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Abstract: The complete asymptotic expansion of Feynman amplitudes for large values of 
the scale parameter is derived for Euclidean and Minkowski metrics. 

I. Formulation of the Problem 

Consider an arbitrary Feynman graph G ° occurring in a Lagrangian field theory which 

describes the self-interaction of one sort of particles with mass m # 0 . G ° consists 

of a collection~ of vertices and a collection ~ of L internal lines (no tadpoles, 

no external finest). Let N stand for the number of independent loops of G ° and let]J[ 

denote the collection of all U external vertices of G ° . The four-momenta (Pu)u b~t = 

enter the graph G °. 

Consider the renormalized Feynman amplitude associated with GO: ~(p;m) o Replace p by 

AP, A ~+ • Show that the following asymptotic expansion for large values of the scale 

parameter A holds in the sense of distributions 

where M is an arbitrary integer, larger than or equal to n, and set up rules how to 

calculate the numbers n,m , the coefficient distributions ~,~ and the remainder dis- 

tribution ~. 

Without loss of generality, G ° may be assumed to be irreducible (I) i.e. one-particle- 

irreducible and one-vertex-irreducible. Otherwise, ~(~;m) would factorize into a pro- 

duct of renormalized Feynman amplitudes corresponding to the maximal irreducible com- 

ponents of G ° and propagators. 

The numbers n and m were determined by S. Weinberg i) and J. F. Fink 2) respectively 
n 

for the case of convergent graphs and Euclidean metrics. Under the same restrictions 

D. A. Slavnov 3) proved the validity of the general form of the asymptotic expansion as 

written down by us. Finally, M. C. Berg~re and Y-M. P. Lam 4) determined the coeffici- 

ents of the polynomial in (in A 2) accompanying the leading inverse power of A 2, again 
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assuming Euclidean metrics. We have formulated the problem in the distribution theore- 

tical frame as opposed to the pointwise discussion of the above mentioned authors. For 

Minkowski metrics this turns out to be both adequate and helpful (ensuring uniform con- 

vergence at a later stage). The difference between distribution theoretical and point- 

wise discussion may he illustrated by the simple mathematical example: 2 2 ' E > O, 

p a real scalar variable 

distribution theoretical I 

e +p 

pointwise 

: , p : o  

II. Resolution of the Ultray.iolet Singular!ties a~d Reno~alization 

As to the renormallzation scheme, we decide in favour for Speer's analytical renorma- 

lization 5) since the theory of analytical functions will be employed anyway: to every 

line i E~ we associate a complex variable XI: l_ = (XI)IE ~ ( and a Feynman parame- 

ter el: ~_ = (al)l~5) such that the renormalized Feynman amplitude ~(p;m) is 

obtained by evaluating the analytical continuation 4 the analytically regularized 

Feynman amplitude ~(p;m) , ! ~ a2 ' ~2 = { ~-- / ~Xl > 2 for every I ~ ~ } at 

the point X - i: 

the help of Speer's generalized evaluator ~ = {~L / L = I, 2 .... with }. 
t~ 

In ~2 ~.~ is holomorphic. To achieve the analytical continuation from g2 to I , C~ 

is represented as a Feynman parameter integral which for the case of scalar particles 

in the absence of derivative coupling - we shall restrict our discussion to this case 

for the sake of simplicity - reads as follows 

_ 6~0 

A (p,p) being a homogeneous quadratic form in p, d(~) denoting the Feynman determinant. 

Both A (p,p) and d(~_) depend polynomially on ~. 

The vanishing of d(~__) when some or all of the ~-parameters are zero gives rise to a 

loss of integrability in the course of the analytical continuation in ~, the ultravio- 

let divergences. In order to get the complete information about the analytical structure 

~X outside of ~2, the intersection of the zero-surfaces of d(a__) at ~ = 0 has to be of 
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resolved. In differential topology this problem is known under the name "resolution 

of a singularity". The outcome of the analyzis there - suitably adapted to the present 

situation - is the existence of a covering of the =-space~ by a minimal number of 

sectors ~ such that the union of all sectors makes up the entire ~-space, the inter- 

sections of any two different sectors have Lebesgue measure zero and such that for 

every sector ~ there exists a parametrization ~ : ~ = ~(A) 

with 

where 

= ~((t),(B)) real analytical for ((t),(8)) ~ A 

N 

d(t),(~)) ) i for ((t),(~)) ( z~ 

and where the powers N. are non-negative integers. 
l 

This resolution of the ultraviolet singularities has been accomplished by Speer with 

the help of the concept of a labeled singularity family. To explain this concept, 

along with the graph G ° we consider its subgraphs G consisting of a collection ~G) 

of vertices and a collection ~(G) of L(G) internal lines. Let N(G) stand for the 

number of independent loops of G. 

