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Preface

The year 2011 may be remembered by many of us as the year of the East Japan Great Earthquake and
the fatal accident of the Fukushima Daiichi nuclear power-plants which seriously affect life mainly in
Tohoku area, Japan. Even around the registration period for the workshop participation in the last July,
aftershocks happened frequently and safety of the power-plants was not perfectly. In this circumstance, it
was a great pleasure of the organizing committee to see more than 120 participants attended the workshop
and enjoyed 7 invited talks, 46 contributed talks and 28 poster presentations, some of whom were from
abroad. The talks and posters cover a wide range of active research topics including experimental hints
of the Higgs particle from the LHC, possible use of gravitational waves as probes of the universe and
modifications of gravity theory, and inflation with large non-Gaussianity to name a few. “The twenty-
first workshop on General Relativity and Gravitation in Japan” was thus successfully held
at the Tohoku University, 26-29 September 2011, in the year when the university celebrated its 100
years anniversary on the 10th of September. Regarding this success, we appreciate very much all the
participants for their warm support for the workshop and their remarkable patience when the LOC asked
them accept the profound changes of the workshop program. 1

This workshop is supported by the following Grants-in-Aid for Scientific Research from the Japan
Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sports, Science, and
Technology in Japan (MEXT). The grants in alphabetical order of the research representatives’ names are
the JSPS Grant-in-Aid for Creative Scientific Research No. 19GS0219 (Tohru Eguchi), the MEXT Grant-
in-Aid for Scientific Research on Priority Areas No. 18072001 (Toshifumi Futamase), the MEXT Grant-
in-Aid for Scientific Research on Innovative Areas No. 21111006 (Hideo Kodama), and the JSPS Grant-
in-Aid for Scientific Research (A) No. 20244009 (Takayoshi Ogawa) and No. 21244033 (Misao Sasaki).
The MEXT Tohoku University Global COE Program Scienceweb also supports this workshop. Edamatsu-
Kosaka-Mitumori group of Research Institute of Electrical Communication (RIEC), Tohoku University
is greatly acknowledged, for they kindly allowed us to use the conference room in the Laboratory for
Nanoelectronics and Spintronics building. The LOC thanks Prof. M. Hotta of Tohoku Univ. very
much for his helpful advices regarding the workshop managements. We thank Ms. Kiyoe Yokota (Kyoto
University), Satomi Miyata, and Junko Nagasawa (Tohoku University) for their administrative works
including visa and reimbursement issues. Graduate students in the Astronomical students of Tohoku
University, K. Fujio, R. Kuroshima, Y. Mochizuki, M. Morioka, S. Ogawa, T. Okamura, N. Uchikata,
and N. Sugiyama, have taken care of the conference palce preparation during the workshop. We thank
Prof. T. Murayama (Tohoku University) for his arranging the wireless lan services available in the
Sakura Hall. The LOC is grateful to the management office members of the Sakura Hall, the members
of the Astronomical Institute and the Faculty of Science Tohoku University for their kindful help of both
financial supports and administrative works.

May 21, 2012
Yousuke Itoh

(on behalf of the JGRG21 LOC)

1After all, we could not figure out what caused the nasty gas smell spread out in the conference hall in the afternoon of
the 28th, September. According to the Sendai city gas company, it was not due to any town gas leak within the conference
hall.
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S. Yamada 1

Riemannian geometric aspects of Penrose-type inequalities

Sumio Yamada 2(a)

(a)Mathematical Institute, Tohoku University, Sendai 980-8578, Japan

Abstract
We investigate a series of inequalities which gives bounds on a set of asymptoticcally
defined invariant associated with blackhole geometries.

1 Introduction

We suppose that S4 is a smooth manifold with a Lorentz signature metric g, representing a space-time.
Matter in relativity is represented by tensor fields over S, and the spacetime metric g represents the

gravitational field. The matter fields evolve from initial data via their equations of motion, and the
gravitational field evolves via the Einstein equation

Ric(g)− 1

2
Rg = 8πT

where Ric denotes the Ricci curvature and R = Trg(Ric(g)) is the scalar curvature. When there are
no matter fields present the right hand side T is zero, and the equation reduces to Ric(g) = 0. These
equations are called the vacuum Einstein equation.

The solution to the Einstein equation is determined by initial data given on a spacelike hypersurface
M3 in S4. The fields at a point x0 in the space-time S4 are determined by initial data in the part of
M3 which lies in the past of x0. The initial data for g are the induced (Riemannian) metric g|M , also
denoted g for simplicity, and the second fundamental form p. These play the role of the initial position
and velocity for the gravitational field. An initial data set is a triple (M, g, p). With this set of data,
solving the Einstein equation amounts to finding the integral curve with the initial position and the initial
velocity. That p describes how M3 sits inside S, and hence it cannot be chosen arbitrarily.

Using the Einstein equations together with the Gauss and Codazzi equations, the constraint equations
g and p need to satisfy are

µ =
1

16π
(RM +Trg(P )

2 − ∥p∥2), Ji = 8π
3∑
j=1

∇jπij

where µ is the local energy density, J is the local current energy with respect to an adapted frame
{ei}3i=0 toM3 ⊂ S4 with e1, e2, e3 tangential to toM . where πij = pij−Trg(p)gij , and ∇ is the covariant
derivative with respect to g. In case there is no matter present, the vacuum constraint equations become

RM +Trg(p)
2 − ∥p∥2 = 0, ∇jπij = 0

for i = 1, 2, 3 where RM is the scalar curvature of M3. For spacetimes with matter, the stress-energy
tensor is normally required to satisfy the dominant energy condition

µ ≥ ∥J∥2

The most natural boundary condition for the Einstein equations is the condition of asymptotic flat-
ness [1, 21]. This boundary condition describes isolated systems which are the analogues of finite mass
distributions in Newtonian gravity. The requirement is that the initial manifoldM outside a compact set
be diffeomeorphic to the exterior of a ball in R3 and that there be coordinates x = (x1, x2, x3) in which
g and p have appropriate fall of

gij = δij +O2(|x|−1), pij = O1(|x|−2)

2Email address: yamada@math.tohoku.ac.jp

JGRG21 Programme



2 I26-01: Penrose-type Inequalites

where Oi(|x|−j) means that the function falls off like C/|x|j and its i-th derivative falls off like C ′/|x|j+i.
The following are two basic examples of asymptotically flat spacetimes:

• The Minkowski space-time is R4 with the flat metric g = −dx20 +
∑3
i=1 dx

2
i . It is the space-time of

special relativity.

• The Schwarzschild space-time with mass m > 0 is R× (2m,∞)× S2 with metric

g = −(1− 2m

r
)dt2 + (1− 2m

r
)−1dr2 + r2g0

where g0 is the standard metric on the unit sphere S2, r =
√∑3

i=1 x
2
i . It is a vacuum solution

describing the exterior of a static black hole with mass m. It is the analogue of the exterior field in
Newtonian gravity induced by a point mass.

For general asymptotically flat initial data sets, there is a notion of total energy-momentum which was
defined by Arnowitt, Deser, and Misner (ADM) [1]. There is no energy density for the gravitational field
so these quantities are computed in terms of the asymptotic behavior of g and p. For these definitions
we fix asymptotically flat coordinates x = (x1, . . . , xn)). Then the ADM-mass M is defined as

M =
1

2(n− 1)ωn−1
lim
r→∞

∫
|x|=r

n∑
i,j=1

(gij,i − gii,j)ν
j
0dσ0

where ν0 is the unit outer normal vector to the (n−1)-dimensional standard Euclidean unit sphere Sn−1,
σ0 is the area element of Sn−1, and ωn−1 is the volume of that sphere.

2 Variational Formulations of Mass Inequalities

In the above setting, there have been several important results in Riemannian geometric contexts. The
first is the so-called positive mass/energy theorem.

The Positive Mass Theorem (Schoen-Yau 1979 [19, 20], Witten 1981 [23])
Among all time-symmetric asymptotically flat initial data sets for the Einstein-Vacuum Equations, flat
Euclidean n-space is the unique minimizer of the total ADM-mass. Namely the following inequality holds

m ≥ 0.

We make the folloiwing remarks regarding the history.

• For 3 ≤ n ≤ 7 this theorem was proven by R. Schoen and S.-T. Yau around 1980 [19, 20]. The
proof uses variational properties of minimal hypersurfaces.

• For spin manifolds of any dimension the theorem follows from an argument of E. Witten in the
early 1980’s [23]. The proof uses the Dirac operator.

• For n = 3, a new proof was given in 2000 by G. Huisken and T. Ilmanen [13]. It uses the inverse
mean curvature flow, making rigorous an argument proposed by R. Geroch [10]. We will come back
to this argument.

Based on the conjectured picture of gravitational collapse to a black hole, Penrose [17] proposed a
sharp strengthening of the positive mass/energy theorem, which is the so-called Riemannian Penrose
inequality. In what follows, we restrict our attention to the case n = 3.

The Riemannian Penrose Inequality (Huisken-Ilmanen 2001 [13], Bray 2001 [2])
Among all time-symmetric asymptotically flat initial data sets for the Einstein-Vacuum Equations with

JGRG21 Programme



S. Yamada 3

an outermost minimal surface Σ of area A, the Schwarzschild slice is the unique minimizer of the total
mass. Namely we always have the inequality

m ≥ 1

2
R

where R is the area radius
√

A
4π .

Recall that the event horizon and the apprent horizon coincided in time-symmetric settings, and the
horizon consist of a collection of minimal spheres. This follows from the stability of the minimal surfaces,
namely the second variations of the area functional of the horozon are positive definite. We also make
the following remarks concerning the Penrose inequality.

• Around 2000 this was proven by G. Huisken and T. Ilmanen using the inverse mean curvature flow.
This made rigorous a proof originally proposed by P. Jang and R. Wald [14].

• Shortly after the Huisken/Ilmanen proof [13], a very different proof was given by H. Bray [2] which
extends the result to the case of a possibly disconnected boundary surface. The inverse mean
curvature flow approach does not work in that case, namely, in the Huisken/Ilmanen argument,
what they showed is the ADM mass is bounded below by the area radius of the largest connected
component of the outermost minimal surfaces. Bray’s proof also involved a flow, but it was a
conformal flow of the metric which deformed the given metric to a Schwarzschild metric.

3 Natural Questions

We ask the following set of questions, naturally led by the variational interpretation of the preceding two
inequalities. Those inequalities share the property that in each case, the equality is realized by one of the
exact solutions of the Einstein equation. Incidentaly a good exposition on these subjects, whose scope is
much wider than the current article is Marc Mars’s article [16].

3.1 The Angular Momentum Case

Question: Is the Kerr slice the unique minimizer of the total mass among all asymptotically flat axisym-
metric maximal gauge initial data sets for the Einstein-Vacuum Equations with an outermost minimal
surface Σ of area A and (Komar) angular momentum J? Namely does the following inequality always
hold?

m ≥ 1

2

(
R2 +

4J2

R2

)1/2
Here the Komar angular momentum J(S) for a surface S is defined for axisymmetric data as

J(S) =
1

8π

∫
S

pijX
injSdσS

where S is a sphere homological to the two-sphere at the infinity, X is the Killing vector field which
generates the axisymmetry, nS is the unit normal vector to the surface S, and dσS is the area element of
S. This quantity is known to be a homological quantity, and is equal to the total angular momentum J
in this setting. The equality is assumed for the Kerr slice.

This question remains open. Technically this is due to the fact that the setting is no longer Rie-
mannian, as the effect of Killing vector field X and the extrinsic curvature p have to be taken into
account.

3.2 The Charged Case I

Question (cf. Jang 1979 [15]):Is the Reissner-Nordstrom slice the unique minimizer of the total mass
among all asymptotically flat time-symmetric initial data sets for the Einstein-Maxwell Equations with
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4 I26-01: Penrose-type Inequalites

an outermost minimal surface Σ of area A and charge Q? Namely does the following inequality always
hold?

m ≥ 1

2

(
R+

Q2

R

)
where the total charge Q is defines by Q(S) =

∫
S2
∞
Ein

i
SdσS for S a sphere homological to the sphere at

the asymptotically flat end. This represent the sum of the charges {Qi} each trapped inside the horizons
Σi.

Recall that the Time-Symmetric Einstein-Maxwell Contraints

Sg = 2(|E|2g + |B|2g), divgE = divgB = 0, E ×g B = 0

as well as the nonexistence of magnetic monopole
∫
S
Bin

i
SdσS = 0 for a sphere S homological to the

sphere at the asymptotically flat end.

3.3 The Charged Case II

Question(Gibbons 1984 [12]):Is the Majumdar-Papapetrou slice with the horizon consisting of two
components of opposite charges the unique minimizer of the total mass among all asymptotically flat
time-symmetric initial data sets for the Einstein-Maxwell Equations with an outermost minimal surface
Σ = ∪Σi of area A = ΣAi and charges {Qi}? Namely does the following inequality always hold?

m ≥
∑
i

1

2

(
Ri +

Q2
i

Ri

)

4 Answers to Questions

In this section, we present answers to each of the two questions concerning the charged cases I and II.

4.1 Charged Case I

For the Penrose-type inequality m ≥ 1
2

(
R+ Q2

R

)
, the following is known:

• Yes, provided Σ is connected (Jang 1979 [15], Huisken-Ilmanen 2001 [13]).

• No, in general (Weinstein-Yamada 2004 [22]).

It is interesting to note that the topological conditions affect the Penrose-type inequality in an essential
manner. We will outline the arguments for the two cases now.

4.1.1 Jang/Huisken-Ilmanen argument for Σ connected

As was done for the proof of the Riemannian Penrose inequality, flow the connected component Σ of the
horizon of the biggest area by Inverse Mean Curvature; ∂x

∂t = 1
H ν. Then use the Geroch Monotonicity

(sharpened by Jang to incorporate the electric field E) which says

dmH(Σ(t))

dt
≥ R

32π

∫
Σ(t)

Sg ≥ 0

where mH(Σ) = R
2 (1 − 1

16π

∫
Σ
H2) is the Hawking Mass and the scalar curvature of (M3, g) has the

following expression Sg = 2(|E|2 + |B|2) from the Einstein constraint equation. The Hawking mass
converges to ADM mass as Σ → S2

∞, while the Cauchy-Schwarz inequality and Q =
∫
S2
∞
Ein

idσ gives the

expression for the right hand side of the inequality m ≥ 1
2

(
R+ Q2

R

)
. In taking the limit of the evolution

Σ → S2
∞ via the inverse mean curvature flow, and jump over discontinuities with Huisken-Ilamen’s weak

flow as necessary. By backtracking the argument, one can check that the equality holds if and only if the
initial data set is that of Reissner-Nordstrom with the appropriate mass and charge.
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4.1.2 Weinstein-Yamada argument for Σ of two components

We recall the so-called Majumbar-Papapetrou Metric [6], or sometimes better known as the extremal
Reissner-Nordstrom metric in the sense that the usual inequality M ≥ |Q| is saturated M = |Q|. We
are here concerned with the case when Σ is of two components, and the charge is split evenly and of the
same sign causing the repulsive force. To be precise, the underlying differential manifold is R3\{p1, p2}
with p1 = (0, 0, 1), p2 = (0, 0,−1) on which we have the following gravitational and electric fields

• gij = u4δij , u =

(
1 +

µ

r1
+
µ

r2

)1/2

• Ei = 2∇i log u, Bi = 0

where r1, r2 are the distances to p1 and p2. Then the scalar curvature is Sg = 2∥E∥2g
The total mass of this initial data is m = 2µ and the total asymptotic area of Σ is A = 8πµ2, while

the total charge is Q = 2µ. This gives a counterexample to the inequality m ≥ 1
2

(
R+ Q2

R

)
as

m− 1

2

(
R+

Q2

R

)
= µ

(
2− 3√

2

)
< 0.

However, we are not quite done yet, for this manifold (R3\{p1, p2}, g, E,B = 0) is not asymptotically flat.
It has two ends, one of which is asymtotically flat, but the Majumdar-Papapetrou slice (R3\{p1, p2}, g)
has no horizon, as there are two infinite cylinders centered at p1 and p2. In [22], two copies of Majumdar-
Papapetrou are truncated at their necks, and glued to rectify those features.

We note that the so-called Cosmic Censorship proposed by Penrose [17] is intact. The Cosmic Cencer-
ship says that the evolution of space-time driven by the Einstein equation would force singularities to
be hidden behind the event horizons which is the surface of the blackhole regions, so that there is no
naked singularities to the observer in this part of the space-time. As those blackholes would coalesce
together by the gravitational effect, the time-asymptotic behavior of the universe would settle down to
the Kerr-Newman solution.

Setting aside the angular momentum, Jang [15] has adapted the Cosmic Censership statement to the
Penrose-type inequality. First he notes that

m ≥ 1

2

(
R+

Q2

R

)
is equivalent to the following pair of inequalites

m−
√
m2 −Q2 ≤ R ≤ m+

√
m2 −Q2

Only the upper bound on R follows from Cosmic Censorship using Penrose’s heuristic argument, as the
coalescing process would cause the increase of the size of the horizon, whose upper bound is set by the
asymptotic invariants from the Hamiltonian formulation by Arnowitt, Deser, and Misner [1].

Note that our counter-example violates the lower bound.

4.2 Charged Case II

For the Penrose-type inequality

m ≥
∑
i

1

2

(
Ri +

Q2
i

Ri

)
the following is known: the so-called Brill-Lindquist initial data set [3] satisfies m < 1

2

∑2
i=1Ri (Dain-

Weinstein-Yamada 2010 [9]), which violates the proposed inequality when Qi = 0.

By setting quasi-local mass-like quantities mi, the same inequality m < 1
2

∑2
i=1Ri functions as a

counterexample for each of the following cases.
Namely by defining

mi =
1

2

(
Ri +

Q2
i

Ri

)
, or

√
1

4
R2
i +

J2
i

R2
i
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6 I26-01: Penrose-type Inequalites

the inequalities

m ≥
∑

mi.

do not hold, as they reduces to m ≥ 1
2

∑
Ri in vacuum.

We will explain the counterexample to m ≥ 1
2

∑2
i=1Ri now.

4.2.1 Brill-Lindquist initial data

The so-called Brill-Lindquist initial data [3] has been known for many years, which models a time-
symmetric initial data set (R3\{p1, p2}, g) with p1 = (0, 0, 1), p2 = (0, 0,−1), which has three asymptoti-
cally flat ends, which are linked by two Einstein-Rosen bridges. To be precise,

• gij = u4δij , u =

(
1 +

µ

2r1
+

µ

2r2

)
where r1, r2 are the distances to the punctures p1 and p2 in R3. The metric has zero scalar curvature, as
the function u is harmonic.

Seen from afar, the metric g looks like a Schwarzshild metric of mass µ+ µ. Hence the total mass is
m = 2µ. By a simple comparison srgument, the area radii are R1 = R2 > 2µ (Gibbons 1972 [11]) Once
we establish that the outermost horizon is not connected for µ sufficiently small, we have

m− 1

2

∑
i

Ri < 0.

To check that for µ sufficiently small, the horizon cannot be a single minimal sphere, we use the following
properties of the stable minimal surfaces in three dimensional manifolds of bounded geometry.

If the outermost horizon is connected, then there exists x ∈ Σ∩{z = 0}. Then an estimate by Schoen
[18] says there exists some ε > 0 such that

sup
Σ1∩B(x,ε)

|A| ≤ C

∫
Σ1∩B(x,2ε)

|A|2dx

where C is independent of µ << 1. Note that the right hand side is o(µ) as µ→ 0 as the space becomes
increasingly flatter. This means that the piece of the surface Σ1 = Σ ∩ B(x, r) with r < 1 becomes a
graph over a two-dimensional disc centered at x, as the pointwise small extrinsic curvature implies the
bound of turning of the normal vector to the surface. This says |Σ1| > C, with C independent of µ.

On the other hand, Bray’s Penrose inequality [2]

2µ ≥
√

|Σ|
16π

says |Σ1| → 0 as µ→ 0, a contradiction.

5 Concluding Remarks

We have seen the following set of results concerning the Penrose-type inequalities involving the Einstein-
Maxwell Constraints:

• Σ connected ⇒ m ≥ 1

2

(
R+

Q2

R

)
always holds by inverse mean curvature flow and the mono-

tonicity of Hawking mass.

• Σ not connected ⇒ m − 1

2

(
R+

Q2

R

)
< 0 is possible, in fact acheved by an asymptotic time-

symmetric initial data set obtained by glueing and perturbing a pair of the Majumdar-Papapertou
data.
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• Σ not connected ⇒ m − 1

2

∑
i

(
Ri +

Q2
i

Ri

)
< 0 is possible, and achieved by the Brill-Lindquist

initial data when the two neck are sufficiently apart compared to the assigned masses.

