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ABSTRACT 

The quantum fluctuations about a self-dual background field in SU(2) are com- 

puted. The background field consists of parallel and equal uniform chromomagnetic 

and chromoelectric fields. Determination of the gluon fluctuations about this field 

yields zero modes, which are naturally regularized by the introduction of massless 

fermions. This regularization makes the integrals over all fluctuations convergent, and 

allows a simple computation of the vacuum energy which is shown to be lower than 

the energy of the configuration of zero field strength. The regularization of the zero 

modes also facilitates the introduction of heavy test charges which can interact with 

the classical background field and also exchange virtual quanta. The formalism for 

introducing these heavy test charges could be a good starting point for investigating 

the relevant physics of the self-dual background field beyond the classical level. 
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1. INTRODUCTION 

Non-Abelian gauge field theories are known to-admit nontrivial solutions to the 

classical equations of motion. These field configurations are potentially of great in- 

terest in determining the vacuum structure of the underlying field theory. To be of 

physical relevance, these solutions should have lower energy density than the trivial 

perturbative ground state of vanishing field strength, and they should also be sta- 

ble against quantum fluctuations corresponding to local deformations of the vacuum 

field. Indeed, many authors have considered field configurations of lower energy than 

the naive perturbative ground state for one such theory, Quantum Chromodynamics 
(QCD).’ These configurations then serve as a starting point for models of the QCD 

vacuum. 

One of the simplest examples of this type of field configuration which has lower 

vacuum energy is a pure uniform chromomagnetic field. The drawback to this solu- 

tion is that it is unstable against quantum fluctuations.2 However, it seems possible 

to obtain a stabilized ground state by introducing a complicated domain structure of 

randomly oriented chromomagnetic fields, which eliminates the long wavelength desta- 

bilizing eigenmode. This forms the basis of what is commonly called the Copenhagen 

vacuum.3 

Another example of a field configuration with lowered vacuum energy has been 

considered by Leutwyler for an SU(2) gauge theory. 4 It consists of a constant (anti) 

self-dual Abelian vacuum field given by the vector potential 

A;(z) = - f F/w xv 6 a3 , (1.1) 

with Fpy a constant matrix. In distinction to the uniform constant chromomagnetic 

field of the Copenhagen solution, the field strength of Eq. (1.1) corresponds to uniform 

constant parallel chromoelectric and chromomagnetic fields, due to the requirement 

of self-duality. This requirement is sufficient to insure stability against localized de- 

formations of the given field configuration, and this is explicitly shown. in Leutwyler’s 

one loop calculation. 4 The major difficulty in this beautiful calculation is the existence 
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of zero energy modes which greatly complicates the analysis. In this work, we will in- 
---- traduce massless fermions to the former analysis and show that the fermions succeed 

in damping the zero modes by giving them an effective mass, and Amplifying certain 

aspects of the calculation. The result is that once the zero modes have been lifted, all 

quantum fluctuations about the field of Eq. (1.1) become easily integrable to one loop. 

This also allows simplified expressions for quantum field propagators, and may lend 

itself more easily to further investigation of the physical implications of this self-dual 

vacuum field. 

In Sec. 2 of this paper we will establish our notation and begin the computation 

of the effective Lagrangian generated by the gluon fluctuations about the self-dual 

solution of Eq. (1.1). W e will proceed up to the point where the fermions are needed 

to damp the zero modes. In Sec. 3, it is explicitly shown how the fermions damp the 

zero modes, and the magnitude of the effective mass generated for the zero modes is 

computed to one loop in the fermion fields. Section 4 contains the completion of the 

computation of the effective Lagrangian generated by the gluon fluctuations begun in 

Sec. 2, utilizing the stabilization of the zero modes. In Sec. 5 it is shown how very 

heavy quarks would be included in the Lagrangian, and effective interactions induced 

as the light degrees of freedom are integrated out. This gives a formalism of “test 

charges” in the theory that will be useful in determining the physical implications of 

this self-dual vacuum field configuration. Finally, in Sec. 6 we summarize and make 

some concluding remarks. 