A singularity family ~ is a maximal collection of non-trlvial irreducible non-over- 

lapping subgraphs G of G ° such that if G',G £ ~ , G' ~G there exists at least one line 

i ~ ~(G), ~ ~(G'). 

A labeled singularity family (~,~ arises from ~ by distinguishing for every G 6~ 

one line i = o(G) 6 ~(G), ~ ~(G') for any G'~ g , G' ~_~G, the line whose ~-parameter 

is largest. Thus o is a map from ~ into ~. 

A labeled singularity family leads to a sector ~= ~f,~ in ~-space 

= { ~ / ~I ~ 0 for every i ~ ~, ~i ~ ~(G) for every I~ ~(G), G e~ } 

characterized by a partial ordering of the e-parameters. This partial ordering is made 

explicit by the parametrization 

II ~--~ tG, if i = o(G) for some G~ 
G c G'c-~ 

% 

I t G, if 
G(1)C G' E 

0 ~ tGo < m, ((tG)G~{GO},(B1)IE~o(E)) = (t,_B) ~ I L-1 where I = ~0 , 1] 

and 

G(1) = minimal element of the set {G / Ge~ , I~ ~(G)} . 

On the seotor ~ o ~r(~,o) 
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d(e) ~ I N(G) d(t,8) ; d(t,8) ~ I for (t,8) ~ I L-I 
-- = G ~  tG " -- . . . .  

The analytically renormalized Feynman amplitude then takes the following form 

with 

and 

-'~ ,)(c~)-,~ ~. -o -,,!, 

- / ' J- ~: ~"k ~ )  ~l + -- O v(G) - ~ (  - I ) L(G) - 2N(G) , v - v(G ) 

The F-functions have been distributed in such a way that the l-singularities are 

entirely contained in the first factor. This is so because the massive Feynman deno- 

minator [ ...... ] -v is an entire function of its negative power v and an infinite 

differentiable function in the t- and 8-variables. 

III. Simultaneous Resolution. of the U ltray.lolet, an dlnfrared Sinsularities 

If we replace ~ by Ap and let A tend to plus infinity, we are dealing essentially with 

an inhomogeneous quadratic form with an ever decreasing inhomogeneous term raised to 

the power mY : 

--9 
2. 

In the limit of an infinitely large A the inhomogeneous term disappears altogether 

and the situation changes drastical~: the massless Feynman denominator is no longer 

an entire function of v nor is it an infinite differentiable function of the t-varia- 

bles. Instead, it has simple poles as a function of v and branching singularities in 

the t-variables arising whenever and wherever the quadratic form D,~(£,~/ ~7~'Pu = 0 

in the 4(U-I) p-variables degenerates. 

To illustrate the latter point we consider the following parameter dependent distri- 

bution of the real four-vector variables Pi i = 1,2,3 :D P~- O-p~- @.%.p - i0 , 

8, e ~ I , v ~ ~ , ~O-P~v < 6 , p2 either the Euclidean or the Minkowski length of p, 

as a mathematical example for a massless Feynman denominator. Its singularities as a 

distribution valued function of 0 and @ are exhibited by the following representation 
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where F , G and H as distribution valued functions of 0 and 8 are infinite differen- 

tiable in the unit square 12 and where the sum on the right hand side depends holomor- 

phically on ~ for ~ < 6. 

Thus, in order to keep track of the formation of these singularities we have 

i) to resolve the intersection of the zero-surfaces of the Feynman determinant d(~) 

and the Jacobian of the transformation ~ ÷ (Dt,8(~,~) , coordinates on the sur- 

faces D ~(~,~)_ = constant) 

ii) extract explicitly the branching singularities in the t-variables from the Feynman 

denominator. 

The first task is accomplished by the introduction of a coarser concept of irreducibi- 

lity: the so-called irreducibility in view of infinity (I). In order to define the 

property (I) we embed the graph G ° into a bigger graph G ° by adding to ~one more 

vertex v , the infinite vertex, and joining every external vertex u 6]J[ to v by one 

separate line I . Similarly, we embed the subgraphs G of G ° into subgraphs G of G ° . 
U ~ 

Definition: A subgraph G of G ° possesses the property (I) if G is irreducible (I) or 

if G is one-particle irreducible and one-vertex-irreducible with the possible excep- 

tion of the infinite vertex v . 

