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1. PHENOMENOLOGICAL MOTIVATIONS TO INTRODUCE THE QUANTUM
STATISTICAL PARTON MODEL

The flavour asymmetry of light sea quarks d̄(x)> ū(x) can be understood of the Pauli exclusion
principle, as advocated many years ago by Niegawa and Sisiki [1] and by Feynman and Field [2].
This is confirmed by the defect in the Gottfried sum rule [3] [4] and by the larger Drell-Yan [5]
production of muon pairs in p−n scattering than in p− p scattering [6]. The correlation between
the first moments of the valence partons and the shapes of their x distributions is the one expected
for a quantum gas: broader shapes for higher first moments, as it is shown by the approximate
relationship [7]

∆u(x) = u(x)−d(x),

which follows from the assumption :

2u↓(x) = d(x)

and relates the dramatic decrease at high x of the ratio Fn
2 (x)

F p
2 (x) [8], which is a consequence of

a similar behaviour of the ratio d(x)
u(x) , to the shape of ∆u(x), which gives the main contribution

to xgp
1(x) The decreasing with x of the negative ratio ∆d(x)

d(x) is also expected within the statistical
approach. The x dependance of xgn

1(x), negative at small x and positive at high x, follows from the
different shapes and opposite signs of ∆u(x) and ∆d(x) [9] [10].

2. VARIABLE FOR THE STATISTICAL PARTON DISTRIBUTIONS

The usual choice of the energy as the variable appearing in statistical mechanics follows from
its appearing in the constraint, which fixes the total energy available.

Σniεi = E

The resulting Boltzmann expression is

e−
εi

KT

The role of Pauli principle suggests to write Fermi-Dirac functions for the quarks in the vari-
able x, which is the one appearing in the moment, Adler [11], Gross-LLewynn Smith [12] and
Bjorkeen [13] parton model sum rules for the proton

Σi
∫ 1

0 xpi(x) = 1

∫ 1
0 [u(x)− ū(x)]dx = 2

∫ 1
0 [d(x)− d̄(x)]dx = 1

∫ 1
0 [∆u(x)+∆ū(x)−∆d(x)−∆d̄(x)] = GA

GV
= 1.26
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We write the Fermi-Dirac expressions for the valence partons defined by their flavor (u or d)
and spin along the proton momentum as:

1
exp [(x−Xq)/x̄]+1

where x̄ and Xq play the role of the temperature and the potentials respectively and:

q = u↑,d↓,u↓,d↑

In order to obey the parton model sum rules the potentials of the valence quarks are expected
to be larger than their antiparticles. The defect in the Gottfried sum rule:

d̄− ū > 0

implies for the Adler sum rule:

u−d < 1

The positive (negative) sign of ∆u (∆d) implies

X+
u > X−u and X−d > X+

d

The inequalities GA
GV

> u−d, implies:

X−d > X−u

The transverse momenta of the quarks lead to the Melosh-Wigner transformation [14] which
relates their helicities to their polarisation along the momentum of the hadron. Its formal expression
confirms the group properties of the generator of the transformation, which relates constituent to
current quarks:

Z = (~W × ~M)z

with W a SU(3) singlet of the adjoint representation (35) of SU(6) and M a vector with respect
to the orbital momentum L.

3. THE TRANSVERSE ENERGY SUM RULE

The transverse distributions have been fixed by a sum rule for the transverse energy [15],
defined as the difference between the energy and the momentum. For the initial hadron it is given
by

P0−Pz.

At high values of the longitudinal momentum of the hadron Pz its transverse energy can be
approximated by:

M2

2Pz

2
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while for a massless parton it is given by:

p2
T

p0+pz
=

p2
T

Pz

(
x+

√
x2+

p2
T

P2z

)

By multiplying for 2Pz we get the sum rule:

Σp
∫ 2p2

T

x+

√
x2+

p2
T

P2z

f (p,x, p2
T )d p2

T = M2.

By taking Pz the momentum of the initial hadron in the frame of the final hadrons, one gets
(neglecting terms in (xM)2 ):

P2
z = Q2

4x(1−x) .

