UNIVERSITA DEGLI STUDI DI UDINE
Facolta di Scienze
Matematiche Fisiche e Naturali

Tesi di Laurea in Scienze dell’Informazione

Automatic Classification of the
Hadronic Decays

of the Z° Boson

Laureando: Relatore:
Gabriele Cosmo Dott. A. De Angelis
Correlatore:

Dott. Paula Eerola

Anno Accademico 1990-1991

UNIVERSITA' DEGLI STUDI

MY TIMINT
171 ULlJ1INL

Gabriele Cosmo

AUTOMATIC CLASSIFICATION
OF THE HADRONIC DECAYS
OF THE Z° BOSON

Tesi di Laurea in Scienze dell'Informazione

ANNO ACCADEMICO 1990-1991

Preface

Neural Network models, inspired from biological data processing, repre-
sent a fundamentally new approach to information processing, and offer
an alternative to “Programmed Computing”. Several features have made
them an object of growing interest for applications in the area of pattern
recognition and classification: their capabilities to generalize from exam-
ples and their versatile adaptation to a wide range of different problems
and tasks. Neural Networks are therefore interesting tools for High Energy
Physics, where classification of events according to their physical origin is
an essential task. : ‘

In this thesis work I have faced the problem to realise a Neural Network
classifier which could separate the hadronic decays of the Z° boson into four
quark classes, b, c, s and (u or d). The lack of experimental information
of the decay probabilities of the Z° into each quark flavour is mainly due
to the difficulty of separating events in which the Z° decays into a pair of
light quarks s, u or d. Results obtained with four independent feed-forward
networks are the first measurement of all the partial hadronic widths of the
Z° [41].

I have studied the possibility to improve the event classification by using
two different network structures. The first one is a single feed-forward
network with four output nodes [42], whereas the second classifier is a

hybrid architecture based on a self-organized feature map, with a supervised
learning stage for interpreting the distribution maps. Comparisons between
the two networks indicate that the feed-forward network is more efficient,
but the advantages of the hybrid network are faster training and topological
visualisation of the feature classes.

In the first chapter some of the basic concepts of modern Particle Physics
are discussed briefly. Chapter 2 gives an overview on Neural Computing and
in chapter 3 topology and characteristics of feed-forward, self-organized and
filter Neural Networks are discussed, including an introduction to the appli-
cation of mapping networks to classification problems. Chapter 4 is focused
to the main problem, the classification of events originating from decays of
the Z° boson. The solutions proposed are discussed and compared. Finally,
in chapter 5 the two software packages developed are briefly presented and
explained. :

il

e i e,

Acknowledgements

I would like to state my appreciation to the staff of the Institute of Physics
for the important support provided me during the drafi of my thesis, and to
INFN for the necessary support for travelling to CERN.

I wish to express my gratitude to Dr. Cinzia Bortolotto for her valued
advice in the beginning of my work, and to Jussi Kalkkinen for the long
period spent last summer working hard together in front of the VAX-Station
consolle.

Special thanks to Dr. Lorenzo Santi for the useful suggestions in using
PAW Graphic and WTgX typesetting Environments. ,

Thanks are also due to Chiara Vignaduzzo, Mariano De Nardi, Paolo
Garlatti-Costa, Gianluigi Girotto, Andrea Linussio and all the other last-
year undergraduates of the Institute of Physics for their collaboration.

Last but not the least, I am lovingly thankful to my mother and my
father for all the possibilities they gave me and for their understanding and
patience during the completion of my studies.

G.C.

il

Contents

Preface i
Acknowledgements iii
1 Particle Physics 1
1.1 What we know about the Constituents of Matter 1
1.1.1 Particle Interactions 2

1.2 Large Electron-Positron Storage Ring 5
1.3 Statistical Measurements. 8
1.3.1 The Hadronic Decaysof the Z° 9

2 Neural Computing 12
2.1 Introduction. e e e e e e e e e e e e e 12
2.2 The Relationship between Neural Computing and Neuroscience 13
23 BriefHistory v i ittt enenen 14
2.4 Neural Networks: Concepts and Definitions 16
2.4.1 The McCulloch-Pitts Neuron 18

2.4.2 The Biological Neuron 20

2.5 Parallel Processing 21

3 Mapping Networks 22
3.1 Introduction. enunenenenene.. 22
3.2 The Supervised Feed-Forward Neural Network 23
3.2.1 The Simple Perceptron. 24

3.2.2 The Multilayer Perceptron. 27

3.2.3 The Back-Propagation Learning Algorithm 29

3.2.4 The Learning Parameter and the Momentum Term . 31

v

5

325 Local Minima ¢ v v v
3.2.6 The Network Architecture
3.2.7 Examples and Applications
3.3 The Unsupervised Competitive-Learning Neural Network
3.3.1 Simple Competitive Learning
3.3.2 FeatureMapping
3.3.3 The Kohonen Layer
3.3.4 Probability Density Function Estimation.
3.3.5 Applications of Competitive-Learning
3.4 The Filter-Learning Neural Network
3.4.1 The Flywheel Equation
3.4.2 The Grossberg LearningLaw
3.5 Statistical Pattern Recognition
Event Classification in Hadronic Decays of the Z°
41 Introduction.o
4.2 Separation of Quark Flavours
4.3 Simulationof Events
4.4 Choice of the Discriminating Variables
4.5 Measurement of the Performance of the Networks
4.6 The Back-Propagation Neural Network Solution
4.6.1 The Neural Network Architecture.
4.6.2 The Training Phase
4.6.3 Testing PhaseandResults
4.6.4 Use of Multivariate Discriminant Analysis
4.7 The Counter-Propagation Neural Network Solution
4.7.1 The Neural Network Architecture.
4.7.2 The Network Training oo oo
4.7.3 Use of the Network and Results
Implementation
51 Introduction.
5.2 BPNETRIG Implementation e e e e e e e
52.1 CommonBlocks
52.2 I/OMANAGER Module
52.3 NET.TOOLSModule
52.4 NET.TRAINModule

525 NET.TESTModule 101

5.3 CPNETRIG Implementation 102
5.3.1 Common Blocks e e e e e 102

532 I/OMANAGERModule 104

533 NET.TOOLSModule 104

534 NET.TRAIN Module oL 105

53.5 NET.TESTModule 106
Conclusions 107
List of Tables | 109
List of Figures 110
Bibliography 111

goao

vi

Chapter 1

Particle Physics

The study of the tiny constituent particles of matter and the forces acting
between them is one of the main frontiers of physics research, the other
being the investigation of the immense regions of outer space to try to
understand the structure of the Universe. Although these two areas of re-
search, one dealing with the very small and the other with the very large,
are at first glance very different, the understanding of the elementary struc-
ture of particles also helps to shed light on the problems of astrophysics and
the puzzle of the origin of the Universe. In this chapter, some of the basic
concepts of modern particle physics will be introduced. See e.g. [1] for a
more detailed discussion.

1.1 What we know about the Constituents
of Matter

In the beginning of this century, experimental investigations of matter re-
vealed that it is composed of atoms consisting of a small nucleus containing
protons and neutrons, and electrons orbiting round the nucleus. In the
past twenty years it has become clear that Nature has a still deeper layer
of constituents. Protons and neutrons are not elementary particles, but are
themselves built up of smaller entities, which have been given the name
Quarks.

Our everyday world can now be explained in terms of two basic types of

matter particles: Quarks and Leptons, while a third class of particles, the
Bosons, are responsible for transmitting forces between quarks and leptons.

Leptons are particles (like the electron and the neutrino) which do not
feel the strong force and do not seem to have any size.

Hadrons are particles (like the proton, neutron, pion and kaon) which
feel all the forces and have a measurable size. There are hundreds of them,
but they are composed of quarks, so they can be grouped into families with
related properties.

Quarks have never been observed in isolation, and therefore they are
believed to exist only inside hadrons. Combinations of three quarks give
hadrons (like the proton) known as Baryons. Combinations of a quark and
an antiquark gives hadrons (like the pion) known as Mesons. The short
history of elementary particle physics in the 20?* century has been guided
by experimental discoveries and has shown that quarks and leptons can
themselves be related in three families of four Fermions generations(see
Table 1.1). All the components of matter can be explained in terms of just
one such family, containing the up and down quarks, the electron and the
electron-type neutrino. At higher energies, which can be created artificially
using particle accelerators or which can occur through some phenomena
in outer space, two further quartets of quarks and leptons come into play.
These quartets seem to be heavier copies of the first family. Some of these
particles (the top quark and the fau-type neutrino) have not yet been di-
rectly observed, but are nevertheless thought to exist.

1.1.1 Particle Interactions

Particle interactions are considered to be caused by four different types of
force (see Table 1.2):

- o The Strong (or Nuclear) force is the most powerful of all. The ex-
change particle or mediator is the Gluon. Gluons are massless gauge
particles and were observed for the first time in 1979 at ete™ col-
lider PETRA at DESY in Hamburg. The strong force acts between
particles carrying a quantum number called colour, which is analo-
gous to the electric charge in electromagnetic interactions. Quarks
are coloured particles, as well as gluons which carry a superposition
of two colours. Colour, which in theory comes in three varieties, is

3
14
H
i
H
§

L

GAUGE BOSONS

(0 %9

[Q [VN | I |) 01f el 30.8)

Table 1.1: Quarks, Leptons and Bosons.

Interaction Relative strenqths Ezchange Particles | Manifestations
at low energies
Strong force 1 Gluons (g) Nucleus
Electromagnetic force 10-3 Photons (7) Atom
' Weak force 10-° wW=,Z7° Radioactive decay
Gravitation 10738 Gravitons (?) (G) | Planetary systems

Table 1.2: The Forces in Nature.

not observed in hadrons, since they are colour neutral. The residual
strong force within protons and neutrons binds nuclei together.

The Electromagnetic force acts between particles which carry elec-
tric charge. For example, it holds the cloud of negatively charged
electrons around the positively charged protons in the nucleus, bind-
ing the atom together. The electric charge is the source of the elec-
tromagnetic field, while the quantum exchange particle or mediator
is the Photon. Photons are massless particles with integral Spin in
units of A. According to their energy they can manifest themselves
as radiowaves, visible light, X-rays and so on.

The Weak force acts in the breakup or decay of particles. It is
responsible for the radioactivity of a nucleus which emits an electron
when a neutron breaks up. The weak force is over 10° times weaker
than the strong force at low energies. W* and Z° bosons are the
mediators of this kind of interaction. Discovered at CERN in 1983,
two of them are electrically charged types (W+ and W~), and one is
a neutral type, the Z°. Weak interactions, in which electric charge is
exchanged, are mediated by the weak intermediate bosons W*. The
neutral Z° boson can also act between electrically neutral particles
like neutrinos.

The Gravitational force acts between all particles. It pulls matter
together and is the binding force of the Solar System. The Graviton is
postulated to be the mediator of this interaction but so far it has not
been observed. An adequate theory of quantum gravity has not been
formulated yet. Between individual particles, however, gravitational
force is extremely feeble, so it can usually be ignored.

The quantum theory of the strong interaction is known as Quantum Chro-
moDynamics (QCD) and describes the forces between quarks. Electro-
magnetic interaction is fully described by relativistic Quantum ElectroDy-
namics (QED) which has been extensively tested and is in agreement with
all experimental data. The electromagnetic and weak interactions can be
incorporated within a single model, the Standard Model of electroweak in-
teractions [3,4,5]. It is called a model (rather than a theory) because parts
of it remain purely empirical. The description of W* and Z° bosons has
been one of the great successes of the Standard Model.

4

1.2 Large Electron-Positron Storage Ring

Progress in the experimental analysis of the structure of matter has been
a consequence of higher and higher energies available at accelerators and
storage rings. LEP (Large Electron-Positron collider) at CERN (Centre
Européen pour les Recherches Nucleaires) is a large underground ring ac-
celerator with a circumference of about 28 kms. Electron and positron
beams are injected into LEP with an energy of 20 GeV. The beams consist
~of four bunches each, equally spaced around the ring. After accumulation,
the beams are accelerated to energies of about 45.5 GeV by means of 128
copper RF-cavities, which also compensate the energy losses of the beam
due to synchrotron radiation when running at the collision energy. As the
beams circulate in opposite directions the electron and positron bunches
meet at eight positions around the ring. In four of these collision points
detection systems are installed — the detectors are called ALEPH, DEL-
PHI, L3 and OPAL (see Fig. 1.1). Around the collision points the circular
form of the ring is interrupted and straight sections are introduced. At the
centre of the straight sections, the particle bunches are focused by magnetic
fields to achieve maximum number of collisions per second.

During a collision, a particle and its antiparticle can annihilate each
other, producing a packet of energy which materialises into new particles.
Outgoing particles are detected in the detection systems surrounding each
collision point, except for cones of typically 10 degrees around the beam
line.

The detectors [9] are built in layers (see Fig. 1.2). The inner layers
take multiple samples along the tracks of charged outgoing particles, mea-
suring their momentum by the track curvature in the magnetic field, and
identifying some particle types by their rate of ionization or by Cherenkov
radiation. The outer layers consist of calorimeters — massive absorbers
in which primary particles interact and deposit their energy in showers of
secondary particles. Electrons and high-energy photons (y-rays) leave all
of their energy in the fine-grained first layers of the calorimeters, whereas
protons, neutrons and mesons deposit their energy in deeper layers. High-
energy muons penetrate through all of the calorimeters and are recognized
by their tracks in the outer parts of the experiment. Tau-leptons decay
very characteristically into small numbers of charged particles. Neutrinos
have a negligible probability to interact.

¢ Linear Accelerator (600 MeV)

Accumulator (600 MeV) (Proton Synchrotron (3.5 GeV)

A
DELPH L3

N 7
g Super Proton Synchrotron (20 GeV) %

\L T LEP (50 Gev per beam) \L T

Focusing Magnets Electrostatic Separator

/ Bending Magnets
- Radiofrequency Cavity

Electrons (e7)

Figure 1.1: LEP Storage Ring from a top view. The particle bunches meet
at eight positions. Collisions take place inside the four detectors, while in
the other four positions, collisions are prevented by electrostatic separators.

Figure 1.2: Perspective view of the DELPHI detector.

1=micro-vertez detector, 2=inner detector, J=time projection cham-
ber (TPC), 4=barrel ring imaging Cherenkov Counter (RICH), 5=outer
detector, 6=high density projection chamber (HPC), 7=superconducting
solenoid, 8=time-of-flight counters (TOF), 9=hadron calorimeter, 10=bar-
rel muon chamber, 11=forward chamber A, 12=small angle tagger (SAT),
13=forward RICH, 1{=forward chamber B, 15=forward electromagnetic
calorimeter, 16=forward muon chambers, 17=forward scintillator odoscope.

1.3 Statistical Measurements

The Standard Model has been a great success with its predictions on the
weak interaction, but on the other hand it contains a number of flaws: it
does not make any prediction on the number of quark and lepton families,
and neither is there an explanation for relations between the masses and the
charges between quarks and leptons. These mysteries have led some theo-
rists to propose the existence of a fourth class of quarks and leptons. This
new family would change the flavour-mixing matrix by allowing a higher
number of quark-to-quark transitions and introducing new free parameters
to generate the violation of parity and charge (CP violation).

If the family structure is correct, then any bounds for the number of
neutrinos hold for the number of quark and lepton generations, too. From
a cosmological point of view, the number of light neutrino species has a
profound effect on the light isotope generation in the primordial nucleosyn-
thesis process. The expansion speed of the Universe depends on the number
of the existing particle types. Studies in this field show that the number of
neutrino species is limited by four or five at most [6].

The Z° boson can decay into all neutrino species lighter than half of its
mass. The decay speed depends on the number of possible decay channels
— the lifetime of the Z° decreases with increasing number of decay channels.
By measuring the mean lifetime of the Z° boson, it is possible to find out
the number of light neutrino families existing in Nature. The four LEP
experiments have measured the resonance width of the Z° , which is the
inverse of the lifetime. The results are consistent with the existence of only
three types of light-neutrinos [7], and definitively exclude the existence of a
fourth neutrino with a mass less than ~10 GeV, which is the required quan-
tity to provide the “missing mass” from the critical mass of the Universe,
which is needed to eventually stop the expansion of space.

Important topics of research at CERN are the searches of two particles
predicted by the Standard Model: the top quark and the Higgs-boson. If
these particles will not be found using the energies that LEP is now able to
produce, it might be that their masses are simply h1gher than what can be
kinematically explored with this accelerator. The precision measurements
of the free parameters of the Standard Model, however, can be used to
constrain the allowed range for the mass of the top quark. The partial
decay width of the Z° into b quarks is particularly sensitive to the top

i
i
¥
§
S

quark mass. In addition, by measuring the quantum numbers of the b
quark one can demonstrate, that this quark is a member of the third quark
doublet and that the family needs to be completed by another particle,
which is the missing top quark.

1.3.1 The Hadronic Decays of the Zol

When an eleciron and a positron coilide at high energies they may rebound

‘unchanged (elastic scattering) or they may annihilate. If they annihilate

they can form a short-lived intermediate particle, either a photon or a
Z° boson. At LEP, the collision energy (about 91 GeV) is optimized to
produce predominantly Z° bosons in the annihilation. The four experiments
have already detected over =~ 10° Z° events produced at LEP between 1989
and 1991.

The Z° has a mean lifetime of about 10~25 s, after which it decays into a
pair of leptons or quarks. Interactions can be described in terms of Feyman
diagrams. In Fig. 1.3 the four main visible decay channels of the Z° are
presented. They are:

1. Electron-Positron (e~e*)
2. Muon-Antimuon (p*u™)
3. Tau-Antitau (v+77)

4. Quark-Antiquark (¢g)

The produced quark and the antiquark are moving to opposite directions
due to energy and momentum conservation. The strong colour force is
linking the two quarks, and finally the potential energy of the colour field
becomes so large that one or more ¢ pairs are created, “fragmenting” the
original pair into jets of hadrons. All the available energy is shared among
the final state particles, typically ~~30. The hadron jets originating from
quarks are moving in the direction of the ¢ or § — additional jets can be
produced during the fragmentation process by energetic gluons radiating
off the quarks.

In ¢q decay the snapping of the colour strings in the fragmentation pro-
cess is essentially random, so it is appropriate to try to reproduce it with

(a)
Jet !
/ (b)
€ q
2° <& Fragmentation
- < string between
\ quark jets
!
e+

Nt 2

©

.Figure 1.3: (a) The four main visible decay channels of the Z° boson; (b)
the 5 qq pairs; (c) the qq fragmentation.

10

random number generators in a computer. Monte Carlo programs incor-
porating some theoretical constraints from QCD and some phenomenolog-
ical parameters have been tuned to reproduce the particle multiplicities,
momentum distributions and other statistical measures of the final state
hadrons produced at lower energy machines and at LEP.

11

Chapter 2

Neural Computing

Neural Computing is a method for information processing that autonomously
develops operational capabilities by an adaptive response to an information
environment. This chapter begins with an overview of Neural Computing
followed by a discussion of the relationship between Neural Computing and
Neuroscience. After a brief history of the subject, a precise definition of a
Neural Network will be given, and biological and artificial neuron models
are compared.

2.1 Introduction

Neural Computing is the technological discipline describing parallel, dis-
tributed, adaptive information processing systems, which develop their ca-
pabilities in response to exposure to an information environment. It is a
fundamentally new and different approach to information processing and
it can be seen as the first alternative to programmed computing, which has
dominated information processing for the last 45 years.

