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Abstract
We study the dynamics of a vortex in a quasi two-dimensional Bose gas consisting of light-matter
coupled atoms forming two-component pseudo spins. The gas is subject to a density dependent gauge
potential, hence governed by an interacting gauge theory, which stems from a collisionally induced
detuning between the incident laser frequency and the atomic energy levels. This provides a back-
action between the synthetic gauge potential and thematterfield. A Lagrangian approach is used to
derive an expression for the force acting on a vortex in such a gas.We discuss the similarities between
this force and the one predicted by Iordanskii, Lifshitz and Pitaevskii when scattering between a
superfluid vortex and the thermal component is taken into account.

1. Introduction

Transport of electrons is at the heart of our understanding and everyday usage of electronic devices. A charge
neutralmatter wave version of the electron dynamics would have to be able tomimic the electronic properties
whichwould include constructing devices such as diodes and switches for atoms. The goal there is to exploit the
tunability of atomic Bose–Einstein condensates (BECs) and explore the prospect for newquantumdevices for
measurements and sensing. In this respect it is often favourable to have a directional dependence built into the
system, but this is not always straightforward to achievewith BECs. Recently it has been shown that an optically
addressed BEC governed by an interacting gauge theory [1] can have a chiral nature where the strength and even
the sign of the nonlinearity depends on the direction of the superfluid flow. For such a superfluid to be useful for
atomtronics applications we need tofirst understand the transport and collective excitations in the quantumgas.
One aspect of this is the understanding of the properties of quantised vortices.

The interest in vortex states, andmore generally in the rotational properties offluids, dates back to the early
days of hydrodynamics and is historically related to the phenomenon of turbulence in classical fluids. To
understand the onset of chaotic dynamics and turbulence has turned out to be a formidable task, and a deep and
complete understanding is still far from achieved. The realisation of BECof 4He [2, 3], and the consequent
discovery of superfluidity opened up a newperspective to this aim. As in their classical counterpart, turbulence
also shows up in these quantumfluids, with vortices playing a central role in the transition to chaoticmotion
[4–8].

The advantage of investigating turbulence phenomena in superfluids is due to the constraints that quantum
mechanics imposes on the values of the physical quantities that characterise the system, which simplifies to some
extent the scenariowith respect to its classical counterpart. For example, in order for the condensate wave
function to be single valued, the circulation of the velocityfield around any closed path, has to be quantised in
multiples of ÿ/m, withm themass of the atomic species composing the condensate itself. This property leads to
the concept of quantised vortices, aroundwhich the circulation (and the angularmomentum as a consequence)
is quantised [5, 9]. Apart from the discreteness of the values of the angularmomentum, a vortex in a superfluid
has the remarkable property of being a particle-like stable object that does not easily decay, in contrast to viscous
diffusion of vorticity, as in the case of classicalfluids. Because of these considerations, superfluids have become

OPEN ACCESS

RECEIVED

8 January 2016

REVISED

29 June 2016

ACCEPTED FOR PUBLICATION

5 July 2016

PUBLISHED

2August 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/18/8/085001
mailto:P.Ohberg@hw.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/8/085001&domain=pdf&date_stamp=2016-08-02
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/8/085001&domain=pdf&date_stamp=2016-08-02
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


the preferred environment for investigating turbulence phenomena. The study of the dynamics of quantised
vortices represented thefirst step to this aim. The experimental realisation of BECof alkali atoms in 1995
[10, 11], gave a significant boost in this direction. Because of the unprecedented control and access to physical
parameters of the atomic cloud, these systems have provided an excellent experimental environment for
studying the dynamics of quantised vortices and their properties in general [12–14].

Particular attention has been drawn to the problemofMagnus like transverse forces in quantumfluids.
These forces, first predicted in classical hydrodynamics, are orthogonal to the relativemotion between an object,
carrying aflowof circulation, and thefluid inwhich it is immersed. The forces at play in this situation, and their
derivation, has not beenwithout controversy. At the heart of this debate, is the dual nature of a quantum fluid at
finite temperature, where it consists of a superfluid and a normal component of thermally excited quasi-
particles. According to this two-fluidmodel, different transverse forces acting on a vortex should in principle be
expected.Whereas there is awide consensus on the existence of a superfluidMagnus force, which can be
considered the analogue of the effect predicted by theKutta-Joukowski theorem for an inviscid classical fluid,
the existence of a thermalMagnus force is still the object of some debate. Such forces was theoretically predicted
by Lifshitz and Pitaevskii [15] and Iordanskii [16, 17], who showed that this type of force is a consequence of the
interaction between a vortex and the roton and phonon quasi-particles respectively.