This implies the following dependance on x and p2
T for the non-diffractive part of xq(x)

A′xb−1

µ2 f (x,Xq)g(x,p2
T )

Where

f (x,Xq) = exp [(x−Xq)/x̄]+1,

g(x, p2
T ) = exp

 2P2
T

µ2

(
x+

√
x2+

p2
T

P2z

) −Y h
q

+1

and Y h
q is the transverse potential. With the transformation p2

T = 2µ2η

x+

√
x2+

p2
T

P2z

, we obtain the integral

in η of

1+ 2ηµ2(1−x)
Q2

e(η−Y h
q )+1

,

which gives rise to:

ln
(

1+ e(Y
h
q )
)
− 2(1−x)µ2

Q2 Li2
(
−e(Y

h
q )
)

that multiplies the longitudinal factor

A′xb

e(x−Xh
q )/x̄+1

.

The parameter µ2 will be fixed by the transverse energy sum rule to be 0.200 GeV 2 and is
proportional to the denominator of the gaussian form assumed by the transverse distribution for
p2

T larger than µ2xY h
q . By requiring equilibrium for the two elementary QCD processes [16], the

emission of a gluon by a fermion parton and the conversion of the gluon into a qq̄ pair with opposite
helicity, one has the important consequence to have a vanishing potential for the gluons of both
helicities and opposite values for the potentials for a quark and its antiparticle with opposite helicity.
The Bose-Einstein expression for the gluons xG(x) turns into a Planck form 1

ex/x̄−1 and ∆G = 0.
Quark and anti-quark contributions in the e. m. DIS are disentangled thanks to the relation:

3



P
o
S
(
C
O
R
F
U
2
0
1
7
)
0
0
9

Quantum Statistical Mechanics Functions at Low Q2 Franco Buccella

Xh
q +X−h

q̄ = 0

For the unpolarized distributions the disentangling is obtained also from the obvious conditions

u− ū = 2
d− d̄ = 1

On the other hand, for the polarized distributions the equilibrium conditions allow to determine
the polarization of the light anti-quarks from the knowledge of the shapes of the valence quark
distributions.

4. THE DIFFRACTIVE CONTRIBUTION

At small x, parton distributions are dominated by a diffractive contribution implying an infinite
number of partons qD(x) proportional to x−1.25. To reproduce data one had to modify the Fermi-
Dirac function with the factor AXqxb and add such diffractive term

AXqxb

e
(x−Xq)

x̄ +1
+ Ãxb̃

e
x
x̄ +1

Xq is the potential of the parton depending on its flavor and helicity. The diffractive contribution
is isoscalar and unpolarized to avoid an infinite contribution to the parton model sum rules (since
b̃ =−0.25 is negative).

5. THE DESCRIPTION OF THE STATISTICAL PARTON DISTRIBUTIONS
AND THE COMPARISON WITH THE HERA AND NNPDF FIT

Some years ago a joint analysis of the DIS data measured in the H1 and ZEUS [17] experi-
ments has been performed to give the unpolarized parton distributions and Jacques Soffer immedi-
ately realized the similarity with the statistical distributions. To perform a check for the quantum
statistical parton distributions, we determine the parameters introduced [18] in order to reproduce
the Hera result for the unpolarized distributions of the light parton fermions, while for the polarized
ones we require to reproduce the expressions found in 2002 [19], which have been successful to
describe the polarized structure functions gp,d,He3

(x) and the production of W± weak bosons [20].
Our results for the parton distributions are described in Figures 1-3 and the parameters are com-
pared with the ones found in 2002 in Table 1.

In the second column of Table 1, we report the values of the parameters obtained by demand-
ing that our expressions reproduce the H1-ZEUS fit. A good test for the statistical parton distribu-
tions is provided by the comparison to NNPDF [21], with the parameters fixed by the comparison
with HERA. Therefore, the instructive analogy of the three square differences between statistical,
NNPDF and Hera divide by the square of NNPDF result integrated on ranges of the x variable for
u, d,ū and d̄ for unpolarized distributions, is done in Tables 2-5.