Programmed computing can be used in only those cases in which the
processing to be accomplished can be described in terms of known proce-
dures or a known set of rules. If the required algorithmic procedure or
set of rules are not known, then they must be developed — an undertaking
that, in general has been found to be costly and time consuming. Neural
Computing is based on transformations, it does not require an algorithm or
rule development, and therefore it often significantly reduces the quantity

12

of software that must be developed. It also enables handling of problems
for which the algorithms or rules are not known (data analysis, pattern
recognition, control, etc.). These properties make Neural Computing an
interesting alternative to programmed computing, at least in those areas
where it is applicable. v

One area of potential future development in Neural Computing that
may radically alter the approach to its applications, is the reconstruction
of an automated set of tools which would perform powerful general-purpose
information processing functions.

The primary information processing structures in Neural Computing are
Neural Networks. There is a multitude of neural network architectures that
have been studied and characterized sufficiently in order to allow their use in
solving practical problems. Each of these architectures has its own unique
mixture of information processing capabilities, domains of applicability,
techniques for use, required training data, training regimen, and so on. At
present, however, they have been applied in only certain problem areas such
as sensor processing, pattern recognition, data analysis, and control.

2.2 The Relationship between Neural Com-
puting and Neuroscience

Neuroscience can be defined as the scientific discipline concerned with un-
derstanding both the brain and the mind (the “Hardware” and “Software”
aspects of the same object). The human brain is superior to the fastest
digital supercomputer in many tasks, for example in visual information
processing at recognizing any kind of objects. The brain has many other
features that would be desirable in artificial systems:

o It is highly parallel.

e It is robust and fault tolerant. A small fraction of the nerve cells in
the brain die every day without affecting its performance significantly.

¢ It can deal with information that is fuzzy, probabilistic, noisy or in-
consistent.

e It is flexible. It can easily adjust to a new environment by “learning”,
without having to be programmed.

13

e It is small, compact, and dissipates very little power.

Only in tasks which require primarily simple arithmetic operations does
the computer outperform the brain.

These are the main motivations for studying neural computation. Neu-
ral Computing has been inspired by progress in neuroscience, although it
does not try to be biologically realistic in detail. The brain is composed
of networks of neurons and these neurons are much more complicated than
are the processing elements used in Neural Computing, and their functions
are not yet fully understood. As the term “Neural Network” implies, it was
originally mainly aimed at modelling networks of real neurons in the brain.
These models are extremely simplified from a neurophysiological point of
view, but they are still valuable for gaining insight into the principles of
biological computation. :

As with any science, progress in neuroscience has taken place by cre-
ating functional concepts and models based upon experimental results and
then refining or refuting these by carrying out more experiments. Since
the models are not adequate representations of the brain functions, Neural
Computing systems based upon these ideas cannot be described as being
“based upon the operation of the human brain”. Nevertheless, the ben-
efit to the Neural Computing community of this flow of ideas has been
substantial.

On the other hand, Neural Computing may have valuable new insights
to offer Neuroscience. New Neural Network architectures are constantly
developing in Neural Computing, as well as new theories to explain the
operation of these architectures. Many of these developments can be used
by neuroscientists as new paradigms for model building of brain and mind.

2.3 Brief History

We can trace the origin of modern neural modelling to the paper [11] of
McCulloch and Pitts (1943), which showed that even simple types of Neural
Networks could, in principle, compute any arithmetic or logical function.
In 1949 Donald Hebb pursued the idea [12] that classical psychological
conditioning is ubiquitous in animals because it is a property of individual
neurons. Hebb proposed a specific learning law for the synapses of neurons.

14

During the next fifteen years there was a considerable amount of work
done on the detailed logic of threshold networks. In this era the first neu-
rocomputer (the §nark) was constructed by Marvin Minsky in 1951 [13].
At the opposite extreme to detailed logic, continuum theories were also
developed. Known as Neurodynamics or Neural Field Theory, this
approach used differential equations to describe activity patterns in bulk
neural matter.

The first successfull neurocomputer (the Mark I Perceptron) was de-
veloped in 1958 by Frank Rosenblatt and Charles Wightman. Rosenblatt
[15] was able to prove the convergence of a learning algorithm, a way
to change the weights iteratively so that a desired computation was per-
formed. In the same period, very similar networks called Adalines were
invented by Widrow and Hoff [16].

Many people expressed a great deal of enthusiasm and hoped that such
machines could be the basis for artificial intelligence, but in 1969 Minsky
and Papert [14] proved mathematically that a Perceptron could not perform
some rather elementary computations such as the XOR-problem. Minsky
and Papert doubted that one could overcome this problem and thought that
it would be more profitable to explore other approaches to artificial intel-
ligence. Due to this statement, most of the computer science community
left the neural network paradigm for almost 20 years.

There were still some people who continued to develop Neural Net-
work theory in the 1970’s. A major theme was Associative Content-
Addressable Memory, in which different input patterns become associ-
ated with one another if sufficiently similar.

In 1982 John Hopfield [19] was able to add some physical insight to
neural modelling by introducing an Energy Function, and by emphasizing
the notion of memories as dynamically stable attractors.

The most influential development in this decade, however, takes up the
old thread of Rosenblatt’s perceptrons, resuming an idea expressed by Wer-
bos in 1974. An algorithm, known as Backpropagation, was independently
developed in 1985 by Rumelhart, Hinton and Williams [17]. This algorithm
adjusts the weights connecting units in successive layers of a multi-layer per-
ceptron, in such a way that the perceptron can solve many problems which
the simple one-layer perceptron can not.

In 1988 the INNS journal Neural Networks was founded, followed by
Neural Computation in 1989 and the IEEE Transactions on Neural Net-

15

works in 1990.
Although Neural Computing has had an interesting history, the field is
still at an early stage of development.

2.4 Neural Networks: Concepts and Defini-
tions

As mentioned in section 2.1, the primary information processing structures
in Neural Computing are Neural Networks.

Definition 2.1 A Neural Network is a parallel distributed information
processing structure consisting of Processing Elements, which can possess
a local memory and can carry out localized information processing opera-
tions, and which are linked via unidirectional signal channels called Con-
nections. FEach processing element has a single output that is fanned out
into as many lateral connections as desired.

The processing function can be of any mathematical type. The information
processing that takes place within the processing elements (see Fig. 2.1)
must depend only on the current values of the input signals and on values
stored in the processing element’s local memory.

A Neural Network can be described as a directed graph (see Fig. 2.2),
where:

¢ The nodes of the graph are called processing elements and links are
called connections.

o Each processing element can have any number of input connections
and any number of output connections, but the output connections of
the same processing element must carry out the same output signal.

¢ Each processing element can have a local memory and possesses a
transfer function which produces the processing element’s output sig-
nal using the local memory and the input signals. The processors
can operate continuously or episodically. If they operate episodically,
there must be an input that activates the transfer function. This
input arrives via a connection from a scheduling processing element
that is part of the network.

16

Input signals

A
4 N
“

X1 X2 Xn “activate”

Transfer
function

vy A

y | Local
memory

Y y =— Output signal

/ k\h Copies of output signal

Figure 2.1: A generic processing element or a neuron. Continuous-time
processing elements do not have an “activate” input.

e Input signals to a Neural Network arrive via connections that orig-
inate in the outside world, while outputs to the outside world are
signals that leave the Network always via connections.

All known Neural Networks have their processing elements divided into
disjoint subsets, called layers, in which all the processing elements possess
the same transfer function.

Many Neural Networks contain a special input layer, which is made up
of processing elements receiving exactly one input, which arrives from the
outside world. These processing elements, or fanout units, typically have
no local memory and their only function is to distribute the input signals
to the processing elements of the following layers. :

Transfer functions usually have a subfunction, called the learning law,
that is responsible for adapting the input-output behaviour of the processor
in response to the input signals. This adaptation is performed by modifying
the values of variables stored in the processing element’s local memory or
by means of a process that creates or destroys connections between the

17

Figure 2.2: A general Neural Network architecture scheme. The inpul to
the network can be viewed as a data array x and the output as a data array

Y

processing elements.

Processing elements are also called neurons in analogy with the biolog-
ical term. A historic example of a processing element is given in the next
subsection.

2.4.1 The McCulloch-Pitts Neuron

In 1943 Warren McCulloch and Walter Pitts [11] proposed a simple model
of a neuron as a binary threshold unit (see Fig. 2.3).

The neuron computes a weighted sum of its inputs from other units and
outputs a one or a zero according to whether this sum is above or below a
certain threshold:

Yi(t+1) = @(Z wi;(t) — 6:). | (2-1)

18

Figure 2.3: Schematic diagram of a McCulloch-Pitts neuron. The unat fires
when the weighted sum Y_; reaches or ezceeds the threshold 6;.

Here 1; is either 1 or 0 and represents the state of neuron i as firing or
not firing, respectively. Time ¢ is taken to be discrete, with one time unit
elapsing per processing step. ©(z) is the Step Function:

1 ifz >0,
(<) = { 0 otherwise. (2:2)
A simple generalization of the McCulloch-Pitts equation (2.1) is:
Y= Q(Z wijh; — 0;) . (2.3)
J

The threshold function ©(z) of (2.1) has been replaced by a more general
non-linear transfer function g(z) called the activation function. Conse-
quently, ¥; can now have a continuous value and it is called the state or
activation of unit 7. Rather than writing the time ¢ or ¢+1 explicitly, we
must now simply give a rule when to update ;.

A weight w;; is a local memory variable that is assigned to each input
connection and represents the strength of the connection (Synapse) between
neuron j and neuron 7. It can be positive or negative corresponding to an
ezcitatory or inhibitory synapse respectively. It is zero if there is no synapse
between i and j. The parameter §; is the threshold value for unit @ - the

19

weighted sum of inputs must reach or exceed the threshold for the neuron
to fire.

McCulloch and Pitts proved that a synchronous assembly of such neu-
rons is capable in principle of universal computation for suitably chosen
weights. This means that it can perform any computation that an ordinary
sequential computer can.

2.4.2 The Biological Neuron

The brain is composed of about 10'! neurons or nerve cells of many different
types. The soma is the cell-body of the biological neuron, the cell nucleus
is located inside it. Tree-like networks of nerve fibers called dendrites are
connected to the soma.

Extending from the cell-body is a single long fiber called the azon, which
eventually branches into strands and substrands. It is electrically active,
unlike the dendrites, and serves as the output channel of the neuron. In the
ends of its substrands are the synaptic junctions, or synapses, which are
the interfaces to other neurons. The receiving junctions can be found both
on the dendrites and on the cell-bodies themselves. Typically, an axon is
connected to other neurons with a few thousand synapses.

The axon can be regarded as a non-linear threshold device, producing
a voltage pulse, the action potential, consisting of a series of rapid voltage
spikes. The transmission of a signal from one cell to another at a synapse
is a complex chemical process in which specific transmitter substances,
called neurotransmitters, are released from the sending side of the junction,
when the synapse’s potential is raised sufficiently by the action potential.
The effect is to raise or lower the electric potential inside the body of
the receiving cell. We then say that the receiving cell has “fired” when
this potential reaches a threshold and a new pulse is sent further by the
receiving cell.

Compared with the McCulloch-Pitts neurons, real neurons involve many
complications, the most significant including:

® Real neurons are often not even approximately threshold devices. In-
stead they respond to their input in a continuous way (graded re-
sponse). The non-linear relationship between the input and the out-
put of a cell is a universal feature.

20

3
H
i

¢ Many real cells also perform a non-linear summation of their inputs.
There can even be significant logical processing within the dendritic
tree. This can in principle be taken care of by using several formal
McCulloch-Pitts neurons to represent a single real one.

* Neurons do not have the same fixed delay (¢ — ¢+1), nor are they
updated synchronously.

e A real neuron produces a sequence of pulses, not a simple output
level.

¢ The amount of neurotransmitters may vary unpredictably.

Some of these features are included in the generalized model (2.3) of Mec-
Culloch-Pitts neuron.

2.5 Parallel Processing

In computer science terms, we can describe the brain as a parallel system
of about 10! processors, each one computing a very simple program. Using
the simplified model (2.3), each processor computes a weighted sum of the
input data from other processors and then outputs a single number, which
is a non-linear function of this weighted sum. The weights and the transfer
functions can be thought of as local data stored in the processors.

The high connectivity of a network of such processors means that errors
in a few terms will probably be inconsequential. Therefore, such a system
can be expected to be robust and its performance will tolerate well noise
and errors. ,

It is worth remarking that the typical cycle time of biological neurons is
a few milliseconds, which is about a million times slower than their silicon
counterparts, semiconductors gates. Nevertheless, the brain can perform
very fast processing tasks, far beyond the capacity of a Cray supercomputer.
This is due to the fact that the brain is a true parallel processing system
with billions of neurons simultaneously operating.

21

Chapter 3

Mapping Networks

The general Mapping problem is a central issue in several subjects, such
as Pattern Recognition, Statistics and Control Theory. There are basically
two types of mapping Neural Networks: the “feature” Networks based on
Supervised Learning and the “prototype” Networks generally based on Un-
supervised Learning.

In this chapter, after introducing briefly the concept of mapping, three
Neural Networks types will be discussed: the Supervised Feed-Forward
Network, the Unsupervised Competitive-Learning Network and, finally, the
Filter-Learning Network.

3.1 Introduction |

Neural Network adaptation always takes place according to training. The
Network is subjected to a particular information environment following
a specified training scheme to achieve the desired end result. Training
schemes can be divided into three categories: supervised learning, graded
(or reinforcement) learning and self-organisation.

® Supervised learning implies that the training is done by compar-
ing directly the output of the Network to the correct answers. The
Network is thus told precisely what it should emit as its output.

¢ Reinforcement learning is a special kind of supervised learning,
in which the only feedback to the Network is whether each output

22

is correct or incorrect, not what the correct answer is. The Network
receives a score telling how well it has done over a sequence of multiple
training trials. Graded training Networks are particularly applicable
to control and process-optimisation problems, in which it is not known
what the desired output should be.

e In self-organisation, or unsupervised learning, the Network modifies
itself in response to its inputs. Sometimes the learning goal is not
defined at all in terms of specific correct examples. The only available
information is in the correlations of the input data or signals. The
Network is expected to create categories from these correlations, and

to produce output signals corresponding to the input category.

The possibility for training Networks by learning, not by giving rules, gives
many exciting implications for computation. Instead of having to specify
every detail of a calculation, we simply have to compile a training set of
representative examples. This means that we can hope to treat problems
where appropriate rules are difficult to know in advance.

More generally, the problem addressed by mapping Neural Networks is
the implementation of a bounded mapping or function

F:ACR' —R™,

by utilising training examples (X1,¥1),(X2,¥2)y oy (Xkty ¥k)5 ... Of the map-
ping’s action, where y, = F(x}).

3.2 The Supervised Feed-Forward Neural
Network

Networks can be considered as having separate inputs and outputs, in such a
way that we can assume that we have a list or training set of correct input-
output pairs as examples. In supervised learning the Network output is
compared to the known correct answer, and the Network receives feedback
about the result. The learning occurs by changing the connection strengths
wj; to minimise the difference between the actual output and the correct
one. This is typically done incrementally, making small adjustments in
response to each training pair.

23

(b)

Figure 3.1: (a) A simple perceptron and (b) a Network with one hidden
layer.

Layered feed-forward Networks were named perceptrons by Rosenblatt
in 1962. There is a set of input terminals whose only task is to feed input
patterns into the rest of the Network. Then comes one or more intermediate
layers of hidden units, followed by a final output layer (see Fig. 3.1). There
are no backward connections, i.e. connections leading from a unit to units
in previous layers. A feed-forward Network without hidden units is called
a simple perceptron, which has only an input and an output layer.

To illustrate the nature of Neural Networks, the classical simple-perceptron
architecture will be described in the next subsection.

3.2.1 The Simple Perceptron

As illustrated in Fig. 3.1(a), the Network elements which perform compu-
tation are the output units O;. Each of them makes a weighted sum of the
inputs . The general association task is cast in the form of asking for a
particular output pattern ¢} in response to an input pattern &;. The aim
is to have the actual output pattern Of to be equal to the target pattern
¥, for each j and p. , '
When the input & is given the pattern &, the actual output is:

0f =g (}: wnt?) | (3.)

24

A
(a) A)
S — >
0 0

Figure 3.2: Activation functions: (a) Threshold function and (b) Sigmoid
function.

where g is the activation function and g = 1,2,...,p , p is the number of
input-output pairs in the training set.

The activation function g is usually taken to be non-linear. It can be a
threshold function or a continuous sigmoid function (see Fig. 3.2). In most
cases the activation function is the sigmoid logistic function:

1

. 3.2
1+e (3.2)

.g(a) =

The output units are independent, so it is allowed to consider only one
at a time and drop the j subscripts. We can describe the weights w;; with
a weight vector w = (w;, ws,...,wy). Similarly, each input pattern £ can
be considered as a pattern vector £* in the same N-dimensional space.

On each training trial, the learning law modifies the weight vector w
according to the equation:

wrew — old 4 ($u _ s (3.3)

An input pattern is a point in N-dimensional space, and we have to
classify the point belonging to one of the two classes (0 or 1). The final
goal is to find a set of weights for which the output of the perceptron will
always match the class number of the point entered into the perceptron.

25

3
N
L Class 0
\ ~ ¢
LEY .. [] l
Class 1 R :'..‘ . /
Hyperplane
w+w§ +w§ +. +w§ =0
determmed by we:ght
vector w

Figure 3.3: A pattern classification problem in N-dimensional space.

The perceptron weight vector w determines a hyperplane in N-dimensional
space (see Fig. 3.3): if a point (¢1,&s,...,{n) lies on one side of the hyper-
plane, then the output of the perceptron is 0, and if the point lies on the
other side, then the perceptron output is 1.

The learning law of equation 3.3 means that if the perceptron makes an
error ((* — O“) in its output, the w hyperplane has to be reoriented so that
the perceptron will not make an error on the particular §’“‘ vector again.
In Fig. 3.3 the perceptron will perform correctly because its hyperplane
has been oriented properly relative to the two (linear separable) classes. A
linearly separable problem is one in which a plane can be found in the ¢
space separating the (¥=+1 patterns from the (¥=0 ones.

A problem is solvable by a simple perceptron if the problem is linearly
separable. It is also possible to prove that if there exists a solution, the
perceptron learning rule reaches it in a finite number of steps (Convergence
Theorem). Problems not linearly separable (like the boolean XOR problem)
necessarily need a multilayer perceptron to be solved.

26

3.2.2 The Multilayer Perceptron

Contrary to simple perceptrons, feed-forward Networks with intermediate
or “hidden” layers between the input and the output layer are not limited
by the linearity of the separation of the classes. In this kind of Network,
each unit in the hidden layer and the output layer is like a simple-perceptron
unit with a sigmoid thresholding function.

Although the greater power of multilayer networks was realised a long
ago, it was only recently shown how to make them to learn a particular
function. The learning rule for multilayer Networks is called the generalised
delta rule or the back-propagation rule and was suggested by Rumelhart,
McClelland and Williams [17] in 1986. The back-propagation learning rule
allows one to find a set of weights by successive improvements from an
arbitrary starting point. The network receives feedback about errors in
order to minimise them during the training process. -

We can define the error measure or energy cost function to be the Mean
squared error: '

1 2
E[w] =3 > (¢t -0%)", (3.4)
in

for each hidden or output unit j of the Network. The mean squared error
is not the only possible error function, but it is the most popular one. This
error estimation scheme ensures that large errors receive greater attention
than small errors. Besides, it takes into account the frequency of occur-
rences of particular inputs: it is much more sensitive to errors made on
commonly encountered inputs than it is to errors on rare inputs.

