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ABSTRACT:

We survey strong interaction thermodynamics as obtained from lattice quantum
chromodynamics. At low temperature, quarks and gluons are confined to colour
singlets, forming hadronic matter. At the deconfinement transition, colour
screening decouples the constituents; subsequently, chiral symmetry restoration
renders the quarks massless. At sufficiently high temperature, we obtain a plasma
of non-interacting quarks and gluons.
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1. INTRODUCTION

Quarks and gluons appear confined as long as we consider hadrons in the physi-
cal vacuum: any constituent can then travel a spatial distance of not more than
lo'lacm before it reaches confinement constraints.

In sufficiently dense matter, we expect this situation to change. Colourless
hadronic matter should then undergo a phase transition to colour conducting quark
matter. With sufficient overlap, the constituents can no longer be associated to
a given hadron and can move over macroscopic distances without ever leaving an
overall confinement ervironment.

The idea of a phase transition from hadronic to quark matter is as o1d1) as
the quark structure of-hadrons. Since then, a great variety of phenomenological
approaches to the two-phase nature of strongly interacting matter have been pur-
suedz). They all have in common two phases as input. The advent of quantum chromo-
dynamics (QCD) gave rise to the hope that both the two-phase character and the
transition might be obtained from one basic theory3). Exciting recent develop-
ments in Tattice QCD at finite temperature seem to indicate that such a hope is
justified4-14); these developments will be the subject of my survey.

Quantum chromodynamics specifies the basic interaction of quarks and gluons;
from this we are to obtain the description of strongly interacting matter in its
different states. Not surprisingly, the first attempts concentrated on limiting

behaviour.

Asymptotic freedom makes interactions at very short distances (or high momen-
ta) arbitrarily weak, so that a perturbation expansion in powers of the effective
coupling may be expected to converge in the limit of high temperature or densi-
tyl5). Sufficiently hot-and/or dense matter should therefore become a gas of non-
interacting quarks and gluons.

In the confinement region, at lower temperatures and densities, strongly
interacting matter should exhibit hadronic behaviour. One has here considered on
the lattice an expansion in terms of the inverse coupling (strong coupling expan-
sion3)) or used in the continuum semiclassical solutions to the field equations
(instanton gasls)). The resulting description indeed provided many aspects of
hadron phenomenology, as given e.g. by dual string or bag models.

Strong and weak coupling approaches have evidently specified regions of
applicability and thus basically give one-phase descriptions. Nevertheless, they
already provide hints for a phase transition near the boundary of their regions
of validity. In the perturbative treatment of the quark-gluon gas, the pressure
(in first order) becomes negative at some temperature value, and this has been



interpreted as the onset of confinementls)

. In the strong coupling expansion,
there are indications for a phase transition due to Debye screening of colour
charges3). The suppression of large scale instantons leads to similar conclu-

16)

sions~"/. It is clear, however, that these 1imiting approaches cannot give us the

unified "whole-range" description we would 1ike to obtain from a basic theory.

The Monte Carlo evaluation of finite temperature QCD on the lattice now pro-
vides us with such a unified picture. The evaluation method itself was devised for
and first applied to the study of the confinement prob]em17). Its application
to finite temperature statistical mechanics is, however, quite straight-forward -
perhaps it is even more natural here, where the real physical temperature plays
the role of the Euclidean time in the confinement problem. In either case, the
lattice acts as scaffolding during the evaluation: both discreteness and finite-
ness are to be removed at the end, to give us continuum theory results.

I11. TWO-PHASE PHENOMENOLOGY

In order to introduce some of the questions and concepts of critical strong
interaction physics, we shall in this section briefly consider simple phenomeno-
logical models for the two "limiting" phases.

