





Tumrepman B, E17 - i1521

Hpoeanst B anrefpax HeorpaHHYeHHBIX omepartopoe,ll

B npeaniayweii cTaThbe 6buM BBedeHs! ABa Kjacca uaeados B aareSpax
HeOorpaHHUeHHLIX oNepaTopoB. B HacTosliell CTaTbe pacCMAaTpHBAOTCH aarebpa-
HYeCKHe M TONOJoruyeckKue CpoiicTba ORHOTO U3 ITUX KjiluccoB., Kposme Toro,

C NoMOWbID AVANLHOCTH KCCHeloBaHA CBA3b MeXIy 3THMI KhacCaMi,

PaGora poimonHeda B JlaGopaTopuu Teoperuyeckoii duauky OW AU,

Mpenpunr O6beaHHCHHOrO WHCTHTYTa AnepHbIX @ccienonauuit, [ly6ua 1978

Timmermann 1V, E17 - 11521

Ideals in Algebras of Unbounded Operators, 1

In an earlier paper two classes of ideals in algebras of
unbounded operators were introduced, This paper deals with some
algebraical and topological properties of one class. Moreover it is
shown how these two classes of ideals are connected by duality.

The investigation has been performed at the Laboratory of
Theoretical Physics, JINR,

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

© 1078 Ob6veannenusill HHCTHTYT saepHbIX Hccaeaopaxud [Ay6Ha

This paper is part IT of the investigations begun in /4/. There
two classes of ideals in algebras of unbounded operators were de-
fined: .fi(ﬁ) and M( £5 (D), L5(¥)), where T is a symmetric
norming function /1/. In /4/ algebraical and topological properties
of fp (D) were investigated. Now we indicate some properties of
M( Py (D), 'f“} (T )) and show how these ideals are connected with
J’; (9 ) by duality properties. All results are taken from /5/.

In section 1 we collect some definitions (cf./1/,/2/) and results
from /4/. Section 2 contains properties of M(.,.) while section 3
deals with the duality mentioned above.

1, PRELIMINARIES AND BASIC DEFINITIONS

For a dense linear menifold D in a separable Hilbert space ®
we denote by £*(3) the » -algebra of all operators A for which
ABC S and A*®<D . The involution is given by A —e 4" =
= A"\3 . &% (B) defines a natural topology t on the domain Iy
given by the directed system of seminorms ¢ —=wAgqw for all
Ae¢ £¥ (D). An Op™ -algebra & (B ) is a # -subalgebra of £ (Ir)
with unit I. By tg we denote the topology induced by & (¥) on T .

A (&) is said to be selfadjoint if ¥ = A‘Q I (A" .

In this paper we consider only selfadjoint &% ()!
F () denotes the set of all finite dimensional operators of
£* () which is the nininsl two-s'ded ¥ -ideasl of LT (I).
For a completely continuous crerator T ¢ B('®) (the set of all boun-
ded linear operators on & ) (,:n('!‘)) stands for the sequence of
»

s-numbers s](T) * 5,(T) 2 .... (each number repeated according to
its pultiplicity), & (.) is a sysmetric norming function and



d’;(a\’.), or simple .fi,denotes the corresponding symmetrically normed
ideal with norm % -W§ given by W Tug = 8 (SI(T)’SZ(T)"" Y.
For details the reader may consult /i1/. In /4/ the following classes
of ideals were introduced:

Fg () ={Te £7(W): ATBe F@R ) for all A,BeL* (D)}
and
Py (F), g (D)) ={4 e (B): AT,A'Tef5(D) for all
Te (D) Y.

(B3 (H) anda (& (D), dg (¥)) are defined analogously.)

It was a useful result that for selfadjoint &' (¥) the ideals

qf§ (&) can be characterized equivalently by

I () ={Te L' (D): AT,AT™eFH(R) for all Ac LY (B)}
={T et (3): TA,T*Mefy@ ) for all Ae £* (D)}
={Te LY (I): AT,TA e SJ(R) for all Ae L* (D).

A simple equivalent characterization of #(.,.) is given by
M(dfp (B), g (B)) ={A €L (¥): XaT, TAX efy(B) for all
Xe LY (¥), for all Tedf ()] .

2. PROPERTIES OF M(.,.)

We collect some simple properties of M( &g (B), fg (I))
(in short M(% ,%®) or d(~ ,¥) fordy = Fuo ).