Calling net? the activation of each unit j for pattern p, we can write:

net;-‘ = Z’wﬁOf . (3.5)

If 7; is the sigmoid function (continuously differentiable nondecreasing
function) acting on unit j, then we can write the output from each hid-
den or output unit j as:
Of = Fj(nety) . (3.6)
Weights’ updating is performed by using the gradient descent method on
the mean squared error function E (3.4):

dE,

aw 7t

Aywj; o —

27

We can write:
0E, OE, Onet

= 3.7
Owj; Onet] Jwy; | (37)
and, substituting in (3.5):
Onet! 0 Ow;z,
= #xOf = > —20F = 0!, 3.8
‘Bwj,- 8w,-,- zk:wjk k ; Bwj,- k ()
where gﬁf_ = 0 except when k =i when it equals 1. Defining ¢! as:
JOE,
e - 3.9
5; Onett ’ (3.9)
we can write (3.7) as:
_ 9B, _ §40¥ (3.10)
6wj,~ g
so, the weight’s changes will be:
A,,wj,- = 7)6;‘0:‘ ’ (311)

where 7 is a proportionality coefficient called the learning parameter.
o If jis an output unit, then

0E, _ OE, 80"

% = " Onet! ~ 8O bnet” (3.12)
where 60" .y
et = Finets) (1
Differentiating E, with respect to 0%:
ggg; = (¢t -0, | (3.14)
where (¥ is the target on pattern u. Thus
&7 = Fi(netf)(¢f — 05) . (3.15)

28

Figure 3.4: Back-propagation in a Network with two hidden layers. Solid
lines describe the signals and dashed lines the §-errors.

¢ Instead, if j is an hidden unit, we can write:

0E, OE, Onet}
=Y £ =3 6twy; , 3.16
80" Xk: Bnet; 80" Eki ie Wk (3.16)

then, substituting (3.16) in (3.12) we get finally:
8% = Fi(netf) D Spwe; - . (3.17)
k
Equation (3.17) allows one to determine the § for a given hidden unit in
terms of the §’s of the output units O that it feeds. The coefficients are
just the usual “forward” weights w;;, but here they are used for propagating

errors (6’s) backwards instead of transmitting signals forwards — hence the
name error back-propagation (see Fig. 3.4).

3.2.3 The Back-Propagation Learning Algorithm

The updating rule (3.11) is usually used incrementally: a pattern p is pre-
sented at the input and then all weights are updated before the next pattern

29

is considered. This clearly decreases the cost function (for small enough 7)
at each step, and successive steps adapt the Network to the local gradi-
ent. An alternative way of updating is the so called batch mode in which
the weights are updated after all the patterns have been presented. This
requires additional local storage for each connection. The first approach
seems to be superior in most cases, especially for very regular or redundant
training sets.

The fact that the cost function derivatives can be calculated by back-

propagating errors has two important consequences:

e The update rule (3.11) is local. To compute the §’s for a given connec-
tion we only need quantities available at the two ends of the connec-
tion. This makes the back-propagation rule appropriate for parallel
computation.

¢ The computational complexity is very low. Having a total of n con-
nections, computation of the cost function (3.4) takes of the order
of n operations. Calculating n derivatives directly would take of the
order of n? operations.

Summarising, it is possible to express the back-propagation learning law
in terms of a step-by-step algorithm:

1. Initialise the weights at small random values.

2. Present a pattern f" and the associated target vector f“ to the Net-
work.

3. Propagate the signal forward by calculating the actual output O¥ for
each hidden and output node j of the Network using equation (3 6).

4. Compute the §’s for the output layer using equation (3.15).
5. Compute the §’s for the hidden layers using equation (3.17).
6. Update the weights by using:

wii(t +1) = wj(t) + 0607,

where w;;(t) represents the weight from node 7 to node j at time ¢ and
7 is the gain-term or learning parameter.

7. Goto step 2.

30

3.2.4 The Learning Parameter and the Momentum
Term

The gradient descent rule (3.11) aims at minimising the error function E by
adjusting the weights in the Network so that the energy surface is lowest. It
changes the weight vectors Ww; = (wj1,...,wjx) only in the direction of the
pattern vectors é#. Thus any component of the weights orthogonal to the
patierns is left unchanged by the learning. Within the pattern subspace,
the gradient descent rule necessarily decreases the error if 7 is small enough,
because it takes us in the downhill gradient direction. With sufficient num-
ber of iterations, we approach the bottom of the valley from any starting
point. The value of 7 is limited by the largest eigenvalue 0™**, correspond-
ing to the steepest curvature direction of the error surface: n > 1/p™e=,
Otherwise we will end up jumping too far to the next valley.

The rate of approach to the optimum is limited by the smallest non-
zero eigenvalue ™", corresponding to the shallowest curvature direction.
If g™e= / g™ is large, progress along the shallow directions can be very slow.
So, gradient descent can be very slow if 7 is small, and can oscillate widely
if 9 is too large.

This problem can be solved by adding to each connection wj; an inertia
or momentum term a, so that the weights tend to change in the direction

1Using linear units and assuming that pattern vectors are linearly independent, the
error function (3.4) can be written as

M
E=)"on(we —uf)?, (3.18)
k=1

where M is the total number of weights in the layer, gr(> 0) and w are constants
depending on the pattern vectors and the wy’s are linear combinations of the weights.
Performing the gradient descent on (3.18) we get:

oF '
Awy, = Mg = ~2ne(w - wp) .

Fixing 6w = wi — wg,
Swp®” = swid + Awy = Sw(1 - 2ng:) :

Since |1 —2n0x] < 1, then 0 < n < 1/ 0.

31

(a) y - (b)

al) Wt @y o (v2)

Figure 3.5: Gradient descent on quadratic surface E = z? + 20y*. The
minimum is at the + and the ellipse shows the constant error contour (see
tect).

of the average downhill “force”, instead of oscillating wildly at every step:

Awj(t+1)=—q 0B + aAwji(t) , | (3.19)

Bw 7i

where a must be between 0 and 1.

In Fig. 3.5 a gradient descent on a quadratic surface E = z? + 20y is
represented when varying the value of 77 (the left and right parts are specular
copies of the same surface), after 20 iterations in (a) and 12 iterations in
(b). The value y ~ 0 is fairly quickly reached with n = & = 0.02, but
the progress is slow in z (al). At the other extreme, if 7 > 35 = 0.05 the
algorithm produces a divergent oscillation in y (a2). The fastest approach
is obtained by defining n = & = 0.0476 (b1). (b2) shows the result with
17 = 0.0476 and a momentum term a = 0.5.

Choosing the appropriate values for the parameters 7 and « for a partic-
ular problem is quite difficult. Moreover, the best values at the beginning
of training may not be so good at a later stage. Therefore, it is profitable
to automatically adjust the parameters, decreasing 7 and increasing « as

the learning progresses.

3.2.5 Local Minima

Neural Networks can settle into a stable solution that does not produce the
correct output. In these cases the gradient descent has lead into a local

32

minimum of the cost function (no convergence theorem exists for back-
propagation). One way to partially solve this problem is to adjust the gain
term and the momentum term during the learning process, as suggested
in the previous subsection (3.2.4). The size of the initial random weights
is also important: if they are too large, the sigmoids will saturate from
the beginning and the system will become stuck in a flat plateau near the
starting point. Weights w;; should be taken to be of the order of 1 /4 /_
where k; is the number of fan-ins to unit j, in such a way that the magmtude
of the typical net input to unit j is less than - but not too much less than
- unity.

A common type of a local minimum is one in which two or more errors
compensate each other. If these minima are not very deep, just a little noise
is needed to get out. Addition of noise during the learning process can be
done by choosing the input patterns in a random order from the training set
or by including a noise parameter T or temperature in the sigmoid function

equation:
1

. 1+e=/T’
The sigmoid function squeezes the output of a processing element between 0
and 1. The final output becomes more peaked at 0 or 1 as the temperature
decreases, becoming exactly 0 or 1 in the asymptotic case in which the
temperature is zero. The temperature term can also be adjusted during
learning process by decreasing its value.

It is worth remembering that all these optional choices will increase the
computation time needed for training considerably.

Fr(z) = (3.20)

3.2.6 The Network Architecture

We have already seen (3.2.1) that only linearly separable functions can be
represented with no hidden layers. Addition of one hidden layer is sufficient
to represent any boolean function. If there are more than two units in the
first hidden layer in a multilayer perceptron, pattern space is partitioned
with a combination of more than 2 lines, producing convez regions or convez
hulls. Adding more perceptron units in the first hidden layer, it is possible
to define more edges for each convex region. In a Network with two hidden
layers, units in the second hidden layer will receive as inputs, not lines, but
convex hulls, and the combinations of these convex regions may overlap,

33

intersect, or be separated from each other, producing arbitrary shapes.
A Network with two hidden layers is therefore capable of separating any
classes and the complexity of the shapes is limited by the number of nodes
in the hidden layers of the Network, since these define the number of edges.

In Fig. 3.6 the capabilities of different Networks are illustrated. The
second column in this figure indicates the types of decision regions that

can be formed with different nets. The next two columns show examples of

isi i] had 3
decision regions for the XOR-problem and a problem with meshed regions.

The rightmost column presents the most general decision regions that can
be formed with each Network.

No more than two hidden layers are required in a feed-forward Neural
Network to generate arbitrarily complex decision regions. An astounding
theorem was stated in 1957 by mathematician Andrei Kolmogorov, known
as the Kolmogorov’s Mapping Neural Network Existence Theo-
rem:

Theorem 3.1 Given any continuous function F : [0,1]* — R™, where
F(x) = y, F can be implemented exactly by a three-layer feed-forward
Neural Network having n fanout processing elements in the input layer,
(2n+1) processing elements in the middle layer, and m processing elements
in the output layer.

The Kolmogorov mapping Network consists of three layers of processing
elements. The processing elements in the input layer are fanout units that
simply distribute the input x vector components to the processing elements
of the middle hidden layer, which implement the following transfer function:

2 = Z/\k‘ll(:c,- + ke)+ k&,

=1
where) is a real constant and ¥ is a continuous real monotonic function. A
and ¥ are independent of F (although they do depend on n). ¢is a rational

number 0 < € < §, where § is an arbitrary chosen positive constant.
The m output units have the following transfer function:

2n+1

yi= > gi(z) ,
k=1

where the functions g; (j = 1,2,...,m) are real and continuous, depending
on F and e.

34

/

Meshed
Regions

General
Shapes

S Decision XOR
tructure Regions Problem
Perceptron Ly
Half Plane Kifa ><:>
bounded
/ \ by
Hyperplane (:) (:>
One Hidden
Layer Convex
Open
or
Closed
Regions
Two Hidden
Layers
Arbitrary
Regions

Y SIRRARIRRER
s

Figure 3.6: Decision regions for different types of Neural Networks. Shad-
ing denotes decision regions for class A. Smooth contours ‘enclose input

distributions for classes A and B.

35

The proof of the theorem is not constructive, it is strictly an existence
theorem. It tells us that such a mapping Network must exist but it does
not tell us how to find it. It is, however, an important result proving that
whatever is done with two or more hidden layers, could also be done with
one in principle. In practise, more than two hidden layers may sometimes
permit a solution with fewer units in total, or may speed up the learning.

It is also possible to construct units that have a localised response, each
becoming activated for inputs in a small region of the input space. Only
one hidden layer of such units (radial basis function units) is needed to
represent any well-behaving function.

Pruning and Weight Decay

To obtain a good generalisation ability one has to build into the Network
as much knowledge about the problem as possible, and limit the number
of connections appropriately, in order to realise the best topology of the
input space within the internal representation of the Network. The goal
‘is to obtain the best performance of the Network by using as few units
as possible. This should not only reduce computational costs and perhaps
training time, but should also improve generalisation.

It is therefore desirable to find algorithms that not only optimise the
weights for a given architecture, but also optimise the architecture itself,
reducing the number of layers and the number of units per layer. The
natural way is to use the Network itself for removing non-useful connections
‘during training. This can be accomplished by giving each connection w;; a
tendency to decay to zero, so that a connection disappears unless reinforced.
The simplest method is to use:

Wi = (1 — ¢j;)w? , (3.21)

ji ji
after each update of wj;, €;; ~ 0. This is equivalent to adding a penalty
term to the original cost function Ey:
2

- 1 S 3.22
E_Eo+7§ﬁ:1+w%, (3.22)
and writing the ¢; in (3.21) as:
/2
- 3.23
€5i (1 +w31, 9 ()

36

v € R, in such a way that small w;;’s decay more rapidly than large ones.

Starting with an excess of hidden units, it is possible to discard those
units which are not needed by using an appropriate pruning procedure in
the training.

3.2.7 Examples and Applications

Backpropagation Networks have been applied to a wide variety of prob-
lems. Most of them employ a straightforward backpropagation learning by
gradient descent method and the Network architecture contains only one
hidden layer, with a full connectivity between layers.

The XOR Problem

As described in subsection (3.2.1), the Exclusive-OR problem can not be
solved by a simple perceptron because it is not linearly separable. The
Network should be able to represent the boolean XOR function with an
output equal to “1” when one of the two inputs is on, and “0” when they
are both on or both off. This can be achieved by using a Neural Network
with one hidden layer.

| Inputs | Output |

L& | ¢
ofo] o
0|1 1
10 1
11 0

In Fig. 3.7 two Networks with threshold units are presented. In (a) the
two hidden units compute the logical OR (left) and AND (right) of the two
binary inputs. Solution (b) is not a conventional feed-forward architecture
— the hidden unit computes a logical AND to inhibit the output unit when
both inputs are on.

The Encoding Problem and Image Compression

A general encoding problem involves finding a set of hidden unit patterns
to encode input/output patterns with a large number of nodes. In order

37

Figure 3.7: Two possible solutions of the XOR problem using a Neural
Network with one hidden layer.

to achieve an efficient encoding, the number of hidden units must be quite
small compared to the number of input/output nodes. The Network struc-
ture is made up of an input layer and an output layer of N units, and by a

~ hidden layer of M units, with M < N (see Fig. 3.8).

The training set is composed by exactly p = N patterns, each having a
single input and the corresponding target on, and the rest off: & = (=8t
Using a binary coding in the hidden layer, the activation pattern of the
hidden units gives the binary representation of p, the pattern number.
With this scheme, the number of hidden units must be M > log, V.

Encoder Networks have practical applications for problems like image
compression, in which a picture must be encoded or compressed into a
much smaller number of bits than the total required to describe it exactly,
and then decoded at the receiver into a complete picture. This can be
formulated as a supervised learning problem by making the targets equal
to the inputs, and taking the compressed signal from the hidden layer.
The input-to-hidden connections perform the encoding and the hidden-to-
output connections do the decoding.

An interesting feature of this example is that non-linearity in the hid-
den units confers no advantage. The use of linear units allows a detailed
theoretical analysis, which shows that the Network projects the input onto
the subspace of the first M principal components of the input. This means
that a minimum amount of information is discarded, and those components

38

E Figure 3.8: A 5-3-5 encoder Network.

of the input vector which vary the most [20] are retained.

39

3.3 The Unsupervised Competitive-Learning
Neural Network

In unsupervised learning, the learning goal is not defined in terms of spe-
cific correct examples — the Network has no feedback from the environ-
ment telling what the outputs should be or whether they are correct. The
Network must discover itself patterns, features, regularities, correlations,
or categories in the input data and create an output coding. Therefore,
processing elements and connections must possess some degree of self-
organisation.

The mapping that a self-organising Neural Network is required to ac-
complish, is defined implicitly. Instead of learning a mapping

F:ACR* — R™,

where A is an arbitrary bounded subset belonging to ®"*, by means of su-
pervised training with explicit examples of the mapping, the self-organising
map essentially learns a continuous topological mapping

F:BCR*—CCR™,

through self-organisation driven by examples in C, where Bis a rectangular
subset of " and C is a bounded subset of ™, upon which a probability
density function p depends on.

Unsupervised learning needs redundancy in the input data in order to
find patterns or features. Typical output information of an unsupervised
learning Network could be:

¢ Familiarity. A single continuous-valued output telling how similar a
new input pattern is to a typical or average pattern seen in the past.
The Network would gradually learn what is typical.

e Clustering. A set of binary-valued outputs, only one on at a time,
indicating to which of several categories an input pattern belongs
to. These categories would have to be found by the Network on the
basis of the correlations in the input patterns. Each cluster would
then be classified as a single output class. Applications to clustering
can be found in function approximation, image processing, statistical
analysis, and combinatorial optimisation.

40

¢ Encoding. An encoded version of the input, keeping as much rele-
vant information as possible. This could be used for data compression
(assuming that an inverse decoding Network can also be constructed)
through vector quantisation, in which an input data vector is replaced
by the index of the output unit that it fires.

¢ Feature Mapping. A topographic map of the input, organising
the output units in a fixed geometrical arrangement, and activating
nearby output units for similar input patterns.

Unsupervised learning architectures are fairly simple, consisting often of
only a single layer. Most of the Networks are essentially feed-forward, and
except in the case of Feature Mapping, the number of output processing
elements is usually much less than the number of input nodes.

Unsupervised learning may be useful even in situations where super-
vised learning were possible. For example, after having trained a Network
with supervised learning, it may be advisable to allow some subsequent
unsupervised learning so that the Network can adapt to gradual changes
in its environment.

Optimisation approaches performed by unsupervised Network architec-
tures and learning rules, are close to those of statisticians. There are sim-
ilarities between many unsupervised learning Networks and standard sta-
tistical techniques of pattern classification and analysis [21]. Architectures
of these Networks tend also to be more accurately modelled after neurobi-
ological structures than elsewhere in neural computation.

3.3.1 Simple Competitive Learning

Learning laws belonging to the category of competitive learning have the
property that a competition process, involving some or all of the processing
elements of the Neural Network, always takes place before each episode of
learning.

In a competitive learning Neural Network, only one output unit, or
one unit per group, is on at a time. The output units compete for being
the one to fire, thus they are often called the “winner-takes-it-all” units.
The simplest competitive learning Networks are composed of a single layer
of output processing elements O;, fully connected to the input layer (see
Fig. 3.9). Only one of the output units can fire at a time (winner unit) and

41

Figure 3.9: A simple competitive learning Network. The open arrows rep-
resent inhibitory connections, the others are ezcitatory. :

is normally the unit with the largest net input:

hj = Z’wjifi =Wj; é y (3.24)

for the current input vector é . w; are excitatory connections.
Considering binary inputs and outputs, the following expression must
be true for the winning output unit j*:

wi &> w;- & (V) (3.25)
and 0;. = 1. Normalising the weights so that | w; |= 1 for all j, we can
rewrite (3.25) as: A

| wi —€I<lw; =& (V7). (3.26)

Thus, the winner is the unit with normalised weight vector w closest to the
input vector f .

A “winner-takes-it-all” Network is a pattern classifier using (3.25) and
(3.26), providing its output units with lateral inhibitions and self-ezcitatory
connections (see Fig. 3.9) in such a way that each unit inhibits the others.
Starting with small random values for the weights, a set of input patterns
¢ is presented to the Network. For each input set the Network will find
the winning output node j* and then will update the weights wj-; for the
winning unit only. This makes the w;j. vector closer to the current input
vector E“:

Awj; = n0;(& —wj) (3.27)

42

where

i O_,-:{llf]:"

0 otherwise

This solution is known as the standard competitive learning rule.

A problem arising with this learning scheme is that units with a weight
(o ' vector w; far from any input vector may never win, and therefore these
’ units will never learn (so called dead units). There are several ways to solve
this problem:

o Using a different weight initialisation. Weights can be initialised ac-
cording to samples from the input itself, ensuring that they are in the
right domain.