For the statistical mechanics of hadronic matter, we consider an ideal gas of
ground state hadrons and all their resonance excitations. The partition function
of such a resonance gas is

In 7,(8, V) = H%)—So(j:dm +(m) [ d*k Bk n? , (2.1)

for a system with zero chemical potential and, for simplicity, with Boltzmann
statistics; B™' = T is the temperature, V the spatial volume. From hadron
dynamics (dual stringls), baglg) models), the resonance spectrum <t(m) is known
to have the form

T(m) =d &m-m) +c 6(m-2m) m™@ ¢bm R

(2.2)

a, b, ¢, d = const. .
as first proposed by Hagedornzo). The first term in eq. (2.2) corresponds to a
d-fold degenerate ground state; for ¢ = 0 , we would thus simply obtain an ideal
gas of ground state hadrons. While a depends on the details of the model
used2 ), b is related quite generally to the string tension o (b? = 3o/4n
in four dimensions) or equivalently to the Reage slope.

From eq. (2.1) and (2.2) we obtain for the energy density of the resonance gas
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with eo(B) denoting the energy density of an ideal gas of ground state hadrons

LA The corresponding specific heat becomes

-a+7/2 e-m(B—b) } s

3 -]
cy(B) = co(B) + B { 5ley-e)) + ——57z [ dnm
(2nB) 2m
0 (2.5)
again the first term describes the ideal ground state gas.

It is we]]-knownzz)

and from eqs. (2.3/2.4) also immediately evident that the
spectral form (2.2) leads to critical behaviour. Depending on the exact value of
a , from some derivative of the partition function on we will have divergent

expressions at and/or above the critical temperature TC = b

To- illustrate what happens, we choose a =4 , c=d =1 . The specific heat
of the resonance gas then diverges at Tc . , while the energy density remains
finite there. Both are not defined for T > Tc . We have thus reached the end of
hadron physics when T = Tc ; without further information, we cannot say what

lies beyond TC .

The statistical mechanics of an ideal gas of massless quarks and gluons is
obtained from the partition function

_ Vv 3 1 1
In Zp(B, V) = rpys [ 4k [gg In {:WkT} +gzTn {m}]
(2.6)

Here % and 9 denote the bosonic and fermionic degrees of freedom, respec-
tively; for colour SU(3) and two quark flavours, we have (with spins and anti-
fermions)

9% = 8x2=16 ,

9 = 3x2x2x2=24
This leads to the Stefan-Boltzmann form of the energy density

egB/T“ = [(8n?/15) + (Im?/10)] =~ 12.2 (2.7)
with the first term corresponding to the gluon and the second to the quark com-
ponent of the gas

In fig. 1, we compare the energy density of hadronic matter, eq. (2.4), with
that of an ideal gas of quarks and gluons, eq. (2.7). We expect that with in-
creasing temperature, the constituent degrees of freedom, "frozen" in the



hadronic state, will "thaw" to make € attain its plasma value. We hope that QCD
will give us a unified description of this development, including the phase tran-
sition(s) separating the two limiting states. In the next sections we shall find
these expectations at least in part fulfilled.

I11. YANG-MILLS THERMODYNAMICS ON THE LATTICE

We shall follow the historical development of QCD thermodynamics and treat
first the case of pure Yang-Mills theory. This restriction to finite temperature
gluon matter allows us to introduce both formalism and evaluation method for a
simpler system already exhibiting many of the essential features of the full
theory; also at present the precision of the evaluation is definitely higher in
this simplified case. Since calculations based on colour SU(2)3'6’12) and those
using SU(3)8’10) do Tead to essentially the same results, it is moreover possi-
ble to reduce computer times by considering the smaller colour group. - The
extension to full QCD with fermions will be presented in section IV.

The partition function for a quantum system described in terms of fields A(x)
by a Hamiltonian H(A) is defined as
7 =TreBH , (3.1)

where T = B'1 is again the physical temperature. The conventional lattice forma-
lism is obtained from this in three steps: (1) reformulation of Z as path
integral; (2) introduction of the lattice; (3) change of "variables" from gauge
field to gauge group. Let us Took at this procedure in a Tittle more detail.