This would lead to the following open problems

Open Problem 1: The Charged Case for the asymptotically flat time-symmetric initial data set
(M3, g, p, E) without any topological assumption.

R ≤ m+
√
m2 −Q2

Note this is the part consistent with the Cosmic Censership, of the two inequalities proposed by Jang.
The variational interpretation is that the Reissner-Nordstrom slice maximizes the area of the horizon
among all asymptotically flat time-symmetric initial data satisfying the Einstein-Maxwell constraint with
ADM mass m and the total charge Q.

Open Problem 2: For the axisymmetric maximal (Trgp = 0) initial data set whose the horizon Σ is
connected,

m ≥ 1

2

(
R2 +

4J2

R2

)1/2

.

Note that the equality here is realized by the Kerr slice. Note the Einstein-Maxwell setting, the analogous
result was obtained by inverse mean curvature flow. However, the difficulty here is the fact that the time-
symmetry is no longer assumed, and there is a nontrivial Killing vector field around the symmetry axis.

We also remark that S. Dain recently obtained a series of results [8] which address the inequality

m ≥
√
|J |

where the equality is achieved by the extremal Kerr initial data set, using the technique of harmonic
maps with singularities.

Open Problem 3: When one relaxes the topological type of the horizon, we ask the following stronger
inequality than Open Problem 3 for axisymmetric maximal (Trgp = 0) initial data sets

R2

2
≤ m2 +

√
m4 − J2.

The variational interpretation is that the Kerr slice maximizes the area of the horizon among all asymp-
totically flat time-symmetric initial data satisfying the Einstein constraint with ADM mass m and the
total angular momentum J . The challenge here is that one needs to capture the lack of symmetry of the
space, caused by inhomogeniety of the metric or by multiple horizons, in terms of the deviation of the
right hand side from the left hand side of the inequality. Such was achieved in Bray’s ingenious proof [2]
of the Riemannian Penrose inequality by means of a conformal change trick by Bunting-Masood-ul-Alam
[4].
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Constraints on total conserved quantities in general relativity
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Abstract
This note discusses the recent work of Huang-Schoen-Wang [13] on specifying total
conserved quantities of a vacuum initial data set.

1 Conserved quantities in special relativity

Conserved quantities in special relativity are associated with symmetry in the Minkowski space R3,1.
The isometry group of R3,1 consists of spacetime translations and Lorentz rotations. An infinitesimal
isometry corresponds to a Killing vector field of R3,1. In term of standard coordinates t, x1, x2, x3 on
R3,1, they are:

• Constant vector fields.

• Boost vector fields: t ∂
∂xi + xi ∂∂t , i = 1, 2, 3.

• Rotation vector fields: Yi =
∂
∂xi × x⃗, i = 1, 2, 3.

For example, Y(3) = x1 ∂
∂x2 − x2 ∂

∂x1 corresponds to rotation about the x3 axis.
A Killing vector field K satisfies the Killing equation

Ka;b +Kb;a = 0. (1.1)

Given a timelike geodesic γ with 4-velocity V (thus V bV a;b = 0) and energy-momentum 4-vector p = mV .
By the geodesic equation and the Killing equation (1.1) , we have ⟨p,K⟩ = paKa is a constant along γ
and thus conserved. In case when K is a future timelike unit constant vector field as the 4-velocity of an
observer, E = −⟨p,K⟩ is interpreted as the energy seen by the corresponding observer.

Each continuous distribution of matter field is attached with an energy-momentum stress tensor of
matter density Tab. For example, for electromagnetic field,

Tab =
1

4π
(FacFbdg

cd − 1

4
gabFcdFefg

cegdf ).

T satisfies the conservation equation as a result of coordinate invariance of the associated Lagrangian:

T ab;a = 0.

For any spacelike hypersurface Ω in R3,1 which represents a time slice, the energy seen by an observer
K and intercepted by Ω is the integral ∫

Ω

T (K,u) =

∫
Ω

TabK
aub (1.2)

where ub is the future unit timelike normal of Ω. This is a conserved quantity by the Killing field equation
for K, the conservation equation for T , and Stoke’s theorem, i.e.∫

Ω1

T (K,u1) =

∫
Ω2

T (K,u2)

if ∂Ω1 = ∂Ω2.
Therefore, this expression depends only on the boundary 2-surface Σ = ∂Ω and is the quasi-local

energy of Σ seen by the observer K if K is a future timelike Killing field.

3Email address: mtwang@math.columbia.edu
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2 Energy in general relativity

In general relativity, spacetime is a 4-dimensional manifold with a Lorentz metric g, the gravitational
field. Thus local causal structure is the same, and each tangent space is isometric to the Minkowski
space. Gravitational force is represented by the spacetime curvature of g. Einstein’s field equation
relates gravitation field and matter fields by

Ric− 1

2
Rg = 8πT (2.1)

where Ric is the Ricci curvature, and R is the scalar curvature of g, respectively. T represents the energy-
momentum stress tensor of all matter fields. This is the Euler-Lagrange equation of the Hilbert-Einstein
action.

It turns out first derivatives of g are all coordinate dependent, and thus there is no density for
gravitational energy. This is manifestly Einstein’s equivalence principle. If we try to form the same energy
expression (1.2) by integrating T over a spacelike hypersurface as in special relativity, we encounter two
difficulties:

Firstly, a generic spacetime does not have any Killing field and the expression is not conserved. Though
T in (2.1) still satisfies the conservation equation T ab;a = 0. Secondly, the expression would give only the
energy contribution from matters. There exists vacuum spacetime, i.e. T = 0, with nonzero energy such
as the Kerr solution. There is gravitational energy by the sheer presence of spacetime curvature.

We recall the Kerr metric in Boyer-Lindquist coordinates is of the form:

ds2 = −∆

U

(
dt− a sin2 θ dϕ

)2
+ U

(
dr2

∆
+ dθ2

)
+

sin2 θ

U

(
a dt− (r2 + a2) dϕ2

)2
U = r2 + a2 cos2 θ

∆ = r2 − 2mr + a2

This is a stationary vacuum solution which is axially symmetric solution and ∂
∂ϕ is the corresponding

ration Killing field. The total mass is m and the total angular momentum with respect to ∂
∂ϕ is a. When

a = 0, this reduces to the Schwarzschild solution which is a static vacuum solution that is also spherically
symmetric.

Einstein’s field equation is derived from variation of the Einstein-Hilbert action on a spacetime domain
M :

1

16π

∫
M

R+
1

8π

∫
∂M

K+

∫
M

L(g,Φ)

where K is the trace of the second fundamental form of ∂M and Φ represents all the matter fields. The
variation of the last term with respect to g gives T . The second term is indeed a divergence term

∫
M
∂aIa,

where Ia consists of first derivatives of g. Formally applying Hamilton-Jacobi analysis to this action, one
obtains T ∗

ab, the so called Einstein pseudo tensor, which is expressed in terms of first derivatives of g
and satisfies the conservation equation T ∗a

;ba = 0.
Here is Weyl’s [17] comment on T ∗

ab (see chapter 3 of [6] for the English translation quoted here)
Nevertheless it seems to be physically meaningless to introduce the T ∗

ab as energy components of
the gravitational field; for, these quantities are neither a tensor nor are they symmetric. In fact by
choosing an appropriate coordinate system all the T ∗

ab can be made to vanish at any given point; for this
purpose one only needs to choose a geodesic (normal) coordinate system. And on the other hand one
gets T ∗

ab ̸= 0 in a ’Euclidean’ completely gravitationless world when using a curved coordinate system,
but where no gravitational energy exists. Although the differential relations (∇aT ∗

ab = 0) are without a
physical meaning, nevertheless by integrating them over an isolated system one gets invariant conserved
quantities.
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3 Isolated systems and total conserved quantities

An isolated system is modeled on an asymptotically flat spacetime where gravitation is weak at spatial
infinity. Arnowitt-Deser-Misner [1] applied Hamilton-Jacobi analysis of the Einstein-Hilbert action to
such a system, and obtained total conserved quantities. It turns out the application of Noether’s theorem
to general relativity requires a reference system which is taken to be R3,1. These include the total energy
and linear momentum, as well as the angular momentum and center of mass which altogether correspond
to the 10-dimensional Killing vector fields of the Minkowski space.

Let (M, g, p) be an unbounded spacelike hypersurface in spacetime , where g is the induced Riemannian
metric and p is the second fundamental form, we usually use the canonical momentum π = p − (trgp)g
instead of p. (M, g, π) is called an initial data set as it represents a Cauchy data for the Einstein equation
as a hyperbolic PDE system. We say (M, g, π) is asymptotically flat if outside a compact set there exists
an asymptotically flat coordinate system {xi}i=1,2,3 so that gij − δij = O(|x|−1) and πij = O(|x|−2) and
derivatives of gij and pij satisfy appropriate decay conditions.

Let (M, g, π) be an asymptotically flat initial data set. Let E,C,P,J denote the energy, center of
mass, linear momentum, and angular momentum of (g, π). They are defined as limits of flux integrals
over coordinate spheres Sρ of radius ρ with respect to the asymptotic flat coordinate system.

E =
1

16π
lim
ρ→∞

∫
Sρ

∑
i,j

(gij,i − gii,j)ν
j

Pi =
1

8π
lim
ρ→∞

∫
Sρ

∑
j

πijν
j

Ji =
1

8πE
lim
ρ→∞

∫
Sρ

∑
j,k

πjkY
j
(i)ν

k

Ck =
1

16πE
lim
ρ→∞

∫
Sρ

xk∑
i,j

(gij,i − gii,j)ν
j −

∑
i

(gikν
i − giiν

k)


Here νi is the outward unit normal of Sρ and Y(i), i = 1, 2, 3 is the rotation Killing field with respect

to the xi axis.
It turns out the well-definedness of Ji and Ck rely on extra assumptions at spatial infinity. We impose

the Regge–Teitelboim [14] condition that

gij(x)− gij(−x) = O(|x|−2) and πij(x) + πij(−x) = O(|x|−3)

and similar parity conditions on ∂gij and ∂πij . These quantities are conserved under the evolution of
Einstein’s equation of a maximal slice with appropriate assumptions on the decay rate of (g, π), see
chapter 3 of Christodoulou [6]. There are other different conditions (see for example, Ashtekar-Hansen
[2]) to ensure the finiteness of angular momentum and center of mass. An important property of the
Regge-Teitelboim condition is, by a theorem of Corvino-Schoen [10], that initial data sets satisfying this
condition are dense, and thus a generic initial data set can be approximated by these sets.

(M, g, π) as a hypersurface in spacetime satisfies the constraint equation

1

2
(R(g) +

1

2
(Trgπ)

2 − |π|2) = µ, and divg(π) = J (3.1)

where µ, J are from the energy-momentum stress tensor of matter fields which is assumed to satisfy the
dominant energy condition µ ≥ |J|. We shall assume both µ and J vanish and thus (M, g, π) is a vacuum
initial data set.

Question: Given a vacuum initial data set which is asymptotically flat, is there any constraint on the
conserved quantities E,C,P,J?

Schoen-Yau’s positive mass theorem [15, 16] [3] imposes the most important constraint on these
quantities, namely that the energy-momentum vector is a future timelike vector. In particular, this says
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that the magnitude of the linear momentum vector is bounded above by the energy:

E ≥ |P|

and thus the total mass m =
√
E2 − |P|2 is always non-negative.

For the Kerr solutions which describe rotating stationary axially symmetric vacuum black holes, we
have the mass-angular momentum inequality

m ≥ |J|.

It has been shown by Dain [11, 12] and Chruściel et al.[7, 8] that such an inequality is also satisfied
by general axially symmetric black hole solutions of the Einstein equations (see also work of Zhang [18]).

4 Specifying total conserved quantities

In [13], we show that the mass-angular inequality does not hold true in general.

Theorem There are no constraints on the angular momentum and center of mass in terms of the energy-
momentum vector for general vacuum solutions of the Einstein equations.

In fact, given any 10 real numbers E,C,P,J with E ≥ |P|, we can construct a vacuum initial data
set that has them as conserved quantities.

An effective procedure was given for adding a specified amount of angular momentum to a solution of
the vacuum Einstein equations, producing a new solution with specified angular momentum but with only
slightly perturbed energy-momentum vector. A similar result was obtained for the center of mass. Then,
by considering a family of initial data set near the given one, and by doing the construction continuously
and a degree argument, we obtain a perturbation with arbitrarily specified angular momentum and center
of mass, while leaving the energy-momentum vector unchanged.

From a technical point of view the reason it is possible to make these constructions is that the angular
momentum and center of mass are determined by terms in the expansion of the solution which are of
lower order than those which determine the energy and linear momentum.

The idea then is to make perturbations near infinity which affect only the lower order terms in the
expansion. We do this by explicitly constructing linear perturbations supported in a shell near infinity
which impose the required change in angular momentum (or center of mass), and then by finding a solution
of the vacuum constraint equations which is sufficiently close to the perturbed system so that the change
in angular momentum (or center of mass) persists. This is an application of the Corvino-Schoen [9, 10]
gluing construction of initial data set.

The added term in the perturbation vanishes in the axially symmetric case, and we cannot increase
the angular momentum while keeping the axially symmetric condition. Thus the result is consistent with
the mass-angular momentum inequality of Dain and Chruściel et al.
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Warped de Sitter compactifications
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Abstract
We show that the warped de Sitter compactifications are possible under certain condi-
tions inD-dimensional gravitational theory coupled to a dilaton, a form field strength,
and a cosmological constant. We find that the solutions of field equations give de Sit-
ter spacetime with the warped structure, and discuss cosmological model directly
obtained from the solution. We also construct a cosmological model in the lower-
dimensional effective theory. If there is a field strength having non-vanishing com-
ponents along the internal space, the moduli can be fixed at the minimum of the
effective potential where a de Sitter vacuum can be obtained.

1 Introduction

The de Sitter compactification of higher-dimensional theory is an important cosmological issue. Such a
solution has been explored from several points of view because this provides a fairly direct explanation of
the accelerating expansion of four-dimensional universe. The inflation and accelerating expansion with
warped compactifications can be constructed in a variety of ways from higher-dimensional cosmology or
string theory. A road to obtain the warped de Sitter compactification has appeared recently in a study of
the higher-dimensional pure gravity theory in [1]. It was shown that warped structure of the spacetime
realizes a de Sitter universe, but the pay is that one of the internal space dimensions has to have an infinite
volume rather than small and finite one. For such a class of solutions, a way of the construction of a
cosmological model is to insert a brane world boundary in the noncompact direction whose world volume
contains all the remaining compact directions of the internal space which is discussed more explicitly in
[1]. It may be regarded as a generalization of the five-dimensional brane world models. The details of
the brane world models obtained from our solutions are argued in [2].

We will first focus on the derivation of the new warped de Sitter solutions obtained as the generalization
of Ref. [1]. We discuss the warped de Sitter compactification which include the metric, the scalar fields,
the cosmological constant in D dimensions, and re-examine possible generalizations of the de Sitter
compactification [1]. This gives the logically simple treatment of this topic and the clearest explanation
of warped compactifications. In the case with a positively curved internal space and pure gravity, this
will be a simpler expression of the solution [1]. We will next investigate a stabilization mechanism of the
internal space via some kinds of matter fields in the D-dimensional theory, and present another way to
construct a cosmological model adding matter fields after integrating over the compact directions and
involving the noncompact direction in the higher-dimensional solution into our Universe. We consider
the matter fields with a cosmological constant in order to stabilize the scale of internal space. Many
works suggest that the field strength might provide a physical mechanism which is capable of accounting
for the extreme smallness of the extra dimensions.

We present the solutions to be de Sitter warped compactification with several matter fields following
[2, 3] in Sec. 2. In Sec. 3, we discuss the stabilization of moduli degrees of freedom in the lower-dimensional
effective theories for the warped compactification. Sec. 4 is devoted to giving concluding remarks.

2 Compactifications with matter fields

In this section, we discuss the warped de Sitter compactification which includes several fields and the
cosmological constant.

4Email address: uzawa@phys.kindai.ac.jp
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The action we consider in the Einstein frame is given by

S =
1

2κ2

∫ [{
R− 2e−αϕ/(p−1)Λ

}
∗ 1− 1

2
dϕ ∧ ∗dϕ− 1

2 · p!
eαϕF ∧ ∗F

]
, (2.1)

where κ2 is the D-dimensional gravitational constant, ∗ is the Hodge operator in the D-dimensional
spacetime, and ϕ is the scalar field, and F is p-form field strength, and Λ, α are constants. We adopt the
following ansatz for the D-dimensional metric:

ds2 = e2A(y)
[
qµν(X)dxµdxν + dy2 + γab(Z)dz

adzb
]
, (2.2)

where qµν is the n-dimensional metric which depends only on the n-dimensional coordinates xµ, and γab
is the p(= D − n − 1)-dimensional metric which depends only on the p-dimensional coordinates za. As
for the scalar field and the p-form field strength, we take

ϕ =
2

α
(p− 1)A(y) , F = f

√
γdz1 ∧ · · · ∧ dzp , (2.3)

where f is a constant, and γ denotes the determinant of the metric γab(Z).

Let us first consider the gauge field. Under the assumption (2.3), the Bianchi identity and equation
of motion for the gauge field are automatically satisfied. Next we consider the scalar field equation.
Substituting the fields (2.3), and the metric (2.2) into the equation of motion for the scalar field, we
obtain

2(p− 1)α−1e−2A

[
A′′ + (D − 2) (A′)

2 − α2

p− 1

(
− Λ

p− 1
+
f2

4

)]
= 0 , (2.4)

where ′ denotes the ordinary derivative with respect to the coordinate y.

In terms of Eq. (2.4), the Einstein equations are reduced to

Rµν(X)− β

(
− Λ

p− 1
+
f2

4

)
qµν(X) = 0 , Rab(Z)−

[
β

(
− Λ

p− 1
+
f2

4

)
+
f2

2

]
γab(Z) = 0 , (2.5)

(D − 1)A′′ +
2(p− 1)2

(D − 2)α2

[
(D − 2) (A′)

2 − α2

(p− 1)

(
− Λ

p− 1
+
f2

4

)]
= 0 , (2.6)

where Rµν(X) and Rab(Z) are the Ricci tensors of the metrics qµν and γab, respectively, and the constant
β is defined by β = α2(p − 1)−1 − 2(p − 1)(D − 2)−1. So the field equations lead to the D-dimensional
metric

ds2 = e2ℓ(y−y0)
[
−dt2 + e2Htδmndx

mdxn + dy2 + γab(Z)dz
adzb

]
, (2.7)

where y0 is constant, and ℓ, H is given by

ℓ = ±α

√
1

(p− 1)(D − 2)

(
− Λ

p− 1
+
f2

4

)
, H2 =

β

n− 1

(
− Λ

p− 1
+
f2

4

)
. (2.8)

If we choose α so that β > 0 , it follows that α > (p− 1)
√

2/(D − 2) , α < −(p− 1)
√
2/(D − 2) . Hence,

the internal space Z has the positive curvature which is clear from an inspection of Eq. (2.5). In the limit
of H → 0, we see that the Ricci tensor of the Z space leads to Rab(Z) → 1

2f
2γab(Z) . As the internal

space is essentially supported by the field strength, we can keep the geometrical property of the internal
space in the limit H → 0 .

Before concluding this subsection, we comment about the ansatz for the field strength F . We have
simply assumed that the indices of non-vanishing components of the field strength could be along the
internal space Z to obtain the de Sitter spacetime for warped compactifications. If the constant field
strength F has the components along our (n + 1)-dimensional spacetime M, the Ricci tensor on M is
proportional to the (n+ 1)-dimensional metric with negative sign that is no longer de Sitter spacetime.
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3 Lower-dimensional effective theory

In this section, we will consider another construction of our de Sitter Universe as well as fixing the
moduli in the lower-dimensional effective theory, following the ordinary compactification approach. For
simplicity, we consider the internal moduli degrees of freedom of the metric of internal space Z. Now, we
assume the D-dimensional metric

ds2 = e2A(v)
[
wPQ(M)dvP dvQ + e2ψ(v)γab(Z)dz

adzb
]
, (3.1)

where ψ(v) is the moduli degrees of freedom on the Z space, and wPQ(M) is the (n + 1)-dimensional
metric, and γab(Z) is the metric of the (D − n− 1)-dimensional Einstein space Z.