. Usmg a BIAS term. A threshold term 6; can be subtracted from h;
; in (3.24) and adapted periodically to make it easier for the frequently
losing units to win. Units that win often should raise their bias terms
0;, while the losers should lower them (conscience learning).

o Updating all the weights. Losers’ weights can be updated as well as
those of the winners, but with a much smaller 5 (leaky learning).

, o Adding a noise term. Pattern vectors can be smeared with the addi-
: tion of noise.

o Using a geometrical distribution. The output layer can be organised
in a geometrical way, for example into a two-dimensional array of
output units. The weights of the neighbouring losers can be updated
as well as those of the winners. This method is used in Kohonen
feature mapping that will be discussed in the next subsections.

3.3.2 Feature Mapping

The general concept in the Feature Mapping theory applied to Neural Net-
works is that nearby outputs must correspond to nearby input patterns.
This can be explained by considering two input vectors £! and % and the
locations p;, p» of the corresponding winning outputs in the Network: as
£! and €2 are made more similar, the p; and p; should get more closer. A
Network performing such a mapping is called a feature map.

43

fix)

Figure 3.10: The “Mexzican hat” function for lateral connection weights.

The feature map Neural Network consists of a rectangular array of N
processing elements, each of which receives the same input vector £#. A
weight vector w; is assigned to each processing element and is updated
after the winning output node has been found. Training of the Network
then proceeds in a sequence of discrete self-organisation training trials, until
the Network will present a topographic map of the input. The task of the
Network is essentially to realise a mapping that preserves neighbourhood
relations inherent to input patterns.

There are different ways to design an unsupervised Neural Network
which organises itself into a feature map:

e The ordinary competitive learning method, adding lateral connections
to each unit of the output layer. These connections will be excitatory

between nearby units and inhibitory at longer range like a “Mexican
hat” function (see Fig. 3.10).

e The ordinary competitive learning method, updating the weights be-
longing to the neighbourhood of the winning processing element (Ko-
honen algorithm).

44

Figure 3.11: The Kohonen layer: output units are typically arranged as a
one or two-dimensional array.

3.3.3 The Kohonen Layer

The Kohonen layer consists of m processing elements O;,0,, ..., O, each
receiving NV continuous valued input signals €1,&2,...,€n, defining a point
¢ in a N-dimensional space. The & input to Kohonen output unit O; has
a real weight wj; assigned to it. The output units are arranged into a
one or two-dimensional array, and are fully connected with the inputs (see
Fig. 3.11). Each Kohonen processing element calculates its input intensity
I; according to:

Ii = D(w.i’é) ’ (328)

where w; = (wj;,wjs,...,w;n)T and § = (é1,€2, .., én)T, and D(u,v) is
a function defining a distance. Two common choices for D(u,v) are the
Euclidean distance (d(u,v) =| u — v |) and the spherical arc distance
(s(,v) =1-u-v =1~ cos 6), where both u and v are assumed to be
unit-length vectors and 6 is the angle between them. »

45

Once the output units have calculated their input intensities I;, a com-
petition takes place to see which unit has the smallest input intensity, i.e.
a weight vector w; closest to x. If j* is the winner unit, then:

| wje —€I<|w; — €] (V7). (3.29)

The Kohonen Learning Law

The input data vector ¢ for the Kohonen layer is assumed to be drawn at
random according to a fixed probability density function p. After deter-
mining the winning processing element j*, the Network will set its output

signals as:
0;={ 1 =7 (3.30)
7 0 otherwise

At this point, a weight modification takes place:
wif” = wi + A5, 57) (& —wil) , Vi, . (3.31)

n

A(j,5*) is called the neighbourhood function which drives the adaptation
according to the distance | p; — p;+ | between the output units j and j*.
The shape of the function is such that the winning unit 7* and units close to
the winner j* have their weights changed appreciably, while those further
away (A(j,5*) small) have low Aw;;’s values. The rule (3.31) drags the
weight vector w;. and the w;’s of the closest units towards input vector f

We can also define the neighbourhood function A and the learning step
parameter 77 to depend on time, in such a way that we start with a wide
range for A(j, j*,t) and a large value of 7(t), and then reduce both gradually
as the learning proceeds (elastic net). A typical choice for A(7,j*t) is:

—Ip,—-pé—l’ ,
A(j,j*’t) =e 2 ’ (332)

where o(t) is a width parameter gradually decreasing as ¢ increases.

3.3.4 Probability Density Function Estimation

As new £ vectors are entered into the Network, the Kohonen unit weight
vectors are drawn to them and form a cloud near where the £ vectors
actually appear, as determined by the probability density function p.

46

At the beginning of training, 7(t) is often set to a value of approximately
0.8, and is then lowered to 0.1 as the weight vectors w; move into the area of
the input data. As training progresses, the weight vectors become densest
where input vectors are most common, and become least dense (or absent)
where the £ vectors hardly ever (or never) appear. The Kohonen layer
adapts itself to conform approximately to p in a volume number density
sense.

The Kohonen learning is similar to the statistical process of finding
k-means. The k-means for a set of data vectors {€4,&%,...,£P}, chosen at
random with respect to a fixed probability density function p, comprise a
set of k vectors {wy, w3, ..., Wi} that minimise the sum:

32 DY E, w(E)) |

i=1

where W(éi) is the closest w vector to £, calculated by using the distance
measure D.

The Kohonen learning law can be used for finding k-means, as long as
the 7 value used on each weight update is the fraction of ¢ vectors which lies
closest to the current winning weight vector. Like Kohonen weight vectors,
k-means are distributed in the same area as the ¢ data vectors. The k-
means are not, however, equiprobable; compared to this statistical process,
the simple competitive learning law is essentially the k-means incremental
adjustment law [21].

A é vector, chosen randomly from a set of vectors distributed according
to the probability density function p, will have the same probability of being
closest to any of the weight vectors. The Kohonen learning law (3.31) pro-
duces a set of equiprobable weight vectors by means of the neighbourhood

function A, which will supply. the topological information of inputs:-nearby

units will receive similar updates and thus they will end up in responding
to nearby input patterns.

Kohonen has presented a theory for a one-dimensional self-organising
map [22], but a general theory does not exist. Any such theory has to take
into account the fact that by changing the learning constants as a function
of time, the Network’s response to training input data alters consequently.
This feature of the self-organising map Neural Network complicates the
attempts to build a mathematical model of its operation.

47

3.3.5 Applications of Competitive-Learning

Competitive-learning Networks have been used for example for sensory
mapping, speech recognition, front-end preprocessing, combinatorial opti-
misation and motor control. The most interesting application is, however,
vector quantisation for data compression.

The idea is to categorise a given distribution of continuous-valued input
vectors, with components ¢!, into M classes, and then represent each vector
by the class which it belongs to. Normally the classes are defined by a set of
M prototype vectors which divide the input space. By utilising a competitive
learning Network, these prototype vectors can be represented by the weight
vectors w;. When exposed to input data, the weights change their values
in order to divide the input space, providing a discretised map of the input
probability P(¢).

In applications like data compression, it is essential to have enough input
vectors. Addition of more input samples gives a more precise division of the
feature space and ensures an equitable distribution of units in the pattern
space. The proper distribution can be maintained by using the conscience
mechanism or a Kohonen feature mapping (as seen in 3.34).

Kohonen has also suggested a supervised version of vector quantisation
called learning vector quantisation (LVQ), in which the updaiing rule de-
pends on whether the class of the winner unit is correct or incorrect, and
the learning rule is only applied if:

1. the input vector f is misclassified by the winning unit j*;

2. the next-nearest neighbour unit j' has the correct class; and

3. the input vector ¢ is sufficiently close to the decision boundary be-
tween w;. and wj. '

Both w;. and w;s are updated by using the following rule:

A‘w:,‘ni = {

The classification accuracy of the LVQ algorithm has been demonstrated
to be very close to the decision-theoretical Bayesian limit even in difficult
cases, and due to the very simple computation needed, its speed in learning
as well as in classification can be significantly higher than what can be
achieved by using other statistical approaches.

+n(€' — w;s;) if class is correct;
—n(éf — wj;+;) if class is incorrect.

(3.33)

48

3.4 The Filter-Learning Neural Network

In filter learning (or Grossberg learning), the weights of the Network are de-
termined by a filtering process in which one input to the processing element
is treated as a time series signal and the designated weight (not necessary
associated with this particular input) takes a value given by the output of
a filter applied to this time series.

3.4.1 .The Flywheel Equation

In order to understand the mathematical basis for the Grossberg Learn-
ing, we study the behaviour of the following scalar equation (the Flywheel
equation):
2(t +1) = 2(t) + nlé(t) - 2(¢)] (3.34)
or
At +1) - va(t) = 7€(t) (3.35)

where 0 <7 <1, v =1-75 and £(t) is the external input to the equation
at time ¢. For solving this equation we can define 2(t) = a(t)8(%) :

z(t +1) —vz(t) = a(t+1)8(t+1) — va(t)8(t) (3.36)

a(t +1)(8(2) + [B(t + 1) - B(R)]) — va(t)B(t)
= B®)a(t +1) —va(®)] +a(t +1)[B(t + 1) - B(1)] .

Choosing, without loss of generality:
a(t+1)—va(t)=0, Vit t=1,2,..

we obtain:
a(t+1) =v%(1) .

Substituting this to (3.37) and to (3.35), we get:

ot +1)[B(t +1) - B(2)] = né(t) , (3:37)
and further
Blt+1) = (t) = 5 Tost(e) (3:38)

49

Now we can write?

s+ -pm =y ZE - s D) g

To allow a comparison between this discrete case and the continuous case,
we can assume that ¢(¢) = £ + A(2), where € is the average value of £(t),
and A(t) is the deviation of £(¢) from this average. Then, we get

& A(R)]
B(t+1) - B(1) = (1)[z() + 2% (3.40)
Substituting in z(¢):
At) = a()f) (3.41)
- V'l vk > vk
= et ([(1)] [S v+ S +a00)
= n Z kg Z CIEAR) + v a(1)B(1) -
Since 0 <v<l,
thglw VW 1la(1)8(1) =0
while?
t-1— 1 1
Jim, 3 Z A e
z(t) can now be expressed as:
z(t) =& +q fi vVIRA(R) . , (3.42)

k=1

3Using the fact that:
B(t+1) - B(1) = B(t +1) - B(t) + B() — Bt — 1) + ...+ B(2) - B(1) .

3Note that:

-~
|
-

-1

iR o 2 3 L1 =
1—v

x
1
-

50

Figure 3.12: A single instar processing element

Assuming that the average value of {(t) over intervals of time greater than
some fraction of 1/7 is always close to £, equation (3.42) can be rewritten
as:

2(t) =€, (3.43)

which is the solution of the flywheel equation.

3.4.2 The Grossberg Learning Law

The flywheel equation can be used to explain the Grossberglearning law [25].
A processing element j (instar unit) in Grossberg learning receives multiple
signals (see Fig. 3.12), including inputs ¢; (assumed to be non-negative real
values) and a special input signal (;.

Each input {; has a weight wj; associated with it. The idea is that,
whenever the input §; is active (that is, not 0), the weight wj; for this
connection will learn the average value of the concurrent {; input multi-
plicatively weighted by &;. A

The Grossberg learning law is expressed by the equation:

w3 = wi® + (&G — wiH)O(&) , (3.44)

51

where 0 < 77 < 1, and © is the step function:

_J1 if& >0
O(&) = { 0 otherwise

The weight will not change unless ¢; > 0.

As in (3.43), after a long period of training, the weight w;; will settle to
the value:

wii = &G (3.45)
where {(; is the time average of the quantity §&:(; over the cases when

&> 0.

3.5 Statistical Pattern Recognition

The investigation of the possibilities to use Mapping Networks in classifica-
tion problems related to High Energy Physics experiments is the main aim
of this thesis. The classical method to classify input samples is Statistical
Pattern Recognition.

Statistical Pattern Recognition is an area in mathematical statistics that
deals with random, metrically relatable stochastic vectorial variables. In its
purest form it constitutes a particular discipline in the statistical decision
theory.

Assume that each sample vector x = x(t) € ®*, t = 0,1, 2,... belongs to
a class C; (i = 1,2,...,m); the goal is to define optimal decision surfaces
(of dimensionality n-1) that divide ®" into due class zones. A class is
formed by all those objects fulfilling certain criteria which define the class
itself. Each sample vector represents one of these objects, and each vector’s
component represents a criterion describing the class. The occurrence of a
class C; among the samples can be seen with the a priori probability P(C;),
where

S PC)=1.

For each sample vector x there exist m joint conditional densities p(x|C;),
each of which is the probability density function of input samples x belong-

52

{
i
H
{

ing to class C;. Using the Bayes’s rule [21] we obtain:

p(Cilx)p(x)

p(xIC;) = P(C,) ’

where p(x) = 372, p(x|C;)P(C;), and p(C;|x) is the a posteriori density.

In most real problems, the class distributions of the samples overlap,
and therefore the above classification decision is bound to commit errors:
every sample that belongs to class C; but falls into the neighbouring zone
will be counted as a misclassification.

If each classification decision is provided with equal weight, it can be
shown [22] that the average misclassification cost is minimised if for every
pair of “neighbouring” classes C; and C; the decision surface is analytically
defined by the following equation in x:

P(x|C:)P(C;) = p(x|C;)P(C;) - (3.46)

In other words, the optimal decision surfaces are defined by the crossings
of the class distributions.

There exist many traditional approaches to approximate class distribu-
tions on the basis of available samples. In the parametric methods, the
general form of the density function is fixed (e.g., multivariate normal dis-
tribution), and the class means and covariance matrices in the analytical
expressions are then estimated on the basis of training samples. An exam-
ple of a non-parametric method is the Parzen window method, in which
a fixed “kernel” is defined and centered around every training sample; the
“kernel” must be defined everywhere in ", and a multinormal distribution
is the usual choice.

The manner in which mapping Networks approximate functions can be
thought of as a generalisation of statistical regression analysis. In regression
analysis, the specific form of a function to be fitted to data is first chosen
and then fitting according to some error criterion (such as the mean squared
error) is carried out.

The primary advantage of mapping Networks over classical statistical
regression analysis is that Neural Networks have more general functional
forms available than the statistical methods can effectively deal with. Neu-
ral networks are free from dependency on linear superposition and orthog-
onal functions, which linear statistical regression approaches must use. In

53

linear statistical analysis the fitting functions can be non-linear functions
of the input data, but only linear functions of the parameters. On the other
hand, non-linear regression analysis resembles Neural Computing, because
the fitting functions can be non-linear functions of both the input data and
the parameters.

Enough experimental evidence has been gathered to state that mapping
Networks are, in general, comparable to the best non-linear statistical re-
gression approaches. The function approximations resulting from properly
applied mapping Networks (provided that a sufficient amount of training
data is available) are usually better than those provided by linear regression
techniques. This difference is particularly important in high-dimensional
spaces, where linear regression techniques often fail to produce an appro-
priate approximation.

54

Chapter 4

Event Classification in
Hadronic Decays of the ZY

In this chapter the problems related to the classification of the hadronic
decays of the Z° are discussed. Then, a solution based on a four-output
feed-forward Neural Network is described. Finally, a second solution based
on a hybrid-scheme Network will be presented. -

4.1 Introduction

As described in Section 1.3.1, a Z° boson can decay into a pair consisting
of an elementary particle and its antiparticle. Decays into different charged
lepton species are experimentally rather easy to distinguish, but the separa-
tion of the hadronic decays according to the quark flavour is rather difficult
because quarks cannot be observed as free particles.

In areaction e~et — Z° — qg five different quark-antiquark pairs
can be generated:

1. u% pair (up-quarks);
2. dd pair (down-quarks);
3. s3 pair (strange-quarks);

4. ct pair (charm-quarks);

55

5. bb pair (beauty-quarks).

The Standard Model predicts that the probability that the Z° boson decays
into a ¢g pair depends on the quark flavour in such a way that, in first
approximation, the relative hadronic branching fractions are:

Ty [0217 ifQ=-1
Ty 0175 ifQ=2

where I'y; is the partial width of the Z° into a ¢g pair, ' is the total
hadronic width of the Z°, and @ is the charge of the quark.

The experimental determination of the hadronic branching fractions
Fa/Th of the Z° is thus an important test of the Standard Model. In
particular, the partial width of the Z° into bb pairs is especially sensitive to
the top-quark mass.

The classification of the hadronic decays is problematic, because within
a time during which it is not possible to make any measurement, the original
qq pair fragments into jets of stable hadronic particles, hiding the nature of
the primary decay. Several techniques have been proposed to identify the
original quark flavour from the hadrons in the final state.

¢ High Transverse Momentum Leptons
Heavy quarks b and ¢ can be distinguished from light quarks u, d and
s, by analysing their semileptonic decays into electrons and muons.
The transverse momentum of the lepton with respect to the axis of
the quark jet increases with increasing quark mass.

By fitting the high transverse momentum (pr) part of the lepton
spectrum, one can measure the hadronic branching fractions of the
Z° into heavy quarks, times the probability that the hadrons pro-
duced by these quarks decay into a final state including a lepton.

¢ Impact Parameters
The b-quarks have a relatively long lifetime, so that many of the
hadrons produced in bb events decay at a rather large distance (sec-
ondary vertez) from the point in which the Z° is produced (primary
vertez). Therefore, the impact parameters of final state particles are
on the average larger in b-quark decays than in case of light quark

56

decays. From the distribution of the impact parameters, one can mea-
sure the partial width of the Z° into bb pairs ().

D** decay

The production rate of ¢¢ events can be derived by identifying charmed
mesons D** (and the charge conjugate particles) using the character-
istic decay chain D** — D%n*, where the pion has a low transverse
momentum with respect to the jet axis. The fraction of ¢¢ event can
also be measured on the basis of excess of low transverse momentum
pions.

Final State Radiation
The LEP measurements of the rate of the final state radiation from

~ ¢g pairs can be used to compute the relative probabilities of the Z° de-

cay into u- and d-type quarks. The absolute value of the charge of
the u-type quarks is double with respect to that of the d-type quarks,
and according to QED, the rate of production of photons is therefore
times four larger. If the combined production rate of % and dd pairs
can be measured by some other methods, then the final state radia-
tion can be used to calculate the individual rates of the light quarks.

Multidimensional Separation

As cited in Section 1.3.1, analysis algorithms are usually developed
with the aid of simulated data generated by Monte Carlo programs
reproducing all the statistical measures of the final state hadrons. The
topology of an event can be represented in a fairly detailed manner
through a set of event shape variables. The identification of flavours
can then be performed by mapping this set of variables onto a feature
space in which the different species are well separated.

The simplest method to realise this kind of multidimensional sepa-
ration is to use linear mapping [38). A more powerful probe can be
constructed by using non-linear Neural Network separators, in par-

ticular feed-forward Neural Networks [46,47].

57

4.2 Separation of Quark Flavours

The aim of this study is to develop a Neural Network program, which iden-
tifies the original flavour of a quark-antiquark pair produced in the decay
of a Z°. Such a Network can be considered as a filter, which implements a
pattern classification algorithm to an environment in which the objects to
be recognized are qg events. Each event belongs to one of four classes:

LV Y

. (uT+dd)* events class;

—

2. (83) events class;
3. (bb) events class;
4. (c¢) events class.

In the first stage of this study, it was tested whether topological prop-
erties of the event (i.e. properties related to the structure of multiparticle
production) can be used by a Neural Network to classify not only bb events,
but also s3, c¢ and (wu+dd)-unresolved events [41]. Four Feed-Forward
Neural Networks were constructed to identify each flavour independently,
and the robustness of the separation against a wide range of systematic
uncertainties related to the model-dependence of the classification was in-
vestigated.