2. GLUON FLUCTUATIONS ABOUT THE CLASSICAL FIELD 

For simplicity we will restrict ourselves to the gauge theory of SU(2). The anal- 

ysis of the vacuum fluctuations will be carried out in Euclidean space, recalling that 

the Euclidean functional integral is a legitimate representation of physical amplitudes 

defined in Minkowski space.’ The schematic correspondence is 

(A’ItTHT IA) = N / [DA] eSE (2.1) - 

where all quantities on the left side are defined in physical space, with IA) a gauge field 

configuration at t = 0 in the Schrodinger representation, and H the Hamiltonian. The 

right-hand side involves an integral over unphysical Euclidean field configurations with 
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the proper boundary conditions A(t = 0) = A, and A(t = T) = A’. The Euclidean 
---- action is SE and N is a normalization constant. Our concern will be the use of the 

Euclidean functional integral, 
_ - 

zE = N / [DA] exp(/ d4x LE) = N’ exp(/ d4a: L$‘) , P-2) 

to compute the effective Lagrangian, LgI , generated by vacuum fluctuations about a 

classical field configuration. The Lagrangian for the pure SU(2) theory is given by 

LE=-4 ’ F;ty F;v , (2.3~) 

with 

F;” = +A; - &,A; - gcabcA;A; . 

The classical equations of motion generated by this Lagrangian are 

(2.3b) 

DabFb =() cc P” (2.4 

with 

D;” = hablIp - gcabcA; . (2.5) 

As stated in the introduction, the field configuration of interest that satisfies Eq. (2.4) 

is explicitly given by 

(2.6~) 

with the imposed self-duality condition 

(2.6b) 

This corresponds to space-time constant parallel chromomagnetic and chromoelectric 

fields. A space-time coordinate rotation aligns the fields in the z-direction, correspond- 

ing to the specific form 

Em =E12 =B , all other E,, =0 , (2.7) 

4 



with B the constant field strength of, as yet, arbitrary magnitude. 

The functional integral will be analyzed in the region of the field configuration Ai. - 
The fields will be parameterized as 

A;(x) = z%;(x) + b;(x) , P-8) 
and the Lagrangian can be expanded in powers of the small fluctuation b;. With 

this parameterization for the fields, and introducing a background gauge fixing term 

with the associated Fadeev-Popov determinant Am, the Euclidean functional integral 

becomes 

ZE =N [Db] AFT exp 
I 

- 2gcadc “&,) b; + ; b;(D, &,)ac b; + 0( b3)]} , 

P*g) 
where “barred” terms depend only upon the background field. Choosing the gauge 

parameter to be o = 1, and rewriting the appropriate Fadeev-Popov term yields 

ZE = N/ [Db] exp{/ d4x[-a Etv Eev + f b; ei; bi + fh Det( - D, Da) + 0( b3)]} 

(2.10a) 

with 

(2.10b) 

The one loop approximation will be used in computing the effective Lagrangian from 

Eq. (2.10). This corresponds to retaining only the terms quadratic in b, in the expo- 

nent. In order for the one loop computation to make sense 

/ d4x b;(x) 6; b;(x) < 0 . (2.11) 

If this is not the case, the background field Ai is unstable against quantum fluctuations 

in the one loop approximation. 

Formally, the integration over the b: fields can be done using 

/ [Db] exp(- / d4x bf Mii 6;) = Det-‘i2 M;E 

(2.12) 
= exp . 
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Using Eq. (2.2) yields the effective Lagrangian 

Lgf= - f Tr tn (- 6$,) + Tr t!n(.-- D, Dz)‘~ . (2.13) 

The traces can be most easily evaluated by determining the eigenvalues of the operators 

- e$, and - D, D, and summing. The eigenvalue equation to solve is 

6;; b; = Ab; . (2.14) 

From the explicit form of $ from Eqs. (2.6) and (2.7), it follows that the eigenvalue 

equation for 6; does not contain the background field, and becomes 

V2b3 = Xb3 u v 1 (2.15~) 

with solution 

b; = cu eiPz , X = -p2 5 0 . (2.15b) 

The eigenvalue equations for the eigenmodes in the color directions orthogonal to 

the 3-direction are 

(2.16) 

where bt = b:fibi. The equation is further diagonalized by considering the following 

linear combinations of Lorentz indices, bi&., = bi f ib,, giving 

v2 g2B2x2 - 
4 + ‘9X, E,, ‘o ~ 2gB b~*i3 = Xb,,, 

v2 g2B2x2 
4 +‘gX, ‘,, ‘, ~ 2gB b,,, =Xb,,, . 