In contrast to the previous section, M contains the direction of the infinite line y in the previous
sections, which is regarded as an external direction in the effective theory approach. Furthermore, we
assume that the scalar and gauge fields are expressed as in Eq. (2.3). Hence, the moduli ψ and the
function A are the only dynamical variables in the effective theory. In the following, we construct the
(n + 1)-dimensional effective theory after compactifying the Z space. However, in contrast to the brane
world model constructed from the higher-dimensional solution (2.7) where the n-dimensional spacetime
X becomes our external directions, now the (n+ 1)-dimensional spacetime M including the noncompact
direction y is assumed to be our external directions. The (n + 1)-dimensional effective action for these
variables can be obtained by evaluating the D-dimensional action (2.1). We assume that the internal
space Z satisfies the condition Rab(Z) = λγab(Z), where λ characterizes the internal space curvature.
Inserting the Eqs. (2.3) and (3.1) into (2.1), we get

S =
1

2κ̃2

∫
M̄

[{
R(M̄)− V

(
Ā, ψ̄

)}
∗M̄ 1M̄ − 1

2
dĀ ∧ ∗M̄dĀ− 1

2

c2√
c1c3

dĀ ∧ ∗M̄dψ̄ − 1

2
dψ̄ ∧ ∗M̄dψ̄

]
, (3.2)

where we used the conformal transformation wPQ(M) = e−2[(D−2)A+pψ]/(n−1)wPQ(M̄), and ∗M̄ is the

Hodge operator on the M̄ space and κ̃ is given by κ̃ =
(∫

Z
∗Z1Z

)−1/2
κ, with the Hodge operator on

the Z space ∗Z , and R(M̄) is the Ricci scalar with respect to the metric wPQ(M̄), and we have dropped
the surface terms coming from △M̄A, △M̄ψ, and the potential V

(
Ā, ψ̄

)
, fields Ā, ψ̄, the constants

ci (i = 1, 2, 3) are defined by

V
(
Ā, ψ̄

)
= exp

[
− 2(D − 2)Ā

(n− 1)
√
c1

] [
2Λ exp

{
− 2pψ̄

(n− 1)
√
c3

}
+
f2

2
exp

{
− 2npψ̄

(n− 1)
√
c3

}
− pλ exp

{
− 2(D − 2)ψ̄

(n− 1)
√
c3

}]
, (3.3)

c1 = 2

[
n

n− 1
(D − 2)− 2(D − 1)

]
(D − 2) + 2

[
n− 1 +

2

α2
(p− 1)

]
(p− 1) + 2p(D − 1) ,(3.4)

c2 =
4(D − 2)p

n− 1
, c3 = 2p

(
n− 1

p
+ 1

)
, Ā =

√
c1A , ψ̄ =

√
c3ψ . (3.5)

Here △M̄ is the Laplace operator constructed from the metric wPQ(M̄). The form of the potential (3.3)
implies that the warp factor Ā cannot be fixed by the background fields. This is consistent with the
fact that the analysis of the the scalar perturbations for the solutions which have been discussed in the
previous section is unstable. We have explained these in [2].

Then, in the following, we fix the value of Ā by assuming some additional stabilization mechanism
which does not affect the dynamics of the other moduli ψ̄, and consider the stabilization of ψ̄. In order
to fix the moduli degrees of freedom ψ̄, the moduli potential has to have a minimum or at least a local
minimum. In the present model, setting n = 3, p = 6, Ā = 1, f = 0.17, λ = 0.229 and α = 0.5 in the
unit of Λ = 1, we find the stable minimum point ψ̄0 = −1.1000, where Λ−1V

(
1, ψ̄0

)
= 0.0365 . Since the

potential energy is proportional to the warp factor e−Ā, the (n + 1)-dimensional effective cosmological
constant can be dropped exponentially as Ā increases. Hence, if we choose the value of the function
Ā appropriately, we get the small energy value of the potential at ψ̄ = ψ̄0. We illustrate the moduli
potential in Fig. 1.
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Figure 1: The moduli potential given in (11) is depicted. We set n = 3, p = 6, f = 0.17, λ = 0.229 and
α = 0.5 in the unit of Λ = 1. We can find the minimum of the potential with respect to the field ψ̄ while
there is not local minimum of the potential for the direction of Ā. If we fix the value of the function
Ā, we get the small energy value of the moduli potential at the local minimum. The minimum of the
potential is located at ψ̄0 = −1.1000 and its value is Λ−1V

(
1, ψ̄0

)
= 0.0365 .

4 Discussions

We have discussed the warped de Sitter compactifications in higher-dimensional theory. We presented
the n-dimensional warped de Sitter compactification due to the contribution of the matter fields. The
solution gives the accelerating expansion of the n-dimensional universe. An important consequence of this
is obtaining the de Sitter spacetime from warped compactifications. If the constant field strength F goes
through our n-dimensional spacetime X, the Ricci tensor on X is proportional to the n-dimensional metric
with negative sign that is no longer de Sitter spacetime [3]. Hence we were only concerned with the field
strength along Z. We have also presented another construction of a de Sitter spacetime in terms of the
(n+1)-dimensional effective theory after integrating over the Z space. The (n+1)-dimensional spacetime
M̄ was regarded as our Universe. We have calculated the moduli potential and discussed its stability using
the moduli potential. Assuming some stabilization mechanism of the volume moduli which does not affect
the dynamics of the internal space moduli the cosmological constant and field strengths force the internal
space to expand, while the curvature of the internal spacetime forces it to contract. These combination
produces a local minimum of the moduli potential. In the (n+ 1)-dimensional effective theory, the scale
of the compact internal space Z is stabilized by balancing the gauge field strength wrapped around the
internal space and the curvature term of the internal space with the cosmological constant. For some
choices of the parameters, these contributions could produce a local minimum of the effective potential
with a positive value which corresponds to the dSn+1 × Z background in the effective theory, while the
solution in the original higher-dimensional gravitational theory gave the geometry of dSn × R × Z. If
the (n + 1)-dimensional universe is created near the top of the potential hill, the moduli rolls down the
potential hill and finds a stable minimum point. Since the moduli potential eventually turns out to be
positive or negative, the (n+1)-dimensional background geometry becomes dSn+1 or AdSn+1 spacetime.
As the moduli potential without the cosmological constant leads to the AdSn+1 at the local minimum
even if we have a field strength, we need the contribution of the cosmological constant to obtain de Sitter
compactifications [3].
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Abstract

Static d-dimensional spacetimes in Einstein gravity with a negative cosmological con-
stant in the presence of a minimally coupled massless scalar field are considered.
The spacetimes have a (d − 2)-dimensional transverse space-like section given by an
Einstein Ricci-flat space and the massless scalar field depends only on the radial co-
ordinate. The field equations are decoupled and solved exactly. The solution has a
curvature singularity located at the origin, where also the scalar field diverges. Since
there is no event horizon surrounding this singularity, the solution describes a naked
singularity dressed with a non-trivial scalar field. This spacetime is an asymptotically
locally anti-de Sitter one when the Ricci-flat transverse space has constant curvature.
The mass of the solutions is computed using the canonical generator of the time-
translation invariance, as well as the asymptotic form of the metric and scalar field,
and it is shown to be finite. The contribution of the scalar field at infinity to the
mass is also discussed.

1 Introduction

In this paper we study the d-dimensional static solutions of the Einstein field equations in the presence
of a minimally coupled massless scalar field and a negative cosmological constant. The search for exact
solutions in the presence of a negative cosmological constant is well motivated, for the reason that they are
asymptotically anti-de Sitter (AdS), and may therefore be of interest in the context of the gravity/gauge
correspondence [1].

For the case of a vanishing cosmological constant, the general static and spherically symmetric solution
to the problem was first found in four dimensions by Fisher [2], and later rediscovered in [3] and [4] (see also
[5]). The higher-dimensional generalization was found by Xanthopoulos and Zannias in [6], and further
studied in detail in [7], while the solution for the 3-dimensional case was reported in [8]. Regardless of the
number of spacetime dimensions, the results dictate that the static and spherically symmetric solution,
with a non-trivial massless scalar field, corresponds to a spacetime containing a naked singularity, as it
is expected by virtue of the no-hair theorem for asymptotically flat spacetimes.

The problem with a negative cosmological constant was first considered in [9], where the general
solution for d = 3 spacetime dimensions was found, and later independently rediscovered in [1] and [10].
In four dimensions we can mention the existence of a particular plane-symmetric solution with non-zero
cosmological constant (of arbitrary sign) given in [11]. As far as we know, there are no exact results
for this model in higher dimensions. The main purpose of this paper is to generalize previous results in
two different ways: (i) by including a non-vanishing cosmological constant term in arbitrary dimension,
and (ii) by studying the case in which the transverse space is a (d − 2)-dimensional Ricci flat Einstein
manifold rather than the usual (d− 2)-sphere.

5Email address: martinez@cecs.cl
6Email address: sg2947@columbia.edu
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2 Action and field equations

We consider a real massless scalar field minimally coupled to Einstein gravity in d > 2 spacetime di-
mensions in the presence of a cosmological constant Λ, which is written in terms of the AdS radius l as
Λ = −(d− 1)(d− 2)/(2l2). The action for this model is given by

I[gµν , ϕ] =

∫
ddx

√
−g
(
R− 2Λ

2κ
− 1

2
gµν∂µϕ∂νϕ

)
, (2.1)

where κ is the Einstein constant. The corresponding field equations are

Rµ ν +
(d− 1)

l2
δµ ν = κ∂µϕ∂νϕ, (2.2)

and
□ϕ = 0. (2.3)

We are interested in static configurations defined by the following Ansatz:

ds2 = −e2h(r)f2(r)dt2 + dr2

f2(r)
+ r2γmndz

mdzn, with ϕ = ϕ(r). (2.4)

Here γmn is the metric of a (d− 2)-dimensional Einstein manifold Σ of Euclidean signature, whose Ricci
tensor vanishes. The manifold Σ is assumed to have a finite volume, denoted by V (Σ).

For this class of static configurations the field equations can be reduced to a system of three ordinary
nonlinear differential equations for the metric functions h(r), f2(r), and the scalar field ϕ(r). Following
[1], we define a new variable a(r) := rd−3ehf2, and the system becomes a decoupled set of differential
equations:

a2
[
r
a′′

a′
− (d− 2)

]
=

κc20
(d− 2)

. (2.5a)

h′ =
κc20

(d− 2)

1

ra2
, (2.5b)

ϕ′ =
c0
ra
. (2.5c)

In the above equations ′ denotes derivation with respect to r, and c0 is an arbitrary constant that comes
from the integration of the field equation (2.3).

3 Exact general solution

We find the general solution of (2.5a) to be implicitly given by

rd−1 = ld−1(a− a1)
a1

a1+a2 (a+ a2)
a2

a1+a2 . (3.1)

Here a1, a2 are integration constants, which are related to the constant c0 above. There is no restriction
to assume that they are non-negative. Thus, the coordinate range r ≥ 0 implies the condition a ≥ a1 for
the variable a.

A simple expression for the solution can be obtained by defining the variable x := a + (a2 − a1)/2,
and the constants b := (a1 + a2)/2 and p := (a2 − a1)/(a1 + a2). Then the solution can be written in the
form

ds2 = − (x− b)
1+(d−2)p

(d−1) (x+ b)
1−(d−2)p

(d−1) dt2 +
l2

(d− 1)2
dx2

(x2 − b2)

+ l2(x− b)
1−p

(d−1) (x+ b)
1+p

(d−1) γmndz
mdzn,

(3.2)

ϕ(x) = ϕ0 +

√
d− 2

d− 1

√
1− p2

4κ
ln

(
x− b

x+ b

)
. (3.3)
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Now, the constants b, p, and ϕ0 are the parameters of the family of solutions to this problem. Note that
|p| ≤ 1, and b ≥ 0. The range r > 0 implies that x > b.

The existence of curvature singularities can be shown through the Ricci scalar, which reads

R = − (d− 1)

l2

[
d− (d− 2)

b2(1− p2)

(x2 − b2)

]
. (3.4)

Assuming that b ̸= 0 and p2 ̸= 1, we see that there is a curvature singularity at x = b, which corresponds
to r = 0. Moreover, there are no horizons in this spacetime. This implies the existence of a naked
singularity at the origin.

The causal structure of the solution is the same as in AdS spacetime, except that the surface r = 0
is now a curvature singularity. As in the case of AdS, future null geodesics can reach infinity, while
future timelike geodesics cannot. In contrast to AdS spacetime, however, geodesics do not reach timelike
infinities i+ and i− in this solution.

4 Asymptotic solution and mass

We now turn to study the asymptotic behavior of the solutions. We find

a(r) =
(r
l

)d−1

− µ+O

(( l
r

)d−1
)
, (4.1)

where µ is an arbitrary constant. In terms of the integration constants of the exact solution (3.2) the
constant µ is equal to 2bp. With the result of Eq. (4.1) we obtain the asymptotic expansion of the metric:

ds2 = −
[(r

l

)2
− µ

( l
r

)d−3

+O

(( l
r

)2(d−2)
)]

dt2

+

[(r
l

)2
− µ

( l
r

)d−3

+O

(( l
r

)2(d−2)
)]−1

dr2 + r2γmndz
mdzn.

(4.2)

Strictly speaking, the spacetime is an asymptotically locally AdS spacetimes only if the transverse section
Σ is a constant curvature space. This condition is automatically satisfied in four and five spacetime
dimensions.

Replacing (4.1) in (2.5c), we compute the asymptotic form of the scalar field,

ϕ = ϕ0 − ϕ1

( l
r

)d−1

+O

(( l
r

)d+1
)
, (4.3)

where ϕ0 and ϕ1 are arbitrary constants. For the exact solution (3.3), ϕ1 =
√

d−2
d−1

√
1−p2
κ b. The full

family of asymptotic solutions is thus parametrized by the three constants µ, ϕ0, and ϕ1.
We now turn to the problem of computing the mass of these configurations. We address this issue

following the Regge-Teitelboim approach [12].
The mass is the conserved charge associated with time-translation symmetry. We then write the

variation of the mass as δM = δMG + δMϕ [13], and from Eqs. (4.2) and (4.3) we obtain

δMG = − lim
r→∞

(d− 2)

2κ
V (Σ)

rd−2

l
(grr)−1/2δgrr =

(d− 2)

2κ
V (Σ)ld−3δµ, (4.4)

δMϕ = − lim
r→∞

V (Σ)
rd−1

l
(grr)1/2ϕ′δϕ = (d− 1)V (Σ)ld−3ϕ1δϕ0, (4.5)

where V (Σ) denotes the volume of the Einstein base manifold.
The next step is to integrate Eqs. (4.4) and (4.5) in order to obtain the value of the mass M . The

gravitational contribution can be directly integrated, giving the result

MG =
(d− 2)

2κ
V (Σ)ld−3µ =

(d− 2)

κ
V (Σ)ld−3bp. (4.6)
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The above expression corresponds to the standard mass formula for a spacetime with a metric of the
form (4.2) in vacuum.

The issue of the scalar field contribution to the mass is more subtle, since now δMϕ depends on the
two integration constants ϕ0 and ϕ1 through the combination ϕ1δϕ0. In general, the integration of this
variation requires a functional relation between ϕ0 and ϕ1. Consequently, the scalar field contribution
Mϕ will be determined by this relation, and so will be the total mass as well. Here we are considering
solutions having a subset of the AdS symmetries at infinity. In particular, system (2.5) possesses a
scaling symmetry [14] Thus, if one restricts the functional variations at infinity to be compatible with
the variations generated by an infinitesimal scaling, the condition δϕ0 = 0 must hold. This condition is
satisfied provided that ϕ0 is a constant without variation. Under this condition we have δMϕ = 0, and
then the total mass is just M = MG. In summary, if the functional variations at infinity are restricted
to be compatible with those coming from the scaling invariance, we can conclude that the scalar field
does not contribute to the mass. On the contrary, for a generic variation of the scalar field at infinity one
should expect a nonzero contribution.
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Abstract
We study linear perturbations around static, spherically-symmetric spacetimes in
f(R,C) gravitational theories whose Lagrangians depend on the Ricci scalar R and
the parity violating Chern-Simons term C. By an explicit construction, we show that
the Hamiltonian for the perturbation variables is not bounded from below, suggesting
that such a background spacetime is unstable against perturbations. This gives a
strong limit on a phenomenological gravitational model which violates parity. We

also show that either R = const or ∂2f
∂R∂C

= 0 is a necessary and sufficient condition
for the stability. We then implement in detail the perturbation analysis for such
theories which satisfy the stability conditions and find that the no-ghost conditions
and no-tachyon conditions are the same as those in f(R) theories.

1 Introduction

General relativity (GR) in the weak gravitational field regime has been tested both experimentally and
observationally over many decades. In the forthcoming decade, the test of GR in the strong gravitational
regime will be also available, for example, by observing the gravitational waves coming from the vicinity
of black holes (BHs). These facts have provoked alternative theories of gravity and have led us to
understand theoretically what kinds of different phenomena are expected in such theories. In light of
this situation, it is interesting to consider gravitational theories which violate parity due to the so-called
Chern-Simons(CS) term, or the Pontryagin density, C ≡ 1

2ϵαβγδR
αβ
µνR

γδµν , where ϵαβγδ is the totally
antisymmetric tensor. For a recent review on the Chern-Simons gravity, see Ref. [1].

In this paper, we consider the gravitational theories whose Lagrangian is a general function of R
and C, f(R,C), and develop linear perturbation theory around the static and spherically symmetric
spacetime. Unlike in the case of f(R) theories which can be mapped into equivalent theories where
a scalar field having self-interacting potential is minimally coupled to Einstein-Hilbert gravity, f(R,C)
theories cannot be mapped into theories where C is coupled solely to a dynamical scalar field due to
nontrivial transformation property of the CS term under the conformal transformation. Our aim is to
clarify both quantitative and qualitative behaviors of the perturbations. To be more precise, we will
derive no-ghost and no-tachyon conditions which are necessary to ensure stability of the background
spacetime against perturbation, obtain dispersion relations for the propagating modes and find features
that are characteristic to parity violating theories.

2 BH perturbation for f(R,C) theories

We study f(R,C) theory, where the action is described by a general function of Ricci scalar R and the
CS term C ≡ 1

2ϵαβγδR
αβ
µνR

γδµν ,

S =
M2
P

2

∫
d4x

√
−gf(R,C). (2.1)

Here, MP = 1/
√
8πGN ≃ 4.34× 10−6g is the reduced Planck mass. We can rewrite the action (2.1) as

S =
M2
P

2

∫
d4x

√
−g (RF (λ, s) +W (λ, s)C − V (λ, s)) , (2.2)
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where λ and s are auxiliary fields and

F (λ, s) =
∂f(λ, s)

∂λ
, W (λ, s) =

∂f(λ, s)

∂s
, V (λ, s) = λF (λ, s) + sW (λ, s)− f(λ, s). (2.3)

In this section, we calculate the perturbative action around a static and spherically symmetric space-
time whose metric is given by

ds2 = −A(r)dt2 + dr2

B(r)
+ r2

(
dθ2 + sin2 θ dφ2

)
. (2.4)

There are gauge degrees of freedom for the metric perturbations hµν [2, 3]. For the odd-type perturbations,
we take a gauge in which spherical component hab(a, b = θ, φ) vanishes. For the even-type perturbations,
we impose that both hab and hta vanish. As a result of the parity violation term, the odd and even
modes do not decouple from each other within the system of equations and we have to deal with it all
together. In addition to the metric perturbations, we also need to perturb the other functions λ and s
that appear in the action. Just for later convenience, instead of perturbing λ and s as the fundamental
fields, we treat δF and δW as perturbation variables.

With these perturbation variables, expanding the action (2.2) to second order yields the quadratic
action for the perturbation variables. It then turns out that not all of the variables are dynamical.
Actually, we find that H0, H1 and δW are auxiliary fields. Therefore, they can be eliminated from the
action by using their equations of motion. After substituting the constraints and many integration by
parts, we end up with the following Lagrangian density(for the detailed calculations, see Ref. [4]):

L = p1ḧ
2
1 + p2ḧ1(rḣ

′
0 − 2ḣ0) + p3ḣ

′2
0 + p4ḣ

2
0 + p5ḣ

2
1 + p6 ˙δF

2
+ p7β̇

2 + p8ḣ0 ˙δF + p9ḣ0β̇ + p10β̇ ˙δF + p11h
′2
0

+p12δF
′2 + p13β

′2 + p14h
′
0δF

′ + p15h
′
0β

′ + p16β
′δF ′ + p17h

′
0ḣ1 + p18ḣ0h1 + p19h

′
0δF + p20h

′
0β

+p21ḣ1δF + p22ḣ1β + p23δFβ
′ + p24h

2
0 + h0(p25δF + p26β) + p27h

2
1 + p28δF

2 + p29δFβ + p30β
2.(2.5)

Since all the fields (h0, h1, β, δF ) have time derivatives that are not removed by any integration by
parts, all of them are dynamical fields. Hence, this is our final Lagrangian. Explicit expressions of the
background dependent coefficients p1, · · · are given in the appendix of Ref. [4].

