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Abstract

Two analyses of data recorded in proton-proton collisions at the ATLAS detector in

2012 are presented in this thesis. The first pertains to the beam separation (van der

Meer) scans required to calibrate the absolute luminosity. An estimate is made for

the size of the correction needed to the standard van der Meer calibration method,

which assumes that the proton bunch density profiles are factorisable. This is done

by observing and modelling the evolution of various beam spot phenomena during

the separation scans.

The second analysis described is a series of measurements of the Z/γ cross-

section, differential in the φ∗η observable, for different ranges of the boson invariant

mass and absolute rapidity. In particular the events in which the boson decays to

electron-positron pairs are considered. The φ∗η observable is defined in terms of the

well-measured lepton directions and enables a probe of initial state gluon radiation

in the non-perturbative regime of QCD.
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Chapter 1

Introduction

1.1 The Standard Model

Particle physics is concerned with the identification of the fundamental constituents

of the universe and their interactions. The theory which best describes these at

present is called the Standard Model, which is a quantum field theory with a local

SU(3) × SU(2) × U(1) gauge symmetry contructed from a series of experimental

observations and theoretical insights [1]. The Standard Model has become one of

the most thoroughly tested theories in physics and describes the operation of three

of the four fundamental forces of nature, namely the electromagnetic, strong and

weak forces with gravity being the exception. Forces in the theory are mediated

by integer-spin particles (bosons); the photon, γ, and the gluon, g are the bosons

responsible for mediating the electromagnetic and strong forces respectively whilst

the W+, W− and Z bosons are responsible for mediating the weak force. The matter

content is composed of half-integer spin particles (fermions), which can be divided

into two categories: quarks, which interact via all three forces and leptons which

only interact via the electromagnetic and/or weak interactions. Particles obtain

mass via interactions with the Higgs field, excitations of which produce the only

scalar (spin 0) particle in the model — the Higgs boson, H.

A summary of the fundamental particles in the Standard Model is given in

Table 1.1 [1]. For each charged fermion there is a distinct anti-particle which has the

same mass but opposite charge. The question of whether neutrinos, ν have a distinct

anti-particle or constitute their own anti-particle is a topic of current research [2] [3].

Despite much success in describing the interactions between the known funda-

mental particles, the Standard Model is not able to explain all observed phenomena

in nature — three of the most important are briefly described here. As already

mentioned gravitational interactions between particles are not considered in the
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Fermions

Quarks

(
u
d

) (
c
s

) (
t
b

)
Leptons

(
e
νe

) (
µ
νµ

) (
τ
ντ

)
Bosons

γ, g, W±, Z, H

Table 1.1: A summary of the fundamental particles in the Standard Model [1].

Standard Model. For particles at everyday energies this is unimportant when mak-

ing predictions as gravity is around 38 orders of magnitude weaker than the strong

force [4]. However in order to describe the interaction of particles in the first 10−43 s

of the universe, when particle energies were around 1020 times larger, a more com-

plete theory is required [5]. The Standard Model is also inconsistent with two further

issues relating to observations on very large length scales. The first is the abundance

of matter over anti-matter in the universe. These are treated differently in the theory

and given the reasonable assumption of an equal quantity of each at the beginning

of the universe it is predicted that there should be residual matter left after a period

of matter-anti-matter annihilation shortly afterwards. However the Standard Model

predicts that there should be less matter remaining than is currently observed by

several orders of magnitude [6].

The second issue concerns the astrophysical observations such as galaxy rotation

speeds and galactic gravitational lensing which suggest the existence of a class of

matter known as ‘dark matter’ which does not interact or only weakly interacts

with the currently known fundamental particles. One extension to the Standard

Model, which has been heavily studied, is named Supersymmetry and proposes a

fermionic partner for each boson in the Standard Model and a bosonic partner for

each fermion. Some of the additional particles could have the properties necessary to

explain dark matter. However no direct experimental evidence for Supersymmetry

has so far been seen [1].

1.2 Particle colliders

The discovery of new particles and the study of their behaviour is performed by initi-

ating high-energy particle interactions and examining the properties of the resulting

particles produced. Experiments which seek to do this can generally be divided into

10



two categories, those in which particles are fired into a stationary target (fixed-target

experiments) and those in which two beams of particles are collided (high-energy

colliders). Fixed target experiments have the advantage that a high percentage of

incoming particles will collide with the target, however suffer from the fact that

the invariant mass of the resultant particles must be lower than the energy of the

incoming particle in order to conserve momentum. For this reason much of the re-

search into very high-energy particles takes place at colliders. However fixed-target

experiments are still contributing important results to certain research areas, for

example, the NA62 experiment at CERN (The European Organisation for Nuclear

Research, Geneva), measures the rate of the rare decay K+ → π+νν̄ (where K+ is

a bound state of an up and an anti-strange quark) [7].

Most high-energy colliders collide bunches of particles to maximise the proba-

bility of an interaction. The bunches in the Large Hadron Collider (LHC) [8] at

CERN contain around 1011 protons and yet there are only of order 20 interactions

per collision (as of 2012). Circular colliders such as the LHC or the Tevatron [9],

which operated at Fermilab near Chicago have the advantage that certain bunch

pairs will collide thousands of times a second, increasing the number of useful inter-

actions that can be gained for the initial outlay in time and energy of accelerating

the particles in a bunch. Linear colliders such as the proposed International Linear

Collider (ILC) do have some advantages over circular colliders, the main one being

the near absence of energy loss from synchrotron radiation. It was this factor, which

at the end of its lifetime in 2000, limited the energy of the particles in the Large

Electron-Positron Collider (LEP) at CERN [10].

One of the most important considerations made when designing a high-energy

collider is the type of particles being collided. Lepton colliders such as LEP allow

the energy of the incoming particles to be known very precisely as the particles

being accelerated are fundamental. This is in contrast to machines which collide

composite particles formed of quarks (hadrons). The constituent quarks in a hadron

have a distribution of momenta, which means the centre of mass energy of any one

pair of incoming quarks is unknown and can only be determined by reconstructing

the invariant mass of the particles produced in the collision. This is a particular

disadvantage when there are out-going particles which do not interact with the

detector, such as neutrinos. Particle kinematics in high-energy colliders are therefore

generally described in terms of momentum transverse to the beam direction, pT,

which is assumed to be very small or zero in the system of the incoming particles.

A further advantage of lepton colliders is that leptons do not carry colour charge

and therefore do not interact via the strong force. This means that there is no

11



gluon emission from the incoming particles which affords a cleaner experimental

signature in which one can more easily identify the interesting particles produced in

the interaction. The main advantage though of hadron colliders such as the LHC is

that they accelerate heavier particles than lepton colliders — the proton is around

2000 times more massive than the electron — and therefore there is less synchrotron

radiation which means higher collision energies can be achieved.

A third class of colliders are those which collide leptons with hadrons, such

as the Hadron Elektron Ring Anlage (HERA) collider which ran at the Deut-

sches Elektronen-Synchrotron (DESY) research centre in Hamburg from 1992 until

2007 [11]. HERA collided either electrons or positrons with protons, which allowed

the internal structure of the proton to be precisely measured.

Circular particle colliders generally have multiple interaction points around the

machine. For example the LHC has four interaction points and at each is situated

one large particle detector or experiment, which are named ATLAS (A Toroidal

LHC Apparatus) [12], ALICE (A Large Ion Collider Experiment) [13], CMS (Com-

pact Muon Solenoid) [14] and LHCb (LHC Beauty) [15]. There are also three

smaller experiments located at or near the LHC interaction points, LHCf (LHC For-

ward) [16], TOTEM (TOTal Elastic and diffractive cross section Measurement) [17]

and MOEDAL (Monopole and Exotics Detector at the LHC) [18]. The results pre-

sented in this thesis are obtained using data from the ATLAS experiment. A more

detailed description about the LHC and ATLAS specifically is given in Chapter 2.

1.3 Units

Unless otherwise stated the system of units used in this thesis is the standard used

in the field of high energy particle physics, sometimes called ‘natural units’. That

is, the speed of light, c, and the reduced Planck’s constant, ~, are set equal to unity

and energies are expressed in electron-volts, eV. One electron-volt is approximately

equal to 1.6× 10−19 J. In this system the mass of the proton is equal to 0.94 GeV.

1.4 Outline of thesis

Chapter 2 introduces the ATLAS experiment. The design and operation of its

various sub-detectors are described as well as how the particles produced by the

interactions in the LHC can be identified. Chapter 3 introduces the concept of

the luminosity of an accelerator, which can be defined as the rate of a particular

process divided by its cross-section. The luminosity is determined in ATLAS during
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operations by measuring a quantity to which it is proportional. The calibration

of the proportionality constant using beam separation scans is then also described.

Chapter 4 then details a study undertaken to determine an important correction to

the calibration method, namely for the assumption of beam-factorisation, and its

associated systematic uncertainty.

Chapter 5 describes how in recent years tests of Quantum Chromodynamics

(QCD), the quantum field theory description of the strong force, have been per-

formed by measuring the angular distribution of lepton pairs in Z boson and photon

decays. The specific angular variable of interest is named φ∗η and measurements of

this distribution for the Z boson decaying to electron-positron pairs are detailed in

Chapter 6.
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Chapter 2

The ATLAS detector

2.1 Introduction

The ATLAS experiment is a general purpose particle detector located at one of the

four collision points of the Large Hadron Collider at CERN, 100 m underground.

This chapter first provides an introduction to the LHC, describing its characteristics

and how particles are brought into collision (Section 2.2). Section 2.3 describes the

design of the ATLAS experiment and Section 2.4 then describes the operation of

the detector during data taking and how interesting collisions are selected using a

three-tiered trigger system.

2.2 The LHC

At 27 km in circumference the LHC is one of the largest particle colliders ever built

as well as colliding particles with a record centre of mass energy (
√
s ) of 8 TeV

in 2012. The previous record-holder was the Tevatron, which by the end of its

operations collided protons and anti-protons with
√
s equal to 1.96 TeV. The LHC

also has a higher particle collision rate (higher luminosity) than the Tevatron, where

the luminosity was limited by the production rate of anti-protons.

For the majority of its running the LHC has collided bunches of protons with
√
s of 7 TeV in 2010 and 2011 and 8 TeV in 2012. However the machine has also

been used to collide bunches of lead ions with a centre of mass energy per nucleon

pair (
√
sNN ) of 2.76 TeV and to collide lead ions with protons at

√
sNN equal to

5.02 TeV. During the majority of 2013 and 2014 the LHC was switched off to allow

upgrades to the machine itself as well as to the various experiments around the

collider. These improvements have allowed the maximum centre of mass energy to

be increased to 13 TeV for collisions in 2015.
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Figure 2.1: The LHC injection chain for protons [19].

A series of machines is required to be able to accelerate the protons (or lead

ions) to collision energies. These are collectively named the LHC injection chain, a

diagram of which is provided in Figure 2.1 [19].

Protons are obtained by removing electrons from hydrogen gas by passing it

through an electric field. The protons are then accelerated to 50 MeV using the

only linear accelerator in the chain named Linac 2. They then enter the Proton-

Synchrotron (PS) Booster which accelerates them to 1.4 GeV in preparation for

transfer to the PS itself. After reaching energies of 26 GeV the protons leave the PS

via Transfer Tunnels (TT) TT2 and TT10. They then arrive in the Super Proton

Synchrotron where they are accelerated to an energy of 450 GeV. The protons for

the anti-clockwise LHC beam then proceed along TT40 and Injector Tunnel (TI)

TI8 whereas those for the clockwise beam proceed along TT60 and TI2 into the

LHC. The energy of the protons is then increased in the LHC until collision energy

(4 TeV in 2012) is reached. The only difference in the lead ion injector chain is that

the ions initially pass though a different linear accelerator, named Linac 3.

The SPS has been an important accelerator in its own right, most significantly

when it acted as a proton-anti-proton collider from 1981 to 1984. This enabled the

discoveries of the W and Z bosons in 1983 by the UA1 (Underground Area 1) and

UA2 experiments, the two general purpose detectors located on the SPS.
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Figure 2.2: A diagram of the ATLAS detector in which the most important sub-
detectors are labelled [12].

2.3 ATLAS detector design

The following section describes the design and layout of the ATLAS detector [12].

ATLAS is approximately cylindrical in shape and can be divided into three parts,

a central section known as the barrel and two ‘end-caps’. It measures around 44 m

along its axis and its diameter is around 25 m. A diagram of the ATLAS detector

is shown in Figure 2.2 [12].

The LHC beam travels along the axis of the cylinder, passing through both

end-caps and defines the z-axis of the coordinate system used with the detector.

The nominal interaction point in the centre of the cylinder is defined as the origin

of the coordinate system. The direction pointing from the origin to the centre

point of the LHC defines the positive x-axis whilst the positive y-axis is defined

as pointing upwards. The detector is nominally symmetric about the x-y plane at

z = 0. The shape of the detector suggests the use of polar coordinates to describe a

particle’s position. The azimuthal angle, φ, is measured around the beam axis and

the polar angle, θ, is measured from the beam axis. One further useful quantity is the

pseudorapidity, η, defined in Equation 2.1 such that differences in pseudorapidity

are Lorentz invariant for boosts along the beam direction in the ultra-relativistic
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limit.

η = − ln tan
θ

2
(2.1)

The ATLAS Inner Detector (ID) is the collective term for the three detector sub-

systems which are closest to the beam line. These are the pixel detector, the Semi-

Conductor Tracker (SCT) and the Transition Radiation Tracker (TRT). These are

used in order to measure a particle’s path or track to high precision and to distinguish

between different types of particle. Each of the sub-systems are described in more

detail in Section 2.3.1. The ID is immersed in a 2 T solenoidal magnetic field, which

causes the bending of the paths of charged particles, the curvature of which is then

used in the determination of a particle’s momentum. Surrounding the ID is the

electromagnetic (EM) calorimeter and then the hadronic calorimeters. The EM

calorimeter is used to precisely measure the energies of electrons and photons whilst

the hadronic calorimeters are suited to measuring the energies of jets, the cones

of particles produced by the hadronisation of quarks and gluons. The calorimeters

are described in further detail in Section 2.3.2. The outermost sub-detectors in

ATLAS are dedicated to measuring the properties of high-energy muons and are

collectively termed the Muon Spectrometer (MS). Within the MS are three large

super-conducting air-core toroidal magnets, one in the barrel and one in each of the

end-caps. Together these achieve a magnetic field of 0.5 T in the central region of

the MS and 1 T in the end-cap regions. Further information on the MS is provided

in Section 2.3.3.

2.3.1 The Inner Detector

During normal LHC operations there can be multiple proton-proton interactions per

bunch crossing (pile-up) and in 2012 this number was typically between 15 and 30.

Therefore the instrumentation closest to the beam, the ID, is required to have fine

granularity in order to distinguish between the hundreds of particle tracks created

every 50 ns.

The structure of the barrel region of the ID is shown in Figure 2.3 [12]. Three

layers of silicon pixel modules form the elements of the ID closest to the beam

pipe in both the barrel and end-cap regions. All of the 1744 pixel modules are

identical and each module contains 47232 pixels. The size of around 90% of the

pixels is 50 µm× 400 µm with the remainder being 50 µm× 600 µm. In addition to

the requirement of a high spatial resolution the pixel layers must continue operating

under sustained intense radiation.
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Figure 2.3: The ATLAS Inner Detector (barrel) [12]
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Four cylindrical layers of silicon microstrip modules in the barrel and nine disk

layers in each of the end-caps form the SCT sub-detector. These surround the

pixel layers and provide additional and complementary measurements of a charged

particle’s track. The 2112 SCT modules in the barrel are identical and consist of

four 770 strip sensors, two on each face. The strips on one of the faces are aligned

parallel to the beam direction whilst those on the opposite face have a relative

rotation of 40 mrad in order to provide information on a particle’s z-coordinate [20].

The 1976 SCT modules in the end-caps have a wedge-shaped geometry and vary in

size dependent on their location on an end-cap disk. The modules have a similar

sensor layout to those in the barrel but here the strips on one of the faces are aligned

radially and those on the opposite face again have a relative rotation of 40 mrad.

The outermost component of the ID, the TRT, is composed of 4 mm diameter

straw tubes filled with a gas mixture of 70% xenon, 27% carbon dioxide and 3%

oxygen [12]. In the barrel region there are 73 layers of straws, aligned with the beam

axis and embedded in an array of polypropylene fibres. In each end-cap there are

160 layers of straws, arranged radially and interspersed with layers of polypropylene

foils. In addition to providing extra particle tracking information the TRT is also

used for distinguishing between electrons and pions [21]. As a relativistic particle

enters a material of a different dielectric constant (in this case the polypropylene)

it radiates photons. The total energy loss of an ultra-relativistic particle due to

this transition radiation is proportional to its Lorentz factor, γ, and also depends

on the properties of the material. Up to particle energies of 100 GeV only the low-

mass electron produces enough photons with energy above the detection threshold

(typically 6 keV).

2.3.2 Calorimetry

The electromagnetic sampling calorimeter consists of alternate layers of lead ab-

sorbers and kapton electrodes arranged in an accordion-shaped geometry and im-

mersed in liquid argon (LAr) [22]. This design is used both in the barrel and the

end-cap regions as illustrated in Figure 2.4 [23]. The barrel region covers a pseudo-

rapidity range |η| < 1.475, an outer end-cap wheel covers 1.375 < |η| < 2.5 and an

inner end-cap wheel covers the range 2.5 < |η| < 3.2. The entire EM calorimeter

is completely symmetric in the azimuthal angle, φ, without any cracks. Both the

barrel and end-cap EM calorimeters are housed in their own cryostat, which each

have an operating temperature of 87 K. An end-cap cryostat also contains the LAr

hadronic end-cap calorimeter (HEC) and forward calorimeter (FCal).

As an electron or photon passes through the layers of lead an electromagnetic
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Figure 2.4: The left diagram depicts a barrel EM calorimeter module in which only
the first and last of the 64 absorbers are shown. The right diagram depicts an
end-cap module again in which only three of the (96 outer wheel, 32 inner wheel)
absorbers are shown [23].

shower is induced via processes such as bremsstrahlung and pair-production, which

cause ionisation of the liquid argon that is collected by the electrodes. The signal

produced is proportional to the energy of the particle and the conversion factor

is obtained using test-beam measurements and the behaviour of well-understood

resonances such as Z → e+e− [24]. The EM calorimeter is designed to contain

the electromagnetic showers of electrons and photons and as such is more than 22

radiation lengths thick in the barrel and more than 24 thick in the end-cap regions.

The EM calorimeter has three active layers in depth in the range devoted to precision

measurements, |η| < 2.5, and two layers in the range 2.5 < |η| < 3.2. A diagram of

a barrel module indicating the granularity in η and φ of each of the layers is given in

Figure 2.5 [12]. The largest fraction of the energy from an electromagnetic shower

is collected by the second layer. The energy resolution in the pseudorapidity range

between 1.37 and 1.52 is worse due to the transition between the barrel and end-cap

cryostats. This region is therefore not used in precision electron measurements such

as the one described in Chapter 6.

The tile hadronic sampling calorimeter (TileCal) covers the pseudorapidity range

|η| < 1.7 and is subdivided into a central barrel 5.8 m in length and two extended

barrels, 2.6 m in length, each of which is split azimuthally into 64 wedge-shaped

modules. A diagram showing the design of one of the modules is shown in Fig-

ure 2.6 [12]. Steel plates are used for the absorbing material and scintillating tiles as

the sampling material. The ultraviolet light from the scintillators is converted to vis-

ible light by wavelength-shifting fibres which transmit the signal to photomultiplier

tubes (PMTs). The total thickness of the detector up to and including the TileCal

is 9.7 interaction lengths. This figure increases to 10 for the end-cap regions. This
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Figure 2.5: A diagram of a barrel EM calorimeter module indicating the granularity
in η and φ in each of the three layers [12].

thickness combined with wide coverage of the calorimetry in pseudorapidity enables

precise measurements of the missing transverse energy (Emiss
T ) - the energy carried

by particles which do not interact with the detector such as neutrinos.

The hadronic end-cap calorimeters (HEC) use copper as the absorbing material

and liquid argon as the sampling material. The HEC covers the pseudorapidity

range 1.5 < |η| < 3.2 and consists of two independent wheels per end-cap, each

of which are divided into 32 wedge-shaped modules. The range 3.1 < |η| < 4.9

is covered by the forward calorimeter, FCal. Each forward calorimeter consists of

three modules. The module closest to the interaction point uses copper rods as the

absorbing material and is optimised for electromagnetic measurements. The other

two modules use tungsten rods and are designed for hadronic energy measurements.

The rods are centred within tubes which run parallel to the beam pipe. The gaps

between the tubes and rods are filled with liquid argon, which is again used as the

sampling material.
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Figure 2.6: A diagram of a TileCal module showing the layout of the steel absorbing
plates and scintillating tiles [12].

2.3.3 The Muon Spectrometer

According to the Bethe formula description of the mean rate of energy loss or

‘stopping power’ of particles in matter, muons of momenta typically produced in

ATLAS (0.1 GeV to 1000 GeV) are approximately minimum ionising particles [1].

As such they are generally the only type of Standard Model particle to penetrate

the calorimetry systems and interact with the detectors of the Muon Spectrometer

(MS).

The most striking feature of the MS is three large air-core superconducting toroid

magnets, one in the barrel region and one in each end-cap. The barrel toroid [25]

is formed of eight racetrack shaped coils, each housed in its own cryostat, and has

an axial length of 25.3 m, an inner diameter of 9.4 m and an outer diameter of

20.1 m [12]. The end-cap toroids are also both formed of eight coils all contained

within one cryostat. They have an inner diameter of 1.65 m, an outer diameter

of 10.7 m and an axial length of 5.0 m. The toroid magnetic field in the barrel is

approximately 0.5 T, with this rising to approximately 1 T in the end-cap regions.

The field is non-uniform and causes charged particles to bend in a plane containing

the beam-axis.

The barrel region of the MS is formed of three concentric cylindrical layers, on

either side of, and between the toroid coils as indicated in Figure 2.7 [26]. The end-

cap regions consist of a series of large wheels perpendicular to the beam-axis. In the

pseudorapidity range 0 < |η| < 2.7 precision tracking is performed by Monitored

Drift Tube (MDTs), complemented by Cathode-Strip Chambers (CSCs) at high
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Figure 2.7: A view of the Muon Spectrometer in the transverse plane. One half of
the end-cap toroid has been cut-away [26].

pseudorapidity, 2.0 < |η| < 2.7, where the particle fluxes and track density is the

highest. Fast determination of muon transverse momentum (pT) and fast but coarse

tracking information for use in the trigger system (see Section 2.4) is provided in

the barrel region by Resistive Plate Chambers (RPCs) and in the end-cap regions

by multi-wire proportional chambers named Thin Gap Chambers (TGCs).

2.4 ATLAS detector operation

The period in which proton bunches are circulating in the LHC is known as a fill, the

average duration of which in 2012 was 6.1 hours [27]. Each period of ATLAS data

taking is termed a run. A run generally corresponds to one LHC fill however they

are independent - there may be multiple runs per fill or runs without any circulating

beam.

The proton bunches in the LHC form a series of ‘bunch trains’ with a separation

in time of 50 ns between bunches in a train. In 2012 this led to a maximum of

1380 bunch crossings per proton revolution, which equates to 1.6× 107 crossings per

second. Given the average number of proton-proton collisions per crossing, which

was 20.7 in 2012 [28], this leads to an approximate collision rate of 3.2× 108 s−1.

When a bunch crossing contains an interaction it is termed an event. The ATLAS
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data taking system is designed to record 200 events per second for later analysis and

therefore a three-tiered trigger system is used to select events which are considered

interesting in the context of the ATLAS physics programme.

2.4.1 Trigger system

The primary selection of events is performed by the Level-1 (L1) trigger, which is

implemented using custom-made electronics [12]. The trigger is run on each bunch

crossing and is designed to select events which pass certain criteria defined on a

‘trigger-menu’. These criteria consist of signatures for high-pT electrons, photons,

jets, hadronically decaying τ -leptons, and muons as well as for large missing and

total transverse energy. Further menu items are formed from combinations of any of

the above signatures. A decision on whether or not an event passes the selection is

made within 2.5 µs and the events are passed to the Level-2 (L2) trigger for further

refinement at a rate of 75 kHz.

For each event passing the L1 trigger one or more Regions-of-Interest (RoIs) are

defined in η and φ, indicating in which parts of the detector the signatures were

identified. The L2 trigger uses all of the available detector information within the

RoIs to make a better informed decision on whether an event should be selected.

This process takes approximately 40 ms and has an event output rate of 3.5 kHz.

The entire detector readout for the events chosen by the L2 trigger is then used

to assemble events into a single formatted data structure in a process known as

event-building. The final tier of the trigger system, the Event Filter (EF), then

uses modified versions of the offline-analysis procedures on these assembled events

to reduce the event output rate to the 200 Hz required. The processing time for a

single event by the EF is around four seconds.
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Chapter 3

Luminosity

3.1 Introduction to luminosity

The absolute luminosity of a particle collider, L , can most simply be expressed as

the rate for a certain process, R, divided by the cross-section for that process, σ,

(Equation 3.1).