A measurement of the hadronic branching fractions of the Z° was achieved
with the following errors:

Lyarda/Th = 0.417 £0.015(stat) 4+ 0.058(sys),
/T = 0.233 +0.016(stat) + 0.051(sys),
Te:/Th = 0.139 £ 0.010(stat) + 0.058(sys),
Ty/Th = 0.211 % 0.006(stat) + 0.020(sys).

i

H

The results are consistent with the Standard Model predictions.

In the next sections studies on two different kinds of Neural Networks
(one feed-forward and one hybrid) will be described, including the imple-
mentation of the Networks. The new Networks were designed to have four
output nodes to be able to classify any of the four event types in a single

1u% and dd separation is still unresolved

58

pass. We expect a single Network with four output nodes to be more ef-
ficient than the previous solution, and to take better care of correlations
between distributions. We also tried to construct a feed-forward Neural
Network with only two output nodes (in this case the output would be in-
terpreted as a binary number), but this method did not seem to be sufficient
to separate the flavours.

All the software packages were developed in FORTRAN 77 [56] which
is still the most widely used programming language in the High Energy
Physics software environment. The following software tools, developed in
the Computing and Networking Division of CERN, were used for analysis
and visualization of the obtained results:

e HBOOK [58], a subroutine package for handling statistical distribu-
tion analysis in a FORTRAN scientific computation environment;

o HPLOT [59], the HBOOK graphics interface;

o PAW [60], the Physical Analysis Workstation system for interactive
analysis of data mainly oriented to High Energy Physics applications.

4.3 Simulation of Events

The simulation was performed by utilising the JETSET 7.2 Parton Shower
Monte Carlo program (JETSET PS), which has proven after two years of
activity of LEP, to reproduce well the main features of the hadronic decays
of the Z° [9].

Charged particles fulfilling the followed criteria were used in the analy-
sis:

1. momentum p larger than 0.1 GeV/c;
2. measured track length above 50 cm;
3. polar angle 6 between 25° and 255°.

All particles were assumed to be pions.
Hadronic events were retained in the analysis if:

59

1. Each of the two hemispheres cosf < 0 and cosf > 0 contained a total
energy of the charged particles E; = T E; larger than 3 GeV,where
E; are the particle energies;

2. The total energy of the charged particles seen in both hemispheres
together exceeded 15 GeV;

3. there were at least 5 charged particles with momenta above 0.2 GeV/c;

4. The polar angle # of the sphericity axis was in the range 40° < 8 <
140°.

Two different sets of simulated data were used, each one composed of
about 100,000 events. One set was used for training the Network (training
set), and the other one was used for testing the Network with patterns
which it had never seen before (festing set). In this way it was possible to
measure the Network’s ability to generalize.

4.4 Choice of the Discriminating Variables

Each input pattern supplied to the Network was described by 23 variables.
Their choice came from examination of the literature, and from a study of
flavour-dependent distributions based on the JETSET PS program. The
particles in the event were clustered in jets according to the JADE/EQ
algorithm [45], with y.: = 0.05. In the following, the most energetic jet
will be called “first jet”, indicated by the superscript (f); the second most
energetic jet will be called “second jet”, indicated by the superscript (s).
The description of the variables follows.

1. The sphericity () of the first jet, calculated after a boost 8 = 0.96
along its axis. The axis of the jet was defined by the sum of the
momenta of the particles belonging to it.

2. The directed sphericity 55;’3,4 of the four most energetic particles in
the first jet. For a set of @ tracks in a jet, this variable is defined as

So = 2P
Yolp I

60

6..9.

10..13.

14.

15.

16.

17.

18.

19.

where the | 7 |'s are the momenta in the rest frame of the set Q
and the pi’s are their components perpendicular to the original jet
direction in the laboratory frame.

. The directed sphericity S{2),.

f)

. The invariant mass M1(234 of the four most energetic particles in the

first jet.

. The invariant mass Ml(.;:g,,4 of the four most energetic particles in the

second jet.

The products of the homologue direct sphericities for triplets of par-

ticles in the first and second jet, Sgk) X ,(;,2

The products of the homologue invariant masses for triplets of parti-

cles in the first and second jet, Mi(;? X f;,z .

The momentum of the slowest pion in the first jet, after a boost along
the jet axis corresponding to a D* energy equal to one half of the beam
energy.

The momentum of the slowest pion in the second jet, with the same
parametrisation as in 14.

The momentum | 7| of the most energetic K° in the event (0 if no
kaons reconstructed).

The momentum component perpendicular to the axis of the nearest
jet [p| of the most energetic K° in the event (0 if no kaons recon-
structed).

The sum over the jets of the ratios between the momentum of the
leading particle and the momentum of the jet.

Sum of the track impact parameters, each one scaled by the error.
Tracks with impact parameters greater than 2 mm are omitted be-
cause they are likely to come from secondary decays like K° and A.

61

20. Charge flow (Qs — Q). The event is divided in two hemispheres by
the thrust axis, and the axis is oriented so that it is pointing always
to the forward hemisphere (polar angle < 90°). The charge in the
forward (backward) hemisphere is calculated by weighting the charge
of each track by its momentum and dividing the weighted sum of
charges by the sum of the absolute values of the track momenta, i.e.

Q; = M
Xs Pl
for all tracks in the forward hemisphere. This variable is sensitive to

the quark charge, and the asymmetry of the quark polar angle (due
to quark electroweak couplings).

21. Sum of the absolute values of the charges of the two most energetic
jets, weighted by the momenta in the same way as in 19. This variable
is sensitive to the quark charge.

22. Absolute momentum | 5’| of the most energetic lepton (0 if no leptons
are reconstructed). The lepton can be a muon or an electron.

23. |pi| of the most energetic lepton with respect to the closest jet.

All variables were rebinned in such a way that they were ranging from 0 to
1. An example of the sensitivity of a single variable to b-quarks is shown
in Fig. 4.1.

62

;
[
i
{
i

VARIABLE 19

0.14

0.12

0.1

0.08

0.06

0.04

0.02

Figure 4.1: Scaled impact parameter sum for bb (polymarker line) and

non-bb (solid line) events.

63

4.5 Measurement of the Performance of the
Networks

Each event corresponds to one input pattern and is composed of 23 variables
describing the shape and the particle contents of the event. In the simulated
training data, an additional variable, the target of the event, was included.
This variable was a real value k*, where 1 < |k*| < 5, and |k*| was the

: LS. LR IS . DU SR T .
integer part of k¥, indicating the flavour associated to the input pattern:

| [k#] | event flavour |

1 u¥ event
2 dd event
3 s8 event
4 cc¢ event
5 bb event

The target value is necessary for calculating the error (§) signals in the back-
propagation learning algorithm. The true answer also gives a quantitative
measure of the Network performance, when comparing this to the Network
output after every input pattern.

We define three different measures for quantifying the general Network
performance during both training and testing phase: (a) the signal effi-
ciency; (b) the background rejection and (c) the purity.

o The signal efficiency is the rate of correct classifications performed
by the Network, and can be defined as:

e

eq - N ’ (4'1)
q

where N, is the total number of patterns given as input to the Network
labelled as flavour ¢, while N, 4 is the number of patterns of this flavour
correctly classified by the Network.

64

¢ As background we consider the complement set of input patterns to
flavour ¢ (Np,). The background rejection can be defined as:

a

i B
po=1- g 4.2
q 1 N .] ()

where Ngq is the number of input patterns wrongly labelled as g. The

rejection will represent the rate of input patterns correctly rejected by
f]'le T\Infvnnr]r e hoslronas.

-
e irwvan o ua»ns:.vu.uu

¢ The Purity can be interpreted as the rate of “genuine” input patterns
labelled as g versus the total number of input patterns classified as L

a
Nq €q

- = 4.3
P N:+Nl°3, €q+(1“Pq)R’ (43)

where R = Np_/N,.

In order to obtain a good classification with the Network, these three
parameters must be maximised.

4.6 The Back-Propagation Neural Network
Solution

In this Section we will be describe the realisation of a feed-forward Neural
Network capable of performing a good mapping F:P C ®2 — F C b
related to the classification problem presented above.

In the next subsection, we will explain the choice of the Network ar-
chitecture, and describe how the involved problems were solved. In Sec-
tion 4.6.2, the different training strategies adopted in order to obtain the
best performance will be discussed, and then the results obtained after this
first processing phase will be presented. Finally, in Section 4.6. 3, the testing
phase will be described and the final results will be presented.

4.6.1 The Neural Network Architecture

The choice of the Network architecture is a nontrivial problem. It has
been shown that the performance of the Networks change considerably

65

when using different Network architectures. On the other hand, one of our
purposes was to construct an economic Network with the smallest possible
structure, in terms of number of units. In fact, it has been proved that
in order to realise the best possible topology of the input space within the
internal representation of the Network, one has to limit the number of total
connections appropriately.

Many attempts were made in order to find the exact number of hid-
den nodes, starting from structures with more than one hidden layer to
structures with only 5 hidden units.

The Input Layer

There are 23 variables describing the input pattern, each one of them as-
signed as input to one of the input nodes. The input layer consists of 23
neurons or fan-in units that have a linear transfer function given by the
identity function. Unique rule of these units is to distribute the variables
constituting the input pattern z belonging to the pattern space P, to the
subsequent layers of the Network.

The Necessary Number of Hidden Layers

As discussed in Section 3.2.6, it has been proved that only one hidden layer
is sufficient to approximate any continuous function. A Network with more
than one hidden layer is capable of separating any classes and therefore it
may well permit a solution to the current problem.

Studies made by Lippmann [26] in 1987 demonstrate that the number
of nodes in the second hidden layer (i.e., the one nearest to the output
layer), must be greater than one, but generally lower than the number
of units in the first hidden and input layer. Several two-layered Networks
with pyramid-like structure (see Fig. 4.2) were tested, but none of them was
- found profitable. Performance obtained with these Networks was compara-
ble with that obtained with the best one-layered one, but never better. On
the contrary, it was found that a Network with two hidden layers reached
a stable configuration in a more difficult way than a one-layered Network,
slowing down the learning process. Therefore it was found reasonable to
limit the number of hidden layers to one.

66

‘
i
¢
t

(a))

Figure 4.2: General pyramid structures of layered- Networks.

The Number of Hidden'Units

¢ In a first stage of the Network structure study, it was found useful

to use a pruning procedure in order to reduce the number of hid-
den nodes. Starting with a large number of hidden units (~50), the
weights updating was performed by using the equation:

new — (1 _ GJ,)wOId

where ¢;; is given by
I L
€J1 (1 + w2 2 b
tuning 7 in such a way that it is incremented (y — v + v) whenever
the function error value decreases with a very small value of v.

This updating rule has the effect that small weights decay more
rapidly than large ones. Using a pruning procedure that disables all
the neurons having no connections with absolute weight value greater
than a fixed small threshold (0.1, in our case), it is possible to reduce
the number of hidden neurons, and obtain a Network containing only
the necessary weights needed to represent the problem.

67

o .. M‘ ' b_'*\ﬁs%& .. v” “.-' : B
s o
,»x%g» 3‘" @ % ‘;h i",@“% X w “‘gﬁw %

“\\\\\ \ AW \ \\\\\\ N\ \& \\\\\ _\\\\\\\ \\\\\ﬁ{ \\\\\ b \\\\ 7 é\ \\\ 2 A "’/r B ,,, '07//, %,' ,’ .I' I/{,}, QII//,,/,," 1) « , iy I 7

??????@'@@P?@@@@ PPEPRY

93

Figure 4.3: The structural configuration of the consiructed Neural Network.

Using pruning it was possible to reduce the number of hidden neurons
to 23, starting from a configuration of 50 nodes. Problems arose
from the fact that this procedure seemed to keep into account only
partially the general Network efficiencies needed for a fine tuning of
the v parameter.

¢ In a second stage, one-layered Networks with hidden nodes varying
from 5 to 23 were studied. Structures with 15 and 9 hidden nodes were
found to perform better than the others, so they were studied closer.
The architecture with the smallest number of nodes was chosen and
the final Network structure is represented in Fig. 4.3.

68

The Output Layer

The output layer of the Network consists of four neurons, each one asso-
ciated with a flavour category (see Fig. 4.3). For every input pattern pre-
sented to the Network, the four output nodes produce four real numbers
as result of the sigmoid transfer function associated to them. The Network
output is then interpreted by using the winner takes it all technique: the
flavour of the event is interpreted to be the one, the node of which gives

4.6.2 The Training Phase

The training phase of the Network was performed with a set of 86,990 sim-
ulated Z° decays into ¢§ pairs in the proportions predicted by the Standard
Model. The training set was composed by an equal number of patterns
for each flavour type. This choice improves the classification, due to the
fact that the back-propagation algorithm tries to minimise the error on the
entire training set. If the number of patterns is not equal, the Network will
concentrate on the classification of the flavour which occurs more frequently
than the others.

If the teaching data is divided into too small parts, this may lead into
overlearning of the most recent events and into forgetting the previous
ones. Consequently, if we choose an epoch to consist of all the data we
have got, the learning process does not favour any particular event and
the Network is able to represent the desired classification function. The
entire training process should therefore be divided into a defined number
of sessions (training epochs). During each of them, the whole training set
is filtered by the Network.

The Input Data

During the learning process, the representation of the input data is an
important aspect. Improvements in Network’s generalisation ability can be
obtained by addition of noise, and this can be performed by choosing the
input patterns in a random order from the training set.

69

The Sigmoid Functions and the Bias Value

The function computed by each neuron jin the Network can be summarised
by the following expression:

T =1
%= { g (S0 w0l - 9;) if1=2,..,L (4.4)

i=1 i

where Oi(l—l) denotes the output of the i-th neuron of layer I — 1, w; is
the connection strength between the i-th neuron of layer { — 1 and the j-th
neuron of layer /, and ¢ is the sigmoid or activation function.

Sigmoid functions used for our purpose are

1
g(z) = e (4.5)
or
g(z) = }-(1 + tanh 3) (4.6)
2 T’

where g : ® — [0,1] (see Fig. 4.4(a)). It is also possible to use a different

activation function a:
g(z) = tanh T (4.7)

where g : ® — [—1,1] (see Fig. 4.4(b)). The output range is now from -1
to 1 for each hidden and output unit. In all cases, the output cannot reach
its extreme values without infinitely large weights.

The threshold or BIAS value ©; in (4.4) is represented in the Network by
an auxiliary bias-unit with a constant output & connected to every hidden
and output unit:

9_7‘ = Wjo * €o »
where wjo is the strength of the connection between unit j and the BIAS-
unit. It behaves as an adaptive threshold-unit, changing its value © accord-
ing to the weights updating during the learning process. We can rewrite
equation (4.4) for unit j in layer ! (with ! > 1), as

oV =g (Z— w;; 081 — @j) =g (Y; wjiO?-l)) ’ (4.8)

=1 =0

where O™ = ¢ is a constant real value (BIAS).

70

-

Figure 4.4: (a) Sigmoid function for units with output ranging from 0 to 1;
(b) Sigmoid function for units with output ranging from -1 to 1.

Error Functions

Given a set of input pattern vectors ¢, together with associated target
values ¢, the back propagation learning algorithm attempts to adjust the
weights in order to minimise the error E to achieve these target values.
Several types of error functions can be used, depending also on the transfer
function associated to each processing element. The most commonly used
error function is the quadratic cost measure

E=Y E,= %Z(gf - 0%), (4.9)

in

where O is the output of the j-th node when ¢ is presented as input.

This error function has not been the only one used to train the Network.
It is possible to replace the (¢¥ — O%)? factor in (4.9) by any other differ-
entiable function F((},0%) that can be minimised when its arguments are
equal, and then derive a corresponding update rule.

¢ The Entropic Error

Considering that CJ“ can be only 0 or 1, let fJ(é,é) be the prediction of

71

the probability of ¢}’ given the input vector £, where 0 is a set of param-
eters determined by our learning algorithm. In the Neural Network case,
the 0 are the connection weights, and ‘

fi(éﬂ,é) = fj(é“, {wj}) = 0% .

Now lacking a priori knowledge of good § = {w;;}, the best one can do is

to choose the parameters 6 to maximise the likelihood that the given set of
patterns should have occurred [21]. The formula for this likelihood p, is:

p=II| IT 0 II a-0%)),

oGy T GIcE=0)

or

log(p) =3_| > log(0%) > log(1-0j)

& [Gicr=13 {ilcE=0}

Applying this last expression to the case, where the (¢ are probabilities
taking values [0,1], yields

log (p) = 3 [¢41og (O%) + (1 — ¢¥)log (1 - 0%)] . (4.10)
Ju
This kind of expressions often arise in physics and information theory and

are generally interpreted as entropy measures.
The entropy error function can be defined as

E = —log(p) - (4.11)

This measure has a natural interpretation in terms of learning the correct
probabilities of a set of hypotheses represented by the output units. The
advantage is, qualitatively, that the error function diverges if the output
of one unit saturates at the wrong extreme. The quadratic measure (4.9)
approaches a constant in this case, and therefore the learning can float
around on a relatively flat plateau of F for a long time.

The back-propagation algorithm is now generalised from minimising
the error to maximising the entropy or log-likelihood function. Direct dif-
ferentiation shows that only the expression (3.15) for error §-signals in the

72

output layer changes, all the other equations of back-propagation remain
unchanged.

Using the equation (4.5) as the activation function, the output for each
neuron j for the input pattern p is given by

1
0% = g(net!) = e (4.12)
where T is the noise parameter or temperature
The derivative with respect to this unit, is
1 e—ﬂet;‘/T
' A
g'(netf) = T (11 oy (4.13)
1
= —j;g(net;-‘)(l — g(net?))
1
= F05(1-0%). (4.14)

Differentiating the entropy cost function with respect to Of, we obtain:

OE, C.:‘ — O;"

60¢ =~ 0K - 07

(4.15)

Then, substituting (4.14) and (4.15) in the equation of 8% of the output
layer:

=505
j
which is a simple linear function of inputs and outputs.
The use of the entropy measure has been shown to be appropriate if
- the training set data are probabilistic or fuzzy as in our case. It also has
seemed to speed up the learning process.

g'(netf) = %(C,’-‘ -05), (4.16)

& The Asymmetric Error

If 1 identifies the hidden or output layer and n is the number of nodes
belonging to that layer, then we can represent the activation of node j on

73

layer I referred to the input pattern u as z;:_, where 1 < j < n. Using the
sigmoid function

zy. [T
el
O;: =!]($l”$l”-..,zl",T) = W s (417)
=
a suitable error function for this representation can be:
‘¢
)
E =) (log 0—’,, , (4.18)
Ju J

called the asymmetric function or Kullback measure and giving the same
error § signal (4.16) as the entropic function, besides a constant factor.

Using this measure, each unit keeps into account the information related
to all nodes in the entire layer to which it belongs. The Network performs
its learning by considering the correlations existing among all data in a
more detailed manner.

With the use of this error function, the performance is comparable to
that achieved with the quadratic measure (4.9).

{$ Other Error Measures

Several alternative error functions have been studied, in order to find the
one which could represent the best possible surface on which to perform the
gradient descent. It has been shown that none of the following measures
improves the learning.

For the sake of completeness, they will be briefly described.

e The quadratic cost function can be generalised in a non-Euclidean
metric, in such a way that:

1
BE=_3(0f-¢tI), © (419)

where 7 € R is the power value. Then, for the error §:

8% =| O% — ¢4 "™ O(1 — 0%)g!(net")sgn(0% — (¥) (4.20)

74

For r = 2 the expression is equivalent to the standard back-propagation
model.

