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\Ve discuss conformal Pomeron and Odderon using AdS/CFT, or, equivalently, Pomeron and 
Odderon in N = 4 SYM, in strong coupling. We explore the relation between the 'Ba;;so
expansiou 1 and the Delta-j curve in strong coupling, and we demonstrate how it can be applied 
to other Regge intercepts in addition to Pomeron. In particular, we focus on 'Odderons' which 
are the leading crossing-odd, C = -1, Regge singularities. From the perspective of AdS/CFT, 
while Pomeron can be identified with a Reggeized Graviton, Odderons correspond to Reggeized 
anti-symmetric A.dS5 Kalb-R.amond tensor-fields. 

1 Introduction 

The Pomeron is the leading order exchange in total cross sections at high energies (up to unitarity 
corrections once saturation is reached) and in many exclusive processes in the Regge limit as 
well. Its importance has been confirmed experimentally for example at HERA, where it was 
shown that cross sections for many different processes (DIS, DVCS, VM production . . .  ) show a 
power growth with 1/x, and that the same, universal gluon distribution functions describe these 
processes, and gluons dominate at small x. The odderon is the less well known cousing of the 
Pomeron, which is odd under charge conjugation. It dominates in Regge limit processes with the 
quantum numbers of the vacuum and C = -1 .  The exchange of the Pomeron has a long history 
of study from the weak coupling side using the BFKL equation. vVe present an alternative to 
the study of Pomeron and Odderon based on the AdS / CFT correspondence 1 , which allows us to 
study these processes at strong coupling. The AdS/CFT framework also presents an alternative 
way to study the saturation region. 

2 Pomeron at Strong Coupling 

At strong coupling the Pomeron was first introduced by Brower, Polchinski, Strassler and Tan 2 . 
They show that the Pomeron emerges as the Regge trajectory of the graviton. We can introduce 
a vertex operator for the Pomeron 

(1 )  



As other vertex operators corresponding to states in string theory, it must satisfy the on-shell 
condition 

(2) 

where f:;.j = (r/R)J (i3.o)(r/R)-J ,  and i3.o is the scalar Laplacian in curved space. The equation 
above can then be used to determine the function <i>±J(r) for the Pomeron vertex operator. In 2 

they show how we can expand the differential operator to order 1 / v'.\ around j = 2 

. cit _2u 1 2 
[J - 2 - 2e - 2y'); (fJu - 4)]<i>±(u) = 0, 

where u = - log ro/r = - log z/ zo with z = R2 /r. From here we can obtain the intercept 

2 
jo = 2 - v'>:. 

The above equation can also be  used to calculate the propagator for Pomeron exchange 2•3 

Lz 7rp L exp(=-) 
x(r, L) = (cot(-) +  i)g6e(l-p)7-.-- p; 2 smh L (pr) 2 

(3) 

(4) 

(5) 

where, due to conformal invariance, x is a function of only two variables, L = log(l + v + 
-jv(2 + v)) and T = log(�zz's) . L can be thought of as related to the 3 dimensional impact 
parameter (v is the chordal distance in H3) .  

3 Applications 

We can apply these methods to calculate the amplitude for any process where Pomeron exchange 
dominates. As mentioned in the introduction, those include many processes studied at HERA. 
However, single Pomeron exchange leads to an asymptotic power behavior in s, thus leading 
to the violation of the Froissart bound. Therefore effects beyond single Pomeron exchange 
eventually become important. One way to take them into account in a unitary way is to use the 
eikonal approximation, which sums multiple Pomeron exchanges to all order, but ignores the 
interactions between the Pomerons. In AdS this leads to 3 

A(s, t) = 2is J d2le-ilj_·Qi J dzdz P13 (z)P24 (z) (l - eix(s,b,z,z) ) . (6) 

Single Pomeron exchange would correspond to expanding the above to first order in X · To study 
different processes, we just provide different wavefunction for the external states, and it has 
already been applied to (and presented at previous Moriond conferences) DIS 4, DVCS 5, vector 
meson production 6 and DIS using the soft wall model 7 . 

4 Odderon at Strong Coupling 

In AdS/CFT, the Odderon was identified as the Regge trajectory of the Kalb-Ramond Bµv 
field 8 

(7) 

They must satisfy the on-shell condition. 

(8) 



where b.o,j = (r / R)-(i-1l (b.o,1 ) (r / R)(j-l) . To determine the differential operator for Odderon, 
b.0,1 , we can match the EOM at j = 1, appropriate in the infinite ,\ limit. In the case of the 
Odderon, in the supergravity limit we have two equations 

2 - (1) - 2 - (2) (DMaxweu - (k + 4) )Bu - 0 ,  (DMaxweu - k )Bu = 0 

This will give us for the physical state condition 

[j cit -2u 1 ( "2 2 )] ( ) - 1  - 2e - 1' uu - mAdS <P±J_ u = 0 2y ,\ 

(9) 

(10) 

where m�dS is either 16 or 0, depending on which of the two solutions we are considering. The 
corresponding intercepts are 

·a 1 8 
� 1 Jo = - � Jo = · 

This is analagous to weak coupling results. 

5 Beyond Leading Order 

( 1 1 )  

We can also find the intercept as the minimum of the j (b.) curve, which occurs at b. = 2. Let's 
look at the expansion of the inverse curve 

( 12) 
(S = j - 2 for Pomeron, j - 1 for odderon; T is the 'twist' Tp = 2 + k , Ta = 4 + k , Tb = k). 
We can expand So into powers of l/� 

Allowing us to solve iteratively 

C1 b-l 2 - (JO)T 

-b(i�)b(11)Cl 
-b(it) [bc11Jc2 + bc12)c1 + b(2oicf] , 

and so on, and bni are coefficients in the expansion of 

( 13) 

(14) 

To find the Odderon intercept we assume that in the diffusion limit f31 = 2� + 0(1)  so that we 
recover our result from the last chapter. Using this result and expanding S in powers of l/� 
this will give us for the first few terms (.=--1:_) k2 , bi,o (b1 •. 1 ) k2 b2 , 

1 .0  

and so on. When k = 0 we can show 
jg = 1 ' ( 15) 



i.e. the intercept for the type b odderons stays fixed at 1 regardless of the coupling strength. 
This is consistent with up-to-date weak coupling findings. For the type a Odderon we need to 
take some further assumptions. Recent work by Basso 9 shows that in an expansion 

b,.(S, k) = k + u1 (.\, k)S + u2(.\, k)S2 + · · · (16) 

the first term is a1 (.\, k) = � Yk( v1A) which give us f31 = 2V);y7 ( v1A) We assume that, for 
Odderons, the conformal dimensions can be matched with the one-loop calculation for the leading 
BKP "folded strings" , as done for the Pomeron. With these assumptions we get a 

. (-.a) _ _ _Ji_ _ �  __l_'3__ 96((3) + 41 288((3) + � -720((5) + 192((3) + � . . . ( ) Jo - l >J/2 >, + .>,3/2 + .>,2 + .>,5/2 + 
.\3 + · 17 

A similar procedure to find the Pomeron intercept to higher order has been done first in 10 , and 
later extended to higher order in 11 •12 . To go to our order in 1/V); we make use of some of the 
coefficients bn;. calculated in 1 2 . The presentation here has been brief due to space constraints, a 
detailed explanation will be presented in 13 , to appear very soon. 
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"In the talk we only presented the result up to order 1/ .\ 5/2 , and there was a typo in the last term. 