(2.17~) 

(2.17b) 

Complex conjugate equations exist for b, . + These equations can be easily solved by the 

following procedure. Define the operators 

9 aP+,+ZBx,, , u; E 4; + 4 Bx, (2.18~) 

6 



and form the linear combinations 
~-~- 

C+ G uo+ + ia; C e q-j- iag _ _ 

D+ f at + i&J D z al - ia 

which satisfy the commutation relations 

[C+, D+] = [C, D] = [C’, D] = 0 

[C, C+] = [D, D+] = 2gB . 

The eigenvalue equation (2.17) can be rewritten as 

{-(C’C + D’D) - 2gB ~ 2gB) b~*i3 = X1,,, . (2.19) 

(2.18b) 

(2.18~) 

The commutation relations quickly yield the following eigenvalue spectrum 

bi+i3 : X = -2gB(n + m + 2) 

by-, : X = -2gB(n + m) 
(2.20) 

b,,,, : X = -2gB(n + m + 2) 

by-, : X = -2gB(n + m) 

for n, m = 0, 1,2, . . ., and similar expressions for b, . + Identical analysis goes through 

for the operator -ii, DO, with the eigenvalue equation 

- (D,D,)aCqv = X(b” , (2.21a) 

yielding the eigenvalue spectrum 

qP : X = 2gB(n + m + 1) . (2.21b) 

Now, knowledge of the normal mode spectrum allows the evaluation of L$’ from 

Eq. (2.13) using the identity 

en a = - 
/ 

00 ds - eBad . 
0 s 

(2.22) 



Ignoring constant terms that do not depend upon the background field, 

(2.23) 
-2gB(n+m)s + e-2gB(n+m+2)8 _ e-2gB(n+m+l)a 

> 

where c is determined from the eigenmode normalization when taking the trace, and 

C = g2B2/47r2 as shown in the Appendix. This expression for f.$j appears diver- 

gent for 8 + 0, but this is the normal ultraviolet singularity removed by standard 

renormalization, as will be shown in Sec. 4. The divergence that does need further 

consideration is the infra-red singularity as s + 00 when n = m = 0. The origin 

of this problem is the existence of zero modes of the operator e$,, and the lack of 

damping for the Gaussian integrations in these directions of field space. Our solution 

to this problem will be to show that the introduction of massless fermions gives these 

zero modes an effective mass term, making the integrations of Eq. (2.23) well behaved. 

3. MASSLESS QUARKS AND THE GLUON ZERO MODES 

Massless quarks in the fundamental representation of SU(2) can be introduced 

into our previous analysis at a point just before the integrations over the small gluon 

fluctuations, Z$, were begun. The integrand of the Euclidean functional integral of 

Eq. (2.10) changes by a multiplicative factor 

with 

,U= bf 7; ; . (3.2) 

The a-matrices are the usual Pauli matrices of SU(2) and the Euclidean y-matrices 

have the following convention 



The integration over the quark fields of Eq. (3.1) can formally be done yielding 

quarka 
ZE =Det(ifl-g>-gY) __ - - 

(3.4) 
= exp{Tr[h(i 3-g J-g y)]} . 

This constitutes a contribution to the effective Lagrangian of Eq. (2.13), which will be 

denoted as 

A@ = Tr[h(i y-g /i-g y)] . (3.5) 

The logarithm can be expanded in the small field b$ to quadratic order, in keeping 

with the one loop approximation of Sec. 2. Using the notation i J9 = i 3 - g A, 

A@ = Tr[en(i p)] +g Tr(&y)-c Tr(&y& I/)+O(b3) . (3.6) 

The first term is the usual fermionic one-loop contribution to the vacuum polarization 

which will not be included here. The second term can easily be shown to give a 

vanishing contribution by using the short distance form of the fermion propagator, 

while the third term is the source of the gluon zero mode mass term. Keeping only 

this term in Af,$’ and writing everything in coordinate space, the contribution to 

the effective action becomes 

ASLff = g2 J qx4 ~;;k, Y) G(Y) d% d4Y (3.74 

where 

M;;(x, y) = - f +p; S(Z,Y) TV ; S(Y,d] , 

and 

(3.7b) 

(3.7c) 

is the fermion propagator in the background field Ai. Equation (3.7b) can be quickly 

evaluated if the fermion propagators are known. There is a technology for determining 

fermion propagators in background self-dual fields that was developed by Brown et 

a1.6 originally for use in instanton calculations. Since 1; is also a self-dual field, the 

formalism can be carried over directly. 