Contrary to the corresponding Lagrangian in f(R) gravity, the above Lagrangian contains a term ḧ21.
This term results in fourth order differential equations for h1 with respect to time. We can confirm this
fact by looking at the explicit expressions for p1, p2 and p3, which are given by

p1 = −32πℓ(ℓ+ 1)M2
PW

′2

(2ℓ+ 1)F
(
A
B

)3/2 , p2 = −2p1
r
, p3 = p1.

The presence of the ḧ1 term in the general f(R,C) gravity is a signal that the theory is plagued by
instability [5]. In particular, the Hamiltonian can take arbitrary negative values and hence it is not
bounded from below. This result shows that the general f(R,C) gravity has the problem of having a
ghost around the static and spherically symmetric background and provides a severe condition on the
functional form of f(R,C).

There are two possible cases where the presence of the ghost does not become problematic. The first
one is to assume that the f(R,C) theory under consideration is an effective theory which is valid only on
length scales larger than a certain length dc. From this point of view, the presence of the ghost does not
matter if its mass is larger than the energy scale d−1

c since the dynamics of the ghost cannot be described
by the low energy f(R,C) theory. The more fundamental theory which is valid above d−1

c may cure the
problem. To see this, let us pick up terms in the Hamiltonian relevant to the ghost mode,

Hsub = − cos δ
(
K11M̄11 cos δ + 2K13

√
M̄11M̄33 sin δ

)
P̄ 2
1

− sin δ
(
K11M̄11 sin δ − 2K13

√
M̄11M̄33 cos δ

)
P̄ 2
3 − Q̄2

1 − Q̄2
3,

where δ is determined from the equation

tan 2δ = −2K13

K11

√
M̄33

M̄11
=

√
3

ℓ2 + ℓ− 2
sgn

(
r4Fλ − 64ℓ(ℓ+ 1)F 2

s F
′2) .
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Here, the sign function is defined as sgn(x) = +1, 0,−1 for x > 0, x = 0, x < 0, respectively. The
coefficients in front of P̄1 and P̄3 must be larger than d−2

c in order for those fields to be in the high energy
regime where the effective f(R,C) theory does not work. This leads to a condition,

|K11M11| ≃
∣∣∣∣r4Fλ − 64ℓ(ℓ+ 1)F 2

s F
′2

64r4FλW ′2

∣∣∣∣ ≳ d−2
c .

In particular, when the second term in the numerator is negligible, we obtain the very simple condition
for W ′,

|W ′| ≲ dc.

Since W ′, which has dimensions of length, represents how large the effects of the Chern-Simons term are,
this condition says these effects are suppressed on distances larger than dc.

The second possibility where the presence of the ghost does not become problematic is that f(R,C)
belongs to the special class in which W ′ = 0 is satisfied identically. Using the background metric, W ′

can be written as
W ′ = FsR

′ +WsC
′ = FsR

′, (2.6)

where we have used an identity C = 0 for the background metric. Therefore, if f(R,C) satisfies either
Fs = 0 or R = const, we have W ′ = 0 identically. For example, Fs = 0 is trivially satisfied if f(R,C)
takes a separable form, i.e., f(R,C) = f1(R) + f2(C), where f1 and f2 are arbitrary functions of R and
C, respectively. f(R) gravity is included in this case. The second case R = const is satisfied, for example,
if the Schwarzschild metric is a solution of the model. In either case, we have still many f(R,C) theories.
We deal with this class of f(R,C) theories in the next section.

3 Study of special cases with W ′ = 0.

As we have shown in the previous section, the general f(R,C) theories with nonvanishing W ′ have the
problem of instability. Thus, the cases with W ′ = 0 are more phenomenologically interesting and deserve
further investigation. The Lagrangian for the general f(R,C) theories (2.5) can be also used for the
special case W ′ = 0 as well. We find that even for the special cases, the odd and even modes are still
coupled as long as Fs = 0.

By introducing a new variable q, we can rewrite the Lagrangian so that it contains only q, δF and β,

L = kij q̇iq̇j − dijq
′
iq

′
j − eijq

′
iqj −mijqiqj , (3.1)

where we have defined (q1, q2, q3) = (δF, β, q). A determinant of the kinetic matrix kij is found to be

det(kij) =
384π3ℓ2(ℓ+ 1)2M6

P r
4Y 2

(2ℓ+ 1)3A3F 3
(
A
B

)3/2
(rBA′ (rF ′ + 2F ) + 2A (F (−2B + ℓ2 + ℓ)− rBF ′))

2
, (3.2)

where the definition of Y is given in Ref. [4]. This is not zero in general. Therefore, all the variables are
dynamical and there are three propagating modes, one of which is odd (i.e., q) and the remaining two
are even (i.e., δF and β). This structure is the same as that of the f(R) gravity theories where there
is one propagating odd mode and two propagating even modes. This result shows that the condition
W ′ = 0 kills all the pathological modes which exist in the general f(R,C) theories. By evaluating k33
and k22k33 − k223, we find that F > 0 is needed to ensure their positivity. Therefore, as is the case with
f(R) theories, F > 0 is the no-ghost condition for f(R,C) theories that satisfy W ′ = 0.

We can derive the dispersion relations for the three modes from an equation,

det(−ω2kij+k
2dij) =

768π3ℓ2
(
−ℓ3 − 2ℓ2 + ℓ+ 2

)2
M6
P rBF

3q21

√
A
B

(
ω2 − k2AB

)3
(2ℓ+ 1)3q13 (2rq11 − rq′8 − 2q8) (rBA′ (rF ′ + 2F ) + 2A (F (−2B + ℓ2 + ℓ)− rBF ′))

2 .

We see all the modes obey a dispersion relation ω2 = ABk2. The appearance of the factor AB is due to
the fact that t and r are coordinate time and distance. In terms of the physical time and distance, the
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dispersion relation says all the modes propagate at the speed of light, which is exactly the same as in
the case of f(R) theories. Although there are no new contributions to the propagation speeds due to the
Chern-Simons term, the coupling between δF and q means that we cannot consider the propagation of
the odd and even modes separately as we can do in the case of f(R) theories, which is a clear difference
from f(R) theories. This shows the potential usefulness of using the distinct nature of mode propagation
in f(R,C) theories for putting constraints on f(R,C) models using observations of gravitational waves
from compact astrophysical objects.

We can also evaluate the mass for each eigenmode. However, since each matrix element of mij is too
lengthy to obtain analytic expressions for the mass eigenvalues, we will make an assumption that the
background is very close to GR, i.e., F = 1, A = B = 1− rg

r and also expand the eigenvalues in ε ≡ rg
r

(weak field approximation). Under these assumptions, three eigenvalues are given by

m2
1 =

1

3Fλ
−
ℓ2(ℓ+ 1)2rg − 2

(
ℓ2 + ℓ− 2

)2 (
ℓ2 + ℓ+ 2

)
r

3 (ℓ2 + ℓ− 2)
2
r3

+O
(
ε2
)
,

m2
2 =

ℓ(ℓ+ 1)

r2
− ℓ2(ℓ+ 1)2rg

(ℓ2 + ℓ− 2)
2
r3

+O(ε3),

m2
3 =

ℓ2 + ℓ+ 4

r2
−

192ℓ
(
ℓ5 + 3ℓ4 + 7ℓ3 + 9ℓ2 − 4

)
r2gF

2
s

(ℓ2 + ℓ− 2)
2
r8F 2

λ

+O(ε3).

Since m2
1 is inversely proportional to Fλ at leading order, this mode corresponds to the scalar graviton

that exists in the general f(R) theories. To avoid the tachyonic mode, we need to impose a condition
Fλ > 0. The Chern-Simons corrections, Fs, appear in m2

1 and m2
3, but only in a combination with rg.

This means those corrections are important only in the vicinity of the BH and are suppressed compared
to the standard terms that exist in GR far from the BH.

4 Conclusion

We have studied linear perturbations around the static, spherically-symmetric spacetime for general
f(R,C) theories, where C is the parity violating Chern-Simons term. By explicitly constructing the
second order action, we showed that one odd mode appears in the action as a quadratic in its second
time derivative. Irrespective of its sign, this results in an Hamiltonian that is not bounded from below.
Therefore, the static and spherically symmetric spacetime is unstable in general f(R,C) theories. This
gives a strong limit on any phenomenological gravitational model which violates parity.

We also showed that either R = const or ∂2f
∂R∂C = 0 for the background metric is a necessary and

sufficient condition to avoid the instability mentioned above. For such theories, the number of propagating
modes for ℓ ≥ 2 is three, one from the odd and the other two from the even. Unlike in the case of f(R)
theories, those modes are coupled, which can be used as a distinctive feature to test the parity violating
theories from observations. All the modes propagate at the speed of light. The no-ghost condition is
∂f
∂R > 0 and the no-tachyon condition is ∂2f

∂R2 > 0, which are the same as in the case of f(R) theories.
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Abstract
Our report reflects new features of the black-hole (BH)-like (spherically-symmetric)
solutions in f(R,G) theories. Since BH-like solutions are an important tool for testing
GR; it might be the same for the generalizations of GR and f(R,G) theories are one
of the best candidate for it. So we report our findings for BH-like solutions for several
partial cases of f(R,G) theories as well as we attempt to construct generic solution
and find out its properties.

1 Introduction

With the Nobel Prize in Physics in 2011 [1] granted for the discovery of the current accelerated expansion
of the Universe, the source of this expansion – the mysterious dark energy – yet awaits its nature to
be unvailed. One class of the dark energy models imply modifications of gravity and f(R) (with the
Lagrangian density contains not the Ricci scalar but some function of it) is one of the oldest models of
the kind. In this way, f(R,G) theory is natural generalization of f(R) model. There are all kinds of the
dark energy models, but almost all of them possess the same difficulty – they are hard to be distinguished
from one another using cosmological tests. We propose to use spherically-symmetric solutions (and their
divergence from known ones) as a test of the f(R,G) theory viability.

2 Equations of motion

Let us consider the theory with an action in form

S =

∫
d4x

√
−gf(R,G), (2.1)

where G = RµναβR
µναβ − 4RµνR

µν + R2 is the Gauss-Bonnet invariant and R is the Ricci (curvature)
scalar.

By varying this action with respect to the metric components one can retrieve the field equations:

−1

2
fgµν + fRRµν −∇µ∇νfR + gµν□fR + 2fG

(
R αβγ
µ Rναβγ + 2RµαβνR

αβ − 2RαµR
α
ν +RRµν

)
−4

(
Rµαβν +Rµνgαβ +Rαβgµν −Rαµgβν −Rανgβµ +

1

2
R (gαµgβν − gµνgαβ)

)
∇α∇βfG = 0.

(2.2)
In (3+1)-dimensional model the second Lovelock tensor is always zero:

2
(
R αβγ
µ Rναβγ + 2RµαβνR

αβ − 2RαµR
α
ν +RRµν

)
− 1

2
Ggµν = 0.

Hence we can rewrite (2.2) as

−1

2
fgµν + fRRµν −∇µ∇νfR + gµν□fR +

1

2
fGGgµν − 4 (Rµαβν +Rµνgαβ+

+Rαβgµν −Rαµgβν −Rανgβµ +
1

2
R (gαµgβν − gµνgαβ)

)
∇α∇βfG = 0.

(2.3)

7Email address: sergey.pavluchenko@gmail.com
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Now considering the spherically-symmetric metric

gµν = diag{−A(r), B(r), r2, r2 sin θ}

we obtain expressions for Christoffel symbols, Riemann and Ricci tensors components as well as Ricci
scalar and Gauss-Bonnet invariant. Substituting derived functions into (2.3) one can get 00-component
in the form:

1

2
Af − fR

(
1

4

Ȧ2

AB
− 1

2

Ä

B
+

1

4

ȦḂ

B2
− Ȧ

Br

)
+ fG

(
Ȧ2

AB2r2
+

3ȦḂ

B3r2
− ȦḂ

B2r2
+

2Ä

Br2
− 2Ä

B2r2
−

− Ȧ2

ABr2

)
− A

B
f̈R − ḟR

(
2A

Br
+

1

2

Ȧ

B
− 1

2

AḂ

B2
+

1

2
Ȧ

)
+

4A

B2r2
(1−B)f̈G +

2ḂA

B2r2
(1 +B)ḟG ;

(2.4)

where A ≡ A(r), B ≡ B(r), and dot above designate the derivative with respect to the radial coordinate
r. Similarly 11-component have the form:

−1

2
Bf + fR

(
1

4

Ȧ2

A2
− 1

2

Ä

A
+

1

4

ȦḂ

AB
+

Ḃ

Br

)
− fG

(
Ȧ2

A2Br2
+

3ȦḂ

AB2r2
− ȦḂ

ABr2
+

2Ä

Ar2
−

− 2Ä

ABr2
− Ȧ2

A2r2

)
+ ḟR

(
2

r
+

1

2

Ȧ

A
− 1

2

Ḃ

B
+

1

2
Ḃ

)
− 2Ȧ

Ar2
(B − 3) ḟG .

(2.5)

By multiplying (2.4) on B/A and adding the result to (2.5) we obtain “mixed” equation with a lot of
terms that are common in (2.4) and (2.5) being cancelled:

f̈R + ḟR

(
ȦB

2A
− 1

2
Ḃ

)
− fR

(
Ḃ

Br
+

Ȧ

Ar

)
=

4

Br2
(1−B) f̈G +

2

r2

(
3
Ȧ

A
− ȦB

A
+
Ḃ

B
+ Ḃ

)
ḟG . (2.6)

3 Horizon existence

First of, let us find out about the possibility of the existence of the horizon for our problem. Similarly
to the classical Schwarzschild solution we define the horizon as (A → 0, B → ∞). Hence, the terms

Ḃ(≡ B
Ḃ

B
) and

BȦ

A
will diverge obviously faster then

Ḃ

B
and

Ȧ

A
, so Eq.(2.6) takes a form8:

2ḟGḂ

r2
− 2BȦḟG

Ar2
− 1

2

BȦḟR
A

+
1

2
ḟRḂ = 0; (3.1)

it could be further simplified to (
2ḟG
r2

+
ḟR
2

)(
Ḃ − BȦ

A

)
= 0. (3.2)

The second multiplier imply A = const×B which is obviously impossible to construct the horizon since
A and B would diverge simultaneously. Hence the first parenthesis imply

ḟR = −4ḟG
r2

. (3.3)

Taking a derivative with respect to r of (3.3) gives us one more condition:

f̈R = −4f̈G
r2

+
8ḟG
r3

. (3.4)

8We assume f(R,G) and its derivatives are be smooth enough to not create additional singularities; possible zeros and
divergences of f(R,G) and its derivatives will be discussed below.
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Let us note that conditions (3.3) and (3.4) are derived under most general assumptions on the A(r) and
B(r).

Equation (3.3) has an interesting consequence that worth mentioning: for a wide class of f(R,G)
functions9 we can express ḟR and ḟG as

ḟR = ṘfRR + ĠfRG ; ḟG = ṘfRG + ĠfGG ; (3.5)

if we substitute it into (3.3), apply the horizon conditions (Ṙ→ −4/r3 and Ġ → 0) and we will get

fRR = − 4

r2
fRG . (3.6)

One can notice an interesting thing from (3.6) – if there are no cross-terms in f(R,G) (i.e., f(R,G) =
f1(R) + f2(G)), this immediately imply either fRR = 0 or Ṙ = 0. Similarly one can demonstrate that
in the absence of the cross-terms we have either fGG = 0 or Ġ = 0. Hence, in the absence of cross-
terms, the function f(R,G) can either have only linear contributions from R and G (first one gives
the Einstein-Hilbert contribution while the second will nullify its impact since being Euler topological
invariant in (3+1)) or should both Ṙ = 0 and Ġ = 0 being satisfied. Now let us consider different
f(R,G) = f1(R) + f2(G) cases.

4 R + f(R) case

From (3.3) one can see that in this case ḟR = 0 and hence from (3.5) we have either fRR = 0 or Ṙ = 0.
With the former being trivial case (it is equal to the Einstein-Hilbert action) we will consider the latter.
So we have f = R + F (R), fR = 1 + FR, ḟR = f̈R = 0, fG = ḟG = f̈G = 010, after substituting all this
into (2.6) we will get

1

r

(
Ȧ

A
+
Ḃ

B

)
(1 + FR) = 0, (4.1)

with the solution

A(r) =
C0

B(r)
. (4.2)

Now if we apply the conditions of the derivatives of f(R,G) and (4.2) to (2.5) we get

− Ḃ

Br
− B

r2
+

1

r2
− 1

2
BF − Ḃ2FR

B2
+
B̈FR
2B

+
ḂFR
Br

= 0; (4.3)

solving (4.3) together with R = R0 one will obtain general solution in the form

B(r) =
6r(1 + FR)

r3(F −R0FR) + 6r(1 + FR) + 6C1(1 + FR)
; (4.4)

and under reassigning FR = −1/2, C1 = −2m and F = Λ − R0/2 we get the solution in the usual
Schwarzschild-de Sitter form

B(r) =
3r

Λr3 + 3r − 6m
. (4.5)

The similar result was obtained in [2] with the difference that they took AB = const and R = const
as given while we demonstrated that there are no other cases.

9Analitic functions; but if the functional notation of f(R,G) contain some differential operators, the following expression
might not holds true

10One can easily demontrate that in the considered case F = const as well as FR = const.
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5 R + f(G) case

Similarly to the previous case, to have nontrivial solution we consider Ġ = 0, which leads to the G = const.
In this case we have f = R + f(G), fR = 1, ḟR = f̈R = 0, ḟG = f̈G = 0 (and again F = const and
fG = const). Equation (2.6) reads

1

r

(
Ȧ

A
+
Ḃ

B

)
= 0, (5.1)

and the solution is the same as in previous case (4.2). Again, substituting everything into (2.5) and
G = G0 (from Ġ = 0) we obtain the solution in the form

B(r) =
6r

r3(F − G0fG) + 6r + 6C1
; (5.2)

and under reassigning C1 = −2m and F = 2Λ + G0fG we get the solution in the usual Schwarzschild-de
Sitter form (4.5).

6 R + f(R) + F (G) case

In this case both conditions R = R0 and G = G0 are applied, we have f = R+ f(R)+F (G), fR = 1+ fR,
ḟR = f̈R = ḟG = f̈G = 0; Eq. (2.6) will be the same as in R + f(R) case (4.1) so will be the solution
(4.2). Similarly to the previous cases we substitute everything into (2.5) and R = R0 with G = G0 and
derive the answer

B(r) =
12r

r3(f + F − G0fG −R0fR) + 12r + 12C1
(6.1)

that could be rewritten in the usual Schwarzschild-de Sitter form (4.5) after redefinitions C1 = −2m and
f + F − G0FG −R0fR = 4Λ.

7 Conclusions

This finalize our study of the simplest case of the BH with horizons existence in the f(R,G) gravity –
similar to the R + f(R) case [2], there is only Schwarzschild-de Sitter solution. Our simplest case is
“detached” one, i.e., f(R,G) = f1(R) + f2(G). The same may not be true in the general case, so the
problem require additional investigation and we carrying it on.
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Abstract
In general relativity, the effective gravitational stress-energy tensor for short wave-
length metric perturbations acts just like that for a radiation fluid and in particular
cannot provide any effects that mimic dark energy. However, it is far from obvious
if this property of the effective gravitational stress tensor hold for any theories of
gravity, or is a specific nature held only in the Einstein gravity. In this paper, we
consider the effective stress-energy tensor of short-wavelength perturbations in f(R)
gravity and investigate its property to compare with the case of the Einstein gravity.

1 Introduction

Our observable universe appears, on large scales, to be homogeneous and isotropic but highly inhomoge-
neous on small scales. It is therefore interesting to consider whether (and, if so, how) local inhomogeneities
can affect global dynamics of the universe. Such an backreaction effect of local inhomogeneities may be
described in terms of an effective stress-energy tensor for perturbations.

In general relativity, a consistent expansion scheme for short-wavelength perturbations and the corre-
sponding effective stress-energy tensor were first developed by Isaacson[1, 2], in which the small parameter
corresponds to the amplitude and at the same time the wavelength of perturbations. Isaacson’s expansion
scheme is called the high frequency limit or the short-wavelength approximation. In this expansion, the
first-order Einstein equation corresponds to the equation of motion for linearized gravitational waves.
The second-order expansion of the Einstein equation provides the Einstein equation for the zeroth-order
metric with an effective stress-energy tensor, which is essentially given as the second-order Einstein ten-
sor averaged over several wavelengths of metric perturbations. Since taking a derivative of perturbations
corresponds to multiplying the inverse of the smallness parameter (or the inverse of the wavelength of
perturbations), the effective stress-energy tensor consisting of the square of derivatives of the first-order
metric perturbations can have non-negligible effects on the background dynamics. Furthermore, it was
shown that this effective gravitational stress-energy tensor is traceless and satisfies the weak energy con-
dition, i.e. acts like radiation [3, 4], and in particular, cannot provide any effects that imitate the dark
energy in general relativity.