Lemma 1

Let ® = 3 and let W \\§ be not equivalent to the operator-norm
W W, Then W(ee ,2) = 5 (%) =8B (¥),% ).
Proof
D = R implies V(D) = B(R) = R (), Let Acfp(R), Cerd (Iy)
Xe¢ &' (P ). Then the estimation
b XACWgy +WCAXZND € 2UXN WCW WAWEG means Ae M( B (F),$) ¢
S M(e,% ), that is 5 (X)) s MB(R),¥ ), fg (R)<c Me=,%).
(Here the equivalent characterization of M(,,,) was used). Now we
show .f§ (®) 2 MF_(R),8 ) which completes the proof, To see this
let Ak fg(®R), i.e. I ANy == ., Without loss of generality let
A = A" ®0, First consider completely continuous A. The s-numbers
are identical with the eigenvalues of A and because }‘M(s (A)) =
&(s](A),...,sn(A),0,0...) is non-decreasing, ™' (s.(A)) —w oo
for n —w oo, Select a sequence (nk) with §m"‘ (s.(A)) Xk and

b

choose an operator C as follows: the eigenvectors of C coincide

with that of A, the eigenvalues (Ck) fulfill

- L, & - 1/2 r3 3 =
o = 1 for 1-k—n‘, e = /3 for nj_1<k £ n‘j y 3% 253,000
Obviously C €L (®) but 3™ (a0) = % (3,(AC),eeuy8y (AC),0..0) =
. a 1/2 .
= B(s;(8)8,(0),nuny (M) (€),0..0) = k/k — e, i.e.

AC & J§ (&) and hence A& M(ee,% ) (the last estimation holds be-
cause of Lemma 3.1 chap.III of /1/).

If A is not completely continuous, then it is trivial to see that
there is a completely continuous A such that AC Qd’i( ).

Q4E.D.
Similarly as in g () (cf./4/) one can introduce a lot of locally
convex topologies in .(.,.). In this section we mention three of
them, To get results on duality other topologies are useful. They
will be given explicitely in the propositions where they are needed.
Let ui denote by c‘;i& s G';‘i and 3.1 the following topologies on
M(® N ) given by the systems of seminorms:

Cxg ¢ A —> WXATWg
cr! 3 : A —» JTAX LM
CF.% A — nax ‘\\XAT\\{, W TAZN g }

where X ¢ £Y(%¥) and T ¢ .j’i(b') are arbitrary.
\ Ll
Clearly S§.¢ < S3,% , Sz~ ~ g% -
The corresponding topologies on M(® (W ),¥ ) are defined obviously.
The following lemmas are valid for these ideals,too.

Lemma 2

The systems of seminorms defining the topologies (f";_‘q, G;.'&
and Gy g ere directed.
Proof
We give the proof for the topology G'%..‘i , the other cases are hand-
led analogously. Let A —= W\ X1AT1\\.§ y A — ‘XZATZ“'E s )(1’2 I3

¢ & (mH, T, »€ (f§ (T ) two seminorms., Because the system of semi~
b
noras defining the topology t is directed (cf. section 1), there is
an £ = X € &' (D) with il X, , &% 2N X$N  for all ¢ ¢ T . There-
]

. .

fore W )(1’2AT1,2 &\ |\ )(ATl,?Q I\ for all $ ¢ , But this

implies W X, _ATH.g <N XAT, 1 =0T} A'X W . Moreover

implies 1,2 3 1,;"‘5 . 1,2 % X

with the operator T given by T° = T,T, + TZT; from NI T, 5 M =
’



=WT &N the estimation VX AT g SW TT,
= U XAT w g follows,

The assertion of the Lemma follows if we prove T & 35(1‘1’).

T is completely continuous and U Tor =W TJ;‘H\ + \\T; & W implies
tTapu 4 T:At\ﬂ\ FWTIA i for all A ¢ZLY(X) and ® D .
Because ‘PTA, T;A € d’g(&)’, the operator TA lies in fg (&).
Hence T € gf-ﬁ(lf) by the equivalent characterization of (fﬁ (B

+ +
AXUNG sNTAX NG =

Q.E.D,
Lemma 3
AR ,,‘\E)CG}‘.&] are complete locally convex spaces,

The prcof uses the completeness of Cfi(h”) in an appropriate to-
pology (ef. /4/ Lemma 17). The following Lemmas are also simple.
They generalize the corresponding situation for di(&ﬁ) (/1/).
Deceuse the proofs are similarly as for the ideals .‘:f§ () (see
/4/) they are omitted.

