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Abstract

The subject called ”Galilean electromagnetism” was created by Le
Bellac and Lévy-Leblond [1] who had proved that there exist two non-
relativistic limits of Maxwell’s equations. We have a specific reason
to reexamine these limits which is connected with recently obtained
completed description of decomposable vector representations of the
homogeneous Galilei group [2, 3]. Our knowledge of these representa-
tions makes it possible to refine and generalize the results of Le Bellac
and Lévy-Leblond. It is shown that the collection of non-equivalent
Galilei-invariant wave equations for massless fields with spin equal 1
and 0 is very broad. There exist a huge number of such equations for
massless fields which correspond to various contractions of represen-
tations of the Lorentz group to those of the Galilei one. Moreover,
it is possible to find essentially coupled systems of Galilei invariant
equations via contraction of decoupled relativistic systems.

1. Introduction

Consistent physical models as a rule are characterized by nice symmetrical
properties. There are many various symmetries, but two of them are the
most fundamental ones. They are relativistic invariance and invariance
w.r.t. the Galilei transformations. The relativistic invariance is seem to be
an universal low of nature, the Galilean invariance change the Lorentz one
whenever we deal with phenomena with velocities much smaller than the
velocity of light.
Relativistic theories in principle are more complicated then non-relativistic
ones. On the other hand, the structure of subgroups of the Galilei group
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and of its representations are in many respects more complex than those
of the Poincaré group and therefore it is perhaps not so surprising that
the representations of the Poincaré group were described by Wigner in
1939, almost 15 years earlier than the representations of the Galilei group
(Bargman, 1954) in spite of the fact that the relativity principle of classical
physics was formulated by Galilei about three centuries prior to that of
relativistic physics formulated by Einstein.

An excellent review of the representation theory of the Galilei group was
written by Lévy-Leblond in 1964. It appears that, as opposed to the
Poincaré group, the Galilei group has the ordinary as well as the projective
representations. Its subgroup - the homogeneous Galilei group HG(1, 3)
which plays in non-relativistic physics the role of the Lorentz group in
relativistic case, has a much more sophisticated structure so that its finite-
dimensional indecomposable representations and not classifiable.

2. Galilei group.

The Galilei group G(1, 3) is a group of transformations in R3 ⊕ R1: :

t → t′ = t + a,
x → x′ = Rx + vt + b,

(1)

where a,b and v are real parameters, R is a rotation matrix.

The homogeneous Galilei group HG(1, 3) a subgroup of G(1, 3) leaving
invariant x = (0, 0, 0) at t = 0 and formed by:

t → t′ = t,
x → x′ = Rx + vt

(2)

This group is noncompact and not semi-simple. Its maximal compact sub-
group is SO(3).

Lie algebra hg(1,3) is spanned on six basis elements: 3 rotation gener-
ators Sa, a = 1, 2, 3 and three generators of Galilean boosts ηa, with the
commutation relations

[Sa, Sb] = iεabcSc,

[ηa, Sb] = iεabcηc,
(3)

[ηa, ηb] = 0. (4)

Classification of finite–dimensional representations of algebra (3) is wild
algebraic problem. Nevertheless, it appears to be possible to describe inde-
composable representations of hg(1, 3) which, however, when restricted to
so(3) are decomposed to direct sums of spin 0 and 1 representations.
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3. Vector representations

Let us examine the finite-dimensional indecomposable representations of
the algebra hg(1, 3) defined on vector and scalar, or spin-one and spin-zero,
representation spaces. It is convenient to search for these representations
in so(3)−basis, i.e., choose such basis in the carrier space in which the
Casimir operators of the maximal compact subalgebra so(3) are diagonal.
The corresponding matrices Sa can be expressed as direct sums of spin-one
and spin-zero matrices:

Sa =
(

In×n ⊗ sa ·
· 0m×m

)
. (5)

The symbols In×n and 0m×m denote the n×n unit matrix and m×m zero
matrix respectively, sa (a = 1, 2, 3) are 3 × 3 matrices of spin equal to one
for which we choose the following realization:

s1 =

( 0 0 0
0 0 −i
0 i 0

)
, s2 =

( 0 0 i
0 0 0
−i 0 0

)
, s3 =

( 0 −i 0
i 0 0
0 0 0

)
(6)

The general form of matrices ηa which satisfy relations (3) with matrices
(6) is given by the following formulae (see, e.g., Gelfand et al)

ηa =
(

A ⊗ sa B ⊗ k†
a

C ⊗ ka 0m×m

)
(7)