In this paper, we consider an effective gravitational stress-energy tensor in the context of f(R) gravity,
in which the Einstein-Hilbert action is modified by replacing the Ricci scalar R with an arbitrary function
f(R). Since f(R) gravity theory contains higher order derivative terms, one can anticipate the effective
gravitational stress-energy tensor to be generally modified in high frequency limit [5, 6]. For simplicity,
we restrict our attention to the R2 model (f(R) = R+ cR2).

In the next section, we briefly summarize the high frequency limit in general relativity. In Sec. 3, we
derive the effective gravitational stress-energy tensor in f(R) gravity. Sec. 4 is devoted to summary and
points to future research.

2 The high frequency limit in general relativity

Let gab be the metric with linear perturbation hab; it is described by gab = γab + hab with γab being the
background metric including the backreaction from perturbations, and is normalized: γab ∼ O(1). hab is

11Email address: saitok@post.kek.jp
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of order hab ∼ O(ϵ), and its derivatives are

∇a1∇a2 · · · ∇amhbc ∼ O

(
ϵ

(λ/L)m

)
∼ O

(
ϵ1−m

)
, (2.1)

where ∇a denotes the covariant derivative with respect to γab, so that ∇aγbc = 0, and ϵ is the smallness
parameter, and λ is the wavelength of perturbations. One may bear in mind perturbations of the form
h ∼ ϵ sin(x/λ) and λ/L ∼ O(ϵ). L is a characteristic length over the background and we normalize
L ∼ 1. The inverse metric takes the form gab = γab − hab + hach

cb + · · ·, where hab ≡ γacγbdhcd.
We cannot in general have ∇ahbc → 0 pointwise λ→ 0, but suitable spacetime averages of ∇ahbc will

go to 0. More precisely, if fabc is any smooth tensor field of compact support, we have∫
fabc∇ahbc = −

∫ (
∇af

abc
)
hbc −→

λ→0
0. (2.2)

If this equation holds for all test tensor fields fabc, we say that ∇ahbc → 0 weakly.
There is the general relationship between the Ricci tensor of gab and of γab, namely Rab = Rab[γ] +

2∇[cC
c
b]a + 2Ccd[cC

d
b]a, where C

a
bc ≡ Γabc − Γabc[γ] = gad (∇bgdc +∇cgbd −∇dgbc) /2. Because Rab includes

g−1∇∇g, ∇g−1∇g and g−1g−1∇g∇g, we can find

R
(n)
ab [h] ∼ O

(
ϵn−2

)
, (2.3)

where n is the number of hab included in Rab. We also find

R(n)[h] ∼ G
(n)
ab [h] ∼ O

(
ϵn−2

)
, ∇a1∇a2 · · · ∇amR

(n)[h] ∼ O
(
ϵn−2−m) , (2.4)

where R = gabRab, Gab = Rab − gabR/2 is the Einstein tensor, and R(n)[h] and G
(n)
ab [h] do not include

Rab[γ].
The vacuum Einstein equation is

Gab = Rab −
1

2
gabR = 0. (2.5)

We can derive the vacuum Einstein equation of O
(
ϵ−1
)
:

G
(1)
ab [h] = R

(1)
ab [h]−

1

2
γabR

(1)[h] = 0, i.e. R
(1)
ab [h] = 0, (2.6)

and that of O (1):

Gab[γ] = −w-lim
λ→0

G
(2)
ab [h] ≡ κ2T eff

ab , (2.7)

where ”w-lim” means the weak limit and T eff
ab is the effective gravitational stress-energy tensor, and

κ2 = 8πG. Then, T eff
ab becomes

κ2T eff
ab = −w-lim

λ→0

(
R

(2)
ab [h]−

1

2
γabγ

cdR
(2)
cd [h]

)
=

1

4
w-lim
λ→0

(
∇ah

cd∇bhcd
)
, (2.8)

where indices are raised and lowered with γab and γab. We can also check T eff
ab is traceless and satisfies

the weak energy condition, i.e. acts like radiation [3, 4]. Thus, it cannot provide any effects that mimic
the dark energy in the general relativity.

3 The high frequency limit in f(R) gravity

In this section, we consider the vacuum R2 model for simplicity. The action is

S =
1

2κ2

∫
d4x

√
−g
(
R+ cR2

)
, (3.1)
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where c is constant, and the vacuum Einstein equation is

G
f(R)
ab = Gab + 2c

(
RRab −

1

4
gabR

2 −∇a∇bR+ gabg
cd∇c∇dR

)
= 0. (3.2)

In R2 model, we should consider the second order perturbation Hab, and therefore expand the metric as
gab = γab + hab +Hab. We normalize Hab ∼ O

(
ϵ2
)
, and its derivatives are of order

∇a1∇a2 · · · ∇amHbc ∼ O

(
ϵ2

(λ/L)m

)
∼ O

(
ϵ2−m

)
, (3.3)

where one may bear in mind second-order perturbations of the form H ∼ ϵ2 sin(x/λ). The inverse metric
takes the form gab = γab−hab+

(
hach

cb −Hab
)
−
(
hach

c
dh
db − 2hacH

cb
)
+ · · ·, where Hab ≡ γacγbdHcd.

In the f(R) gravity, the first order perturbation hab takes the form hab = h
(+)
ab + h

(×)
ab + hfγab, where

h
(+)
ab and h

(×)
ab describe the two standard polarizations of gravitational waves which arise from general

relativity, and hf is the massive field arising from the generic high order f(R) gravity [7]. We will focus
on hf from now on. Especially in the R2 model we have □hf = m2hf = hf/6c ∼ O(ϵ). Thus, we have

R̃(1)[hf ] = −(R[γ] + 3m2)hf ∼ O(ϵ) , (3.4)

R̃(2)[hf ] =
3

2
∇ahf∇ahf + (R[γ] + 6m2)h2f ∼ O(1) + O

(
ϵ2
)
, (3.5)

R̃(3)[hf ] = −9

2
hf∇ahf∇ahf − (R[γ] + 9m2)h3f ∼ O(ϵ) + O

(
ϵ3
)
, (3.6)

where R̃(n) includes R[γ] differently from R(n). The vacuum Einstein equation of O
(
ϵ−2
)
is

∇a∇bR
O(1)[hf ]− γab□RO(1)[hf ] = 0, i.e. ∇a∇bR

O(1)[hf ] = 0. (3.7)

If RO(1) becomes 0 at infinity, we can find

RO(1)[hf ] ≡
3

2
∇ahf∇ahf +R(1)[H] = 0. (3.8)

That of O
(
ϵ−1
)
is

R
O(ϵ−1)
ab [hf ] + 2cR[γ]R

O(ϵ−1)
ab [hf ]− 2c∇a∇bR

O(ϵ)[hf ] + 2cηab□RO(ϵ)[hf ] = 0, (3.9)

where

R
O(ϵ−1)
ab [hf ] ≡ −∇a∇bhf , RO(ϵ)[hf ] ≡ −9

2
hf∇ahf∇ahf − (R[γ] + 3m2)hf . (3.10)

From this equation, we derive
∇a∇b (hf∇chf∇chf ) = 0. (3.11)

If hf∇chf∇chf becomes 0 at infinity,

∇chf∇chf = −2

3
R(1)[H] = 0, (3.12)

where we use (3.8). From this equation, R̃(2)[hf ] and R̃
(3)[hf ] become

R̃(2)[hf ] = (R[γ] + 6m2)h2f ∼ O
(
ϵ2
)
, (3.13)

R̃(3)[hf ] = −(R[γ] + 9m2)h2f ∼ O
(
ϵ3
)
. (3.14)

The effective stress-energy tensor for hf is

κ2T eff
ab = −w-lim

λ→0

{
R

O(1)
ab [hf ] + 2cR[γ]R

O(1)
ab [hf ]

+2cRO(ϵ)[hf ]R
O(ϵ−1)
ab [hf ] +

(
−ηabhfηcd + hfηabη

cd
)
∇c∇dR

O(ϵ)

}
= w-lim

λ→0

{(
1

2
+ cR[γ]

)
∇ahf∇bhf

}
, (3.15)
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and the trace of κ2T eff
ab is

κ2T effa
a = −

(
1

2
+ cR[γ]

)
m2h2f

∼ O
(
ϵ2
)
. (3.16)

Thus, we can find that the effective stress-energy tensor for hf is proportional to the square of first partial
derivatives of metric perturbation hf as in the case of general relativity, i.e. proportional to the square of
the frequency of gravitational waves. Therefore it acts like radiation fluid as in the high frequency limit
in general relativity, and in particular, cannot provide any effects that imitate dark energy in R2 model.

4 Summary

We have here addressed the effective stress-energy tensor for short wavelength perturbations in f(R)
gravity. We focused on the R2 model especially. The Einstein equation is expanded to third order
in metric perturbations about an arbitrary background. The Einstein equation of O

(
ϵ−2
)
describes

the evolution for the second order perturbation Hab. The Einstein equation of O
(
ϵ−1
)
represents the

evolution for the first order perturbation hab. The Einstein equation of O (1) serves as the source of the
zeroth-order Einstein equation and depends only on the square of first order derivatives of first-order
perturbations, like the effective stress-energy tensor in Isaacson’s formula in general relativity, .

In this paper, we have restricted our attention to the R2 model only. It would be interesting to
consider an extension of the work presented here to general f(R) gravity (or the scalar-tensor theory).
This is left for future work [8].
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Abstract
We have constructed a f(R) gravity model which avoids weak singularities and sat-
isfies viability conditions even for negative values of the Ricci scalar, and which
describes accelerated expansion both in the primordial and present Universe. We
constrain the model parameters from the stability of the late time de Sitter solution
and we solve the evolution at early time regimes numerically. As a result, we found
characteristic strongly anharmonic oscillations of the Universe scale factor after the
end of the inflationary stage.

1 Introduction

It is of great interest to consider the possibility for the theoretical model which explains the two accelerated
expansion regimes in the Universe: primordial inflation and current cosmic acceleration. f(R) gravity,
where R is the scalar curvature, is one of the most attractive candidates. It is a phenomenological
macroscopic way to describe both of primordial dark energy (DE) and present DE.

The simplest R2 inflationary model proposed in Ref. [1] is internally consistent, has a graceful exit to
the radiation-dominated Friedmann-Robertson-Walker (FRW) stage via the period of reheating in which
all matter in the Universe arises as a result of gravitational particle creation, and remains in agreement
with the most recent observational data [2]. Moreover, this form of f(R) may be justified by a number
of microscopic models[3].

We are also capable to construct f(R) models which describe the present DE and satisfy all present
observational tests[4–6]. In the previous works, we have found that we can distinguish f(R) gravity from
concordance Λ-Cold-Dark-Matter (ΛCDM) model by using time evolution of equation-of-state (EoS)
parameter for DE and both time and scale dependencies of the matter density fluctuations[7]. However,
these models require a much more complicated form of f(R) and a very low energy scale, so we do not have
any reasonable microscopic justification of them at present. More critical is that these models generically
cannot reproduce the correct evolution of the Universe in the past due to formation of additional weak
singularities and other problems. Thus, to construct complete cosmological models of present DE not
destroying all previous achievements of the early Universe cosmology including the recombination, the
correct BBN and inflation of any kind, one has to change the behaviour of f(R) at large positive R and
to extend f(R) to the region of negative R.

First example of combined f(R) model, which avoids weak singularities, is extended to negative R
correctly, and explain both primordial and present DE is proposed in Ref. [8]. In this paper, we describe
how to construct such new functions f(R) in general. Furthermore, we investigate one of the models
in detail. We provide reasonable parameter constraint and numerically solve the evolution in the early
Universe. As a result, it leads to completely different reheating after inflation during which strongly
non-linear oscillations of R occur.

12Email address: motohashi”at”resceu.s.u-tokyo.ac.jp
13Email address: alstar”at”landau.ac.ru
14Email address: yokoyama”at”resceu.s.u-tokyo.ac.jp
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2 Conditions

We study the special class of f(R) gravity theories for both primordial and present DE which is defined
by the following action

S =
M2

Pl

2

∫
d4x

√
−gf(R) + Sm with f(R) = R+ λνM2φ(x) +

R2

6M2
. (2.1)

Here, Sm denotes matter action, MPl ≡ (8πG)−1/2, and λ, ν, M are the model parameters. R leads
Einstein gravity, and R2 term describes the primordial DE, which drives inflation in the early Universe[1].
The model parameterM2 has a dimension of curvature and should be chosen so that R2 term contributes
only at high curvature regime R ≥ Rinf , and provides proper amplitude of the primordial power spectrum,
which is consistent with the observational data. On the other hand, second term φ(x) controls the present
DE, which triggers late time acceleration. We choose the function φ(x) so that it contributes only when
R ≲ νM2. Namely, νM2 is the order of present curvature. x ≡ R/νM2 is normalized Ricci scalar, and
λ is a positive parameter by which we adjust the deviation from R2 model.

The function φ(x) should satisfy the following viable conditions:

(V1) ∀|x| < Rinf/Rs, φ′′(x) > 0, (2.2)

(V2) ∀|x| < Rinf/Rs, λφ′(x) > −1, (2.3)

(V3) 1 ≪ x ≲ Rinf/Rs, φ′(x) → 0, (2.4)

(V4) 1 ≪ x ≲ Rinf/Rs, φ(x) → −const.+ x−m, (2.5)

(V5) φ(0) = 0. (2.6)

Notice that we impose (V1) and (V2) even for negative R. We also have to care the de Sitter conditions[7],

(dS1) ∃x1 > 0, α(x1) ≡ x1 + λ(2φ1 − x1φ
′
1) = 0, (2.7)

(dS2) β(x1) ≡
1 + λφ′

1

λφ′′
1

− x1 > 0, (2.8)

(dS3) γ(x1) ≡
1 + λφ′

1

λφ′′
1

− 25

16
x1 > 0, (2.9)

by which we can obtain the de Sitter solution and read its future behavior. For given function φ(x),
(dS1) provides the de Sitter solution, x = x1. We can check its future stability by (dS2). Also, (dS3)
allows us to know the existence of the oscillation. We demand at least the existence of one future stable
de Sitter solution because the observational value of the equation of state (EoS) parameter wDE for DE
is very close to −1, so the Universe should be approaching stable de Sitter solution.

3 Specific model

We can construct the family of functions which satisfy the above conditions[9]. From here forward, we
focus on one of these models for the specific analysis:

φ(x) =
1

π

[
(x− µ)Arctan(x− µ)− µArctanµ− πx

2

]
. (3.1)

First, we constrain the model parameter λ and µ from the future stability of de Sitter solution. Since
φ′′ > 0, the stability condition (dS2) is equivalent with α′(x) > 0. The equation α(x) = 0 has one root,
x = 0, or three roots, x = 0 and two positive roots, depending on the values of model parameters. x = 0
corresponds to Minkowski solution and it is always stable because it has positive gradient φ′(x). When
there are three roots, smaller positive root and larger one are always unstable and stable, respectively.
This maximal root is stable de Sitter solution which we needed. Thus, to satisfy the de Sitter stability
condition, we choose the model parameters λ and µ for which α(x) = 0 has three roots. There is lower
bound for µ for each value of 0 < λ < 1 as in Fig. 1. And the upper bound for µ is obtained from the
stability of high curvature regime such as matter dominated regime in t he past.
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Figure 1: Allowed parameter region for the model (3.1) to keep the future stability of de Sitter solution.
Shaded region is prohibited because there is no stable de Sitter solution. λ is restricted 0 < λ < 1 by the
viable conditions.

Next, we explore the inflationary dynamics. By moving from physical Jordan frame to Einstein frame,
we can regard additional degree of freedom in f(R) gravity as a scalar field. We define Einstein frame

metric by conformal transformation gEµν = f ′(ξ)gJµν and scalaron ϕ by f ′(ξ) = e
√

2
3

ϕ
MPl . We then obtain

S =

∫
d4x

√
−gE

(
M2

Pl

2
RE − 1

2
gµνE ∇µϕ∇νϕ− V (ϕ)

)
+

∫
d4xLm

(
gEµνe

−
√

2
3

ϕ
MPl

)
, (3.2)

with a potential

V (ϕ) =
M2

Pl

2

ξ(ϕ)f ′(ξ(ϕ))− f(ξ(ϕ))

f ′2(ξ(ϕ))
, (3.3)

where auxiliary field ξ = ξ(ϕ) is obtained as a solution of the defining equation of ϕ. In general, matter
has a coupling with scalar field ϕ in Einstein frame via argument of Lm in Eq. (3.2). We do not consider
matter term when we calculate inflationary regime.

Fig. 2 (a) illustrates the inflaton potential for model parameter set λ = 0.9, µ = 4, ν = 10−12.
There is a flat slope for ϕ/MPl ≫ 1, where inflaton starts slow rolling. However, unlike original R2

inflation, there is a long plateau and a false vacuum at ϕ/MPl = 0, whose height is remarkably small
compared to that of the slope. The global minimum is at ϕ/MPl ≃ −2.8. It is this structure that induces
characteristic oscillations during inflation and reheating regime as in Fig. 2 (b)–(d). We can see that
there is anharmonic anharmonic oscillation regime. In terms of Einstein frame dynamics, this regime
amounts to the oscillation in the plateau.

4 Conclusion

We have investigated a new class of f(R) models, which can explain both accelerating expansion in the
early Universe and late time Universe. Contrary to the previous models, our model is also valid for
negative R, which occurs at the end of the inflation. We have studied one of such models in some detail.
We have constrained parameter region from the stability of de Sitter solution, and carried out numerical
calculation for inflation and reheating regime without backreaction from particle creation. In terms of the
inflaton in Einstein frame, it turns out that there is anharmonic oscillation regime. As a result, Hubble
parameter and Ricci scalar exhibit characteristic oscillatory behaviour.

JGRG21 Programme



H. Motohashi 37

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

Φ

MPl

V

M
2

M
Pl2

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
0

1.´10-12

2.´10-12

3.´10-12

4.´10-12

1 100 104 106

-2

0

2

4

MtJ

Φ M
Pl

1 100 104 106
0

10

20

30

40

50

MtJ

N
J

1 100 104 106
10-13

10-10

10-7

10-4

0.1

MtJ

H
J

M

Figure 2: (a): Inflaton potential in Einstein frame for model parameter set λ = 0.9, µ = 4, ν = 10−12.
Unlike original R2 inflation, it has a long plateau and a false vacuum at ϕ/MPl = 0. (b), (c), and (d):
Time evolution of inflaton, e-folding number, and Hubble parameter in terms of Jordan frame time tJ
during inflation and the beginning of reheating for λ = 0.9, µ = 4, ν = 10−12. There is characteristic
anharmonic oscillation phase.
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Nonlinear perturbations in the General Relativity limit of
Hořava-Lifshitz Gravity
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IPMU, The University of Tokyo, Kashiwa, Chiba 277-8582, Japan

Abstract
The power-counting renormalizable theory of gravitation, proposed by Hořava, has
attracted significant attention. In the projectable version of the theory, the lack of
a local Hamiltonian constraint gives rise to an additional scalar degree of freedom.
Although in the UV, this component has very simple dynamics and is coupled weakly,
a major problem arises in the IR limit where it becomes strongly coupled. Although
the perturbative expansion breaks down, the nonlinear cosmological solutions are
regular in this limit, where general relativity, coupled to a dark matter-like component
is recovered. This is in sharp contrast with the results of the näıve perturbative
approach, where the action becomes divergent and the scalar mode strongly couples.
Here, we summarize the analysis on the source of the divergences and show that
the they originate from an inconsistent application of the momentum constraint. In
addition to the standard solution, valid only away from the expected IR fixed point,
we find a new solution for the low energy regime. We argue that the latter branch is
responsible for the recovery of general relativity in this limit.

About two years ago, Hořava introduced a quantum field theory of gravity, which is power counting
renormalizable [1]. This is realized by the anisotropic scaling between space and time:

t→ b−zt , x⃗→ b−1x⃗ , (0.1)

where b is the momentum scale, and z ≥ 3 is the critical exponent. The UV behavior is improved by the
additional high spatial curvature terms, but in contrast to the previous attempts [2], the action has no
more than two time derivatives, avoiding the emergence of obvious ghosts.

