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Preface 

The present thesis entitled "A Study of Compactification in Superstring 

Theories" is an outcome of research work carried out by me at the 

Department of Mathematics of Dayalbagh Educational Institute (Deemed 

University) , since September 2006, under the supervision and guidance of 

Dr Gunjan Agrawal , Reader , Department of Mathematics, Faculty of Science, 

Dayalbagh Educational Institute (Deemed University), Dayalbagh, Agra. 

The focus of the present study is the n-dimensional Minkowski space MI, an 

essential component of superstring compactification. The study undertaken 

revolves around various non-Euclidean topologies on MI, namely t, s, j, time 

and space topologies and deals with its topological properties and compact 

sets. 

The thesis consists of eight chapters together with an Introduction in the 

beginning and a Bibliography at the end. Chapter 1 comprises notation, 

some known definitions and results that are used in the subsequent chapters. 

In Chapter 2, a review of the relevant literature has been presented. Chapter 

3 is devoted to the comparison of the non-Euclidean topologies under study. 

In Chapter 4, topological properties of MI with each of the non-Euclidean 

topologies are studied. In Chapter 5, the notion of Zeno sequence in MI 

with each of the non-Euclidean topologies under study, is introduced and 

rigorously studied. This leads to the characterization of those subsets of MI 
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on which the subspace topologies induced from the Euclidean and a non

Euclidean topology are same. Analogue of Heine-Borel theorem in M with 

each of the non-Euclidean topologies under study is obtained in Chapter 6, 

using the study of Zeno sequences made in Chapter 5. In fact, the technique 

used here has emerged as a tool to study the compact sets in M with a non

Euclidean topology. In Chapter 7, several applications of the study carried 

out in Chapters 5 and 6 can be found. The main highlight is the study 

of simple connectedness of M with the non-Euclidean topologies. Finally, 

Chapter 8, concludes the thesis. 
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Introduction 

Presenting briefly the background of the subject and motivation for the work 

undertaken, this part of the thesis provides the organization of the thesis. 

0.1 Background 

The presence of four forces, namely Electromagnetic, Weak, Strong and 

Gravitational , is the essence of all the physical phenomena in nature. To 

find a unified theory encompassing all these forces and the particles which 

are subjected to these forces is one of the fundamental quest of physicists. 

The Standard Model describes the behaviour of the particles and their inter

actions through the strong, weak and electromagnetic forces , but not grav

itational, within a single theoretical frame work. String theory provides a 

promising candidate for a physical model that could accomplish the hunt of 

unification of all the four forces. 

In string theory, there is only one fundamental object namely string which is a 

I-dimensional object. Different particles are essentially strings with different 

modes of vibrations and all the interactions are explained by the splitting 
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and joining of these strings. String theory unifies not only the forces of the 

standard model in an elegant way, it incorporates gravity in a way which is 

apparently consistent with quantum mechanics. 

Superstring theory is a version of string theory that incorporates the notion 

of supersymmetry. As of now there are five consistent different superstring 

theories namely- Type I SO(32), Type lIA, Type lIB, SO(32) Heterotic and 

Es x Es Heterotic, each formulated in lO-dimensional spacetime. To obtain 

a candidate theory explaining our four dimensional universe, it is required 

to find a solution of one of these theories whose low energy physics is well 

described by the four dimensional effective field theory, containing the well 

established Standard Model of particle physics coupled to Einstein's general 

relativity. 

The standard paradigm for finding such solutions is compactification which 

refers to the compactification in Physics and not the compactification in 

Mathematics. Indeed, it is the mechanism of obtaining four dimensional 

physics at low energies out of a D-dimensional theory (D > 4) by postu

lating that the D-dimensional manifold is the product space M x K, where 

M is the 4-dimensional Minkowski space and K is a (D - 4)-dimensional 

compact manifold known as compactification manifold or internal manifold. 

Informally speaking, compactification in physics means curling up of extra 

dimensions into a compact manifold of size of the order of 10-33 cm which 

cannot be detected with the probes available to us. For a detailed study on 

compactification in superstring theories, we refer to [7, 13, 20]. 

While studying compactification in superstring theories, it has been observed 
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that the effective theory in Minkowski space depends on the geometrical and 

topological properties of the internal manifold. In Kaluja-Klein compacti

fication models , detailed properties of elementary particles are determined 

by the structure of core compact spaces. The study of the fundamental 

group of some internal manifolds, has led to a rank five low energy gauge 

group [1, 7, 8]. 

0.2 Motivation 

The 4-dimensional Minkowski space, an essential component of compactifi

cation in superstring theories, is the mathematical framework to formulate 

Einstein's special theory of relativity and is regarded as the spacetime con

struct of special relativity. Motivated by this physical relevance of Minkowski 

space together with the significant impact of topological structure of inter

nal manifolds on the study of compactification in superstring theories , the 

present thesis fo cuses on a topological study of the n-dimensional Minkowski 

space. 

To carry out a topological study on a structure, the first step is to look 

for a suitable topology. In case of the n-dimensional Minkowski space M, 

the most natural topology is the Euclidean topology. However, motivation 

for defining non-Euclidean topologies on M comes from the facts that (i) 

the Euclidean topology does not take into account the causal structure of 

Minkowski space and (ii) the homeomorphism group of Minkowski space 

with Euclidean topology is too large to be of any physical significance. Some 

of the non-Euclidean topologies of interest on Minkowski space include the 
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names of t , s , j , time space and fine topologies which were originally defined 

by E. C. Zeeman [22J for the 4-dimensional case. The present thesis revolves 

around a detailed study of these non-Euclidean topologies. 

0.3 Relevance in the Context of Superstring 

Compactification 

In recent years topology has firmly established itself as an important part 

of the physicist 's mathematical arsenal. The significance of topology has 

illcrcased further with the development of string theory. Ever since the "first 

superstring revolution" and the compactification of t he heterotic string on 

Calabi-Yau manifolds, interaction of Physics with Mathematics has been one 

of the primary forces driving progress in superstring theory. It is remarkable 

to note that, the cohomology groups of a internal manifold probe important 

fundamental information about its geometrical structure and playa central 

role in the physical analysis concerning string theory. Also, the effective 

theory observed in the Minkowski 's space depends on the geometrical and 

topological properties of the internal manifold [7, 13, 20J. Because of this 

power of topology, study of the n-dimensional Minkowski space with various 

non-Euclidean topologies, the subject matter of the present thesis, forms a 

part of the study of string compactification. 
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0.4 Objectives 

In the present work, a comprehensive study of the n-dimensional Minkowski 

space with the non-Euclidean t, s, f, time and space topologies incorporating 

the causal structure of spacetime, is undertaken. The study is aimed at the 

following: 

(i) Comparison of Euclidean, t, s, f , time, space and fine topologies. 

(ii) Investigation of various topological properties, namely separation 

axioms, countability axioms, separability, path connectedness, com

pactness, local compactness, metrizability, Lindelofness etc. 

(iii) Characterization of compact sets. 

(iv) Study of the fundamental group. 

o. 5 Techniques 

In this section, techniques of the proofs of the main results in the thesis 

along with their cruxes have been described. The symbol MI stands for the 

n-dimensional Minkowski space. 

Topological Properties: It is well known that the Euclidean n-space is 

path connected because for any two distinct points in it, the straight line join

ing them is a path. However , when MI is considered with the non-Euclidean 

topologies undertaken in the present study, which are finer than the Eu

clidean topology, this straight line path need to be checked for continuity. It 

has been found that in MI with t topology, it is continuous if the difference 
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x - y of the two given points x and y E M is a timelike vector. Otherwise , 

a third point z E M is chosen so that x ..:.... z and z - yare timelike vectors. 

Similar technique is used to prove the path connectedness of M with the 

other non-Euclidean topologies. 

To obtain the separability of M with non-Euclidean topologies, it is proved 

that OCn
, where OC is the set of rationals , is dense in the corresponding space 

by showing that each of its nonempty open set intersects with OCn . However , 

it is worthwhile mentioning here that for M with time and space topologies, 

it is proved in several steps and the technique used is completely different 

from the one used in the Euclidean n-space. For the other non-Euclidean 

topologies the result is proved using the fact that OCn is dense in M with the 

Euclidean topology. 

The other topological properties are proved or disproved by using respective 

definitions or method of contradiction. 

Compact Sets: The celebrated Heine-Borel theorem that characterizes the 

compact sets of the Euclidean n-space gives no clue about the compact sets 

of M with the non-Euclidean topologies under study except that they will be 

closed and bounded in the Euclidean n-space. To characterize the compact 

sets in these spaces a new line of thought, namely the notion of Zeno sequence 

in Minkowski space with each of the non-Euclidean topologies, is introduced 

and developed. The characterization is then obtained in terms of this new 

notion of Zeno sequences. 

Subsets Having Same Subspace Topologies: For a nonempty subset 
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A of M, the subspace topologies induced on A from the non-Euclidean 

topologies are in general finer than the Euclidean topology because the non

Euclidean topologies under present study are all finer than the Euclidean 

topology. The reverse containment is proved to be true for certain sets by 

using the notion of Zeno sequence and the method of contradiction. 

Simple Connectedness: It is well-known that the Euclidean 2-space is 

simply connected, for it is path connected and any two of its loops are path 

homotopic by straight line path homtopy. However , the map defined by 

straight line path homotopy may not be . continuous, if the topology under 

consideration is a non-Euclidean topology. In the present work, two loops 

have been constructed in the 2-dimensional Minkowski space with each of 

the non-Euclidean topologies under study and it has been found using the 

study of Zeno sequences and compact sets, that indeed no path homotopy 

exists between them, thus proving the spaces to be non-simply connected. 

Further, the n-dimensional Minkowski space with the t and time topologies 

is proved to be non-simply connected by exploiting the 2-dimensional case 

and using the theory of retracts . 

0.6 . Chapter-wise Description 

The thesis begins with an 'Introduction' followed by Chapters 1 and 2 en

titled 'Notation and Preliminaries' and 'Survey of the Relevant Literature', 

respectively, providing foundation for the thesis . 

Chapter 3, entitled 'Comparison of Topologies', explores the relationship 
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between the non-Euclidean t, s, f, time, space and fine topologies on the n

dimensional Minkowski space M by meticulously studying the mathematics of 

some of its fundamental subsets like cones, hyperplanes, straight lines etc. It 

is proved that the time topology is strictly finer than the t and fine topologies, 

the space topology is strictly finer than the s and fine topologies, the fine 

topology is strictly finer than the f topology, the t topology is strictly finer 

than the f topology and the s topology is strictly finer than the f topology 

while the t, s and fine topologies are non-comparable and the time and space 

topologies are also non-comparable. 

Topological properties of MI with each of the t, s, f, time and space topologies 

have been dealt with in Chapter 4 entitled 'Topological Properties ', which 

have been further studied in a later chapter after characterizing compact 

sets in these spaces in Chapter 6. It is proved that each of these spaces is a 

path connected, separable, non-regular, non-locally compact, non-Lindelof, 

non-second countable space with the exception of first countability : MI with 

t or s or f topology is proved to be first countable while with time or space 

is not. 

In Chapter 5, entitled 'Zeno Sequence' , the concept of Zeno sequence is intro

duced in MI with each of the non-Euclidean topologies under study, which was 

originally defined by Zeeman [22] in 4-dimensional Minkowski space with fine 

topology to study the homeomorphism group of it. Relevant examples have 

been explored and it is proved that a Zeno sequence in MI with t topology ad

mits a subsequence whose image is closed in it but not in Euclidean n-space. 

Those subsets of MI, that have the same subspace topologies as induced from 
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the Euclidean and t topologies have been characterized. Further, necessary 

condition for a set to be open in M with t topology is obtained, besides 

many other results. Analogous results are obtained for sand f topologies 

using similar techniques with suitable changes as used in the corresponding 

results for t topology. Further, this study has been carried out for time and 

space topologies as well. However the techniques employed this time differ 

a lot from that of the ones in t topology. This study leads to important 

contributions in the succeeding chapters. 

An analogue of the well known Heine-Borel theorem in M with each of the 

non-Euclidean topologies has been obtained in Chapter 6 which is entitled 

'Compact Sets' by proving that a subset of M is a compact subspace of M with 

t topology or s topology or f topology or time topology or space topology 

if and only if it is a compact subspace of Euclidean n-space and does not 

contain completed image of any Zeno Sequence in the corresponding space. 

There by, it is shown that r, the unit n-cube, which is compact in Euclidean 

n-space is not compact in M with any of the non-Euclidean topologies under 

study. 

The study carried out in Chapters 5 and 6 is used in Chapter 7 entitled 

'Applications' to study the continuity of maps and simple connectedness of 

M with the non-Euclidean topologies under study. It is proved that the 

2-dimensional Minkowski space with each of the t, s, f, time and space 

topologies has a non-trivial fundamental group and is not simply connected. 

Further, the case n = 2, has been exploited to prove the non-simple connect

edness of M with t and time topologies, for n > 2. 
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Finally, Chapter 8 entitled 'Conclusion' concludes the thesis. Thereafter a 

list of research papers and books referred to during the course of the present 

work is provided in the Bibliography. 

Note: Detailed proofs of the results obtained have been provided. However, 

if the technique is same to prove a particular result for different topolo

gies, then only suitable changes have been mentioned and detailed proofs are 

skipped to avoid complexity of the presentation, although an independent 

visualization is required for each topology. 
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Chapter 1 

Notation and Preliminaries 

In this chapter, some basic notation, known definitions and results which are 

used in the succeeding chapters are provided. 