9 



-. 

There is one complication to this procedure which is easily ameliorated. The 

~-fermion propagator in a self-dual field contains zero modes, making the naive expres- 

sions ill-defined. However, we can temporarily introduce asmall fermion mass term, 

m, to regulate the zero modes, and show that in the end, due to the chirality structure 

of the propagator our result is finite and independent of m in the m -+ 0 limit. 

Brown et a1.7 derive a Laurent series in m for the fermion propagator of which the 

first few terms are 

Sk, Y) = k S-I@, Y) + Sob, Y) + mS&, Y) + O(m2) (3.8a) 

with 

S-1(x, Y) = V4(x - Y)- flz Ah Y) 5~) (T) (3.8b) 

SObY Y) = i b Ah Y) (q) + A(z, y) i&(F) 

The function A(z, y) is defined as 

which has the simple representation for the field 1: of 

Ab, Y) = 
e-sS(z-Y)2/8 
47rqz - yy exp 

ia3 s&q9 xc2 Yp 
4 

Simple Dirac algebra involving the chiral projectors in the m + 0 limit yields 

(3.k) 

(3.8d) 

(3.9a) 

(3.9b) 

(3.10) 
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Note that this expression is independent of m as previously stated. 

Equation (3.10) could be evaluated in a straightforward fashion using Eqs. (3.8) - 
and (3.9); However, by making a brief digression into the form of the gluon zero modes 

which are contracted with Mii(z, y), and then looking at the symmetries of the inte- 

grations over x and y, the expressions to evaluate become much simpler. The equation 

for the gluon zero modes, generically denoted by b(x) (representing bo-i3, bl-i2’ bo=i3, 

or b;t-+i2), is gotten from Eq. (2.19), 

(c+c + D+D) gqx) = 0 . (3.11) 

The solution is easily determined by demanding 

q(x) = 0 , &b(x) = 0 , (3.12) 

which leads immediately to the solution 

4(x) = NeegEz2j4 , (3.13) 

where N is a normalization constant. Using the fact that 4(x) is even in x, and 

that Mii(x, y) will only be needed in the integrated form of Eq. (3.7a), allows one 

to average A4it(x, y) over the coordinates x and y at any stage in the calculation. 

This greatly reduces the available tensor forms for Miz(x, y) and we have the simple 

representation 

q% Y) = 4 6pv C.(? Y) + z Epv 7-2(x, Y) (3.14) 

where 7’1 and 7’2 can be calculated by doing the appropriate tensor projections of MiE 

and doing the suitable coordinate averages. Straightforward calculation yields 

M;;(x, Y) 2 =+ A2(c) 

3g2B2c2 
2 CO8 (!7Ea/I ~&fi) Csa16cl + Sa26c2) 

3g2B2c2 
2 co8 (9 EaB caR/3) c3ac 

(3.15) 
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where 

e-gBc2/2 
A(C) = (4RC)2 ~_ - 

and 

~cc = (x-Y)P , R (x + Y)P 
P = 

2 2 - 

(3.16~) 

(3.16b) 

Equations (3.7a), (3.13) and (3.15) can now be used to compute the corrections to 

the gluon zero mode eigenvalue, AX, due to the massless fermions. Denoting the gluon 

zero modes by [bQl(x)lZm, 

AX = g2 I d4x d4y [b;(41Zm M,Y;(x, Y) [b:(~)l”~ 
/ d4x IbjWl”” [bjWltm (3.17) 

which can be reduced to 

Ax = $1 d% 
e-2gBc2 

c4 ($ + 2gB + 3g2B2c2) . (3.18) 

From this we must subtract the value of the eigenvalue one obtains for B = 0 to 

get the contribution due to the fermions in the background field. This eliminates the 

B-independent singularity for e + 0, and yields the finite result 

AX = AX(B) - Ah(O) = -g . (3.19) 

As previously claimed, this is a nonzero stabilizing contribution to the gluon zero 

modes,8 and must be added to the zero mode eigenvalue of Eq. (2.20). All the integra- 

tions of Eq. (2.23) necessary to compute LE eff become well defined due to the “lifting” 

of the zero modes, and these integrations will be done in the next section. 