Interestingly enough for u in the range (0.5,0.8) and for d in the range (0.2,0.7), the agreement
with NNPDF is better than the one of HERA. As long as for the strong disagreement with both
NNPDF and HERA for x above 0.8, one should say that at Q2 = 4GeV 2 , M′2 = M2 +Q2(1/x−1)

4
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2002 2015
X̃u+ 0.46188 0.446
X̃d− 0.30174 0.320
X̃u− 0.29766 0.297
X̃d+ 0.22775 0.222
b 0.40962 0.43
Ã 0.08318 0.070
b̃ -0.25347 -0.240
x̄ 0.09907 0.102

Table 1: Parameters value in comparison to 2002 result.

∆x
∫
[

xuQSPDF−xuNNPDF
xuNNPDF

]2dx
∫
[ xuHERA−xuNNPDF

xuNNPDF
]2dx

∫
[

xuQSPDF−xuHERA
xuNNPDF

]2dx
10−5−0.1 0.000719015 0.000554071 0.00238961
0.1−0.2 0.00104956 0.000026162 0.00117524
0.2−0.3 0.000417635 0.0000460843 0.000193605
0.3−0.4 0.000043073 0.000009690 0.0000161791
0.4−0.5 0.0000013250 0.000058110 0.0000438131
0.5−0.6 0.0000128613 0.0000501951 0.0000914226
0.6−0.7 0.0000643858 0.000790763 0.00121047
0.7−0.8 0.0108695 0.01601150 0.0527942
0.8−0.9 318.897 16.1839 478.302

Table 2: Comparison of u quark distribution with NNPDF and HERA

∆x
∫
[

xdQSPDF−xdNNPDF
xdNNPDF

]2dx
∫
[ xdHERA−xdNNPDF

xdNNPDF
]2dx

∫
[

xdQSPDF−xdHERA
xdNNPDF

]2dx
10−5−0.1 0.000935016 0.000086975 0.000522174
0.1−0.2 0.00023197 0.000122482 0.000264989
0.2−0.3 0.000886122 0.00106942 0.000012975
0.3−0.4 0.00093035 0.00220476 0.00037315
0.4−0.5 0.00011196 0.00343388 0.00384319
0.5−0.6 0.00048035 0.00806401 0.0122964
0.6−0.7 0.0179844 0.0745385 0.0248437

Table 3: Comparison of d quark distribution with NNPDF and HERA

∆x
∫
[

xūQSPDF−xūNNPDF
xūNNPDF

]2dx
∫
[ xūHERA−xūNNPDF

xūNNPDF
]2dx

∫
[

xūQSPDF−xūHERA
xūNNPDF

]2dx
10−5−0.1 0.00403639 0.000211 0.00287137
0.1−0.2 0.00508968 0.000418277 0.00736075
0.2−0.3 0.00660197 0.0055041 0.0240166
0.3−0.4 0.0119411 0.0112131 0.0462101
0.4−0.5 0.0222474 0.00533699 0.0475496
0.5−0.6 0.0363909 0.00570592 0.0190559
0.6−0.7 0.0512114 0.0666935 0.0032279
0.7−0.8 0.0629684 0.185068 0.032574
0.8−0.9 0.0665441 0.132565 0.0269948

Table 4: Comparison of ū distribution with NNPDF and HERA

5
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Figure 1: Our results at Q2 = 4GeV 2 for 2xu↓(x) and xd(x).
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Figure 2: Distribution of x∆d in comparison to 2002 and Fn
2 /F p

2 at Q2 = 4(GeV )2.

∆x
∫
[

xd̄QSPDF−xd̄NNPDF

xd̄NNPDF
]2dx

∫
[ xd̄HERA−xd̄NNPDF

xd̄NNPDF
]2dx

∫
[

xd̄QSPDF−xd̄HERA

xd̄NNPDF
]2dx

10−5−0.1 0.00298472 0.00327952 0.000219856
0.1−0.2 0.00550765 0.00289295 0.000889416
0.2−0.3 0.00213423 0.0108324 0.0174773
0.3−0.4 0.0223143 0.359481 0.207696

Table 5: Comparison of d̄ distribution with NNPDF and HERA

is less than 1.9, just in the region of the resonances, away from the deep inelastic regime and the
large numbers come from the fast decrease at high x induced by the factor (1− x)C. The fact that
the limit of ratio d(x)/u(x) at large x supplied by the Boltzmann limit, e−x/x̄ is in perfect agreement
with the value found by Orwell, Accardi and Melnitchuk [22] is a further point in favour of the
hypothesis that the low Q2 boundary condition for DGLAP equation is fixed by quantum statistical
mechanics. For the light sea the isospin and spin asymmetries are automatically predicted in sign
and order of magnitude from the QCD equilibrium conditions.