1.1 Basic Notation 

Throughout , JR, lK and N denote the set of reals, the set of rationals and the 

set of naturals respectively. For n E N, JRn denotes the n-dimensional real 

vector space. For x, yin JRn, d(x, y) denotes the Euclidean distance between 

x and y and for r: > 0, N{E(X) denotes the Euclidean neighbourhood ofradius 

r: centered at x given by the set {y E JRn : d(x , y) < r:}. For x , y in jRn, the 

map r : [0, 1] ---t jRn defined by r(t) = (1 - t)x + ty , t E [0 , 1]' is denoted by 

r x y. The image of it, which is the line segment joining x and y, is denoted 

by [x , y]. For A ~ X, the complement of A in X is denoted by X - A. 

11 



1.2 Minkowski Space 

For n E Nand n > 1, JRn with the bilinear form 9 : JRn x JRn -----+ JR , satisfying 

the following properties: 

(i) the bilinear form is symmetric, i.e., for all x , y E JRn, g(x , y) = g(y ,x) 

(ii) the bilinear form is non-degenerate, i.e , if for all y E JRn, g(x, y) = 0, 

then x = 0, and 

(iii)the bilinear form is of index one, i.e., there exists a basis {eo, el , · · · , en- I} 

for JRn with 

1 if i = j = ° 
-1 if i = j = 1, . . . , n - 1 

° if i # j 

is called the n-dimensional Minkowski space, henceforth denoted by MI. The 

bilinear form 9 is called the Lorentz inner product and the matrix (7]i j ) nxn is 

known as the Minkowski metric. 

Elements of MI are called events. F ,,\,n -'- l i or an event , x == L....i=O X ei, 

the coordinate XO is called the time component and the coordinates 

X l , . . . ,xn - 1 are called the spatial components of x relative to the basis 

{eO, e1, . .. , en-I}' In t erms of components, the Lorentz inner product g(x, y) 

of two events x == 2:::-01 xiei and y == 2::~:01 yiei is given by XOyo - 2:::-11 xiyi. 

The Lorentz inner product induces an indefinite characteristic quadratic form 

Q on MI defined by Q(x ) = g(x , x ). The group of all linear operators T on 

MI which leave the quadratic form Q invariant , i. e., Q(x ) = Q(T(x )) , for all 

x E MI , is called the Lorentz group. For more details , we refer to [10, 15]. 

An event x E MI is called timelike, lightlike (also called nUll) or space-
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like, according as Q(x) is positive, zero or negative. The sets GT(x) = 

{y EM: Q(y-x) > O}U{x} ,GL(x) = {y EM: Q(y-x) = O} ,GS(x) = 

{y EM: Q(y - x) < O} U {x} are likewise respectively called the time cone, 

light cone (also called null cone) and space cone at x. A straight line is called 

timelike straight line or light ray or spacelike straight line according as it is 

parallel to a timelike or lightlike or spacelike vector. A hyperplane of M is 

called space like if each of its nonzero element is a spacelike vector. Space 

axes refer to the spacelike hyperplanes together with their translates. For 

further details, we refer to [15, 19, 22]. 

c:~ Time Cone 

- ----- - ,._ , 

pare "ine 

... ----

3-Dimensional Minkowski Space 

1.3 Topologies on Minkowski Space 

In this section, we define those non-Euclidean topologies on the n-dimensional 

Minkowski space M that are undertaken in the present work: these topologies 
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were originally defined by Zeeman [22] on the 4-dimensional Minkowski space 

and continue to be studied by various researchers till date. 

Definition 1.3.1. The Euclidean topology on the n-dimensional Minkowski 

space M is defined to be the topology generated by the basis {N! (x) : t > 

0, x EM}. Henceforth, M with Euclidean topology will be denoted by ME. 

For A ~ M, the subspace A of ME will be denoted by AE. 

Definition 1.3.2. The t topology on then-dimensional Minkowski space M 

is defined to be the topology generated by the basis {N! (x) n CT (x) : t > 

0, x EM}. Now onwards, M with t topology will be denoted by Mt. Further 

for x E M, the set N! (x) n CT (x) will be denoted by N; (x) and will be called 

the t neighbourhood of radius t centered at x. For A ~ M , the subspace A 

of Mt will be denoted by At. 

Definition 1.3.3. The s topology on the n-dimensional Minkowski space M 

is defined to be the topology generated by the basis {N
f

E (x) n CS (x) : t > 

0, x EM}. Henceforward, M with s topology will be denoted by MS. For 

x E M, the set N!(x) n CS(x) will be denoted by N:(x) and will be called 

the s neighbourhood of radius t centered at x. For A ~ M, the subspace A 

of MS will be denoted by AS. 

Definition 1.3.4. The f topology on the n-dimensional Minkowski space 

M is defined to be the topology generated by the basis {N! (x) n (CS (x) U 

CT(x)) : t > 0, x EM}. From now on, M with f topology will be denoted 

by MI. For x E M, the set N!(x) n (CS(x) U CT(x)) will be denoted by 
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N! (x) and will be called the f neighbour hood of radius E centered at x. For 

A S;;; M, the subspace A of MI will be denoted by AI. 

Definition 1.3.5. The time topology on the n-dimensional Minkowski space 

M is defined to be the finest topology on M that induces I-dimensional 

Euclidean topology on every timelike straight line. Henceforth, M with time 

topology will be denoted by MT. For A S;;; M, the subspace A of MT will be 

denoted by AT. 

Definition 1.3.6. The space topology on the n-dimensional Minkowski space 

M is defined to be the finest topology on M that induces (n - 1 )-dimensional 

Euclidean topology on every space axis. Now onwards, M with space topol

ogy will be denoted by MS. For A S;;; M, the subspace A of MS will be 

denoted by AS. 

Definition 1.3.7. The fine topology on the n-dimensional Minkowski space 

M is defined to be the finest topology .on M that induces I-dimensional 

Euclidean topology on every timelike straight line and (n - 1 )-dimensional 

Euclidean topology on every space axis. From now on, M with fine topology 

will be denoted by MF. For A S;;; M, the subspace A of MF will be denoted 

by AF. 

Remark 1.3.8. Since, for x E M , N;(x), N;(x) , N!(x) are contained in 

N;; (x), t, sand f topologies on M are finer than the Euclidean topology 

on M. Further, the time and space topologies are finer than the Euclidean 

topology on M, for the Euclidean topology induces I-dimensional Euclidean 
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topology on every timelike straight line and (n - 1 )-dimensional Euclidean 

topology on every space axis. 

1.4 Topological Properties 

Throughout this section, X denotes a topological space. 

Separation Axioms: A space X is called a Tl space if finite points sets are 

closed in it . X is said to be Hausdorff if for each pair x, y E X of distinct 

points of X , there exists disjoint open sets containing x and y respectively. X 

is called regular if for each pair consisting of a point x and a closed set A not 

containing x, there exists disjoint open sets containing x and A, respectively. 

X is said to be completely regular if for each point and each closed set A 

not containing x, there is a continuous function f : X ~ [0,1] such that 

f(x) = 1 and f(A) = {O}. X is said to be normal if for each pair A, B of 

disjoint closed sets of X, there exist disjoint open sets containing A and B 

respectively. A Tl normal space is completely regular , Tl completely regular 

space is regular , Tl regular space is Hausdorff and Hausdorff space is T1 . 

Countability Axioms and Separability: A space X is said to have a 

countable basis at x E X if there is a countable collection '13 of open sets 

containing x such that each open set containing x contains at least one of 

the elements of 'B. A space that has a countable basis at each of its points is 

said to be the first countable. A space X is called second countable if X has 

a countable basis for its topology. A space having a countable dense subset 

is said to be separable. It may be Boted that a second countable space is first 
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countable and separable. 

Connectedness: A space X is said to be connected if there does not exist 

disjoint nonempty open subsets of X whose union is X . A space X is called 

path connected if for every pair of points x, y, there exists a continuous map 

f : [0, 1] ---+ X such that f(O) = x and f(l) = y. A path connected space is 

a connected space. 

Compactness: A collection A of subsets of X is said to be locally finit e 

in X if every point of X has an open neighbourhood that intersects only 

finitely many elements of A. A collection 'B of subsets of X is said to be 

a refinement of a collection A of subsets of X if for each element B of 'B , 

there is an element A of A containing B . An open covering of a space X 

is a collection of its open sets whose union is X. A space X is said to be 

compact if every open covering of X contaills a finite sub collection that also 

covers X. A space X is said to be Lindelof if every open covering contains a 

countable sub collection that also covers X. A space X is said to be locally 

compact at x E X if there is some compact subspace of X that contains a 

neighbourhood of x. If X is locally compact at each of its points , X is called 

locally compact. A space X is said to be paracompact if every open covering 

A of X has a locally finite open refinement 'B t hat covers X. A compact 

Hausdorff or locally compact Hausdorff or paracompact Hausdorff space is 

regular. 

Metrizability: A space X is said to be metrizable if there exists a metric 

on the set X that induces the topology of X . 
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Locally Euclidean: A space X is said to be locally m-Euclidean if for each 

x E X there is a neighbourhood of x that is homeomorphic to an open subset 

of ]Rm. 

Simple Connectedness: Two paths f , 9 : [0, 1] --+ X are said to be path 

homotopic if they have the same initial point x and the same final point y, 

and if there is a continuous map F : [0, 1] x [0 , 1] --+ X such that 

F(s , 0) = f(s) and F(s , 1) = g(s) , 

F(O, t) = x and F(I, t) = y, 

for each s E [0 , 1] and each t E [0,1]. If f is a path in X from x to y and 

if 9 is a path in X from y to z, then the product f * 9 is defined to be the 

path given by the join of f and g. The set of path homotopy classes of loops 

based at x EX, with the operation * is called the fundamental group of X 

relative to the base point x. A space is said to be simply connected if it is 

path connected and has trivial fundamental group. 

For more topological details , we refer to [3 , 11 , 14]. 
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Chapter 2 

Survey of the Relevant 

Literature 

The study of topological and differential geometric structures on spacetime 

models has emerged as a front line area of research during the past few 

decades. The present thesis is directed towards a detailed topological study of 

a spacetime model, namely Minkowski space. In this chapter, a brief account 

of the development of this topic is presented, as found in the literature. 

2.1 Review on Topological Study of Minkowski 

Space 

N on-Euclidean topologies on 4-dimensional Minkowski space were first intro

duced by Zeeman [22] in 1967. These topologies include fine and some other 

non-Euclidean topologies which were later named as space topology [16], time 

topology [17], t topology [17], s topology [17] etc. Studying the homeomor-
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phism group of 4-dimensional Minkowski space with fine topology, Zeeman 

in his paper [22] mentioned that it is Hausdorff, connected, locally connected 

space that is not normal, not locally compact and not first countable. His 

results were interesting both topologically and physically; topologically, be

cause Minkowski space with fine topology had a homeomorphism group that 

one could calculate explicitly and the calculation was quite nontrivial; phys

ically, because that homeomorphism group was the group generated by the 

Lorentz group, translations and dilatations which was exactly the one physi

cists would want it to be. 

Continuing the study of non-Euclidean topologies, Nanda in his 

papers [16, 17] mentioned that the 4-dimensional Minkowski space, with the 

space topology is Hausdorff but neither normal nor locally compact nor sec

ond countable and that M with each of the t topology and s topology is a non

normal, non-compact Hausdorff space besides proving that the 4-dimensional 

Minkowski space with space, t and s topologies have their homeomorphism 

group generated by the Lorentz group, translations and dilatations. 

Further , Nanda and Panda [18] introduced the notion of a non-Euclidean 

topology namely order topology and obtained that it is a non-compact , non

Hausdorff, locally connected, connected, path connected, simply connected 

space. 

Quite recently in 2007, Dossena [2] proved that the n-dimensional Minkowski 

space, n > 1, with the fine topology is separable, Hausdorff, non-normal, non

locally compact, non-LindelOff and non-first countable. He further obtained 

that 2-dimensional Minkowski space with fine topology is path connected but 
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not simply connected and characterized its compact sets. 

Research has also been carried out on the n-dimensional Minkowski space 

from differential geometric view-point , e.g. Formiga et al. [4] established 

the Serret-Frenet equations in the 4-dimensional Minkowski spacetime and 

consequently provided a simple proof of the fundamental theorem of curves 

in Minkowski space. 

2.2 Review on Other Spacetime Manifolds 

The seminal work of Zeeman [22] , in due course of time, inspired several gen

eralizations to curved spacetimes of general relativity with topologies based 

on the idea of causal structure. Gobel [6] defined and investigated the gen

eral relativistic analogue of the Zeeman 's fine topology; Hawking [9] et al. 

proposed path topology, which is defined in terms of continuous timelike 

curves for strongly causal spacetimes and determines the causal, different ial 

and conformal structure of spacetime. Further , the path topology on the 

4-dimensional Minkowski space is same as that of the t topology on it [15]. 

Fullwood [5] suggested a physically elegant topology on spacetime defined 

solely in terms of causal structure. In 2006, Kim [12], showed that the path 

topology of Hawking et al. can be extended to the causal completion of a 

globally hyperbolic Lorentzian manifold. 
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Chapter 3 

Comparison of Topologies 

In this chapter, relationship between the non-Euclidean t, s, j, time, space 

and fine topologies on the n-dimensional Minkowski space has been explored 

by meticulously studying the mathematics of some of its fundamental subsets 

like cones, hyperplanes, straight lines etc. with respect to each of these 

topologies. It is proved that the time topology is strictly finer than the t 

and fine topologies, the space topology is strictly finer than the s and fine 

topologies, the fine topology is strictly finer than the j topology and the t 

and s topologies are strictly finer than the j topology while the t, sand 

fine topologies are non-comparable and time and space topologies are also 

non-comparable. 
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3.1 Open Sets of Minkowski Space with Time 

and Space Topologies 

In this section, equivalent conditions for a set to be open in MI with each of 

the time and space topologies are obtained. 

