituhedron. This
carves out some subset in the two-dimensional space of
possible points B. The shape of this region can change as
we move around in A space. Thus we are led to find a joint
“triangulation” in A, B space, specified by breaking up the
three-dimensional A space into regions for which the
corresponding two-dimensional geometry in B has a uni-
form shape. The regions in Bα space are the same for all α.
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Thus for each such piece we take the product of the A form
and the Bα forms, and then sum over all terms in the
triangulation. Because there are no mutual positivity con-
ditions left for the given point A, the form in Bα is given by
a simple product. The final result can then be written as

ΩðlÞ
n ¼

X
j

ωðnÞ
j ðAÞ ∧ Yl

α¼1

κðnÞj ðBαÞ: ð7Þ

In the second solution all lines ðABÞα lie in the same plane
P and we denote them

ðABÞα ¼ Lα: ð8Þ

The plane P has three d.o.f. while each line Lα has two
d.o.f., which is 2lþ 3 in total. Again, we imagine fixing
the plane P and looking for all the linesL in P that lie in the
one-loop amplituhedron. This breaks up P, L space into
pieces where, given P in a certain region, the corresponding
geometry in L space has a uniform shape. The differential
form for this space can be written as

Ω̃ðlÞ
n ¼

X
j

ω̃ðnÞ
j ðPÞ ∧ Yl

α¼1

κ̃ðnÞj ðLαÞ: ð9Þ

The various differential forms ωðAÞ; κðBαÞ;ωðPÞ and
κðLÞ are proportional to universal measure factors dμA;
dμB; dμP; dμL associated with the free points, planes, and
lines characterizing the geometries. The measures for the
point A and points Bα are

dμA ¼ hAd3Ai≡ ϵIJKLAIdAJ ∧ dAK ∧ dAL;

dμB ¼ hABd2Bi≡ ϵIJKLAIBJdBK ∧ dBL: ð10Þ

For the plane P≡ PIJK , we can define PIJK ≡ ϵIJKLpL and
then the measure for P is

dμP ¼ hpd3pi≡ ϵIJKLpIdpJ ∧ dpK ∧ dpL: ð11Þ

The plane P can be parametrized using three points pI
i ,

i ¼ 1, 2, 3 up to a GLð3Þ transformation on the i index.
Then the line ðABÞIJ is related to the line Lk on P as

ðABÞIJ ¼ ϵijkðpipjÞIJLk; ð12Þ

where the ϵijk acts on the labels of points pi on the plane P.
Finally, the measure of the line L is

dμL ¼ hLLd2Li≡ ϵijkLidLj ∧ dLk: ð13Þ

The richness of the deepest cut is revealed when compared
to the amplitude written as a sum of Feynman integrals.
Contributing diagrams must have at least 2l − 3 internal
propagators. Ladder diagrams with only l − 1 propagators

are irrelevant while other diagrams with more internal
propagators contribute, such as

where the diagram has DCI numerator hAB14iL−2, with AB
being the upper loop. In general, one has to check if
the numerator of a given diagram reduces the degree of
the singularity in the denominator, and consider it in the
counting. Furthermore, it should be also checked explicitly
that a given diagram indeed gives nonzero residue on the
deepest cut.
Four point case.—We now proceed to solving the

geometry problem for the four point case where all lines
pass through the same point A. The positivity of external
data at four points is a single condition h1234i > 0 while
the sign flip conditions for lines Lα ¼ ABα turn into the set
of inequalities

hABα12i> 0; hABα23i> 0; hABα34i> 0; hABα14i> 0;

hABα13i< 0; hABα24i< 0: ð14Þ

As there are no mutual inequalities between different lines
ABα in this problem once we solve the inequalities for one
B it is automatically solved for all of them, and the
differential form is given by the simple product (7). As
all inequalities involve the point A we can project through
that point to a two-dimensional plane that contains pro-
jected points Z0