Examples: ~]~_. ~ I ~  

G ° 

G ° G 

V V 

u 3 u 4 

G' eo 

• v\j 

V 

With the help of the new irreducibility concept (I) in complete analogy to Speer, we 

define new singularity families ~ , labeled singularity families ( ~ ,o ), sectors ~ 

= ~( ~ ,o ) and appropriate parametrizations. However, now we have to distinguish 

two subfamilies ~ and ~ which are disjoint and which make up ~: 

G ~ ~ iff the removal of the line a (G) from ~(G) opens a loop, G ~ ~ iff the 

removal of the line o (G) from ~(G) dissolves a connection between external vertices. 

The number of elements in ~ is equal to N, the number of elements in ~ equal to 

U- I . 

The second task is accomplished in two steps: 
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First, the quadratic form Dt,_8(p, p) is diagonalized 

SH(t,B) >i I for all H ~ %  and ((t),(B)) 6 I L-I 

with the help of an invertible linear transformation Tt, B which as a function of t 

and 8 is infinite differentiable 6), (q(t,R), =--([qH (~-'-B)) H 6~' ~L~Pu ) = Tt,_B p-" 

. . m 2 ~ a I 
Second, the additive occurrence of --~" ~ - -- and the (U-l) terms of Et, B in the 

~ ~-~ ~ _o. 
Feynman denominator zs converted into a multz~z~atlve appearance in the Feynman para- 

meter integral by means of an (U-l)-fold Mellin transformation. 

The points i) and ii) being settled in this way, we arrive at the following represen- 

tation for ~x(Ap;m): 

- % 

where h (n;m) is an entire function of I and s = (SH) H ~ 0 < YH < i, H K~. 
! , ~  - _ , 

Note the presence of simple poles contained in the factors r(2+SH). The residues of 
I Z' 

these infrared poles bring about 6-functions: 6(Spu) , where stands for a partial 

sum of external momenta, or derivatives of them. 

The integrations converge uniformly in i in the topology of ~i _ for Euclidean as well 

as for Minkowski metrics. It is at this point that the distribution theoretical dis- 

cussion pays off. 

As _ % tends to --I, poles in s H move in from the left of the contours. Together with the 

fixed poles on the right they may or may not pinch the contours. In the latter case 

we pick up extra contributions. In view of the uniform convergence, the generalized 

evaluator may be applied under the integration signs. Thus we obtain the following 

form for ~ ~  ~ -- ~i ~ ~ t ~ e  renormalized amplitude ~ ~ I~%'~-~ ~kf~ ~ ( ~ ° ~  L-~q<~41 

~ ~-~ 
where (~;m) is a meromorphic function of z. The localization and order of its poles 

can be read off directly from the graph G ° 7). Its asymptotic behaviour in z is entire- 
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ly known. 

The complete asymptotic expansion is now obtained by shifting the z-contour to the left 

and picking up contributions from the poles according to their order. 

References 

i) Weinberg S.: Phys. Rev. 118, 838 (1960) 
2) Fink J.P.: Journ. Math. Phys. 9, 1389 (1968) 
3) Slavnov D.A.: Teor. Mat. Fiz. 17, 169 (1973) 
4) Berg~re M.C. and Lam Y-M.P.: Cor~nun. Math. Phys. 39, I (1974) and 

Freie Universit~t Berlin preprint 74/9 (1974) 
5) Speer E.R.: Generalized Feynman Amplitudes, chapter III, 

Princeton University Press, Princeton 1969 
6) Trute H.: Desy report 74/44 (1974) 
7) Pohlmeyer K.: Desy report 74/36 (1974) 
8) Rubsamen R.: forthcoming Desy report 

Discussion 

A. Ukawa (question): Can you treat exceptional momenta cases by your method? 
! 

K. Pohlmeyer (answer): Yes, you can. If you introduce the restriction ~Pu = 0 , 

~J denoting a partial sum of external momenta, right from the beginning you have to 

resolve the intersection of the zero-surfaces of the Feynman determinant d(~) and the 

Jacobian of the transformation ~/>q'p~- o ÷ (D~,~(~'~)/~L~ = O ' _ _ - F  coordinates on the 

surfaces: Dt,~(~,~)/Z, 0-- constant). This can be done by introducing one more infi- 

nite vertex with the help of which an appropriate irreducibility concept - finer than 

(I) but still coarser than (I) - is defined 8) 