6
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Figure 3: Our results on ∆u(x)+∆ū(x)
u(x)+ū(x) (solid) and ∆d(x)+∆d̄(x)

d(x)+d̄(x) (dashed dot) at Q2 = 4(GeV )2 in comparison to

the HERMES data at Q2 = 2.5(GeV )2.

6. THE COMPARISON WITH THE STANDARD FORM FOR PARTON
DISTRIBUTIONS

Despite the fact that x = 0 (Q2 = 0) and the neighborhood of x = 1 (elastic and resonance
production) are not in the domain of DIS, the standard parametrization for parton distribution has
the following form:

AxB(1− x)C

with A, B and C fixed by the comparison with experiment for each parton distribution and a sep-
arate analysis for unpolarized and polarized distributions. Sometimes to improve the agreement
with data some polynomial factor is introduced. Indeed the diffractive component has a singular
power behaviour near x = 0, while the valence partons, which dominate the intermediate and the
high x regions have a different (more soft) power behaviour at small x, while the positive value of
C gives rise to a decrease with x and also to a different weight for the valence partons, 2 (u and d)
for the unpolarized distributions and 4 if one considers also the polarized ones.
For the statistical distributions the decrease at high x is naturally explained by the Boltzmann be-
haviour of the parton distributions e−x/x̄ for x larger than the "potential" of each parton.
The variation of the ratios between the different valence parton distributions d(x)

u(x) , ∆u(x)
u(x) and ∆d(x)

d(x)

is concentrated in the range between the lowest (X+
d ) and highest (X+

u ) potential, while in the
Boltzmann regime their ratios vary more slowly. This behaviour is the opposite for the standard
parametrization, for which the effect of the different exponents for the power (1− x)C becomes
more important as x approaches 1.
The ratio Fn

2 (x)/F p
2 (x) at high x depends on the ratio d(x)/u(x) in the same region. The difficulty

to obtain the neutron unpolarized structure function at high x is related to the Fermi motion of the

7
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two nucleons in the deuton, which makes very problematic to get it from the ones measured for
the proton and for the deuton. So, to get the ratio d(x)/u(x) in that region is not a trivial task.
The small statistics and the choice of the standard parametrization give rise to a big uncertainty
on that ratio. In the statistical approach the free parameters, from which that ratio depends, the
temperature (x̄) and the longitudinal and transverse potentials (Xq and Yq) are fixed in regions, the
intermediate x region (0.22,0.46), where the statistics is large and the systematic errors are small.
The perfect agreement of the prediction for d(1)/u(1) = 0.22 with the result of the careful analysis
by Orwell, Accardi and Melnitchuk is a good confirm for the statistical parton distributions. The
form AxB(1−x)CP(x) for the different parton distributions has the disadvantage that the high x be-
haviour for each distribution is fixed by the exponent C, which comes out different for the different
valence quarks with the consequence that the limit d(x)/u(x) for x→ 1 comes out 0 or infinity.
Indeed in the fit of the joined Hera-Zeus group parameter C is larger for u than for d, while for the
sea it is still smaller in such a way that it dominates in that limit. To comply with the experimental
behaviour of the ratio d(x)/u(x) they introduce for the parton u the ad-hoc factor (1+9.7x2).

7. THE GLUON DISTRIBUTION: THE PLANCK FORM

The equilibrium conditions fix the potentials for the gluon to vanish for both helicities, which
implies

∆G(x) = 0 and a Planck form xG(x) = Agx
ex/x̄−1 .