1, Z
0
2, Z

0
3, Z

0
4, and B0

k

We omit the primes in the following. These inequalities cut
out an allowed region for A. The task is to triangulate this
region such that for each term in the triangulation, there is a
corresponding allowed region for B whose shape does not
change within this A region. For the four point case the
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situation is quite simple: A can be written as linear
combination A ¼ c1Z1 þ c2Z2 þ c3Z3 þ c4Z4 and the
choice of signs of cj are equivalent to the choice of signs
of the set,

fhA123i; hA124i; hA134i; hA234ig: ð15Þ

There are 24 ¼ 16 possible choices corresponding to 16 A
regions for which we have to find the B geometry. The two-
dimensional configuration of the projected Zi points must
respect given hAijki inequalities. In particular, hAijki > 0
if the triangle ðijkÞ made of points Zi, Zj, Zk is oriented
clockwise. The other sign hAijki < 0 corresponds to
counterclockwise orientation. As a result, we get two types
of configurations,

where the first corresponds to fþ;þ;þ;þg and the second
to fþ;þ;−;þg. Adding all possible permutations of Zi
gives us eight quadrilateral configurations and eight tri-
angle configurations with one point inside. In the second
step we have to find the space of all B points which satisfy
inequalities (14). Geometrically, the inequality hABiji > 0
means that B must be on the right side of the line ZiZj or,
alternatively, the triangle ðBijÞmust be oriented clockwise,
for hABiji < 0 counterclockwise. The first configuration
has no allowed B region, while for the second we get

which is a triangle given by the lines (23)(34)(14). There
are three more A configurations which give nonempty B
regions. All these regions are triangles bounded by lines
(12)(23)(34), (12)(34)(14), and (12)(23)(14).
Since the A and B geometry are factorized, so are the

corresponding logarithmic volume forms. For the A part for
all possible signs in Eq. (15) the boundaries are the same;
therefore the form is given for all possible regions by
ð−1ÞKωðAÞ, where

ωðAÞ ¼ dμAh1234i3
hA123ihA124ihA134ihA234i ; ð16Þ

and K is the number of minus signs in Eq. (15). The B
forms depend on the shape of the allowed region in the two-
dimensional plane. The triangle in the picture above is
bounded by the lines (23),(34),(14) and the form is

ωðBÞ ¼ dμBhA134ihA234i
hAB23ihAB34ihAB14i : ð17Þ

If the configuration was more complicated, e.g., a penta-
gon, we would have to decompose it into triangles but that
does not happen in the four point case. Putting all pieces
together we can write the result as

ΩðlÞ
4 ¼ ωðAÞ ∧ κðBÞ; ð18Þ

where ωðAÞ is given by Eq. (16) and κðBÞ is a sum of four
triangles with signs coming from different A regions,

κðBÞ¼
X4
j¼1

ð−1Þj
Y
α

dμBhAj−1jjþ1ihAjjþ1jþ2i
hABαj−1jihABαjjþ1ihABαjþ1jþ2i;

ð19Þ

where the sum over j includes the cyclic twist: nþ k → k.
In the four point case the all-in-plane solution can be

extracted from the all-in-point solution. Instead of the com-
mon point A we have a common plane P ¼ ðP1P2P3Þ on
which all Lα live. The space of P planes is bounded by
points Z1, Z2, Z3, Z4 and the form in P up to a sign is
given by

ω̃ðPÞ ¼ dμPh1234i
hP1ihP2ihP3ihP4i : ð20Þ

On each plane P we have two-forms on the space of lines
Lα. The triangulation is analogous to the all-in-line case

and the result can be written as Ω̃ðlÞ
4 ¼ ω̃ðPÞ ∧ κ̃ðABÞ,

where

κ̃ ¼
X4
j¼1

ð−1Þj
Yl
α¼1

×
dμLα

hj − 1jjþ 1jþ 2ihPjihPjþ1i
hðABÞαj − 1jihðABÞαjjþ1ihðABÞαjþ1jþ2i ; ð21Þ

where ðABÞα are related to the lines Lα restricted to P via
(12). Note that hj − 1jjþ 1jþ 2i ¼ ð−1Þjh1234i.
Higher point formulas.—At four points the original

amplituhedron picture is identical to the new sign flip
definition. However, for higher point MHV amplitudes
while still equivalent the sign flip picture is much more
suitable for actually solving the geometry. Here we provide