L =
R

σ
(3.1)

For colliders with a bunched beam, such as the LHC, the luminosity of the ma-

chine, L is equal to the sum of the luminosity of each colliding bunch pair (BCID),

Lb. For BCIDs with zero crossing angle Lb can be written as in Equation 3.2 in

terms of various parameters of the bunches, where fr is the bunch revolution fre-

quency, ni is the number of particles (population) of bunch i, and ρ̂i(x, y) is the

normalised density profile of bunch i [29].

Lb = frn1n2

∫
ρ̂1(x, y)ρ̂2(x, y)dxdy (3.2)

3.2 Luminosity measurement

One can use Equation 3.1 to obtain the absolute luminosity (either on a bunch-by-

bunch basis or for the whole machine) by counting the rate for a particular process

and using prior knowledge of the associated cross-section. One may consider using

a particle interaction for which the cross-section is well-known such as a Z boson

decaying to two muons.

Alternatively one may use a detector and an associated algorithm to measure

the observed, or visible, proton-proton interaction rate per bunch crossing, µvis,
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which has an initially unknown cross-section, σvis. The luminosity of a bunch is

then given by Equation 3.3, where µvis and σvis depend on the particular detector

and algorithm used. This is the method used for the default measurement of the

luminosity in ATLAS.

Lb =
µvisfr
σvis

(3.3)

The value of σvis is calibrated by making a measurement of the absolute lumi-

nosity at a certain point in time using Equation 3.2. Without any prior knowl-

edge of the (poorly understood) individual bunch density profiles, ρ̂, one can make

a measurement of the overlap integral
∫
ρ̂1(x, y)ρ̂2(x, y)dxdy using a method pio-

neered by Simon van der Meer at the Intersecting Storage Rings (ISR) accelerator

at CERN [30]. The technique is explained in Section 3.3.

3.3 The van der Meer method

Under the assumption that the bunch density profiles can be factorised into inde-

pendent horizontal and vertical components (i.e., ρ̂1(x, y) = ρx1(x)ρy1(y)) one can

rewrite Equation 3.2 as Equation 3.4. The extent to which this is a good assumption

is the subject of Chapter 4.

Lb = frn1n2

∫
ρx1(x)ρx2(x)dx

∫
ρy1(y)ρy2(y)dy (3.4)

In order to obtain
∫
ρx1(x)ρx2(x)dx van der Meer proposed measuring a quantity

proportional to the luminosity (say µvis) as the two beams are separated in the

horizontal (x) direction. This procedure is known as a ‘beam separation scan’ or

more commonly a van der Meer (vdM) scan. Equation 3.5 gives an expression for

µvis as a function of beam separation, h, where A is an unknown proportionality

constant. Note that the convention in ATLAS vdM scans is that when the two

beams are displaced symmetrically (as was always the case in 2012) the separation

is defined as the position of beam 1 minus the position of beam 2.

µvis(h) = A

∫
ρx1(x)ρx2(x+ h)dx (3.5)

By integrating Equation 3.5 with respect to separation (h) and dividing by the

value of µvis at zero separation (µMAX
vis ) one obtains Equation 3.6.∫

µvis(h)dh

µMAX
vis

=
A
∫ (∫

ρx1(x)ρx2(x+ h)dx
)
dh

A
∫
ρx1(x)ρx2(x)dx

(3.6)
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If it is assumed that the integrals in the numerator of the right hand side of

Equation 3.6 are performed over the entire range where the integrands are non-zero

then the substitution x + h → a and dh → da can be made (Equation 3.7). This

is a reasonable assumption as the measured µvis becomes very small at large beam

separations. ∫
µvis(h)dh

µMAX
vis

=

∫ (∫
ρx1(x)ρx2(a)dx

)
da∫

ρx1(x)ρx2(x)dx
(3.7)

Using the fact that the bunch density profiles are normalised one obtains Equa-

tion 3.8, where the quantity Σx, the convolved bunch width, is defined.∫
µvis(h)dh

µMAX
vis

=
1∫

ρx1(x)ρx2(x)dx
=
√

2πΣx (3.8)

By performing a similar separation of the beams in the vertical (y) direction

one obtains Σy. Equation 3.4 can then be written in terms of Σx and Σy to get an

expression for the bunch luminosity which does not require knowledge of the bunch

density profiles (Equation 3.9).

Lb =
frn1n2

2πΣxΣy

(3.9)

A measurement of the absolute bunch luminosity at a certain time allows the

calibration of σvis for each detector and algorithm using Equation 3.3, which is

rewritten in terms of Σx, Σy and µMAX
vis in Equation 3.10.

σvis = µMAX
vis

2πΣxΣy

n1n2

(3.10)

The value of µMAX
vis and the bunch population product n1n2 can be different

for each pair of colliding bunches. However the value of σvis is a property of the

detector, and one should therefore measure the same value for each BCID. This

enables a consistency check on the vdM scan procedure and any disagreement is a

source of systematic uncertainty on µvis and therefore the luminosity.

In an ideal scenario µvis could be measured continuously as a function of beam

separation allowing
∫
µvis(h)dh (and therefore Σx and Σy) to be determined exactly.

However in order to obtain a precise measurement of µvis the beams are held for

a period of around 45 seconds at a constant separation. Due to time constraints

µvis is measured at a limited number of beam separation steps (generally 25 in the

ATLAS 2012 vdM scans). The Σ values are therefore determined by performing a fit

to the curve of µvis versus beam separation (Σx is obtained from the x-scan and Σy
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from the y-scan). Example function choices for the fit are a Gaussian plus a constant

background or the sum of two Gaussian functions (double Gaussian) plus a constant

background. Any background term is subtracted from data before determining Σ.

Note if the curve is fitted with a single Gaussian then Σ is equal to the width of

that Gaussian. Note also that Equations 3.9 and 3.10 are still valid when the two

beams have a non-zero crossing angle [29].

VdM scans were not employed at the Tevatron for use in luminosity calibration

for the technical reason that the counter-rotating proton and anti-proton beams

shared the same beam-pipe and were steered by the same magnets — as such they

could not be magnetically separated [31]. Instead the measured rates in a particular

luminosity detector were converted to an absolute luminosity using a measurement

of the total pp̄ inelastic cross-section (determined from an application of the op-

tical theorem) and then using a Monte Carlo simulation to estimate the detector

acceptance [31].

3.4 ATLAS Luminosity measurement in 2012

The luminosity in ATLAS is measured using a variety of detectors [29], each of

which measure one or more observables. These can be divided into two main cat-

egories, bunch-sensitive and bunch-integrating detectors. Bunch-sensitive detectors

can measure the luminosity of individual BCIDs, for which example observables are

‘event counting’ in which a particular BCID either passes or fails some criteria and

‘hit counting’ in which the number of detector channels with a signal above some

value is counted per BCID. These are described in more detail in Section 3.4.1.

Bunch-integrating detectors, described in Section 3.4.2, measure a time averaged

quantity, such as the currents in a calorimeter, and therefore cannot distinguish

between separate BCIDs.

The importance of multiple methods for measuring the luminosity is illustrated

in Figure 3.1 [32]. This shows, as a function of time, the fractional deviation in

the average number of interactions per BCID obtained using a selection of different

methods with respect to the primary measure in 2012. In principle each method is

measuring the same quantity, but the fact that there are a relative changes in the

fractional deviation over time indicates that the efficiency of one of more methods to

measure the luminosity is not constant. The extent to which the different methods

agree over long time periods is termed ‘long-term stability’ and was in 2012 the

dominant contribution (2%) to the total systematic uncertainty on the luminosity

measurement.
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aged over all colliding bunch pairs), obtained using different methods with respect
to the primary measure in 2012 (BCMV EventOR) as a function of time in 2012.
Each point shows the mean deviation for a single run compared to a reference run
taken on October 27, 2012 [32].

3.4.1 Bunch-sensitive detectors and algorithms

The preferred measurement of the luminosity in 2012 was obtained from the Beam

Conditions Monitor (BCM). The BCM is formed of a station of four modules ei-

ther side of the interaction point at z = ±184 cm. The modules in a station are

distributed in a cross-pattern around the beam-axis at |η| = 4.2, as shown in Fig-

ure 3.2 [33], and each module consists of two back-to-back diamond sensors, read

out in parallel. Diamond was chosen for its radiation hardness and fast signal for-

mation [34].

The BCM’s primary purpose is to monitor beam particle loss, which could poten-

tially cause detector damage, and to send a signal to the LHC to abort and dump the

beam if this becomes too great. The fast response and readout time required of the

BCM also enables a bunch-by-bunch measurement of the luminosity. The horizon-

tal and vertical modules are read-out separately enabling two measurements of the

luminosity, named BCMH and BCMV, which are treated as being two independent

detectors.

Two event counting algorithms are used to obtain µvis (and therefore the lumi-

nosity): EventOR in which a bunch crossing is counted as having passed if there is

at least one hit in the BCM station on either side of the interaction point (sides A
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Figure 3.2: A diagram of one BCM station indicating the position of the four mod-
ules around the beam-pipe [33].

and C), and EventAND in which a bunch crossing passes only there is a hit in both

BCM stations.

If one assumes that the number of interactions in a bunch crossing follows a

Poisson distribution, the probability of a bunch crossing passing the EventOR algo-

rithm (at least one hit) is equal to one minus the probability of observing zero hits.

This is shown in Equation 3.11, where NEventOR is the number of bunch crossings

passing the EventOR algorithm in a given time interval and NBCID is the total bunch

crossings in that time [29].

PEventOR

(
µOR

vis

)
= 1− e−µOR

vis =
NEventOR

NBCID

(3.11)

One can rearrange Equation 3.11 in order to obtain an expression for µOR
vis as a

function of the event counting rate as shown in Equation 3.12.

µOR
vis = − ln

(
1− NEventOR

NBCID

)
(3.12)

An expression for µAND
vis is derived in a similar fashion, but the calculation is

slightly more involved. The probability of a bunch crossing pass the EventAND al-

gorithm (at least one hit in both sides A and C) is equal to one minus the probability

of there being no hit on at least one side [35]. This is expressed in Equation 3.13 as

one minus the probability of no hits on side A, minus the probability of no hits on
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side C, plus (to avoid double-counting) the probability of no hit either side.

PEventAND

(
µAND

vis

)
= 1− e−µAvis − e−µCvis + e−µ

OR
vis =

Npass EventAND

NBCID

(3.13)

Equation 3.13 can be simplified using the relation between the visible interaction

rate for each algorithm, µOR
vis = µA

vis + µC
vis − µAND

vis , and by assuming that the accep-

tance for the detectors in sides A and C is approximately equal, that is, µC
vis ≈ µA

vis.

This is shown in Equation 3.14.

Npass EventAND

NBCID

= 1− 2e−
µAND
vis +µOR

vis
2 + e−µ

OR
vis (3.14)

Finally one can use Equation 3.3 to express Equation 3.14 in terms of µAND
vis and

the visible cross-sections σOR
vis and σAND

vis , which are determined in the vdM scans

(Equation 3.15) [29].

Npass EventAND

NBCID

= 1− 2e
−
(

1+
σOR
vis

σAND
vis

)
µAND
vis
2

+ e
−
(

σOR
vis

σAND
vis

)
µAND
vis

(3.15)

Unlike Equation 3.11, one cannot analytically invert Equation 3.15 to obtain an

expression for µAND
vis , so this is instead done numerically. The primary measure of

the luminosity in 2012 was obtained from BCMV using the EventOR algorithm.

The other detector used to make a precise bunch-by-bunch measure of the lu-

minosity is LUCID (LUminosity measurement using Cerenkov Integrating Detec-

tor) [29]. A LUCID detector is situated either side of the interaction point at

z = ±17 m and consists of sixteen aluminium tubes. These cover the pseudorapidity

range 5.6 < |η| < 6.0 and are connected via quartz windows to photomultiplier

tubes (PMTs). Charged particles travelling above the local speed of light in the

quartz emit Cerenkov radiation, the signal from which is amplified by the PMTs.

Note that at the start of LUCID operations, and for a small fraction of 2012 data-

taking, the aluminium tubes were filled with C4F10 gas, which induced a higher flux

of Cerenkov radiation. This was removed in order to reduce the device sensitivity

and allow measurements of a wider range of luminosities [36].

LUCID was designed with luminosity measurements as its primary purpose

and as such can perform more sophisticated measurements than BCM. In addi-

tion to event counting, hit counting and particle counting algorithms can also be

employed [29].

Two further methods for measuring the luminosity involve counting the number

of tracks or vertices (interaction points) reconstructed by ATLAS software. Whilst
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bunch-sensitive luminosity measurements can be made with these methods, an ex-

tended time-period is required to accumulate enough events due to the limited read-

out rate of the triggers used. In the case of vertex-counting µvis is found by deter-

mining the average number of vertices per events satisfying some criteria and then

applying corrections for known non-linear behaviour with increasing pile-up [29].

For track counting µvis is simply the average number of tracks per event.

3.4.2 Bunch-integrating detectors

Both the hadronic tile calorimeter (TileCal) and the forward calorimeter (FCal) are

used to estimate the luminosity. In the case of TileCal, PMT currents in a selec-

tion of cells with a pseudorapidity range |η| ≈ 1.25 are measured, whilst for FCal

the currents on the high-voltage lines supplying the liquid argon modules are mea-

sured [37]. After performing corrections for pedestals and non-collision backgrounds

the currents measured are assumed to be proportional to the luminosity [29].

Neither of these calorimetry methods are able to distinguish the luminosity of

individual BCIDs and also not all of the calorimeter cells used are sensitive to the

low luminosity in vdM scans. As such an independent calibration of the luminosity

of TileCal and FCal cannot be performed and instead σvis is obtained by comparing

the measured currents to the luminosity from LUCID or BCM: either at the peak

of a vdM scan (TileCal) or in a particular reference run (FCal).

The luminosity is also measured using a series of thirteen Medipix (MPX) pixel

detectors distributed throughout the ATLAS detector and read-out independently [38].

These detectors measure a bunch-integrated luminosity by counting the number of

pixel-hits in a certain time window (which depends on the detector in question).

As for the TileCal and FCal measurements the MPX detectors cannot provide an

independent luminosity calibration. However changes in the MPX luminosity over

time with respect to BCM (as in Figure 3.1) contribute towards an estimate of the

uncertainty on long-term stability.

3.4.3 Calibration

A total of fifteen pairs of horizontal (x) and vertical (y) van der Meer scans were

performed over three calibration sessions in April, July and November 2012. Mul-

tiple measurements of σvis are therefore made close together in time to check the

consistency of the vdM method and also several months apart to check the long-

term stability of a detector. VdM scans may either be performed with zero beam-

separation in the direction transverse to the scan (centred scans), or performed with
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Figure 3.3: Time evolution of Σx for five different BCIDs, measured using the LU-
CID EventOR luminosity algorithm during the van der Meer scan session of July
19, 2012. The beams remained vertically centred on each other during the first three
scans of LHC fill 2855 and the first scan of fill 2856, and were separated vertically
by 344 µm during the last scan in each fill [32].

a constant transverse separation (offset scans). Two of the scan pairs in each of the

July and November sessions were offset scans, the remainder were centred scans.

Figure 3.3 shows the measured value of Σx for a series of 5 BCIDs in each of the

vdM x-scans in the July session [32]. The results in the figure were obtained using

the LUCID detector with the EventOR algorithm. The first three and the fifth point

are from centred x-scans and the other two points (labelled as offset scans) are from

x-scans in which there was a separation in y.

The bunch widths and therefore Σx and Σy are expected to gradually increase

over time due to emittance1 growth [39], which also causes a corresponding decrease

in µMAX
vis in Equation 3.10 such that in principle σvis remains constant [29]. If the

assumption of beam-factorisation held (ρ̂1(x, y) = ρx1(x)ρy1(y)) then the value of

Σx measured would not depend on how separated the beams were in the y-direction.

That is, one should not see the 10 to 20 percent increase in Σx (depending on the

BCID) observed in the offset scans with respect to the centred scans.

It is clear from Figure 3.3 that the factorisation assumption only approximately

holds and therefore a correction should be applied to Equation 3.10. A method for

1The emittance of a bunch is a measure of the constituent particles’ location in position and
momentum space [1].
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estimating the size of this correction by forming a better understanding of the bunch

density profiles is the subject of Chapter 4.
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Chapter 4

Modelling bunch density profiles

to estimate a correction to the

luminosity for the assumption of

beam-factorisation

4.1 Introduction

In order to test for and if necessary correct for the assumption of beam factorisation

in the vdM method one needs knowledge of the shape of the bunch density profiles.

These can be parameterised using information on the evolution of the position and

size of the beam spot (or luminous region) during a vdM scan, alongside constraints

from the evolution of µvis.

4.2 Beam spot information

The beam spot is defined by performing an unbinned maximum-likelihood fit of a

three-dimensional (3D) Gaussian to the distribution of vertices (interaction points)

collected over a certain time period. In the case of a vdM scan this period cor-

responds to the length of a scan step. The beam spot position in x, y and z is

defined as the mean of the fitted Gaussian and the vertex-resolution corrected beam

spot width in x, y and z is defined by the width of the fitted Gaussian in each of

those dimensions respectively. The beam spot z-width is also alternatively referred

to as the luminous length. A more detailed explanation of the fitting procedure is

given in [40]. Note that the beam spot fit can either be performed using the ver-

tices from each BCID individually or using the vertices from all BCIDs together,
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Figure 4.1: This diagram shows eight scan steps of a centred x-scan. Beam 1 in
purple moves from negative x to positive x over the course of the scan and beam
2 in blue moves in the opposite direction. The overlap of the two beams in black
moves in the negative x-direction.

known as ‘BCID blind’. The former is the definition used in the following analysis

(due to significant variations in the shape of the bunch density profiles) and as such

descriptions of beam properties are assumed to refer to a particular bunch in the

beam.

Qualitatively Figures 4.1, 4.2 and 4.3 show how certain qualities of the beams can

result in beam spot movement in both the direction of the scan and the transverse

direction. Figure 4.1 shows eight scan steps in a centred x-scan. Beam 1 in purple

moves from negative x to positive x over the course of the scan whilst beam 2 in blue

moves in the opposite direction. The two beams have the same y-width but beam 1

has a larger x-width. For this simplified diagram the beam spot is indicated by the

area of the overlap of beams 1 and 2, coloured in black. Over the course of the scan

the overlap region moves in the negative x-direction, which is the same sense as the

narrower of the two beams.

Figure 4.2 shows six scan steps of a centred x-scan. In this diagram the two

beams have the same x and y widths, but opposite x-y correlation. Over the course

of the scan the overlap region moves in the positive y direction, transverse to the

movement of the beams.

The features seen in these two figures correspond most closely to the single Gaus-

sian beam profile in which the overlap has only one maximum (see Section 4.4.1).

For more complicated beam profiles such as the double Gaussian for which there

might be multiple maxima, the idea that the beam spot position follows the motion

of the ‘narrower’ (for some definition) beam is still a good approximation but the

rate of change of the movement and behaviour at large separation may vary. Note

that for single Gaussian beams the transverse movement of the beam spot during
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Figure 4.2: This diagram shows six scan steps of a centred x-scan. Beam 1 in purple
moves from negative x to positive x over the course of the scan and beam 2 in blue
moves in the opposite direction. The overlap of the two beams in black moves in
the positive y-direction.

a scan does not alone fully constrain the value of the x-y correlation term of each

beam [41]. A further constraint is obtained from the value of µvis as a function of

separation, but one must also examine the evolution of the x-y correlation of the

beam spot itself over the course of the scan.

Figure 4.3 shows six scan steps of a one-dimensional x-scan in which the beams

are modelled as double Gaussian. The top set of diagrams show beam 1 moving from

zero separation to positive x over the course of the scan. The contributions to the

density profile from the two single Gaussians (‘narrow’ and ‘broad’) are highlighted

in different shades of purple. The corresponding set of diagrams for beam 2, moving

from zero separation to negative x, are show in the middle row. The bottom row

shows the overlap of the two beams at each scan step, which in one dimension is the

product of the density profiles of the two beams. Note that the scale on the vertical

axis is not the same at each scan step.

At small beam separation the largest contribution to the overlap is from the

two narrow Gaussians and the width of the overlap is narrow as well. At larger

separations there are contributions to the overlap from the narrow Gaussian of

each beam with the broad Gaussian of the other. This results in a double peaked

structure and causes the overall width of the overlap region to increase. At the

largest separations the dominant contribution is from the product of the two broad

Gaussians and the overall width begins to decrease.

An analysis of beam spot data to parameterise the beam density profiles using a

single Gaussian model has already been performed [42]. The analysis in this thesis

extends and expands on that work to include other models and to consider further

information (for example, the evolution of beam spot width).
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Figure 4.3: This diagram shows six scan steps of a one-dimensional scan in which
the beams are modelled as double Gaussian. Beam 1 in purple (top set of diagrams)
moves from zero separation to positive x over the course of the scan and beam 2 in
blue (middle set of diagrams) moves in the opposite direction. The overlap of the
two beams (bottom set of diagrams) changes shape during the course of the scan.

4.3 Calculating the evolution of the luminosity

and the beam spot observables given single

beam density profiles

The distribution of vertices or the luminosity density, L, as a function of 3D position

(x) and at beam separation (δx, δy) is proportional to the time integral of the

product of the two beam density profiles, ρ1(x, t) and ρ2(x, t) [42] (Equation 4.1).

L(x, δx, δy) ∝
∫
ρ1(x, t, δx, δy)ρ2(x, t, δx, δy)dt (4.1)

The luminosity, L , is then defined as the integral of L over space, x [39]. The

analytic definition of the beam spot position, 〈x〉, which approximates best to a 3D

single Gaussian fit to the luminosity density is the expectation value, Equation 4.2.

〈x〉 (δx, δy) =

∫∫
xρ1(x, t, δx, δy)ρ2(x, t, δx, δy)dxdt

L
(4.2)

Correspondingly the beam spot width can be very well approximated by the
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standard deviation of the luminosity density, defined in Equation 4.3.

σL(δx, δy) =

√∫∫
x2ρ1(x, t, δx, δy)ρ2(x, t, δx, δy)dxdt

L
− 〈x〉2 (δx, δy) (4.3)

Given a particular beam model and parameterisation one can determine (or

‘simulate’) the evolution of beam spot position and width during a scan and compare

the result to data. This is the basis of the technique used to estimate the shape of

the beams in this analysis. A range of observables is simulated for a given parameter

set and the agreement with data is estimated using a χ2 method. A minimisation

routine is then used to modify these parameters in order to minimise the χ2. Further

details on the χ2 minimisation are given in Section 4.5.

It can be shown that for Gaussian beam profiles the beam spot movement during

a scan is linear [42]. Any departure from this behaviour in data is evidence for non-

Gaussian beams and furthermore if observed in the plane transverse to the scan

direction is an indication of non-factorisation.

4.4 Beam profile choices

One may choose any beam profile function to use in calculating the luminosity and

beam spot variables. However functions based on the Gaussian distribution are

more physically motivated from the central limit theorem of probability [1]. Three

function choices are now discussed, the single Gaussian distribution, the sum of

multiple Gaussian distributions (specifically the double Gaussian) and the (double)

supergaussian distribution [43]. The advantage of describing a beam density profile

by the sum of multiple Gaussian distributions (including the single Gaussian) is

that the integral of the product of two beam density profiles can be calculated

analytically, increasing the speed at which the χ2 minimisation can be performed.

The equations in the following subsections are for two-dimensional beams and do

not include the possibility for the beams to be moving in time. However the 3D time

integral of the overlap of two moving 3D beams modelled as the sum of multiple

Gaussians is given in Appendix A.1. That derivation also allows for the beams

to have a crossing angle. However the characteristic evolution of the luminosity,

beam spot width and position during a scan for the various beam profile functions

discussed in this section remain valid in 3D.
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4.4.1 Single Gaussian

The single Gaussian distribution, G (in two dimensions), is defined in Equation 4.4

as a function of coordinate x, with a mean denoted by the vector µ and with a

covariance matrix denoted by σ.

G(x,µ,σ) =
1

(2π)|σ| 12
exp

(
−1

2
(x− µ)Tσ−1(x− µ)

)
(4.4)

The product of two two-dimensional Gaussian distributions, G(x,µ,σ) and

G(x,ν, s) is also a Gaussian distribution A×G(x,α, K), where K is given in Equa-

tion 4.5, α is given in Equation 4.6, and A is given in Equation 4.7. This is the 2D

luminous region.

K−1 = σ−1 + s−1 (4.5)

α = K
(
σ−1µ+ s−1ν

)
(4.6)

A =
exp

(
−1

2

(
µTσ−1µ+ νTs−1ν −αTK−1α

))
(2π)

|K| 12
|σ| 12 |s| 12

(4.7)

In the case of a single Gaussian luminous region the beam spot position is just α

and the beam spot widths can be read from the covariance matrix K. It can be seen

from Equation 4.5 that the covariance matrix is not a function of the individual

beam positions (i.e., not a function of separation). This is to say that the beam

spot width does not change as a function of separation when the beams are single

Gaussian. Furthermore as α is a linear function of µ and ν the beam spot movement

is linear as a function of separation (in the situation where the beams are moved in

equal and opposite steps as in a vdM scan).