The Lagrange density of gluon QCD is given by

__1la w
£L--3 Fow Fa (3.2)
with
a _ a _ a _ a b ,c
Fuv = au Av 3, Au g fbc Au A, - (3.3)
Here the fabc are the structure functions of the relevant underlying gauge

group, whose generators Ai satisfy [Aa, Ab] =i fgb Ac 3 for SU(2), the colour
indices a, b, ¢ each run from one to two, for SU(3) from one to three. If we
set the structure functions equal to zero, we recover the photon gas structure:
it is the non-Abelian nature which gives us the gluon-gluon interaction. The

partition function Z can now be writtenza) in the form of a path integral
B
Z(B, V) = [ [d Al exp { f dt [ dx & [A(x, ©)] } (3.4)
0 )

using the Euclidean Lagrange density, X, with it=rt , and with periodicity
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in t, A(x, 0) = A(x, B) . The three-dimensional integral of the Hamiltonian
form ( H ~ [ d®x 3 (x) ) thus becomes an asymmetric four-dimensional one,
with the "special" dimension measuring the temperature.

In the next step, we replace the Euclidean x - t continuum by a finite

1att'ice24

), with N0 sites and spacing ag in the spatial part, NB sites and
spacing aB in the temperature direction. To assure the required periodicity in
T , we chose a lattice closed on itself: 121 + NB . For economy in the later
calculations, we work with lattices which are symmetric and also periodic in the
space part, although neither property would be necessary. - The integrals in the
exponent of eq. (3.4) now become sums, and we have V = (Ncao)3 , B = NBaB . The
thermodynamic 1imit requires N0 -» oo at fixed C the continuum Timit is ob-
tained by ag s aB - 0 with fixed N,a, , which forces also N, -» = . The
success of the approach rests on the (lucky) facts that already rather small
lattices (N0 ~5-10, NB ~ 3-5) seem to be asymptotic, and such that scale
changes (changes in lattice spacings) can be connected to changes in the coupling

strength g by the renormalization group relation, indicating continuum behaviour.

In the Tast step?4), we replace the gauge field "variable" Au‘(xi +xj)/2)
associated to the link between two adjacent sites i and j by the gauge group

element
X HX;

- : H J
Uig = e =il -x) A=) 1 (3.5)

where Au(x) = 2y Aiﬁx) . With this transformation, the partition function be-
comes

(8, V) = f du.. exp{-S(U)} (3.6)

I
{links} 1
where the SU(N) lattice action is given by

N, % 1
S(Uy =5 {2 = [1-zReTru,. U, U U]
92 " a N ij “jk Tkl CTd
o] {Po}
ac 1
t4 B I1-gReTrUs, Uy Yy Ul } (3.7)
B {PB}

Here the sum {PO} runs over all purely spacelike lattice plaquettes (ijkl) ,
while {PB} runs over all those with two spacelike and two "temperature-like"
links. - If we insert eq. (3.5) in eq. (3.6/3.7) and expand for small lattice
spacings (Ixi —le - 0) , then we recover in leading order the starting form
(3.4).

From eq. (3.6/3.7), the energy density

(-1/v) (31nz/3B)y = -(NéNBaé)_l (a1nZ/BaB)ac (3.8)

€
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is found to be6’25)

a
e = N(NNgadage?) (< = 11 -%Re Tr vUVU)>
o {P}
(o)
& 1
<<% 3 11-1geTr o> (3.9)
a N
B {PB}

with <> denoting the usual thermodynamic average

S(U)

<xs={fmdu e S xyy/gmau SV (3.10)

Eq. (3.9) is our starting point for the Monte Carlo evaluation of gluon thermo-
dynamics.

The evaluation is now carried out as fo]lowszs)

. The computer simulates an

Né X NB lattice; for convenience we choose ag = aB = a . Starting from a given
ordered (all U =1, "cold start") or disordered (all U random, "hot start")
initial configuration, successively each 1ink is assigned a new element U' ,
chosen randomly with the weight exp {-S(U)} . One traverse of this procedure
through the entire Tattice is called one iteration. In general, it is found that
five hundred or so iterations provide reasonable first indications about the
behaviour of the energy density (3.9), but for some precision one should have
more. The results to be shown here are obtained for colour SU(2), with typically
around three thousand iterations, after which we observe quite stable behaviour;
we have moreover reproduced our results also with the finite subgroup
approximation to SU(2)27). Our work was done with Nc =7, 9, 10 for