It has been proved [50] that noise in the target domain may be re-
duced by using power values less than 2 in such a way that the error
function will tend to model non-gaussian distributions where the tails
of the distributions are more pronounced than in the gaussian. On
the other hand, the sensitivity of partition planes to the geometry of

4‘]’\6 nrahlam g ;hr\i\nasar] with incrascing nawar valnac
vii PALUVITILL 10 JEVLITADLU YiviE 2ULTIVROIUE PUTTLL vaiuvo.

Another approach is to change the ((} — Of) term from the standard
equation (3.15) of &%, increasing the 6% when | ¢} — O% | becomes
large, as:

1
& = arctan'hé-(c;-‘ -0%). (4.21)

This rule must be used with activation function (4.7), with a range
from -1 to +1 for each hidden and output neuron. In this case, 65 —
oo when 0% — —(}.

In order to improve the separation, it has been tried to strengthen the
standard quadratic error measure by adding an extra penalty term of
higher order:

E = %Z [((;.‘ - 0% + (Q%ﬁ) h} , (4.22)

ju

where s is a small real value and n > 1 is an integer.

Updating of the Weights

The weights in the Network are initialised with small random values in
the range of [-0.1,0.1]. It has been observed that an initialisation with low
values speeds up the learning process, especially in cases where the input
signals are quite different in magnitude.

The weights are then computed according to the generalised delta-rule

discussed in Section 3.2.4:

oF
Awji(t +1) = —n5 —
71

+ aAw,-,-(t) . (423)

5

The updating of the weights is performed after every fixed number of train-
ing passes. This is due to the fact that, in most cases, consequent positive
and negative contributions in the weight changes may confuse the learning
process of the Network. It is profitable for the updating to use the cumu-
lative error from a fixed number of input patterns, in order to smooth out
possible fluctuations.

The updating frequency was fixed to be every 10 input patterns; de-
creasing this frequency makes the learning more difficult.

A different updating rule was also tried, using a wider update frequency:

OF
Awj(t+1) = —n-sgn (aw,-,-) . (4.24)

Using this method, the magnitude of the gradient of the error measure with
respect to the weights does not matter, but only the sign of the gradient
is used to determine the direction of the constant change for each weight.
No improvement could be detected, and the mean error did not change
considerably during the teaching phase.

Updating of the Parameters

After each training epoch it is possible to change the values of the three
parameters 7, « and T involved in the Network learning process.

As discussed in Section 3.2.4, 5 is the learning strength parameter and
represents the gradient descent step size, while « is the momentum coeffi-
cient whose task is to speed up the learning process and dump out possible
oscillations in the gradient descent. Tuning of these two parameters is es-
sential to assure learning stability. Ideally, at the beginning of learning,
weights’ changes should be large and should decrease as learning proceeds.
Since the larger 7 the larger the changes of the weights, 5 should be reduced
as the learning proceeds. On the other hand, a should be increased in order
to avoid awkward oscillations.

The temperature T' is a measure of stochasticity in the gradient descent
process. Too low values of T obstruct Network’s learning, since the sigmoid
function appears as a threshold step function. Also this parameter can be
decreased as learning proceeds, starting from a high value.

Systematic updating of these parameters can be performed in two dif-
ferent ways:

76

Llrp [T [k]
n | 0.05 | 0.0001 | 0.0
a| 04| 09 |014
T|30]| 08 |01

Table 4.1: Set values for n, @ and T.

* aslinear updating - that is, at every learning epoch each parameter
will be decreased or increased by a suitable constant, until the defined
limit is reached.

¢ as geometric updating - each parameter p will be changed geomet-
rically as learning proceeds starting from an initial value po:

L *
Pty1 =Pt €&, € = y (4-25)
Dt

where I, € R is the lower or upper limit for parameter p, and k, is a
real constant value adapted to parameter p.

In table 4.1 all the parameter features are presented. The temperature of
the Network was varied systematically from 3.0 to 0.8 (the upper and lower
Limits; out of this range the Network performance was negatively affected),
but the update of T during learning has found to be not convenient. The
problem was to find the suitable value of T for each flavour classification ~ it
was found, for example, that increasing the temperature the bb classification
improved but the s¥ and (u@+dd) deteriorated.

It was also tried to use different temperatures in the hidden and output
layers, fixing a higher value in the hidden layer in order to reduce noise in
the final classification stage. The best results were obtained, however, by
fixing T to 2.0 as a unique value during the entire training process.

On the other hand, parameters n and o were geometrically modified as
learning proceeded. Their update process was temporarily stopped when-
ever at the end of every learning epoch the mean error value increased.

7

Approximate performance level of network
in operational environment if training is stopped
Approximate performance level of network in
/ operational environment if training is not stopped

Flralmng test set

min

F
training set

' Number of
Stop training here training cycles

Figure 4.5: Training set error vs. test set error as a function of the number
of training epochs. This illustrates the phenomenon of overtraining.

Overtraining

At every learning step, an indication of the performance of the Network can
be inferred from the mean error function value. A plot of the evolution of
this function must show a decreasing behaviour; if the evolution stabilises
at a plateau value, it indicates a learning convergence or a local minimum.
In the last case it is possible to “jump” out the local minimum, adding
noise into the system or drastically resetting the learning parameters and
starting again the training (we can call this, reset-mode training).

An unexpected and peculiar phenomenon occurring with feed-forward
Networks using back-propagation algorithm is overtraining (see Fig. 4.5).

This interesting phenomenon can be observed by looking at the mean error

function plots in the training phase and in the testing phase together as
learning proceeds. Typically, the error of the Network as measured using
the training set constantly decreases, while the test set error decreases for
a while and then begins to increase. The source of this problem seems
to be related to the manner in which the Network forms its mapping ap-
proximation. As learning progresses there is almost always an intermediate
stage at which the Network approximation reaches a good balance between
accurately fitting the training patterns and yet still exhibiting a reasonably

78

good interpolation capability between these examples. It is typically at this
intermediate point that the training should be stopped.

The overtraining problem can be solved by performing a testing phase
after every fixed number of training epochs and checking the mean test set
error value E". One can stop training or save the Network configuration
when E" reaches its minimum (check-mode training). The learning will
be slowed down, but in this way we will obtain a more reliable performance

of the Network.

Training Results

The study of the Network performance led us to use a fixed value of 2.0 for
the temperature T, while 7 and o were geometrically updated as learning
proceeded (parameter values are summarised in table 4.1). The selected
error function was the entropic error function.

Training was performed in the reset-mode for a total of 1,000 iterations
or training epochs, to ensure a true convergence of the Network. The be-
haviour of the error function is illustrated in Fig. 4.6(a). Then the Network
was trained in the check mode for a total of 200 iterations, saving the best
configuration defined by the test check. The error function behaviour is
illustrated in Fig. 4.6(b).

In Fig. 4.7 the signal (solid line) and background (dotted line) efficien-
cies are plotted for each of the four classes as a function of the number
of the training epochs. A good classification is achieved when the signal
efficiency (¢,) is represented by an increasing function and correspondingly,
the background efficiency (ep, = 1 — p,) is a decreasing function. One
can observe a good performance for bb events, while a strong correlation
between (u@+dd) and 53 events is visible.

In table 4.2 the Network performance is summarised in terms of effi-
ctency, background rejection and purity at the end of learning.

4.6.3 Testing Phase and Results

The testing phase of the Network was performed by using a different set
of simulated events (testing set), never seen before by the Network. The
Network with a weight configuration previously generated during a training
phase was tested on the new test set and its real performance was evaluated.

79

ERRORS

Error

035

0.3

0.25

02 —

015 —

01

0.05

L O SO

B e N S P SO

...

B LE L L LT T T T T TR PP SRR NP PPPEPPPR TSP I

025 Foom

0.2 ;..
015
005 |-

25 50 75 100 125 150 175 200
Epochs
(b)

Figure 4.6: The value of the error function as a function of the num-
ber of training epochs. (a) Reset-mode training on 1,000 iterations; (b)

Check-m

ode training on 200 iterations.

80

EFFICIENCIES
8 o
& 05 |- g -
g - g 0.28
& = W
] i I
04 |- 0.4 |
- 02 |-
03 i
i 0.16 |
0z |- 012 |
i 0.08 |-
o1 |- ¥
I 004
o-llll'llli'llll'lill Lllll'illl‘llllll[l
50 100 150 200 50 100 150 200
Epochs Epochs
. UD EFFICIENCY S EFFICIENCY
! v F = 08 F
g 0.4 :- g i
o N ‘S
2 (“fv_w'«m g o1 [
035 | s :
- 06
03 [¥
| s -
i - 05 -
025 | X
i 4
LU 2 OO 0 C
015 | 03
o1 E 02 |
005 |- 01 |
0 -l 1 1 2 I | T . I 1t ¢ I N S S 3 0 _I } - I 3.1 1t l 11 1 1 I i1 1
50 100 150 200 50 100 150 200
Epochs Epochs
C EFFICIENCY B EFFICIENCY

Figure 4.7: Signal (solid line) and Background (dashed line) efficiencies as
a function of the number of the training epochs for all flavours.

81

[Training] € l Pq I p l
(vu+dd) | 46.6 % | 76.4 % | 39.7 %
s3 279 % | 86.1 % | 40.1 %
ce 38.7% | 81.0 % | 40.4 %
bb 73.1 % | 85.2 % | 62.3 %

Table 4.2: Network performance after training.

The results presented here were obtained during a test session after a check-
mode training of 200 iterations.

In Fig. 4.8 the output distributions of the desired winner nodes for
each flavour are represented. Signal distributions are shown by the dotted
line, while background distributions are described by the solid lines. A
good classification is visible as a clear shape separation. The best results
are obtained for bb classification. Also in this plot the strong correlation
between the light quark shapes can be observed.

Plots in Fig. 4.8 cannot be considered as the real representation of the
output distributions for each flavour, because they refer only to the winner
nodes, and do not show the information related to the others. It is quite
difficult have a precise graphic representation of distributions in a four-
dimensional space.

It is, however, possible to obtain a more realistic representation of the
Network performance by plotting the number of events as a function of the
difference between the desired winner node output and the highest output
of the remaining output nodes (Fig. 4.9). If the winner node corresponds to
the desired one, the difference will be positive, otherwise it will be negative
denoting a wrong classification by the Network. From this plot it is also
possible to obtain signal efficiencies by estimating the ratio between the
integrated area from 0 to 1 and the global integrated area:

_ Befa)da
e ffl c(z)dz ’

where c, is the shape associated to the g-flavour distribution.

In Table 4.3 the final Network performance is summarised in terms of

82

Entries

0.02

g 0 ?:| 1.1 .1 i) S | Lot i 1.1 1t 0 -:I t.L i 11 1 1 i l‘~ - | i I S S |
0 025 05 075 1 0 025 05 075 1
Output Output
| UD DISTRIBUTION S DISTRIBUTION
g . g F
i E 0.09 R R E 02 TR A FUUIURURTUTS JRURRRUOON
w N ud C
0.08 SR JUR VOIS HUTOIOORUE PSRRI C
s LT e
007
: 0.15 ...
006
: 0}‘25 ...
S 005
2 0.0 [F-domd s
0.04 ,-_ ..
, : 0.075 fl--rdormerrmdiomecnmrrsss e e
, 0.03 -
002 [0.05
! 001 Fdoobo\e E SO 0.025
0--L"LLIlill)lll““"'-[illl! 0"!111 F IS T I | ‘
0 025 05 0I5 1 0 025 05 075 1
Output Output
C DISTRIBUTION B DISTRIBUTION
Figure 4.8: Qutput distributions of the desired winner nodes. Signal (dotted
line) and Background (solid line) distribution areas have been normalized

to unity.

83

NETWORK PERFORMANCE

Entries

0.2

0.16

B M N
i

0.12 | I —

0.08 IS W — H—

.-

O 1ot - i i||||jxlllljl| -.i"-i.ijllilL'\L
-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

Difference

Figure 4.9: Distributions of the difference between the output of the desired
winner node and the output of the node among the rest having biggest value.
The areas have been normalized to unity.

84

| Testing | e, | p, | p]
(ua+dd) | 44.9 % | 71.8 % | 55.8 %
s3 284 % |1 83.0% | 31.4%
ce 36.0% | 81.7% | 29.7 %
bb 75.7% | 85.5 % | 60.1 %

Table 4.3: The final Network performance.
signal efficiency, background rejection and purity.

4.6.4 Use of Multivariate Discriminant Analysis

At the end of each testing phase, the Network outputs for input patterns
and their respective targets were collected and then used to obtain a mea-
sure of the prototype distributions for each flavour. The Network architec-
ture and configuration was tested on a set of simulated patterns, consist-
ing of 73,691 Z° decays, and it was tried whether one could measure the
hadronic branching fractions of the Z° boson in this simulated test sample.

The results were obtained by minimising a x2 measure of the discrepancy
between the four flavour densities from simulated Monte Carlo data and
the test data in a four-dimensional hypercube. The technique [63] involves
Multivariate Discriminant Analysis, using an optimisation algorithm to fit
a discriminant surface between the events of one flavour and all the others.
This have been done four times, one for each flavour, leading to the following
results:

Tuorag/Th = 0.421+0.013 +0.015
Lys/Th 0.173 4+ 0.011 + 0.007
Te/Tx 0.178 + 0.006 + 0.003
Iy/Th = 0.227 4 0.003 + 0.0009

I

1

These values are consistent with the input values in the Monte Carlo model
used. '

85

Supervised

Unsupervised

Figure 4.10: A general hybrid learning Network scheme.

4.7 The Counter-Propagation Neural Net-
work Solution

Combining supervised and unsupervised learning in the same Network can
be useful for some problems. The general idea is to have one layer that
learns in a unsupervised way, followed by one (or more) layers trained by
back-propagation or any other kind of supervised learning method (see
Fig. 4.10). Networks of this kind are called hybrid Neural Networks.

In a self-organising Neural Network the only available information is
given by correlations in the input data. In the previous Section, we saw that
the implemented feed-forward Neural Network had difficulties in separating
the light quarks due to the strong correlations between these classes, and
therefore it is interesting to analyse if a hybrid Network is able to perform
better in classifying light quarks. The hybrid schemes are not optimal in
the sense that back-propagation is, since the hidden layer responses are not
optimised with respect to the output performance. It can be anticipated
that more hidden units are needed in order to get comparable results.

Many applications of hybrid Networks have been investigated, including
pattern classification, data compression, statistical analysis and function
approximation. The greatest appeal of these Networks is their speed: for
a given problem the training is typically a factor of 10-100 times faster
than for conventional back-propagation Networks, with comparable re-

86

sults. Moreover, they do not suffer of problems like “overtraining” in
back-propagation Networks, so in principle they can be trained with an
unlimited number of learnings, reaching a very stable final configuration.

4.7.1 The Neural Network Architecture

By combining a portion of a self-organising map (Section 3.3.3) and an
instar/outstar structure of a Filter-Network (Section 3.4), a new type of
mapping Neural Network is obtained.

The topology of a full counter-propagation Network is presented in
Fig. 4.11. Input vectors f and associated target vectors are entered at op-
posite ends of the Network. The inputs propagate through the Network in
opposite directions in a counterflow arrangement (thus the name “counter-
propagation”) producing output vectors O' and O” that are approximations
of £ and ¢. . ’

The Network is designed to approximate a continuous function F :
ACR" — B CR™ , defined on a compact set A. It is assumed that the
§ input vectors are drawn according to a fixed probability density function
p(£)-

We will consider a forward-only variant of the counter-propagation Net-
work (see Fig. 4.12), that consists of three layers:

1. Input Layer: contains n fan-in units each assigned to one variable
of the input pattern {*, and m units corresponding to the associated
target vector (¥ (one unit for each component of the target vector).

2. Kohonen Layer: contains N processing elements performing a Ko-
honen feature mapping. They can be represented as a bidimensional
array X Y (N = X . Y), defining a plane on which to perform a
topological interpretation of input distributions.

3. Grossberg Layer: contains m output units, each receiving connec-
tions from the units in the Kohonen layer and a connection from the
respective component in the target vector f #. The output vector can
be considered as the the Network approximation of the target vector.

87

Figure 4.11: Topology of the full counter-propagation Neural Network.

4.7.2 The Network Training

During training the Network is exposed to patterns of the mapping F. After
each £# is selected, O* = F| (é“) is determined. Qutput values of the second
layer are computed by performing a competition among all the units z;
according to the Kohonen learning law (1 < j < N). For every input
pattern p, only one of the units (the winner) in the second layer will take
the output value 1, the others will be set to 0. The output layer of the -
Network receives the z-signals from the second layer and the components
of the target vector associated to the input vector £¥.

The connection weights between the first and the second layer are up-
dated according to the Kohonen learning law: only the winning unit and
the units belonging to a defined neighbourhood H of the winner have their

88

Layer 3
Grossberg
layer

Layer 2
Kohonen
layer

Layer 1
input
units

Figure 4.12: The forward-only counter-propagation Network architecture.

weights modified.

If we define I; to be the set of weights associated to the connections
between first and second layer, and I, the set of weights associated to
the connections between second and third layer, we can write the learning
algorithm for the counter-propagation Neural Network as a step-by-step
procedure:

1. Initialise the weights w;; in set I; with small random values and assign
the weights u;; in set I, to 1.

2. Initialise the Network parameters by defining the initial value of the
learning parameter 7 and the size of the neighbourhood zone H.

3. Present a pattern u to the Network as an input vector:

~

SN N

89

10.

For each node j in the Kohonen-layer, compute the distance between
the input vector components and the weights wj; assigned to node j

as
n

D; =3 (& —wi*)? . (4.26)

=1

Select the winner node j* as the node having the lowest distance Djs:
Dj» < D; Vj, 1 <j<N. Define output values 2% for all the units
J in the Kohonen-layer as:

Lity=j5" (4.27)

2 =
J 0 otherwise

Compute output values O} in Grossberg layer as:
X i
k=D upe (4.28)

j=1

Select the winner node in the output layer by utilising the “winner
takes it all” technique.

Update the weights of the set I; by using:

wif = wi + m()(E —wE) , Vi€ Hp() (4.29)

Ji ji

For each unit % in the output layer, update the weights of the set I,
by using:
ups? = ugf +ma(—udd + ¢E)2 (4.30)

Goto step 3.

H;.(t) is the neighbour zone defined around the winner unit j* at time ¢,
7(t) is the learning parameter for the Kohonen layer at time #, and 7, is
the step parameter for the output layer.

H;.(t) and n:(t) are geometrically modified as the learning proceeds
(i.e., t increases):

771(t) = Tmin + 77'l'n.a.a;e‘_t/T1 ’ T1 = g s (4.31)

90

where p is the learning set dimension (number of total input patterns).
Nmin < M(t) < Nmin + Pmae, the learning parameter will be reduced as t
increases. Hj«(t) is defined as a square centered around the node j* with
side 2 - [(¢) that will be reduced as the learning proceeds:

1(t) = lnin + lmaze ™™, Ty = 35’3 , (4.32)
where l,in < () < lnin + lnee- If N = Nx - Ny is the total number of
units in the second layer (a bidimensional matrix with Nx rows and Ny
columns), we take o = TM

After a large number of training inputs, the w; vectors will arrange
themselves in ®” in such a way that they are approximately equiprobable
with respect to ¢ input vectors. Once the Kohonen layer has equilibrated,
the units in the third (output) layer begin to learn the averages v; of the
target vectors C associated with each weight vector w;. In particular, after
sufficient training, the Network will produce a vector v; = (1}, Uzjy .-e Um;)
whenever the processing element j wins the competition in the second layer.
v; vectors will equilibrate by using small values of the step parameter 7.