Proposition 3.1.1. Let MIT be the n-dimensional Minkowski space MI with 

time topology and G ~ MI. Then G is open in MIT if and only if G nTis open 

in TE
, fo r every timelike straight line T. Consequently, a subset F of M is 

closed in MIT if and only if F nTis closed in TE , for every timelike straight 

line T. 

Proof. The "only if" part follows trivially. To prove the "if" part, it is 

sufficient to notice that if G nTis open in T E , for every timelike straight line 

T and G is not open in MIT, then the topology generated by G and the open 

sets of MIT is strictly finer than the time topology and induces Euclidean 

topology on every timelike straight line. This is a contradiction in view of 

the fact that the time topology is the finest topology that induces Euclidean 

topology on every timelike straight line. D 

Proposition 3.1.2. Let MIs be the n -dimensional Minkowski space MI with 

space topology and G ~ MI. Then G is open in MIs if and only if G n (5 is 

open in (5E, for every space axis (5. Consequently, a subset F of MI is closed 

in MIs if and only if F n (5 is closed in (5E, for every space axis (5. 

Proof. It can be proved in the same way as that of Proposition 3.1.1, by 

considering space axes in place of timelike straight lines. D 
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3.2 Subsets of Minkowski Space 

In this section, a detailed study of the important subsets, namely cones, 

neighbourhoods , straight lines, hyperplanes etc., of the n-dimensional 

Minkowski space has been carried out. This analysis has been used rigorously 

in the succeeding section and forthcoming chapters. 

In the following proposition, it is proved that the time and space cones based 

at a point are not open in the Euclidean n-space. 

Proposition 3.2.1. Let:ME be the n-dimensional Minkowski space :M with 

Euclidean topology and x E:M. Then GT(x) , CS(x ) and CT(x) U CS(x) are 

not open in :ME. 

Proof. For E > 0 and x = E~:ol xiei' consider y E :M such that yl = Xl + ~ 

and yi = Xi, for i i-I , 0 ~ i ~ n-1. Then Y E NEE(x) and y ~ CT(x) . Hence 

N:: (x) ct. CT (x), for any E > O. This proves that x is not an interior point 

of CT(x) in :ME and therefore CT(x) is not open in :ME. That CS(x) and 

CT(x) U CS(x) are not open in :ME can be proved analogously by showing 

that x is not an interior point of CS (x) and CT (x ) U CS (x) respectively in 

~. 0 

In the following proposition, it is proved that the time and space cones punc

tured at their base points are open in the Euclidean n-space while the light 

cone is closed. 

Proposition 3.2.2. Let:ME be the n-dimensional Minkowski space :M with 

Euclidean topology and x E:M. Then CT(x) - {x} , CS(x) - {x} and 

(CT(x) U CS(x)) - {x} are open in:ME while CL(x) is closed in :ME. 
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Proof. Let the map j : ME ~ IR be defined by j(u) = (UO - X O)2_ 

L:::11(Ui - Xi)2, for u E M. Then j being the product and sum of real 

valued continuous functions is continuous. The result now follows by noting 

that j-1(0, 00) = CT(x) - {X} , j-1(-00,0) = CS(x) - {x}, j-1(IR - {O}) = 

o 

The following three propositions discuss the openness of time and space cones 

in the n-dimensional Minkowski space with each of the t, sand j topologies. 

Proposition 3.2.3. Let Mt be the n-dimensional Minkowski space M with t 

topology and x EM. Then CT (x) is open in Mt while CS (x) is not. 

Proof. Let y E CT(x) - {x}. Then by Proposition 3.2.2, y is an interior point 

of CT(x) - {x} in ME and hence in Mt. Further, for E > 0, N;(x) ~ CT(x). 

This implies that each point of CT (x) is an interior point of it in Mt. Hence 

CT (x) is open in Mt. That CS (x) is not open in Mt follows by noting that 

N; (x) , for any E > 0, being not contained in CS (x), x is not an interior point 

of CS(x) in Mt. 0 

Proposition 3.2.4. Let MS be the n -dimensional Minkowski space M with 

s topology and x E M. Then CS(x) is open in MS while CT(x) is not. 

Proof. It can be proved in the same way as that of Proposition 3.2.3 by 

considering s neighbourhood in place of t neighbourhood in the proof. 0 

Proposition 3.2.5. Let Mf be the n-dimensional Minkowski space M with 

j topology and x E M. Then CT(x) U CS(x) is open in Mf while CT(x) and 

CS (x) are not. 
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Proof. It can be proved in the same way as that of Proposition 3.2.3 by 

considering f neighbourhood in place of t neighbourhood in the proof. D 

In the following two propositions, it is proved that the t, sand f neighbour

hoods are not open in ME while these neighbourhoods punctured at their 

base points are open in ME. 

Proposition 3.2.6. Let ME be the n-dimensional Minkowski space M with 

Euclidean topology and x E M. Then none of N;(x) , N:(x) and N!(x) is 

open in ME. 

Proof. The result follows by noting that x is not an interior point of any 

of N; (x), N: (x) and N!(x) in ME which can be proved in the same way 

as it has been proved in Proposition 3.2.1 that x is not an interior point of 

D 

Proposition 3.2.7. Let ME be the n-dimensional Minkowski space M with 

Euclidean topology and x E M . Then for E > 0, N;(x) - {x} , N:(x) - {x} 

and N!(x) - {x} are open in ME. 

Proof. Since N;(x) - {x} = N!(x) n (GT(x) - {x}) and N:(x) - {x} 

N!(x) n (GS(x) - {x}), N/(x) - {x} = NfE(x) n [(GT(x) U GS(x)) - {x}], 

the result follows from Proposition 3.2.2. D 

It is mentioned without proof in [17] that the t topology on the 4-dimensional 

Minkowski space induces Euclidean topology on a timelike straight line and 

discrete topology on a light ray and a space axis. In the following two propo

sitions, these results are proved for the n-dimensional case. 
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Proposition 3.2.8. The t topology on the n-dimensional Minkowski space 

M induces 1-dimensional Euclidean topology on a timelike straight line. 

Proof. Let T be a timelike straight line. Since, for x E M, N;(x) ~ N!(x), 

it follows that the topology on TE is coarser than the topology on Tt. Hence 

it is sufficient to prove that N;(x) nTis open in TE. Since 

if x E T 

if x tf- T, 

the assertion follows from Proposition 3.2.7. o 

Proposition 3.2.9. The t topology on the n-dimensional Minkowski space 

M induces discrete topology on a light ray and on a space axis. 

Proof. Let A be a light ray or a space axis and pEA. Then for E > 0, N;(p) n 

A = {p}. This proves the result. o 

It is mentioned without proof in [17] that the s topology on the 4-dimensional 

Minkowski space induces Euclidean topology on a space axis and discrete 

topology on a light ray and a timelike straight line. In the following two 

propositions, these results are proved for the n-dimensional case. 

Proposition 3.2.10. The s topology on the n-dimensional Minkowski space 

M induces 3-dimensional Euclidean topology on a space axis. 

Proof. In view of Proposition 3.2.7, the result can be proved in the same 

way as that of Proposition 3.2.8, by considering s neighbourhood in place of 

t neighbourhood. o 
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Proposition 3.2.11. The s topology on the n-dimensional Minkowski space 

M induces discrete topology on a timelike straight line and on a light ray. 

Proof. It can be proved in the same way as that of Proposition 3.2.9, by 

considering s neighbourhood in place of t neighbourhood. 0 

The following two propositions discuss the subspace topologies induced on 

timelike straight lines, light rays and spacelike hyperplanes from f topology. 

Proposition 3.2.12. Let M be the n -dimensional Minkowski space. Then 

the f topology on M induces Euclidean topology on a time like straight line 

and on a space axis. 

Proof. In view of Proposition 3.2.7, the result can be proved in the same way 

as that of Proposition 3.2.8, by considering f neighbourhood in place of t 

neighbourhood. 0 

Proposition 3.2.13. The f topology on the n-dimensional Minkowski space 

M induces discrete topology on a light ray. 

Proof. It follows in the same way as that of Proposition 3.2.9, by considering 

f neighbourhood in place of t neighbourhood. 0 

3.3 Relationship between Topologies 

In this section, a comparison of various topologies on M, undertaken in the 

present work, has been carried out. 

Proposition 3.3.1. Let M be the n-dimensional Minkowski space. Then the 

t topology on M is strictly fin er- than the Euclidean topology on M . 
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Proof. For x E M, N; (x) ~ N ~ (x) , hence the ' t topology on M is finer than 

the Euclidean topology. Further, from Propositions 3.2.1 and 3.2.3, it follows 

that the time cone based at a point is open in M with t topology but not in 

M with Euclidean topology. This proves the result. 0 

Proposition 3.3.2. Let M be the n-dimensional Minkowski space. Then the 

s topology on M is strictly finer than the Euclidean topology on M. 

Proof. It follows from Propositions 3.2.1 and 3.2.4 that the space cone based 

at a point is open in M with s topology but not in M with Euclidean topology. 

Since for x E M, N: (x ) ~ N! (x ), s topology is finer than the Euclidean 

topology. Hence the result. 0 

Proposition 3.3.3. Let M be the n-dimensional Minkowski space. Then the 

f topology on M is strictly finer· than the Euclidean topology on M. 

Proof. Let x E M. Then N/(x ) ~ N~ (x ). Hence f topology is finer than 

the Euclidean topology. From Propositions 3.2.1 and 3.2.5 , the union of time 

and space cones based at a point is open in M with f topology but not in M 

with Euclidean topology. This proves the result. 0 

Proposition 3.3.4. Let M be the n-dimensional Minkowski space. Then the 

t topology on M is strictly finer than the f topology on M. 

Proof. For x E M, since N;( x ) ~ N!( x ) , it follows that the t topology on M 

is finer than the f topology. Now from Propositions 3.2.3 and 3.2.5 , GT(x) 

is open in M with t topology but not in M with f topology. This proves the 

result . o 
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Proposition 3.3.5. Let M be the n-dimensional Minkowski space. Then the 

s topology on M is strictly finer than the f topology on M. 

Proof. From Propositions 3.2.4 and 3.2.5 , space cone based at a point is open 

in M with s topology but not in M with f topology. The result now follows 

by noting that for x E M , N;(x) ~ N[( x ). D 

Proposition 3.3.6. Let M be the n-dimensional Minkowski space. Then the 

t and s topologies on M are non-comparable. 

Proof. From Propositions 3.2.3 and 3.2.4, the time cone based at a point is 

open in M with t topology but not in M with s topology and the space cone 

based at a point is open in M with s topology but not in M with t topology. 

This proves the result . D 

It is proved in [17] that the time topology on the 4-dimensional Minkowski 

space is strictly finer than the t topology. In the following proposition, this 

results is proved for the n-dimensional caSe. 

Proposition 3.3.7. The time topology on the n-dim ensional Minkowski space 

M is strictly fin er than the t topology on M. Consequently, time topology is 

strictly fin er than the Euclidean topology. 

Proof. From Proposition 3.2.8, the t topology induces Euclidean topology on 

every timelike straight line. Thus time topology is finer than the t topology 

on M. To see that it is infact strictly finer , consider Z E M and a sequence 

of distinct timelike straight lines {Tk : kEN} passing through z . For kEN, 

choose Zk E Tk such that 0 < d( zk' z ) < 1/ k. Then (Zk)kEN converges to Z in 

ME. We assert that ZnT , where Z = {Zk : kEN} and T is a timelike straight 
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line, is finite. To prove the assertion, let Z n T be infinite, for some timelike 

straight line T. Then the sequence of infinite terms in Z n T converges 

in T E , since TE is complete. Therefore Z E T. By construction, for any 

timelike straight line T passing through z, Z nTis atmost a singleton. This 

contradiction proves that Z meets any timelike straight line in finite ly many 

points. Hence from Proposition 3.1.1, Z is closed in MT. Further, since z is 

a limit point of Z in Mt and z ~ Z , Z is not closed in Mt. This completes 

the proof. D 

Corollary 3.3.8. The time topology on the n -dimensional Minkowski space 

M induces discrete topology on a light ray and on a space axis. 

Proof. Follows from Propositions 3.2.9 and 3.3.7. D 

It is proved in [16] that the space topology on the 4-dimensional Minkowski 

space is strictly finer than the s topology. In the following proposition, this 

results is proved for the n-dimensional case. 

Proposition 3.3.9. The space topology on the n -dimensional Minkowski 

space M is strictly finer than the s topology. Consequently, space topology 

is stTictly fineT than the Euclidean topology. 

Proof. It follows from Proposition 3.2.10 that the s topology induces Eu

clidean topology on every space axis. Hence space topology is finer than the 

s topology on M. Consider now z E M and a sequence of distinct space

like straight lines {O'k : kEN} passing through z such that any space axis 

contains only finitely many O'k'S. For kEN, choose Zk E O'k such that 

0< d(Zk' z) < 11k. Then Z == {Zk : kEN} can be proved to be closed in M S 
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and not in MS from the same argument as used in Proposition 3.3.7. This 

completes the proof. 0 

Corollary 3.3.10. The space topology on the n-dimensional Minkowski space 

M induces discrete topology on a light ray and on a timelike straight line. 

Proof. Follows from Propositions 3.2.11 and 3.3.9. o 

The following is a characterization of open sets in M with fine topology 

obtained in [2]. 

Lemma 3.3.11. {2}. Let MF be the n-dimensional Minkowski space with 

fine topology and G ~ M. Then G is open in MF if and only if G n D is open 

in DE, for every D, where D denotes a timelike straight line or space axis. 