The Hořava-Lifshitz (HL) gravity is defined by requiring invariance under the foliation-preserving
diffeomorphism

t→ t′(t) , x⃗→ x⃗′(t, x⃗) . (0.2)

Due to the anisotropy between space and time, the Arnowitt-Deser-Misner formalism [3] provides a
convenient framework for studying the metric

ds2 = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt) , (0.3)

where Ni is the is the shift vector and N is the lapse function. In the present text, we focus on the version
of the theory with the projectability condition N = N(t), which stems from the fundamental symmetry
(0.2). Using the 3-d induced metric gij , the extrinsic curvature Kij , covariant derivative compatible
with the induced metric Di and the curvature of the induced metric Rij as the building blocks, the
power-counting renormalizable action can be written as follows

S =
M2

Pl

2

∫
N dt

√
g d3x⃗

(
KijKij − λK2 − 2Λ +R+ Lz>1

)
, (0.4)

where we include higher spatial derivative terms up to z = 3 through

M2
Pl

2
Lz>1 =

(
c1DiRjkD

iRjk + c2DiRD
iR+ c3R

j
iR

k
jR

i
k + c4RR

j
iR

i
j + c5R

3
)
+
(
c6R

j
iR

i
j + c7R

2
)
.

(0.5)
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For the minimal value of the critical exponent z = 3, these are all the possible marginal and relevant
terms allowed by the projectability condition, spatial parity and time reflection. We note that in general
relativity (GR), the 4d diffeomorphism invariance fixes λ to be 1, while in HL gravity, it is a coupling
constant which runs under renormalization group (RG) flow. Thus, for the theory to be a viable de-
scription of gravity at low energies, GR (or something close to GR) needs to be recovered. In the IR,
the higher curvature terms are suppressed and the gravitational action has exactly the same form as the
Einstein-Hilbert action, only if λ = 1. Unfortunately the RG flow of the various couplings has not been
investigated yet. Therefore, the recovery of GR relies on the assumption (or, the hope) that the param-
eter λ flows to 1 in the IR. However, even though the action has the same form as GR when λ→ 1, the
symmetry of the theory is different. This difference originates from the space independent lapse function,
which leads schematically to an action of the form

S ∋
∫
dtN(t)

(∫
d3x

√
gH
)
. (0.6)

The variation of the above with respect to N(t) does not produce a local Hamiltonian constraint, but
rather a constraint that is integrated over all space∫

d3x
√
gH = 0 . (0.7)

At the level of equations of motion, the λ = 1 theory was shown to mimic general relativity with some
dust fluid, dubbed “dark matter as an integration constant”[4]. We also note that since the shift vector
has the same properties as in GR, the momentum constraint

δS

δNi
= 0 , (0.8)

stays intact.
As mentioned above, the more relaxed symmetry of HL gravity results in an additional propagating

degree of freedom, the scalar graviton. The nature of the scalar graviton depends on the details of the
RG flow of the λ parameter, and some pathologies associated with it have been noted. For instance, for
values 1/3 < λ < 1, the scalar graviton has a wrong sign kinetic term, and is a ghost [5]. Forbidding
this range and enforcing the recovery of GR at low energies suggest that λ should run in the interval
1 < λ <∞, flowing to GR with “dark matter” in the IR, and to ∞ in the UV [6].

Although the extra degree can be shown to be weakly coupled under some conditions in the UV [6],
the IR behavior suffers from strong coupling, where the perturbative expansion seems to break down [7].
On the other hand, the breakdown of perturbations does not necessarily imply that the predictive power
is lost. Indeed, if the theory is renormalizable, the coefficients of infinite number of interactions should
be expressed in terms of the finite parameters in the full action. For an accurate analysis, one needs to
employ nonlinear tools to determine the fate of the scalar graviton mode. In the IR, this mode is expected
to decouple in order to ensure sensible low energy physics in agreement with GR. This is reminiscent
of the Vainshtein mechanism [8], which plays a similar role in massive gravity theories. For the strong
coupling problem in HL, a few analogues of this effect have been noted. For instance, by solving the
full equations of motion, static and spherically symmetric vacuum configurations have been shown to be
continuously connected to GR in the λ→ 1 limit [9].

In the cosmological context, such exact nonlinear realizations become extremely difficult. A convenient
approximation is to adopt the gradient expansion technique [10]. This approach is valid for perturbations
whose characteristic length scale L is much larger than the Hubble length H−1. Since all terms from the
perturbative expansion contribute to each order in the gradient expansion, it provides a consistent way
for accounting for the nonlinearities. The technique was successfully applied to an empty, flat Friedmann-
Robertson-Walker (FRW) cosmology in HL in [11] and the solutions were shown to be regular in the limit
λ→ 1. By adding a scalar field as a matter source example, the coupling between matter sector and the
scalar graviton was shown to lead to a similar situation: in the λ→ 1 limit, one recovers GR, sourced by
the scalar field, along with the dark matter-like component [12].

These results are in contrast with the conclusion of the perturbative calculation, where, as discussed
above, the perturbative expansion of the action breaks down and the scalar graviton mode becomes
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strongly coupled in the expected GR limit λ → 1. In the remainder of this paper, we present a simple
discussion on the source of the apparent breakdown of the perturbative expansion and determine the
origin of the problem as an improper application of the momentum constraint for λ− 1 ≪ 1. We find a
previously overlooked solution, which is valid in this range. The calculation is based on our paper [12].

We start by sketching the breakdown of näıve perturbation theory and discussing the role of the
momentum constraint. We introduce linear perturbations to a FRW universe in vacuum,16

N = 1 , Ni = ∂iB + ni , gij = a2 [δij(1 + ζ) + hij ] , (0.9)

where ∂ini = 0, hii = 0, and as a gauge choice, we set ∂ihij = 0 (transverse gauge). With this
decomposition, the momentum constraint (0.8) at first order in perturbations can be found as

∂i
[
a2(3λ− 1)∂tζ − (λ− 1)△B

]
+

1

2
△ni = 0 , (0.10)

which can be solved by

△B =
3λ− 1

λ− 1
a2∂tζ , ni = 0 . (0.11)

As B and ni are nondynamical degrees of freedom, the above solutions can be inserted back into the
action. For the current discussion, we only focus on the kinetic part of the action, since the dependence
on the parameter λ arises there. The part of the action which contains the scalar degrees of freedom can
be written schematically as [6]

Skin ∋
∫
dt d3x a3

[
(· · · )
λ− 1

ζ̇2 +
(· · · )

(λ− 1)2
ζ̇2 ζ

]
. (0.12)

The convergence of the above series is preserved if formally,

|ζ| ≪ min(1, λ− 1) . (0.13)

At first sight, Eq.(0.12) seems to suggest that in the limit λ→ 1, the terms of higher order in perturbative
expansion become larger. However, the solution to the momentum constraint (0.11) implicitly assumes
that λ − 1 is finite, i.e. this solution is not valid in the λ → 1 limit. Rather, we found that there is a
second branch of solution, valid in the latter limit.

To demonstrate that the solution (0.11) does not apply in the λ→ 1 limit, we take a different approach
than the above. We keep the assumption of small perturbations for the dynamical modes

ζ = O(ϵ) , hij = O(ϵ) , (0.14)

with ϵ≪ 1, while keeping the shift vector nonlinear

B = O(ϵ0) , ni = O(ϵ0) . (0.15)

Then the momentum constraint at leading order can be written as

a2 (3λ− 1) ∂i∂tζ +O(ϵ2) +
1

2
[△+O(ϵ)]ni

−
{
(λ− 1)

[
δji△+O(ϵ)

]
+

(
1

2
△hji + ∂j∂iζ + δji △ζ +O(ϵ2)

)}
∂jB = 0 . (0.16)

Depending on the value of λ, there are two branches of solutions to the above equation. The first one,
valid in the regime ϵ≪ min(1, λ− 1), is

△B =
3λ− 1

λ− 1
a2 ∂tζ +O(ϵ2) , ni = O(ϵ2) , for ϵ≪ min(1, λ− 1) , (0.17)

16Throughout this paper, we exploit the (space-independent) time reparametrization to set N = 1.
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which, at O(ϵ), is nothing but Eq.(0.11). On the other hand, for the regime where λ − 1 ≪ ϵ ≪ 1, the
terms O(ϵ2) dominate over the O(ϵ) terms, giving the second branch solution

B = 2 a2
[
1

2
△hij + ∂i∂jζ + δij△ζ + 2

(
∂i△ζ

)
∂i

]−1

△∂tζ +O
(
λ− 1

ϵ

)
+O(ϵ) , for λ− 1 ≪ ϵ≪ 1 ,

(0.18)
which does not suffer from infinities in the limit λ→ 1.

The existence of the two mutually exclusive branches of solution to the momentum constraint provides
a justification of the regularity and continuity observed in the gradient expansion approach, despite the
breakdown of perturbation theory. An interesting implication of this result is that a fully nonlinear
analysis in this limit is still consistent with small perturbations, except for the longidutinal part of the
shift vector B which becomes nonlinear. Formally,

B =

{ O(ζ) , for |ζ| ≪ min(λ− 1, 1)

O(1) , for λ− 1 ≪ |ζ| ≪ 1
, (0.19)

while in both cases, ζ ≪ 1. This opens the possibility that substituting this nonlinear solution, then
applying the perturbative expansion for ζ may provide a healthy perturbative action.
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Abstract
Hořava-Lifshitz gravity has covariance only under the foliation-preserving diffeomor-
phism. This implies that the quantities on the constant-time hypersurfaces should be
regular. In this theory, the projectability condition which strongly restricts the lapse
function is required. We assume that a star is filled with a perfect fluid, that it has
the reflection symmetry about the equatorial plane. As a result, we find that there
are no stationary axisymmetric star solutions in Hořava-Lifshitz gravity under the
physically reasonable assumptions on the matter sector. This is a serious problem in
this theory from the view point of astrophysics. It seems that the invariance under the
foliation-preserving diffeomorphism and the projectability condition are questionable
since our result is derived from them.

1 Introduction

Recently, Hořava proposed a power-counting renormalizable gravitational theory [1, 2]. The theory is
called Hořava-Lifshitz gravity because it exhibits the Lifshitz-type anisotropic scaling in the ultraviolet,
t→ bzt, xi → bxi, where z is the dynamical critical exponent.

The first study of stars in Hořava-Lifshitz gravity was done by Izumi and Mukohyama [3]. Surprisingly,
they found that no spherically symmetric and static solution with a perfect fluid exists in this theory
under the assumption that the energy density is a piecewise-continuous and non-negative function of the
pressure and that the pressure at the center is positive.

However, it seems that their assumption is too simple to describe realistic stars because of their
rotations. We investigate a stationary axisymmetric star in Hořava-Lifshitz gravity. Here we use the
units in which c = 1.

2 Properties of Hořava-Lifshitz gravity

Hořava-Lifshitz gravity does not have general covariance since the Lifshitz-type anisotropic scaling treats
time and space differently. Instead this theory is invariant under the foliation-preserving diffeomorphism:
t → t̃(t), xi → x̃i(t, xj). This means that the foliation of the spacetime manifold by constant-time
hypersurfaces has a physical meaning. Thus the quantities on the constant-time hypersurfaces such as
the extrinsic curvature tensor and the shift vector must be regular.

The field variables are the lapse function N(t), the shift vector N i(t, x) and the spatial metric gij(t, x).
Note that the shift vector N i and the spatial metric gij depend on both t and xi but that the lapse
function N only does on t. This requirement, called the projectability condition, is imposed on Hořava’s
original paper [1] from a view point of quantization. It is useful to describe the line element in the
Arnowitt-Deser-Misner(ADM) form,

ds2 = −N2dt2 + gij(dx
i +N idt)(dxj +N jdt). (2.1)

By the invariance of matter action Im under the infinitesimal transformation δxi = ζi(t, x), we get
the momentum conservation

0 =
1

N
(∂t −N jDj)Hmi +KHmi −

1

N
HmjDiN

j −DjEmij , (2.2)

17Email address: 11ra001t@rikkyo.ac.jp
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where Di is the covariant derivative compatible with gij ,

Hmi ≡ − 1
√
g

δIm
δN i

= Tiµn
µ, Emij ≡ gikgjl

2

N
√
g

δIm
δgkl

= Tij , (2.3)

K is the extrinsic curvature and nµ is defined as nµdx
µ = −Ndt.

3 No stationary axisymmetric star solutions

In this section, we show that there are no stationary axisymmetric star solutions in Hořava-Lifshitz gravity.
To prove it, we assume that a star is filled with a perfect fluid, that it has the reflection symmetry about
the equatorial plane, that the energy density is a piecewise-continuous and non-negative function of the
pressure, that the pressure is a continuous function of r, and that the pressure at the center of the star
is positive.

3.1 Stationary And Axisymmetric Configuration

We consider stationary and axisymmetric configurations with the timelike and spacelike Killing vectors
respectively given by tµ∂µ = ∂t, ϕ

µ∂µ = ∂ϕ. The timelike Killing vector tµ implies everywhere N2 −
NiN

i > 0. The spacelike Killing vector ϕµ implies that ϕµϕµ = gϕϕ is a geometrical invariant.
As a part of the gauge condition, we take grθ = grϕ = 0. Under this gauge condition, the general

form for the spatial line element is described by [4]

dl2 = ψ4[A2dr2 +
r2

B2
dθ2 + r2B2(sin θdϕ+ ξdθ)2], (3.1)

where ψ,A,B, and ξ are functions of r and θ, but neither t nor ϕ for stationarity and axisymmetry. Now
we assume that the spacetime has a rotation axis, where sin θ = 0. This means ϕµϕµ = gϕϕ = 0 there.

We define triad basis vectors
{
e(i)

}
. e(1) is along the radial direction, e(3) is along the axial Killing

vector and e(2) is fixed by the orthonormality and the right-hand rule. The coordinate components for
the orthonormal triad are

ei(1) =
1

ψ2

[
1

A
, 0, 0

]
, ei(2) =

1

ψ2

[
0,
B

r
,− ξB

r sin θ

]
, ei(3) =

1

ψ2

[
0, 0,

1

rB sin θ

]
, (3.2)

where we have used the spatial line element (3.1). The projection of the shift vector on the triad is related
to its coordinate components by

N(1) =
Nr
ψ2A

, N(2) =
NθB

ψ2r
− NϕξB

ψ2r sin θ
, N(3) =

Nϕ
ψ2rB sin θ

. (3.3)

3.2 Regularity Conditions At The Origin

Here we give the regularity conditions of the shift vector N i near the origin. A tensorial quantity is
regular at r = 0 if and only if all its components can be expanded in non-negative integer powers of x, y
and z in locally Cartesian coordinates, defined by x ≡ r sin θ cosϕ, y ≡ r sin θ sinϕ and z ≡ r cos θ. The
Lie derivative of the shift vector N i along the spacelike Killing vector vanishes, or

N i
,jϕ

j − ϕi,jN
j = 0. (3.4)

In locally Cartesian coordinates, the spacelike Killing vector is written as ϕi∂i = −y∂x + x∂y. Then its
components of eq.(3.4) are

−Nx
,xy +Nx

,yx+Ny = 0, −Ny
,xy +Ny

,yx−Nx = 0, −Nz
,xy +Nz

,yx = 0. (3.5)

The general regular solution of these equations is

Nx = F1(z, ρ
2)x− F2(z, ρ

2)y, Ny = F1(z, ρ
2)y + F2(z, ρ

2)x, Nz = F3(z, ρ
2), (3.6)
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where F1, F2 and F3 are independent and regular functions which depend on z and ρ2 ≡ x2 + y2.
Now transforming N i back to the spherical coordinates r, θ and ϕ, we get the spherical components

Nr

r
= sin2 θF1 +

1

r
cos θF3,

Nθ

sin θ
= cos θF1 −

F3

r
, Nϕ = F2. (3.7)

On the rotation axis (sin θ = 0), thus, we obtain Nθ = 0.
Here we additionally assume the reflection symmetry about the equatorial plane z = 0 or θ = π/2.

Then Nx and Ny must be even functions of z, and Nz must be an odd function of z. This implies that
F1, F2 must be even functions of z, and F3 must be an odd function of z. Since Nr is an odd function of
z on the rotation axis (sin θ = 0), we get Nr = 0 at the origin.

3.3 Matter Sector And Momentum Conservation

For simplicity we assume that the matter consists of a perfect fluid. The stress-energy tensor is given by
Tµν = (ρ + P )uµuν + Pgµν , where P and ρ represent the pressure and the energy density, respectively.

We assume the four-velocity given by uµ∂µ = 1
D (tµ+ωϕµ)∂µ where D ≡ (N2 −NiN

i− 2ωNϕ−ω2gϕϕ)
1
2

is the normalization factor and ω is a function of r and θ. For the four-velocity uµ to be timelike, we
shall have N2 −NiN

i − 2ωNϕ − ω2gϕϕ > 0.
After some calculation, the r component the momentum conservation (2.2) becomes Now and this

equation becomes

0 = −P,r +
ρ+ P

D2

{
1

2
(−N2 +NiN

i),r +ωNϕ,r +
1

2
ω2gϕϕ,r

}
. (3.8)

Here we have used the projectability condition N = N(t).
Now we concentrate on the r component of the momentum conservation of the matter on the rotation

axis sin θ = 0. On the rotation axis, gϕϕ and gϕϕ,r vanish. From eq. (3.3), the regularity of the triad
component of the shift vector N(3) implies

Nϕ = 0 (3.9)

on the rotation axis. Thus Nϕ,r = 0. Thus the r component of the momentum conservation (3.8) on the
rotation axis becomes

0 = −P,r −
1

2

(ρ+ P )(N2 −NiN
i),r

N2 −NiN i
. (3.10)

3.4 Contradiction Of Momentum Conservation

We assume that the star has the reflection symmetry about the equatorial plane θ = π
2 , that the energy

density ρ is a piecewise-continuous and non-negative function of the pressure P , that the pressure P is a
continuous function of r and that the pressure at the center of the star Pc ≡ P (r = 0) is positive. Thus,
ρ+P is a piecewise-continuous function of r. We have assumed that the energy density ρ is non-negative
everywhere and that the pressure at the center Pc is positive, hence ρ + P is positive at the center.
We define rs as the minimal value of r for which at least one of (ρ+ P )|r=rs , limr→rs−0(ρ + P ) and
limr→rs+0(ρ+ P ) is nonpositive.

Dividing the momentum conservation (3.10) by 1
2 (ρ+ P ), we have

{
log
(
N2 −NiN

i
)}
,r
= −2

P,r
ρ+ P

. (3.11)

Under the assumption that the energy density is a function of the pressure, ρ = ρ(P ), integrating the
momentum conservation (3.11) over the interval 0 ≤ r < rs, we obtain

log
(
N2 −NiN

i
)∣∣
r=rs

− log
(
N2 −NiN

i
)∣∣
r=0

= −2

∫ Ps

Pc

dP

ρ+ P
, (3.12)
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where Ps ≡ P (r = rs).
The definition of rs implies that at least one of (ρ+ P )|r=rs , limr→rs−0(ρ+P ) and limr→rs+0(ρ+P )

is nonpositive. Since we have assumed that P (r) is a continuous function and that ρ is non-negative
everywhere, Ps = limr→rs−0 P = limr→rs+0 P is non-positive. Thus, we get

Ps ≤ 0 < Pc. (3.13)

This implies that the right-hand side of eq. (3.12) is positive. However, the left-hand side of eq. (3.12) is
nonpositive since we have the projectability condition N = N(t) and we obtain from eqs. (3.7) and (3.9)
and the reflection symmetry

NiN
i
∣∣
r=0

= 0 (3.14)

at the center of the star. This contradicts that the right-hand side of eq. (3.12) is positive.

4 Discussion and conclusion

Hořava-Lifshitz gravity is only covariant under the foliation-preserving diffeomorphism. This means that
the foliation of the spacetime manifold by the constant-time hypersurfaces has a physical meaning. As a
result, the regularity condition at the center of a star is more restrictive than the one in a theory which
has general covariance.

Under the assumption that a star is filled with a perfect fluid, that it has the reflection symmetry
about the equatorial plane, and that the matter sector obeys the physically reasonable conditions, we
have shown that the momentum conservation is incompatible with the projectability condition and the
regularity condition at the center for stationary and axisymmetric configurations. Since we have not used
the gravitational action to prove it, our result is also true in other projectable theories [5, 6]. Note that
our result is true under not only strong-gravity circumstances like neutron stars but also weak-gravity
ones like planets or moons. However, it is not certain that star solutions can exist in non-projectable
theories. Since we have used both the covariance under the foliation-preserving diffeomorphism and the
projectability condition to prove the non-existence of stationary axisymmetric star, our proof will does
not apply if we assume just one of the two.

The non-existence of stationary axisymmetric star solutions gives a serious problem in this theory
from the view point of astrophysics. It seems that the invariance under the foliation-preserving diffeo-
morphism and the projectability condition are questionable since our result is derived from them.
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Abstract
We study gravitational collapse of a spherically symmetric inhomogeneous dust cloud
in the Lovelock theory without cosmological constant. We show that singularities
which are formed under gravitational collapse can be naked in all dimensions. We
also show that the nature of singularities depends on the spacetime dimensions. In
odd dimensions the naked singularities formed are found to be massive. In the even
dimensions, on the other hand, the naked singularities are found to be massless.