The luminosity is given by the integral over space of the luminous region, Equa-

tion 4.8, which is just A since G(x,α, K) is normalised.

L =

∫
A×G(x,α, K)dx = A (4.8)

Note that, in the case of two arbitrary single Gaussian beams the luminous region

(itself a single Gaussian) can still be factorised. However this Gaussian may be

rotated with respect to the scan plane causing Σx and Σy to be underestimated [29].

For a detailed beam spot analysis using single Gaussian beams see references [41]

and [42].
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4.4.2 Double Gaussian

A simple extension to the single Gaussian distribution is the weighted sum of two

normalised single Gaussian distributions named the double Gaussian distribution

(Equation 4.9).

G(x,µ,σ1,σ2, w) = w ×G(x,µ,σ1) + (1− w)×G(x,µ,σ2) (4.9)

The product of two double Gaussian distributions has four terms, each of which

is the product of two single Gaussian distributions. Since the product of two single

Gaussian distributions is also Gaussian the product of two double Gaussian distri-

butions is just the sum of four single Gaussian distributions, each of which can be

integrated analytically (using the method in Section 4.4.1).

Each of these single Gaussians has the form A×G(x,α, K) (see Equations 4.5,

4.6 and 4.7). The luminosity of each of these Gaussians is given by Equation 4.8

therefore the total luminosity is the sum of the A value corresponding to each Gaus-

sian (Equation 4.10). Here the weight factors are absorbed into the definition of

A.

L =
4∑
i=1

∫
Ai ×G(x,αi, Ki)dx =

4∑
i=1

Ai (4.10)

The beam spot position (using the definition in Equation 4.2) is given by Equa-

tion 4.11.

< x >=

∑4
i=1Aiαi∑4
i=1Ai

(4.11)

Then the beam spot covariance matrix, Σ, (in order to determine the beam spot

width in each dimension using the definition in Equation 4.3) is given by Equa-

tion 4.12.

Σ =

∑4
i=1 Ai

(
Ki +αiα

T
i

)∑4
i=1 Ai

−
(∑4

i=1 Aiαi
) (∑4

i=1 Aiαi
)T(∑4

i=1 Ai
)2 (4.12)

There is now the possibility for non-linear movements of the beam spot position

and for the beam spot width to vary during a scan. This description of the double

Gaussian distribution could further be extended to the weighted sum of a larger

number of single Gaussian distributions, for example the triple Gaussian or the

quadruple Gaussian, etc. These are however not considered in this thesis.
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4.4.3 Supergaussian

Certain features observed in the evolution of beam spot position and width in the

November vdM scan session (see Section 4.6.4) could not be produced if the beam

profiles were described by the sum of multiple single Gaussian distributions. There-

fore the supergaussian distribution [43] is used as an alternative. The normalised

supergaussian distribution in one dimension is shown in Equation 4.13, where Γ is

the gamma function. The form of the supergaussian reduces to that of the single

Gaussian when the parameter ε is zero.

GSG(x, µ, σ, ε) =
2−

3+ε
2+ε

σΓ
[
1 + 1

2+ε

] exp

(
−1

2

(
|x− µ|
σ

)2+ε
)

(4.13)

Unlike for a single Gaussian there is no obvious way to generalise this form to two

or three dimensions using vectors and matrices. Therefore three one-dimensional

supergaussian distributions are multiplied together to form the three-dimensional

supergaussian. The procedure does not allow for any x-y correlation in the beams

and therefore (assuming there is not a beam crossing angle in both the x-z and y-z

planes) does not allow for any transverse movement of the beam spot during a scan

(see Figure 4.2).

For the case of the single Gaussian introducing x-y correlation, κ, is the same

as scaling the widths of the beams in x and y and rotating around the individual

beams’ z-axis by an angle θxy (Equations 4.14 to 4.16).

σx →
1√
2

√
σ2
x + σ2

y +
√
σ4
x + 2 (2κ2 − 1)σ2

xσ
2
y + σ4

y (4.14)

σy →
1√
2

√
σ2
x + σ2

y −
√
σ4
x + 2 (2κ2 − 1)σ2

xσ
2
y + σ4

y (4.15)

θxy = arctan

 −2κσxσy

σ2
x − σ2

y −
√
σ4
x + 2 (2κ2 − 1)σ2

xσ
2
y + σ4

y

 (4.16)

The same transformation can be applied to the three-dimensional supergaussian

in order to introduce x-y correlation. If κ is zero then no transformation is applied.

The x-y correlation in this thesis is always given in terms of κ. For the case of zero

ε, κ has exactly the same meaning as in the single Gaussian distribution.

As for the single Gaussian distribution (Equation 4.9) one can form a double

supergaussian distribution from the weighted sum of two normalised single super-

gaussian distributions. Note that a form of the analytic integral of the product of
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two supergaussian distributions (double or single) has not been found and therefore

this is integrated numerically in this analysis.

4.5 Procedure for extracting single beam param-

eters

This section describes how the bunch density profiles are parameterised by min-

imising a χ2 value which characterises the agreement between data and a model for

the luminosity, beam spot position and width observables during a vdM scan. Sec-

tion 4.5.1 provides an outline of the analysis procedure and how the minimisation is

performed. Then Section 4.5.2 details the various corrections that must be applied

to the model to more accurately compare to data.

4.5.1 Minimisation procedure

The χ2 minimisation is performed using Minuit 2 [44] separately for each scan and

BCID combination and for each bunch density profile model considered. For a

given initial choice of parameters the luminosity, beam spot position, beam spot

width and beam spot x-y correlation are then calculated at each scan step using the

‘true’ beam separations (the nominal separations corrected for the various effects

described in Section 4.5.2). The agreement of the model with data is characterised

by the χ2 value defined in Equation 4.17, where data i and model i are the values

of the data and model evaluated at position i, where i runs over each scan step in

both the horizontal and vertical directions and over all observables, and σdata, i is

the uncertainty on the value of data i.

χ2 =
∑
i

(
data i −model i

σdata, i

)2

(4.17)

The observables of the model are calculated using a 3D time overlap integral.

This is either done analytically in the case of double Gaussian beam profiles (see

Appendix A.1 for the calculation) or numerically in the case of double supergaussian

beam profiles.

In order to compare the luminosity from the model (which is the absolute lumi-

nosity) to µvis from the data (which is proportional to the absolute luminosity) the

luminosity from the simulation is normalised to data. This is done by multiplying

each simulated point in the luminosity curve in both the x and y-scans by a constant,

which is included as one of the free variables in the minimisation routine.
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At each scan point the beam widths of the simulation are modified slightly to

correct for the dynamic-β effect. The size of the modification depends on amongst

other things the beam separation and the values of Σx and Σy. This procedure is

documented more fully in Section 4.5.2.5.

At very large beam separations the number of vertices measured during a scan

step which pass certain selection criteria can be very low or zero. This means that

a measurement of the beam spot position and width cannot be made. The beam

separations in which there is no information on these quantities are not considered

in the minimisation routine.

Plots showing the comparison between data and the model (calculated using

the parameter set corresponding to the minimum χ2 value) for each of the different

observables for an example scan/BCID in each scan session are shown in Section 4.6.

Note that the coordinate systems of the ATLAS experiment and of the LHC

are both right-handed systems with parallel z-axes pointing in opposite directions.

This means that the sign of both the z and the x coordinates is reversed when

transforming between the two systems. In the results presented, all of the beam

separations are given in the LHC coordinate system and all observables are given in

the ATLAS coordinate system. This means that the sign of the beam spot x and z

positions and of the beam spot x-y correlation must be reversed in the simulation

to correctly compare to data.

4.5.2 Corrections

The following sections describe the various corrections that are applied in the anal-

ysis. The philosophy of the corrections is that measured quantities (such as µvis,

beam spot position and beam spot width) should remain unchanged (the one excep-

tion is the luminosity background subtraction), whilst corrections are applied either

to the simulation beam parameters during a scan (for example, the dynamic-β cor-

rection) or to the nominal separations (for example, the orbit drift correction). The

corrections are introduced in the order in which they are applied.

4.5.2.1 Luminosity background subtraction

Particles which do not originate directly from the interaction of the two bunches

considered can still be detected and cause various of the luminosity algorithms to

pass. The increase of µvis due to these particles is not due to an increase in absolute

luminosity and therefore their contribution must be subtracted in order to com-

pare to the simulation, which only considers the luminosity from the two colliding
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Figure 4.4: The ratio of the background term to the peak µvis value as a function of
scan number/direction. The ratio is shown for each BCID considered in this analysis
and for each of the three scan sessions in 2012.

bunches.

The level of background to be subtracted is determined by fitting the curve of µvis

against separation with either a Gaussian plus a constant term (for the November

scan session) or a double Gaussian plus a constant term (for the April and July

scan sessions). This constant term is assumed to be entirely background and is

subtracted from the data for the comparisons with the simulation. The µvis data

are taken from the BCMV detector using the EventOR algorithm.

The ratio of the background term to the peak µvis value in each scan and for each

BCID is shown in Figure 4.4a for the April session, Figure 4.4b for the July session

and Figure 4.4c for the November session. Note that the ratio is considerably larger

in November compared to April and July as the November vdM scans took place

during a period when the BCM detector was experiencing high levels of noise, the

cause of which remains unexplained.
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Scan number
Correction in x

after x-scan (µm)
Correction in y

after y-scan (µm)

V 13.4 0
X -9.6 -13
XI -26.6 0
XII -16 0

Table 4.1: A summary of the in-plane corrections to beam separation made after
each vdM scan.

4.5.2.2 Beam centring

A very accurate measure of the difference between the true and nominal separation

in the dimension of the scan-direction (in-plane) is given by the position of the

peak of the fit to µvis versus separation (with a double Gaussian plus a constant for

example). A shift is applied to the in-plane nominal separations such that the peak

of the scan curve is at zero separation. The transverse beam separations in the other

scan direction (which are nominally zero) are also shifted by the same amount. This

procedure is called the ‘centring correction’.

If this correction had been observed to be large at the time the scan was per-

formed then the beams were sometimes physically corrected by a certain amount.

In the 2012 scan sessions the x-scans always precede the y-scans. This means that

a physical centring correction made after the x-scan affects the transverse beam

separation during a y-scan. Therefore the size of the transverse beam separation as

determined by fitting the x-scan curve must be reduced by the size of the physical

correction.

Table 4.1 documents the size of the physical correction applied after each scan

for which it is non-zero. As detailed in Section 4.5.2.3, at the scan peak there is no

additional in-plane orbit drift correction.

4.5.2.3 Orbit drift

As the scan session progresses the position of the beam at the interaction point (IP),

as extrapolated from the left and right-sided Beam Position Monitors (BPMs) can

change; this is known as orbit drift. The BPMs are outside the vdM bumps1, which

means that excluding other effects such as beam-beam deflection (Section 4.5.2.4)

they have no knowledge of the separation of the beams during a vdM scan. Therefore

if there were no orbit drift the extrapolated position of the beam at the IP would

1Two pairs of steering dipole magnets positioned either side of the interaction point are used
to create local distortions in the beam orbit, known as ‘bumps’.
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remain constant throughout a scan session. The exact method of how the position

of the beam at the IP is determined using a three parameter betatron oscillation fit

to the BPM readings is described in [45].

If it is known by how much the beam drifts during the scan session then one

can determine what the corrected or true separation of the beams was at a given

nominal separation. The separation of the beams in the simulation in both x and y

is set to the true separation at each scan point. The beam separations for the data

are also corrected to the true separations.

The position of each beam at the IP is provided in tabular format in regular time

intervals (60 seconds or less) as extrapolated from the left and from the right-sided

BPMs. The consistency of the two measurements for each beam is checked and

for subsequent calculations the average is used. Figure 4.5 shows the evolution of

the extrapolated beam spot positions during and between April scans I and II and

Figures 4.6 and 4.7 show the same thing for July scans IV, V and VI and November

scans XI and XIV respectively.

It can be seen from Figure 4.5 that the extrapolated beam positions are only

consistent on the order of one micron, around 10 percent of a separation step in

April. Similarly in July and November (Figures 4.6 and 4.7) the consistency is on

the order of five microns or less, also around 10 percent of the separation step in

July and November. Therefore there could have been some additional transverse

offset during one or more of these scans which is hidden by this inconsistency.

Due to the effects of beam-beam deflection the extrapolated beam positions

during a scan are sensitive to the movement of the beams inside the vdM bumps.

Secondly and more importantly ‘knob leakage’, the principle that the beam orbits

may be perturbed by non-perfect closure of the vdM bumps, can also influence the

extrapolated beam positions during a scan. It is difficult to decouple these effects

from genuine orbit drift outside the vdM bump and so the beams are assumed to have

moved linearly between the beam positions immediately before and immediately

after the scan. This assumption is made both for in-plane beam movement and the

beam movement in the transverse direction. The absolute extrapolated positions of

the beams at the IP as determined by the orbit fit is not relevant: rather the change

in these positions during a scan session. Therefore one is able to set the in-plane

position for a beam at the scan peak (zero true separation) to be zero by adding a

constant offset.

A summary of the corrections applied to the individual beam positions are docu-

mented below, where the nominal positions of beam 1 are equal to the corresponding

nominal separations divided by two and the nominal positions of beam 2 are equal to
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Figure 4.5: The evolution of the extrapolated beam spot positions at the IP from
the left (blue points) and from the right (red points) as a function of time during
and between scans I and II. The x-scans take place between the red vertical lines
and the y-scans between the blue vertical lines. Figures 4.5a and 4.5c show the
evolution of the horizontal positions of beams 1 and 2 respectively and Figures 4.5b
and 4.5d show the evolution of their vertical positions. The separations are given in
microns.
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Figure 4.6: The evolution of extrapolated beam spot positions at the IP from the
left (blue points) and from the right (red points) as a function of time during and
between scans IV, V and VI. The x-scans take place between the red vertical lines
and the y-scans between the blue vertical lines. Figures 4.6a and 4.6c show the
evolution of the horizontal positions of beams 1 and 2 respectively and Figures 4.6b
and 4.6d show the evolution of their vertical positions. The separations are given in
microns.
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Figure 4.7: The evolution of extrapolated beam spot positions at the IP from the
left (blue points) and from the right (red points) as a function of time during and
between scans XI, and XIV. The x centred scans take place between the red vertical
lines and the y centred scans between the blue vertical lines. Figures 4.7a and 4.7c
show the evolution of the horizontal positions of beams 1 and 2 respectively and
Figures 4.7b and 4.7d show the evolution of their vertical positions. The separations
are given in microns. Note that offset scans XII and XIII take place between the
centred scans indicated.
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the negative of the corresponding nominal separations divided by two. The nominal

separations have at this stage already had the centring correction applied.

The correction is applied to the individual nominal beam positions, rather than

the nominal separation in order to correctly treat the variation in absolute beam

spot position. If the two beams were to drift in the same direction during a scan then

the correction to the nominal separation may remain small. However the absolute

position of the beam spot would change relative to some zero value. The zero

values in the x and y directions are included as fit parameters and are determined

independently for each scan pair and BCID.

In the x-direction during an x-scan each beam position is orbit corrected by

an amount determined by linearly interpolating between the positions at the times

immediately before and immediately after the x-scan and by adding a constant value,

which forces the correction to zero at the scan peak. In the x-direction during a

y-scan each beam position is orbit corrected by an amount determined by linearly

interpolating between the positions at the times immediately before and immediately

after the y-scan and adding the same constant value used for the x-scan.

The corrections in the y-direction mirror those in the x-direction and are docu-

mented here for completeness. In the y-direction during an y-scan each beam posi-

tion is orbit corrected by an amount determined by linearly interpolating between

the positions at the times immediately before and immediately after the y-scan and

by adding a constant value, which forces the correction to zero at the scan peak. In

the y-direction during a x-scan each beam position is orbit corrected by an amount

determined by linearly interpolating between the positions at the times immediately

before and immediately after the x-scan and adding the same constant value used

for the y-scan.

4.5.2.4 Beam-beam deflection

When the two beams are separated as in a vdM scan each beam receives an angular

kick from the other causing an orbit shift. This effect is called beam-beam deflection.

The size of the angular kick for a chosen beam depends upon the beam energy, the

charge of the opposing bunch, Σx, Σy and the separation of the two beams. The

size of the associated orbit shift then depends on the size of the angular kick, β∗ (a

measure of beam focussing at the interaction point) and the beam tune.

The consequence of beam-beam deflection is similar to that of orbit drift: to

modify the nominal separation of the beams. The size of the orbit shift is calculated

analytically using the Bassetti-Erskine formula [46] applied to Gaussian untilted

elliptical beams. The separation of the beams in the simulation is then modified
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Figure 4.8: The size of the in-plane beam-beam deflection correction as a function
of nominal separation for scan III BCID 1.
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Figure 4.9: The size of the in-plane beam-beam deflection correction as a function
of nominal separation for scan VI BCID 1.

at each scan point (in both the in-plane and transverse directions) by the amount

determined. The beam separations for the data are also corrected for this effect.

Note that the separations have already had the centring correction and orbit drift

correction applied before the beam-beam deflection correction is applied.

The size of the beam-beam deflection correction as a function of separation is

very similar for all of the scans and BCIDs in July and November as the quantities

Σx, Σy and the bunch charge have similar magnitudes and all of the other quantities

are the same. The value of β∗ is less in April (0.6 m) than in July or November (11

m) and the typical values of Σ are also smaller. Figure 4.8 shows the size of the

in-plane beam-beam deflection correction (in both the x and y-scans) as a function

of nominal separation for scan III BCID 1 and Figure 4.9 shows the same thing for

scan VI BCID 1 to provide an example of the typical correction size in April and

July/November respectively.
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4.5.2.5 Dynamic-β

The dynamic-β effect refers to the focussing and defocussing of the particles in the

bunch of one beam by the bunch of the second beam and vice versa. This causes

a modification to the beam optics and therefore an enhancement or a reduction of

the beam size and therefore the luminosity that is a function of separation [47].

A correction to the beam widths of the simulation (in x and y and for both

Gaussians if the density profile is double Gaussian) is applied at each scan step,

whilst the data are not modified. This correction is calculated using a lookup table

which provides the evolution of ∆βx/β
∗
x,0 and ∆βy/β

∗
y,0 as a function of separation

(in units of single beam sizes) in both the x and y-scans. The value ∆β is the change

in the IP β-function due to the dynamic-β effect and β∗0 is the assumed unperturbed

value of β∗ at the IP [48]. β∗0 was 0.6 m in April and 11 m in July and November.

The values in the lookup table are calculated for particular emittance, bunch

charge and β∗0 and are simulated using the program MAD-X [49]. The dynamic-β

correction scales linearly with the average bunch charge of the two beams and β∗. In

addition the correction in a x-scan scales linearly with 1/
(√

εx
(√

εx +
√
εy
))

and in

a y-scan with 1/
(√

εy
(√

εy +
√
εx
))

, where εx and εy are the measured emittances

in x and y respectively.

The following method for calculating the effect on the beam sizes due to dynamic-

β is taken from reference [48] and is reproduced here for convenience. The values of

εx and εy are estimated using the formulae given in Equations 4.18 and 4.19, where

γ is the relativistic γ-function of the beam, which for beams of energy 4 TeV is 4263.

εx =
γ

2β∗x,0
Σ2
x (4.18)

εy =
γ

2β∗y,0
Σ2
y (4.19)

The values of ∆βx/β
∗
x,0 for both scan directions are scaled by the quantity in

Equation 4.20 and the values of ∆βy/β
∗
y,0 for both scan directions are scaled by the

quantity in Equation 4.21, where N is the average of the bunch population of each

beam and the subscript ‘sim’ refers to the values of the quantities that the lookup

table was simulated using.

N

Nsim

√
εx, sim

(√
εx, sim +

√
εy, sim

)
√
εx
(√

εx +
√
εy
) (4.20)

N

Nsim

√
εy, sim

(√
εy, sim +

√
εx, sim

)
√
εy
(√

εy +
√
εx
) (4.21)
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An auxiliary lookup table is then constructed to obtain the quantities given in

Equations 4.22 and 4.23 for both the y and the x-scans, where δx/y is the beam

separation in x or y given in units of single-beam size and is related to the true

separation, ∆x/y (i.e., already corrected for orbit drift and beam-beam deflection)

by the relation in Equation 4.24.

β∗x,dynamic

β∗x,0

(
δx/y

)
= 1 +

∆βx
β∗x,0

(
δx/y

)
(4.22)

β∗y,dynamic

β∗y,0

(
δx/y

)
= 1 +

∆βy
β∗y,0

(
δx/y

)
(4.23)

δx/y =
√

2
|∆x/y|
Σx/y

(4.24)

As the lookup table only provides values in discrete steps of δx/y a linear in-

terpolation between the two closest values to the actual separation is performed to

obtain the required correction. The values of the simulated x-widths corrected for

dynamic-β at a particular true separation are obtained by multiplying the uncor-

rected x-widths by the square root of the quantity in Equation 4.22 (Equation 4.25).

Similarly the corrected y-widths are obtained by multiplying the uncorrected y-

widths by the square root of the quantity in Equation 4.23 (Equation 4.26).

σx, corrected

(
∆x/y

)
=

√
β∗x,dynamic

(
δx/y

)
β∗x,0

σx
(
∆x/y

)
(4.25)

σy, corrected

(
∆x/y

)
=

√
β∗y,dynamic

(
δx/y

)
β∗y,0

σy
(
∆x/y

)
(4.26)

Figure 4.10a shows the value of the factor multiplying the x-widths (black) and

multiplying the y-widths (red) as a function of nominal separation for the x-scan of

scan III BCID 1 and Figure 4.10b shows the same thing for the y-scan of scan III

BCID 1. The size of the factor at a particular separation is similar for all scans and

BCIDs in April. Figure 4.11 shows the corresponding plots for scan VI BCID 1.

The size of the factor at a particular separation is similar for all scans and BCIDs

in July and November.
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Figure 4.10: The size of the factor multiplying the x-widths (black) and multiplying
the y-widths (red) as a function of nominal separation for the x-scan (Figure 4.10a)
and for the y-scan (Figure 4.10b) of scan III BCID 1.
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Figure 4.11: The size of the factor multiplying the x-widths (black) and multiplying
the y-widths (red) as a function of nominal separation for the x-scan (Figure 4.11a)
and for the y-scan (Figure 4.11b) of scan VI BCID 1.
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Parameter April July November

Emittance [µm] 3 3-4 2.5-3.2
β∗ [m] 0.6 11 11

Number of colliding bunches 35 35 29
Approximate number of protons

per bunch (×1010)
7 8 9

Table 4.2: A summary of the key parameters of each vdM session in 2012.

4.6 Results

4.6.1 Introduction

This section presents the results of the analysis. Three vdM scan sessions are ex-

amined, April, July and November 2012. A summary of the key parameters of each

session is provided in Table 4.2.

For each scan session plots of the evolution of luminosity, beam spot position,

beam spot width and beam spot x-y correlation with separation for a particular

vdM scan and BCID are shown. These compare the data and the model, which

is calculated using the set of beam parameters that minimised the χ2 between the

two. That set of parameters is also given alongside the χ2 value. Note that the

uncertainties on the data are statistical in nature only.

Then the extent to which the factorisation assumption holds in each centred scan

is estimated using the best fit model. Firstly the luminosity at zero separation is

calculated exactly using the formulae in Appendix A.1 and this is denoted the true

luminosity. This calculation makes no assumption of the level of factorisation of the

beams.

Then the ratio is taken of the true luminosity to the luminosity of the same

model but estimated using the vdM method [29] which assumes factorisation. This

is denoted the vdM luminosity. Since the quantities nb, nf , n1 and n2 cancel in this

ratio the relevant expression for the luminosity assuming factorisation is given in

Equation 4.27.

L =
1

2πΣxΣy

(4.27)

Two techniques to obtain the vdM luminosity were investigated. In the first

technique the vdM luminosity is calculated exactly using a numerical integral of a

smooth luminosity curve at zero transverse separation. In this case the ratio of the

true luminosity to the vdM luminosity is denoted R. In the second technique the
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vdM luminosity is calculated by simulating the scan curve at the same separations

as in data (and zero separation in the transverse plane) and then fitting the curve

with the same function as used in the analysis of the corresponding data (other than

a possible constant term). In this case the ratio of the true luminosity to the vdM

luminosity is denoted RvdM.

It was found that RvdM was a less suitable variable than R to characterise the

level of non-factorisation because it suffers from an additional uncertainty due to

the choice of fit-function and was therefore dropped from further consideration.

The ratio R is interpreted as the factor by which the measured absolute luminos-

ity should be multiplied (and therefore by which the measured σvis must be divided)

in order to correct for the vdM factorisation assumption.

4.6.2 April

The April scan session consisted of three centred scans (I, II, and III) and took place

on 16th April 2012. All scans were completed in LHC Fill 2520 and ATLAS run

number 201351. There were 35 colliding bunches, of which four (1, 241, 2881 and

3121) have associated beam spot evolution data. The nominal β∗ was 0.6 m.

The function which was found to best describe the bunch density profiles in the

April sessions is the double Gaussian. A comparison between data from scan I,

BCID I (black points) and the best-fit model (red line) for various observables is

presented in Figures 4.13 (x, or horizontal scan) and 4.14 (y, or vertical scan). The

level of agreement between the data and model is representative of that for the other

scan and BCID combinations in the April session (see Table 4.4).