Recently Ao andThouless [18, 19] contested the existence of any thermalMagnus force. Deircan et al [20]
arrived at the same conclusion analysing the phonon scattering by a vortex using a hydrodynamical approach.
These results have been confuted by Sonin [21–23], who argued it is incorrect ignoring particular properties of
the Born cross-section at small angles, which if included, results in a thermal transverse force.More recently a
comprehensive study by Flaig and Fischer [24] also confirms the existence of a transverse force acting on a
vortex, where any singularities were avoided in themathematical treatment of the scattering processes.

In this paperwewill study themotion of a vortex in a superfluidwhich is subject to a density dependent
gauge potential.Wewill show that the resulting force on the vortex is similar to the Iordanskii force. In the quest
tofind a physical systemwhichwould emulate a dynamical gauge theory, it has been proposed, as afirst step
towards such a situation, to use collisionally induced detunings in combinationwith syntheticmagnetism
arising from light–matter coupling [25, 26]. The resulting gaugefield is not dynamical in afield theoretic sense,
but it does become density dependent and therefore provides a back-action between the synthetic gauge
potential and the superfluid. This results in a current nonlinearity in the equation ofmotion for the superfluid
with dramatic consequences for the transport properties of the system [1, 27, 28]. Amore complete
understanding of the vortex dynamics in such a systemwill provide important insight into phenomena such as
drag forces and superfluidity of the chiral gas.

We start by briefly introducing the concept of a synthetic nonlinear gauge potential. Following a variational
approach, we study the dynamics of the vortex core, explicitly calculating the forces acting on it.Wefinally
validate our arguments by comparing the analytical results with a numerical solution of the generalisedGross–
Pitaevskii equation.

2. Atoms in artificial gaugefields

Weconsider a uniformBEC [29] consisting of two-level atoms, which are confined such that their dynamics in
the transverse direction is frozen. The system can be considered as a quasi-two-dimensional cloud of atoms, free
tomove in the 2Dplane but the collisions are treated in three dimensions. It has recently been shown in [1] that a
collisionally induced detuning between the incident laser and the two atomic levels can give rise to a density
dependent synthetic gauge potential.We refer the reader to appendix A for a detailed derivation of the equation
ofmotion. The resultingmeanfield equationwhich describes the dynamics of the condensate is given by
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The validity of equation (1) relies on the adiabatic approximationwhere the atoms are assumed to be prepared in
one of the dressed states of the light–matter coupled system, and on the assumption that the Rabi frequency is
the dominating energy scale. The resulting gauge potential and scalar potential are given by

( ) ( )( ) r= A A a r , 30
1

2
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Here, and through the rest of the paper,±refers to the two different dressed states whichwe can choose to use
(see appendix A). The ( )  f= - A 0

2
is the single particle component of the vector potential withf being the

phase of the laser. The vector field ( )f=  - Wg ga 81 11 22 is thefirst order nonlinear density dependent
contributionwhere g11 and g22 are the correspondingmeanfield coupling constants for collisions between atoms
in state ∣ ñ1 and ∣ ñ2 respectively, andΩ is the Rabi frequency. See figure 1 for a description of the envisaged setup.
The vector and scalar potentials in equations (3) and (4) are synthetic and stem from a geometric potential
[25, 26]. As such there is no real charge associatedwith the vector potential, and the choice of gauge is explicitly
determined by the parameters of the laserwhich couples the two atomic levels.

3. Vortex Lagrangian

Weconsider a cloudwhich is strongly confined by a potential in the z-direction, such that the dynamics is frozen
in this direction and the atoms are nearly free tomove in the x–y plane.We assume an incident laser beamwhich
is propagating in the plane of the condensate andwith a uniform intensity and phase ( ) ·f =r k r. The Rabi
frequency is consequently uniform throughout the condensate. This choice of light beam results in zero
magnetic field, but the nonlinear part of the gauge potential will, as we shownext, influence the dynamics. The

zeroth order gauge potential ( )A 0 can be gauged away by applying the transformation ( )·Y  Yexp i k r

2
which

results in

( ) ( )r= A a r , 51
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=W

k

m8
. 6

2 2

With ( ) ( )= - Wg ga k 81 11 22 . In order to study the dynamics of the vortex in the cloud, it is convenient to
consider the cloud having an effective thicknessZ in the z-direction. The original condensate wave function can
then be rescaled as ( )y Zr , where ( )y r is now two-dimensional, and normalised in such away that

∣ ∣ò y = Nrd2 2 , withN the number of atoms in the condensate.