PHYSICAL REVIEW LETTERS 122, 051601 (2019)

051601-4



the final n-point expressions for the residues on the deepest
cut for both solutions; detailed derivations and a number of
results for further nontrivial cuts will be provided in
Ref. [21]. The basic strategy is the same as in the four
point case: for the all-in-point solution, triangulate the A
space and find the corresponding Bα geometry. The main
difference is that the boundaries of the different pieces
in the triangulation of the A space are now different. The
result can be schematically drawn as the tetrahedron ×
polygon,

where the point Xik ≡ ði − 1iÞ ∩ ðA; iþ k − 2; iþ k − 1Þ.
The expression for the integrand takes the product form

ΩðlÞ
n ¼

Xn−1
k¼1

Xn
i¼1

½i − 1; i; iþ k − 2; iþ k − 1� ∧ Yl
α¼1

dμBα
Nk-gonðiÞ

hABαi − 1iihABαiiþ 1i � � � hABαiþ k − 2; iþ k − 1i ; ð22Þ

where ½a; b; c; d� is the canonical form in A space for the
tetrahedron with vertices Za, Zb, Zc, Zd

½abcd� ¼ dμAhabcdi3
hAabcihAabdihAacdihAbcdi : ð23Þ

The Bα part is a form on the polygon bounded by the lines
ði − 1iÞ, ðiiþ 1Þ,…, ðiþ k − 2; iþ k − 1Þ. The numerator
Nk-gon was given in Ref. [22]. Alternatively, one can
triangulate the polygon as a sum of triangles and collect

the corresponding differential forms. Note that in the
triangulation the A space is given just by a simple tetrahe-
dron while the B space is a more complicated polygon.
While for the four point case the forms ΩðlÞ

4 and Ω̃ðlÞ
4

were related for higher points they are different. Following
a similar geometric procedure we have to first triangulate
the P space; here the general term in the triangulation has
six boundaries, and the corresponding space of lines on the
P plane has three boundaries for each line. The expression

for Ω̃ðlÞ
n is then given by the product form

Ω̃ðlÞ
n ¼

Xn−2
i¼1

Xn−1
j¼iþ1

Xn
k¼jþ1

fi; j; kg ∧ Yl
α¼1

dμLα
⟪P; i; j; k⟫

hðABÞαiiþ 1ihðABÞαjjþ 1ihðABÞαkkþ 1i ; ð24Þ

where the bracket fi; j; kg is defined by

fi; j; kg ¼ dμP⟪P; i; j; k⟫
hPiihPiþ 1ihPjihPjþ 1ihPkihPkþ 1i ; ð25Þ

with

⟪P; i; j; k⟫ ¼ PI1J1K1PI2J2K2ZI1
i Z

I2
iþ1Z

J1
j Z

J2
jþ1Z

K1

k ZK2

kþ1

¼ hðiiþ1ÞðPÞ ∩ ðjjþ1ÞðPÞ ∩ ðkkþ1Þi: ð26Þ

Note that ⟪P; i; j; k⟫ is completely symmetric in i, j, k,
though the representation in terms of four brackets does not
manifest this symmetry. Thinking for convenience dually of
P as a point and the Za as planes, fi; j; kg is the canonical
form of a cube with opposing facets associated with
ðZi; Ziþ1Þ, ðZj; Zjþ1Þ, ðZk; Zkþ1Þ.
Exceptional efficiency.—Given the integrand for the

n-point, l-loop MHV integrand, the differential form for

the deepest cuts Ω and Ω̃ can be straightforwardly
computed by taking residues. Explicit expressions for
the MHV integrand are available in the literature up to
ten loops for n ¼ 4 [23–26], and up to three loops for any n
[27–29]. We have verified our cut up to five loops for n ¼ 4
and for general n up to three loops.
As we have stressed, the deepest cut is sensitive to the

most complicated topologies for Feynman diagrams and
on-shell processes that can contribute to the amplitude. It is
interesting to see this more quantitatively at four points. For
the four-point l-loop integrand the number of dual con-
formal invariant integrals contributing on the cut can be
counted from the Mathematica code provided in Ref. [26]
up to l ¼ 10. In the Table we provide the number of
topologies; the complete set of integrals also involves
permutation over all loop momenta and cycling in external
labels. The number of contributing diagrams is the same for
both solutions of the cut.
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l Total # of topologies Contributing on cut %