Proposition 3.3.12. The fine topology on the n-dimensional Minkowski 

space M is str·ictly fin er· than the f topology. Consequently, fine topology 

is strictly finer than the Euclidean topology. 

Proof. From Proposition 3.2.12, f topology induces Euclidean topology on 

every timelike straight line and space axis. Since fine topology is the finest 

such topology, fine topology is finer than the f topology on M. To prove 

that it is strictly finer, consider Z E M and a sequence of distinct timelike 

straight lines {Tk : kEN} passing through z . For kEN, choose Zk E Tk such 

that 0 < d(Zk, z) < 11k. Then in view of Lemma 3.3.11, Z == {Zk : kEN} 

can be proved to be closed in MF and not in Mf in the same way as shown 

in Proposition 3.3.7. Hence the result. 0 
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Proposition 3.3.13. The time topology on the n-dimensional Minkowski 

space MI is strictly finer than the fine topology. 

Proof. It follows from the definitions of time and fine topologies that the 

time topology on MI is finer than the fine topology on it. Now for x E MI, 

GT(x) is open in MIt and hence in MIT. The result now follows , in view of 

Lemma 3.3.11, by noting that GT(x) is not open in MIF , for GT(x)nH = {x} 

is not open in HE , where H is a space axis passing through x E MI. 0 

Proposition 3.3.14. The space topology on the n-dimensional Minkowski 

space MI is strictly finer than the fine topology. 

Proof. From the definitions of space and fine topologies, it follows that the 

space topology on MI is finer than the fine topology on it. The remaining 

part can now be proved in a way similar to that of Proposition 3.3.13, by 

considering space cone and timelike straight line in place of time cone and 

space axis respectively, in its proof. o 

Proposition 3.3.15. The space and time topologies on the n-dimensional 

Minkowski space MI are non-comparable. 

Proof. Let x E MI. Then by respective definitions , GT(x) is open in MIT but 

not in MIs while GS(x) is open in MIs but not in MIT. This completes the 

~~ 0 

Proposition 3.3.16. The t and fine topologies on the n -dimensional Minkowski 

space MI are non-comparable. 

33 



Proof. Let z E MI and Z == {Zk : kEN} be as in the proof of Proposi

tion 3.3.12. Then MI - Z is open in MIF. That it is not open in Mit follows by 

noting that z is not an interior point of MI - Z in Mit. Further, for x E MI, 

CT (x) n H = {x}, where H is a space axis passing through x. Since {x} is 

not open in HE, in view of Lemma 3.3.11, CT(x) is not open in MIF. Since 

CT (x) is open in Mit, the result follows. D 

Proposition 3.3.17. The s and fine topologies on the n-dimensional Minkowski 

space MI are non-comparable. 

Proof. The space cone based at a point is open in MIs but not in MIF
, by 

Proposition 3.2.4 and Lemma 3.3.11. For the remaining part of the proof, 

consider the non closed set Z in MIs constructed in the proof of Proposi

tion 3.3.9. In view of Lemma 3.3.11, Z is closed in MIF. This completes the 

proof. D 
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Chapter 4 

Topological Properties 

In this chapter, topological properties, namely, Hausdorffness , regularity, 

complete regularity, normality, path connectedness, separability, regular

ity, metrizability, compactness, local compactness, paracompactness, Lin

delofness, first count ability and second countability, of the n-dimensional 

Minkowski space with each of the non-Euclidean t, f , s, time and space 

topologies have been dealt with. It is found that except for first countability, 

all the topological properties are commonly shared or commonly not shared 

by the spaces under consideration. 

4.1 Separation Axioms 

In this section, separation aXIoms of the n-dimensional Minkowski space 

with non-Euclidean t, f, s, time and space topologies are explored. It is 

proved that each of Mt , MI, MS, MT and MS is Hausdorff, non-regular, 

non-completely regular and non-normal. 
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Since t, f, s, time and space topologies are all finer than the Euclidean 

topology on M and ME is Hausdorff, we have the following proposition. 

Proposition 4.1.1. The n-dimensional Minkowski space M with each of the 

t I f I S I time and space topologies is H ausdorjJ and hence T1 · 

It is mentioned in [15] that the 4-dimensional Minkowski space with t topol

ogy is not regular. We generalize below this result for the n-dimensional 

case. 

Proposition 4 .1.2 . Let Mt be the n-dimensional Minkowski space M with t 

topology. Then Mt is not regular. 

Proof. Let A be a light ray passing through 0 E M, where 0 denotes the 

zero vector of M. Then by Proposition 3.2.9, A is a discrete subspace of 

Mt. Since t topology is finer than the Euclidean topology, A is closed in 

Mt. Hence A - {O} is closed in Mt. We claim that A - {O} and 0 cannot 

be separated by disjoint open sets in Mt. For, if G and H are open sets in 

Mt containing 0 and A - {O} respectively, then for some E > 0, N:(O) ~ G. 

Further, for x E (A - {O}) n NfE (O), there exists 6 > 0, NJ( x ) ~ H. Notice 

that N:(O) n NJ(x) =1= cP and hence G n H =1= cP. This completes the proof. 0 

In the following three propositions, it is proved that the n-dimensional Minkowski 

space with each of the s, f , time and space topologies is not regular. 

Proposition 4.1.3. The n-dimensional Minkowski space M with each of the 

sand f topologies is not regular. 

Proof. The result for the s topology, can be proved in the same way as 

Proposition 4.1.2, in view of Proposition 3.2. 11 , and for the f topology, in 

view of Proposition 3.2.13. o 
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Proposition 4.1.4. Let MIT be the n-dimensional Minkowski space MI with 

time topology. Then MIT is not regular. 

Proof. Consider the time cone CT(O) , where 0 denotes the zero vector of MI . 

By Proposition 3.2.3, CT(O) is open in MIt. Since time topology is finer than 

the t topology on MI, CT(O) is open in MIT. If V is a neighborhood of 0 in 

MIT such that V ~ CT(O), then Cl(V) ct. CT(O), for Cl(V) contains some 

points of CL(O), where Cl(V) denotes the closure of V in MIT. Hence there 

does not exist a neighborhood of 0 contained in CT (0) whose closure is also 

contained in CT(O). Since MIT is Hausdorff, the result follows. 0 

It is proved in [2], that the n-dimeusional Minkowski space with fiue topology 

is not normal. In the following proposition, it is shown that MIF is not even 

regular. 

Proposition 4.1.5. The n-dimensional Minkowski space MI with each of the 

space and fine topologies is not regular. 

Proof. The result for the space topology and for the fine topology can be 

proved in the same way as Proposition 4.1.4 by considering respectively CS (0) 

and CT(O) U CS(O) in place of CT(O), in the proof of the proposition. 0 

Corollary 4.1.6. The n-dimensional Minkowski space MI with each of the 

non-Euclidean t , s , i, time, space and fine topologies is not completely 

regular. 

Proof. Since a Tl completely regular space is regular , the result follows . 0 
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Corollary 4.1. 7. The n -dimensional Minkowski space MI with each of the t, 

f, s, time and space topologies is not normal. 

Proof. Since a Tl normal space is regular, the result fo llows. o 

4.2 Countability Axioms 

In this section, countability axioms of the n-dimensional Minkowski space 

with respect to each of the non-Euclidean topologies undertaken in the present 

study is discussed. It is proved that Mit, MIf, MIs, MIT and MIs are not second 

countable while Mit, MIf, MIs are first countable, MIT and MIs are not. 

It is mentioned in [17] that the 4-dimensional Minkowski space with t topol

ogy is first countable. In the following proposition this result is proved for 

the n-dimensional case. 

Proposition 4.2.1. Let Mit be the n-dimensional Minkowski space MI with t 

topology. Then Mit is first countable. 

Proof. Let x E MI. Then the collection 7](x) = {N:(x) : E > 0, EEOC} 

is a countable local base at x for the t topology on MI. Hence Mit is first 

countable. o 

Proposition 4 .2.2. The n -dimensional Minkowski space MI with each of the 

sand f topologies is first countable. 

Proof. Given x E MI, the collection 7](x) = {N:(x) : E > 0, EEOC} forms 

a countable local base at x for the s topology and the collection J.L(x) = 

{N! (x) : E > 0, EEOC} forms a countable local base at x for the f topology. 

Hence the result. o 
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Proposition 4.2.3. Let MT be the n-dimensional Minkowski space M with 

time topology. Then MT is not first countable. 

Proof. Suppose to the contrary that MT is first countable. For Z E M, let 

{G k : kEN} be a countable local base at Z in MT. For kEN, set U1 = G1 

and Uk = U k - 1 n Gk , for k ~ 2, kEN. Then {Uk: kEN} is a local base at Z 

such that U k+1 C Uk, k ~ 1, kEN. Consider now distinct timelike straight 

lines Tk, kEN, passing through z and choose Zk E Tk n Uk, Zk =1= z, for kEN. 

Then ( Zk) kEN converges to Z in ME. We assert that any timelike straight 

line T intersects Z == { Zk : kEN} in finitely many points so that T n Z is 

closed in TE. If T intersects Z in infinitely many points then T must not pass 

through Z because otherwise Tn Z would be either empty or singleton. Then 

the sequence of these infinite terms, TE being complete, converges in TE. 

Further, it converges to z. Hence Z E T. In other words, T passes through z, 

a contradiction. By Proposition 3.1.1, Z is closed in MT and hence M - Z 

is open. Since no Uk is contained in M - Z and Z E M - Z, {Uk : kEN} is 

not a local base at z, a contradiction. Hence the result . 0 

Proposition 4.2.4. Let MS be the n-dimensional Minkowski space M with 

space topology. Then MS is not first countable. 

Proof. The result can be proved in the same way as the previous proposition 

by choosing distinct spacelike straight lines (Jk , kEN passing through Z E M 

such that any space axis passing through Z contains only finitely many (Jk'S, 

in place of distinct timelike straight lines, in its proof. o 

It is stated in [17], that M t , for n = 4, is second countable. This result is 

disproved in the following proposition. 
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Proposition 4.2.5. Let MI be the n-dimensional Minkowski space. Then MIt 

is not second countable. 

Proof. To the contrary, let MIt be second countable. Then since second count

ability is hereditary property, a light ray is second countable. From Propo

sition 3.2.9, the induced topology on a light ray is discrete. Then, being 

uncountable, light ray is not second countable, a contradiction. 0 

Proposition 4.2.6. The n-dimensional Minkowski space MI with each of the 

sand f topologies is not second countable. 

Proof. It can be proved in the same way as that of Proposition 4.2.5, in view 

of Propositions 3.2. 11 and 3.2.13. 0 

Proposition 4.2.7. The n -dimensional Minkowski space MI with each of the 

time and space topologies is not second countable. 

Proof. Since a second countable space is first countable, the result follows in 

view of Propositions 4.2.3 and 4.2.4. 

Alternate Proof. It can be proved m the same way as that of Proposi

tion 4.2.5, in view of Corollaries 3.3.8 and 3.3.10. 

o 

4.3 Separability 

In this section, we prove that the n-dimensional Minkowski space MI with 

each of the non-Euclidean topologies undertaken in the present study is a 
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separable space which leads to an alternate proof for the non-normality of 

each these spaces. 

Proposition 4.3.1. Let.MIt be the n-dimensional Minkowski space .MI with t 

topology. Then.MI t is separable. 

Proof. Let x E .MI and t > O. Then N;(x):"'- {x } is nonempty and by Proposi

tion 3.2.7, it is open in .MIE . Since lKn is dense in .MIE , (N;(x) - {x }) nlKn =J cp. 

This proves that N; (x) n lKn =J cp, that is , lKn is dense in .MIt. The fact that 

K n is countable, completes the proof. 0 

Proposition 4.3.2. The n-dimensional Minkowski space .MI with each of the 

sand f topologies is separable. 

Proof. The result can be proved in the same way as the previous proposition 

by choosing punctured s neighbourhood and f neighbourhood of x E .MI in 

place of N; (x) - {x}, the punctured t neighbourhood, in the proof. 0 

Proposition 4.3.3. Let.MIT be the n-dimensional Minkowski space .MI with 

time topology. Then.MIT is separable. 

Proof. In view of the fact that lKn is countable, it is sufficient to prove that 

lKn is dense in .MIT. For this , let G be a nonempty open set in .MIT, B == 

{eo, el, ... ,en-d be an ordered orthonormal basis for.MI and let xo, X l , ... ,xn- l 

be the components of x E .MI with respect to the basis B. Then to obtain a 

point in GnlKn
, we first obtain a point in G with rational spatial coordinates 

by the following process. 
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Choose z E G and consider a timelike straight line TI passing through z but 

not parallel to eo. Since G n TI is open in Tf , there exists aw E G n TI 

such that WI E IK. To continue the process, notice that , having obtained a 

point y E G with first j rational spatial coordinates, where 1 S; j < n - I , 

choose a timelike straight line Tj+l passing through y , contained in H + y, 

but not parallel to eo, where H is the vector subspace of MI spanned by 

{eo, ej+l , "" en-d· Since G n Tj+l is open in Tlt-l ' there exists u E G n Tj+l 

such that uj +l E IK. Since ui = yi, for i = I, ... , j, hence u has its first j + 1 

spatial coordinates as rationals. This process yields a point, say v, in G with 

rational spatial coordinates. 

Finally, choose a timelike straight line TO passing through v and parallel to 

eo . Now, G n TO being open in Tt, there exists apE G n TE such that 

pO E IK. Since pi = Vi and Vi E K , for i = I , ... ,n - I , hence p E IKn so that 

G n IKn =1= cp . This completes the proof. o 

Proposition 4.3.4. Let MIs be the n-dimensional Minkowski space MI with 

space topology. Then MIs is separable. 