Wewrite thewave function in terms of the particle density ρ and the phase S as y r= e Si , so that the
Lagrangian density takes the form
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wherewe neglected the second order termA2/2mand the physical velocity u in the condensate is related to the
phase of thewave function as

( )=  -m Su A. 8

Given equation (7), we seek for an effective Lagrangianwhich describes the dynamics of a vortex state.We look
in particular for the forces which result from the vortex interacting with the synthetic gauge field. In order to
properly take into account the vortex velocity fieldwe need to choose the phase S, in such away that

( ) =S mu r0 , with

( ) ( )k
p

=
´
r

u r
r

2
90 2

Figure 1. Schematic view of the experimental setupwith a vortex located in a Bose–Einstein condensate and a laser beam incident in
the plane of the quasi two-dimensional condensate.
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the velocityfield characteristic of the vortex state, and ∣ ∣kk = = h m the quantumof circulation. From an
experimental point of view this is equivalent to preparing a vortex in the atomic cloud in absence of the gauge
potentials, and then look at its dynamics once the external laserfield is switched on.Wenext consider the vortex
moving relative to the bulk condensate, wherewe indicate by r0 the position of its core and by = tv rd d0 its
velocity.We assume this velocity ismuch smaller than the speed of sound in the condensate, so that the density
and phase profiles charactering the vortex, adiabatically follow the core during itsmotionwithout undergoing
any distortion.Wemake the ansatz ( )r r= -r r0 0 for the density of the condensate, with ( )r r0 the density
profile of a vortex state, which is assumed to carry a single quantumof circulation.Wewrite the phase of the
condensate as = +S S S0 v with S0 the phase of a steady vortex, so that  =S u0 0, and Sv the shift due to the
coreʼsmotion. Exploiting the continuity equation

· ( ) ( )r
r+  =

t
u

d

d
0 10

we get the equation for Sv. To do sowe substitute equation (8) into (10), obtaining

· ( ) ( · ) ( ) r r  - - + D - S m SA V A 11v v

because ·r  =S 00 and ·D º   =S S 00 0 . The vortex is assumed to bemoving in the condensate with
constant velocity.We therefore expect thatSv gives rise to anuniformfield, so thatD =S 0v , and equation (11)
reduces to

· ( ) ( )r r  -  =S mv a2 0 12v 1

having used the relation · ( ) · ( ) ·r r r r =  =  A a a22
1 1. It is useful now to distinguish between the

in-core (inwhich r ¹ 0, r » 0) and out-core (inwhich r » 0, r ¹ 0) regions of the vortex [30].With this
distinction inmind, equation (12) can be solved, giving

‐ ( ) =S mv in core, 13v

‐ ( ) =S 0 out core. 14v

The result in equation (13) follows straightforwardly from equation (12). In equation (14)wehave chosen the
boundary conditions such that themass current is zero at infinity. In order to take advantage of these results, we
need to identify in equation (7) the terms referring to the different regions of the vortex. To do so, we split terms
of the type ( )r f S (with (·)f a generic function) into ( ) ( ) ( )r r r-  + f S f SB B , with rB the bulk density of
the condensate. Thefirst term is different from zerowithin a distance from the core of the order of the healing
length of the condensate, defined as x r= m g2 B , and so refers to the in-core region, while the second one is
relative to the out-core region. Substituting the expression for Sv in the different terms, and noticing that

·¶ = -S S vt , we obtain
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Integrating the expression in equation (15)we get the effective Lagrangian describing themotion of the vortex
core, given by

· ( )ò= = + -L
M

v Ur A vd
2

, 16v
2 v 2

v v

wherewe defined the effective vortexmassMv and the effective vector and scalar potentialsAv andUv as