1 Introduction

Whether gravitational collapse results in a black hole or a naked singularity is one of the crucial issues in
classical general relativity. A singularity is not a “point” in the spacetime and information from such a
place is in fact an end of causality in the theory. In order to avoid such a breakdown of physics, it is often
believed that naked singularities cannot be formed under physically reasonable conditions in classical
general relativity (GR). This is known as the cosmic censorship conjecture (CCC) [1].

In 1939 Oppenheimer and Snyder studied the gravitational collapse of a spherically symmetric homo-
geneous dust cloud and found that the collapse ends in a black hole [2]. However, in absence of a general
proof of the CCC there have been studies on collapse using various matter models like dust, radiation,
scalar fields, and so on. In these exact solutions of Einstein equations several counterexamples to the
CCC have been found.

Recently, higher-dimensional spacetimes have generated considerable interest in theoretical physics.
These higher-dimensional models are motivated by string/M theory which are believed to describe high
energy phenomena. It is expected that spacetime should be extremely curved near singularities putting
in doubt the validity of classical GR in these regions. Indeed the string/M theory predicts the higher
curvature corrections to the Einstein equation in its low-energy limit. In view of the above facts it
is important to study gravitational collapse in such a theory. In this paper we shall adopt a special
combination of higher curvature corrections so that the field equations do not include the higher derivative
terms of the metric than the third order, that is, the Lovelock theory [3] because string theory predicts
Lovelock type corrections to Einstein gravity.

2 Lovelock gravity

In this section we give an overview of the Lovelock theory in D = n + 2-dimensional spacetimes. This
is the most general theory of gravity satisfying following three conditions: (i) The field equations are
written in terms of a symmetric rank-2 tensor. (ii) The theory is consistent with the conservation law of
the energy-momentum tensor. (iii) The theory does not include higher than third order derivatives.

The Lagrangian of the theory is given by

L =
k∑

m=1

am
m

Lm, (2.1)

19Email address: ohashi@tap.scphys.kyoto-u.ac.jp
20Email address: shiromizu@tap.scphys.kyoto-u.ac.jp
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where

Lm =
1

2m
δν1ν2...ν2m−1ν2m
µ1µ2...µ2m−1µ2m

Rν1ν2
µ1µ2 . . . Rν2m−1ν2m

µ2m−1µ2m . (2.2)

In the above, Rµν
ρσ is the Riemann curvature tensor, k is a constant depending on the spacetime

dimensions, defined by k = [(D−1)/2] ([x] is the integer part of x) and δ
ν1ν2...ν2m−1ν2m
µ1µ2...µ2m−1µ2m is the generalized

and totally antisymmetric Kronecker delta. {am} are arbitrary constants which cannot be determined
by the theory itself. Throughout this paper we suppose that am are positive.

3 Spherical collapse of dust clouds

In this section, we will consider the spherical collapse of dust clouds in the Lovelock theory [5]. We first
write down the basic equations.

The energy-momentum tensor of dust cloud is

Tµν = ε(t, r)uνu
µ, (3.1)

where ε(t, r) is the energy density, which is supposed to be positive, and uµ is the velocity. The metric
for spherically symmetric spacetime is

ds2 = −B(t, r)2dt2 +A(t, r)2dr2 +R(t, r)2dΩ2
n. (3.2)

Here A(t, r), B(t, r) and R(t, r) are arbitrary functions of t and r, and dΩ2
n is the line element of the

n-dimensional unit sphere. From the conservation equations and field equations, we can derive the metric
and basic equation as

ds2 = −dt2 + R′2

W (r)2
dr2 +R2dΩ2

n (3.3)

k∑
m=1

cm

(
Ṙ2 + 1−W 2

)m 1

R2m
=

F (r)

Rn+1
(3.4)

where W (r) is a arbitrary function of r, F (r) is a mass function defined as F (r) = 2
n

∫ r
0
εRnR′dr and cl

are constants defined as

cl =

{
1 if l = 1
al
l

∏2l−2
p=1 (n− p) if 2 ≤ l ≤ k.

(3.5)

4 Apparent horizons and singularities

In this section we analyze the structure of spacetimes obtained in the previous section [5]. We shall focus
on the behavior of trapped surfaces and apparent horizons surrounding the singularities. If singularities
are covered by apparent horizon, they cannot be naked. And if singularities are not covered by apparent
horizon, they can be naked.

We shall investigate the even and odd-dimensional cases separately since they have quite different
features. As stated in Sec. 2, we assume that all coefficients cl are positive. Here we also take W (r) = 1,
which corresponds to the “marginally bound case”.

A trapped surface is described by the surfaces which satisfy dR/dt|± < 0, where d/dt|+ and d/dt|−
are derivatives along the outgoing and ingoing null geodesics respectively. For the current metric form,
dR/dt|± becomes

dR

dt

∣∣∣∣
+

= Ṙ+
dr

dt

∣∣∣∣
+

R′ = Ṙ+ 1, (4.1)

dR

dt

∣∣∣∣
−
= Ṙ+

dr

dt

∣∣∣∣
−
R′ = Ṙ− 1, (4.2)
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where we used the fact of dr/dt|± = ±R′−1. The apparent horizon is defined to be the boundary of
trapped regions. In our case it is easy to see that the location of the apparent horizons can be found
through the solving of

gµνR,µR,ν = 0. (4.3)

For the metric of Eq. (3.3), this condition becomes

Ṙ2 = 1. (4.4)

4.1 Even dimensions

We first consider the apparent horizon in even dimensions. Using Eq. (4.4), Eq. (3.4) implies

Heven(R) ≡
k=n/2∑
m=1

cmR
n−2m+1 = F (r) , (4.5)

which determines the location of the apparent horizons. Note that the left-hand side of the equation above
is an odd function of R, and F (r) is a monotonically increasing function of r, with limr→0 F (r) = 0. We
depict the behavior of the left-hand side of Eq. (4.5) in Fig. 1.

R

Heven(R)

F(r)

Figure 1: The profile of function Heven(R). The thick line is Heven(R) and the dotted line is F (r).
Heven(R) is the odd function and we assume that all coefficients are positive. Therefore, Heven is
monotonically increasing function for R > 0 and Heven(0) = 0.

As shown in the figure, for any given finite r, we always have a solution to Eq. (4.5). This implies
that the apparent horizons always exist in these spacetimes and all singularities which occur at finite
r > 0 (but, R = 0) will be the inside of the apparent horizon. Therefore, only the central singularity at
r = 0 could be naked. In addition, they are massless because F (0) = 0, in even dimensions. (Note that
F (r) is proportional to a quasilocal mass.) This is the same property as in the Gauss-Bonnet case. In
the Gauss-Bonnet case, all singularities except for r = 0 were found to be covered by apparent horizons
in any dimensions higher than six [4].

4.2 Odd dimensions

As in even dimensional cases, Eqs. (4.4) and (3.4) give

Hodd(R) ≡
k=(n+1)/2∑

m=1

cmR
n−2m+1 = F (r) , (4.6)
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which determines the location of the apparent horizons. Contrary to what we had in even dimensions,
the left-hand side of Eq. (4.6) is the even function of R (See Fig. 2). In the range of 0 ≤ r ≤ rah, we see

R

Hodd(R)

F(r)

c(n+1)/2

Figure 2: The profile of the function Hodd(R). The thick line is Hodd(R) and the dotted line is F (r).
Hodd(R) is the even function and we assume that all coefficients are positive. Therefore Hodd is mono-
tonically increasing function of R > 0 and Hodd(0) = c(n+1)/2 > 0. The figure shows that r satisfying
F (r) < c(n+1)/2 have no solution to Eq. (4.6).

that there are no solutions, where rah is determined through

F (rah) = c(n+1)/2. (4.7)

Hence the singularities which occurs in the range 0 ≤ r ≤ rah are not wrapped by the apparent horizons.
They could be naked and massive ( F (r∗) ≥ 0 where 0 ≤ r∗ ≤ rah) in odd dimensions. This result
is in agreement with what is observed in the five-dimensional Gauss-Bonnet case [4]. For the Gauss-
Bonnet case in any dimensions higher than six, however, the singularities at finite r shall always be safely
wrapped.

5 Conclusion

We considered gravitational collapse of a spherical inhomogeneous dust cloud in the Lovelock gravity in
any dimension. We found that the formation of apparent horizon and nature of singularities depend on
the dimensions, that is, odd or even. In even dimensions, noncentral singularities (r ̸= 0) will be safely
wrapped by apparent horizons and only “central” singularity at r = 0 could be naked and massless. In
odd dimensions, on the other hand, even those singularities which form at 0 ≤ r ≤ rah may not be
wrapped by apparent horizons and they could be naked and massive.
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Abstract

We consider a general class of quantum-gravity-inspired theories, where the Einstein-
Hilbert action is extended through the addition of all terms quadratic in the curvature
tensor coupled to a scalar field. This class of theories includes Einstein-Dilaton-
Gauss-Bonnet (EDGB) and dynamical Chern-Simons gravity. We consider scalar
and gravitational radiation from compact binaries in this theory. We analytically
solve the wave equations for the scalar and gravitational radiation under the post-
Newtonian formalism and derive the correction in the radiated energy flux. Then, we
estimate the expected constraint on this theory from ground-based gravitational wave
detectors such as adv. LIGO. We found that they can place considerably stronger
constraints on EDGB theory compared to the current solar system experiment.

1 Introduction

Gravitational theory has been tested with great precisions in the solar system experiments and from
binary pulsar observations in the weak field regime [1]. On the other hand, future gravitational wave
(GW) observations would allow us to perform precise tests of general relativity (GR) in the strong field
regimes. Among various alternative theories of gravity, in this paper, we consider the so-called quadratic
gravity [2, 3] which is a general class of theories that contain additional quadratic curvature invariants
coupled to a dynamical scalar fields in their actions. This theory can be considered as an effective theory
of more fundamental theories such as superstring theory, and it contains some well-studied theories such
as Einstein-Dilaton-Gauss-Bonnet (EDGB) theory [4] and Dynamical Chern-Simons (CS) gravity [5].

We solved field equations for the scalar and perturbed metric under post-Newtonian (PN) formalism [6,
7]. Although PN approach is an expansion in the weak field or slow motion limit, it is known that in GR,
it can also describe strong field regions thanks to the effacement principle or strong equivalence principle.
(i.e. Point-particle limit can be safely taken and the results do not depend on the internal structure of
sources.) However, in alternative theories of gravity where these principles do not hold, point-particle
limit is no longer assured and PN formalism cannot be applied in the strong field regimes. In order to
take the effect of strong field into account, we first performed asymptotic matching between the weak
field PN and the known strong field (i.e. black hole (BH)) solutions. Then, we derived the effective source
terms that correctly reproduce these strong field solutions under PN formalism. Next, we obtained far
zone field point solution for the wave equations sourced by these effective source terms and estimated
the corrections in the energy flux. Finally, we mapped our modified waveforms to the parameterized
post-Einsteinian (PPE) [8] ones and obtained the possible constraints with future GW interferometers
such as adv. LIGO.

Due to the limitation of the paper, we focus on explaining the PN approach for the scalar fields in
the even parity sector. Then, we comment about the contributions from the metric and the odd parity
case at the end. We use the geometrical units c = G = 1 throughout.

22Email address: kent@tap.scphys.kyoto-u.ac.jp
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Figure 1: We consider three zones, inner zone (IZ), near zone (NZ) and far zone (FZ). The IZs are
centered at each object and their radii RIZ satisfy RIZ ≪ a, where a denotes the separation of the binary.
The NZ is centered at the center of mass of the two bodies and the radius RNZ satisfies RNZ ∼ λGW,
where λGW is the GW wavelength.

2 PN Approach for Scalar Radiation in the Even Parity Sector

2.1 Action of Quadratic Gravity

The action for the quadratic gravity that we consider is given as [2, 3]

S ≡
∫
d4x

√
−g
[
κR+ α1f1(ϑ)R

2 + α2f2(ϑ)RµνR
µν+ α3f3(ϑ)RµνδσR

µνδσ

+α4f4(ϑ)Rµνδσ
∗Rµνδσ − β

2
{∇µϑ∇µϑ+ 2V (ϑ)}+ Lmat

]
. (2.1)

Here, g stands for the determinant of the metric gµν . R, Rµν , Rµνδσ and ∗Rµνδσ are the Ricci scalar and
tensor, the Riemann tensor and its dual, respectively, with the latter defined as ∗Rµνδσ = (1/2)ϵδσ

αβRµναβ
and with ϵµνδσ the Levi-Civita tensor. The quantity Lmat is the external matter Lagrangian, ϑ is a scalar
field, (αi, β) are coupling constants and κ = (16π)−1. For simplicity, we assume fi(ϑ) = ϑ and V (ϑ) = 0.
When we set α4 = 0, while (α1, α2, α3) = (1,−4, 1)αEDGB, quadratic gravity reduces to Einstein-Dilaton-
Gauss-Bonnet theory [4]. Alternatively, when we set α4 = −1

4αCS and all other αi = 0, it reduces to
dynamical CS gravity [5]. Throughout this paper, we take our small dimensionless deformation parame-
ters as ζi ≡ α2

i /(βκm
4) ≪ 1 where m is a typical mass parameter.

2.2 Asymptotic Matching and Effective Source Terms

As shown in Fig. 1, let us decompose the geometry into three regions: an inner zone (IZ), a near zone
(NZ) and a far zone (FZ). One can only apply the PN formalism when the gravitational field is weak and
velocities are small. Hence, when we apply it to strong field sources like BHs and NSs, the fields in the
IZs are too strong that PN application becomes invalid. In this case, we have to asymptotically match
our PN solution in the NZ with the known strong field solutions valid in the IZs.

When we take variation of the action with respect to the scalar field and perturb the GR metric as
gGR
µν = ηµν + hµν , the evolution equation for the scalar field in the even-parity sector becomes

□ηϑ = −64π2α1

β
ρ2 − 64π2α2

β
ρ2 − 2α3

β

(
hαβ,µνh

α[β,µ]ν + hαβ,µνh
µ[ν,α]β

)
, (2.2)

where ρ ≡ ρ1 + ρ2 with ρA representing the density of each object and remainders of O(h3). We can
apply the PN formalism to compact binary systems and the leading NZ solution can be obtained as [3]

ϑ(NZ) =
q1
r1

+ (1 ↔ 2) , qA ≡ 16π

β
(α1 + α2 + 3α3)

∫
IZ

ρ′A
2d3x′ , (2.3)
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where qA (A = 1, 2) represents the scalar monopole charge and rA is the distance from each source to
the field point. Notice that this dominant monopole contribution vanishes in the case of EDGB theory.
For neutron stars, the scalar monopole charge vanishes independently of the equation of state. Notice
also that our NZ solution depends on the internal structure of the source. This is due to the fact that
the point-particle limit is not always valid in alternative theories of gravity.

We match this NZ solution to the isolated BH solution (valid in the IZs) found by Yunes and Stein [2],
ϑYS = 2α3

βm2
A

mA
rA

, withmA representing the mass of the body, to yield qA = 2α3

βmA
. Notice that this monopole

charge does not depend on (α1, α2). This is because these parameters couple to Ricci tensor and scalar
which vanish in vacuum. This is to be contrasted with the NS case, in which qA depends on all of α1,
α2 and α3 but vanishes for the EDGB combination. Interestingly, BHs do not have scalar hair in more
traditional (Brans-Dicke type) scalar-tensor theories [9, 10], while NSs do possess them. This situation
is opposite in EDGB theory. We can now treat BHs in even-parity, quadratic modified gravity as delta
function sources of matter energy density, and with effective scalar charge density ρϑ = qAδ

(3)(x− xA).
In the PN expansion such sources reproduce the BH solution found by Yunes and Stein [2] at leading
order.

By applying the PN formula [6, 7], the far zone field point solution for the wave equation sourced by
the effective source terms (multiplied by -4π) can be calculated as [3]

ϑFZ =
1

r

(
q1
m2

m
− q2

m1

m

)
v12in

i +O(v2) . (2.4)

Here we have defined the relative velocity vk12 ≡ vk1 −vk2 , and the total mass of the binary m ≡ m1+m2. r
is the distance from the center of mass of the binary to the field point and ni is defined as ni ≡ −(t− r),i

2.3 Correction in the Energy Flux and Mapping to the PPE Waveform

By using Eq. (2.4), the correction in the energy flux due to the scalar radiation can be given as δĖ(ϑ) =

−1
3ζ3

1
η2

δm2

m2 v
8. By comparing this with the contribution in GR (obtained from the quadrupole radiation

formula), ĖGR = −32
5 η

2v10 with the symmetric mass ratio η ≡ m1m2/m
2, we obtain [3]

δĖ(ϑ)

ĖGR
=

5

96
ζ3

1

η4
δm2

m2
v−2 , (2.5)

a relative -1PN effect. We found that contribution from metric perturbation is of 0PN order [3], hence
Eq. (2.5) gives the dominant correction in the even parity sector.

By denoting the Fourier waveform in GR as h̃GR, the correction can be mapped to the PPE wave-
form [8]

h̃(f) ≡ h̃GR(f) [1 + αPPEu
aPPE ] exp

(
iβPPEu

bPPE
)

(2.6)

with u ≡ πMf and the chirp mass M ≡ mη3/5, as

αPPE = 0, βPPE = − 5

7168
ζ3η

−18/5 δm
2

m2
, bPPE = −7

3
, (2.7)

where δm is defined by δm = m1 −m2.

2.4 Constraints on EDGB Theory

Although we currently lack any GW detections, we can still estimate the projected constraints that such
detections would place on quadratic gravity. We consider EDGB theory as a simple sub-case of the
even-parity sector. For adv. LIGO, if we detect GW signals of a non-spinning BH binary with masses
(m1,m2) = (6, 12)M⊙ at a signal-to-noise ratio (SNR) of 20, Cornish et al. [11] obtained the projected
bound |βppE| ≲ 5×10−4 for bppE = − 7

3 , which implies |αEDGB|1/2 ≲ 4×105 cm. This bound corresponds
to ζEDGB ∼ 3× 10−2, hence this satisfies our assumption of ζi ≪ 1.

Comparing this results with the current constraint obtained by the Cassini satellite, |αEDGB|1/2 <
1.3 × 1012cm [4], we see that the former is more than six orders of magnitude stronger than the latter!
Unfortunately, it seems difficult to put constraints on EDGB theory with binary pulsar observations,
since NSs have no scalar monopole charge in this theory.
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3 Summary and Discussions

In this paper, we described how to apply PN formalism to alternative theories of gravity in deriving
modified gravitational waveforms from compact binaries. Since PN formalism can only be applied in
the weak field regime, in order to take the strong field effect into account, we asymptotically matched
our PN solution with the known (isolated) BH solutions. Then, we obtained the effective source terms
(proportional to the delta functions of the positions of the sources) that successfully reproduce the BH
solutions under PN formalism. Then, we solve the wave equations sourced by these effective source terms
and obtained far zone field point solutions. With these at hand, we can calculate the corrections in the
energy flux and can map the modified waveforms to the PPE ones.

For the even parity sector, we found that there generically exists scalar dipole radiation which modifies
the waveform at -1PN order relative to GR. Since the metric perturbation gives 0PN correction at best,
we conclude that the scalar radiation gives the dominant modification. However, the interesting point
is that in EDGB theory, NSs do not possess scalar hair while BHs do. This is opposite to scalar-tensor
theories [9, 10]. Therefore, unfortunately, we cannot constrain EDGB theory from current binary pulsar
observations. We found that future GW interferometers such as adv. LIGO can place more than six
orders of magnitude stronger constraint relative to the current strongest one obtained from the solar
system experiment.

We can perform similar analysis for the odd parity sector. By matching the PN solution with the
BH solution found by Yunes and Pretorius [12], we found that a spinning BH possesses scalar dipole
hair which leads to 2PN correction. We also found 2PN correction from the metric part, and both of
these corrections are at quadratic order in spins. There also exists 3.5PN correction at the linear order
in spins. This may overwhelm the above 2PN ones for slowly rotating BHs. A non-spinning BH cannot
have a scalar hair and scalar radiation only leads to 7PN correction. Our analytic calculation matches
beautifully with numerical one obtained by Pani et al. [13] under BH perturbation (see Fig. 3 of Ref. [3]).
We expect the metric part gives 6PN correction which is also shown by Pani et al. [13].