Proof. Let B == {eo, el , .. . ,en-d be an ordered orthonormal basis for MI and 

let xO, xl, ... ,xn - l be the components of x E MI with respect to the basis B. 

We begin by showing that IKn is dense in MIs . For this, let G be a nonempty 

open set in MIs and x E G. If xO tj:. IK, then there exists z E G n a such 

that zO E IK, where a denotes the spacelike straight line passing through 

x and not parallel to ei, 1 S; i S; n - 1. Consider now the space axis H = 

{ Z +~~lltiei : t i E lR}. Then since G is open in MIs and GnH is open in H E, 

there exists Ei E lR such that {z + ~~;:llti ei : t i E (- Ei, Ei )} ~ G. By choosing 
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rationals ri E (zi - Ei , Zi + Ei), the point p = (zO, rl, ... ,rn - 1) E G n ocn . 

Hence OCn is dense in MIs. This proves the result in view of the fact that OCn 

is countable. o 

The following remark gives an alternate proof for the separability of MI with 

t or s or f topology which is in fact more complicated than the proofs pre

viously obtained. 

Remark 4.3.5. Alternate proof for the separability of MI with each of the t , 

sand f topologies: 

From Propositions 4.3.3 and 4.3.4, it follows that MIT and MIs are separable. 

Further in [2], it is proved that the MIF is separable. In view of the facts 

that the t, sand f topologies are respectively coarser than the time, space 

and fine topologies and separability is preserved under a coarser topology, it 

follows that MIt, MIs and MIl are separable. 

Let IAI denotes the cardinality of a subset A of MI . The following corollary 

provides an upper bound for I C (MIt , lR) I, the cardinality of the set of all 

continuous real valued functions on MIt, which generates an alternate proof 

of the non-normality of MI with t topology. 

Corollary 4.3.6. Let MIt be the n-dimensional Minkowski space MI with t 

topology. Then the cardinality of the set C(MIt, lR) of all continuous real

valued functions on MIt is at most c. 

Proof. From Proposition 4.3.1 , there exists a countable dense subset of MIt, 

say D. Then IC(D, lR) I is at most equal to (llRl) IDI = (2N
o)No = 2No = c. 

Since two continuous maps are equal if they agree on a dense subset, hence 

IC(MIt,lR)1 is at most IC(D,lR)l. This completes the proof. 
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By the same technique as used in Corollary 4.3.6, we have the following 

result. 

Corollary 4.3.7. The cardinality of the set of all continuous real-valued 

functions on the n-dimensional Minkowski space MI with the each of the f , 

s, time and space topologies is atmost c. 

Following remark provides an alternate proof for the non-normality of the n

dimensional Minkowski space with the non-Euclidean topologies under study. 

Remark 4.3.8. Alternate proof for the non-normality of the n-dimensional 

Minkowski space MI with each of the non-Euclidean t , s, f , time and space 

topologies: 

We first provide the alternate proof for MIt. To the contrary, let MIt be 

normal. Let A be a light ray and A be a nonempty subset of A. Since A 

is a closed discrete subspace of MIt, hence A and A - A are closed in MIt. 

By Urysohn lemma, there exists a continuous map f : MIt --7 R such that 

f(A) = {O} and f(A - A) = {I}. This implies that there would be at least as 

many real-valued continuous functions on MIt as many there are subsets of A. 

Hence IC(MIt, R)I is at least (22
N

O) = 2c , a contradiction to Corollary 4.3.6 . 

The alternate proofs for the non-normality ofMI with the other non-Euclidean 

topologies can be proved on the same lines as above in view of Corollary 4.3.7. 

4.4 Path Connectedness 

In this section, we prove that the n-dimensional Minkowski space MI with 

each of the non-Euclidean topologies undertaken in the present study is a 
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path connected space. 

Recall that, for x, y E MI, the map 'xy : [0 , 1] ~ MIE is always continuous. 

However the continuity of this map is not assured when MI is assigned the finer 

t or s or f or time or space topology. We investigate below the conditions 

under which this map becomes continuous, when MI is considered with a 

non-Euclidean topology under study. 

Lemma 4.4.1. Let MIt be the n-dimensional Minkowski space MI with t topol

ogy and x, y E MI, x =I y. Then the map ,xy : [0 , 1] ~ MIt defined by 

,xy(t) = (1 - t) x + ty is continuous if and only if y - x is a timelike vector. 

Proof. Let the map 'xy : [0, 1] ~ MIt be continuous. Then its image [x, y]t is 

compact . Since t topology induces discrete topology a light ray and spacelike 

straight line and Euclidean topology on a timelike straight line, it follows 

that y - x is a timelike vector. Conversely, if y - x is a timelike vector, 

then from Proposition 3.2.8, [x, y]t = [x, y]E. Since the map !xy : [a, 1] ~ 

MIE is continuous, !xy : [a, 1] ~ [x , y]E is continuous. This implies that 

'xy : [a, 1] ~ [x , y]t and hence ,xy : [0, 1] ~ MIt is continuous. This 

completes the proof. o 

Lemma 4.4.2. Let MIs be the n-dimensional Minkowski space MI with s topol

ogy and x, y E MI, x =I y. Then the map ,xy : [a, 1] ~ MIs defined by 

'xy (t) = (1 - t)x + ty is continuous if and only if y - x is a spacelike vector. 

Proof. It can be proved in a same way as that of Lemma 4.4.1, in view of 

Propositions 3.2.10 and 3.2.11. 0 
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Lemma 4.4.3. Let Mf be the n-dimensional Minkowski space M with f 

topology and x, y E M, x i= y. Then the map rxy : [O,lJ -----+ Mf defined 

by rxy(t) = (1 - t)x + ty is continuous if and only if y - x is a timelike or 

spacelike vector. 

Proof. In view of Propositions 3.2.12 and 3.2. 13, the result can be analogously 

proved as that of Lemma 4.4.1. 0 

Lemma 4.4.4. Let MT be the n-dimensional Minkowski space M with time 

topology and x, y E M, x i= y. Then the map rxy : [O, lJ -----+ MT defined by 

rxy(t) = (1 - t)x + ty is continuous if and only if y - x is a timelike vector. 

Proof. Let the map rxy : [O , lJ -----+ MT be continuous. Then its image 

[x, yV is compact. Hence in view of the definition of time topology, y - x is 

a timelike vector. Conversely, if y - x is a timelike vector, then by the 

definition of time topology, [x, yV = [x, yJE. Now since the map rxy : 

[O,lJ -----+ ME , rxy : [O , lJ -----+ [x , yJE is continuous. This implies that 

rxy : [O , lJ -----+ [x, yV and hence rxy : [O , lJ -----+ MT is continuous. Hence the 

result. 0 

Lemma 4.4.5. Let MS be the n -dimensional Minkowski space M with space 

topology and x, y E M, x i= y. Then the map rxy : [O,lJ -----+ MS defined by 

rxy (t) = (1 - t)x + ty is continuous if and only if y - x is a space like vector. 

Proof. In view of the definition of space topology, the result can be proved 

in the same way as that of Lemma 4.4.4. o 
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Lemma 4.4.6. Let MF be the n-dimensional Minkowski space M with fin e 

topology and x, y E M , x #- y . Then the map IXY : [0,1] --+ MF defined 

by Ixy(t) = (1 - t)x + ty is continuous if and only if y - x is a timelike or 

spacelike vector. 

Proof. The result can be proved similarly as that of Lemma 4.4.4, in view of 

the definition of fine topology. o 

Proposition 4.4.7. Let Mt be the n-dimensional Minkowski space M with t 

topology. Then Mt is path connected. 

Proof. Let x, y E M. If y - x is a timelike vector , then from Lemma 4.4.1 , IXY 

is a path in Mt from x to y. If y - x is a light like vector or spacelike vector , 

choose Z E GT(x ) n GT(y) . Then z - x and y - z are timelike vectors and 

hence by Lemma 4.4.1, the maps IXZ : [0 , 1] --+ Mt and IZY : [0, 1] --+ Mt 

are continuous. This proves that the map I : [0, 1] --+ Mt defined by 

{

X + 2t (z - x); 
, (t)= 

z + (2t - l)(y - z); 

t E [O ,~] 

t E [~, 1] 

which infact is the join of IXZ and IZY, is a path from x to y in Mt. 0 

Proposition 4.4.8. The n-dimensional Minkowski space M with each of the 

sand f topologies is path connected. 

Proof. In view of Lemma 4.4.2, the result for s topology and in view of 

Lemma 4.4.3, the result for f topology can be proved as that of Proposi-

tion 4.4.7, by making suitable changes. o 
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Proposition 4.4.9. Let MIT be the n-dimensional Minkowski space MI with 

time topology. Then MIT is path connected. 

Proof. Let x , y E MI. If y - x is a t imelike vector, then from Lemma 4.4.4, / xy 

is a path in MIT from x to y. If y - x is a lightlike vector or a spacelike vector , 

choose Z E CT (x) n CT (y). Then z - x and y - z are timelike vectors and 

from Lemma 4.4.4, /xz and / zy are paths from x to z and z to y respectively 

in MIT. Further, the join of / xz and / zy , is a path from x to y in MIT , as 

required. D 

It is proved in [2], that 2-dimensional Minkowski space with fine topology 

is path connected. This result is proved below for n-dimensional Minkowski 

space. 

Proposition 4.4.10. The n-dimensional Minkowski space MI with each of 

the space and fine topologies is path connected. 

Proof. In view of Lemma 4.4.5, the result for space topology and in view of 

Lemma 4.4.6, the result for fine topology can be proved as that of Proposi-

tion 4.4.9, by making suitable changes. D 

Remark 4.4.11. Alternate proof for the path connectedness of n-dimensional 

Minkowski space with each of the t , sand f topologies: 

Since t topology is coarser than the time topology, s topology is coarser than 

the space topology and f topology is coarser than the fine topology and MIT , 

MIS and MIF are path connected [cf. Propositions 4.4.9 and 4.4.10], the result 

follows. 
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Corollary 4.4.12. The n-dimensional Minkowski space M with each of the 

t , s, f, time, space and fine topologies is connected. 

Proof. Since a path connected space is connected, the result follows. D 

4.5 A Few More Topological Properties 

In this section, some more topological properties, namely compactness, local 

compactness, metrizability, Lindeli::ifness etc., of the n-dimensional Minkowski 

space with each of the non-Euclidean t , s, f , time and space topologies are 

explored. 

Proposition 4 .5.1. The n-dimensional Minkowski space M with each of the 

t, s, f , time and space topologies is non-compact. 

Proof. The result follows in view of the fact that M with Euclidean topology 

is not compact and the t, s, f, time and space topologies on M are finer than 

the Euclidean topology on M. D 

Proposition 4.5.2. The n-dimensional Minkowski space M with each of the 

t , s, f , time and space topologies is not metrizable. 

Proof. Since a metrizable space is regular [14], the result for the t topology, 

s topology, f topology, time topology and space topology follows in view of 

Proposition 4.1.2, Proposit ion 4.1.3, Proposition 4. 1.3, Proposition 4. 1.4 and 

Proposit ion 4.1.5 respectively. D 

Proposition 4 .5.3. The n-dimensional Minkowski space M with each of the 

t , s, f , time and space topologies is not locally compact. 
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Proof. Since a locally compact Hausdorff is regular [14], the result for the t 

topology, s topology, f topology, time topology and space topology follows 

in view of Proposition 4.1.2, Proposition 4.1.3, Proposition 4.1.3 , Proposi

tion 4.1.4 and Proposition 4.1.5 respectively. 0 

Proposition 4.5.4. The n-dimensional Minkowski space M with each of the 

t , s, f , time and space topologies is not paracompact. 

Proof. Since a paracompact Hausdorff is regular [14], the result for the t 

topology, s topology, ftopology, time topology and space topology follows 

in view of Proposition 4.1.2, Proposition 4.1.3, Proposition 4.1.3, Proposi

tion 4.1.4 and Proposition 4.1.5 respectively. 0 

Corollary 4.5.5. The n-dimensional Minkowski space M with each of the t, 

s, f , time and space topologies is not locally m-Euclidean. 

Proof. Since a locally Euclidean space is locally compact [14], the result 

follows in view of Proposition 4.5.3. 0 

Proposition 4.5.6. The n-dimensional Minkowski space M with each of the 

t , s, f , time and space topologies is not Lindelof. 

Proof. Suppose to the contrary that Mt, M with the t topology, is Lindelof. 

Let A be a light ray. Since A is a closed subspace of ME , by Proposition 3.3.1, 

A is a closed subspace of Mt. Further, by Proposition 3.2.9, A is discrete. 

Hence A is Lindelof, for Lindelofness is closed hereditary. This is a contradic

tion since an infinite discrete space is not Lindelof. The proof for the other 

topologies follow in a similar way. 0 
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Chapter 5 

Zeno Sequence 

The concept of Zeno sequence in the 4-dimensional Minkowski space with fine 

topology was originally defined by Zeeman [22] to study its homeomorphism 

group. In this chapter, we introduce the notion of Zeno sequence in the n

dimensional Minkowski space with each of the non-Euclidean t, s , j , time and 

space topologies and obtain a necessary condition for a set to be open in the 

respective space. Further, subsets of MI, that have the same subspace topolo

gies as induced from the Euclidean topology and a non-Euclidean topology 

have been characterized. This study leads to important contributions in the 

succeeding chapters. 