Figure 4.13a shows the specific µvis (µvis divided by n1n2) as a function of separa-

tion for the BCMV detector and EventOR algorithm. As described in Section 4.5.1

the luminosity of the model is normalised to the data by multiplying each model

point in the luminosity curve by a constant which is a free variable in the min-

imisation routine. Figures 4.13b, 4.13c and 4.13d then show the evolution of the

x, y and z beam spot positions respectively with separation. Figures 4.13e, 4.13f

and 4.13g then show the evolution of the x, y and z beam spot widths respectively

with separation. Finally Figure 4.13h shows the evolution of the beam spot x-y

correlation with separation. The same series of plots for the y-scan is then shown in

Figure 4.14. Underneath each plot is displayed a residual plot on which is plotted

for each scan point the value of the data minus the value of the model divided by

the uncertainty on the data.

Then Table 4.3 displays the set of model beam parameters that minimised the

χ2 value between data and model. The double Gaussian beam parameters comprise
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Figure 4.12: This diagram illustrates the definition of the half-crossing angle in
the y-z plane, αyz. The situation of non-zero beam separation in the y-direction is
depicted. The half-crossing angle in the x-z plane, αxz is defined analogically.

(for each beam) the widths of Gaussian ‘a’ and Gaussian ‘b’ in each dimension (σx,a,

σx,b, σy,a, σy,b, σz,a, σz,b), the x-y correlation for Gaussian ‘a’ and Gaussian ‘b’ (κa,

κb) and the weight of Gaussian ‘a’ (w). The half-crossing angle in the x-z and

y-z planes is also provided (αxz and αyz), the definition of which is illustrated by

Figure 4.12. Then the χ2 and χ2 per number of degrees of freedom (NDF ) is given

along with the correction ratio R defined in Section 4.6.1.

The use of double Gaussian beam profiles allows the data observables to be de-

scribed reasonably well, but the χ2/NDF is not as low as for the July and November

scans. The plots which give a large contribution to the χ2 are the vertical and lon-

gitudinal beam spot positions in both the x and y-scans (Figures 4.13c, 4.13d, 4.14c

and 4.14d). Two possible contributing factors for this are provided below.

Unlike the July and November scans the April scans were conducted with a non-

zero nominal beam crossing angle in the y-z plane. The vertical beam spot position

depends on this angle and on the z-widths of the beams. However the angle can

vary between the x-scan and the y-scan by a few µrad therefore there can be a

discrepancy in absolute vertical beam spot position between the x and y-scans if

it is assumed that the crossing angle is constant. One observes that the data are

systematically above the simulation in the x-scan (Figure 4.13c) and systematically

below it in the y-scan (Figure 4.14c).

Secondly the longitudinal beam spot position (at zero beam separation) is ob-

served to drift throughout a scan session by 2 or 3 microns. A similar effect is

also observed in standard LHC physics runs. This could account for the discrepancy

between Figures 4.13d and 4.14d in which the data are systematically below the sim-

ulation in the x-scan and systematically above it in the y-scan. This effect, coupled

with a drifting crossing angle could also in part account for the model to not fully
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Figure 4.13: Scan I, BCID 1, x-scan
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(g) Beam spot luminous length (z-width) as
a function of horizontal separation

Horizontal beam separation [mm]

­0.08 ­0.06 ­0.04 ­0.02 0 0.02 0.04 0.06 0.08

L
u
m

in
o
u
s
 r

e
g
io

n
 x

­y
 c

o
rr

e
la

ti
o
n

­0.4

­0.3

­0.2

­0.1

0

0.1

0.2

0.3

0.4

LHC Fill 2520

Data (Centred x­scan I April 2012)

Simulated profile of each beam:

3­D double Gaussian

)
d

a
ta

σ
(d

a
ta

­s
im

)/
(

­2
­1.5

­1
­0.5

0
0.5

1
1.5

(h) Beam spot x-y correlation as a function
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Figure 4.13: Scan I, BCID 1, x-scan
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Figure 4.14: Scan I, BCID 1, y-scan
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Figure 4.14: Scan I, BCID 1, y-scan
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Parameter Beam 1 Beam 2

σx,a 0.0228 0.0211
σx,b 0.0147 0.0108
σy,a 0.0225 0.0243
σy,b 0.0114 0.013
σz,a 76.1 76.1
σz,b 73.2 72.4
κa 0.0163 -0.0684
κb 0.116 -0.178
w 0.567 0.737
αxz 2.3 µrad
αyz −180 µrad

χ2/NDF 968 / 216 = 4.48

R 184.3 / 188.9 = 0.976

Table 4.3: The beam parameter set which minimises the χ2 for a 3D double Gaussian
beam density model in scan I, BCID 1. The units of the beam widths are mm. R is
the ratio of the true luminosity (not assuming factorisation) to the vdM luminosity
(assuming factorisation) in which the vdM luminosity is calculated by numerically
integrating a smooth luminosity curve and is the value by which σvis must be divided
in order to correct for the factorisation assumption.

describe the shape of the data in Figure 4.14d. Note that the above discrepancies

are observed in scans I and II but not in scan III.

If the crossing angle were exactly zero then the calculation of the absolute lu-

minosity would become a 2D problem as the z-components of the beam spot would

be decoupled from the x and y-components. Therefore a good description of the

evolution of the z-components of the beam spot in the case when the crossing an-

gle is non-zero is not as important as the description of the evolution of the x and

y-components and of the luminosity, which are generally good.

A summary of the ratio R and of the χ2 per degree of freedom obtained from the

fit, for each scan and BCID analysed in April is given in Table 4.4. A plot of R as a

function of scan number in April is shown in Figure 4.15 along with the associated

statistical uncertainties (see Section 4.7.2).

The value of R for each BCID is initially several percent below 1 in scan I,

indicating high levels of non-factorisation, however its value increases throughout

the remainder of the session.
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Scan number

I II III

BCID 1 4.48 - 0.976 3.98 - 0.981 2.15 - 0.992
BCID 241 4.18 - 0.975 3.46 - 0.980 2.09 - 0.989
BCID 2881 5.94 - 0.972 5.19 - 0.976 1.96 - 0.991
BCID 3121 5.31 - 0.970 4.29 - 0.979 2.13 - 0.992

Table 4.4: The χ2 per degree of freedom and the value of R for each scan and BCID
studied in April.

Scan Number

1 2 3

R

0.965

0.97

0.975

0.98

0.985

0.99

0.995 BCID 1

BCID 241

BCID 2881

BCID 3121

Figure 4.15: R as a function of scan number for each BCID considered during the
April scan session.

4.6.3 July

The July scan session consisted of four centred scans (IV, V, VI and VIII) and two

offset scans (VII and IX) and took place on 19th July 2012. Scans IV, V, VI and VII

were completed in LHC Fill 2855 and ATLAS run number 207216. Scans VIII and

IX were completed in LHC Fill 2856 and ATLAS run number 207219. There were

35 colliding bunches, of which three (1, 721 and 1821) have associated beam spot

evolution data. The nominal β∗ was 11 m. An estimation for R was only obtained

for the centred scans IV, V, VI and VIII.

The function which was found to best describe the bunch density profiles in the

July sessions was again the double Gaussian. A comparison between data from scan

IV, BCID I and the best-fit model for various observables is presented in Figures 4.16

(x, or horizontal scan) and 4.17 (y or vertical scan) in the same fashion as for the
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Parameter Beam 1 Beam 2

σx,a 0.0674 0.0686
σx,b 0.107 0.108
σy,a 0.0579 0.0641
σy,b 0.115 0.122
σz,a 84.9 84.5
σz,b 81 81.2
κa 0.0344 -0.0055
κb -0.00114 -0.000881
w 0.366 0.445
αxz 5.9 µrad
αyz −8.2 µrad

χ2/NDF 354 / 280 = 1.27

R 9.888 / 10.28 = 0.962

Table 4.5: The beam parameter set which minimises the χ2 for a 3D double Gaussian
beam density model in scan IV, BCID 1. The units of the beam widths are mm. R is
the ratio of the true luminosity (not assuming factorisation) to the vdM luminosity
(assuming factorisation) in which the vdM luminosity is calculated by numerically
integrating a smooth luminosity curve and is the value by which σvis must be divided
in order to correct for the factorisation assumption.

April scans. The level of agreement between the data and model is representative of

that for the remaining centred scans and BCIDs in the July session (see Table 4.6).

Table 4.5 then displays the set of model beam parameters that minimised the χ2

value between data and model.

As a cross-check of the method offset scan VII BCID 1 was simulated using

the best fit bunch parameters from scan VI, the closest centred scan in time. A

comparison between the data and the model for the standard set of observables is

shown in Figures 4.18 (x-scan) and 4.19 (y-scan). The luminosity normalisation used

in Figures 4.18a and 4.19a is the same as was used in scan VI and of the corrections

described in Section 4.5.2 only an overall centring correction (in both x and y) is

applied to the offset scan separations. The model does a reasonable job of describing

the data in the offset scan which suggests that the double Gaussian function is a

good description of the bunch density profiles even towards the bunch extremities.

A summary of the ratio R and of the χ2 per degree of freedom obtained from the

fit, for each scan and BCID analysed in July is given in Table 4.6. A plot of R as a

function of scan number in July is shown in Figure 4.20 along with the associated

statistical uncertainties (see Section 4.7.2).

The value of R varies between around 0.955 and 0.975 depending on the scan

65



Horizontal beam separation [mm]

­0.4 ­0.2 0 0.2 0.4

 (
b
c
m

V
E

v
tO

R
)

v
is

µ
S

p
e
c
if
ic

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

LHC Fill 2855

Data (Centred x­scan IV July 2012)

Simulated profile of each beam:

3­D double Gaussian

)
d

a
ta

σ
(d

a
ta

­s
im

)/
(

­2
­1.5

­1
­0.5

0
0.5

1
1.5

2

(a) Specific µvis as a function of horizontal
separation

Horizontal beam separation [mm]

­0.4 ­0.2 0 0.2 0.4

H
o
ri
z
o
n
ta

l 
lu

m
in

o
u
s
 c

e
n
tr

o
id

 p
o
s
it
io

n
 [
m

m
]

­0.02

­0.01

0

0.01

0.02

0.03

LHC Fill 2855

Data (Centred x­scan IV July 2012)

Simulated profile of each beam:

3­D double Gaussian

)
d

a
ta

σ
(d

a
ta

­s
im

)/
(

­4
­3
­2
­1
0
1
2
3

(b) Beam spot horizontal position as a func-
tion of horizontal separation

Horizontal beam separation [mm]

­0.4 ­0.2 0 0.2 0.4V
e
rt

ic
a
l 
lu

m
in

o
u
s
 c

e
n
tr

o
id

 p
o
s
it
io

n
 [
m

m
]

­0.02

­0.01

0

0.01

0.02

0.03

LHC Fill 2855

Data (Centred x­scan IV July 2012)

Simulated profile of each beam:

3­D double Gaussian

)
d

a
ta

σ
(d

a
ta

­s
im

)/
(

­2

­1

0

1

2

(c) Beam spot vertical position as a func-
tion of horizontal separation

Horizontal beam separation [mm]

­0.4 ­0.2 0 0.2 0.4

L
o
n
g
it
u
d
in

a
l 
lu

m
in

o
u
s
 c

e
n
tr

o
id

 p
o
s
it
io

n
 [
m

m
]

­8

­6

­4

­2

0

2

4

6

8

LHC Fill 2855
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(d) Beam spot longitudinal position as a
function of horizontal separation

Figure 4.16: Scan IV, BCID 1, x-scan
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(g) Beam spot luminous length (z-width) as
a function of horizontal separation
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of horizontal separation

Figure 4.16: Scan IV, BCID 1, x-scan
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(d) Beam spot longitudinal position as a
function of vertical separation

Figure 4.17: Scan IV, BCID 1, y-scan
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Data (Centred y­scan IV July 2012)
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Figure 4.17: Scan IV, BCID 1, y-scan
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Data (Centred x offset­scan VII July 2012)
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(d) Beam spot longitudinal position as a
function of horizontal separation

Figure 4.18: Scan VII, BCID 1, x-scan
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Data (Centred x offset­scan VII July 2012)
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(h) Beam spot x-y correlation as a function
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Figure 4.18: Scan VII, BCID 1, x-scan
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function of vertical separation

Figure 4.19: Scan VII, BCID 1, y-scan
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Data (Centred y offset­scan VII July 2012)
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Figure 4.19: Scan VII, BCID 1, y-scan
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Scan number

IV V VI VIII

BCID 1 1.27 - 0.962 1.28 - 0.974 1.25 - 0.975 1.11 - 0.970
BCID 721 1.92 - 0.959 1.39 - 0.974 1.71 - 0.977 1.4 - 0.969
BCID 1821 1.51 - 0.956 1.49 - 0.970 1.59 - 0.972 1.29 - 0.962

Table 4.6: The χ2 per degree of freedom and the value of R for each scan and BCID
studied in July.

Scan Number

4 5 6 7 8

R

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

BCID 1

BCID 721

BCID 1821

Figure 4.20: R as a function of scan number for each BCID considered during the
July scan session.

and BCID indicating high levels of non-factorisation in the beams.

4.6.4 November

The November scan session consisted of four centred scans (X, XI, XIV and XV) and

two offset scans (XII and XIII) and took place on the 22nd and 23rd November 2012.

Scans X, XI, XII, XIII and XIV were completed in LHC Fill 3311 and ATLAS run

number 214984. Scan XV was completed in LHC Fill 3316 and ATLAS run number

215021. There were 29 colliding bunches, of which three (1, 2361 and 2881) have

associated beam spot evolution data. The nominal β∗ was 11 m. An estimation for

R was only obtained for the centred scans X, XI, XIV and XV.

The function which was found to best describe the bunch density profiles in

the November sessions was the double supergaussian. A comparison between data
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from scan XI, BCID I and the best-fit model for various observables is presented

in Figures 4.21 (x, or horizontal scan) and 4.22 (y or vertical scan) in the same

fashion as for the April and July scans. The level of agreement between the data

and model is representative of that for the remaining centred scans and BCIDs in

the November session (see Table 4.8).

The motivation for using a double supergaussian instead of the double Gaussian

in November comes from the observation that the beam spot width in the same

dimension as the scan direction decreases as beam separation is increased from zero

(for example, Figure 4.21e). This effect was not possible to produce using double

Gaussian beam profiles (assuming that the weights of both Gaussians are positive).

Since there is no requirement to reproduce such an effect in the z-direction (i.e., no

z-scan is performed) and to reduce the time taken for the minimisation, the four

epsilon parameters in z are set to zero.

A point to note is that despite the double supergaussian model being an improve-

ment over the double Gaussian in some cases (as in Figure 4.21e) it still is not able

to qualitatively describe all the features of the November data as well as the double

Gaussian model describes the features of the July data — resulting in higher values

of the χ2 per degree of freedom. This may be because the double supergaussian is

inherently a poor description of the bunch density profiles or possibly because the

overlap integrals must be calculated numerically which leads to some instabilities in

the fitting routine.

Table 4.7 displays the set of model beam parameters that minimised the χ2 value

between data and model. The double supergaussian beam parameters comprise for

each beam, and in addition to those used for the double Gaussian, the epsilon

parameters in the x and y dimensions for supergaussians ‘a’ and ‘b’ (εx,a, εx,b, εy,a,

εy,b).

A summary of the ratio R and of the χ2 per degree of freedom obtained from

the fit, for each scan and BCID analysed in November is given in Table 4.8. A plot

of R as a function of scan number in November is shown in Figure 4.23 along with

the associated statistical uncertainties (see Section 4.7.2).

Generally the value of R is much closer to one for the scans and BCIDs in the

November scan session as compared to the April and July scan sessions indicating

that the assumption of factorisation holds much better.
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(c) Beam spot vertical position as a func-
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Horizontal beam separation [mm]

­0.4 ­0.3 ­0.2 ­0.1 0 0.1 0.2 0.3 0.4 0.5

L
o
n
g
it
u
d
in

a
l 
lu

m
in

o
u
s
 c

e
n
tr

o
id

 p
o
s
it
io

n
 [
m

m
]

­8

­6

­4

­2

0

2

4

6

8

LHC Fill 3311

Data (Centred x­scan XI November 2012)
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(d) Beam spot longitudinal position as a
function of horizontal separation

Figure 4.21: Scan XI, BCID 1, x-scan
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Simulated profile of each beam:

3­D double supergaussian

)
d

a
ta

σ
(d

a
ta

­s
im

)/
(

­2
­1

0
1
2
3
4

(g) Beam spot luminous length (z-width) as
a function of horizontal separation

Horizontal beam separation [mm]

­0.4 ­0.3 ­0.2 ­0.1 0 0.1 0.2 0.3 0.4 0.5

L
u
m

in
o
u
s
 r

e
g
io

n
 x

­y
 c

o
rr

e
la

ti
o
n

­0.4

­0.3

­0.2

­0.1

0

0.1

0.2

0.3

0.4

LHC Fill 3311

Data (Centred x­scan XI November 2012)

Simulated profile of each beam:

3­D double supergaussian

)
d

a
ta

σ
(d

a
ta

­s
im

)/
(

­2
­1.5

­1
­0.5

0
0.5

1
1.5

(h) Beam spot x-y correlation as a function
of horizontal separation

Figure 4.21: Scan XI, BCID 1, x-scan
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(c) Beam spot vertical position as a func-
tion of vertical separation
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(d) Beam spot longitudinal position as a
function of vertical separation

Figure 4.22: Scan XI, BCID 1, y-scan
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(e) Beam spot horizontal width as a func-
tion of vertical separation
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(f) Beam spot vertical width as a function
of vertical separation
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(g) Beam spot luminous length (z-width) as
a function of vertical separation
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(h) Beam spot x-y correlation as a function
of vertical separation

Figure 4.22: Scan XI, BCID 1, y-scan
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Parameter Beam 1 Beam 2

σx,a 0.0987 0.0976
σx,b 0.0972 0.0935
σy,a 0.0815 0.0919
σy,b 0.0935 0.104
σz,a 120 60
σz,b 60 105
κa 0.0501 -0.0501
κb 0.0163 -0.0163
εx,a 0.14 0.119
εy,a 0.0191 0.0346
w 0.146 0.206
αxz 8.8 µrad
αyz −19 µrad

χ2/NDF 496 / 244 = 2.03

R 8.795 / 8.79 = 1.00

Table 4.7: The beam parameter set which minimises the χ2 for a 3D double super-
gaussian beam density model in scan XI, BCID 1. The units of the beam widths
are mm. R is the ratio of the true luminosity (not assuming factorisation) to the
vdM luminosity (assuming factorisation) in which the vdM luminosity is calculated
by numerically integrating a smooth luminosity curve and is the value by which σvis

must be divided in order to correct for the factorisation assumption.

4.7 Systematic uncertainty evaluation

4.7.1 Introduction

Three sources of uncertainty on the value of the correction factor R are considered:

the statistical uncertainties on the resulting fit parameters after the χ2 minimisation,

the uncertainty on the beam spot resolution and the uncertainty due to the choice

of beam parameterisation. The uncertainties from each source for a particular scan

and BCID are then added in quadrature to obtain the total uncertainty on the value

Scan number

X XI XIV XV

BCID 1 2.64 - 0.995 2.03 - 1.00 2.82 - 1.00 1.92 - 1.00
BCID 2361 2.93 - 0.996 2.07 - 0.998 2.21 - 0.997 3.15 - 1.00
BCID 2881 3.99 - 1.00 3.30 - 1.00 3.30 - 1.00 2.57 - 1.00

Table 4.8: The χ2 per degree of freedom and the value of R for each scan and BCID
studied in November.
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Scan Number

10 11 12 13 14 15
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0.995
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BCID 1

BCID 2361

BCID 2881

Figure 4.23: R as a function of scan number for each BCID considered during the
November scan session.

of R.

There is no reason why the values of R from each of the BCIDs in a scan must be

the same. However for those detectors that cannot distinguish separate BCIDs there

needs to be some form of average correction factor per scan. This is chosen to be

the mean of the R values from the individual BCIDs with the uncertainties on beam

spot resolution and choice of beam parameterisation treated as correlated. The

statistical uncertainty on the mean is obtained by either calculating the unbiased

standard deviation of the set of R values and dividing by the square root of the

number of BCIDs or by taking the mean of the statistical uncertainties on R for each

BCID in the scan (and again dividing by the square root of the number of BCIDs),

whichever is largest. The mean R value for each scan and the corresponding total

uncertainty is provided in Tables 4.17, 4.18 and 4.19.

4.7.2 Statistical uncertainties on individual beam parame-

ters

At the conclusion of a successful minimisation, Minuit 2 returns, along with the final

set of beam parameters, a covariance matrix which details the statistical uncertain-

ties on those parameters and the correlation between them. These uncertainties

are propagated through to an uncertainty on R by sampling 2000 times from a

multi-dimensional Gaussian distribution in which the mean in each dimension is
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Scan number

I II III

BCID 1 0.0012 0.0013 0.00057
BCID 241 0.00098 0.0013 0.00057
BCID 2881 0.00089 0.0014 0.0014
BCID 3121 0.00082 0.0014 0.0015

Statistical uncertainty
on mean R value

0.0014 0.0011 0.0007

Table 4.9: The standard deviation of the histogram of R values for each scan and
BCID in April is provided. The histograms were obtained by sampling 2000 times
from a multi-dimensional Gaussian distribution in which the mean in each dimension
is the minimised beam parameter and the covariance matrix is the same as returned
by the minimisation routine. The bottom row gives the unbiased standard deviation
of the central R values divided by the square root of the number of BCIDs in that
scan.

the minimised beam parameter and the covariance matrix is the same as returned

by the minimisation routine. One then has 2000 sets of parameter values, each of

which corresponds to a slightly different value of R. The standard deviation of the

set of 2000 R values obtained is taken to be the uncertainty on R corresponding

to the statistical uncertainty on the individual beam parameters for a particular

scan/BCID.

Figure 4.24 shows as an example a histogram of the 2000 R values for each BCID

in scan I. A summary of the standard deviation of the histogram for each scan and

BCID in April is given in Table 4.9, the summary in July is given in Table 4.10 and

the summary in November (using the double Gaussian model for technical reasons

described below) is given in Table 4.11.

For each scan considered, the unbiased standard deviation of the central R values

divided by the square root of the number of BCIDs in that scan is shown in the

bottom row of each table. This is one estimate of the statistical uncertainty on the

mean R value.

The uncertainties are of a comparable magnitude in April (Table 4.9) and July

(Table 4.10) with April generally having the slightly higher values. Double Gaus-

sian beam profiles are used for evaluating the uncertainty in November as the double

supergaussian beam profiles require numerical integration, which takes an unrealis-

tically long time to evaluate. Although it is known that the double Gaussian model

does not qualitatively describe some aspects of the data very well, the uncertainty

on the choice of beam parameterisation (Section 4.7.4) is relatively small so the
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(c) BCID 2881
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(d) BCID 3121

Figure 4.24: The distribution of R values for each BCID in scan I. The histograms
were obtained by sampling 2000 times from a multi-dimensional Gaussian distribu-
tion in which the mean in each dimension is the minimised beam parameter and the
covariance matrix is the same as returned by the minimisation routine.

Scan number

IV V VI VIII

BCID 1 0.00085 0.00072 0.00082 0.0010
BCID 721 0.00072 0.00080 0.00080 0.00098
BCID 1821 0.00091 0.00089 0.00070 0.0012

Statistical uncertainty
on mean R value

0.0017 0.0013 0.0015 0.0025

Table 4.10: The standard deviation of the histogram of R values for each scan and
BCID in July is provided. The histograms were obtained by sampling 2000 times
from a multi-dimensional Gaussian distribution in which the mean in each dimension
is the minimised beam parameter and the covariance matrix is the same as returned
by the minimisation routine. The bottom row gives the unbiased standard deviation
of the central R values divided by the square root of the number of BCIDs in that
scan.
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Scan number

X XI XIV XV

BCID 1 0.00034 0.00027 0.00026 0.00028
BCID 2361 0.00085 0.00078 0.00022 0.00022
BCID 2881 0.00004 0.00004 0.00004 0.00004

Statistical uncertainty
on mean R value

0.0015 0.0007 0.0010 0

Table 4.11: The standard deviation of the histogram of R values for each scan and
BCID in November is provided. The histograms were obtained by sampling 2000
times from a multi-dimensional Gaussian distribution in which the mean in each
dimension is the minimised beam parameter and the covariance matrix is the same
as returned by the minimisation routine. Note that the double Gaussian beam model
was used to obtain the beam parameters used. The bottom row gives the unbiased
standard deviation of the central R values divided by the square root of the number
of BCIDs in that scan.

numbers in Table 4.11 are likely to be good approximations to the true statistical

uncertainty.

4.7.3 Systematic uncertainty due to beam spot resolution

As outlined in Section 4.2 and expanded upon in [40], the beam spot is defined by

performing an unbinned maximum-likelihood fit of a 3D Gaussian to the distribution

of vertices (interaction points) collected over a certain time period. One of the fit

parameters is named the k-factor, which takes into account the difference between

the actual and expected tracking resolutions. The value of the k-factor obtained

from the beam spot fit is generally within ten percent of one.