4 8 4 50
5 34 20 58.8
6 229 146 63.8
7 1873 1248 66.6
8 19 949 13 664 68.5
9 247 856 172 471 69.6
10 3 586 145 2 530 903 70.6

We have to stress that this counting corresponds to
graphs which in principle can contribute on the cut
(counting the number of hABαABβi in the numerator and
denominator. One has to further check that there are no
more subtleties and the integrand has a support on the
residue. In any case, we see the monotonic increase in the
percentage of diagrams potentially contributing as a func-
tion of l. We expect this percentage should approach 100%
for l → ∞.
Our formulas for Ω and Ω̃ are remarkably simple and

compact, while the complete loop integrand gets more and
more complicated for higher l. A notable feature of our
expressions is their representation as a sum over pieces
each having a trivial product structure over loops. However,
this simplicity comes at the cost of introducing spurious
poles. These are all the poles in Ω involving only the
intersection point “A” rather than the lines ABα. This
phenomenon is by now a familiar one in the on-shell
approach to scattering amplitudes, but occurs here in a
novel setting. Of course the spurious poles cancel non-
trivially in the sum. The existence of such a strikingly
simple and unusual representation for this cut is completely
mysterious from any conventional point of view (Feynman
diagrams, all-loop BCFW recursion or Wilson loops).
However, as we stressed even before embarking on any
detailed calculation, the existence of such a picture is made
almost trivially obvious from the topological picture of the
amplituhedron geometry.
Any analytic comparison with standard local expressions

for the cut would have to proceed by algebraically cancel-
ing the spurious poles. This immediately leads to an
explosion of complexity: while the formula for Ω has
the same form for any l, when canceling spurious poles the
result gets more complicated for higher l. Even at four
points, when all spurious poles are canceled we get

ΩðlÞ
4 ¼ dμAN l

Yl
k¼1

dμBα

hABα12ihABα23ihABα34ihABα14i
;

where for l ¼ 3 we get up to symmetrization in Bα

N 3 ¼

2
64

hA124i2hAB113ihAB223ihAB334i
þhA234i2hAB112ihAB213ihAB314i

þhA234ihA124ihAB113ihAB213ihAB324i

3
75:

The expressions get even more complicated if we rewrite
the numerators using hABαiiþ1i to match the Feynman
integral expansion. For N 3 it would be given by 24 terms
corresponding to tennis court diagrams at three loops. The
expressions obviously get more complicated at higher
loops and the number of terms matches the number of
contributing Feynman integrals. In the numerator N l all
lines Lα are completely entangled and there is no product
structure. Again, from this point of view the amazingly
simple product form (18) is a total surprise, and without the
geometric picture one would never discover it.
Conclusion.—In this Letter we studied the deepest cut in

the planar N ¼ 4 SYM theory using the new topological
definition of the amplituhedron geometry using sign flips,
which allowed us to easily find explicit triangulations and
concrete expressions for this cut of the n-point MHV
amplitudes (22) and (24). When compared to the Feynman
diagram expansion, the deepest cut probes the most compli-
cated diagrams. We expect that for l → ∞ this cut captures
some of the essential properties of the full integrand. Indeed,
the deepest cut can be used as a new jumping off point for
approaching the determination of the full geometry by
gradually relaxing the mutual intersection properties in steps
[21]. It should also be possible to compute the deepest cut for
all k; as with the MHV case, in the topological picture this
should again reduce to merely finding a precise characteri-
zation of the one-loop amplituhedron geometry, but the
associated analogs of our “tetrahedral” and “polygonal”
regions are expected to be more nontrivial and interesting.
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