4. DETERMINATION OF Lgf 

Including massless quarks in the preceding analysis has generated a contribution to 

the zero eigenvalue of the gluon zero modes of Sec. 2. Specifically, for the eigenvalues 

of the n = m = 0 modes for bO-i3, b;--i2, bo=i3, and b~+i2 of IZq. (2.20), the 
eigenvalue changes from zero to (--cr,gB/lGr) due to the fermionic interactions. As a 
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result, the expression for f.$’ in Eq. (2.23) must be altered by subtracting off the term 
--~-corresponding to the ill-defined uncorrected zero mode, and adding the well-defined 

I 
corrected-term. Equation (2.23) becomes 

g2B2 Lkff =-B2+- / 
00 ds 

o s 

xngoCe -2gBs(n+m) + e-2gBs(n+m+2) _ e-2gB5(n+m+l) 
> 

, = 

g2B2 
/ 

00 da g2B2 
-2n2 0 -+3F 0 8 / 

“* exp[-sr&T] . 
8 

Using the simple identity 

gives the following expression for Lgf, 

Leff = 
E -B2+g/omf{4 ,,,:(~g~8)+exP[-s(~)]} - 

(4-l) 

(4.2) 

(4.3) 

This expression must be renormalized in the usual way, and we choose the renormal- 

ization conditions of Coleman and Weinberg. g The conditions on the renormalized 

Lagrangian, L, are 

L&)=0 (4.4a) 

where 7 = 4 F$,Fiv = B2. The condition of Eq. (4.4a) merely corresponds to 

demanding that the energy density in the absence of background fields is zero. Con- 

dition (4.4b) is dependent upon the fact that we worked in background gauge.lO In 

these gauges the gluon wave function and vertex function renormalizations are equal 

and cancelling, leading to a simple over-all renormalization of the action. The counter- 

term has the universal form of ZS~~~ical, with 2 being independent of the choice of 

gauge function. As a result, the usual renormalization conditions can be expressed by 

means of the function L only, as in Eq. (4.4). 
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The renormalized Lagrangian, Lgff, to be calculated is thus 

L”ff = Leff -B2 aL 
E E - I 8B2 B=p2 

- &+o= B2. . - 

A straightforward computation of this finite expression gives 

Leff = v-&m 
E G( h(B,p2) - ;) . 

Correspondence with Eq. (2.1) gives the vacuum energy density, 6, 

IE 
llg2B2 

= B2+ 24&? ( WW2) - ;) 

(4.5) 

(4.6) 

(4.7) 

which naively has an energy minimum away from the perturbative vacuum of B = 0. 

This result agrees with the computation of Leutwyler,4 and has the same caveats with 

regards to interpretation as the true vacuum energy. These caveats will be discussed 

in Sec. 6. 

The simplification we have encountered in arriving at Eq. (4.6) is that the gluon 

zero modes have been effectively eliminated by introducing massless quarks. While 

this has made the computation of Lgf more straightforward, it also facilitates further 

analysis of the physical ramifications of the background self-dual field. The lifting of 

the zero modes has made the gluon propagator well defined in a simple way. Conse- 

quently, heavy test charges (quarks) can easily be introduced into the theory with well 

defined interactions, and the physical effects of the background field can be determined 

beyond the classical dynamical level of heavy quarks interacting with the background 

field. We can now easily include how gauge quanta are exchanged between the test 

charges, which is presumably a crucial part of the dynamics in a confining field theory. 

This incorporation of heavy quarks is the subject of the next section. 