It is possible that the method of fitting the vertex distribution incorrectly esti-

mates the tracking resolution. In order to examine how this might impact the value

of R obtained the vertices in scans IV, V and VI (July) are refitted three times with

the k-factor fixed to 1.0, 1.1 and 1.2.

The minimisation procedure of Section 4.5.1 is repeated for each scan and BCID

analysed in July but using the beam spot data in which the k-factor is fixed to 1.0.

A summary of the ratio R and of the χ2 per degree of freedom obtained from each

scan and BCID combination is provided in Table 4.12. Tables 4.13 and Table 4.14

provide the same values from the minimisation using beam spot data in which the

k-factor has been fixed to 1.1 and 1.2 respectively.

With the exception of the analysis of BCID 721 in scans V and VI when the k-

factor was fixed to 1.2, the greatest shift in R from the analysis in which the k-factor
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Scan number

IV V VI

BCID 1 2.27 - 0.964 2.19 - 0.975 2.46 - 0.978
BCID 721 2.77 - 0.962 2.61 - 0.976 2.74 - 0.980
BCID 1821 2.20 - 0.960 2.05 - 0.972 1.69 - 0.974

Table 4.12: The χ2 per degree of freedom and the value of R for each BCID in scans
IV, V and VI (July). The k-factor in the beam spot fit was fixed to 1.0.

Scan number

IV V VI

BCID 1 1.92 - 0.962 1.79 - 0.974 1.80 - 0.976
BCID 721 2.22 - 0.960 1.97 - 0.975 2.11 - 0.979
BCID 1821 2.13 - 0.957 1.97 - 0.971 1.92 - 0.974

Table 4.13: The χ2 per degree of freedom and the value of R for each BCID in scans
IV, V and VI (July). The k-factor in the beam spot fit was fixed to 1.1.

Scan number

IV V VI

BCID 1 4.86 - 0.960 4.47 - 0.973 3.93 - 0.976
BCID 721 6.79 - 0.958 6.09 - 0.988 5.56 - 0.992
BCID 1821 5.43 - 0.955 5.08 - 0.970 4.52 - 0.973

Table 4.14: The χ2 per degree of freedom and the value of R for each BCID in scans
IV, V and VI (July). The k-factor in the beam spot fit was fixed to 1.2.
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Scan number

X XI XIV XV

BCID 1 2.67 - 0.999 2.17 - 1.00 2.61 - 1.00 2.28 - 1.00
BCID 2361 2.71 - 0.996 1.56 - 0.998 1.74 - 0.997 3.78 - 1.00
BCID 2881 3.68 - 1.00 3.40 - 1.00 2.82 - 1.00 2.54 - 0.999

Table 4.15: The χ2 per degree of freedom and the value of R for each scan and BCID
studied in November, in which the beam profiles are modelled as double Gaussian.

is not fixed (Table 4.6) is 0.004. This value is therefore chosen as the systematic

uncertainty on R due to beam spot resolution for all scans and BCIDs in July. The

rationale for neglecting the two outliers when choosing the systematic uncertainty

is that fixing the k-factor to 1.2 causes an increase in the true luminosity for each

scan and BCID of around 10%. There is then a large disagreement between the

simulation and data for the curve of µvis versus separation and a large increase in

the overall χ2.

The procedure of refitting the beam spot whilst fixing the k-factor was not done

for the April and November scan sessions. The uncertainty on R due to the beam

spot resolution should depend on the size of the beam spot relative to the resolution.

The beam spot width in the horizontal and vertical dimensions was much smaller

in April than in July and November and therefore the uncertainty on R from this

source would be expected to be larger. However, since the value of 0.004 chosen

for July is already quite conservative, i.e., the χ2 values increase markedly from

Table 4.6 (k-factor not fixed) to Table 4.14 (k-factor fixed to 1.2), it is decided that

the value of 0.004 should apply to the April and November scans as well.

4.7.4 Uncertainty on the choice of beam parameterisation

The defining feature of the November scan session is that modelling the beam profiles

as double Gaussian is insufficient to describe the evolution of the in-plane beam spot

width (with certain exceptions). However all other observed features in data can

be easily reproduced using the double Gaussian profile. Therefore an estimate of

the systematic uncertainty on R due to this choice of parameterisation can be made

by observing the variation in R between the cases when the beams are modelled as

double supergaussian and when they are modelled as double Gaussian. Table 4.15

gives the χ2 per degree of freedom and the value of R for each scan and BCID

considered in November when the beams are modelled as double Gaussian.

Comparing Tables 4.15 (double Gaussian profile) and 4.8 (double supergaussian
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Scan number

IV V VI

BCID 1 1.71 - 0.961 1.91 - 0.974 1.44 - 0.974
BCID 721 2.70 - 0.961 2.05 - 0.974 2.14 - 0.977
BCID 1821 1.95 - 0.957 2.12 - 0.970 1.92 - 0.972

Table 4.16: The χ2 per degree of freedom and the value of R for each BCID in scans
IV, V and VI (July) in which the beam profiles are modelled as double supergaussian.
Note that the reason for the worse χ2 compared to Table 4.6 is that the luminosity
normalisation constant (as described in Section 4.5) was not a free variable in the
double supergaussian minimisation.

profile) the largest change in the value of R is (with one exception) 0.001. This is

considered to be the systematic uncertainty on R due to the choice of beam param-

eterisation for all scan/BCID pairs in November apart from scan X, BCID 1 which

is assigned an uncertainty of 0.004. Although there are some scans in which the

R value obtained is the same after using the two different beam parameterisations,

an uncertainty of 0.001 is still assigned as a larger range of possible models has not

been explored.

Such an uncertainty might be expected to be of similar magnitude or smaller in

April and July as there are no qualitatively poorly described features in the hori-

zontal or vertical beam spot positions and widths that the additional ε parameters

of the double supergaussian are required to improve. To check this the minimisation

for scans IV, V and VI was repeated modelling the beams as double supergaussian.

Table 4.16 gives the χ2 per degree of freedom and the value of R for each BCID in

scans IV, V and VI when the beams are modelled as double supergaussian.

Comparing Tables 4.16 (double supergaussian profile) and 4.6 (double Gaussian

profile) the differences in R value are (with one exception) 0.001 or 0. An uncertainty

from this source of 0.001 is therefore assigned to all scans and BCIDs in April and

July.

4.7.5 Conclusions

Tables 4.17, 4.18 and 4.19 give the value of R for each scan and BCID considered in

2012 along with the value averaged over the BCIDs. These are given together with

the total systematic uncertainties on those values, calculated by adding in quadra-

ture the uncertainties from the sources discussed in Sections 4.7.2, 4.7.3 and 4.7.4.

The uncertainty on the averaged value treats the resolution and beam parameter-

isation uncertainties as correlated and the statistical component as uncorrelated.
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Scan number

I II III

BCID 1 0.976 ± 0.004 0.981 ± 0.004 0.992 ± 0.004
BCID 241 0.975 ± 0.004 0.980 ± 0.004 0.989 ± 0.004
BCID 2881 0.972 ± 0.004 0.976 ± 0.004 0.991 ± 0.004
BCID 3121 0.970 ± 0.004 0.979 ± 0.004 0.992 ± 0.004

Mean 0.974 ± 0.004 0.979 ± 0.004 0.991 ± 0.004

Table 4.17: The value of R and its associated total systematic uncertainty for each
scan and BCID considered in April 2012. The value of R averaged over BCIDs is
also provided.

Scan number

IV V VI VIII

BCID 1 0.962 ± 0.004 0.974 ± 0.004 0.975 ± 0.004 0.970 ± 0.004
BCID 721 0.959 ± 0.004 0.974 ± 0.004 0.977 ± 0.004 0.969 ± 0.004
BCID 1821 0.956 ± 0.004 0.970 ± 0.004 0.972 ± 0.004 0.962 ± 0.004

Mean 0.959 ± 0.004 0.973 ± 0.004 0.975 ± 0.004 0.967 ± 0.005

Table 4.18: The value of R and its associated total systematic uncertainty for each
scan and BCID considered in July 2012. The value of R averaged over BCIDs is
also provided.

Within each scan session the correlated sources dominate due to the large beam

spot resolution uncertainty. The values of R as a function of scan number for indi-

vidual BCIDs are plotted in Figure 4.25 and the mean values of R for each scan are

plotted in Figure 4.26. Note that even for the November scans, where the R values

are close to unity, symmetric uncertainties are assumed as it is physically possible

for R to be greater than one.

The LHC is the first hadron collider in which it was recognised that beam non-

factorisation effects could significantly bias the vdM calibration [31] and a precise

estimation of the size of any correction to σvis is needed in order to achieve an

uncertainty on the luminosity of 2% or better. Using the method described in this

thesis one can obtain corrections to σvis of between 0 and 4% (Figure 4.26) depending

on the vdM scan in question — without the understanding gained through this

study a large systematic uncertainty would have to be applied to the luminosity

and therefore also to total cross-section measurements (for which the luminosity can

often already be the dominant source of uncertainty).

The default value of σvis in 2012 is ultimately taken from the November scan
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Scan number

X XI XIV XV

BCID 1 0.995 ± 0.006 1.00 ± 0.004 1.00 ± 0.004 1.00 ± 0.004
BCID 2361 0.996 ± 0.004 0.998 ± 0.004 0.997 ± 0.004 1.00 ± 0.004
BCID 2881 1.00 ± 0.004 1.00 ± 0.004 1.00 ± 0.004 1.00 ± 0.004

Mean 0.997 ± 0.005 0.999 ± 0.004 0.999 ± 0.004 1.00 ± 0.004

Table 4.19: The value of R and its associated total systematic uncertainty for each
scan and BCID considered in November 2012. The value of R averaged over BCIDs
is also provided.

Scan Number
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BCID 241 ­ April
BCID 2881 ­ April
BCID 3121 ­ April

BCID 1 ­ July
BCID 721 ­ July
BCID 1821 ­ July

BCID 1 ­ November
BCID 2361 ­ November
BCID 2881 ­ November

Figure 4.25: R as a function of scan number for each BCID considered in 2012. The
error bars on each point are the quadratic sum of the correlated and uncorrelated
uncertainties.
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Figure 4.26: Mean R value as a function of scan number in 2012 averaged over
BCIDs with beam spot data. The error bars on each point are the quadratic sum
of the correlated and uncorrelated uncertainties.

session for the primary reason that the R values close to one allow for the avoid-

ance of any non-factorisation correction and therefore possibly a smaller systematic

uncertainty. However the analysis of the other scan sessions has still been critical,

both in developing the method and in better understanding the long-term stability

of the various detectors. The factorisable nature of the beams in the November scan

session was a result of special preparation in the injector chain. After observation of

large non-factorisation effects in both the April and July scan sessions an attempt

was made to construct single Gaussian beams. Although this effort did lead to R

values close to one, the beams could not eventually be described by a 3D Gaussian

as demonstrated by the analysis of Section 4.6.4. The difficulty in qualitatively

describing some of the observed effects (such as the decrease in beam horizontal

width during a horizontal scan), even with the double supergaussian model, leads

to concern over whether the level non-factorisation is being properly measured, for

which further study and understanding will be required.

The dominant uncertainty on the value of R comes from the beam spot resolution

and clearly this would need to be better understood in order to improve the precision

of any future analysis. Because of this it would be beneficial to continue using the

larger beam sizes used in July and November, rather than the smaller April beams.

The crossing angle used in April also created additional problems, possibly due to

drift of the longitudinal beam spot position, variation in the crossing angles during

the run and/or poor description of the shape of the beams in the z-direction. It

would therefore be recommended for future vdM scans to take place without any
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beam crossing angle. Finally, the analysis procedure could be improved both by

including all available information (i.e., measurements of µvis for which there is no

beam spot data) and by using different beam parameterisations — specifically those

which might be physically motivated from a more detailed study of the causes of

non-factorisation effects.
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Chapter 5

Probing soft QCD using the φ∗η
angular observable

5.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a quantum field theory which describes the

interaction of particles with colour-charge, i.e., quarks and gluons [1]. The strength

of the interaction can be parameterised by a coupling constant, αs, the size of which

depends on the energy scale of the process considered. For high-energy collisions

αs becomes small in a phenomenon known as asymptotic freedom, and interaction

cross-sections can accurately be calculated using perturbation theory. At lower en-

ergies such as those typical inside a proton αs becomes of order one and instead

cross-sections are parameterised using form-factors which take their input from ex-

periment. Figure 5.1 shows the value of αs as a function of momentum transfer (Q)

using data points from several experiments and methods [50].

5.2 The Drell-Yan process

5.2.1 Description

The Drell-Yan process involves the production of a lepton pair from hadron-hadron

collisions via an intermediate boson — a photon, a Z boson or a W boson [51]. Al-

though at high collision energies the partonic cross-sections can be calculated using

perturbation theory, the partons are in fact confined to the structure of the hadron

in a regime in which perturbation theory becomes invalid (αs ≈ 1). However the

QCD factorisation theorem states that these two parts can be separated when cal-

culating interaction cross-sections with the non-perturbative piece obtained using
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Figure 5.1: The strong coupling constant, αs, is shown as a function of the momen-
tum transfer, Q, using data points obtained from several different experiments and
methods [50].

knowledge of the hadron parton distribution functions (PDFs), that is, the distri-

bution of momentum of each parton species within a hadron which cannot currently

be calculated from first principles and must be obtained from previous experimental

data [52].

Equation 5.1 expresses this concept mathematically, where the Drell-Yan hadronic

cross-section σhAhB→l+l− is written as a convolution of the hadron PDFs, fA and

fB, and the partonic cross-section σab→l+l− , with a sum performed over all parton

species, a and b, which contribute to the process [52]. The PDFs are functions of the

parton longitudinal momentum fraction, x, and the factorisation scale, µF , which is

a somewhat arbitrary energy scale generally chosen to be of the same order as the

momentum transfer, Q.

σhAhB→l+l− =
∑
a,b

∫ 1

0

dxafA
(
xa, µ

2
F

) ∫ 1

0

dxbfB
(
xb, µ

2
F

)
σab→l+l− (5.1)

Corrections to Equation 5.1 must be made in order to better describe non-

perturbative effects such as the transverse momentum of the parton within the

hadron (‘intrinsic kT ’). Note that the Drell-Yan process is one of only a few for

which the QCD factorisation theorem has been analytically proven.
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5.2.2 Boson transverse momentum distribution

The process under study in this thesis is that in which a photon or Z boson decays to

an electron-positron pair1. Of particular interest is the boson transverse momentum

distribution, firstly to test QCD predictions of initial state gluon radiation, but also

in order to improve the measurement of the W boson mass. The detector signature

used for such a measurement is an isolated high pT lepton with missing transverse

energy from the unobserved neutrino. The invariant mass of the W can therefore not

be reconstructed and is instead obtained by simulating several kinematic variables

(some of which depend on the W transverse momentum) for different W boson mass

hypotheses and finding the best agreement with the data [53].

The tree-level diagram for the process of interest in this thesis is shown in Fig-

ure 5.2a, the Z boson in this case however does not receive any transverse momen-

tum. Figure 5.2b is an example of a higher-order virtual correction to the tree-

level process, also corresponding to zero boson transverse momentum. Figures 5.2c

and 5.2d are examples of the lowest order Feynman diagrams in QCD which give a

non-zero contribution to the Z transverse momentum. Such diagrams are referred

to hereafter as ‘leading-order in Z transverse momentum’ or leading-order (LO).

For low pT (soft) gluon emission and from emission collinear to the quark direc-

tion large logarithmic terms appear in the perturbative expansion when calculating

the transverse momentum spectrum of this process. This is due to incomplete can-

cellation between diverging real and virtual diagrams. In order to obtain a finite

prediction at low boson pT it is possible to sum these logarithmic terms to all orders

in a technique called ‘resummation’ [54]. Resummation of the dominant logarithmic

terms at each order is referred to as ‘leading-log’ (LL) accuracy and resummation

also including the sub-dominant terms is referred to as ‘next to leading-log’ (NLL)

accuracy.

5.3 Monte Carlo event generators

Monte Carlo (MC) event generators are used to simulate the physical processes in

order to obtain predictions for an observable of interest, for example, the Z boson

transverse momentum or the φ∗η distribution (see Section 5.4). There are several

stages to the simulation procedure, which are briefly described now [1] [55].

The first step is the simulation of the hard (high momentum transfer) process.

A probabilistic description of the process from which an event will have a particular

1Whenever reference to the Z boson is made in this thesis it is assumed that the contributions
from the photon and its interference with the Z are also included.
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Figure 5.2: Four Feynman diagrams for the Drell-Yan process of interest. Figure 5.2a
shows the tree-level process and Figure 5.2b shows an example of a higher-order vir-
tual correction. Figures 5.2c and 5.2d are two examples of the lowest order diagrams
in QCD which provide a non-zero contribution to the Z transverse momentum.
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realisation is obtained by using PDFs (in the case of hadron collisions) to describe

the incoming partons’ momenta and then using perturbation theory to describe the

outgoing partons.

The radiation of gluons from the incoming and outgoing partons, in addition

to any from the hard process, is described by the MC parton shower. This is

analogous to bremsstrahlung radiation of photons from a scattered electric charge.

The parton shower is a step-by-step process which reduces the momentum transfer

scale and increases αs until using perturbation theory is no longer possible. The

parton shower in an event generator performs a similar role to resummation in an

analytical calculation, but as a phenomenological model the shower contains some

free parameters which must be obtained from experimental data (tuned). This is

one of the motivations for a measurement of the φ∗η observable, which is described

in Chapter 6.

The next stage of event generation is hadronisation, which also uses parameters

which must be tuned from experiment. This models the non-perturbative process of

the formation of hadrons from the partons in the event. Related to this is modelling

of the underlying event, that is, the coloured remnants of the colliding protons which

can also interact and form hadrons.

Finally various other processes can be simulated, depending on the requirements

of the situation. These include modelling of the decay of the heavy, unstable hadrons,

modelling of the final state photon radiation and modelling of additional simultane-

ous hadron-hadron interactions (pile-up). If the Monte Carlo is to be compared to

data then modelling of the passage of the simulated particles through the detector

must also be performed, typically using the Geant4 program [56].

5.4 The φ∗η observable

5.4.1 Definition and motivation

The precision of a measurement of the boson pT spectrum in Drell-Yan events is

limited by the lepton momentum resolution, which is typically no better than one

percent in ATLAS. This motivated the development of the φ∗η variable, which is an

angular observable that depends only on the better-measured lepton directions [57].

The φ∗η variable is defined in Equation 5.2, where ∆φ is the difference in azimuthal

angle between the two leptons and θ∗η is the polar angle of the negatively-charged

lepton in the frame in which the two leptons have equal and opposite pseudorapidity.

The variable θ∗η is defined in Equation 5.3, where η+ and η− refer to the pseudorapidi-

ties, as measured in the lab-frame, of the positively-charged and negatively-charged
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(b) Diagram of the process in the r-θ plane
in the frame in which the leptons have equal
and opposite pseudorapidity. The system
is shown for the limit in which there is
zero initial state or final state radiation and
therefore zero pT.

Figure 5.3

leptons respectively. The frame in which θ∗η is measured corresponds to the Lorentz

boost, β, along the beam axis given in Equation 5.4.

φ∗η = tan

(
π −∆φ

2

)
sin θ∗η (5.2)

θ∗η = arccos

(
tanh

(
η− − η+

2

))
(5.3)

β = tanh

(
η− + η−

2

)
(5.4)

The relevant variables are shown diagrammatically in Figure 5.3. Figure 5.3a

shows the plane transverse to the beam direction for the case in which the di-lepton

system has non-zero transverse momentum due to some initial state quark or gluon

radiation. Figure 5.3b shows the r-θ plane in the frame in which the leptons have

equal and opposite pseudorapidity. The system is shown for the limit in which the

di-lepton system has zero pT and as such the frame corresponds to the di-lepton rest

frame and the particles are emitted back-to-back.

The largest motivation for the definition of φ∗η comes from a desire to more
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precisely measure the properties of the low boson pT regime (also corresponding to

low φ∗η), which is traditionally limited by the lepton momentum resolution. This

regime is sensitive to both perturbative QCD dynamics (i.e., multiple soft and/or

collinear radiation) as well as non-perturbative QCD effects such as the parton

intrinsic kT .

Zero boson pT corresponds to the two leptons emitted back-to-back in the trans-

verse plane, ∆φ is equal to π and φ∗η is equal to zero. Assuming approximately equal

lepton pT, an increase in the boson pT causes a decrease in ∆φ, or decorrelation be-

tween the leptons. However for two events which both have the same di-lepton

invariant mass and pT, the ∆φ can differ depending on the lepton scattering angle

in the centre of mass frame, for which θ∗η is a reasonable approximation at low boson

pT. At low φ∗η therefore, there is very high correlation between the boson pT and

φ∗η (for the same boson invariant mass). At high φ∗η the definition becomes more

arbitrary and the motivation is anyway reduced as the fractional resolution of the

boson pT improves.

5.4.2 Final state radiation

If there is final state photon radiation (FSR) from one or both leptons the φ∗η mea-

sured will change. There are two main approaches that can be taken when consid-

ering this effect. The first is to correct the measured value back to that before FSR

using a MC model of the process. This is called a ‘Born level’ measurement and is

required if one wishes to perform a combination of electron and muon channels or

to compare to theoretical predictions which do not simulate the effects of FSR (the

majority). The disadvantage is that the systematic uncertainty due to the modelling

of FSR in the MC can be large.

The second approach is to perform no correction (a ‘bare level’ measurement) or

a partial correction for co-linear radiation (a ‘dressed level’ measurement). In these

cases the MC modelling uncertainty is much reduced and the data remains relevant

over longer periods of time as models of FSR improve. The measurements of φ∗η in

the di-electron channel detailed in Chapter 6 are made at both the Born and dressed

levels. The exact details of the correction made along with the motivation for using

the dressed level over the bare level is given in that chapter.

5.5 Measurements of φ∗η at hadron colliders

Measurements of the φ∗η distribution have previously been made at both the Tevatron

and the LHC. The first was performed by the D0 collaboration, which presented the
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Figure 5.4: The ratio of the combined di-electron and di-muon differential cross-
section from the 7 TeV ATLAS analysis to RESBOS [62]. Also shown is a prediction
from Banfi et al. in which an NNLL resummation calculation is matched to NLO
results from the MCFM MC generator [63].

normalised Z → l+l− cross-section, differential in φ∗η for the di-electron and di-muon

channels for events with an invariant mass close to the Z-peak [58]. The results have

been used to tune parameters in the RESBOS program [59]. The D0 analysis was

subsequently extended in the di-muon channel to make the measurement for events

with a mass both above and below the Z-peak [60].

The absolute differential cross-section was measured by the LHCb collaboration

in a wide invariant mass range at
√
s = 7 TeV [61]. The geometry of the LHCb

detector allows observation of events highly boosted along the beam direction, which

are inaccessible to D0 or ATLAS, and as such provides complementary information.

Finally the ATLAS collaboration measured the normalised differential cross-

section for events with an invariant mass close to the Z-peak at
√
s = 7 TeV [62].

Figure 5.4 shows the ratio of the data (a combination of the di-electron and di-muon

channels) to a prediction from RESBOS. The plot also shows a prediction from Banfi

et al. in which an NNLL resummation calculation is matched to NLO results from

the MCFM MC generator [63]. The ATLAS
√
s = 7 TeV data have been used to

tune the PYTHIA and POWHEG+PYTHIA MC generators [64].

A measurement of the normalised differential cross-section in the di-electron

channel at
√
s = 8 TeV with ATLAS data is presented in Chapter 6. This extends

the ATLAS results at 7 TeV most prominently by performing the measurement for

events with an invariant mass both above and below, in addition to at the Z-peak.

The analysis also takes advantage of the larger data-set (an integrated luminosity
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of 20.3 fb−1 compared to 4.6 fb−1 at 7 TeV) by adding two bins at high φ∗η and by

performing the measurement in finer divisions of boson rapidity.
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Chapter 6

Measurements of the Z boson

cross-section, differential in φ∗η, in

wide bins of boson mass and

rapidity in the electron-positron

channel with the ATLAS detector

6.1 Definition of the measurements

This chapter describes measurements of the quantity

1

σ

dσ

dφ∗η

where σ is the Drell-Yan production cross-section multiplied by the branching-

fraction into electron-positron pairs and φ∗η is the angular observable introduced in

Equation 5.2, Section 5.4.1. The quantity is henceforth referred to as the normalised

differential cross-section and the electron and positron are generically referred to as

electrons.