( ) ( )ò r r= -M m rd , 17v
2

0 B

( )ò r=A mr ud , 18v
2

B 0

· ( )ò r= -U U r A ud . 19v 0
2

0 0

TheU0 accounts for the remaining terms that do not give any contribution to the vortex dynamics, since their
values do not depend on the position of the core r0. The vortexmassMv takes a negative value, and accounts for
themissingmass in the condensate due to the presence of the vortex. It diverges logarithmically with the size of
the system , and takes the form ( )z x=M m Lv core , where p r x= -m m 2core B

2 and ( )z xL

( )ò r r= ´ -
x

x x4 1 d
L

0 B is the integral in the dimensionless radial length x=x r . For typical atomic

clouds xL and ( )z xL can take valuesmuch larger than one, and increases with the size of the system. For large
clouds then, themass of the vortex can attain a value significantly larger than the coremass.
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4. Vortexmotion

The Lagrangian in equation (15) describes the core as a point particle of (negative)massMv and positive unit
charge, which feels the action of an effective vector potentialAv, and a scalar potentialUv.We therefore expect
there to be two forces at play: a Lorentz-type force = ´F v BM v, with =  ´B Av 0 v the effectivemagnetic
field felt by the core, having defined  º rd d0 0, and an electric-type one due to the effect of the scalar potential,
and given by = -F UI 0 v . In order to determine them explicitly, we start by calculating the effectivemagnetic
field
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fromwhichwe obtain
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F
m
v B

v. 21
M v

B

This force is orthogonal to the velocity of the core and physically represent aMagnus effect, as it originates from
the relativemotion between an object carrying a net vorticity and the condensate bulk. The electric-type force
takes instead the form

( )

∮

·

ˆ ( ) ( )
∣ ∣

·

( )
( )



ò
ò

k

k

k

r

r

r
p

r

r
r

=- 

= 

=  ´  ´

= ´ -
´ -

-

=  ´

= 
-

W
´

⎡
⎣⎢

⎤
⎦⎥



F U

g g

r A u

a r u

a e r r
r r

r r
s

a

p

d

d

2
d

8
, 22

z

I 0 v

0
2

0 0

1 0
2 2

0

1
2

0
0

0
2

B
2

1

B 11 22
B

where =p k is themomentum carried by the laser beam.
The expression in equation (22) has the same form as the Iordanskii transverse force acting on a vortex in a

superfluid due to the interaction between the velocity field and a phonon excitationwithmomentum p (see
appendix B) and effective particle density ( ) r=n p B

3D, with r r= ZB
3D

B the number of particle per unit

volume, ( ) r= - W <g g 8 1B 11
3D

22
3D the perturbative parameter, playing the role of the particle distribution

atmomentum p, where =g g Z
ij ij
3D is the three-dimensionalmeanfield coupling constant. There is a significant

flexibility in order to emulate this type of transverse forces, because the scattering length difference -a a11 22 the
Rabi frequencyΩ and to some extent the density of the cloud, can be relatively easily changed in an experiment.
Themagnitude of thewave vector of the laser beam, in analogue to thewave vector of the phonon excitation, is
limited by the energy splitting between the two internal states of the atoms constituting the condensate.

With the forces given in equations (21) and (22), the equation ofmotion for the vortex core takes the form

( )kr
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t
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t m

r r
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d
. 23v

2
0
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1

For an initially stationary vortex at =r 0, the coordinates of the vortex core r0 and
^r0 , parallel and orthogonal

to thewave vector k of the laser beam respectively, then becomes

[ ( ) ] ( )w w= - d t tr sin , 240

[ ( ) ] ( )w= -^ d tr cos 1 , 250

where ∣ ∣∣ ∣ p= d M ma 2v 1 and ∣ ∣w p r= M2 B v . Equations (24) and (25)describe a periodicmotion for the
vortex core, which undergoes a series of curved trajectories ofmaximumheight d and separated by pd2 , as
shown infigure 2.
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In terms of the healing length, the characteristic length d of themotion, takes the value

( ) ∣ ∣ ( )
x

x
z

=
d L

k
4

. 26

For typical values of these parameters in atomic cloudswith x m= 0.1 m, –x =L 10 100,
∣ ∣l p= =k2 600 nm, and considering a value for the perturbative parameter  ~ 0.01, the ratio between d

and the healing length ξ can take values which are significantly larger than one. The characteristicmotion of the
vortex should therefore be detectable in experiments.