5.1 Definition and Examples 

In this section, introducing the notion of Zeno sequences in the n-dimensional 

Minkowski space with each of the non-Euclidean topologies undertaken, some 

examples of Zeno sequences are provided. 
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Definition 5.1.1. Recall that a sequence in a topological space X is said 

to converge to x. E X, if every open set in X containing x, contains all but 

finitely many terms of the sequence. 

Let Z E MI and let (zkhEN be a sequence of distinct terms in MI such that 

Z k =I z , for every n E N. Then 

(i) (zkhEN is called a Zeno sequence in MIt converging to Z E MI, if (Zk)kEN 

converges to Z in MIE but not in MIt. 

(ii) ( Zk )kEN is called a Zeno sequence in MIs converging to Z E MI , if ( Zk)kEN 

converges to Z in MIE but not in MIs. 

(iii) (zkhEN is called a Zeno sequence in MIf converging to Z E MI, if (zkh EN 

converges to Z in MIE but not in MIf. 

(iv) (zkh EN is called a Zeno sequence in MIT converging to Z E MI, if (zkhEN 

converges to Z in MIE but not in MIT . 

(v) (zkhEN is called a Zeno sequence in MIs converging to Z E MI, if (zkhEN 

converges to Z in MIE but not in MIs. 

The image of a Zeno sequence ( Zk hEN will mean the set Z = { Zk IkE N} and 

the completed image of a Zeno sequence ( Z k hEN will mean the set Z u {z }. 

Remark 5.1.2. From the finer/coarser relationship of the Euclidean and 

non-Euclidean topologies discussed in Chapter 1, we have the following: 

(i) ( Z k)kEN is not a Zeno sequence in MIt converging to Z =::::} ( Zk )kEN is not 

a Zeno sequence in MIf converging to z. 
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(ii) ( Zk)kEN is not a Zeno sequence in M8 converging to Z ===? (zkhEN is not 

a Zeno sequence in M1 converging to z. 

(iii) ( Zk )kEN is a Zeno sequence in M1 converging to Z ===? ( Z k)kEN is a Zeno 

sequence in Mt converging to z . 

(iv) (zk hEN is a Zeno sequence in M1 converging to Z ===? ( Zk )kEN is a Zeno 

sequence in M8 converging to z. 

(v) (zkhEN is a Zeno sequence in Mt converging to Z ===? (zkh EN is a Zeno 

sequence in MT converging to z . 

(vi) (zkhEN is a Zeno sequence in M8 converging to Z ===? ( Zk )kEN is a Zeno 

sequence in M S converging to z. 

Recall that the timelike straight lines, space axes and light rays passing 

through a point are respectively contained in time cone, space cone and light 

cone based at that point. Based on this thought , some examples of Zeno 

sequences are constructed below. 

Examples 5.1.3. (Light Sequence) Let Z E M and P'khEN be a sequence 

of light rays passing through z. For kEN, choose Z k E A k such that 0 < 

d( Zk'Z) < 11k and Zi =1= zj,i, j ~ l ,i =1= j. Then ( Zk )kE N converges to Z in 

ME , for any E > 0, by Archimedian property of real numbers, there exists 

mEN, such that 1 1m < E and therefore N! (z) and hence any open set 

containing Z contains all but finitely many terms of ( Z k)kE N . Further, we 

have the following: 

(i) The sequence (zkhEN is a Zeno sequence in Mt converging to z, for 
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given E > 0, the open set N;(z) does not contain any term of (zkhEN 

and hence does not converge to Z in Mt. 

(ii) The sequence (zkhEN is a Zeno sequence in M S converging to z , for 

( Z k)kE N does not converge to Z in MS as the open set N:(z) does not 

contain any term of ( Z k) kEN . 

(iii) The sequence (zkhEN is a Zeno sequence in Mf converging to z, since 

for E > 0, the open set N! (z) does not contain any term of ( Zk) kEN and 

hence does not converge to Z in Mf . 

(iv) The sequence (zkhEN is a Zeno sequence in MT converging to z, for 

( Zk )kEN does not converge to Z in Mt and time topology being finer 

than the t topology, it does not converge to Z in MT. 

(v) The sequence (zk hEN is a Zeno sequence in MS converging to z, for 

(zkhEN does not converge to Z in MS and space topology being finer 

than the s topology, it does not converge to Z in MS. 

Examples 5.1.4. (Time Sequence) Let Z E M and (TkhEN be a sequence 

of distinct timelike straight lines passing through z . For kEN, choose Zk E Tk 

such that ° < d(Zk'Z) < 11k. Then Zi =/- zj ,i,j 2': l ,i =/- j and as shown in 

Example 5.1.3, (Zk)kEN converges to Z in ME. Further, we have the following: 

(i) The sequence ( Zk )kE N is a not Zeno sequence in M t
, for any E > 0, the 

open set N; (z) and hence any open set containing Z in Mt contains all 

but finitely many term of ( Zk )kEN and therefore converges in Mt as well. 
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(ii) The sequence (zkhEN is a Zeno sequence in MS converging to z, for 

(zkhEN does not converge to Z in MS as the open set N:(z) does not 

contain any term of (zk hEN. 

(iii) The sequence (zkhEN is not a Zeno sequence in Mf converging to z, for 

(zkhEN converges to Z in Mt and f topology being coarser than the t 

topology, it converges to Z in Mf. 

(iv) The sequence (Zk )kEN is a Zeno sequence in MT converging to z, for 

(zkhEN does not converge to Z in MT. To prove that (zk hEN does not 

converge to Z in M T , let T be a timelike straight line. Then Z nT, 

where Z = {zn : n E N}, is finite , for otherwise Z tJ. T and then limit 

of (Zn)nEN being Z in ME and TE being a complete metric space, Z E T, 

a contradiction. By Proposition 3.1.1 , Z is closed in MT and thereby 

M - Z is an open set containing Z in MT. This proves that (zkhEN 

does not converge to Z in M T , for M - Z does not contain any term of 

(zkhEN. 

(v) The sequence (zkhEN is a Zeno sequence in M S converging to z, for 

(Zk )kEN does not converge to Z in MS and space topology being finer 

than the s topology, it does not converge to Z in MS. 

Examples 5.1.5. (Space Sequence) Let Z E M and ((}khEN be a sequence 

of distinct spacelike straight lines passing through Z such that any space 

axis passing through Z contains only finitely many spacelike straight lines 

(}~s. For kEN, choose Zk E (}k such that 0 < d( zk, z) < 11k. Then 

Zi =I=- zj,i, j;::: l ,i =I=- j and as shown in Example 5.1.3, (Zk)kEN converges to Z 

in ME. Further, we have the following: 
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(i) The sequence (zkhEN is a Zeno sequence in Mt converging to z, for 

given E > 0, the open set N;(z) does not contain any term of (zkhEN 

and hence doesn't converge to Z in Mt. 

(ii) The sequence (Zk)kEN is not a Zeno sequence in MS converging to z, for 

(Zk)kEN converges to Z in MS as the open set N:(z) and hence any open 

set containing Z in MS contains all but finitely many terms of ( Zk)kE N . 

(iii) The sequence (Zk)kEN is not a Zeno sequence in Mf converging to z, 

for (Zk)kEN converges to Z in MS and f topology being coarser than s 

topology, it converges to Z in Mf . 

(iv) The sequence (zkhEN is a Zeno sequence in MT converging to z, for 

(zk hEN does not converge to Z in Mt and time topology being fin er 

than the t topology, it does not converge to Z in MT. 

(v) The sequence (zkhEN is a Zeno sequence in M S converging to z, for 

( Zk )kEN doesn 't converge to Z in MS. To see that (zkhEN does not 

converge to Z in MS, let H be a space axis. Then ZnH, where Z = {zn : 

n EN} , is finite, for otherwise Z ~ H and then limit of (Zn )nE N being Z 

in ME and HE being a complete metric space, Z E H, a contradiction. 

By Proposition 3.1.2, Z is closed in MS. Hence M - Z is an open set 

in MS containing z. This proves that ( Zk )kE N does not converge to Z in 

MIs , for M - Z does not contain any term of (zkhEN . 
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5.2 Some Results on Zeno Sequences 

Recall that the non-Euclidean t , s, f , time and space topologies are all finer 

than the Euclidean topology. Hence these non-Euclidean topologies induce 

finer subspace topologies on A ~ M than the Euclidean topology. In this sec

tion, we characterize those subsets of M for which the induced non-Euclidean 

topology is same as that of the induced Euclidean topology. Further, neces

sary conditions for a set to be open in M with each of these non-Euclidean 

topologies are obtained, besides many other results. 

P roposit ion 5.2. 1. Let Mt be the n-dimensional Minkowski space M with t 

topology and ( Zk )kEN be a Zeno sequence in Mt converging to Z E M. Then 

there exists a subsequence of (zkh EN whose image is closed in Mt but not in 

ME, M with Euclidean topology. 

Proof. Since (Zk hEN does not converge to Z in Mt
, there exists an open set U 

in Mt containing Z that leaves outside infinitely many terms of the sequence. 

These terms form a subsequence ( ZkJiEN of ( Zk )kE N such that Zki ~ U, for 

i E N. We assert that the image A == { Zki : i E fir} of ( ZkJiEN is closed in Mt 

but not in ME. The subsequence ( ZkJiEN converges to Z in ME, for (zkhEN 

converges to Z in ME. Since Z ~ A, A is not closed in ME . Further, no point 

of M other than Z is a limit point of A in ME and hence in Mt. That Z is 

not a limit point of A in Mt follows by noting that U does not intersect with 

A. This proves that A is closed in Mt . Hence the result. o 

P roposit ion 5.2.2. Let M* be the n -dimensional Minkowski space M with 

s or f or time or space topology. Then a Zeno sequence in M* admits a 
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subsequence whose image is closed in M* but not in ME, M with Euclidean 

topology. 

Proof. Similar to that of Proposition 5.2.1 o 

As obtained in Proposition 3.2.8, the subspace topology on a timelike straight 

line induced from the t topology on M is Euclidean. The following proposition 

determines precisely the class of subsets e of M for which this is true. 

Proposition 5.2.3 . Let Mt be the n-dimensional Minkowski space M with 

t topology and e be a nonempty subset of M. Then the topologies on the 

subspaces et and eE are same if and only if e does not contain completed 

image of any Zeno sequence in Mt. 

Proof. We first prov.e the "if" part . In view of the fact that t topology on M 

is finer than the Euclidean topology, it is sufficient to prove that for every 

z E e and every open set G; in Mt containing z, there exists an open set Gf 

containing Z of ME such that en Gf ~ enG;. Suppose to the contrary 

that for some z E e and an open set G; in Mt containing z, there is no open 

set Gf in ME such that enGf c enG;. Thus, in particular, for no kEN, 

e n N~k(Z) ~ enG;. It now follows that there exists an strictly increasing 

sequence (mkhEN of natural numbers so that for each kEN, we can choose 

Zk E e n N~mk (z) such that Zk t/:. enG; and Zk =1= zi, l ::; i < k. Since 

{NfE (x) : E > 0, x E M} is a basis for ME and for E > 0, N!(z) contains 

all but finitely many terms of the sequence (zkhEN' hence (zkhEN converges 

to Z in ME. That it does not converge to z in Mt , follows by noting that 

G; n {Zk : kEN} = ¢. Hence (zkhEN is a Zeno sequence in Mt converging 

to Z with its completed image contained in e, a contradiction. 
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To prove the converse, assume to the contrary that C contains the completed 

image { Zk : kEN} u {z } == Z u {z } of a Zeno sequence (zkhEN in Mt 

converging to z E C. Since ( Zk )kEN does not converge to Z in Mt , there is 

an open set U containing Z in Mt which does not meet some subsequence of 

(zkhEN. On the other hand, since each open set containing z in ME meets 

such a subsequence, it follows that Un(Zu{ z}) =I=- Bn(ZU{ z}) , for any open 

set B of z in ME. Hence t and Euclidean topologies on M induce different 

topologies on Z U {z} and hence also on C. 0 

The following proposition characterizes those subsets C of M for which the 

subspace topology on C induced by a non-Euclidean topology is equal to 

subspace topology induced by the Euclidean topology. 

Proposition 5.2.4. Let M* be the n -dimensional Minkowski space M with 

s or f or time or space topology and C be a nonempty subset of M. Then 

the topologies on the subspaces C* and CE are same if and only if C does 

not contain completed image of any Zeno sequence in M*. 

Proof. Same as that of Proposition 5.2.3 o 

In the following Lemma, necessary conditions for a set to be open in ME are 

obtained. 

Lemma 5.2.5. Let ME be the n-dimensional Minkowski space M with 

Euclidean topology, G be a nonempty open set in ME and z E G. Then 

the following statements hold: 

(i) G contains completed image of a Zeno sequence in Mt converging to z . 

(ii) G contains completed image of a Zeno sequence in MS converging to z . 
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(iii) G contains completed image of a Zeno sequence in MI converging to z. 

Proof. (i) Since {N!(z) : E > 0, Z E M} is a basis for the Euclidean topology 

on M, hence for some E > 0, N!(z) ~ G. For kEN, choose Zk E N!(z) n 

GL(z) such that 0 < d( Zk' z) < Elk and Zk =I=- zi, l :::; i < k. Then (zkhEN 

converges to z in ME. Since N;(z) contains no term of (Zk)kE N, it follows 

that (Zk)kEN does not converge to z in Mt. Thus (Zk)kEN is a Zeno sequence 

in Mt converging to z . This proves the result . 

(ii) Let (zkhEN be as constructed in the proof of Lemma 5.2.5, Part (i). Then 

(Zk)kEN converges to Z in ME. That (zkhEN does not converge to Z in MS 

follows by noting that N:(z) contains no term of (zkhEN. Hence (Zk)kEN is a 

Zeno sequence in MS converging to z . This completes the proof. 