The training phase of the counter-propagation Neural Network is per-
formed in two stages (differentiated training):

1. Kohonen layer learning only: updating is performed only on weights
belonging to I, while units in the Grossberg’s layer are disabled. This
partial training is continued until the Kohonen layer has equilibrated
with equiprobable weights.

2. Full learning: Units in the Grossberg’s layer are enabled and the
updating of weights is extended to those of set I,.

4.7.3 Use of the Network and Results

Once the training phase has been completed, the Network functions exactly
as a nearest-match lookup table. The input £* to the Network is compared
with weight vectors w; to find the closest match w;, and the output vector
v; associated to w; is emitted.

Compared to other mapping Networks, the counter-propagation Net-
work requires orders of magnitude less training trials to achieve its best
performance. Its power is the capability of displaying typical features of

91

L_m | ! |m [N=NxNy[n]

Mmin = 01 | bmin =0 1 0 01 Nx =30 o0

Tmaz = 0.8 | lmas = 16 Ny = 30

Table 4.4: Configuration parameters of the Network.

l Testing I €] Pq] P]

(vi+dd) 356 % | -93% | 791% | +1.3% |51.6 % |-4.2 %
" $3 30.7% | +23% | T72% | -5.8% 272 % |-4.2 %
cé 354% | -06% [808%)| -09% [27.9% |-1.8%
bb 1.2%| -45% [81.8% | -3.7% |53.2% |-6.9%

Table 4.5: Performance of the counter-propagation Neural Network and
comparison to the back-propagation one.

the input datain a transparent manner through the internal representation,
without needing to know in advance the number of feature classes.

The Network was trained and tested on the same data sets used for
the back-propagation Network, with a configuration described in Table 4.4.
After 20 epochs of partial-training and 40 epochs of full-training, its final
performance in terms of signal efficiency, background rejection and purity
is summarised in Table 4.5. In this Table the differences with respect to
the previous back-propagation Network approach are also presented.

It was found useful to look at the final map obtained with the Kohonen
- layer. The Network detects the significant features of each flavour and is
able to group the different flavours topologically. In Fig. 4.13 the distribu-
tion maps for each quark flavour are represented. Every cell in the plane
can be regarded as a Kohonen processing element; the corresponding box
represents the number of events activating this cell.

92

veesecvrseDoDeDNs[] Dol js Qe
¢r».>90+sOonloes+0 DOOD e 0 ¢«
« +ve:.sv.ve0cavc080 UUGO..Q.
swesssoeo0eJoeDern oQe0Ds -0
s+ oesoo[J00oow DOvooDee
osescvoo0Dc)- 00w BER-T» XN)
eroponaploPoa(jo - « sDODODe
" Doessvonfjlooreep Q>
o-coopnooOBRD 0o .. 0@
o Qo000 DO[J0*s00 s rE e
oooogoe{Jepen{jDoQOessesn-we.-Qe
»+ 000000 00008000 * Q0 v o - -
oDeDBbeo*DO0e - (IO - PODw s 0w
DovOsOr o000 jooo[)i0DCe D -
c0DODODes 00 -Do0e[)J0OG e ¢«
umD.uaoucoo.ca DoD+«vs0® o »
o{Jeco0g - vcrorc000JeDo0r00 - 00
000} »*DooD0 000 JosoDOBD -« »
os«0ljoB0dvr e0esJOCOOD - v0Q e =
j@@u QOuDveDO-Dﬂm.Oq.....o
0 o0o D N0 - 000000 - e o
opo0oNe0DCOrpo00:0 »- o+0
Doooss 0eon(} o000 LI - T
D!DBU!DDU.aUvUDD.-Uo ®-s0® >+ w®eD
o e 00 -0 «~200000e: - »0D0-0- ¢
- ERRI=T-F.X-RY se-bs O-00eBD 00
s-0:v-sDer s 300D0O0000 s 000000
eswD) ce0rcncvvesp}-DeD w000

+ JENRY -uno o

O d

30

DISTRIBUTION MAPS

[} .-..n-w:uu-.UU-UQOMU0u....
. «ceDob([Je0e+ 0 -DDOOOCD ve s
° ...e.unaeu....uuuDODo-D.n.
. +ooeRD-0CropooRO=AD . » O
. soDes0NeaDo + o0 -] vuoﬂ. * O}
° » o000 m.cu.v..uc.o.. . - nf
. aUuuuUO QD00 -»9D-»08 v 8s ov
v -DopeoQBgoc0De3 -0 -0 - ¢ .
0--e0000000sJecbnase. . Do . v
nOuuDGUuuDu 0000 D -0 . e
0000000008 0D(JOvo0eDBsDer 0 o
- - 000000 D0svopODesDODOD « - .
oJopOo0o-00[) OO - oDoosts. . . 3
ODeoDe«0o«00000D0 OsDB Do - e
c000000- 0D Ooos sDDewsvroevp - |
umD.Dcuoucu.ouo DD*ocono-0:Do |
o[joov0: 2c0 . .-0p000JrJosnesoen s
000+ o0O0DD: +0DD*» »+000OO - » ® + + of
cooDoDDOo 00 o0JD0COC - » ve -
OD:-o O000c-{DD-00C+00- PR
onJ0oe » D000 - o0oJoge - os .«
°o00D00000° 00000 - asos - |
D00 -+ - 0000RO o JO! seDevcond"
ceos 00000 »Jo00Q: + 0 ce+00 0D
e-0es00(]J-0%es000000">+v0D0[}*00¢9
°0ve00DDOD*s.~0:00 +0 000D3:°0eD

. npoooDoDeBR000 *)

-oo(}-00
s o000 -

30

20

0

1

S DISTRIBUTION

30

UD DISTRIBUTION

ceaveceg e

RN EE-E

-9 .-0-000°00

..anDuD-nDOa.o

cooe[Jo-0Os -
0=DOunu..

30

30

B DISTRIBUTION

C DISTRIBUTION

Distribution maps for each flavour.

Figure 4.13

93

Chapter 5

Implementation

In this chapter the software packages developed for the implementation of
both back- and counter-propagation Neural Networks are briefly described.

5.1 Introduction

Two independent software packages BPNETRIG and CPNETRIG have
been developed, including the Network features discussed in the previ-
ous chapters. The packages implement a back-propagation Network and
a counter-propagation Network, respectively.
BPNETRIG and CPNETRIG are organised in a similar hierarchy of
four modules as presented in Fig 5.1.
e I/O_MANAGER - This module collects the main program and the
user interface subroutines, and distributes to the other modules all
the user commands and environment information needed to initialise

and control the process.

e NET_TOOLS - This module contains the subroutines implementing
the Network functions.

¢ NET_TRAIN - This module implements the Network training ses-
sion. It receives parameters and commands from the [/O_MANAGER
and collects the subroutine and function calls to module NET_TOOLS.

¢ NET_TEST - This module implements the Network testing session.

94

\ | /
\ NET_TEST
\ NETLTRAIN /
\ NET_TOOLS /

\ 1/0 MANAGER /

I/O MANAGER

|

1

1

i

i

Y i
i

i

NET_TOOLS i
I

I

i

1

i

1

i

'

|

Y

NET_TEST

Figure 5.1: (a) Hierarchical structure of the modules, modules in the upper
layers can call subroutines and refer to parameters defined in the modules
belonging to lower layers. (b) Relations between the modules in terms of
subroutines-passing (solid line) and parameters dependence (dashed line).

95

The subroutines have been written in FORTRAN 77 programming lan-
guage.

5.2 BPNETRIG Implementation

The external functions used in the package are:

HBOOK 1(id chtitl,nx,xmi,xma,vmx): HBOOK function defining a 1-
dimensional histogram;

HBOOK?2(id ,chtitl,nx,xmi,xma,ny,ymi,yma,vmx): HBOOK function
defining a 2-dimensional histogram;

HDELET(id): HBOOK function deleting a histogram id and releasing

the corresponding memory space;

HFILL(idx,y,weight): HBOOK function filling a 1- or 2-dimensional
histogram;

HLIMIT(m): HBOOK function defininig the total size m of common
/PAWC/ containing the HBOOK memory area;

HMEMOR(m): HBOOK working space declaration;

HOPERA(id1,choper,id2,id3,c1,c2): HBOOK function for performing
logical operations on histograms.

HRPUT(id,file,ty): HPLOT function for writing histograms into a
file;

RNDM(n): random generator function.

All these external functions are defined in the CERN libraries KERNLIB
and PACKLIB [57], to which BPNETRIG must be linked.

5.2.1 Common Blocks

The Common blocks defined in the package are /PAWC/ and /NETWORK/.
The first one is the HBOOK memory area, and the second one contains all
the variables and arrays which define the Network structure. Common

/NETWORK/ includes:

96

LAYER: an integer type variable indicating the number of layers in
the Network;

NEURONS(MAXLAY): an integer type array indicating the number
of units in each layer; MAXLAY is an integer type constant defining
the maximum number of layers;

NETW(MAXLAY,MAXNEU): a real type array for representing the
activation values for each neuron (as defined in Section 3.2.2). For
example:

NETW(i,5) = net} ,

represents the activation of node j in layer ¢ for pattern p. Input
vector is put in (NETW(1,1),..., NETW (1, NEURONS(1))).

DELTA(MAXLAY,MAXNEU): a real type array for storing the error
delta signals §; as described in Section 3.2.2.

WEIGHT(MAXLAY,MAXNEU,MAXNEU): a real type array for stor-

ing the connections weights w;;. WEIGHT(L,j,i) is the value of a
weight associated to the connection between node i in layer L and
node j in layer L + 1.

BW(MAXLAY-1,MAXNEU): a real type array for storing the weights

associated to the bias unit.

DELTAW(MAXLAY,MAXNEU,MAXNEU): a real type array for stor-
ing the current weight updates Awj;(t + 1).

OLDELTAW(MAXLAY,MAXNEU,MAXNEU): a real type array for
storing the old weight updates Awj(t).

DELTABW(MAXLAY-1,MAXNEU): a real type array for storing the
weight updates for bias unit connections.

5.2.2 I/O_MANAGER Module

I/O_MANAGER is the main module, collecting 7 subroutines for I/0O op-
erations (INPUT_PAR(), INFORMATIONS(), FILL_.VECTOR(), FET-
CH_TRAIN_DATA(), FETCH.TEST.DATA(), FETCH_.TEST_REALDA-
TA(), FETCH_DATA_RND()), and the central body of the program.

97

. INPUT_PAR(): this subroutine reads the input parameters specified
by user, fixes the Network structure and its initial parameters, defines
the size of learning and testing sets, defines the type of training in
terms of error function and parameters updating, specifies the data
fetching mode (randomised or not) and the type of testing (on simu-
lated or real data).

. INFORMATIONS(): this subroutine stores on a file all the informa-
tion, parameters and Network characteristics specified by the user in

INPUT_PAR().

. FILL_.VECTOR(): reads the data from the training file in equal pro-
portions for each flavour, and stores them in a big internal array

EVENTS.

. FETCH_.TRAIN_DATA(): reads 24 real type variables (describing an
event) from the array EVENTS created in FILL_.VECTOR(), and
defines an input vector of 23 real type variables (£#) plus a target
vector of 4 integer type values (C¥).

. FETCH_TEST_DATA(): reads from a file of simulated test data a
set of 24 variables (describing an event) and defines an input vector
of 23 variables and a target vector as in FETCH TRAIN_DATA().

. FETCH_TEST_REALDATA(): reads from a file of experimental test
data a set of 23 variables without target value and defines the input
vector.

. FETCH DATA_RND(): reads from the array EVENTS a set of 24
variables as in FETCH_.TRAIN_DATA(), but in a random way.

In the main program, the first subroutine to be called is INPUT_PAR().
The Network’s weights will be initialised with the subroutine INIT() or
with LOADWG() if it has been requested to load weights previously saved.
All the Network features are displayed and memorised on a file with a
call to INFORMATIONS(). Finally, with TRAINING() and TESTING(),

learning and testing sessions will begin.

98

5.2.3 NET_TOOLS Module

This module collects all the subroutines performing the primitive functions
of the Neural Network:

INIT(): the weights of the Network are initialised at random values
in a defined interval [MINW ,MAXW].

SQUARED_ERROR(): implements the squared error function (4.9).

MINKOWSKY_ERROR(): implements the generalised error function
(4.19).

ENTROPIC_ERROR(): implements the entropic error function mea-
sure (4.11).

POTTS_ERROR(): implements the asymmetric error function or
Kullback measure (4.18).

G(): implements the sigmoid function g(z) = 3(1+tanh %) for output
nodes ranging from 0 to 1.

G2(): implements the sigmoid function g(z) = tanh & for output
nodes ranging from -1 to 1.

G3(): implements the sigmoid function (4.17) for the asymmetric
error measure.

GDERIV(): implements the derivative of sigmoid function (4.6) as:
3(1 — tanh®(2)).

G2DERIV(): implements the derivative of sigmoid function (4.7) as:
1 — tanh®(£).

SIGNUM(): implements function sgn(z).

NORM(): normalises a value z in a interval [min..max] depending on
nodes output range:

— mi;‘r—n:r:n if [071]
TE\ Heomin) g (-1,

maz—min

99

FORWARD(): performs the forward propagation of input signa.ls
through the Network. It computes the weighted sum (activation sig-
nals) and modifies NETW with respect to the current input.

BACKWARD(): performs the backward propagation of the error-
delta signals through the Network. It computes the error signals in
DELTA depending on the error function used, and then it computes
in DELTAW the weight changes.

WUPDATE(): performs the weight updating according to the gener-
alised delta-rule discussed in Section 3.2.3.

PRUN_WUPDATE(): performs the weight updating by adding a
penalty term (3.23) for pruning.

ETAUPDATE(), ALPHAUPDATE(), TUPDATE(): parameters n
(ETA), o (ALPHA) and T (T) are linearly updated.

GEOMETAUPDATE(), GEOMALPHAUPDATE(), GEOMTUPDA-
TE(): parameters ETA, ALPHA and T are geometrically (4.25) up-
dated.

BACK(): this function has a value equal to one when the back-
propagation process has to be done. Back-propagation is performed
if the absolute difference between the Network output value and the
target is greater than a fixed threshold.

PRUNING(): all the connections of each neuron are checked. Any
neuron with no connection having an absolute weight value greater
than 0.1 will be removed.

OUTMAX(): Network’s output is interpreted by means of the “win-
ner takes it all” technique.

SAVEWG(), LOADWG(): saves/restores the Network configuration,
memorising/loading all the Network weights and updatings.

100

5.2.4 NET_TRAIN Module

The Network training session is executed when the subroutine TRAIN-
ING() is called from the main program.

For every input pattern the following operations are performed:

1. Call FETCH_.TRAIN_DATA() or FETCH_DATA_RND() to collect
the input variables and define the input and target vectors.

2. Call FORWARD() to propagate the input signals through the Net-
work and then compute the specified error function, defining a quan-

tity ERR.

3. Call OUTMAX() to interpret the Network output obtained from
FORWARD(). :

4. Perform, if possible (BACK() test), the error signal back-propagation
calling BACKWARD().

Updating of the weights is performed after a fixed number of fetched events
(10 in our case), calling WUPDATE() or PRUN_WUPDATE().

Training is divided into a user-defined number of learning epochs, each
one filtering the training set with the specified dimension. At the end of
every learning epoch it is possible to update the parameters ETA, ALPHA
and T linearly or geometrically by using the mentioned subroutines, and
resetting, if necessary, their values (reset-mode training).

After every 5 learning epochs, it is possible to perform a test phase
calling subroutine TESTING() (check-mode training).

After every 100 updatings, the training process is visualised by showing
the current error measure and the general performance (see Fig. 5.2).

5.2.5 NET_TEST Module

The Testing phase can be performed after the training or by using a pre-
viously saved configuration of the Network. The testing is done by calling
the subroutine TESTING().

The structure of this subroutine is similar to that of TRAINING(),
except that testing is performed only once on the entire test set without
computing the errors or updating the weights.

101

L TYT200 Series Terminal
EROCH 20 UPDATING 100

TARGET Y QUTPUT ERRCOR
0010 209 0.304 0.201 0,233 0100 .4141439
0100 116 481 0.200 0. 165 0100 . 1747718
0001 . 094 . 545 0.243 .0?0 0100 . 6059538
1000 . 840 . 099 0,085 063 1000 . 0236396
0100 .391 0.262 143 0. 148 1000 . 3696140
0010 .093 0,343 0.277 0.218 0100 , 3482534
0001 232 0.133 0.273 289 0001 . 3261247
1000 . 444 .341 140 1000 . 2261095
0100 . 089 . 375 .2471123
0010 . 026 .3311489

Mearr Error on 1 Updating
UD, S,C, B distribution en 1 Updating
UD,S,C,B distribution on 100 Updatings 250 250
Classified UD on 1 and 100 Updatings 100
Classified S on 1 and 100 Updatings . 88
lassified C on 1 and 100 Updatings - 100
Classified B on 1 and 100 Updatings .. 175
urity and Efficiency UD on 100 Updatings 4132231 0.4000000
Purity and Efficiency § on 100 Updatings . .4120476 0,3520000
Purity and Efficiency C on 100 Updatings . 3937008 0.4000000
and Efficiency B on 100 Updatings . 5952381 0.7000000
of Back-Propagations 10

<

QOO0 O0COCC

0
0.
O
0
(o]
0
o
0
O
0.

QOOOOOOOO
‘OOOOOOOOOO

0o oo

Figure 5.2: Display during the training process.

Input signals are propagated forward by means of subroutine FOR-
WARD() and then the network output is interpreted by calling OUT-
MAX().

Testing can be performed on simulated data, in which case a visualisa-
tion of the running process is given (see Fig. 5.3), or on experimental data,
on which it is not possible to make any statistics.

5.3 CPNETRIG Implementation

The implementation structure of this package is similar to BPNETRIG.
The external functions are the same used in BPNETRIG (Section 5.2).

5.3.1 Common Blocks
The Common blocks defined are /PAWC/ and /NETWORK/, the first

one referring to the HBOOK memory area, the second one containing all

102

TARGET

1000
0100
0100
0001
0100
0001
1000
0100
0010
0001

.827
. 053
. 118
.014
. 403
. 067
. 307
. 202
. 490
. 074

UD, S, C,B distribution on 1 Test

UD, S, C,B distribution on 100 Tests

Classified UD on 1 and 100 Tests
Classified S on 1 and 100 Tests
C on 1 and 100 Tests
B on 1 and 100 Tests
Purity and Efficiency UD on 100 Tests
Efficiency S on 100 Tests ...
Efficiency C on 100 Tests
Efficiency B on 100 Tests

Classified
Classified

Purity and
Purity and
urity and

the variables and arrays defining the Network structure. Common /NET-

Figure 5.3: Display during testing process.

WORK/ includes:

o KOHOW(MNUMZX,MNUMZY ,MNUMX): a real type array for stor-
ing the connection weights wj;, where 7 is a unit (X) of the input
layer and j is a unit in the Kohonen-map layer matrix indexed by

(ZX,ZY).

o GROSW(MNUMZX,MNUMZY,MNUMY): a real type array for stor-
ing the connection weights u.;, where j is a unit in the Kohonen-map
layer matrix indexed (ZX,ZY) and k is an output unit.

o NETKOHO(MNUMZX,MNUMZY): a real type array related to the

TEST 3000

e

Y

0.
0.
0.
0.
0.
0.
0.
0.
o.
0.