A, B and C are matrices of dimension n×n, n×m and m×n respectively,
ka are 1 × 3 matrices of the form

k1 = (i, 0, 0) , k2 = (0, i, 0) , k3 = (0, 0, i) . (8)

The matrices (5) and (7) satisfy conditions (9) with any A,B and C. Sub-
stituting (7) into (10) we obtain the following equations for matrices A, B
and C:

A2 + BC = 0, (9)

CA = 0, AB = 0. (10)

Up to equivalence, the problem of description of finite-dimensional inde-
composable representations of algebra hg(1.3) for vector and scalar fields is
deduced to finding the general solution of the matrix problem (9), (10).
The solution of the nice matrix problem defined by equations (9) and (10)
is relatively easily to handle. Namely, there exist ten non-equivalent inde-
composable sets of matrices {A,B,C}, which can be labelled by triplets of
numbers n,m, λ where n and m take the values

−1 ≤ (n − m) ≤ 2, n ≤ 3 (11)
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and define dimensions of these matrices as in eq.(7), λ =RankB, whose
values are

λ =

{ 0 if m = 0,
1 if m = 2 or n − m = 2,
0, 1 if m = 1, n �= 3.

(12)

These sets and the corresponding IDR will be denoted by D(m,n, λ) with
n,m, λ satisfying the conditions given above. In accordance with (11) there
exist ten non-equivalent indecomposable representations D(m,n, λ).
Thus as distinct to the relativistic case where are only three Lorentz quan-
tities (four-vectors, antisymmetric tensors of second order and scalars)
which transforms as vectors or scalars under rotations, there are 10 IDR
D(m,n, λ) of HG(1, 3).
There exist the following spaces of indecomposable representations: scalar
(for D(0, 1, 0)), 3-vector (for D(1, 0, 0)), two four-vectors (for D(1, 1, 0))
and D(1, 1, 1)), a five-vector (for D(1, 2, 1)),..., and even a ”ten-vector”
(for D(3, 1, 1)).
The most complicated example: IDR D(3, 1, 1), the representation space is
formed by three rotation vectors N,W,R and a scalar A, with transfor-
mation lows:

A → A, R → R′ = R,

W → W′ = W + v × R,

N → N′ = N + v × W + vB + v(v ·R) − 1
2v

2R.

4. Contractions of representations of the Lorentz algebra

It is well known that hg(1, 3) can be obtained from so(1, 3) by the Inönü-
Wigner contraction.
In the simplest case a contraction is a limit procedure which transforms an
N -dimensional Lie algebra L into an non-isomorphic Lie algebra L′, also
with N dimensions. The commutation relations of a contracted Lie algebra
L′ are given by:

[x, y]′ ≡ lim
ε→ε0

W−1
ε ([Wε(x),Wε(y)], (13)

where Wε ∈ GL(N, k) is a non-singular linear transformation of L, with ε0

being a singularity point of W or its inverse W−1
ε .

Representations of these algebras also can be obtained by contractions,
however, by more complicated ways.
In [2, 3] representations of so(1, 3) which can be contracted to D(m,n, λ)
of hg(1, 3) found and appropriate contractions specified. Here we present
only few examples.
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Let us start with representation D(1
2 , 1

2) of so(1, 3). Its carrier space is
formed by four-vectors and its basis is given by:

Sab = εabc

(
sc 03×1

01×3 0

)
, S0a =

(
03×3 −k†

a

ka 0

)
. (14)

Here (sa)bc = iεabc are matrix elements of spin 1, ka are 1 × 3 matrices of
the form

k1 = (i, 0, 0) , k2 = (0, i, 0) , k3 = (0, 0, i) .

The Inönü-Wigner contraction consists of transformation to a new basis

Sab → V SabV
−1, S0a → εV S0aV

−1

(with a matrix V depending on contraction parameter ε) and passing ε → 0.
Moreover, V = V (ε) in a tricky way, so that all the transformed generators
kept non-trivial and non-singular when ε → 0.
There exist two matrices V for representation (14), namely

V1 =
(

εI3×3 03×1

01×3 1

)
, and V2 =

(
I3×3 03×1

01×3 ε

)
. (15)

Using V1 we obtain

S′
ab = V1SabV

−1
1 = Sab,

S′
0a = εV1S0aV

−1
1 =

(
03×3 −ε2k†

a

ka 0

)
.

(16)

Then, passing ε to zero, we come to the following matrices

Sa = 1
2εabcSbc =

(
sa 03×1

01×3 0

)
,

ηa = lim S′
0a|ε→0 =

(
03×3 03×1

ka 0

)
.