The analysis uses 20.3 fb−1 of
√
s = 8 TeV proton-proton collision data recorded

at the ATLAS detector in 2012. Measurements are made in twelve distinct kine-

matic regions defined by the invariant mass, M , and absolute rapidity, |y|, of the

intermediate vector boson (Z boson or photon). The rapidity is defined in terms of

the boson energy, E, and the longitudinal momentum, pz, in Equation 6.1 and for

massless particles is equivalent to the pseudorapidity. The twelve kinematic regions

are defined in Table 6.1 where the three divisions in invariant mass are referred to
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46 GeV < M < 66 GeV
‘low-mass region’

66 GeV < M < 116 GeV
‘peak-mass region’

116 GeV < M < 150 GeV
‘high-mass region’

0.0 < |y| < 0.8
0.0 < |y| < 0.4

0.0 < |y| < 0.8
0.4 < |y| < 0.8

0.8 < |y| < 1.6
0.8 < |y| < 1.2

0.8 < |y| < 1.6
1.2 < |y| < 1.6

1.6 < |y| < 2.4
1.6 < |y| < 2.0

1.6 < |y| < 2.4
2.0 < |y| < 2.4

Table 6.1: The twelve kinematic regions in which a measurement of the normalised
differential cross-section was performed. The three divisions in invariant mass are
referred to with respect to the position of the Z-peak.

with respect to the position of the Z-peak, that is, as the low-mass, peak-mass and

high-mass regions.

y =
1

2
ln
E + pz
E − pz

(6.1)

As discussed in Section 5.4.2 any final state photon radiation (FSR) will change

the value of φ∗η measured. The motivation for this analysis is to improve under-

standing of non-perturbative QCD, which relates to the initial state quark or gluon

radiation. Most theoretical predictions do not include or do not simulate very ac-

curately the effects of FSR and therefore the results here are firstly provided at the

Born level which corrects the measured electron direction to that before any FSR.

The other main advantage is that assuming lepton-universality one can combine the

di-electron and di-muon channels, which have different FSR signatures.

The other truth level definition for which the final results are provided is the

dressed level. The electron four-vector at dressed level is defined by performing

the sum of the bare level electron four-vector (electron after all FSR) and the four-

vectors of photons within ∆R = 0.1 of that bare electron. The quantity ∆R is a

measure of solid angle and is defined in Equation 6.2 in terms of the pseudorapidity,

η, and azimuthal angle, φ, of the two particles in question (here the bare electron

and a photon).

∆R =

√
(η1 − η2)2 + (φ1 − φ2)2 (6.2)

The advantage of the dressed level definition is that an electron energy measure-

ment at truth level more closely corresponds to that measured in the detector, that

is, a cluster of energy in the EM calorimeter. However it must be noted that the

direction of the track in the Inner Detector is better identified with the direction of
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bare

ΔR < 0.1 

dressed

born

Figure 6.1: A diagram illustrating the different between the Born, dressed and bare
level electron definitions. The Born level refers to the electron before any final state
photon radiation, the bare level to the electron after all FSR and the dressed level
to the four-vector sum of the bare electron and photons within ∆R = 0.1 of the
bare electron.

the bare level electron. The results at dressed level have a smaller systematic uncer-

tainty due to theoretical modelling of FSR than those at Born level. This means that

the results will remain relevant for longer periods of time, as better models of FSR

are developed and integrated with theoretical predictions. A diagram illustrating

the difference between the Born, bare and dressed electron is shown in Figure 6.1.

The reason for performing a normalised measurement is twofold. Firstly any

overall scale uncertainty such as on the luminosity is fully correlated between bins

of dσ/dφ∗η and therefore cancels when dividing by the total cross-section, σ. Other

uncertainties such as on the trigger scale factors (see Section 6.8.1) are partially

correlated between bins, which means the uncertainty is much reduced after dividing

by σ. The second reason for performing a normalised measurement is that most

of the important information necessary to improve the theoretical calculations or

parton shower modelling comes from the shape of the φ∗η distribution, rather than

from the absolute scale.

6.2 Outline of analysis method

In this section an outline of the analysis procedure is given, each step of which

is expanded upon in subsequent sections. The first stage is to optimise the event

selection criteria to reduce contamination from background processes, whilst keeping
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a large number of signal events. This is described in more detail in Sections 6.3 to 6.5

and the motivation for the chosen binning in φ∗η, mass and rapidity is discussed in

Section 6.6. Section 6.7 then lists the background processes considered and explains

how each one was estimated.

In order to be able to use Monte Carlo to estimate certain backgrounds, or to

correct the measured data for detector resolution and inefficiency, one must be first

convinced that the model describes the data reasonably well in the distributions

of various basic variables, such as the electron η and φ distributions or the aver-

age number of interactions per bunch crossing. Certain corrections are applied to

the data or model in order to improve the agreement and these are described in

Section 6.8.1. The data-model comparison distributions or ‘control plots’, are then

shown in Section 6.8.2.

The next stage of the analysis is to subtract the background estimation from the

data and then obtain the normalised differential cross-section at both the Born and

dressed levels using correction factors determined from Monte Carlo. This procedure

is detailed in Section 6.9. Then systematic uncertainties from a number of sources

are estimated by varying any experimental or theoretical parameters within their

individual uncertainties and observing the change induced on the final distributions.

The sources of uncertainty considered and the method used to estimate the size of

each are described in Section 6.10.

The final dressed level distributions with total systematic and statistical un-

certainties are displayed in Section 6.11.1. The Born level distributions are then

combined with those from the di-muon channel and shown in Section 6.11.2. The

combined results are compared to various theoretical predictions in Section 6.11.3.

6.3 Event selection

6.3.1 Overview

The selection of events for study was designed to have a high signal efficiency (Z →
e+e−) whilst rejecting a large fraction of background events. The basic cuts to select

events with certain characteristics are applied to both the data and MC. These

comprise a di-electron trigger and a requirement of two ‘good’ electrons, where the

exact definition of a good electron is provided in Section 6.4. A second class of

cuts is applied only to data and removes events in which sub-detectors were not

functioning satisfactorily (application of a Good Runs List) or in which data are

corrupted. A summary of the event selection is given in Table 6.2 and more detailed

information is provided in Section 6.3.2.
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Event characteristics (data and MC)

Pass trigger EF 2e12Tvh loose1 or EF 2e12Tvh loose1 L2StarB

Number of ‘good’ electrons = 2

Detector quality (data)

Pass Good Runs List selection
Reject events with liquid argon noise bursts
Reject events with corrupted TileCal data

Remove incomplete events

Table 6.2: A summary of the event selection cuts. These are divided into two
categories, those which distinguish event characteristics, which are applied to data
and MC and those which define detector quality criteria and are only applied to
data. More details on what constitutes a good electron are given in Section 6.4.

6.3.2 Additional details

Events must pass at least one of two di-electrons triggers: EF 2e12Tvh loose1 and

EF 2e12Tvh loose1 L2StarB. Both of these require that two electrons were identi-

fied at Event Filter level with a pT greater than 12 GeV. It is additionally required

that the ∆R between the selected analysis electron (see Section 6.4) and the electron

object which caused the EF trigger to fire is less than 0.15.

Previously the two electrons must have passed the same pT threshold at the L2

trigger stage and at L1 two electromagnetic clusters with pT at least greater than

10 GeV must be identified. The actual threshold at L1 is optimised to correct for

dead-material in the calorimeter (for example, cables and cooling systems) and is

a function of pseudorapidity. The label ‘v’ in the trigger name refers to use of a

variable threshold. The label ‘loose1’ refers to the electron identification criteria

used at L1 and EF and corresponds to the ‘loose++’ identification at the offline

analysis level (see Section 6.4.2).

The designation ‘L2StarB’ indicates the use of a particular software framework

for the tracking trigger at L2 and the inclusion of this trigger provides a gain in

efficiency for electrons in the end-cap regions. The label ‘T’ in each trigger name

indicates a small gap (here a maximum of 2 GeV) between the L1 and L2 thresholds

and the label ‘h’ indicates a cut on leakage of energy into the hadronic calorimeter,

that is, a longitudinal isolation cut.

The requisite for exactly two electrons passing the electron selection criteria

is made to reduce contamination from background processes with prompt high-pT

final state electrons, examples of which include Drell-Yan W → eν and di-boson

decays into multiple electrons. The full list of backgrounds considered is given in
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Medium++ identification
Electron author requirement
Object quality requirement

Relative isolation:
∑
pT, track(∆R < 0.4)/ET ≤ 0.2

ET ≥ 20 GeV
0 < |η| < 1.37 or 1.52 < |η| < 2.40

Table 6.3: A summary of the identification and selection criteria used to identify a
‘good’ electron. The |η| cuts reject electrons which pass into the poorly instrumented
region between the barrel and end-caps, known as the crack region. Both electrons
are required to pass the isolation requirement in the low-mass and high-mass regions.
This is loosened at peak-mass to require that at least one of the two electrons is
isolated.

Section 6.7.

6.4 Electron selection

6.4.1 Overview

As discussed in Section 6.3 events are required to contain exactly two ‘good’ elec-

trons. This section defines the properties of such electrons and details the cuts

performed to select them. Electrons are identified using a variety of information

including EM shower shape, hadronic leakage and isolation, and then cuts on pT

and pseudorapidity are made which define the kinematic and geometric acceptance.

The pT of an electron is defined using the energy of the electron cluster and the di-

rection of the measured track (given that the track has at least four silicon hits) and

is commonly referred to as the transverse energy, ET, (Equation 6.3). The electron

pT can be defined using only track variables — this quantity is referred to as pT, track

and is used in this analysis only in the electron isolation requirement.

ET = E sin θ =

 E
cosh ηtrack

Number of silicon hits ≥ 4

E
cosh ηcluster

Number of silicon hits < 4
(6.3)

Table 6.3 summarises the cuts made and then Section 6.4.2 provides a more

detailed description of each one.
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6.4.2 Additional details

Reconstructed electromagnetic objects may originate from electrons, photons or

other detector activity (for example, jets). Therefore a set of identification criteria is

defined to select electrons with a particular efficiency and background. These include

EM shower shape, leakage of cluster energy into the hadronic calorimeter and track

quality. The two sets of criteria used in this analysis are named Medium++ (for

the default electron selection, and is around 85% efficient) and Loose++ (for the

multi-jet background selection — see Section 6.7). The Loose++ criteria are a less

restrictive sub-set of the Medium++ criteria and the discriminating variables used

for each are now listed [65].

wstot: The shower width in the first layer (strip layer) of the EM calorimeter.

Eratio: The ratio of the energy difference between the largest and smallest energy

deposits of the cluster in the strip layer to the sum of those energies.

Wη2: Lateral shower width in the middle layer of the EM calorimeter.

Rη: The ratio of energy in 3× 3 cells to that in 3× 7 cells, centred at the electron

cluster position.

f3: The ratio of energy in the back layer to the total energy in the EM accordion

calorimeter (Medium++ identification only).

Rhad(Rhad1): Fraction of the clusterET deposited in the (first layer of) the hadronic

calorimeter.

nBlayer, npix, nSi: Number of hits in the B-layer (first pixel layer), all pixel layers

and all silicon (pixel + SCT) layers.

∆η: The difference between the η of the cluster and the η of the extrapolated track.

d0: The transverse impact parameter (Medium++ identification only).

The electron author variable indicates which reconstruction algorithm identified

the EM object from the raw data. Here it is required that the object was found

by the standard cluster-seeded algorithm and was matched to at least one track

in the Inner Detector [65]. Electrons are also required to pass the object quality

requirement, which rejects clusters which pass through dead, noisy or otherwise

problematic parts of the EM calorimeter.

The relative isolation variable I is defined in Equation 6.4, which is the sum of

track pT within a cone ∆R = 0.4 around the electron divided by the electron ET.
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In the low-mass and high-mass regions both of the good electron candidates are

required to have I ≤ 0.2, whilst in the peak-mass region this requirement is relaxed

such that only one electron need be isolated.

I =

∑
pT, track(∆R < 0.4)

ET

(6.4)

The motivation for the isolation cut is to reduce contamination from multi-jet

background. An example of such a process is a gluon splitting into two b-quarks,

forming jets which contain or are reconstructed as an electron. A jet contains a lot

of hadronic activity and as such the sum of the pT of all tracks in a cone ∆R = 0.4

surrounding the electron is likely to be larger than for a prompt electron from a Z

decay. The cut is less strict at peak-mass to prevent a large systematic uncertainty

at higher values of φ∗η from the choice of MC used to correct the data to truth level.

The multi-jet background contamination is nevertheless small in this mass region.

A cut on electron pT is applied at 20 GeV. The value chosen is a compromise be-

tween a desire to have as wide a kinematic acceptance as possible (to fully utilise the

data available) and the efficiency of the di-electron trigger, which is approximately

constant above 20 GeV. A more detailed discussion on how the trigger inefficiency

is treated using MC scale factors is given in Section 6.8.1.

The absolute pseudorapidity of both electrons is required to be less than 2.4 in

order to be within the geometric acceptance of the tracker. Technically values up

to |η| = 2.47 would be feasible but 2.4 was chosen for consistency with the di-muon

channel for which the limitation is the Thin Gap Chamber trigger. The electrons

are also required not to have an absolute pseudorapidity in the range 1.37 to 1.52 to

avoid the poorly instrumented region between the barrel and end-cap calorimeters,

known as the crack region. No such veto is required for the muon channel mea-

surement, which means an extrapolation of the electron channel measurement must

be performed in order to combine the two. Further details on this are provided in

Section 6.11.2.

6.5 Truth event selection

The final normalised differential cross-section, at a particular truth level, is obtained

by dividing the measured data by correction factors determined from Monte Carlo.

The bin-by-bin correction factor, ci, for a bin i is defined in Equation 6.5 as the

number of events in that bin at reconstruction (detector) level divided by the number

of events at truth level. Further and more precise details on the correction procedure

are given in Section 6.9, but here it is discussed how MC events are selected in order
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2 electrons (Born or dressed as required)
pT ≥ 20 GeV

0 < |η| < 1.37 or 1.52 < |η| < 2.40 (fiducial volume)
0 < |η| < 2.40 (combination volume)

Table 6.4: A summary of the truth level event selection criteria. The cuts on electron
absolute pseudorapidity differ depending on whether the measurement is made in the
fiducial volume (for the single channel measurement) or in the combination volume
(for the combination with the muon channel).

to produce the necessary truth level φ∗η distribution.

ci =
ni,reco

ni,truth

(6.5)

In addition to information on reconstructed objects at detector level, the MC

event record includes details of many or all of the particles that existed during the

different stages of event generation. The challenge is to select the (two) electrons

which most closely correspond to the chosen truth level definition (here, Born or

dressed). The event then passes the truth selection if the electrons are within the

required geometric and kinematic acceptance.

The MC factors correct for detector inefficiencies, detector resolution and for

FSR. In order to not use the Monte Carlo to correct for less well-understood effects

an effort is made to require a similar set of selection criteria to that used at detector

level (see Section 6.3). These are summarised in Table 6.4 and described in more

detail below. Note that the selection is made using only signal MC (Z → e+e−).

Three signal MC simulations are used in this analysis for the purposes of cross-

checking results and estimating the size of certain uncertainties (see Section 6.10).

The bin-by-bin correction factors obtained from each MC are averaged to obtain the

central values of the final dressed and Born level distributions.

The first MC uses Powheg [66] to generate the hard process, Pythia [67] to sim-

ulate the parton shower, hadronisation and the underlying event, and Photos [68] to

simulate the final state photon radiation. This MC is referred to as Powheg+Pythia

in future discussions and is the signal sample used in the plots of this chapter, un-

less otherwise stated. The two other MC signal samples used are ‘Powheg+Herwig’,

which again uses Powheg to generate the hard process and Photos for the FSR sim-

ulation, but uses Herwig [69] for the parton shower and underlying event, and a

sample which uses Sherpa [70] to simulate all stages of the event generation. De-

tails on the mass range over which events were generated and numbers of simulated

events in each sample are provided in Table 6.5.
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Generator Mass range (GeV) Channel number Number of events

Powheg+Pythia
20 < M < 60 129502 10× 106

M > 60 (2e filter) 129680 50× 106

M > 60 (1e filter) 129685 20× 106

Powheg+Herwig
M > 60 (2e filter) 185710 50× 106

M > 60 (1e filter) 185711 20× 106

Sherpa M > 40 147770 100× 106

Table 6.5: A summary of the signal MC samples used in this analysis. The mass
range refers to that in which the events were generated. Some samples are split
according to the number of electrons with pT greater than 15 GeV with |η| < 2.7
after FSR — these are described as di-electron (2e) filter and single-electron (1e)
filter. The channel number is an ATLAS specific descriptor unique to a particular
sample.

The formula for obtaining Born level electrons (or positrons) is generator specific,

but in each case aims to select electrons before the effects of any final state photon

radiation. The formula for obtaining bare level electrons is common to MC samples

— one requires a final-state or ‘stable’ electron which has not been produced from

the decay of a hadron or τ -lepton. The photons used for dressing the bare electrons

must also pass the same requirements as well as be within a cone ∆R < 0.1 of the

bare electron. Only in a very small fraction of events are two pairs of oppositely-

charged electrons found passing these criteria and also within the kinematic and

geometric acceptance. For these events a random choice is made. Note that in

all cases a veto is imposed on particles which originated from the Geant4 detector

simulation.

6.6 Binning choices

Three main considerations were made when choosing the bin edges in φ∗η, boson

mass and rapidity for the normalised differential cross-section measurement. These

are the number of data events (‘statistics’), the angular resolution of the ATLAS

detector and the bin purity, that is, the level of event migration between φ∗η bins from

truth level to detector or reconstruction level. Consistency with the ATLAS 7 TeV

measurement was also important. Each of these considerations are now discussed.

The size of the 8 TeV data-set is several times larger than at 7 TeV (an integrated

luminosity of 20.3 fb−1 compared to 4.6 fb−1 and in principle this could allow finer

binning in φ∗η, mass or rapidity. However due to the finite angular resolution and

purity considerations (see below) and the desire to extend the set of measurements
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Figure 6.2: The percentage difference, as a function of φ∗η at the Born level, between
the value of (1/σ) dσ/dφ∗η in each boson rapidity bin to the value in the central
rapidity bin (|y| < 0.4). Events have an invariant mass between 46 GeV and 600 GeV
and are simulated using Powheg+Pythia MC.

above and below the Z mass-peak it was decided to use the same binning in φ∗η as

at 7 TeV with the addition of two bins at the upper edge.

The number of boson rapidity regions in the peak-mass region was also increased

from 3 to 6 because of the higher available statistics. From previous measurements

and from theoretical predictions the shape of the φ∗η distribution is known to change

as a function of boson rapidity. This is illustrated using a Born level MC prediction in

Figure 6.2, which shows the percentage difference between the value of (1/σ) dσ/dφ∗η

in each rapidity bin to the value in the central rapidity bin (|y| < 0.4), as a function

of φ∗η. The finer bins in rapidity give more detailed information which will constrain

future MC tuning.

The finite detector angular resolution (very approximately 1 mrad [71]) puts a

lower constraint on the size of the narrowest bins in φ∗η. For low boson pT and

|η| = 0, φ∗η can be approximated as (π − ∆φ)/2. The angular resolution in φ∗η is

therefore also of order 0.001. In this analysis the narrowest bins (the six lowest in

φ∗η) are given a width of 0.004. An uncertainty on the MC modelling of the angular

resolution is discussed in Section 6.10.2.5.

A concept related to the angular resolution, but which also considers bin mi-

gration due to FSR is the purity. The purity, pi, is defined in Equation 6.6, as

the number of events reconstructed and generated in bin i, divided by the number
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reconstructed in that bin. The label i can either be used to refer to a particular φ∗η

bin, a region in boson mass and rapidity or the union of all three.

pi =
ni,reco & truth

ni,reco

(6.6)

The higher bin purity in φ∗η compared to boson pT is one of the primary motiva-

tions for the study of the observable. Although more sophisticated MC correction

techniques (such as iterative Bayesian unfolding) can be used to compensate for

lower bin purities, this nevertheless can bring additional uncertainties and there-

fore the φ∗η observable allows study of non-perturbative physics (low pT and φ∗η) in

finer detail. Any possible bias in using bin-by-bin correction factors is explored in

Section 6.10.3.

Figure 6.3 shows the purity using the Born, bare and dressed truth level defini-

tions as a function of φ∗η for the three different mass regions. The curves are shown

integrated over absolute boson rapidity from 0 to 2.4, but do not vary much as a

function of rapidity. Events are required to be generated in the same φ∗η bin as they

are reconstructed, but no requirement is made on the truth boson mass or rapidity.

Two observations are made regarding the plots in Figure 6.3. In each mass region

the Born level purity is lower than the bare and dressed levels and is particularly

low in the low-mass region. The reason for this is that final state photon radiation

may be emitted with large pT and change the φ∗η value quite considerably between

truth and reconstruction level. The purity is further reduced in the low-mass plot

because di-electron pairs generated with a Born mass around the Z-peak will also

tend to be reconstructed with a lower invariant mass after FSR.

It is also observed that the dressed purity is nearly always higher than the bare

purity, despite the track in the Inner Detector being better identified with the di-

rection of the bare level electron. The reason is that the reconstruction level cut

on ET uses calorimeter energy cluster information and is therefore better identified

with the dressed electron pT. Events which are generated with a bare pT just below

20 GeV may pass the reconstruction level ET cut, which results in a lower purity.

The set of bin-edges in φ∗η finally adopted are displayed in Table 6.6 along with

the number of selected data events in each bin of φ∗η, boson mass and boson rapidity.

The same φ∗η binning is used in each mass and rapidity region for convenience and

easy comparison.
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Process Generator Channel number Number of events

Z → ττ Np0 Alpgen+Herwig+Jimmy 146930 5.5× 106

Z → ττ Np1 Alpgen+Herwig+Jimmy 146931 2.5× 106

Z → ττ Np2 Alpgen+Herwig+Jimmy 146932 5× 105

Z → ττ Np3 Alpgen+Herwig+Jimmy 146933 2× 105

Z → ττ Np4 Alpgen+Herwig+Jimmy 146934 3× 104

W → eν Sherpa 147774 4× 107

W → τν Sherpa 147776 7× 106

WW Herwig 105985 2.5× 106

ZZ Herwig 105986 2× 105

WZ Herwig 105987 1× 106

tt̄ McAtNLO+Jimmy 105200 1.5× 107

single top, t-channel (e) AcerMC+Pythia 117360 2× 106

single top, t-channel (τ) AcerMC+Pythia 117362 2× 106

single top, s-channel (e) McAtNLO+Jimmy 108343 1× 106

single top, s-channel (τ) McAtNLO+Jimmy 108345 1× 106

single top, Wt-channel McAtNLO+Jimmy 108346 5× 106

γ−induced (20 GeV < M < 60 GeV) Pythia8 129651 5× 105

γ−induced (60 GeV < M < 200 GeV) Pythia8 129652 5× 105

Table 6.7: A summary of the background MC samples used in this analysis. The
Z → ττ samples are split according to how many additional partons are included
in the hard-process matrix element and the single top samples are split according
to the production channel. Further information on each of these processes is given
in Section 6.7.1.

6.7 Background estimation

This section describes the methods used to obtain an estimate for the size and

shape of the background contamination to the selected data distributions. These

estimates are then subtracted from the data before the bin-by-bin correction factors

are applied to obtain the final dressed or Born level distributions.

Backgrounds processes fall into two categories: irreducible background in which

there are two real electrons in the final state within the kinematic and geometric

acceptance and reducible or ‘fake’ backgrounds in which another detector object,

such as a jet, is reconstructed as an electron. MC is used to describe the background

processes which are reasonably well understood such as from Drell-Yan Z → ττ and

di-boson decays. These processes are described in more detail in Section 6.7.1 and

are summarised in Table 6.7 along with information on which generator was used

and the total number of events in each sample. The multi-jet background in which

two jets are reconstructed as electrons is estimated using a data-driven technique,

which is described in Section 6.7.2.
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Figure 6.4: An example Feynman diagram for the Z → ττ background process [72].

6.7.1 Monte Carlo backgrounds

6.7.1.1 Z→ ττ

Two real electrons can be produced from the decay of Drell-Yan Z → ττ via Feyn-

man diagrams such as the one displayed in Figure 6.4 [72]. This process is simulated

using MC and is an important contribution to the total background in the low-mass

regions and at lower φ∗η. The background from the decay of Z → µµ is negligible.

6.7.1.2 W+jets

The backgrounds due to the decay of a single W boson to either an electron or a

τ (which subsequently decays to an electron) are collectively named ‘W+jets’. One

real electron is identified from the W decay with the other from a mis-identification

of a jet. This background is very small in all regions of boson mass and rapidity.

6.7.1.3 Di-boson

Contribution from the decay of WW , WZ and ZZ is collectively called di-boson

background. Example Feynman diagrams from each of these processes are shown in

Figure 6.5. Events may pass the signal selection with one real electron and one mis-

identified jet, two real electrons or multiple real electrons in which one or more fail

to be reconstructed or fall outside the acceptance. These processes are important

contributions to the total background in the peak-mass region at higher values of

φ∗η.
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Figure 6.6: An example Feynman diagram for the tt̄ background process [72].

6.7.1.4 tt̄

The background due to tt̄ decay is the dominant contribution to the total background

at higher values of φ∗η in all boson mass and rapidity regions. An example Feynman

diagram for this process is shown in Figure 6.6 [72]. The event might have two real

electrons, as in the example, or one of the jets originating from the b-quarks might

be mis-identified.

6.7.1.5 Single top production

Three production channels for single top are considered as background. These are

the s-channel, t-channel and W t-channel. Example Feynman diagrams for each of

these processes are shown in Figure 6.7. Real electrons may be identified from the

decay of the top quark into an electron or τ or one of the several jets might be
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Figure 6.7: Example Feynman diagrams for single top production in the s-channel,
t-channel and W t-channel respectively [73].