NB =2, 3, 4, 5; apart from expected finite lattice size effects9 ) there was no
striking N0 dependence of € , suggesting that in general the thermodynamic
limit is reached. To give at least some intuitive grounds for this, note that a

10 x 3 lattice has about 12,000 1ink degrees of freedom.
As result of the Monte Carlo evaluation, we obtain for a lattice of given size

o
and the lattice spacing a are for colour SU(N) related through

-51/121

(N _, NB) the energy density € as function of g . In the continuum limit, g

a = (11Ng?/48n?) exp {-24m?/11Ng?} ; (3.11)

this relation is found by requiring a dimensional parameter N to remain con-
stant under scale changes accompanied by corresponding changes in coupling
strength. Hence once we are in the region of validity of the continuum limit, eq.
(3.11) gives us the connection between g and a . Since (NBa)-l is the tempe-
rature in units of AL , we then have the desired continuum form of €(B) .

In fig. 2, we show the resulting energy density € as function of the tempera-
ture T . We first note that at high temperatures (T/AL 2.100) , the results of
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the Monte Carlo evaluation agree quite well with the anticipated Stefan-Boltzmann
form
e/T* = n?/5 . (3.12)

Let us now go to lower T . At about T =50 AL , € drops sharply. The deriva-
tive of € gives us the specific heat, shown in fig. 3. At T = 43 LY it has a
singularity-1ike peak, which signals the transition from bound to free gluons.
With AL taken in physical unitsza), this gives us TC = 200 MeV . How do we
know that it is the deconfinement transition which occurs here? There are two
separate pieces of evidence. We shall see shortly that below Tc the SU(2) Yang-
Mills system follows the behaviour of hadronic mattere), as given in section
II. Alternatively, one can study the behaviour of a static qq pair immersed in
a gluon system of temperature T 4’5’8); the free energy F of an isolated
quark then serves to define the thenmnal Wilson loop .<l.>= exp {-B F} as order
parameter. It is found that <L> is essentially zero below and non-zero above

Tc . Since <L>=0 corresponds to an infinite free energy of an isolated co-
Tour source, we have confinement below TC .

Coming now, as promised, to the temperature region just below TC , we show in
fig. 4 the difference between energy density and pressure,

A= (e - 3P)/T (3.13)

as taken from the Monte Carlo evaluation, compared to the corresponding hadronic
gas form &y from section II; both are given as functions of x = (TC/T) -1.
This comparison, if it leads to agreement on functional behaviour, also allows us
to determine the mass me of the glueball, as lowest gluonium state. We see from
fig. 4 that Mg = 4.5 Tc =~ 190 A provides quite good agreement with the Monte
Carlo data. Moreover, this value of Me (with physical parameters abou§4)850-
1000 MeV) is in reasonable accord with other lattice QCD determinations .

Finally let us have a look at how the Yang-Mills system behaves just above
deconfinementlz). While we expect perturbative behaviour at very high temperature,
it seems likely that the form just above Tc is still non-perturbative. If we
parametrize the contributions of the physical vacuum bubbles still present in the
plasma close to Tc in terms of a bag description, we have in the case of
colour SU(2) for the pressure

th 4 5(15
P=TeT [1-—1-8 (3.14)
and
e=®+HaT 448 (3.15)
S

for the energy density. Here B denotes the bag pressure and a, = 3w/ (111n4T/A)



is the running coupling constant, with A as scale parameter. In fig. 5 we see
that Bl/k ~ 190 MeV and A =~ 100 MeV yield a very good description of the func-
tional form of A = (e-3P)/T* . This implies a basically non-perturbative
approach towards asymptotic freedom at least up to T ~ ZTc . The role of higher

order perturbation corrections is presently still unclear 29)

A11 lattice results presented here were obtained with the Wilson form (3.7) of
the action, which provides the correct continuum 1imit. There are, however, other
lattice actions which also do this, and we may therefore ask if deconfinement,
both qualitatively and quantitatively, is independent of the choice of action. It
was recently shown that this is indeed the case30