(iii) Let (ZdkEN be as constructed in the proof of Lemma 5.2.5, Part (i). 

Then (zkhEN converges to Z in ME. Since N{(z) contains no term of (Zk)kEN, 

hence ( Zk)kEN does not converge to Z in MI. Then (zkhEN is a Zeno sequence 

in MI converging to z. Hence the result. D 

The following proposition, provides a necessary condition for a set to be 

open in M with a non-Euclidean t, s or f topology. The time and space 

topologies counterparts are dealt with separately in Proposition 5.2.8 and 

Proposition 5.2.9, because of the difference in statements and proofs. 

Proposition 5.2.6. Let M be the n-dimensional Minkowski space M and G 

be a nonempty subset of M. Then the following statements hold: 

(i) If G is open in Mt then G contains completed image of a Zeno sequence 

in Mt. 
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(ii) If G is open in MIs then G contains completed image of a Zeno sequence 

in MIs. 

(iii) If G is open in MIf then G contains completed image of a Zeno sequence 

in MIf. 

Proof. (i) Let z E G. Then since G is open in MIt, for some E > 0, N;(z) ~ G 

and hence N:(z) - {z} ~ G. From Proposition 3.2.7, N;(z) - {z} is open 

in MIE. Now in view of Lemma 5.2.5, Part (i), N;(z) - {z} and hence G 

contains completed image of some Zeno sequence in MIt . This completes the 

proof. 

(ii) Let z E G. Then for some E > 0, N:(z) ~ G. In view of Proposition 3.2.7 

and Lemma 5.2.5, Part (ii), N: (z) - {z} and therefore G contains completed 

image of a Zeno sequence in MIs. Hence the result. 

(iii) Let z E G. Then for some E > 0, N{(z) ~ G. From Proposition 3.2.7 

and Lemma 5.2.5, Part (iii), N{ (z) - {z} and hence G contains completed 

image of a Zeno sequence in MIf. This proves the result. 0 

Remark 5.2.7. In Lemma 5.2.5, the Zeno sequence obtained in an open set 

Gin MIE converges to the chosen point in G whereas in Proposition 5.2.6, the 

Zeno sequence obtained in an open set in MIt or MIs or MIf may not converge 

to the chosen point. However, it is proved in the following two propositions 

that the Zeno sequence obtained in an open set G in MIT or MIS converges to 

the chosen point in G. 
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Proposition 5.2.8. Let MT be the n -dimensional Minkowski space M with 

time topology, G be a nonempty open set in MT and Z E G. Then G contains 

completed image of a Zeno sequence in MT converging to z. 

Proof. Let {TdkEN be a sequence of distinct timelike straight lines passing 

through z . Since TknG is an open interval in T!! containing z, hence for kEN, 

we can choose Zk E TknG such that 0 < d( zk' z ) < 11k and Zk 1= Zi, 1 ::; i < k. 

Then (Zk)kEN can be shown to be a Zeno sequence in MT converging to Z as 

it is shown in Examples 5.1.4 (iv). This completes the proof. 0 

Proposition 5.2.9. Let MS be the n-dimensional Minkowski space M with 

space topology, G be a nonempty open set in M S and Z E G. Then G contains 

completed image of a Zeno sequence in MS converging to z. 

Proof. Let {crd kEN be a sequence of distinct spacelike straight lines passing 

through Z such that any space axis passing through Z contains only finitely 

many cr~s. As crk n G is an open interval in crt containing z, hence for kEN, 

we can choose Zk E crknG such that 0 < d(Zk' z ) < 11k and Zk 1= Zi, 1 ::; i < k. 

Then (Zk)kEN can be shown to be a Zeno sequence in MS converging to Z as 

it is proved in Examples 5.1.5 (v). This completes the proof. 

o 
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Chapter 6 

Compact Sets 

The celebrated Heine-Borel theorem characterizes the compact sets in the 

Euclidean n-space. It states that a set in the Euclidean n-space is compact 

if and only if it is closed and bounded in it. In this chapter, necessary and 

sufficient conditions for a set to be compact in the n-dimensional Minkowski 

space, with each of the non-Euclidean topologies undertaken in the present 

study, are obtained. 

6.1 Necessary Conditions 

In this section, necessary conditions for' a set to be compact in Minkowski 

space with each of the t, s , f , time and space topologies are obtained. 

Proposition 6.1.1. Let Mt be the n -dimensional Minkowski space M with 

t topology and C be a nonempty subset of M such that Ct is compact. Then 

CE is compact and hence is closed and bounded in ME, M with Euclidean 

topology. 

63 



Proof. Since the t topology on M is finer than the Euclidean topology and 

compactness is preserved under a coarser topology, CE is compact. The 

remaining part of the result follows from the Heine-Borel theorem. 0 

Proposition 6.1.2. Let M* be the n-dimensional Minkowski space M with 

s or' f or time or space topology and C be a nonempty subset of M such that 

C* is compact. Then CE is compact and hence is closed and bounded in ME, 

M with Euclidean topology. 

Proof. Since each ofthe s , f, time and space topologies on M is finer than the 

Euclidean topology and compactness is preserved under a coarser topology, 

C E is compact. The remaining part of theresult follows from the Heine-Borel 

theorem. o 

Proposition 6.1.3. Let Mt be the n-dimensional Minkowski space M with t 

topology and C be a nonempty subset of M such that Ct is compact. Then C 

does not contain image of a Zeno sequence in Mt . 

Proof. To the contrary, let C contain a Zeno sequence (zk hEN in Mt con

verging to Z E M. Then from Proposition 5.2.1, there exists a subsequence 

(ZkJiEN of (zkhEN whose image A == {Zki : i E N} is closed in Mt but not 

in M E. Since A <:: C, At is compact and hence AE is compact. This proves 

that A is closed in ME, a contradiction. o 

Proposition 6.1.4. Let M* be the n-dimensional Minkowski space M with 

s or f or time or space topology and C be a nonempty subset of M such that 

C* is compact. Then C does not contain image of a Zeno sequence in M*. 
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· Proof. It can be similarly proved as that of Proposition 6.1.3, in view of 

Proposition 5.2.2. o 

Proposition 6.1.5. Let Mt be the n-dimensional Minkowski space M with t 

topology and C be a nonempty subset of M such that Ct is compact. Then C 

does not contain any open set in Mt. Consequently, C does not contain any 

open set in ME, M with Euclidean topology. 

Proof. Suppose to the contrary that C contains an open subset G of Mt. 

Then from Proposition 5.2.6, Part (i), it follows that G and hence C contains 

image of a Zeno sequence in M t , a contradiction to Proposition 6.1.3. That 

C does contain an open set in ME, follows from the fact that the t topology 

is finer than the Euclidean topology. o 

Proposition 6.1.6. Let M* be the n-dimensional Minkowski space M with 

s or f or time or space topology and C be a nonempty subset ofM such that 

C* is compact. Then C does not contain any set open in M*. Consequently, 

C does not contain any open set in ME, M with Euclidean topology. 

Proof. It can be analogously proved as that of Proposition 6.1.5, in view of 

Propositions 5.2 .6 (ii) , 5.2.6 (iii), 5.2.8, 5.2.9 , 6.1.4 and the fact that s , f , 

time and space topologies on M are finer than the Euclidean topology. 0 

The following remark provides an alternate proof for the non-local compact

ness of the n-dimensional Minkowski space with each of the non-Euclidean 

topologies undertaken. 
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Remark 6.1. 7. Alternate proof of the non-local compactness of the n-dimensional 

Minkowski space MI with each of the t, s, f , time and space topologies: 

Let x E MI. Then in view of Proposition 6.1.5, there is no compact subspace 

of Mit that contains an open neighbourhood of x in Mit. This proves that 

Mit is not locally compact at x. Hence Mit is not locally compact. The proof 

for the other topologies follow in a similar way, in view of Proposition 6.1.6. 

This proves the result. 

6.2 Sufficient Conditions 

In the following section, we determine sufficient conditions for a set to be com

pact in the n-dimensional Minkowski space with each of the non-Euclidean 

topologies under study. 

Proposition 6.2.1. Let Mit be the n-dimensional Minkowski space MI with 

t topology and C be a nonempty subset of MI such that CE is compact and 

C does not contain completed image of a Zeno sequence in Mit. Then Ct is 

compact. 

Proof. Since C does not contain completed image of a Zeno sequence in Mit , it 

follows from Proposition 5.2 .3 that Ct = CEo This completes the proof. 0 

Proposition 6.2.2. Let MI* be the n-dimensional Minkowski space MI with 

s or f or time or space topology and C be a nonempty subset of MI such that 

CE is compact and C does not contain completed image of a Zeno sequence 

in MI* . Then C* is compact. 
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Proof. It can be proved similar to Proposition 6.2 .1 , in view of Proposi-

tion 5.2.4. o 

6.3 Analogue of Heine-Borel Theorem 

In this section, a characterization of compact sets in MIt, MIs , MIl, MIT and 

MIs is obtained. 

Proposition 6 .3.1. Let MIt be the n -dimensional Minkowski space with t 

topology and C be a nonempty subset of MI . Then Ct is compact if and 

only if CE is compact and C does not contain completed image of any Zeno 

sequence in MIt. 

Proof. It follows from Proposit ions 6.1.1 ,6.1.3 and 6.2. 1. o 

Proposition 6.3.2. Let MIs be the n-dimensional Minkowski space MI with 

8 topology and C be a nonempty subset of MI. Then CS is compact if and 

only if CE is compact and C does not contain completed image of any Zeno 

sequence in MIS. 

Proof. It follows from Proposit ions 6. 1.2 ,6. 1.4 and 6.2.2. o 

Proposition 6.3.3. Let MIl be the n -dimensional Minkowski space MI with 

f topology and C be a nonempty subset of MI. Then Cl is compact if and 

only if CE is compact and C does not contain completed image of any Zeno 

sequence in MIl. 

Proof. It follows from Propositions 6.1.2 ,6. 1.4 and 6.2.2. o 
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Proposition 6.3.4. Let MT be the n-dimensional Minkowski space M with 

time topology and C be a nonempty subset ofM. Then C T is compact if and 

only if CE is compact and C does not contain completed image of any Zeno 

sequence in MT. 

Proof. It follows from Propositions 6.1.2 ,6.1.4 and 6.2.2. D 

Proposition 6.3.5. Let M S be the n-dimensional Minkowski space M with 

space topology and C be a nonempty subset ofM. Then CS is compact if and 

only if C E is compact and C does not contain completed image of any Zeno 

sequence in MS. 

Proof. It follows from Propositions 6.1.2 , 6.1.4 and 6.2.2. D 

Discussed below are some examples of compact and non-compact subspaces 

of the n-dimensional Minkowski sf>ace with various non-Euclidean topologies 

undertaken in the present work, using the preceding results obtained in this 

chapter: Example 6.3.6 (i) is discussed in detail. 

Examples 6.3.6. (i) Let In denote the unit n-cube. Then since In con

tains an open set in ME, from Propositions 6.1.5 and 6.1.6, it follows 

that In is not a compact subspace of M t , MS, MI, MT and MS. It may 

be noted that r is a compact subspace of the Euclidean n-space. 

(ii) Any interval on a light like straight line is not compact in any of MS, 

MI, M S, Mt and MT . 

(iii) A closed and bounded interval on a timelike straight line is compact in 

Mt
, MI and M T , but not in MS or MS. 
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(iv) A closed and bounded interval on a spacelike straight line is compact 

in MS, Mf and M S, but not in Mt Or MT. 

(v) A closed and bounded ball on a spacelike hyperplane is compact in MS , 

Mf and MS, but not in Mt or MT. 

(vi) Let Z U {z} be the completed image of the sequence constructed in 

Examples 5.1.4. Then Z U {z} is compact in Mt and Mf but not in MS 

or MT or MS. 

(vii) Let Z be the completed image of the sequence constructed in Exam

ples 5.1.5. Then Z U {z} is compact in MS and Mf but not in Mt or 

MT or MS. 
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Chapter 7 

Applications 

In this chapter, the study carried out in the previous chapters is used to 

investigate the preservation of continuity by a map when the codomain ME 

is considered with a finer topology and simple connectedness of Mt , MS , M/ , 

MT and MS . 

7.1 Continuity of Maps 

Let h be a continuous map from a topological space X to ME , the n

dimensional Minkowski space M with Euclidean topology. Then h may not 

be continuous if M is considered with a finer topology. In this section, a 

sufficient condition is obtained for h to be continuous when M is considered 

with any of the non-Euclidean topologies under present study. 

Proposition 7.1.1. Let Mt be the n-dimensional Minkowski space with t 

topology, X be a topological space and h : X ---t ME be a continuous map 

such that h(X) does not contain the completed image of any Zeno sequence 
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in MIt. Then h : X --7 MIt is continuous. 

Proof. . Since h : X --7 MIE is continuous, hence h : X --7 h(X) E is 

continuous. By Proposition 5.2.3 , h(X)t = h(X) E, hence h : X --7 h(X)t 

is continuous. This proves that h : X --7 MIt is continuous. o 

Proposition 7.1.2. Let MI* be the n-dimensional Minkowski space with t or 

s or f or time or space topology, X be a topological space and h : X --7 MIE 

be a continuous map such that h(X) does not contain the completed image 

of any Zeno sequence in MI*. Then h : X --7 MI* is continuous. 

Proof. It is similar to that of Proposition 7.1.1, in view of Proposition 5.2.4. 

o 

7.2 Simple Connectedness 

Through out this section, we use the symbol MI2 to denote the 2-dimensional 

Minkowski space. Using the study of Zeno sequences and compact sets car

ried out in Chapters 5 and 6, it is proved that each of MI~, MI~, MIL MIT and 

MI~ has a non-trivial fundamental group and are therefore non-simply con

nected. Further, the case n = 2, has been exploited to prove the non-simply 

connectedness of MIt and MIT, for n > 2. 