(17)

Analogously, using matrix V2 instead of V1 we obtain

Sa =
(

sa 03×1

01×3 0

)
, ηa =

(
03×3 −k†

a

01×3 0

)
. (18)

Matrices (17) and (18) realize representations D(1, 1, 0) and D(1, 1, 1) re-
spectively.
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To obtain five-dimensional representation D(1, 2, 1) we start with a direct
sum of representations D(1

2 , 1
2 ) and D(0, 0) of so(1, 3). The corresponding

generators of so(1, 3) have the form

Ŝμν =
(

Sμν ·
· 0

)
(19)

where Sμν are matrices (14) and the dots denote zero matrices of appro-
priate dimensions. The corresponding similarity transformation matrices
are:

V3 =

⎛⎝ I3×3 03×1 03×1

01×3
1
2ε 1

2ε
01×3 −ε−1 ε−1

⎞⎠ , V −1
3 =

⎛⎝ I3×3 03×1 03×1

01×3 ε−1 −1
2ε

01×3 ε−1 1
2ε

⎞⎠ . (20)

As a result we obtain the following basis elements of representation D(1, 2, 1)
of algebra hg(1, 3):

Sa =

(
sa 01×3 01×3

03×1 0 0
03×1 0 0

)
, ηa =

⎛⎝ 03×3 k†
a 03×1

01×3 0 0
ka 0 0

⎞⎠ . (21)

5. Galilean massless fields

Galilean massless equations can be obtained using different approaches. We
will use contractions of relativistic wave equations.

1. Galilean limits of Maxwell’s equations
There are two Galilean limits of Maxwell’s equations. In the so called
”magnetic” Galilean limit we receive a pre-Maxwellian electromagnetism
with equations:

∇× Em − ∂Hm
∂t = 0, ∇ ·Em = ej0

m,

∇× Hm = ejm, ∇ · Hm = 0.
(22)

Equations (22) are invariant with respect to the Galilei transformations (1)
provided Hm, Em and j cotransform as

Hm → Hm, Em → Em − v × Hm,

jm → jm, j0
m → j0

m + v · jm.
(23)

Introducing Galilean vector-potential A = (A0,A) such that

Hm = ∇× A, Em = −∂A
∂t

−∇A0 (24)
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we find that A transforms as:

A0 → A0 + v · A, A → A. (25)

For second, ”electric” Galilean limit of Maxwell’s equations we get

∇× He + ∂Ee
∂t = eje, ∇ ·Ee = ej4

e ,

∇× Ee = 0, ∇ · He = 0,
(26)

with the Galilean transformation:

He → He + v × Ee, Ee → Ee,
je → je + vj4

e , j4
e → j4

e .
(27)

He and Ee can be expressed as

He = ∇×A, Ee = −∇A4 (28)

with the Galilei transformations of A:

A4 → A4, A → A + vA4. (29)

These results (obtained by Le Bellac and Levi-Leblond) can be clearly in-
terpreted using representations and contractions discussed previously. In-
deed, there exist exactly two non-equivalent representations of HG(1, 3)
the carrier spaces of which are four-vectors – the representations D(1, 1, 0)
and D(1, 1, 1). Equations for massless fields invariant with respect to these
transformations are given by relations (22) and (26) respectively.
Both representations, i.e., D(1, 1, 0) and D(1, 1, 1), can be obtained via con-
tractions of the representation D(1/2, 1/2) of so(1, 3) whose carrier space
is formed by relativistic four-vectors. Each of these contractions generates
the Galilean limit of Maxwell’s equations which we considered in the above.

2. Extended Galilean electromagnetism
Thus, Maxwell’s electrodynamics can be contracted either to the magnetic
(22) or to the electric limit (26). Each of them corresponds to a particular
IDR of HG(1, 3).
But we know that there are 9 such representations for vector fields. Maybe,
the number of possible Galilei invariant equations for such fields is more
than 2 ?
This conjecture is correct, there are many of them. And they can be ob-
tained via contraction of relativistic equations.
Let us start with relativistic equations for the vector-potential Aμ

pμpμAν = −ejν (30)

in the Lorentz gauge pμAμ = 0 or p0A
0 = p ·A.
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Consider also the inhomogeneous d’Alembert equation for a relativistic
scalar field which we denote as A4:

pμpμA4 = ej4. (31)

Introducing the related vectors of the field strengthes in the standard form

H = ∇× A, E = − ∂A
∂x0

−∇A0, F = ∇A4, F 0 =
∂A4

∂x0
(32)

we come to Maxwell’s equations for E and H:

∇× E − ∂H
∂x0

= 0, ∇ ·H = 0,

∇× H +
∂E
∂x0

= ej, ∇ ·E = ej0

(33)

and the following equations for F and F 0

∂F 0

∂x0
+ ∇ · F = ej4,

∇× F = 0,
∂F
∂x0

= ∇F 0.