In closing this section, we note that also the extension to the SU(3) system
has now been carried ou@’loxit requires greater computational efforts, because
there are eight group parameters instead of three. The behaviour observed is, how-
ever, in good agreement with that of the SU(2) system. In particular, we note
that at high temperature the energy density now approaches10

e/T" ~ 8n2/15 (3.16)

instead of eq. (3.12) in the SU(2) case. Both times we thus find the number of
degrees of freedom of a system of massless, non-interacting gluons for the corres-
ponding colour group. The deconfinement transition in the SU(3) case occurs at
TC/AL ~ 75-83 , which with the string tension re]ationza) gives Tce=150-170MeV,
also in accord with the SU(2) value.

In conclusion: we have seen that Monte Carlo techniques applied to lattice QCD
allow us to evaluate gluon thermodynamics over the whole temperature range. The
resulting behaviour shows the expected two-phase nature: at Tow temperatures, we
have a hadronic resonance gas of gluonium states; heating brings us to a decon-
finement transition and beyond that to an ideal gluon gas.

IV. QCD THERMODYNAMICS WITH QUARKS

In this section we want to extend the considerations of the previous chapter
to include quarks and antiquarks. We shall see that this br%ngs in a basically
new feature - the question of chiral symmetry restoration at high temperature.
The lattice formulation encounters as a result the problem of species doubl-
ingZ4’31), and in addition the Monte Carlo evaluation becomes considerably more
complex. Nevertheless, first results both on the full QCD energy density13) and
on chiral symmetry restoration13’14) have now appeared; we shall here consider
the former, returning to chiral symmetry in the following section.
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The QCD Lagrangian density for massless quarks of one flavour only can be
written
ol -l a
L (s A) = =g Py Py #0018 - g By M) g g (4.1)

Here, wu, v denote tensor, a, B spinor and a, b, ¢ colour indices. The finite
temperature Euclidean action becomes

B
sB(w, A) = - [d3 [ dtL(w, A) (4.2)
v 0

with periodic (antiperiodic) boundary conditions in the temperature integration
of the boson (fermion) fields. The full action thus is a sum

_ <6 F
SB(w, R) = Sg(A) + S(w, A) (4.3)
of the pure Yang-Mills part SG and the quark-gluon part SF . The Yang-Mills
system was treated in the previous section; we shall concentrate here on SF

Fermion theories on the lattice generally lead to species doub]ing31), unless
one is willing to accept chiral symmetry breakin924). We shall here use Wilson's
form24), in which chiral symmetry is recovered only in the continuum 1imit. We

consider again an asymmetric lattice, with Nc spatial and N, temporal sites.

B
On this lattice, the action SF of the quark-gluon sector is written13’25)
F _ kF(gz) 430 _
S 'ﬁ (o, - —5— E%TE;[%JI'YO)Umn+8‘%+6
— +
O (1) Un-6,n by - 51
kF(gz) 4aB 3
TT8 aB+aC¥£1{wﬂl'yu)umn+ﬁ¢h+ﬁ
— +
O () U gl d (4.4)
where we have suppressed all but symbolic lattice indices. The second term

in eq. (4.4) refers to that part of the lattice summation in which the gauge
group elements Unrn are associated with timelike lattice 1inks n, m ; in the
third, the links are spacelike.  The fermionic coupling K(g?) = kZ(g®)/8 is
the usual "hopping" parameter24’32).

In terms of SF and SG , the Euclidean form of the QCD partition function on
the lattice is now given by

G F,
Z=fn dU 1 dpgges (V-5 (U0 (4.5)
links sites



with the dU integration to be carried out for all links, the dy d& integra-
tions for all sites of the lattice. Since the fermion action SF has the form

sF=T(1-y e, (4.6)
- - + ~
M]_L = (1 Yu) Unm én,m-ﬁ+ (1+Yu) Urnn 5n,m+u s (4.7)
the integration over the anti-commuting spinor fields can be carried 0ut33) to
give an effective boson form
-s8(u)
Z=[ @m dle det(1-KM) . (4.8)

links

The Euclidean energy density € is obtainerd from Z ; it also becomes the sum

€ = eG-+sF of the pure gluon part (eq. (3.9)) and the quark-gluon partzs)

G
I S R N -S7(V)
g = -E2(N°N,a*Z)" [ m dUe det Q *
oBo Tinks
3
3K(g? -1y L K (@ -1
* { _Tl Tr(M, 071) _j_l uil Tr(M, Q) ) (4.9)

with Q = 1-KM(U) .

