Nucleosynthesis in decompressed Neutron stars crust matter #### Smruti Smita Lenka, B. Hareesh Gautham and Sarmistha Banik* Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad -500078, INDIA * email: sarmistha.banik@hyderabad.bits-pilani.ac.in ### Introduction It's being a challenging problem to understand the formation of heavy & super heavy nuclei in the universe [1]. The rapid neutron capture process (r-process) is believed be responsible for the synthesis of heavier elements in supernovae explosions & neutron stars (NS) crusts under extreme astrophysical conditions [2]. Some NSs have very high magnetic fields~10¹⁷G. These are called as magnetars. The ground state properties of inner crusts of NSs are studied in the presence of strong magnetic fields [3]. We studied the r-process in the decompressed NSs crust matter in the presence of strong magnetic field using the calculations of [3] as input. ## **Nuclear Statistical Equilibrium** During fusion reactions inside the stars, once Si burning stage is reached, the temperature rises up to a limit, when various nuclei reach one large equilibrium group stretching from proton (p), neutron (n), α -particles to the iron peak nuclei. The system attains nuclear statistical equilibrium (NSE) with equal forward & backward reaction rates. We consider the hot and dense decompressed crust matter consists of free p, n & seed nuclei such as 56 Fe. At NSE, mass & charge conservation imply [4], $$\sum X_i = 1$$ ----- (1) $\sum \frac{z_i}{A_i} X_i = Y_e$ ----- (2) where, Y_e is the proton fraction, X_i is the mass abundance for i-th nuclei with atomic number Z_i and mass number A_i & is given by, $$X_{i} = \frac{1}{2} G_{i}(T) \left(\frac{1}{2} \rho N_{A} \lambda^{3} \right)^{A_{i}-1} A_{i}^{5/2} X_{n}^{A_{i}-Z_{i}} X_{p}^{Z_{i}} e^{Q_{i}/KT}.$$ -----(3) Here, $G_i(T)$ is the partition function, N_A is the Avogadro's number, Q_i is the binding energy, ρ is the mas density, T is the temperature, K is the Boltzmann constant, X_p is the proton fraction, X_n is the neutron fraction & λ is the thermal De' Broglie wavelength given by, $\lambda = \frac{h}{\sqrt{2\pi m_H KT}}$ where h is the Planck's constant & m_H is the mass of a hydrogen atom. We solve eqns.(1) & (2) using Newton-Raphson method for X_p & X_n & use these values to obtain the mass abundance of different nuclei. This leads to number abundances of different nuclei, $Y_i = \frac{X_i}{m_i}$ [5]. **Fig.1** Abundance variation with mass number for $T=9 \times 10^9$ K & $Y_e=0.4$ with varying ρ ### Result We have shown the abundance variation with mass number for NS crust nuclei. Fig.1. shows the abundance variation with mass number for constant T & Y_e with varying density (ρ) . It can be seen that abundance of nuclei increases with increasing ρ . ⁸⁶Kr is the most abundant nuclei & ¹¹⁸Kr is the least abundant nuclei. Fig.2. shows the variation of abundance for constant ρ & T with varying Y_e . Abundance of nuclei increases with decreasing Y_e . More nuclei present in low Y_e region. We have also studied the abundance variation with mass number for constant $Y_e \& \rho$ with varying T and found that the nuclei are more abundant for low temperature values. Fig. 2 Abundance variation with mass number for T=8×10⁹K & ρ =10⁸g/cc with varying Y_e ## **Summary** We have investigated the abundance of neutron star crust in the presence of high magnetic field in the outer crust of decompressed NSs crust matter. S S Lenka acknowledges Department of Science & Technology, India for financial support under INSPIRE fellowship. #### References - Botvinaa, A., Mishustina, I., Zagrebaeva, V. & Greiner, W. Int. J. Mod. Phys. E 19, 2063 (2010) - [2] Arnould, M., Goriely, S. & Takahashi, K. Phys. Rep., 450: 97-213 (2007) - [3] Nandi R., Bandyopadhyay D., Mishustin I. N. & Walter G. ApJ, 736:156-162 (2011) - [4] Odrzywolek A. Atomic Data and Nuclear Data Tables, 98:852-861 (2012) - [5] Charignon, C., Kostka, M., Koning, N., Jaikumar, P. & Ouyed, R. A&A, 531 (2011)