In order to validate the analytical results, we solved numerically theGross–Pitaevskii equation (A14), with A
andW given in equations (5) and (6).We considered a cloud in a square geometry, with periodic boundary
conditions in x-direction and confined by a hard-wall potential in the y-direction, giving a homogeneous density
which approximates the infinite homogeneous cloud assumed in the analytical description developed above.We
determined the initial state of the systemby solving equation (A14) in the imaginary timewithout the current
non-linearity, which leads to the situation represented infigure 3, where two vortices with opposite flow
circulation appear in order tomatch the periodic boundary conditions. Starting from this configurationwe
compared the numerical simulationwith themotion predicted by equations (24) and (25).

Infigures 4 and 5we show the dynamics of the vortex core expressed in dimensionless units with
 =a L 0.031 s

2 and  =gm L2 1.02
s , where Ls is a characteristic length scale, energy is in units of  mL22

s
2 and

time in units of mL2 s
2 . These parameters can be related to physical values by for instance choosing the atomic

mass of Ytterbium, the length m=L 1 ms , the combinations of the scattering lengths - =a a 65 nm11 22 and
( )+ + =a a a2 4 8 nm11 22 12 , the Rabi frequency W = 60 kHz, thewave length for the incident laser beam to
be l = 628 nm, and the density of the cloud ´ -3 10 cm14 3 where an effective thickness of the cloudwas
assumed to be m0.2 m. Figure 4 shows the numerical simulation for themotion of the vortex core, compared
with the analytical solution. The parameters involved in equations (24) and (25), i.e. the bulk density rB of the
cloud and the effective vortexmassMv, have been estimated directly from the initial state of the system. The
latter in particular takes a value that is in agreementwith the one given by equation (17), obtained using the
variational ansatz r r = +x x2B

2 [31, 32] for the density profile of the vortex (with x=x r the
dimensionless coordinate), and the ratio x »L 32, where L is the size of the cloud. Accordingly, the value

( )z x »L 13 has been obtained for the parameter defined in section 3, which defines the effectivemass of the
vortex in terms of the coremass mcore.

5. Conclusions

In this paper we have calculated the forces acting on a vortexwhich is subject to a density dependent gauge
potential.We identified a standardMagnus force, but also a novel force which stems from the current
nonlinearity and gives rise to a transversal force componentwhich is of the same form as the Iordanskii force.

The numerical solution reproduces qualitatively themotion predicted by the variational calculation,
showing trajectories for the vortex core similar to the one represented infigure 2.We do not however expect a
perfectmatch between the two approaches for a number of reasons. Themain approximation in the analytical
model is the assumption that the density and phase profiles around the vortex core remain symmetric, and that

Figure 2.Motion of the vortex core given by equations (24) and (25) for the+ component of the condensate.
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Figure 3.Density (a) and phase (b) profiles of the condensate wave function at t=0, used as initial condition for the numerical
simulation of theGross–Pitaevskii equation (A14), given by the potentials in equations (5) and (6). Dimensionless units are used.

Figure 4.Comparison between the analytical (solid black line) and the numerical solution (red and blue curves) for the vortex core
motion after =t 2.5 in units of mL2 s

2 . The blue curve corresponds to the second vortex infigure 3, but plotted as a function of- ^r0

in order to compare the paths.We see from the numerical curves that themotion of the vortex cores are in opposite direction for ^r0 as
suggested by equations (24) and (25). The inset shows the path of the vortex core in the limit of w pt 2 where the vortexmass has
been rescaled as M M0.3v v (blue line), in order to capture effects such as an asymmetric vortex core and phonon emissionwhich
will affect the overall dynamics as seen in the numerical solution indicated by the red filled circles.
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itsmotion is adiabatic in the sense that there are no phonons or density waves induced in the condensate. In
reality the vortex corewill be distorted by the presence of the current nonlinearity due to an effective local
scattering length being different on either side of the vortex core (see figure 5). The stronger the nonlinearity is
themore distorted the vortex becomes. This will change the value of the effective vortexmass, which
consequently affects both the time scale and the length scale in the dynamics.