Lemne 4

i) For arbitrary Acd(® ,&), X € LY (W), T ¢ Ji(h) it is
win RA(A-F)Thg = ¥ (s | (XAT) 5, (XAT),...)

pin WT(A-F)X g = X (s

n+2

n+l(TAx),sn 2(TAX),...)

The minimun is taken over all Fe¢ F(¥) , dim F % n.
ii) If % 1is mono-norming then ¥ (T ) is dense in M &, %) with
respect to @i\.\l. and G"fi g

+

Let us denote by MO(§ ," ) the Qg.¢ -closure of F(T) in M(E3)

Lemza &

1) M°(% %) is & two-sided # ~-ideal in £ (D).

ii) If TLtI is separabel, then also M°(& ,&) with respect to
wﬁ.i and hence also with respect to G%‘,& and 8L§\,§ .

Lemma €

Let Fg (R) # Jou (3R).
i) 1f () e M(§,¥E) converges weskly on © to A ¢ £¥(¥) and

sup max luxareg, WTA XWgy <o for all Xed*(d),

T e.fi(‘s ), then Ae¢ (& ,X).

ii) Suppose that there is a sequence (P ) XY (1) , P_ finite dimen-
sional projections and W X(Pn—I)k\ﬂ\ —= 0 for all Xe€ &Y (&) ana

& e (i.e, P, —> 1 t-strongly). If for A « 2% ¥ ) the sequence
(PnAPn) is ¢g.y-bounded, then Aen(§,%).

3« DUALITY

In this section we give some examples to show how the ideals
ef§ (I) are related to some of the ideals (- , - ) by duality.
Here topologies are useful which are obtained from €., if we fix
X=1 € £Y(B). Furthermore we use topologies t 2.3 in ¥ induced
by M(% ,% ) in the same way as t, i.e. t§ g 1s given by the system
of seminorms & —> & A4 for all A€ #(& ,®). This system is
directed. Remark that R ¢ &£ (BUt g g1, % ) means W R{ W £WARY
for some Ac(% ,F) and all 4 ¢ T . Therefore RT € ¢(¥) for all
T Q.j’§( b).
Theoremn 7

Let e:f§ (I) be equipped with a topology given by the system of
seminorms T -—> WATHW, for all Ae¢ M(F,1) (= u( JE (¥), L, (I)N.
Then any linear functional w € d§ (P ) is given by

(+) w (T) = Tr RT
where R e ( d(tz,,1 ,3 ).
Proof

R&& (Bltg, 1,3 ) means RT nuclear for all TedgT), | RT &N £
£ AT 4l for all & ¢l and appropriate A€ M(® ,1). Hence

oo (T)) =1Tr RT\ € WRTW, £WAT 4, . Thus any functional w
given by (+) is continuous in the topology defined above. On the
other hand, let w be a continuous linear functional on n‘f§ (3,
i,ee Vtows (T)V £ WATH, .
For ¢ ~yeW the operator < ¢,.>~ is in g () and

Ve (<& ,o>% )t £ W< AN "a =W ®uwAwn . This
means « (<& ,.>~ ) is a continuous (anti-)linear form in ¢
{on B ) for any fixed % . By the Riesz-Theorem (< & ,.>% )=

=<{d, x> for some X ¢« ¥ . Define R by Ry = X , then
wWi<d ,.>% ) = <% ,Ry> = Tr R(<% ,.> % ) and
lw(<y ,.>% )l = \<H,RN>1 < WeUUAa~xNN ., This im-

plies ¥ R4 WA« for all ~ € 4. Therefore Rec £ (DEt,LA] )



By linearity

(++) w(F) = Tr RF for all F € T (D).

In (++) there stand continuous linear functionals which can be ex-~
tended by continuity to g (¥). Here the fact is used that the
synnetric norming function corresponding to % %, is monco-norming
F(w) is dense in °*f§ (). Thus

@(T) = Tr RT  for all Te fH(T).

and therefore

Q.E.D.
Theorem 8

On A(& ,1) consider two topologies given by the directed systems
of seminorms

M(®,1)24 —>» WATM, for all T ¢ of ()

and

M(E ,1)3A —>» WTAN, for allT(—di(U).