(34)

Surely the system of equations (33) and (34) is completely decoupled.
Rather surprisingly its Galilean counterpart which we obtain using the
Inönü-Wigner contraction appears to be coupled. This contraction, i.e.,
D(1

2 , 1
2) ⊕ D(0, 0) → D(1, 2, 1), was considered in the above. The con-

tracted equations are:

∇ · N − ∂

∂t
B − ej0 = 0, ∇× W + ∇B − ej = 0,

∇ · R− ej4 = 0,
∂

∂t
W + ∇× N = 0, (35)

∂

∂t
R −∇B = 0, R ≡ ∇× R = 0, ∇ · W = 0,

where

W = ∇× A′, N = −∂A′

∂t
−∇A′0, R = ∇A′4, B =

∂A′4

∂t
(36)

and A′0, A′4,A′ are components of contracted relativistic potentials.
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The system of equations (35) is invariant w.r.t. the Galilei group provided
the current j = (j0, j, j4) co-transforms in accordance with representation
D(1, 2, 1).

3. Reduced Galilean electromagnetism

The finite dimensional representations of HG(1, 3) are indecomposable but
reducible. Thus, in contrast with the relativistic case the Galilei invariant
approach makes it possible to reduce the number of field variables. For
example, considering the magnetic limit (22) of the Maxwell equations it is
possible to restrict ourselves to the case Hm = 0 in as much as this condition
is invariant with respect to the Galilei transformations (23). Notice that in
the relativistic theory such condition can be imposed only in a particular
frame of references and will be affected by the Lorentz transformation.

Staring with equations (35) and considering its possible reductions one can
find many other Galilei invariant equations for massless vector fields. Let
me present the completed list of them. In addition to equations presented
above this list includes the following systems:

∂

∂t
H̃ + ∇× Ẽ = 0, ∇× H̃ = ej, ∇ · H̃ = 0,

∇ · Ẽ =
∂

∂t
S + ej0, ∇S = 0;

(37)

∇× H +
∂

∂t
E − ej = 0, ∇ · E − ej4 = 0,

∂

∂t
E −∇B = 0,

∇× E = 0, ∇ · H = 0;
(38)

∇ ·E − ej4 = 0,
∂

∂t
E−∇B = 0, ∇×E = 0; (39)

∇× Ê = 0, ∇ · Ê = ej4; (40)

∇× Ĥ = ej, ∇ · Ĥ = 0 (41)

We find all non-equivalent reductions of equations (22), (26) and also equa-
tions of ”extended Galiean electromagnetism”. In this way we find all
possible Galilei invariant equations for massless vector fields. The numbers
of field components described by these equations are 3, 4, 5, 6, 7, 8 and 10,
which is in accordance with the dimensions of IDR discussed in the above.

4. Non-linear equations for vector fields

Starting with the found indecomposable representations for HG(1, 3) it is
possible to find all possible PDE admitting these symmetries. In particular
– equations for massive fields and also non-linear equations.
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An example of a nonlinear equation is the following system:

∂V
∂t

= ∇B,

∂W
∂t

= −∇× N,

∂B

∂t
= −∇ · N + W · N, (42)

∇× V = 0, ∇ ·V = −V · W,

∇ ·W = 0, ∇× W = −∇B + BW + V × N

which is nothing but a Galilei-invariant analogue of the Carroll-Field-Jackiw
model which was formulated with a view to examine the possibility of
Lorentz and CPT violations in Maxwell’s electrodynamics and is invariant
neither w.r.t. Lorentz nor w.r.t. Galilei transformations.

6. Discussion

Our knowledge of indecomposable representations of homogeneous Galilei
group defined in vector and scalar fields [2] made it possible to complete
the results of Le Bellac and Lévy-Leblond [1] and present a complete class
of Galilei-invariant equations for massless vector fields.
It is necessary to stress that the majority of obtained equations admit clear
physical interpretations. Thus equation (40) and (41) are applied in electro-
and magnetostatics respectively.
We see that the number of Galilean wave equations for massless vector
fields is rather extended, and so there are many possibilities to describe
interaction of non-relativistic charged particles with external gauge fields.
Starting with the found equations and using the list of functional invariants
for Galilean vector fields presented in [3] it is easy to construct nonlinear
models invariant with respect to the Galilei group, including its supersym-
metric extensions.
Invariance of any particular found equation with respect to the Galilei
transformations can be verified by direct calculation. The main result pre-
sented in this topic is the completed description of all such equations.
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