5. INTRODUCTION OF TEST CHARGES 

In order to better investigate the physics dictated by the background field config- 

uration of A;, we will introduce test charges in the form of massive quarks. They can 

be introduced as a multiplicative term in the integrand of the functional integral of 

Eq. (2.10). Let us further proceed to the point where the light fermions have been 
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integrated out, regularizing the gluon zero modes. The form of the functional integral 

---- with the massive quarks included is 
- 

where erVc is the operator of Eq. (2.10b) with the zero mode eigenvalues corrected 

by the light quark contribution. Since the zero modes have been eliminated, 6:: is 

an invertible operator. This allows the elimination of the term linear in bt by shifting 

the gluon field, 

(5.2) 

The Jacobian of this transformation is unity, and the functional integral in terms of 

the shifted fields becomes 

(5.3) 
Now, the integration over the gluon fluctuations can be done to one loop as before, 

giving the effective Lagrangian of Eq. (4.6) plus interaction terms for the massive 

quarks, 

The computation of (eri)-’ is straightforward but tedious. It is defined by the 

integral 

_ Ib~(~)lzm[bE(Y)lL + Ib~(~)lzm[bE(Y)l~m 
6 -x 1 

(5.5) 
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where c is used to regulate the original zero modes, which are then subtracted off and 
----replaced by the proper expression for the modes regulated by the fermionic generated 

term, X = cr,gB/lGn. Using the expression for the transverse a, C = I,2 components 

(5.6~) 

x exp - (’ - y)2B coth (8B) + i(F3) ‘a, xaya 
4 2 1 (F3)2 

which can be checked by verifying 

M7-f) (+q+47 WY) = 0 , (5.6b) 

and also using the explicit expressions for [b$(x)]zm from Sec. 3, we find Eq. (5.5) to 

be 

(+~)-‘IY) =-$2 e&-gB~2) exp[Wi)gf’,p faRa] &V + 
V3) J-p, 

B 1 
X y - exp( 2gBc2) Ei( -2gBc2) - C - h( 2gBc2)] 

+ &cLv [--& + 2 exp( 2gB2) Ei(-2gBc2)]} (F3)2 - ‘~f$!$v . 

In these expressions, (F3) is the SU(2) adjoint generator in the 3-direction, Ei(x) is the 

exponential integral, C is Euler’s constant, and ccc = (x - y)JZ, R,, = (x + Y)~/Z as 

before. 

Given the closed form for (eE)-’ of Eq. (5.7) and L gf of Eq. (5.4), the dynamics 

of heavy quarks in the background field ;ii can be investigated beyond the purely 

classical level. The first term in Eq. (5.4) corresponds to the classical background field 

interacting with the heavy quarks, and the second term allows the quarks to exchange 

virtual quanta. It must also be noted that the usual naive confinement criterion in 

terms of Wilson loops cannot be employed in this formalism due to the inclusion of 

dynamical fermions and their attendant screening effects. With this caveat, this would 

be the starting point for investigating the background field with heavy test particles. 
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8. SUMMARY AND CONCLUSIONS 

The quantum fluctuations about a self-dual background field inSU(2) have been 

computed. The background field consists of parallel and equal uniform chromomag- 

netic and chromoelectric fields. Determination of the gluon fluctuations about the 

background field yields zero modes, which are found to be naturally regularized by 

the introduction of massless fermions. This allows a simple computation of the vacuum 

energy by making the one loop integrals over all normal modes Gaussian and damped. 

It also makes the gluon fluctuation propagator well defined, and facilitates the intro- 

duction of heavy test charges which can interact with the background classical field 

and also exchange virtual quanta. 

The one loop computation of the vacuum energy yields the familiar expression 

c 
llg2B2 

= B2 + 24R2 ( WUP~) - ;) 

which agrees with the formal (but unstable) case of the pure chromomagnetic field.2 

The vacuum energy has a minimum at nonzero B = p2exp(-24n2/11g2), however this 

value of B is too small for the one loop approximation to be valid. It is well known from 

renormalization group analysis that the loop expansion for the effective Lagrangian is 

only under control for strong fields, which corresponds to the short-range behavior of 

gauge theories. l1 However, the interesting existence of a minimum at nonzero B can 

remain qualitatively valid beyond the one loop approximation provided the p-function 

goes to infinity sufficiently fast for strong coupling.12 

The physical significance of the field configuration is difficult to ascertain, even 

with the-previously mentioned nice features. It is an extremely ordered state stable 

under local deformations, but it is not clear that this stability would not be over- 

ridden by phase space as large fluctuations are incorporated. A manifestation of this 

extreme ordering is the apparent breaking of Lorentz invariance due to singling out 

a direction for the field. (The problem of restoring this symmetry by averaging over 

field directions is under investigation, along with the attendant problem of violation 

of cluster decomposition for the unphysical gauge fields.) 