The linear functionals e on M(% ,1) which are continuous with re-
spect to both of these topologies are given by

w(A) = Tr AT for T « 5 (T).

Proof
For T€ f5 (§) form w (4) = Tr AT, then 1w (A)\ = \Tr ATV £
£ W AT W, . Moreover, because ¥(¥ ,1) and Lp (¥ ) are % -ideals
AT nuclear implies TA nuclear and Tr AT = Tr TA, i,e. Vw (A)V =
=\ Pr TA\ £ WTA W, .
Conversely, let w be continuous in the sense described in the
theorem. Because the systems of seminorms are directed, we may as-
sume

(3) Vw (A)Y £ LATH,

(4) Lwa (A)V S M TA 4,
for all A ¢M(3 ,1) and appropriate T = T* * 0, T ¢ f5(J). For

<b ,o> % e FT(T) (3) gives 1w <d,.>% )L EATHU - Nn
i.es w3 (<& ,.>% ) is for any fixed <¢ T -a 4 W -continuous

antilinear functional on¥ , hence there is a QeXR with
Wy ,a% ) = <% ,9> . Put S& = p then
(5) @ (€& ,.y% ) = <& ,54>, 1K§,5¢>1 SUTHY Ik
for all &~ ¢D , .

Analogously from (4) we get

(6)  w(<d ,o>% ) = <CR&,%”, IKROE,4>1 £ WU UT~H M

for all &, % el
Hence on ™ R* =35 and S¥ =R . (5) implies for & ¢, Ze¢L(I)
VCZ®, 3% >t SRTZHUNSYN £ KW @MW, i.e. S ¢ I (2% for
a1l Z € €Y (B). Because E* (T) was assumed to be selfadjoint we
have ST « 8 . In the same way (6) gives RT = T , i.e, SeX¥(D),
Putting (5) and (6) together one obtains

lw(<g,e>%) 1 =1<§ Sy > £ WP AT~

fus (<d o> )t = 1<% , A >0 2 AT g0 W~ .
Thus § S~ W SUT~NW , RS*®u £ uT & and consequently
S € f§(W). The relation (5) gives

(N w(F) = Tr ¥S for all Fe F(¥T),

Both the functionals in (7) are continuous and F (IJ) is dense
in M(® ,1) with respect to the two topologies, Thus from (7) the
desired result follows:

w(A) = Tr AS for all A€ M(& ,1).

Q.E.D.
These two theorems are also valid for & (¥) and ¥(1,1) = 2% (I ).
Because & (¥) is a very important ideal we state the result as a
corollary.

Corollary 9
i) Let &, (I¥) be equipped with the topology given by the system
of seminorms T — {{ AT\, for all A ¢ &£* (IF). Then the conti-
nuous linear functionals ¢« on 4 (&) are given by

@ (T) = Tr RT , Re £ ( JLt1 , ).
ii) On £ * (I ) consider the topologies given by the systems of
seminoras
A —> | ATH, for all T¢ £, (&) and A — U TAM, for all Tef, ().
The linear functionals > on X* (&) which are continuous with re-
spect to both of these topologies are given by

W(A) =Tr AT , TeXf, (D).

Remark that i) was already proved in /3/, the proof of ii) is the
same as in Theorem 8,

The situation and results described in Theorems 7,8 and Corollary 9
can be extended to more general objects. We give an example'which
indicates one of such a possibility. For this we need the following
definition.



Definition
Let A (I) be a selfadjoint Op*-algebra. Define f, (A) by
L (A) = { TeY(T): ATB nuclear for all A,Be A.

This set is identical with { T ¢ L¥(¥B): AT,AT™ nuclear V AcRY
and with {T ¢ £*(D): TA, T* A nuclear for all A¢ A(¥W)Y .

Clearly, , (&) is a % -algebra end moreover &, (A) can be regar-
ded as an & -modul, On Qﬂ(.ﬁ\-) we define the topology T, (M)
given by the directed system of seminorms T —> i ATW, , AeA¥).
Then the following result is valid.

Propogition 10

The %,(J)-continuous linear functionals « on 4, (A) are
given by
W(T) =TrRT , R eL( TLtgl , ),
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