The computational problem beyond what is encountered in the pure Yang-Mills
case lies in the evaluation of det Q and of Q'1 . We shall here use the ex-
pansion of these quantities in powers of the fermionic coupling K ("hopping
parameter expansioh"32)), and retain in both cases only the leading term. By cal-
culating an ideal gas of massless fermions in the same approximation, we shall
then get some idea of how valid this procedure may be.

For det Q the leading term is

det Q = det(1-KM) ~1 (4.10)
("quenched approximation“34)), while in the expansion
<«
Q= [1-kMIT! = Qz KMyt (4.11)

because of gauge invariance, the first contribution to Tr(Q'IM) arises for the
shortest non-vanishing closed loop obtained from M(U) ~ U . For NB =2and 3,
this is a thermal loop, i.e., one closed in the temperature direction; hence in

that case, the first term is & = NB-l . For NB >4 , these loops are not the

only ones; but the non-thermal loops lead to negligibly small contributions, so

that we obtain on an isotropic lattice
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& atai [|<(92)]Nf3 2NB+2<L> (4.12)
with <L> for the expectation value of the thermal Wilson loop, and a for the
lattice spacing.

To test the convergence of the hopping parameter expansion, we compare13) in
table 1 the resulting energy density of an ideal gas of massless quarks with the
exact form %) for such a system, both calculated on lattices of the same size.
For Tow NB values, the approximation given by just the leading term is found to
be quite reasonable, with less than 10% errors for NB =2 and 3 . This leads
us to expect that also for QCD we can obtain an indicative estimate by retaining
that term only. This expectation is supported by preliminary results for SU(2)
fermions35): the energy density obtained by including all terms up to & =20 in
eq. (4.11) differs only by 10% from the leading term.

We now return to eq. (4.12) for the quark-gluon energy density of SU(N) QCD.
The fermion coupling K(g2) for massless quarks has been evaluated numerically
both at 1arge36) and at sma1137) g2 . The thermal Wilson Toop <L> can be cal-
culated by the usual finite temperature Monte Carlo techniques.

With the connection between g2 , the lattice spacing a and the lattice
scale AL, as given by the renormalization group re]ation38) (3.11)

we can then from eq. (4.12) obtain eF as function of the temperature

T-p" = (Nﬁa)'1 .

Comparing the leading term of the hopping parameter expansion for eF with
that of an ideal gas of massless fermions, Egg » We have from eq. (4.12)
N
e 7eby = 18K(g?)1 Pel> / N (4.13)

with K=1/8 , <L>= N for the ideal gas analog of the SU(N) case.

For the SU(3) case, which is obviously the physically most interesting one, we
display in table 2, for NB =3 and 4 , the values of <L> from ref.10), together
with the coupling K(g?) , which is taken from the u, d form of ref. 36), and
the resulting energy density ratio eF/agB . We note that the energy density very
quickly approaches its asymptotic value - and not because K and <L> separately
do so, but rather because these quantities, for each NB . together provide an
almost asymptotic energy density. In fig. 6 we display the temperature behaviour
of the combined NB = 3 and 4 results. We note a sharp drop around T ~ 80 A
(~ 0.4 01/2) , which presumably corresponds to the onset of confinement



In fig. 7 we show the overall energy density €/T* , obtained by combining our
above results for eF with the pure Yang-Mills results of section III. We con-
clude that full quantum chromodynamics with fermions indeed appears to lead to
the deconfinement behaviour observed in the study of Yang-Mills systems alone. In
particular, we note that at temperatures T 2 2Tc essentially all constituent

degrees of freedom have been “thawed".