The ansatz used for the analytical results is the simplest possible onewhich is still able to capture themain
features of the dynamics, given by the direction of the forces acting on the vortex and the overall trend of the
motionwhich is the cyclic behaviour. A bettermatch between the analytical result and the numerical simulation
can in principle be attained in the limit of veryweak current nonlinearity. However, in such a limit, the time scale
for the dynamics in question becomes longer, and the amplitude of the cyclicmotion of the vortex core decreases
as seen from equations (24) and (25). Alternatively one can look at the dynamics for short time scales ( )w pt 2
and rescale the vortexmass such that the analytical path coincides with the numerical vortex path. This would
effectivelymean replacing the bare vortexmass from the variational ansatz, with a rescaledmass which captures
the effects of phonon creation and of the asymmetry of the vortex core. The inset infigure 4 shows one example
of this where the vortexmass is rescaled such that M M0.3v v.

The dynamics presented here indicate that even if the syntheticmagnetic field is zero a vortexwill still
experience a force due to theGalilean invariance not being fulfilled.We chose a particular laser configuration
where the laser beamwas incident in the 2Dplane of the cloud.Other configurations are possible, in particular a
symmetric situationwhere the synthetic gauge potential corresponds to a uniformmagneticfield. Such a
scenario, with a sufficiently strong syntheticmagnetic field, will give rise to a vortex lattice. This lattice will be
influenced by the current nonlinearity, and is likely to deviate from the standard triangular Abrikosov lattice
seen in standard superfluids. It is still an open questionwhat the resulting vortex lattice will be in the presence of
current nonlinearities, andwhat role it plays if the quantumHall regime is reached.
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AppendixA.Origin of the density dependent gauge potential

Weconsider a BECof two-level atoms, wherewemodel the collisional interactions by a zero-range pseudo
potential.We assume the two internal levels are coupled by an external laser so that, in the rotatingwave
approximation, themicroscopicN-bodyHamiltonian describing the dynamics of the system, is given by [1]

Figure 5.Density distribution of the cloud after =t 2.5 in units of mL2 s
2 . Deformations in the density are evident comparedwith

the ideally symmetric ansatz used in the analyticalmodel. As an effect of the current nonlinearity, themeanfield coupling constant
takes a different effective value on opposite sides of the vortex core, leading to an asymmetry in the density.
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Thefirst term in equation (A1) is the sumof the non-interactingHamiltonians, inwhich the identity operators

ℓ⧹ { } ¼n, , act on the subspace excluding the particles ℓ ¼n, , . The coupling between the two internal levels ∣ ñ1
and ∣ ñ2 is given by
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whereΩ is the Rabi frequency characterising the strength of the light–matter coupling, ( )f r is the laser phase at
the atomicʼs position r, andwe set the laser detuning from the atomic resonance to zero for simplicity. The
second term in equation (A1) represents the pairwise interaction between the particles that, in the above
assumptions, has the diagonal form [ ] ( )ℓ ℓn d= -g g g g r rdiag , , ,n n, 11 12 12 22 , with the coupling constants given
by p=g a m4ij ij

2 andwhere aij are the scattering lengths relative to the three different collision channels.

We consider the limit of weakly interacting atoms, r a 1i ij
3 (with =i j, 1, 2), andwemake a variational

ansatz bywriting themany-bodywavefunction ( )Y ¼r r r, , N1 2 of the system as the symmetrised product of the
single particle spinorwave function ( )f r , satisfying the normalisation condition †ò f f =rd 13 , so that

( ) ( )fY ¼ =  =r r r r, , N i
N

1 2 1 1 .We introduce then the Lagrangian of the system

( )[ ( ) ] ( )† ò Y Y= ¶ -
=

L r Hd i . A3
i

N

i t
1

3

Upon substitution of the expression given above for themany-bodywave function into equation (A3), we obtain
the Lagrangian in terms of the condensate wave function ( ) ( )y f= Nr r

[ ( ) ] ( )† ò y y= ¶ -L r Hd i , A4tMF
3

MF

wherewe defined the single particlemeanfieldHamiltonianHMF as:
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U U V
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A5af aaMF

2

inwhich  is the 2×2 identity operator acting in the space of the atomic internal degrees of freedom. In
equation (A5)Uaa describes themean field collisional effects, and is given by
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n

= ⎜ ⎟⎛
⎝

⎞
⎠U

1

2

0
0
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with

( )n r r= +g g , A71 11 1 12 2

( )n r r= +g g A82 12 1 22 2

andwhere ∣ ∣r y=i i
2 is the density of atoms in level ∣ ñi , =i 1, 2.