“ e s

CQOOQCO0OO0OQOOQOOO0

Ci - YT200 Series Terminal =

OuUTPUT

1000
0100
0010
0001
1000
0010
1000
0100
1000
0001

3

2
0
2
2

0.59803%2
0.3604061
0.3181818
0.6254181

output values z; in the Kohonen-map layer matrix.

o NETGROS(MNUMY): a real type array related to the Network out-

put O in the Grossberg-output layer.

103

4 2
163 227
183

71

63

187
0.4919368
0.2983193
¢. 38685031
0.8237885

5.3.2 I/O_MANAGER Module

I/O_MANAGER is the main module, collecting 3 subroutines for I/0 op-
erations (INPUT_PAR(), INFORMATIONS(), FETCH.DATA()) and the

central body of the program.

1.

INPUT_PAR(): this subroutine reads all the input parameters spec-
ified by user, fixes the Network structure and its initial parameters.

INFORMATIONS(}: this subroutiine siores on a file the informa-
tion, parameters and Network characteristics specified by user in IN-

PUT_PAR().

FETCH_DATA: reads from a file of simulated data a set of 24 variables
(describing an event) and defines an input vector of 23 variables and
a integer target vector.

The structure of the main body is equal to that of BPNETRIG package.

5.3.3 NET_TOOLS Module

This module collects all the subroutines performing the primitive functions
of the Neural Network:

INIT_NET(): the second layer weights w;; of the Network are ini-
tialised with small random numbers and can be normalised by calling
subroutine N ORMALIZE'(), while the others weights ux; are set to
1.0.

INIT(): opens the data-files for training and testing.
NORMALIZE(): normalises a weight vector wj as

w--
n
'wj,- = > .
\ 22 Wi

NORM(): normalises a value z in a interval [min..max].

MATCHING(): Finds out the winner node in Kohonen layer by com-
puting the distances between the input vector and the weight vector
(4.26). WINROW and WINCOL will be the winner node indexes in

the Kohonen-map layer matrix.

104

¢ ETAK(): updates the step parameter n; (4.31).

o NEIGHBOUR(): updates the neighbourhood of the winner unit after
computing the square’s side (4.32).

¢ BORDER(): defines the new neighbourhood boundaries around the

winner unit.

o WKOUPDATE(): The weight w;; updating is performed according
to the Kohonen learning law (4.29). The new weight vectors can be
normalised by calling subroutine NORMALIZE.

o WGRUPDATE(): Performs the updating of weights u; according to
the instar-learning law (4.30).

¢ OUTPUT_NET(): Network’s output is computed according to the
equation (4.28) and is interpreted by means of the “winner takes it
all” technique.

o STATISTICS(): Network classifications and errors are counted and

stored.

o PERFORMANCES(): Network’s performance is computed, displayed
and memorised in a file.

o SAVEWG(), LOADWG(): saves/restores the Network configuration,
memorising/loading Network weights.

5.3.4 NET_TRAIN Module

The Network training session is executed when the subroutine TRAIN-
ING() is called from the main program.
For every input pattern the following operations are performed:

1. Call FETCH_DATA() to collect the input variables and define the
input and target vectors.

2. Begin competition in the Kohonen layer by calling MATCHING(),
select the winner unit j* = (WINROW,WINCOL) and set: NET-
KOHO(WINROW,WINCOL) = 1.

105

3. Compute the Network output by calling OUTPUT_NET().

4. Update the winner node neighbourhood by calling NEIGHBOUR()
and define the new square zone by calling BORDER().

5. Update the n; parameter by calling ETAK().

6. If the Network is running in full iraining, then update all the weights
with WKOUPDATE() and WGRUPDATE(). Otherwise, use only
WKOUPDATE().

7. If in full training call STATISTICS().
8. Set NETKOHO(WINROW,WINCOL) = 0.

Training is divided into a user-defined number of learning epochs, each one
filtering the entire training set. At the end of every learning epoch in full
training it is possible to obtain statistics on the Network performance by
calling subroutine PERFORMANCES().

At the end of the training the Network configuration can be saved by
calling SAVEWG().

5.3.56 NET_TEST Module

The Testing phase can be performed by calling the subroutine TESTING
after the training or starting with a previously saved configuration of the
Network.

The structure of this subroutine is similar to that of TRAINING, except
that the testing is performed only once without updating the weights. Input
signals are propagated forward and then the network output is interpreted

by calling OUTPUT_NET().

106

Conclusions

The thesis considers the problem of classifying the hadronic decays of the
Z° boson with Mapping Neural Networks.
Three different approaches have been studied.

1. Use of four different supervised feed-forward Neural Networks, each
one of them classifying only one flavour against all the others, and
therefore having only one output unit;

2. Use of a single supervised feed-forward Neural Network with four
output units, each one associated to one flavour;

3. Use of a hybrid Neural Network (Counter-Propagation Neural Net-
work) composed by a self-organising hidden layer and a supervised
output layer.

After a detailed research of many possible techniques, and a deep study
of Networks’ parameters and results, the first and the second choices have
been found to be the most convenient in terms of efficiency.

Results obtained by using the counter-propagation Neural Network look
promising considering that the study is in a preliminary phase. For this kind
of problem, however, the “supervised back-propagation” solution seems to
be the best one.

107

The modular construction of the counter-propagation Neural Network
illustrates that existing Neural Networks can be viewed as building block
components which can be assembled into new configurations offering new
and different information processing capabilities.

The four-output unit back-propagation Network has been utilised to
evaluate the Z° hadronic branching fractions on a set of simulated data.
The results indicate the feasibility of the measurement with an equivalent
statistics of real data.

108

List of Tables

1.1
1.2

4.1
4.2
4.3
4.4
4.5

Quarks, Leptons and Bosons. v v
The Forces in Nature. TSP

Set values forn, ¢ andT. e
Network performance after training.
The final Network performance. v oo ...
Configuration parameters of the Network.
Performance of the counter-propagation Neural Network and
comparison to the back-propagation ome.

109

List of Figures

1.1

1.2
1.3

2.1

2.2

2.3

3.1
3.2

3.3
3.4

3.5

LEP Storage Ring from a top view. The particle bunches
meet at eight positions. Collisions take place inside the four
detectors, while in the other four positions, collisions are pre-
vented by electrostatic separators.
Perspective view of the DELPHI detector.
(a) The four main visible decay channels of the Z° boson; (b)
the 5 qq pairs; (c) the qq fragmentation.

A generic processing element or a neuron. Continuous-time
processing elements do not have an “activate” input.
A general Neural Network architecture scheme. The input to
the network can be viewed as a data array x and the output
as a data arrayy. e e e e e e e e e
Schematic diagram of a McCulloch-Pitts neuron. The unit
fires when the weighted sum ¥_; reaches or ezceeds the thresh-

old 0,'.

(a) A simple perceptron and (b) a Network with one hidden

lager. . . o i e e e e e e e e e
Activation functions: (a) Threshold function and (b) Sig-
moid function. o it i i e e e

A pattern classification problem in N-dimensional space. . .

Back-propagation in a Network with two hidden layers. Solid
lines describe the signals and dashed lines the §-errors. . . .
Gradient descent on quadratic surface E = z? + 20y®. The
minimum ts at the + and the ellipse shows the constant error
contour (see text). e

110

10

17

18

19

24

25
26

29

3.6

3.7

3.8
3.9

3.10
3.11

3.12
4.1

4.2
4.3
4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11

Decision regions for different types of Neural Networks. Shad-
ing denotes decision regions for class A. Smooth contours

enclose input distributions for classes A and B. 35
Two possible solutions of the XOR problem using a Neural

Network with one hidden layer. 38
A 5-3-5 encoder Network. 39
A simple competitive learning Network. The open arrows ‘
represent tnhibitory connections, the others are excitatory. . 42
The “Mezican hat” function for lateral connection weights. 44
The Kohonen layer: output units are typically arranged as a

one or two-dimensional array. e e e e e 45
A single instar processing element 51

Scaled impact parameter sum for bb (polymarker line) and
non-bb (solid line) events., 63
General pyramid structures of layered-Networks. 67
The structural configuration of the constructed Neural Network. 68
(a) Sigmoid function for units with output ranging from 0 to
1; (b) Sigmoid function for units with output ranging from
7 71
Training set error vs. test set error as a function of the
number of training epochs. This illustrates the phenomenon
of OVErtraining. e e e e e e 78
The value of the error function as a function of the number of
training epochs. (a) Reset-mode training on 1,000 iterations;
(b) Check-mode training on 200 iterations. 80
Signal (solid line) and Background (dashed line) efficiencies
as a function of the number of the training epochs for all
flavours. e e e e e e e e e e e e e 81
Output distributions of the desired winner nodes. Signal
(dotted line) and Background (solid line) distribution areas
have been normalised to unity. 83
Distributions of the difference between the output of the de-
sired winner node and the output of the node among the rest
having biggest value. The areas have been normalised to unity. 84
A general hybrid learning Network scheme. 86
Topology of the full counter-propagation Neural Network. . . 88

111

4.12 The forward-only counter-propagation Network architecture. 89
4.13 Distribution maps for each flavour. 93

5.1 (a) Hierarchical structure of the modules, modules in the up-
per layers can call subroutines and refer to parameters de-
fined in the modules belonging to lower layers. (b) Relations
between the modules in terms of subroutines-passing (solid

line) and parameters dependence (dashed line). 95

5.2 Display during the training process. o . .. 102

5.3 Display during testing process. 103
ogono

112

Bibliography

(1] F.Halzen and A.D.Martin, “Quarks and Leptons: An Introductory
Course in Modern Particle Physics”, John Wiley & Sons, New York
1984.

[2] P.Eerola, “A Search for New Heavy Particles in Z° Decays at LEP”,
SEFT Report Series, Helsinki 1990.

[3] S.Weinberg, Physics Review Letter 19 (1967) 1264.

~ [4] A.Salam, Proceedings of the VIII Nobel Symposium, ed. N.Svartholm
p-367, Stockholm 1968.

[5] S.Glashow, Nuclear Physics 22 (1961) 579.

[6] J.Ellis and K.Olive, “Neutrino Bounds from Astrophysics and Cosmol-
ogy”, Physics Letter B193 (1987) 525.

[7] ALEPH Coll.,, “A Precise Determination of the Number of Families
with Light Neutrino and of the Z° Boson Partial Width”, CERN-
EP/89-169 (1989).

(8] J.E.Dodd, “The Ideas of Particle Physics”, Cambridge University
Press, Oxford 1984.

[9] P.Aarnio et al. (DELPHI coll.), “The DELPHI Detector at LEP”,
Nuclear Instruments and Methods in Physics Research A303 (1991)
233.

[10] D.J.Miller, “Particle Physics after a year of LEP”, Nature 349 (1991)
379.

113

[11] W.S.McCulloch and W.Pitts, “A Logical Calculus of the Ideas Im-
manent in Nervous Activity”, Bulletin of Mathematical Biophysics 5
(1943) 115. Reprinted in Anderson and Rosenberg (1988).

[12] D.C.Hebb, “The Organization of Behaviour”, John Wiley & Sons, New
York 1949. |

[13] M.Minsky, “Neural nets and the brain - Model problem”, Doctoral

Dissertation, Princeton University, Princeton 1954.

[14] M.Minsky and S.Papert, “Perceptrons”, MIT Press, Cambridge 1969.

[15] F.Rosenblatt, “Principles of Neurodynamics”, Spartan Books, Wash-
ington 1961.

[16] B.Widrow, “Generalization and Information Storage in Networks of
Adaline neurons”, Self-Organizing Systems, Spartan Books, Washing-
ton 1962.

[17] D.E.Rumelhart, G.E.Hinton and R.J.Williams, “Learning Internal
Representation by Error Propagation”, Parallel Distributed Processing
1, MIT Press, Cambridge 1986.

[18] R.Beale and T.Jackson, “Neural Computing: An Introduction”, Adam
Hilger IOP, Bristol 1990.

[19] J.J.Hopfield and D.W.Tank, “Neural Computation of Decisions in Op-
timization Problems”, Biological Cybernetics 52 (1985) 141.

[20] P.Baldi and K.Hornik, “Neural Networks and Principal Component
Analysis: Learning from Examples without Local Minima”, Neural
Networks 2 (1989) 53.

[21] R.O.Duda and P.E.Hart, “Pattern Classification and Scene Analysis”,
John Wiley & Sons, New York 1973.

[22] T.Kohonen, “Self-Organization and Associative Memories”, Springer-
Verlag, Berlin 1989.

[23] T.Kohonen, “An Introduction to Neural Computing”, Neural Net-
works 1 (1988) 3.

114

[24] G.Venkataraman and G.Athithan, “Spin Glass, The Travelling Sales-
man Problem, Neural Networks and all that”, Journal of Physics 36
(1991) 1.

[25] S.Grossberg, “Studies of Mind and Brain: Neural Principles of Learn-
ing, Perception, Development, Cognition, and Motor Control”, Reidel
Press, Boston 1982.

[}
&
&
3
&
3
]
g
o
by
5
-
~
{
=
[N
4]

n +
AAR U

9281 R P Tlinnmann “An Tntradaes

AVe s »AAALS pFALICHRLAL A3 AELVAI

IEEE ASSP Magazine (1987) 4.

[27] E.Domany, “Neural Networks: A Biased Overview”, Journal of Statis-
tical Physics 51 (1988) 743.

[28] B.Widrow and R.Winter, “Neural Nets for Adaptive Filtering and
Adaptive Pattern Recognition”, IEEE Magazine (1988) 25.

[29] D.M.Clark and K.Ravishankar, “A Convergence Theorem for Gross-
berg Learning”, Neural Networks 3 (1990) 87.

[30] D.Cohen and J.S.Taylor, “Feedforward Networks - A Tutorial”, Pro-
ceed. on Neural Computing, London 1989.

[31] W.Y.Huang and R.P.Lippmann, “Neural Net and Traditional Classi-
fiers”, in Neural Information Processing Systems, ed. D.Z.Anderson

(1988) 377.

{32] A.Lapedes and R.Farber, “How Neural Nets Work”, in Neural Infor-
mation Processing Systems, ed. D.Z.Anderson (1988) 442.

[33] B.S.Wittner and J.S.Denker, “Strategies for Teaching Layered Net-
works Classification Tasks”, in Neural Information Processing Sys-
tems, ed. D.Z.Anderson (1988) 850.

[34] F.M.Silva and L.B.Almeida, “Speeding up Backpropagation”, in Ad-
vanced Neural Computers, Elsevier Science Pub. (1990) 151.

[35] K.Hornik, “Approximation Capabilities of Multilayer Feedforward
Networks”, Neural Networks 4 (1991) 251. '

115

[36] R.Hecht-Nielsen, “On the Algebraic Structure of Feed-Forward Net-
' work Weight Space”, in Advanced Neural Computers, Elsevier Science
Pub. (1990) 159.

[37] Yoh Han Pao, “Adaptive Pattern Recognition and Neural Networks”,
Addison-Wesley Publishing, 1990.

[38] P.Henrard et al. (ALEPH), “Using Multivariate Analysis to Measure

the Z° Partial Width into bb ”, presented at the 4" International Sym-

L xalvidd avil illvO U

posium on Heavy Flavour Physics, Orsay, June 1991.

[39] A.De Angelis, “Hadronic Branching Fractions of the Z° Boson”, pre-
sented at the XXI International Symposium on Multiparticle Dynam-
ics, Wuhan (Popular Republic of China}), September 1991.

[40] L.Bellantoni, J.S.Conway, J.E.Jacobsen, Y.B.Pan and Sau Lan Wu,
“Using Neural Networks with Jet Shapes to Identify b Jets in ete™ In-
teractions”, submitted to Nuclear Instruments and Methods in Physics
Research A, CERN-PPE/91-80, May 1991.

[41] C.Bortolotto, G.Cosmo, A.De Angelis, P.Eerola, J.Kalkkinen and
A.Linussio, “A Measurement of the Partial Hadronic Widths of the
Z° using Neural Networks”, to be published in the Proceedings of the
Workshop on Neural Networks: from Biology to High Energy Physics,
INFN/AE-91/12, Isola d’Elba, June 1991.

[42] G.Cosmo, A.De Angelis, P.Eerola, J.Kalkkinen and A.Linussio, “DEL-
PHI results on the Measurement of the Partial Hadronic Widths of
the Z° using Neural Networks”, to be published in the Proceedings
of the II International Workshop on Software Engineering, Artificial
Intelligence and Expert Systems for High Energy and Nuclear Physics,
UDINE REPORT/92/02/AA, ’Agelonde sur Marne (France), January
1992.

[43] C.Bortolotto, A.De Angelis and L.Lanceri, “Tagging the Decays of the
Z° Boson into b quark pairs with a Neural Network Classifier”, Nuclear
Instruments and Methods in Physics Research A306 (1991) 459.

116

[44] C.Bortolotto, A.De Angelis, L.Lanceri, N.De Groot and J. Seixas

“Neural Networks in Experimental High-Energy Physics”, Preprint
91/09/CB, December 1991.

[45] W.Bartel el al. (JADE Coll.), Z.Physics C33 (1986) 23.

[46] L.Lonnblad, C.Peterson and T.RSgnvaldsson, “Using Neural Networks
to Identify Jets”, Nuclear Physics B349 (1991) 675.

[47] C.Peterson, “Neural Networks and High Energy Physics”, presented
at the International Workshop on Software Engineering, Artificial In-
telligence and Expert Systems for High Energy and Nuclear Physics,
Lyon, March 1990.

[48] C.Peterson, “Track Finding with Neural Networks”, Nuclear Instru-
ments and Methods in Physics Research A279 (1989) 537.

[49] L.Lonnblad, C.Peterson, Hong Pi and T.Rdgnvaldsson, “Self-
Organizing Networks for Extracting Jet Features”, submitted to Com-
puter Physics Communications, Lund, March 1991

[60] S.J.Hanson and D.J.Burr, “Minkowski-r Back-Propagation: Learning
in Connectionist Models with Non-Euclidian Error Signals”, in Neural
Information Processing Systems, ed. D.Z.Anderson (1988) 348.

(51] B.Denby,“Neural Network Tutorial for High Energy Physicists”,
FERMILAB-Conf-90/94, Batavia, May 1990.

[52] J.Kalkkinen, “D* Identification using Neural Networks”, Internal Re-
port, Helsinki, July 1991.

[563] A.Linussio, “Nonlinear Multivariate Discriminant Analysis for High
Energy Physics”, Thesis, Universita degli Studi di Udine, Udine,
March 1992.

[54] T.Akesson and O.Birring, “Jet Classification with a Neural Network”,
DELPHI 90-59 PHYS 78, Lund, December 1990.

[65] P.Bhat, L.Lonnblad, K.Meier and K.Sugano, “Using Neural Networks
to Identify Jets in Hadron-Hadron Collisions”, presented at the 1990

117

Summer Study on High Energy Physics, Snowmass (Colorado), July
1990.

[56] M.Metcalf, “Effective FORTRAN 77”, Claredon Press, Oxford 1987.
[67] CERN Program Library D421 (1989).

[58] R.Brun and D.Lienhart, “HBOOK Users Guide”, CERN Program Li-
brary Y250, Geneva 1988.

[69] R.Brun and N.Cremel Somon, “HPLOT Users Guide”, CERN Pro-
gram Library Y251, Geneva 1988.

[60] R.Brun et al., “PAW Physics Analysis Workstation”, CERN Program
- Library Q121, Geneva 1990.

118

	Cosmo-1.pdf
	Cosmo-3.pdf
	Cosmo-5-128.pdf