V. DECONFINEMENT AND CHIRAL SYMMETRY RESTORATION

Quantum chromodynamics, for massless quarks a priori free of dimensional
scales,contains the intrinsic potential for the spontaneous generation of two
scales: one for the confinement force coupling quarks to form hadrons, and one
for the chiral force binding the collective excitations to Goldstone bosons39).
These two lead in thermodynamics to two possible phase transitions, characterized

by two critical temperatures, T. and T

c ch * Above Tc , the density is high

enough to render confinement unimportant: hadrons dissolve into quarks and gluons.

Above Tch , chiral symmetry is restored, so that quarks must be massless. For T
below both Tc and Tch , we have a gas of massive hadrons; for T above both
Tc and Tch , we have a plasma of massless quarks and gluons. Conceptually
simplest would be Tc = Tch 3 the possibility TC > Tch appears rather un-

11ke1y40). On the other hand, T_ < Tch would correspond to a regime of unbound

c
massive "constituent" quarks40), as they appear in the additive quark model for

hadron-hadron and hadron-lepton interactions41)

. The question of deconfinement
vs. chiral symmetry restoration thus confronts us with one of the most intriguing
aspects of quark-gluon thermodynamics.

The fermionic action of Wilson24)

used in the last section avoids

species doubling at the cost of chiral invariance. Even an ideal gas of massless
quarks in this formulation is not chirally 1nvariant42), since the expectation
value <Ob> is always different from zero. It has therefore been suggested42) to
use the difference between this "Stefan-Boltzmann" value and the corresponding
QCD value for Wilson fermions as the physically meaningful order parameter: it
would vanish when the behaviour of a non-interacting system of massless fermions
is reached.

In fig. 8 we show this order parameter as calculated for colour SU(3), in
leading power of the hopping parameter expansi0n13). It is non-zero up to
Tch =~ 100 LY and vanishes for higher temperatures. This suggests chiral
symmetry restoration slightly above deconfinement, with

Top /T =13 . (5.1)
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It remains open at present to what extent this will be modified by the inclusion
of virtual quark Toops, or if there are any significant finite lattice effects.

Using for the SU(2) case a chirally invariant action with the resulting
species doubling, it was found in ref. 14) that chiral symmetry restoration occurs
at
T h = (0.55 ¢ 0.07) v& (5.2)

here also virtual quark loops are neglected. Since in this determination only
<Py> is studied, it does not provide any information about Tc . To obtain

h/T , one therefore has to rely on some other T. determination. With the
rather Tow value of ref. 5), it is found that

Tch/Tc =1.6+0.2 . (5.3)
Using the largest TC obtained 6), we have instead
Tch/Tc =1.0 £ 0.1 (5.4)

so that the question of whether or not Tc = Tch appears to remain open.

VI. PHASE TRANSITION PARAMETERS

In the lattice evaluation of QCD thermodynamics, we have calculated all physi-
cal quantities in terms of the dimensional lattice scale A To convert Az
into physical units, we just have to measure one of these physical observables.
String tension considerations give for Yang-Mills systems

(1.1£0.2) x 102 /G = (4.440.8) Mey*)
A = { . " } (6.1)
(1.3£0.2) x 107 /5 = (5.2 0.8) Mev*™

in case of colour SU(2) and
45)

A = (5.0£1.5) x 107 /G = (2.0£0.6) MeV (6.2)
for colour SU(3). The deconfinement temperature is found to be
T.= (3% - a3 AL (6.3)
for SU(2) and
= (75 %) - g3l0)) a (6.4)
for SU(3). Taking the average of eq. (6.1), we have
[(170 - 210) + 30] MeV su(2)
T, ={ } (6.5)
[(150 - 170) + 50] MeV SU(3)

and thus 1ittle or no dependence of Tc on the colour group. This Yang-Mills
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value of the deconfinement temperature remains uneffected by the introduction of
quarks in the scheme of section IV. The temperature for chiral symmetry restora-
tion is accordingly given by relation (5.1).