Sincewe areworking in theweakly interacting limit, the coupling energy W between the internal states is
typicallymuch larger than the collisionalmeanfield shifts. This allows us to treat themeanfield interaction as a
small perturbation to the atom-field coupling. To the order ( ) r Wgij ij , its eigenstates are given by

∣ ∣ ∣ ( )( ) ( )


c c

n n
cñ = ñ 

-
W

ñ   , A90 1 2 0

where ∣ (∣ ∣ )( )c ñ = ñ  ñf
 1 e 2 20 i are the so called dressed states. The interacting dressed states in

equation (A9), represent a basis for the internalHilbert space of the atoms, so that the condensate wave function
∣ ( )y ñtr, can bewritten as ∣ ( ) ( )∣{ }y y cñ = å ñ= + -t tr r, ,i i i, .

In order to capture the dynamics of the±component of the condensate we use the adiabatic assumption,
according towhich ( )y º tr, 0 (which is valid as long as the detuning induced by the collisional effect is small
compared to W), andwe consider the projection of themeanfield Lagrangian in equation (A4) onto the
subspace spanned by the corresponding (∣ )c ñ dressed state.We obtain then themeanfield Lagrangian for the
relevant condensate component of the form

[ ( ) ] ( )† ò y y= ¶ -   L r Hd i , A10t
3

where
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-
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is theHamiltonian describing the dynamics of the±component of the condensate, with
( )= + +g g g g2 411 22 12 , while ∣ ∣c c= -á ñ  A p and ∣ ∣ ∣ ∣c c= á ñ+ -W mp 22 are respectively the scalar

and vector potential arising from the adiabatic projection of the full systemonto one of the subspaces spanned by
the dressed states.

Substituting equation (A9) in the expression given above for the potentials, together with
( )n r= + g g 21 11 12 , ( )n r= + g g 22 22 12 , obtained from equations (A7) and (A8) in the adiabatic assumption

( )y º 0 , the synthetic potentials are given, to the leading order, by

( ) ( )( ) r=  A A a r , A120
1

∣ ∣ ( )
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W
m

A

2
. A13

0 2

Here ( )  f= - A 0
2

is the single particle component of the vector potential, and the vector field
( )f=  - Wg ga 81 11 22 controls the strength of the first order nonlinear, density dependent contribution.

Byminimising the action ò= S rd3 with respect to *y, with the Lagrangian density defined as

( ) ( )* * y y y y= ¶ -     H, i t , we get aGross–Pitaevskii equation for the condensate wave function, of the
form
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inwhich a current nonlinearity appears
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Appendix B. Transverse forces

Herewe give amore detailed description ofMagnus forces in quantumfluids, outlining the basic steps needed to
derive the analytic expression for the Iordanskii (or Lifshsitz and Pitaevskii) force. To this aimwe consider a
BEC, andwe study the phonon scattering by a vortex in the hydrodynamic picture.We follow thework by
Sonin [23].

The starting point is theGross–Pitaevskii equation.Written in the hydrodynamic picture it reduces to the
equations for themass density ∣ ∣r y= m 2 and the velocityfield ( )k p f= v 2 , wherewe defined the
condensate wave function as ( )y f= f exp i :

· ( ) ( )r
r

¶
¶

+  =
t

v 0, B1

( · ) ( )m
¶
¶

+  = -
t

v
v v . B2

In the equations above,μ is the chemical potential, and k = h m the quantumof circulation (withm themass
of the atomic species).We suppose that a perturbation in the phase, of the formof a planewave

( · )f f w= - tk rexp i i0 propagates through the condensate in the xy plane,making the density and the
velocityfield varying in time and space.We label with r0, v0 their unperturbed values, andwith r1,

( )k p f= v 21 their periodical variations due to the soundwave, so that

( ) ( ) ( )r r r= +t tr r, , , B30 1

( ) ( ) ( )= +t tv r v v r, , . B40 1

Furthermore, we suppose that a vortex line along the z-direction is present in the condensate, generating the
velocityfield ( ) k pº = ´ rv v r r 20 v