γ
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Figure 6.8: An example Feynman diagram of the photon-induced Drell-Yan sub-
process.

mis-identified as an electron. Single top is not an important contribution to the

total background.

6.7.1.6 Photon-induced

The process by which an electron-positron pair is produced from the interaction of

photons in the proton collision is shown in Figure 6.8 and is referred to as photon-

induced background. Such events are an important component of the total back-

ground at low to medium φ∗η values, especially in the high-mass region. There also

exist Drell-Yan sub-processes in which one of the initial state partons is a photon [74],

but these are negligible for the boson mass range considered in this analysis [75].

6.7.2 Multi-jet background

The multi-jet or ‘QCD’ background describes a range of processes that produce

several jets of which two are identified as electrons. One example process is a gluon
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splitting into two b-quarks, which then hadronise, forming jets.

The multi-jet background contribution is not estimated using MC as there are

large theoretical uncertainties on the behaviour of the constituent processes, which

prevents a reliable estimate being made. A secondary reason (although not in itself

insurmountable) is the large number of MC events for each sub-process that would be

required to be simulated to produce enough which pass the signal selection criteria.

This background is therefore estimated using a data-driven template-fit technique,

which is now described.

The principle of the template-fit method is as follows: the shape of the back-

ground for a certain distribution (say φ∗η) is obtained from data in a region of pa-

rameter space in which the multi-jet background is enhanced — this is the template.

The assumption is made that the shape of the template is the same in the signal

region as in the multi-jet enhanced region, but the normalisation differs. The scale

of the template in the signal region is obtained by minimising the χ2 variable de-

fined in Equation 6.7 over a signal distribution which has sensitivity. The scale of

the MC, A, and of the multi-jet template, B are free parameters in the fit and σi

is the statistical uncertainty on the number of data events, Ndata
i in a bin i. The

resulting scale of the multi-jet background (B) is then used in all distributions and

kinematic regions.

χ2 =
∑
i

(
Ndata
i − ANMC

i −BNmulti−jet
i

σi

)2

(6.7)

Two different multi-jet template definitions are used for cross-check and con-

sistency purposes. Both require that the event passes the standard selection as

defined in Table 6.2 but with an alternative definition of a good electron. For the

default template it is required that the electron passes Loose++ identification, fails

Medium++, and that the two electrons selected must be of the same charge. The al-

ternative template requires the same identification in addition to an inverse isolation

requirement, 0.2 < I < 0.3, where I is defined in Equation 6.4.

Any residual signal or MC background passing the multi-jet selection is sub-

tracted from the template before the fitting procedure takes places. The first distri-

bution in which an estimate of the multi-jet normalisation is obtained is the invariant

mass spectrum. The fit using the same-sign template is performed over the range

46 GeV to 600 GeV and with absolute boson rapidity |y| < 2.4. To remove sensi-

tivity to the exact description of the Z-peak by the signal MC, a single wide bin

from 71 GeV to 111 GeV was used in this region. The minimum value of the χ2

per degree of freedom obtained is 1.7 and the corresponding values for A and B are
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1.025± 0.0004 and 0.036± 0.004 respectively, where the uncertainties are statistical

in nature. The size of the background obtained using the inverse isolation template

was consistent with that obtained with the same-sign template.

A second estimate of the normalisation was obtained by fitting the same-sign

template in the distribution of a second isolation variable, J , which is defined in

Equation 6.8 as the minimum value of
∑
ET(∆R < 0.2)/ET of the two electron

candidates. Note that the standard isolation cut on I was not made when fitting in

the related variable J and as such a further extrapolation to the full signal selection

must also be performed [76].

J = Minimum(e1, e2)

{∑
ET(∆R < 0.2)

ET

}
(6.8)

As there is a priori no reason to select one estimate of the normalisation over the

other and because the overall size of the background is small, the default value is

arbitrarily taken from the fit in the isolation variable and the difference with respect

to the fit in the invariant mass distribution is taken as an uncertainty.

6.7.3 Summary

The size of the individual backgrounds as percentage of total signal plus background

is shown as a function of φ∗η in Figure 6.9 for each of the twelve regions of boson

mass and rapidity. The MC background estimates were verified with a data-driven

cross-check [76].

6.8 Data and model comparison

In order to be confident that the background has been properly estimated and to be

able to use MC to correct data for detector inefficiencies and resolution the data-

model agreement is examined in various control distributions. It is understood that

MC will not be able to properly model those variables which depend on poorly un-

derstood non-perturbative QCD, such as φ∗η; indeed one of the primary motivations

for this analysis is to provide information in this area for future MC tuning. However

it is hoped that the MC will generally be able to describe other distributions such

as the η and φ angles of each electron and the boson invariant mass for example.

The exact data-taking conditions are not necessarily known when the MC is

simulated. Therefore some corrections must be applied to the MC (or to the data)

at the analysis stage in order to improve the agreement in certain distributions,

an example of which is the average number of interactions per bunch crossing, or
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Figure 6.9: The size of the individual backgrounds as percentage of total signal plus
background as a function of φ∗η, for each boson rapidity bin in the peak-mass region.
The di-boson and top backgrounds are merged. The statistical uncertainty on the
total background is shown using hatched lines.
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Figure 6.9: The size of the individual backgrounds as percentage of total signal plus
background as a function of φ∗η, for each boson rapidity bin in the low-mass and
high-mass regions. The di-boson and top backgrounds are merged. The statistical
uncertainty on the total background is shown using hatched lines.
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pile-up. A description of each correction performed is given in Section 6.8.1 and a

sub-set of the many data-model comparison distributions is shown in Section 6.8.2.

6.8.1 Corrections for known disagreement

The data and MC corrections can roughly be divided into two groups — those

which affect the properties of the electron and therefore affect the electron selection

decision (electron energy scale and resolution) and those which change the weight of

an entire event (but may also depend on the properties of the two selected electrons).

Note that even before any corrections each MC event has a weight which depends

on the generator and simulation procedure and is not necessarily equal to one. The

luminosity of the MC is also scaled such that it matches that of data and the MC

cross-section is scaled by a k -factor to match that from a higher order prediction.

6.8.1.1 Electron energy scale and resolution

Any disagreement in energy response of the calorimeter (‘energy scale’) in data and

in MC simulation can be parameterised as in Equation 6.9 [24], where Edata and EMC

are the electron energies in data and simulation respectively and αi is the departure

from optimal calibration in a bin of pseudorapidity, i.

Edata = (1 + αi)EMC (6.9)

The values of αi are determined by finding the best agreement between data and

MC in the position of the Z → e+e− resonance. The values of Edata are divided by

(1 + αi) in order to obtain the default values used in this analysis.

It is found that the energy resolution is slightly better in simulation than in data

but it is assumed that it is well-modelled up to a Gaussian smearing term [24]. This

is determined by finding the best agreement between data and MC in the width of

the Z → e+e− resonance. Both the energy scale and energy resolution calibration

are verified by comparing data and MC in the J/ψ invariant mass distribution for

the process J/ψ → e+e−.

6.8.1.2 Reconstruction, identification, trigger and isolation efficiency

The efficiency to detect an electron, εtotal can be written as a product of four terms

(Equation 6.10): the efficiency to reconstruct and identify an electron, the efficiency

for an electron to trigger the event and the efficiency for the electron to pass the

123



isolation requirements [65].

εtotal = εreconstruction × εidentification × εtrigger × εisolation (6.10)

The tag-and-probe method, described below, is used to obtain these efficiencies

both in data and MC in the order shown in Equation 6.10. Scale factors (SF),

defined in Equation 6.11 as the ratio between an efficiency in data and MC are

calculated in bins of η and ET and applied as a weight to each MC event. There are

two SF weights applied for each efficiency (one for each electron in the event) and

these are generally close to unity.

SFMC =
εdata

εMC

(6.11)

The tag-and-probe method requires a clean and unbiased sample of electrons [65]

such as the well-understood resonances Z → e+e− and J/ψ → e+e−. A tag electron

is selected with strict quality and identification criteria and then a probe electron

is sought passing a looser selection but with the requirement that the invariant

mass of the tag-probe pair be in a window around the mass of the resonance. An

opposite charge requirement is also made for some measurements. Each efficiency

is then defined as the number of probe electrons passing the criterion in question

(for example, to be reconstructed) divided by the total number of probe electrons.

Note that the di-electron trigger efficiency is equal to the product of the two single-

electron trigger efficiencies [77].

6.8.1.3 Pile-up

Pile-up events are simulated separately to the hard interaction and then merged at

the stage before the conversion of energy deposits to detector signals [78]. The pile-

up conditions simulated may not exactly match those in data, which could cause

differences in the isolation or reconstruction efficiency for example. In order to

correct for this an event weight is applied to MC, which is a function of the average

number of interactions per bunch crossing, 〈µ〉.

6.8.1.4 Longitudinal position of the primary vertex

The primary vertex is reconstructed using an iterative vertex finding algorithm [79]

which utilises information on track position, curvature and pT. The distribution of

the longitudinal or z-position of the primary vertex is different in MC with respect

to data, which could cause a difference in the fraction of events which pass the
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geometric acceptance. This effect is corrected for by applying a weight to each MC

event, which might be significantly different from unity.

6.8.1.5 Z boson line-shape

The Powheg+Pythia MC does not properly model the shape of the Z boson mass

peak. The reasons for this, such as not including a running electroweak coupling,

are understood and can be corrected for by applying a weight to each MC event.

This ‘line-shape re-weighting’ has minimal effect on the shape of the φ∗η distribution

or on the sample of events selected.

6.8.1.6 φ∗
η shape modelling

In addition to the event weights described above a further weight is applied to MC

to correct for any bias that the poor description of the φ∗η distribution might bring

when calculating the bin-by-bin correction factors, ci. This effect is described in

more detail in Section 6.9.

6.8.2 Control distributions

This section contains some example data-model comparison plots, which give an

impression of the overall level of agreement. The model is normalised to the data

using the scales A and B from the multi-jet background fit (Equation 6.7) and a

re-weighting for the φ∗η shape modelling is applied to the signal (Powheg+Pythia)

and the Z → ττ background. The distributions are shown integrated over events

with an absolute boson rapidity less than 2.4 and the uncertainties on both the data

and model are statistical in nature only.

Figure 6.10 shows the boson invariant mass distribution over a range from 46 GeV

to 150 GeV. Figure 6.11 shows the boson rapidity and φ∗η distributions in each mass

region (low-mass, peak-mass and high-mass regions). Figure 6.12 then shows the η

and φ distributions for the leading (larger pT) and sub-leading (smaller pT) electrons

in the peak-mass region. An investigation into the agreement between the data and

model in very fine bins of φ was performed and also found to be good. Figure 6.13

then shows the distributions of the average number of interactions per bunch crossing

and the longitudinal position of the primary vertex in the peak-mass region, after

the re-weighting described in Sections 6.8.1.3 and 6.8.1.4 respectively.
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Figure 6.10: The boson invariant mass distribution over a range from 46 GeV to
150 GeV. Also shown is the ratio between data and model, where the light green
band indicates the model statistical uncertainty.

126



Boson rapidity-3 -2 -1 0 1 2 3

E
ve

nt
s 

/ b
in

 w
id

th

20

40

60

80

100

120
310×

Data  ee→Z Di-boson

W+jets -inducedγ ττ →Z 

top Multi-jet

 -1 = 8 TeV, 20.3 fbs  |y| < 2.4≤ M < 66 GeV, 0 ≤46 GeV 

Boson rapidity

-2 0 2

D
at

a/
m

od
el

0.8

0.9

1

1.1

1.2
η

*φ-210 -110 1 10

E
ve

nt
s 

/ b
in

 w
id

th

1

10

210

310

410

510

610

710

810

910

1010

Data  ee→Z Di-boson

W+jets -inducedγ ττ →Z 

top Multi-jet

 -1 = 8 TeV, 20.3 fbs  |y| < 2.4≤ M < 66 GeV, 0 ≤46 GeV 

η
*φ

-210 -110 1 10

D
at

a/
m

od
el

0.96

0.98

1

1.02

1.04

Boson rapidity-3 -2 -1 0 1 2 3

E
ve

nt
s 

/ b
in

 w
id

th

500

1000

1500

2000

2500

3000

3500

4000

310×

Data  ee→Z Di-boson

W+jets -inducedγ ττ →Z 

top Multi-jet

 -1 = 8 TeV, 20.3 fbs  |y| < 2.4≤ M < 116 GeV, 0 ≤66 GeV 

Boson rapidity

-2 0 2

D
at

a/
m

od
el

0.8

0.9

1

1.1

1.2
η

*φ-210 -110 1 10

E
ve

nt
s 

/ b
in

 w
id

th

1

10

210

310

410

510

610

710

810

910

1010

1110

1210

1310

Data  ee→Z Di-boson

W+jets -inducedγ ττ →Z 

top Multi-jet

 -1 = 8 TeV, 20.3 fbs  |y| < 2.4≤ M < 116 GeV, 0 ≤66 GeV 

η
*φ

-210 -110 1 10

D
at

a/
m

od
el

0.96

0.98

1

1.02

1.04

Boson rapidity-3 -2 -1 0 1 2 3

E
ve

nt
s 

/ b
in

 w
id

th

5000

10000

15000

20000

25000

30000

35000

40000

45000

Data  ee→Z Di-boson

W+jets -inducedγ ττ →Z 

top Multi-jet

 -1 = 8 TeV, 20.3 fbs  |y| < 2.4≤ M < 150 GeV, 0 ≤116 GeV 

Boson rapidity

-2 0 2

D
at

a/
m

od
el

0.8

0.9

1

1.1

1.2
η

*φ-210 -110 1 10

E
ve

nt
s 

/ b
in

 w
id

th

1

10

210

310

410

510

610

710

810

910

1010

Data  ee→Z Di-boson

W+jets -inducedγ ττ →Z 

top Multi-jet

 -1 = 8 TeV, 20.3 fbs  |y| < 2.4≤ M < 150 GeV, 0 ≤116 GeV 

η
*φ

-210 -110 1 10

D
at

a/
m

od
el

0.96

0.98

1

1.02

1.04

Figure 6.11: The boson rapidity distributions (left) and φ∗η distributions (right) in
the low-mass, peak-mass and high-mass regions (top to bottom). Also shown is
the ratio between data and model, where the light green band indicates the model
statistical uncertainty. The near perfect agreement between data and model in the
φ∗η distributions is due to the re-weighting of the signal MC at Born level (described
in Section 6.9).
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Figure 6.12: The distributions of the η of the calorimeter cluster (top) and of the
azimuthal angle, φ, (bottom) for the leading and sub-leading electrons (left and right
respectively). Plots are shown for the peak-mass region only, but the data-model
agreement is representative of that in other mass and rapidity regions. Also shown
is the ratio between data and model, where the light green band indicates the model
statistical uncertainty.
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Figure 6.13: The distributions of the average number of interactions per bunch
crossing (left) and the longitudinal position of the primary vertex (right) in the
peak-mass region after the re-weighting described in Sections 6.8.1.3 and 6.8.1.4
respectively. Also shown is the ratio between data and model, where the light green
band indicates the model statistical uncertainty.

6.9 Obtaining the normalised differential cross-

section

The normalised φ∗η differential cross-section in a given bin, i, is defined by the ex-

pression in Equation 6.12. Ni, data and Ni, background are the number of data and back-

ground events in bin i respectively,
(
∆φ∗η

)
i

is the width of bin i, ci is the bin-by-bin

correction factor defined in Equation 6.5 and N is a normalisation constant. The

φ∗η differential cross-section is measured and normalised separately in each region of

boson mass and rapidity and for each truth level definition used.

1

σ

(
dσ

dφ∗η

)
i

= N Ni, data −Ni, background(
∆φ∗η

)
i
ci

(6.12)

A description of the necessary steps required to obtain the normalised differential

cross-section in a particular region of boson mass and rapidity is now provided.

Event selection The final weighted signal, background and data φ∗η histograms

are obtained.

Background subtraction The sum of all background φ∗η histograms is subtracted

from the data.

Correction to truth level The correction factors ci are obtained by dividing the

signal φ∗η histogram at detector level by that at truth (Born or dressed) level.
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The background subtracted data histogram is then divided by the correction

factors.

Normalisation The resulting histogram is then normalised to one.

φ∗
η re-weighting A re-weighting histogram is obtained by dividing the normalised

and corrected background-subtracted data by the normalised signal MC Born

level distribution. The correction factors are re-derived by weighting each MC

event by the entry in the re-weighting histogram corresponding to the event’s

Born φ∗η value.

MC averaging The weighted average of the correction factors for each of the avail-

able signal MCs in a particular mass region is obtained (Powheg+Pythia and

Sherpa at low-mass with the addition of Powheg+Herwig in other mass re-

gions). The inverse of the square of the statistical uncertainty on each correc-

tion factor is used as the weight, although each MC contributes approximately

equally to the average. The averaging step is performed as there is a priori no

reason to choose one MC as the default over another (all three describe the

control distributions equally well). Any difference in the truth level distribu-

tions obtained between using the correction factors from a particular MC or

from the average is considered when determining the generator uncertainty,

described in Section 6.10.4.4.

Final step The background-subtracted data are divided by the re-weighted and

averaged correction factors and normalised to one.

Section 6.10 describes the sources of systematic uncertainty considered and how

these are evaluated. The final results with total systematic and statistical uncer-

tainties are then displayed in Section 6.11.

6.10 Systematic uncertainties

6.10.1 Introduction

Systematic uncertainties from a variety of sources are considered and can be roughly

divided into three categories: modelling of the detector and of the beam-conditions

(Section 6.10.2), the methodology of the correction to truth level (Section 6.10.3)

and modelling of the signal and background processes at truth level (Section 6.10.4).

The general method in obtaining the contribution from a particular source to the

total systematic uncertainty in a bin of φ∗η is as follows. The quantity in question is
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varied within its estimated uncertainty, whilst keeping all other quantities constant.

Next, the procedure for obtaining the normalised differential cross-section (described

in Section 6.9) is followed using the modified data or MC. Then for each bin in φ∗η

the deviation in (1/σ) dσ/dφ∗η from the central value (i.e., the value obtained with

no variation) is taken as the systematic uncertainty from that source. For sources

which have both upwards and downwards variations (such the electron energy scale)

the largest deviation in (1/σ) dσ/dφ∗η of the two from the central value is taken as

the systematic uncertainty.

The total systematic uncertainty in a bin of φ∗η is then defined as the quadrature

sum of all of individual uncertainties in that bin. The uncertainty due to the number

of available MC signal and background events (MC statistics) is included as a source

of systematic uncertainty and kept separate from the data statistical uncertainty.

6.10.2 Modelling of the detector and beam-conditions

6.10.2.1 Electron energy scale and resolution

After applying the default energy scale correction to the data (Section 6.8.1.1) the

systematic uncertainty is found by scaling the electron energy in MC. Sources of

uncertainty sources considered include modelling of detector material and details of

the Z → e+e− calibration [24]. Similarly the Gaussian smearing term is varied in

MC to obtain the systematic uncertainty on the electron energy resolution. The

contribution to the total uncertainty from these two sources is small in most bins.

6.10.2.2 Reconstruction, identification, trigger and isolation efficiency

Each of the SFs described in Section 6.8.1.2 has an associated uncertainty due to

effects such as the tag-electron definition or background modelling. The contribution

of SF uncertainties to the total uncertainty on (1/σ) dσ/dφ∗η is generally small, other

than at high φ∗η.

6.10.2.3 Pile-up

After applying the MC weight described in Section 6.8.1.3, the agreement between

data and the model in the 〈µ〉 distribution (Figure 6.13) is reasonably good. A con-

servative estimate of the uncertainty due to the re-weighting procedure is obtained

by setting the weight to unity and observing the change in (1/σ) dσ/dφ∗η, which is

found to be small.
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Figure 6.14: The ratio between data and model as a function of the longitudinal
position of the primary vertex in the peak-mass region. The black curve is obtained
using the nominal weights and the red and blue curves are obtained using the wup

and wdown weights defined in Equations 6.13 and 6.14 respectively. The light green
band indicates the model statistical uncertainty.

6.10.2.4 Longitudinal position of the primary vertex

The agreement between the data and model in the longitudinal position of the

primary vertex is improved after re-weighting the MC (Figure 6.13). The uncertainty

due to the re-weighting procedure is estimated by varying the nominal weight, w, up

and down on an event-by-event basis according to the prescription in Equations 6.13

and 6.14.

wup = 1 + 1.1× (w − 1) (6.13)

wdown = 1 + 0.9× (w − 1) (6.14)

Figure 6.14 shows the ratio between the data and model as a function of the

longitudinal position of the primary vertex in the peak-mass region. The black

curve is obtained using the nominal weights, the red curve using wup and the blue

curve using wdown. Any disagreement between the data and model using the nominal

weights is approximately covered by the systematic variations. A similar conclusion

is drawn in the other regions of boson mass and rapidity.

The contribution from this source to the total uncertainty on (1/σ) dσ/dφ∗η is

generally small.
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Figure 6.15: The distributions of ηreco − ηbare (left) and φreco − φbare (right) for the
default MC (black curve) and the systematic variation (blue curve) for events in the
peak-mass region.

6.10.2.5 Angular resolution

Poor modelling of the detector angular resolution by the MC could result in bin

purities and correction factors being under or over estimated. In order to examine

the dependence of this modelling on the final normalised distributions the difference

between the reconstructed and bare values of the η and φ of the track was increased

by a factor of 1.2. This method is expressed by Equation 6.15, where a is either

η or φ and the subscript differentiates between the reconstructed and bare track

values. The value of 1.2 is motivated by cosmic-ray studies during Inner Detector

commissioning [71].

atrack,reco → atrack,bare + 1.2× (atrack,reco − atrack,bare) (6.15)

Figure 6.15 shows the distributions of ηreco − ηbare (left) and φreco − φbare (right)

for the default MC (black curve) and the systematic variation (blue curve) in the

peak-mass region. The contribution to the total uncertainty on (1/σ) dσ/dφ∗η from

the MC mis-modelling of the angular resolution is found to be small.

6.10.3 Methodology of correction to truth level

Figure 6.16 shows the dressed level bin-by-bin correction factors, ci, as a function

of φ∗η for each of the three mass regions (for events with an absolute boson rapidity

less than 2.4). One observes that the correction factors do have a dependence on φ∗η

and mass (and also on rapidity) and therefore could be biased by the imperfect MC

modelling of the φ∗η distribution.

The φ∗η re-weighting described in Section 6.9 mitigates some of the error intro-

duced by this effect. A further iteration of this procedure is used to estimate a
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Figure 6.16: The dressed level bin-by-bin correction factors, ci, as a function of φ∗η
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contribution to the systematic uncertainty on the MC modelling and is found to

be very small. An additional uncertainty on the MC modelling is found by com-

paring the results using different MC generators and is described in more detail in

Section 6.10.4.4.

The results obtained using the bin-by-bin correction factors were cross-checked

with results obtained using an alternative method — Iterative Bayesian Unfolding,

as implemented in the RooUnfold package [80]. The two sets of results were found

to be consistent and therefore no additional systematic is applied.

6.10.4 Modelling of the signal and background processes

6.10.4.1 Monte Carlo background

Aside from the statistical uncertainty on the MC background there is also an uncer-

tainty on the normalisation of each component due to imperfect knowledge of the

process cross-section and of the data luminosity. The cross-section for each back-

ground is varied independently upwards and downwards by the percentages indicated

in Table 6.8, which are slightly larger than the true cross-section uncertainties in

order to cover any residual mis-modelling of the shape of the φ∗η distribution.

The change induced in the final values of (1/σ) dσ/dφ∗η is small in the peak-mass

regions, where the background contamination is also small. In the low-mass and

high-mass regions this uncertainty becomes larger, yet still much smaller than the
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Background process Uncertainty [%]

Z → ττ 10
W+jets 25
Di-boson 7

tt̄ 7
Single top 12

Photon-induced 40

Table 6.8: The percentages by which the normalisation of each MC background
process was scaled upwards and downwards in order to estimate the contribution to
the uncertainty on (1/σ) dσ/dφ∗η from imperfect knowledge of the MC cross-section
and from mis-modelling of the shape of the φ∗η distribution.

data statistical uncertainty.

6.10.4.2 Multi-jet background

As described in Section 6.7.2, two estimates of the multi-jet background normali-

sation are obtained using the template fit method. The nominal value is obtained

by fitting a same-sign data template in an isolation variable, J , and the difference

with respect to the value obtained by fitting the same template in the invariant

mass distribution is regarded as a systematic uncertainty. The contribution from

this source to the total systematic uncertainty is generally small in all boson mass

and rapidity regions.

6.10.4.3 Z boson line-shape

A weight is applied to Powheg+Pythia events to correct for deficiencies in modelling

the shape of the Z boson mass peak (Section 6.8.1.5). The uncertainty on this re-

weighting procedure is conservatively estimated by setting the weights to unity and

observing the change in (1/σ) dσ/dφ∗η, which is found to be negligible.

6.10.4.4 Choice of signal Monte Carlo generator

The different stages of Monte Carlo event generation, as described in Section 5.3

may not be modelled in the same way by different generators. This could affect

the values of the bin-by-bin correction factors for both the Born and dressed levels

by introducing biases in the electron reconstruction, identification, triggering or

isolation efficiencies.