From eq. (6.5) and the form of fig. 7, we can now estimate the energy density
values at the two transition points. For the SU(3) Yang-Mills case, we obtain

€(T,) = 200-300 MeV/fm® (6.6)

where we have assumed that the turn-over in € occurs at about half the Stefan-
Boltzmann value. This range, corresponding roughly to hadronic energy density,
seems physically quite reasonable. It is not known at present if and how much it
would be increased by the introduction of quarks; a shift proportional to that of
the Stefan-Boltzmann 1imit would double the value of eq. (6.6). This suggests
twice standard nuc1gar density (no = 150 MeV/fm®) as lower and four times
nuclear density as upper bound for the deconfinement transition. Present estimates
for the energy density expected in ultrarelativistic heavy ion co]]isions46) thus
put deconfinement within reach.

Chiral symmetry restoration, even if it occurs at only slightly higher tempera-
tures, seems to be considerably more difficult to attain. Just a small increase
beyond Tc brings us to the top of the Stefan-Boltzmann “shelf", where the
energy density is above 2 GeV/fm® .

VIT. CONCLUSIONS

Our basic conclusion is certainly that the lattice formulation of quantum
chromodynamics appears to be an extremely fruitful approach to the thermodynamics
of strongly interacting matter. It is so far the only way to describe within one
theory the whole temperature range from hadronic matter to the quark-gluon plasma.
It leads to deconfinement and provides first hints on chiral symmetry restoration.

We are still at the beginning. It is not really clear if Tc * TCh , finite
size scaling near the phase transitions has not been studied at all for T %0 ,
and the Tattice thermodynamics of systems with non-zero baryon number has not been
touched. Nevertheless, there seems to emerge today from (CD something already

suggested by percolation methods47) 48)

49)

and mean field
: a three state picture of strongly interacting matter

, instanton considerations
calculations
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Figure 8

FIGURE CAPTIONS

Energy density of hadronic matter (H) and of an ideal quark-gluon
plasma (P).

Energy density of the SU(2) Yang-Mills system, compared to the ideal
gas value Egg » @S function of temperature T . The curve is a fit.

The specific heat of the SU(2) Yang-Mills system as function of tempe-
rature T , obtained by differentiating the fit of fig. 2.

Interaction measure A = (e-3P)/T* as function of X = TC/T -1
compared to the resonance gas prediction with glueball mass
mg = 4, 4.5 and 5 TC .

Interaction measure A = (e-3P)/T* as function of temperature, com-
pared to the leading order perturbative form with bag correction
8'/* = 180 (a), 190 (b) and 200 (c) MeV .

: Fermionic energy density of the SU(3) system, compared to the ideal

gas value egp » @S function of the temperature. Circles correspond to

NB = 3 , triangles to NB =4 .

Comparison of the energy density of full QCD with that of the SU(3)
Yang-Mills theory, as obtained from a fit to fig. 6 and from ref. 10).

: The chiral order parameter [(<Uu>gp - <Wu>) / <Uw>gp] , where

<$\U>SB measures the chiral symmetry breaking of an ideal gas of
massless Wilson fermions on a finite lattice.
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NB R

2 1.086
3 0.944
4 0.764
5 0.557

Table 1 : Ratio R of the leading term of the hopping parameter expansion for

the energy density of an ideal gas of massless fermions to the exact

energy density on an infinite spatial lattice, at several NB values.

Ny | T/ 8K <Ls | ey
3| 8o 1.536 0.31| 0.374
84 1.512 0.63 | 0.726
89 1.496 0.73| 0.815
95 1.472 0.88 |  0.935
100 1.456 0.96 | 0.988
110 | 1.416-1.448 | 1.04 | 1.01£0.03
120 | 1.384-1.440 | 1.08 | 1.02£0.07
130 | 1.360-1.440 | 1.13 | 1.040.10
140 | 1.328-1.432 | 1.17 | 1.030.12
4| 76 1.456 0.29 | 0.434
84 | 1.416-1.448 | 0.60 | 0.84+0.04
90 | 1.384-1.440 | 0.64 | 0.85%0.07
100 | 1.328-1.432 | 0.73 | 0.89:0.13

Table 2 : Hopping parameter K , thenmal Wilson loop <L> and

for SU(3).

. F,F
ratio € /eSB
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