2, andmoving in the xy planewith the constant velocity ( )= tv v 0,L 1 ,
according to theHelmholtz theorem, since no external forces act on thefluid.With these assumptions, the
linearised hydrodynamical equations read

· · ( )
r

r r
¶
¶

+  = - 
t

v v , B51
0 1 v 1

[ · ( )] [ · ( )] ( )
r

r
¶
¶

+  =  - 
t

cv
v v r v v 0 , B61

2

0
1 v 1 v 1

where the relation ( · )¶ ¶ = - tv v vv L v , and the vector identity ( · ) ( ) ( ) =  - ´  ´vv v v v22 have
been used. From equation (B6)we obtain the expression for the density
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that, substituted into equation (B5), gives the equation for the phonon-induced phase
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In the limit x l k~ k c 1, where l p= k2 is thewavelength of the excitation, c is the sound speed, and
x k~ c is the vortex core radius, one can treat the right-hand side of equation (B8) as a small perturbation.
Arresting the resulting Born series to thefirst order with respect to the perturbation parameter kk c , the phase is

{ }( ) ( · ) ( ∣ ∣) · ( )[ ( · ) ] ( )( )òf f w= - + ¢ - ¢ ¢ ¢ -t
k

c
H kk r r r r k v r k rexp i exp i

i

4
d 2 exp i 1 , B90 0

1
v

where ( )H0
1 is the zeroth orderHankel function of thefirst kind, and ( ∣ ∣)( ) - ¢H k r ri 4 0

1 is theGreen function of
the two-dimensional wave equation: ( ) ( ) ( )f d+  = - - ¢k r r r2 2

2 . As pointed out in [23], the standard
scattering theory fails when applied to equation (B9), since it leads to a singularity in the scattering amplitude, for
small values of the scattering anglej between the incident wave vector k and thewave vector after scattering.
This procedure would consist in looking at the scatteredwave at a large distance from the scattering potential,
which is assumed to be confined in afinite region, and taking advantage of the asymptotic formof theHankel
function for large values of its argument. This assumption is not true in our case, because of the long range
character of the vortex velocity field, which slowly decays as r1 . An exact calculation of the integral in
equation (B9) is given in [22], and results forj  1 in an expression for the phase

( ) ( ) ( )f f w
k

j= - + F
⎡
⎣⎢

⎤
⎦⎥t

k

c
krexp i 1

i

2
2i , B100

where ( )F z is the error function. The forces acting on the vortex can be obtained by calculating themomentum
flux through a cylindrical boundary enclosing the vortex line. Sincewe are looking for the effect due to the
phononwave, we just consider here the relative contribution to themomentum-tensor of the fluid, which is
given by

( )d r r rP = á ñ + á ñ + á ñ + á ñP v v v v v v . B11ij ij i j j i i j
ph

2 1 1 0 1 1 0 0 1 1

In equation (B11),P2 is the second order termof the pressure with respect to thewave amplitude, wherewe
indicatedwith á ñ... average values of the fluctuating quantities. The net force is then given by the flux ò PSd j j,
with Sd j the components of the outward vector normal to the circular boundary, whosemagnitude is equal to
the elementary area. It can be shown that only the small angle region (labelled the ‘interference’ region in [23])
contributes to themomentum flow. The transverse dimension of such a region is ~d r k0 , where r0 is the
radius of the boundary at which themomentumbalance is evaluated, and corresponds to angles of the order
j ~ =d r kr10 0 . In this region, the component of the velocity normal to the incident wave vector k is equal
to ( )( )k p f j= ¶ ¶^v r21 (withf given in equation (B10)), which results in the transverse force

( ) ( )kj p , B12ph

where ( ) ( )r= á ñ =j np v p pph
1 1 is the averagemass current in the reference frame co-movingwith the vortex,

and ( ) r f k p=n p cp 80 0
2 2 is the effective number of phononswithmomentum p. In thermal equilibrium at

>T 0, the number of phonons is given by the Planck distribution ( ) [ ( ( ) ) ]= - -n k Tp pexp 1p B
1 , where

( ) p is the energy of the quasi-particles in the reference framemovingwith their drift velocity vn. The total force
is then given by integrating the expression given above for a single phononwave, over all the contributions from
the othermodes ( )ò np p pd p . This gives the expression of the Iordanskii force in terms of the thermal density
rn:

( ) ( )kr - ´v v . B13n nL
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