- 

Even with these caveats, the study of this field configuration may yield insight into 

the vacuum structure of &CD. The formalism for introducing heavy test charges into 

the theory should be a good starting point for investigating the relevant physics. 

17 



ACKNOWLEDGEMENTS 

I would like to thank G. Bodwin, S. Drell, H. Quinn and M, Weinstein for useful 

discussions. This work was supported by the Department of Energy, contract DE 

AC03-76SF00515. 

APPENDIX 

The normalization constant to be computed, c, that occurs in Eq. (2.23) is defined 

by the relation 

Tr [ exp (&$)] = &(x 1 eXP (+t) 1 Y) - C C eXP(-&7t) (A-1) 
m,n 

where Xm, are the eigenvalues of the operator -0$ The color and spin multiplicities 

of the eigenfunctions have already been incorporated in the main text, and here c must 

be computed as the normalization of one eigenmode, with careful attention paid to the 

remaining degeneracies. Denoting the eigenfunctions generically as 4(x), Eq. (2.19) 

gives 

{ -e;v} b; + {C+C + D+D} 4(x) = X4(x) (A-2) 

with 

[C, C+] = [D, D+] = 2gB . (A4 

Given the above commutation relations and the form of Eq. (A.Z), it is clear that 

the eigenfunctions can be catalogued by the quantum numbers of a two-dimensional 

harmonic oscillator, (n, m). Using this representation, Eq. (A.l) can be simplified 

using the completeness of states. 

Tr[exp(&$)] = lili~ C (xln’m’) (n1,‘1 exp(&$J 1 nm) (nmly) 
nmn’m’ 

(A.4 
= $l& &$+4 (nmly) eXP(--&m) . 
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Furthermore, the excited states can be written as raising operators acting on the 

~-ground state IO), 
_ - 

(A-5) 
What must now be calculated is (x10) (01~) w rc is nontrivial due to the eigenfunction h’ h 

degeneracy, as will be shown below. The ground state wave function is defined by 

40(4 = W) T 
(A.6) c &-j(x) = D #o(x) = 0 . 

Solving Eq. (A.6) using the differential forms of C and D yields 

tie(x) - $o(x; z) = (3’ exp [- gB(x[ z)2 + igE”v2 ‘Cc “1 (A-7) 

where (gB/2?r)2 is gotten from normalizing in x, and tP is an arbitrary parameter, 

revealing the previously mentioned eigenstate degeneracy. This degeneracy implies 

that a general solution can be formed from an arbitrary linear combination of the 

solutions (A.7) 

40(4 = / 40(x; 4 FM d42 (A*81 
where F(z) is any function. This implies that 40(x; Z) can be interpreted as a projection 

operator onto the ground state sector of function space, provided it also satisfies the 

relation 

#ok Y) = / 40(x; 4 40(%; Y) d4% . 

This is easily verified using Eq. (A.7). Thus we have shown 

40(x; Y) = (40) MY) (A. 10) 

which can be used in Eq. (A.5). This yields 

(A-9) 

(A.lla) 
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which becomes, after using the differential forms of Cz and D$, 

Tr [elp (&J] = & & 
[(x0 + ix3) - (Yo + i313r I(“1 + ix21-7 (Yl+ iY2)lrn 

2n+m n! m! 

X h~(x; Y) (6~)” (&jrn eXP(-s&n) . 
(A.llb) 

The only terms in this sum that do not vanish in the limit x -+ y have the differential 

operators in EY and by acting on the terms (x - y), rather than 40(x; y). The simple 

derivatives give 

E- [ezp (+zJ] = z~y nm lim C 40(x; Y) ezP(-f&2773) 

= g 2 C f?Xp(-5X,,) , 
( > nm 

and thus c = (gB/2n)2. 
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