One specific example of a difference between the signal generators studied is

in the modelling of final state photon radiation. Both Powheg+Pythia and Pow-
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heg+Herwig use Photos to simulate FSR, whilst the Sherpa program has its own

implementation [81]. Neither Photos nor Sherpa include the second order Quantum

Electrodynamic (QED) matrix element but Photos has been shown to simulate its

dominant contribution [81]. However Photos does not include corrections for QED

lepton pair emission or interference with initial state radiation [82]. One would ex-

pect any modelling differences to be largest at Born level as corrections are needed

for both wide and narrow-angle FSR, whilst the dressed level results are only cor-

rected for the latter.

The dashed lines, labelled x (MC) on the plots in Figure 6.17 show the ratio

(minus one) between the final normalised distributions (for a particular truth level

and kinematic region) as obtained using the average (default) correction factors and

as obtained using those from an individual MC (Equation 6.16). The quantity is

calculated using a reduced number of bins to smooth statistical fluctuations.

x (MC) =

(
1

σ

dσ

dφ∗η

)
average

/(
1

σ

dσ

dφ∗η

)
MC

− 1 (6.16)

The size of the uncertainty due to the choice of MC generator is displayed as

a yellow shaded band on the plots. This is set by hand and chosen to roughly

encompass the spread of the dashed lines. The uncertainty for a particular mass

region and truth level is determined using the integrated rapidity distributions (|y| <
2.4) in Figure 6.17 to reduce variations from the limited MC statistics. However

after checking the band also covers the variation of x (MC) as a function of boson

rapidity (to within statistical fluctuations), the same uncertainty is used in each

rapidity region.

Several observations can be made about Figure 6.17. Firstly the generator un-

certainty is largest at Born level, in the low-mass region. This is indicative of a

difference in FSR modelling as wide-angle FSR can cause large event migration

down in invariant mass from the Z-peak. In the peak-mass region, at both Born

and dressed levels, the generator uncertainty is large compared to all other sources

(Section 6.10.5), however it is smaller than the data statistical uncertainty. For the

low-mass region at dressed level and for both truth levels at high-mass the generator

uncertainty is small compared to the other uncertainty sources and much smaller

than the data statistical uncertainty.

6.10.5 Summary

The size of various systematic uncertainties as a percentage of the dressed level

normalised differential cross-section is shown for each of the twelve regions of boson
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(b) Dressed level

Figure 6.17: (a) shows the size of the Born level generator choice systematic (yellow
shaded band) as a function of φ∗η in the low-mass region (top), peak-mass region
(centre) and high-mass region (bottom). Also plotted, and labelled as x (MC), is the
ratio (minus one) between the final normalised distributions as obtained using the
average (default) correction factors and as obtained using those from an individual
MC. (b) then shows the corresponding plots for the dressed level.
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mass and rapidity in Figure 6.18. The curves labelled ‘Detector / beam-conditions’

are the quadrature sum of the uncertainties on the electron energy scale, electron

energy resolution, scale factors, pile-up, longitudinal position of the primary vertex

and angular resolution. The curves labelled ‘Background’ are quadrature sum of

MC and multi-jet background uncertainties. Also shown is the total systematic

uncertainty (black-dashed curve) and the data statistical uncertainty (blue-dashed

curve). Figure 6.19 shows the same information for the Born level uncertainties. In

all regions the data statistical uncertainty is of the same order or larger than the

total systematic uncertainty.

6.11 Results

6.11.1 Dressed level, di-electron channel

Figure 6.20 shows the final dressed level normalised differential cross-section as a

function of φ∗η in each region of boson mass and rapidity and obtained using the

average MC correction factors. The data are shown with statistical uncertainties

(dark-blue) and the quadrature sum of the statistical and systematic uncertain-

ties (light-blue), and the ratio with respect to the prediction from Powheg+Pythia

(without the φ∗η re-weighting) is also displayed.

Table 6.9 provides the values of (1/σ) dσ/dφ∗η for each φ∗η bin in each of the boson

rapidity regions at peak-mass. Also given are the associated total statistical and

systematic uncertainties in percent. A blue-red colour scale is used to indicate the

relative contribution of each uncertainty to the total. For example, if the systematic

uncertainty is coloured blue it has a small contribution with respect to the statistical

uncertainty, one coloured purple has an equal contribution and one coloured red

has a large contribution. Table 6.10 provides the same information for each boson

rapidity region in the low-mass and high-mass regions.

6.11.2 Born level, combination with di-muon channel

Under the assumption that the coupling of electrons and muons to the intermediate

boson Z/γ is identical one can perform a combination of the two channels in order

to benefit from a larger sample of events and possibly a reduction in the systematic

uncertainty if certain sources were uncorrelated or anticorrelated. Due to their

relative mass difference, electrons and muons radiate differently as they pass through

the detector and therefore the combination must be performed at the Born level,

before any FSR.
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Figure 6.18: The size of various systematic uncertainties as a percentage of the
dressed level normalised differential cross-section for each boson rapidity region in
the peak-mass region. The total systematic uncertainty is shown as a black-dashed
line and the data statistical uncertainty as a blue-dashed line.
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Figure 6.18: The size of various systematic uncertainties as a percentage of the
dressed level normalised differential cross-section for each boson rapidity region in
the low-mass and high-mass regions. The total systematic uncertainty is shown as
a black-dashed line and the data statistical uncertainty as a blue-dashed line.
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Figure 6.19: The size of various systematic uncertainties as a percentage of the Born
level normalised differential cross-section for each boson rapidity region in the peak-
mass region. The total systematic uncertainty is shown as a black-dashed line and
the data statistical uncertainty as a blue-dashed line.
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Figure 6.19: The size of various systematic uncertainties as a percentage of the
Born level normalised differential cross-section for each boson rapidity region in the
low-mass and high-mass regions. The total systematic uncertainty is shown as a
black-dashed line and the data statistical uncertainty as a blue-dashed line.
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Figure 6.20: The final dressed level normalised differential cross-section as a function
of φ∗η for each boson rapidity region in the peak-mass region. The data are shown
with statistical uncertainties (dark-blue) and the quadrature sum of the statistical
and systematic uncertainties (light-blue), and the ratio with respect to the prediction
from Powheg+Pythia (without the φ∗η re-weighting) is also displayed.
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Figure 6.20: The final dressed level normalised differential cross-section as a function
of φ∗η for each boson rapidity region in the low-mass and high-mass regions. The data
are shown with statistical uncertainties (dark-blue) and the quadrature sum of the
statistical and systematic uncertainties (light-blue), and the ratio with respect to
the prediction from Powheg+Pythia (without the φ∗η re-weighting) is also displayed.
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Uncorrelated between channels

Electron energy scale and resolution
Muon momentum scale and resolution

Scale factors
Angular resolution
Correction method

Multi-jet background

Correlated between channels

Pile-up
Longitudinal position of the primary vertex

MC background normalisation
Z boson line-shape
Generator choice

Table 6.11: A list of the electron channel and muon channel uncertainties which are
considered to be correlated between bins of φ∗η when performing the Born level com-
bination of the two channels. Uncertainties are divided into those which are assumed
to be correlated between the two channels and those assumed to be uncorrelated.
The data and MC statistical uncertainties are taken as uncorrelated between both
φ∗η bins and channels.

The di-electron (as described in this thesis) and di-muon [72] Born level results

are combined using a generalised χ2 fit, which takes into account correlations be-

tween φ∗η bins and between channels [83]. Table 6.11 provides a list of the electron

channel and muon channel uncertainties which are considered to be correlated be-

tween φ∗η bins and indicates which of those are considered to be correlated between

channels. The data and MC statistical uncertainties are taken as uncorrelated be-

tween both φ∗η bins and channels. Note that uncertainties are assumed to be either

fully correlated or fully uncorrelated.

In order to combine the two channels a common geometric and kinematic accep-

tance is defined, known as the combination volume (see Table 6.4). This is equal

to the muon channel fiducial volume, but differs from the electron channel fiducial

volume in that it contains the crack-region from which no data events are selected.

This amounts to modifying the selection criteria for the denominator of the correc-

tion factors (Equation 6.5) in order to perform an extrapolation of the background-

subtracted data over the crack-region, as well as correcting for the effects of detector

inefficiencies, resolution and FSR.

The combined results are not necessarily normalised to unity, and so a re-

normalisation is performed. In practice this is a negligible effect with respect to

the data statistical uncertainty.
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Figure 6.21 shows the final electron channel, muon channel and combined Born

level distributions in each region of boson mass and rapidity. The error bars on the

data points represent the uncertainties uncorrelated between the two channels (the

quadrature sum of statistical and systematic). Also displayed is the χ2 per degree

of freedom from the fit, the ratio of each channel to the combined result and the

pull between channels. The green band in the ratio plot represents the uncertainty

on the combination from sources uncorrelated between channels. Uncertainty from

correlated sources is negligible. The pull is defined in Equation 6.17 in terms of the

electron and muon Born level values, e and µ, and their uncorrelated uncertainties,

σe and σµ.

pull =
e− µ√
σ2
e + σ2

µ

(6.17)

Table 6.12 provides the combined Born level values of (1/σ) dσ/dφ∗η for each φ∗η

bin in each of the boson rapidity regions at peak-mass. Also given are the associated

correlated and uncorrelated (including statistical) uncertainties in percent. As in

Section 6.11.1, a blue-red colour scale is used to indicate the relative contribution of

each to the total. Table 6.13 provides the same information for each boson rapidity

region in the low-mass and high-mass regions.

6.11.3 Comparison with theoretical predictions

One of the aims of this analysis is to provide data which can improve future ana-

lytical calculations and tune MC event generators in the non-perturbative regime of

QCD. This section shows comparisons between the combined Born level results of

Section 6.11.2 and two of the current generation of theoretical predictions, namely

RESBOS [84] and a NNLL+NLO calculation from Banfi et al. [63].

The RESBOS program takes as input tables (or ‘grids’) of boson production

cross-section values evaluated at different values of boson invariant mass, transverse

momentum and rapidity. Separate grids exist for the fixed-order perturbative cal-

culation and the re-summed non-perturbative calculation, which are then combined

(‘matched’) appropriately by RESBOS. MC events are produced by sampling the

grids and decaying the vector boson, and the φ∗η variable is computed for each event

using the directions of the decay products.

The Banfi et al. prediction matches an NNLL re-summed analytical calculation

of the φ∗η distribution with an NLO fixed-order description obtained using the MCFM

MC event generator. Predictions exist only for boson invariant mass greater than

66 GeV due to issues with the matching procedure, which are as yet unresolved [72].
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Figure 6.21: The final electron channel (blue), muon channel (red) and combined
(green) Born level distributions for each region of boson rapidity in the peak-mass
region. Also displayed is the χ2 per degree of freedom from the fit, the ratio of each
channel to the combined result and the pull between channels (Equation 6.17).
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Figure 6.21: The final electron channel (blue), muon channel (red) and combined
(green) Born level distributions for each region of boson rapidity in the low-mass
and high-mass regions. Also displayed is the χ2 per degree of freedom from the
fit, the ratio of each channel to the combined result and the pull between channels
(Equation 6.17).
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Figure 6.22 shows the ratio between the two theoretical predictions and the

combined Born level data as function of φ∗η for each region of boson mass and

rapidity studied. The Banfi et al. prediction is shown with an associated uncertainty

band obtained by varying the three perturbative scales in the calculation [72]. The

uncertainties on the prediction from RESBOS have not been calculated and are not

shown. The agreement between the data and theory is good, but not perfect.

Despite the inability of the theory to precisely describe the φ∗η distribution, RES-

BOS is able to describe the evolution of the distribution with increasing absolute

boson rapidity. This is illustrated in Figure 6.23 which shows the ratio of the φ∗η

distribution of theory or data in each rapidity region at peak-mass to the distribu-

tion in the central rapidity region (|y| < 0.4). Figure 6.24 show the same thing for

the off-peak mass regions. The prediction from Banfi et al. is also displayed, where

available, but does not describe the data as well as RESBOS at peak-mass.

It is also interesting to examine the evolution of the φ∗η distribution with invari-

ant mass, for a given region of boson rapidity. Figure 6.25 shows the ratio of the φ∗η

distribution of data or RESBOS at high-mass to that at low-mass for each region

of boson rapidity. The ratio to peak-mass is not included due to the different (nar-

rower) binning in rapidity. The data are described reasonably well by the theoretical

prediction.

6.12 Conclusions

Measurements of the normalised Drell-Yan Z/γ cross-section, differential in φ∗η in

the electron-positron channel have been presented in twelve regions of boson in-

variant mass and absolute rapidity. The analysis uses 20.3 fb−1 of
√
s = 8 TeV

proton-proton collision data recorded at the ATLAS detector in 2012. The results,

corrected to the Born truth level definition were combined with those in the di-muon

channel and compared to theoretical predictions from RESBOS and an NNLL+NLO

calculation from Banfi et al. Neither prediction can perfectly describe the basic data

distributions, but RESBOS is able to describe the evolution of the φ∗η distribution

with absolute boson rapidity and with boson invariant mass.

The analysis presented features significant improvements over the corresponding

ATLAS measurement at
√
s = 7 TeV. The boson invariant mass regions above and

below the Z-peak have been explored and finer bins in boson rapidity in the peak-

mass region have been used. This has allowed the predictions of QCD to be tested

in more extreme regions of phase-space. A better understanding of the sources of

systematic uncertainty at
√
s = 8 TeV has led to a reduction of the total uncer-
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Figure 6.22: The ratio between two theoretical predictions and the combined Born
level data, as a function of φ∗η and for each region of boson mass and rapidity
studied. The Banfi et al. prediction is shown with an associated uncertainty band
which is obtained by varying the three perturbative scales in the calculation [72].
The uncertainties on the prediction from RESBOS have not been calculated and are
not shown.
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Figure 6.23: The ratio of the φ∗η distribution of theory or data in a particular rapidity
region at peak-mass to the distribution in the central rapidity region (|y| < 0.4).
The same y-axis scale is used for the top three distributions and a different scale for
the bottom two distributions. The RESBOS prediction provides a good description
of the evolution of φ∗η with boson rapidity, whilst the Banfi et al. prediction is not
as good. The uncertainty band on Banfi et al. is not plotted but is much smaller
than the discrepancy with data at low to medium values of φ∗η.
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Figure 6.24: The ratio of the φ∗η distribution of theory or data in a particular rapidity
region at low-mass (top plot) or high-mass (bottom plot) to the distribution in
the central rapidity region (|y| < 0.8). The same y-axis scale is used for each
distribution.
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at low-mass for each region of boson rapidity. The data are described reasonably
well by the theoretical prediction.
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tainty in the peak-mass region as compared to
√
s = 7 TeV. In particular, separate

uncertainties are provided for the dressed level and Born level measurements, as the

dressed level results have reduced dependence on the model used to estimate FSR.

The φ∗η observable is a probe of initial state gluon radiation and is correlated

with the pT of the boson. Unlike pT, which is limited at low values by the lepton

momentum resolution, the definition of φ∗η relies only upon the better-measured

lepton directions and as such provides an avenue to probe the regimes of QCD in

which large perturbative logarithms must be re-summed and non-perturbative effects

become important. The results presented will be used to improve (tune) future

Monte Carlo generators as well as providing input to new analytical calculations.

The understanding and insight gained in the study of initial state radiation in the

Drell-Yan process can be directly applied to other processes such as Higgs production

and therefore the analysis in this thesis will play a critical role in searches for evidence

of new physics beyond the Standard Model.

The proton-proton centre of mass energy in the LHC has been increased to

13 TeV for operations in 2015. Future measurements of the φ∗η distribution at this

energy will allow the very low x (parton longitudinal momentum fraction) domain

of the parton distribution functions to be tested. Measurements of φ∗η could also be

made for processes other than Drell-Yan, for example the Higgs boson decaying to

two photons.
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Appendix A

Luminosity

A.1 Overlap integral of two moving beams mod-

elled by the sum of multiple Gaussian distri-

butions

This appendix provides the formulae describing the luminosity, beam spot position

and beam spot width given two moving beams each modelled by the sum of multiple

single Gaussian distributions [85]. The effects of a beam crossing angle are also

included.

The single Gaussian distribution, G (in 3 dimensions), is defined in Equation A.1

as a function of coordinate x, with a mean denoted by the vector µ and with a

covariance matrix denoted by σ.

G(x,µ,σ) =
1

(2π)
3
2 |σ| 12

exp

(
−1

2
(x− µ)Tσ−1(x− µ)

)
(A.1)

The mean is a function of time and this is made explicit by defining µ = µ0+cat.

The symbol µ0 equals (δx/2, δy/2, 0) where δx and δy are the separations of the two

beams in the vdM scan. The quantity c is the speed of the two beams (here the

speed of light), t is time and a is a unit vector in the direction of the beam’s motion.

The covariance matrix σ and the mean, µ, are both defined in the detector

frame of reference. However the convention is to present the covariance matrix of

a beam in the frame in which the beam moves in the z-direction (aB = (0, 0, 1))

which is also the frame in which there is assumed to be no x-z or y-z correlation;

this frame is labelled the beam frame and the covariance matrix is denoted as σB.

The detector frame and the beam frame coincide if there is no beam crossing angle.

The quantities defined above are used for the Gaussian distributions which comprise
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beam 1. For beam 2 the covariance matrix is labelled s and the mean is ν = ν0+cbt.

To obtain σ, σ−1, s and s−1, a set of similarity transformations are applied to the

corresponding matrices in the beam frame (subscript B) using the rotation matrix

R(θxz, θyz) (Equation A.2). R is defined in Equation A.3.

σ = R−1(θxz, θyz)σBR(θxz, θyz)

σ−1 = R−1(θxz, θyz)σ
−1
B R(θxz, θyz)

s = R−1(−θxz,−θyz)sBR(−θxz,−θyz)

s−1 = R−1(−θxz,−θyz)s−1
B R(−θxz,−θyz)

(A.2)

R(θxz, θyz) =

 cos θxz sin θxz sin θyz sin θxz cos θyz

0 cos θyz − sin θyz

− sin θxz sin θyz cos θxz cos θxz cos θyz

 (A.3)

The quantities a and b are obtained from aB and bB by the relations in Equa-

tion A.4.

a = R−1(θxz, θyz)aB = (− sin θxz, cos θxz sin θyz, cos θxz cos θyz)

b = −R−1(−θxz,−θyz)bB = (− sin θxz, cos θxz sin θyz,− cos θxz cos θyz)
(A.4)

The rotation matrix R corresponds to a rotation of the beam direction firstly

around the y-axis and then around the x-axis. The term crossing angle sometimes

refers to the angles made between the beam and the detector frame when projected

onto either the x-z (αxz) or y-z (αyz) planes. The relationship between θ and α is

given in Equation A.5. For small angles they are equivalent (up to a sign).

αxz = θxz

αyz = arctan

(
−tan θyz

cos θxz

) (A.5)

The two moving beams with density profiles ρ1 and ρ2 collide with a luminos-

ity, L , given in Equation A.6 [86], where KF is the Møller luminosity factor (or

kinematic factor) and is defined in Equation A.7.

L =

∫
dt d3x ρ1 ρ2KF (A.6)

168



KF =

√
(v1 − v2)2 − (v1 × v2)2

c2
(A.7)

The variables v1 and v2 are the velocity vectors of the two beams. For beams

colliding head on at the speed of light the kinematic factor becomes 2c. In fact the

crossing angles must be around 250 times larger than those used in the April scan

(of order 100 µrad) to create a 0.1% deviation from 2c in the kinematic factor.

The product of two Gaussian distributions, one from each beam, G(x,µ,σ) and

G(x,ν, s) is also a Gaussian distribution, A×G(x,α, K). The following equations

show how this can be derived and give the values of A, α and K. Equation A.8

shows the product of the two Gaussian distributions with all terms written explicitly.

G(x,µ,σ)G(x,ν, s) =
1

(2π3)|σ| 12 |s| 12
exp

(
− 1

2
(x− µ0 − cat)Tσ−1(x− µ0 − cat)

− 1

2
(x− ν0 − cbt)Ts−1(x− ν0 − cbt)

)
(A.8)

One can factorise the time dependent part of Equation A.8 by completing the

square. This gives Equation A.9, where σt is defined in Equation A.10 and t0 in

Equation A.11.

G(x,µ,σ)G(x,ν, s) =

√
2πσt

(2π3)|σ| 12 |s| 12
1√

2πσt
exp

(
− 1

2σ2
t

(t− t0)2

)
exp

(
−1

2
(x− µ0)Tσ−1(x− µ0)− 1

2
(x− ν0)Ts−1(x− ν0) +

t20
2σ2

t

) (A.9)

1

σ2
t

= c2
(
aTσ−1a + bTs−1b

)
(A.10)

t0 =
c (x− µ0)T σ−1a + c (x− ν0)T s−1b

c2 (aTσ−1a + bTs−1b)
(A.11)

It is now easy to integrate Equation A.9 with respect to time as the only term

which depends on time is a one-dimensional normalised Gaussian which integrates
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to one. Therefore one now has Equation A.12.

√
2πσt

(2π3)|σ| 12 |s| 12
exp

(
−1

2
(x− µ0)Tσ−1(x− µ0)− 1

2
(x− ν0)Ts−1(x− ν0) +

t20
2σ2

t

)
(A.12)

Again by completing the square one can write Equation A.12 in the form A ×
G(x,α, K) where K is defined in Equation A.13 and α in Equation A.14.

K−1 = σ−1 + s−1 −
(
σ−1aaTσ−1 + s−1bbTs−1 + σ−1abTs−1 + s−1baTσ−1

aTσ−1a + bTs−1b

)
(A.13)

α =K
(
σ−1µ0 + s−1ν0

)
−

K

(
σ−1aaTσ−1µ0 + s−1bbTs−1ν0 + σ−1abTs−1ν0 + s−1baTσ−1µ0

aTσ−1a + bTs−1b

) (A.14)

The parameter A is defined in Equation A.15, where β is defined in Equa-

tion A.16.

A =
exp (β)

2π

σt|K|
1
2

|σ| 12 |s| 12
(A.15)

β = −1

2
(µT

0σ
−1µ0 + νT

0 s−1ν0)+

1

2

(
µT

0σ
−1aaTσ−1µ0 + νT

0 s−1bbTs−1ν0 +−2νT
0 s−1baTσ−1µ0

aTσ−1a + bTs−1b

)
+

1

2
αT

0K
−1α0

(A.16)

The procedure for calculating the luminosity, beam spot position and beam spot

width is then similar to that described in Section 4.4.2. The luminosity of 3D single

Gaussian colliding beams is given by the integral over space of the time integrated

beam product, Equation A.17.

L = KF

∫
A×G(x,α, K)dx = KF A (A.17)

For beams described by the sum of N single Gaussian distributions the time
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integrated product will contain N2 terms, each of which is a single Gaussian. Each

Gaussian in a beam has a weight defined such that the sum of all weights is equal

to one. Each of the Gaussians in the time integrated product therefore also has an

associated weight equal to the product of the weight of the component Gaussians

from beams 1 and 2. This weight is now absorbed into the definition of A. The

total luminosity for such beams is given by Equation A.18.

L =
N∑
i=1

KF

∫
Ai ×G(x,αi, Ki)dx =

N∑
i=1

KF Ai (A.18)

The beam spot position (using the definition in Equation 4.2) is given by Equa-

tion A.19.

〈x〉 =

∑N
i=1Aiαi∑N
i=1Ai

(A.19)

Then the beam spot covariance matrix, Σ, (in order to determine the beam spot

width in each dimension using the definition in Equation 4.3) is given by Equa-

tion A.20.

Σ =

∑N
i=1Ai

(
Ki +αiα

T
i

)∑N
i=1Ai

−

(∑N
i=1 Aiαi

)(∑N
i=1Aiαi

)T
(∑N

i=1 Ai

)2 (A.20)

171


	Introduction
	The Standard Model
	Particle colliders
	Units
	Outline of thesis

	The ATLAS detector
	Introduction
	The LHC
	ATLAS detector design
	ATLAS detector operation

	Luminosity
	Introduction to luminosity
	Luminosity measurement
	The van der Meer method
	ATLAS Luminosity measurement in 2012

	Modelling bunch density profiles to estimate a correction to the luminosity for the assumption of beam-factorisation
	Introduction
	Beam spot information
	Calculating the evolution of the luminosity and the beam spot observables given single beam density profiles
	Beam profile choices
	Procedure for extracting single beam parameters
	Results
	Systematic uncertainty evaluation

	Probing soft QCD using the phi* angular observable
	Quantum Chromodynamics
	The Drell-Yan process
	Monte Carlo event generators
	The phi* observable
	Measurements of phi* at hadron colliders

	Measurements of the Z boson cross-section, differential in phi*, in wide bins of boson mass and rapidity in the electron-positron channel with the ATLAS detector
	Definition of the measurements
	Outline of analysis method
	Event selection
	Electron selection
	Truth event selection
	Binning choices
	Background estimation
	Data and model comparison
	Obtaining the normalised differential cross-section
	Systematic uncertainties
	Results
	Conclusions

	Luminosity
	Overlap integral of two moving beams modelled by the sum of multiple Gaussian distributions