It is well know that the 2-dimensional Minkowski space MI2 with Euclidean 

topology has trivial fundamental group. On the other hand that MI2 with 

each of the non-Euclidean topologies undertaken in the present study has a 

non-trivial fundamental group, is proved below. 
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Proposition 7.2.1. Let M~ be the 2-dimensional Minkowski space M2 with 

t topology and 0 be the zero vector of M2 . Then M~ has a non-trivial funda

mental group at o. 

Proof. The result is proved by constructing two loops in M~ based at 0, which 

are not path homotopic. 

Construction of loops: 

For i = 1, 2, let "Ii be the join of "Ioui ' "IUiVi and "IViO and (Ui' Vi) 's are distinct 

pairs of timelike vectors such that Ui - Vi is a timelike vector and 0, Ui, Vi 

are non-collinear. Then by Proposition 4.4.1 , "Ii being the join of continuous 

maps is continuous. Further since "Ii's begin and end at 0, it follows that "Ii's 

are loops in M~ based at O. 

"II and "12 are not path homotopic: 

We assert that "II and "12 are not path homotopic. To prove the assertion, 

suppose to the contrary, "II and "12 are path homotopic. Let H : [0, 1] x 

[0, 1] ----t M~ be a path homotopy between "II and "12 . Notice that, either 

I ntTl - T2 =J ¢ or I ntT2 - Tl =J cP, where Tl and T2 are respectively the 

triangles "11 ([0,1]) and "12([0, 1]) together with their insides and IntTl ' IntT2 

are respectively the interiors of Tl and T2 in Mf Further , Int(Tl) - T2 ~ 

H ([O, 1] x [a, 1]) , for if not , there exists p E IntTl - T2 such that p tt H( [O, 1] x 

[0,1]), thereby proving that H : [0,1] x [0, 1] ----t ME_ {p} is a path homotopy 

between "II and "12 in Mf - {p} which is not possible as "II winds around p 

while "12 does not. Similarly it can be proved that IntT2 - Tl ~ H([O , 1] x 

[0,1]) . Thus H([O , 1] x [0, 1]) contains a nonempty open set of Mf This is 

not possible in view of Proposition 6.1.5 , because H being continuous and 

[0,1] x [0,1] being a compact subspace of Mf, H([O, 1] x [0, 1]) is a compact 
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subspace of M~. This completes the proof. o 

Proposition 7.2.2. The 2-dimensional Minkowski space M2 with f or time 

topology has a non-trivial fundamental group at 0, where 0 is the zero vector 

ofM2 . 

Proof. For i = 1, 2, let 1i be as constructed in the proof of Proposition 7.2.1. 

Then 1/S are loops in M~ and M§' in view of Proposition 4.4.3 and Propo

sition 4.4.4 respectively. The remaining part of the proof can be obtained 

from Proposition 7.2.1 , by making suitable changes. o 

Proposition 7.2.3. The 2-dimensional Minkowski space M2 with s or space 

topology has a non-trivial fundamental group at 0, where 0 is the zero vector 

ofM2 . 

Proof. Consider 1/S, for i = 1, 2, as constructed in the proof of Proposi

tion 7.2.1 by replacing timelike vectors by spacelike vectors . Then 1/S are 

loops in M2 and M~ in view of Proposition 4.4.2 and Proposition 4.4.5 re

spectively. The remaining part of the proof can be obtained from Proposi-

tion 7.2.1 , by making suitable changes. o 

Corollary 7.2.4. The 2-dimensional Minkowski space M with each of the t , 

s, f , time and space topologies is not simply connected. 

Proof. Notice that each of M~ , M2, M{, M§' and M~ is path connected as 

proved in Chapter 4. Further, each has a non-trivial fundamental group in 

view of the preceding Propositions. This completes the proof. o 
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Remark 7.2.5. In the forthcoming results of this section, cones, neighbour

hoods, 0 etc. are used in different spaces, for instance M2 , M and IRn-2. To 

avoid complexity of notation, the same notation is used in all the spaces. 

However, the parent space will become clear from the context. 
/;) 

Proposition 7.2.6. Let Mt be the n-dimensional Minkowski space M with t 

topology, for n > 2. Then the subspace topology induced on IR2 x {O} from t 

topology on M is same as that of the product topology on M~ x {O} , where 0 

denotes the zero vector of the real vector space IRn-2. 

Proof. Notice that for x == (xO, xl, .. . ,xn - l ) E M, 

By Proposition 3.2.7, N;(x)-{ x }n[IR2 x {O}] is open in Mf x {O} and hence in 

M~ x {O}. This proves that the subspace topology on IR2 x {O} is coarser than 

the topology on M~ x {O} . Since {N;((xO , Xl) ) x {O} : E > 0, (XO,Xl) E M2} is 

a basis for the topology on M~ x {O} , the other containment follows by noting 

that N;((xO, Xl)) x {O} = N;(y) n [IR2 x {O}], where y == (XO,xl,O . . . , 0) 0 

Proposition 7.2.7. Let MT be the n-dimensional Minkowski space M with 

time topology. Then fo r n > 2, the subspace topology induced on IR2 x {O} 

from time topology on M is same as that of the product topology on MI x {O}, 

where 0 denotes the zero vector of the real vector space IRn -2. 

Proof. Since the subspace topology induced on IR2 x {O} from time topology 

on M induces Euclidean topology on each timelike straight line in IR2 x {O} , 
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it is coarser than the topology on MJ' x {O}. To see that it is indeed equal, 

let G x {O} be open in MJ' x {O} , where G is open in MJ'. Then (G x ~n-2) n 

(~2 x {O}) = G x {O}. Since (G x ~n-2) nTis open in T E , for any timelike 

straight line T, G x ~n-2 is open in MT. This completes the proof. D 

Proposition 7.2.8. Let Mt denote the n-dimensional Minkowski space with 

t topology, for n > 2. Then Mt has a non-trivial fundamental group. 

Proof. Let 0 denote the zero vector of the real vector space ~n-2. Consider 

the map r : Mt --t M~ x {O} defined by r(yO, y\ . .. ,yn-l) = (yO, y\ 0, ... ,0), 

for y E M. Then in view of Proposition 7.2.6, M~ x {O} is a subspace of Mt. 

We assert that r is a retraction. To see that it is continuous, it is sufficient to 

check that, for (XO,X l) E M2 , r-l(GT((xO,xl )) x {O}) is open in Mt because 

the just defined map r : ME --t Mf x {O} is continuous and the collection 

{N;((XO,Xl)) x {O} : E > 0, (XO,Xl) E M2} forms a basis for the product 

topology on M~ x {O}. Since [GT((XO, Xl)) - {(XO, Xl)}] x {O} is open in 

Mf x {O} , it follows that each point of r- l([GT((XO, Xl)) - {(XO, Xl)}] x {O}) 

is its interior point in Mt . Further for y E r-l(GT((XO, Xl)) x {O}) such that 

r(y) = (XO,xl,O .. . , 0) , GT(y) ~ r-1(GT((xO,xl )) x {O}). This proves that 

r : Mt --t M~ x {O} is continuous. Further since rI 1R2x{o} is equal to the 

identity map on M2 x {O} , r is a retraction. 

Since the natural homomorphism induced on the fundamental groups by a 

retraction is surjective [14], by Proposition 7.2.1, the fundamental group at 

o of M~ x {O} and hence of Mt is non-trivial. D 

Proposition 7.2.9. Let MT denote the n-dimensional Minkowski space with 

time topology, for n > 2. Then MT has a non-trivial fundam ental group. 
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Proof. In view of Proposition 7.2.7, it follows that M§' x {O} is identical with 

the subspace ]R2 x {O} of MT, where 0 denotes the zero vector of the real 

vector space ]Rn-2 , for n > 2. Consider the map r : MT ----+ M§' x {O} defined 

by r(xo, Xl,· " , Xn-l) = (XO, Xl, 0, . . . , 0), for (xo, Xl,"" Xn-l) E M. Then 

r is continuous for if G x {O} is open in M§' x {O} , then r - I(G x {O}) = 

G x ]Rn-2, which is open in MT. Further, since rIIR2 x {O} is equal to the identity 

map on M2 x {O} , r is a retraction. 

Since the natural homomorphism induced on fundamental groups by retrac

tion is surjective [14], by Proposition 7.2.2, the fundamental group at 0 of 

M§' x {O} and hence of MIT is non-trivial. Hence the result. o 

Corollary 7.2.10. The n-dimensional Minkowski space M with each of the 

t and time topologies is not simply connected. 

Proof. Notice that each of MIt and MT is path connected as proved in Chapter 

4. Further, each has a non-trivial fundamental group in view of the preceding 

Propositions. This completes the proof. 0 
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Chapter 8 

Conclusion 

In this chapter, summarizing the main results obtained in the thesis, its 

salient features are highlighted. New direction of work is also proposed. 

8.1 Main Results 

The present thesis is focused on a topological study of the n-dimensional 

Minkowski space MI . Separation axioms, countability axioms, separability, 

metrizability, Lindelofness, local compactness, connectedness, compact sets , 

fundamental group, etc. of MI with various non-Euclidean topologies are 

explored. 

Main results obtained are summarized below: 

(i) The time topology on the n-dimensional Minkowski space MI is strictly 

finer than the t and fine topologies on MI, the space topology on MI 

is strictly finer than the s and fine topologies on MI, the fine topology 

on MI is strictly finer than the f topology on MI, the t topology on 
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M is strictly finer than the f topology on M and the s topology on 

M is strictly finer than the f topology on M while the t , s and fine 

topologies are non-comparable and time and space topologies are also 

non-comparable. 

(ii) The t and time topologies induce Euclidean topology on timelike straight 

lines while discrete topology on light rays and space axes. 

(iii) The s and space topologies induce Euclidean topology on a space axis 

while discrete topology on a light rays and timelike straight line. 

(iv) The f and fine topologies induce Euclidean topology on timelike straight 

lines and space axes while discrete topology on light rays. 

(v) Topological properties, namely path connectedness, separability are 

commonly shared and regularity, local compactness, metrizability, para

compactness, Lindelofness, second count ability are commonly not shared 

by the n-dimensional Minkowski space M with each of the t, f, s , time, 

fine and space topologies while first count ability is enjoyed by M with 

t, f and s topologies but not by M with time and space topologies. 

(vi) A Zeno sequence in the n-dimensional Minkowski space M with t topol

ogy or f topology or s topology or time topology or space topology 

admits a subsequence whose image is closed in it but not closed in M 

with Euclidean topology. 

(vii) For a subset C of the n-dimensional Minkowski space M, the subspace 

topologies induced on C from Euclidean topology and from t topology 

or f topology or s topology or time topology or space topology, are 
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same if and only if C does not contain completed image of any Zeno 

sequence in M with the corresponding topology. 

(viii) A nonempty open set in the n-dimensional Minkowski space M with t 

topology or j topology or s topology or time topology or space topol

ogy, contains completed image of a Zeno sequence in the corresponding 

space. 

(ix) An analogue of the Heine-Borel theorem for the n-dimensional Minkowski 

space M with non-Euclidean topologies is obtained. 

(x) The n-cube, which is known to be compact in the n-dimensional Minkowski 

space M with Euclidean topology, is not compact in M with any of the 

t, j , s, time and space topologies. 

(xi) A continuous map j from a space X to the n-dimensional Minkowski 

space with Euclidean topology such that j(X) does not contain com

pleted image of a Zeno sequence in M with t topology or j topology or s 

topology or time topology or space topology, continues to be continuous 

when M is considered with the corresponding topology 

(xii) The 2-dimensional Minkowski space with any of the j, t , s , time and 

space topologies is not simply connected unlike the Euclidean 2-space. 

(xiii) Generalization of the preceding result to the n-dimensional case has 

been obtained for t and time topologies (case n = 2 has been exploited 

to prove the result for the general case). 
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8 .2 Concluding Remark 

The present thesis, focused on a detailed. topological study of the n

dimensional Minkowski space M, forms a part of the study of compactifi

cation in superstring theories, M being one of the essential component of 

this compactification. 

It has been revealed that various topological properties studied for M with 

different non-Euclidean topologies do not follow from the finer coarser re

lationship of topologies. Rather, independent proofs are required which are 

not straight forward. While studying analogue of the Heine-Borel theorem in 

M with a non-Euclidean topology, the notion of Zeno sequences has emerged 

as an important tool, and provides a new technique to characterize the com

pact sets in Minkowski space with a non-Euclidean topology. This charac

terization of compact sets has further led to the investigation of some more 

topological properties, such as simple connectedness. The techniques are 

sometimes same to prove a result for different topologies but sometimes dif

fer tremendously. Even if the technique is same for different topologies , an 

independent visualization is required for each of them. 

This non-triviality indicates that the study of each of the non-Euclidean 

topologies on the n-dimensional Minkowski space has its own independent 

existence from mathematical viewpoint also besides having the well estab

lished physical relevance. 
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8.3 Proposed Directions 

Mentioned below are two research problems for possible consideration m 

future. 

(i) Is n-dimensional Minkowski space MI homeomorphic to the product 

space X x Y , where X is k-dimensional Minkowski space, Y is m

dimensional Minkowski space and k + m = n, when MI, X and Yare 

with the same non-Euclidean topology? 

(ii) Is n-dimensional Minkowski space with a non-Euclidean topology 

homeomorphic to the m-dimensional Minkowski space with the same 

topology, for n =I=- m? 
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