Where the exponent 1 for the power follows by the idea that the hadron is a black body cavity
for the chromomagnetic radiation and Ag is fixed by the sum rule for the longitudinal momentum.
Indeed, the fact that HERA data show that xG(x) is growing at small x for Q2 = 1.9(GeV 2) and
decreasing at Q2 = 10(GeV 2) suggests that the Q2, where it is stationary, will not be so different
from 4(GeV 2). In fact BH(4(GeV 2)) = 0.0257. The standard form AxB(1− x)C implies that the
decreasing at high x depends on the exponent C and gets faster at increasing x, while the Planck
form, as soon as one can neglect the 1 in the denominator, has a more regular behaviour (e−x/x̄).
Since the gluon distribution in DIS has influence on the logarithmic scaling violation, a method
to establish the degree of agreement of the Planck distribution with the experimental information
obtained at HERA is to compare at Q2 = 4(GeV 2):

∫ 0.2
0.0 xG(x)dx = 0.36 with

∫ 0.2
0

Agx
ex/x̄−1 dx = 0.34

∫ 1
0.2 xG(x)dx = 0.05 with

∫ 1
0.2

Agx
ex/x̄−1 dx = 0.12

The agreement is good for
∫ 0.2

0.0 xG(x)dx in the range, where most gluons are concentrated,
while for x larger than 0.2 HERA gives a faster decrease. Since for the fermion partons the decrease
at high x is better described by the statistical distributions, it is legitimate to make the conjecture
that the fast decrease at high x advocated by HERA is more a consequence of their parametrization
than of the experimental evidence.

8
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∆x
∫
[

xgQSPDF−xgNNPDF
xgNNPDF

]2dx
∫
[ xgHERA−xgNNPDF

xgNNPDF
]2dx

∫
[

xgQSPDF−xgHERA
xgNNPDF

]2dx
10−5−0.1 0.00190835 0.000736242 0.00384873
0.1−0.2 0.00713221 0.000340814 0.0090403
0.2−0.3 0.0173979 0.00838282 0.0490799
0.3−0.4 0.0161694 0.0328795 0.0943154
0.4−0.5 0.00873125 0.063188 0.118073
0.5−0.6 0.0035346 0.0869633 0.125171
0.6−0.7 0.00393113 0.0982558 0.140749
0.7−0.8 0.120633 0.0882559 0.372319

Table 6: Comparison of gluon distribution with NNPDF and HERA

8. CONCLUSION

The agreement with the Hera distributions with the form dictated by the quantum statistical
approach for the fermion parton distributions is an impressive confirm of the validity of the pro-
posal in the 2002 paper with the improved theoretical foundation achieved with the extension of the
transverse degrees of freedom and with the consideration of the Melosh-Wigner rotation. The simi-
larity of the values of the parameters with the ones found in the previous work supports the validity
of the statistical approach. As long as the pT dependance in the Boltzmann limit, neglecting the
power dependance and with the gaussian approximation for the exponential we get the behaviour√
(pT )e−2pT /µ

√
x̄ with an effective temperature equal to 49MeV , smaller than the range proposed

in the paper by Cleymans, Lykasov, Sorin and Teryaev [23], 120− 150MeV , but the important
quantum effect gives rise to a harder pT distribution. The decrease at high x and the ratios between
the different valence partons seem to be better described by the statistical distribution than by the
standard distributions. In fact the ratios change more fast in the range (0.22,0.46) than above 0.46.
An attractive feature of the statistical model is that the parameters are fixed by regions of x where
there is a large statistics and small systematic errors. Namely, small x for the two parameters as-
sociated to the diffractive term, and the intermediate region (0.22,0.46) for the ones associated to
the valence partons. As long as for the gluons, at high x the Planck form is in better agreement
with the parametrization independent of NNPDF than the standard parametrization proposed by
HERA. A crucial test will be provided by the measurement at high x of d̄/ū for which a previous
experiment gave a weird behaviour abruptly decreasing based on uncertain data. Finally, for the
spin and isospin asymmetries of the sea, ∆ū and ∆d̄, the Boltzmann behaviour predicted by the
statistical model shows a more regular behaviour.
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