There are many possibilities for future works including (i) finding isolated BH solution at the quadratic
order in spins for dynamical CS gravity, (ii) taking the BH deformation by the other BH into account, (iii)
considering non-dissipative corrections such as scalar force induced by the scalar charges, (iv) performing
BH perturbation in quadratic gravity instead of PN formalism, and (v) calculating the structures of NSs
in this theory so that we can obtain the constraints from current binary pulsar observations.
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Abstract

We investigate de Sitter solutions in non-local gravity. We examine a condition to
avoid a ghost and discuss a screening scenario for a cosmological constant in de Sitter
solutions. Furthermore, we explicitly demonstrate that three types of the finite-time
future singularities can occur in non-local gravity and explore their properties.

1 Introduction

It has been suggested that the current expansion of the universe is accelerating by recent cosmological
observations such as Supernovae Ia (SNe Ia), cosmic microwave background (CMB) radiation, large scale
structure (LSS), baryon acoustic oscillations (BAO), and weak lensing. There are two representative
approaches to account for the late time cosmic acceleration. One is the introduction of cosmological
constant dark energy in the framework of general relativity. The other is the modification of gravity, for
example, F (R) gravity, where F (R) is an arbitrary function of the scalar curvature R (for recent reviews
on F (R) gravity, see, e.g., [1]). As a possible modification of gravity, non-local gravity produced by
quantum effects has been proposed in Ref. [2]. There was a proposal on the solution of the cosmological
constant problem by non-local modification of gravity [3]. Recently, an explicit mechanism to screen a
cosmological constant in non-local gravity has been discussed in Ref. [4]. Furthermore, it is known that
so-called matter instability [5] occurs in F (R) gravity. This implies that the curvature inside matter
sphere becomes very large and hence the curvature singularity could appear. It is important to examine
whether there exists the curvature singularity in non-local gravity. The curvature singularity is called “the
finite-time future singularities” throughout this paper. In this paper, we review our results in Ref. [6]. We
explore de Sitter solutions in non-local gravity. We also study a condition to avoid a ghost and present
a screening scenario for a cosmological constant in de Sitter solutions. In addition, we explicitly show
that three types of the finite-time future singularities can occur in non-local gravity and examine their
properties. We use units of kB = c = ℏ = 1 and denote the gravitational constant 8πG by κ2 ≡ 8π/MPl

2

with the Planck mass of MPl = G−1/2 = 1.2× 1019GeV.
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26Also at Tomsk State Pedagogical University.
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2 de Sitter solution in non-local gravity

The starting action of non-local gravity is given by

S =

∫
d4x

√
−g
{

1

2κ2
[
R
(
1 + f(□−1R)

)
− 2Λ

]
+ Lmatter (Q; g)

}
. (2.1)

Here, g is the determinant of the metric tensor gµν , f is some function, □ ≡ gµν∇µ∇ν with ∇µ being
the covariant derivative is the covariant d’Almbertian for a scalar field, Λ is a cosmological constant,
and Lmatter (Q; g) is the matter Lagrangian, where Q stands for the matter fields. The above action in
Eq. (2.1) can be rewritten by introducing two scalar fields η and ξ in the following form:

S =

∫
d4x

√
−g
{

1

2κ2
[R (1 + f(η))− ∂µξ∂

µη − ξR− 2Λ] + Lmatter

}
. (2.2)

We take the flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric ds2 = −dt2+a2(t)
∑
i=1,2,3

(
dxi
)2
.

We consider the case in which the scalar fields η and ξ only depend on time. In this background, the
gravitational field equations are given by

0 = −3H2 (1 + f(η)− ξ) +
1

2
ξ̇η̇ − 3H

(
f ′(η)η̇ − ξ̇

)
+ Λ+ κ2ρm , (2.3)

0 =
(
2Ḣ + 3H2

)
(1 + f(η)− ξ) +

1

2
ξ̇η̇ +

(
d2

dt2
+ 2H

d

dt

)
(f(η)− ξ)− Λ + κ2Pm , (2.4)

where H = ȧ/a is the Hubble parameter, the dot denotes the time derivative of ∂/∂t, and ρm and
Pm are the energy density and pressure of a perfect fluid of matter, respectively. Furthermore, the
equations of motion for the scalar fields η and ξ are given by 0 = η̈ + 3Hη̇ + 6Ḣ + 12H2 and 0 =

ξ̈ + 3Hξ̇ −
(
6Ḣ + 12H2

)
f ′(η), respectively, where we have used R = 6Ḣ + 12H2. We now assume

a de Sitter solution H = H0, where H0 is a constant. Then, the equation of motion for η can be
solved as η = −4H0t − η0e

−3H0t + η1, with constants of integration, η0 and η1. For simplicity, we only
consider the case that η0 = η1 = 0. We also suppose f(η) is given by f(η) = f0e

η/β = f0e
−4H0t/β ,

where f0 and β are constants. In this case, the equation of motion for ξ can be solved as follows,
ξ = − [3f0β/ (3β − 4)] e−4H0t/β + [ξ0// (3H0)] e

−3H0t − ξ1, where ξ0 and ξ1 are constants. For the de
Sitter space, a behaves as a = a0e

H0t, where a0 is a constant. Hence, for the matter with the constant
equation of state wm ≡ Pm/ρm, we find ρm = ρm0e

−3(wm+1)H0t, where ρm0 is a constant. By substituting
this expression of ρm, a solution of η and a solution of ξ with putting ξ0 = 0 into Eq. (2.3), we obtain
0 = −3H2

0 (1 + ξ1)+6H2
0f0 (2/β − 1) e−4H0t/β+Λ+κ2ρm0e

−3(wm+1)H0t. For ρm0 = 0, if we choose β = 2,
ξ1 = −1 + Λ/

(
3H2

0

)
, de Sitter space can be a solution. Even if ρm ̸= 0, by taking β = 4/ [3(1 + wm)],

f0 = −κ2ρm0/
[
3H2

0 (1 + 3wm)
]
, ξ1 = −1 + Λ/

(
3H2

0

)
, we find that there is a de Sitter solution. The

equation ξ1 = −1+Λ/
(
3H2

0

)
implies thatH2

0 = Λ/ [3 (1 + ξ1)]. This means that the cosmological constant
Λ is effectively screened by ξ. This is one of main results in this paper. We include the cosmological term
in the action (2.1) in order to show that the cosmological constant is surely screened by the non-local
effect. We should note that in the case that there does not exist the cosmological constant, i.e., Λ = 0,
if we choose ξ1 = −1, H0 can be arbitrary. Thus, H0 can be determined by an initial condition. Since
H0 can be small or large, the theory with the function in f(η) = f0e

η/β = f0e
−4H0t/β with β = 2 could

describe the early-time inflation or current cosmic acceleration. In the presence of matter with wm ̸= 0,
for Λ = 0, we may also have a de Sitter solution H = H0.

To examine the ghost-free condition, we make a conformal transformation to the Einstein frame:

gµν = Ω2g
(E)
µν , where Ω2 = 1/ (1 + f(η)− ξ) and R =

(
1/Ω2

) [
R(E) − 6

(
□ lnΩ + g(E)µν∇µ lnΩ∇ν lnΩ

)]
.

We use a superscription (E) to represent quantities in the Einstein frame. We may discard the □ lnΩ
term because it is a total divergence, and introduce the expression of ϕ = lnΩ = − (1/2) ln (1 + f(η)− ξ).
Instead of η and ξ, we may regard ϕ and η to be independent fields. Inserting ξ = −e−2ϕ + (1 + f(η))
into the action, which is obtained from the action in Eq. (2.2), we finally arrive at

S =

∫
d4x
√
−g(E)

{
1

2κ2

[
R(E) − 6∇µϕ∇µϕ− 2∇µϕ∇µη − e2ϕf ′(η)∇µη∇µη − 2e4ϕΛ

]
+e4ϕLmatter

(
Q; e2ϕg(E)

)}
. (2.5)
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In order to avoid a ghost, the determinant of the kinetic term must be positive, which means [4]

det

∣∣∣∣ 6 1
1 e2ϕf ′(η)

∣∣∣∣ = 6e2ϕf ′(η)− 1 > 0 . (2.6)

This condition is assumed to be satisfied. In particular, f ′(η) > 0 is a necessary condition. Thus, the
ghost-free condition is expressed as f ′(η) > 1/

(
6e2ϕ

)
= (1 + f(η)− ξ) /6 > 0, where in the equality of

the middle term, we have used ϕ = − (1/2) ln (1 + f(η)− ξ). Then, we may introduce a new field χ,
given by χ =

∫ η√
f ′(η)dη, and rewrite the action in Eq. (2.5) in the form,

S =

∫
d4x
√
−g(E)

{
1

2κ2

[
R(E) − 6∇µϕ∇µϕ− 2√

f ′
∇µϕ∇µχ− e2ϕ∇µχ∇µχ− 2e4ϕΛ

]
+e4ϕLmatter

(
Q; e2ϕg(E)

)}
, (2.7)

where f ′ should be regarded as a function of χ, f ′(η) = f ′ (η (χ)). In case of the model f(η) = f0e
η/β =

f0e
−4H0t/β with β = 2, for the solution η = −4H0t − η0e

−3H0t + η1 with η0 = η1 = 0 and in ξ =
− [3f0β/ (3β − 4)] e−4H0t/β + [ξ0// (3H0)] e

−3H0t − ξ1 with ξ0 = 0 and ξ1, the condition (2.6) to avoid a
ghost has the following form: 3/

{
4 +

[
Λ/
(
3H2

0f0
)]

e2H0t
}
> 1, which suggests the two cases. One is f0 is

positive but the bare cosmological constant Λ is negative and therefore ξ1 < −1 from ξ1 = −1+Λ/
(
3H2

0

)
.

Another is f0 is negative and Λ is positive and therefore ξ1 > −1. We note that in the model f(η) =
f0e

η/β = f0e
−4H0t/β with β = 2, f ′(η) = (f0/2) e

η/2 and from a necessary condition in order to avoid
a ghost f ′(η) > 0 we find f0 > 0, which corresponds to the former case. In this case, the condition
described above suggests that the de Sitter universe is stable in a period 1/ (2H0) ln

(
−3H2

0f0/Λ
)
< t <

1/ (2H0)
[
ln 4 + ln

(
−3H2

0f0/Λ
)]
, where we have also used the condition (1 + f(η)− ξ) /6 > 0. Hence the

length of the ghost-free period is given by ∆t = ln 4/ (2H0) = ln 2/H0 ≃ 0.69/H0. Thus unfortunately
the period is less than one e-folding time. So this cannot give inflation in the early universe provided
that the appearance of a ghost has to be avoided.

3 Finite-time future singularities in non-local gravity

In this section, we examine whether there exists the finite-time future singularities in non-local gravity.
In the flat FLRW space-time, we analyze an asymptotic solution of the gravitational field equations (2.3)
and (2.4) in the limit of the time when the finite-time future singularities appear. We consider the case
in which the Hubble parameter H is expressed as H ∼ hs (ts − t)

−q
, where hs is a positive constant, q

is a non-zero constant larger than −1 (q > −1, q ̸= 0), and ts is the time when the finite-time future
singularity appears. We only consider the period 0 < t < ts because H should be real number. When

t → ts, for q > 1, H ∼ hs (ts − t)
−q

as well as Ḣ ∼ qhs (ts − t)
−(q+1)

become infinity and hence the
scalar curvature R diverges. For −1 < q < 0 and 0 < q < 1, H is finite, but Ḣ becomes infinity and

therefore R also diverges. From H ∼ hs (ts − t)
−q

, we obtain a ∼ as exp
{
[hs/ (q − 1)] (ts − t)

−(q−1)
}
,

where as is a constant. By using η̈+3Hη̇ = a−3d
(
a3η̇
)
/dt and 0 = η̈+3Hη̇+6Ḣ +12H2, η is described

as η = −
∫ t (

1/a3
) (∫ t̄

Ra3dt̄
)
dt. In the limit t → ts, for q > 1, Ḣ ≪ H2 and hence R ∼ 12H2,

whereas for −1 < q < 0 and 0 < q < 1, Ḣ ≫ H2 and hence R ∼ 6Ḣ. By applying these relations
to the integral expression of η shown above and taking the leading term in terms of (ts − t), we obtain

η ∼ − [4hs/ (q − 1)] (ts − t)
−(q−1)

+ ηc (q > 1), η ∼ − [6hs/ (q − 1)] (ts − t)
−(q−1)

+ ηc (−1 < q < 0 , 0 <
q < 1), where ηc is an integration constant. From the expression of a, we see that when t→ ts, for q > 1,
a → ∞, whereas for −1 < q < 0 and 0 < q < 1, a → as. Moreover, it follows from H ∼ hs (ts − t)

−q

and ρeff = 3H2/κ2 that for q > 0, H → ∞ and therefore ρeff = 3H2/κ2 → ∞, whereas for −1 < q < 0,
H asymptotically becomes finite and also ρeff asymptotically approaches a finite constant value ρs. On

the other hand, from Ḣ ∼ qhs (ts − t)
−(q+1)

and Peff = −
(
2Ḣ + 3H2

)
/κ2 we find that for q > −1,

Ḣ → ∞ and hence Peff = −
(
2Ḣ + 3H2

)
/κ2 → ∞. Here, ρeff and Peff are the effective energy density

and pressure of the universe, respectively. It is known that the finite-time future singularities can be
classified in the following manner [7]:
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Table 1: Range and conditions for the value of parameters of f(η), H, and ηc and ξc in order that the
finite-time future singularities can exist.

Case f(η) = fsη
σ H ∼ hs (ts − t)

−q
ηc , ξc

fs ̸= 0 hs > 0 ηc ̸= 0
σ ̸= 0 q > −1 , q ̸= 0

(ii) σ < 0 q > 1 [Type I (“Big Rip”) singularity] ξc = 1
(iii) fsη

σ−1
c (6σ − ηc) + ξc − 1 = 0 0 < q < 1 [Type III singularity]

−1 < q < 0 [Type II (“sudden”) singularity]

• Type I (“Big Rip” [8]): In the limit t → ts, a → ∞, ρeff → ∞ and |Peff | → ∞. The case in which
ρeff and Peff becomes finite values at t = ts is also included.

• Type II (“sudden” [9]): In the limit t→ ts, a→ as, ρeff → ρs and |Peff | → ∞.

• Type III: In the limit t→ ts, a→ as, ρeff → ∞ and |Peff | → ∞.

• Type IV: In the limit t→ ts, a→ as, ρeff → 0, |Peff | → 0, and higher derivatives of H diverge. The
case in which ρeff and/or |Peff | asymptotically approach finite values is also included.

For q > 1, the Type I (“Big Rip”) singularity, for 0 < q < 1, the Type III singularity, and for −1 < q < 0,
the Type II (“sudden”) singularity. In Table 1, we show the range and conditions for the value of
parameters of f(η), H, and ηc and ξc in order that the finite-time future singularities can exist. If ηc ̸= 0
and ξc = 1, in a model with σ < 0, there can exist the finite-time future singularities with the property
of the Type I (“Big Rip”) singularity for q > 1. If ηc ̸= 0, in a model with satisfying the condition
fsη

σ−1
c (6σ − ηc) + ξc − 1 = 0, there can exist the finite-time future singularities with the property of the

Type III singularity for 0 < q < 1 and that of the Type II (“sudden”) singularity for −1 < q < 0. In the
special case of ηc = 0, the finite-time future singularities described by H ∼ hs (ts − t)

−q
cannot occur.

4 Summary

We have studied a screening scenario for a cosmological constant in de Sitter solutions as well as a
condition to avoid a ghost. In addition, we have explicitly shown that three types of the finite-time
future singularities can occur in non-local gravity and examined their properties.
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Abstract
In this note we review the latest developments in the numerical construction of lo-
calised black holes on a four-dimensional Randall-Sundrum II (RSII) braneworld
model. We argue that arbitrarily large black holes on the brane can be constructed as
perturbations of a solution of the Einstein equations in five-dimensional anti-de Sitter
(AdS5) space whose boundary metric is conformal to the four-dimensional asymptot-
ically flat Schwarzschild solution. Using the newly developed harmonic formulation
of the Einstein equations for elliptic problems we construct RSII static black holes
with radii ranging from ∼ 5× 10−3ℓ up to ∼ 100ℓ, where ℓ is the radius of AdS5.

1 Introduction

The major goal in theoretical physics is to formulate a consistent theory of quantum gravity. String
theory (or the poorly understood M-theory) is meant to be such a theory of quantum gravity but its
consistency requires the existence more than four spacetime dimensions. Kaluza and Klein (KK), almost a
century ago, showed that if these extra dimensions are curled up so that the typical radius of the compact
dimensions is sufficiently small (compared to the length scale probed in experiements) then 4d physics
would be unaffected. Therefore, string theory is perfectly consistent with the present experimental data
if we assume that the extra dimensions are sufficiently small. In standard KK theory the existence of
such compact extra dimensions would manifest itself in experiments with the appearance of new massive
particles, with an energy gap proportional to the inverse compactification radius squared.

In [1, 2] Randall and Sundrum proposed a remarkable alternative to KK compactification in which
the extra dimensions are non-compact. In the Randall-Sundrum infinite braneworld model (RSII) one
takes two copies of AdS5 and glues them together along a boundary, which corresponds to the brane. Our
4d world is given by this hypersurface (the brane) embedded in the higher-dimensional spacetime and all
Standard model particles (and their interactions) are confined to the brane except for gravity, which can
propagate in the extra dimensions. This construction can also be motivated from string theory, where
the existence of dynamical (d + 1)-dimensional objects, known as d-branes, with gauge fields living in
their worldvolume is common place.

Considering small fluctuations of the metric around the aforementioned background, Randall and
Sundrum showed that there is a zero mode of the graviton, which is localised on the brane, together
with a continuum of massive KK modes. Indeed, the fact that the extra dimension is non-compact is
responsible for the absence of a mass gap in the KK spectrum. Moreover, [2] argued (and later [3, 4]
explicitly verified) that for an observer sitting on the brane gravity at large distances from the sources
would look like standard 4d gravity, with the usual 1/r potential, plus corrections that go like ℓ2/r3,
where ℓ is the radius of the ambient AdS5 space. Therefore, at least at the linearised level it would seem
that the RSII model offers a viable and attractive alternative to KK compactification.

Of course, an obvious question that one can ask is what happens in the strong field regime. More
specifically, how does a black hole on the brane look like? This is an important question that has to be
addressed in the context of the RSII models if they have to be phenomenologically viable. This issue is
especially relevant because in the near future we expect to be able to test 4d general relativity (GR) in
the strong field regime, and more precisely its predictions for black hole physics, through the detection of
gravitational waves. One would hope that if gravity on the brane has to reduce to standard 4d GR then a
large (compared to ℓ) static black hole on the brane should look like 4d asymptotically flat Schwarzschild.

28Email address: p.figueras@damtp.cam.ac.uk
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For phenomenological reasons in this paper we will focus on the case of (3+1)-dimensional brane.
The first (unsuccessful) attempt to construct a black hole on a 4-brane was made in [5] but so far very
little progress has been made in terms of finding an explicit solution and most of the work has been
numerical.29 Furthermore, refs. [8, 9] used AdS/CFT to argue that the difficulties in finding large and
static (non-extremal) braneworld black holes were not a mere accident. According to this references,
black holes on a brane in an AdSd+1 braneworld that are obtained by solving the classical bulk equations
of motion correspond to quantum corrected black holes from the brane point of view. The reason is that
applying AdS/CFT to the RSII model one is led to conclude that classical gravity in the bulk is dual
to a strongly interacting conformal field theory (CFT) in the planar limit that lives on the brane and
which is coupled to dynamical gravity. Moreover, this CFT is cut off in the UV but the full conformal
invariance is recovered in the IR. Therefore, the induced geometry on the brane is sourced by the stress
tensor of the CFT, which includes all quantum effects in the planar limit. It is well-known that quantum
effects can survive when we take the ℏ → 0 and Nc → ∞ limit if they are coherent among the O(N2

c )
colour degrees of freedom in the CFT as the total effect would go like ∼ ℏN2

c . Indeed, recall that in the
large Nc limit the ’t Hooft coupling λ = gsNc = (ℓ/ℓs)

4 is kept fixed, where gs is the bulk string coupling
constant and ℓs is the string length. The 4d Planck length is given by ℓ4 = ℓ/Nc and since ℏ = ℓ24/G4,
where G4 is the 4d Newton’s constant, then the product

ℏN2
c =

(
ℓ

ℓ4

)2(
ℓ24
G4

)
=

ℓ2

G4
, (1.1)

remains finite when we take ℏ → 0 while keeping ℓ and G4 fixed in the RSII model. This led the authors
of [8, 9] to make the remarkable conjecture that a large, static and non-extremal black hole on the brane
could not exist as it would Hawking radiate and therefore it could not be static.30 At this point we should
mention that [10] provided a counter-argument for the non-existence of a large braneworld black hole.
Their reasoning is a follows. Altough the theory on the brane is conformal in the infrared (there is no
mass gap), the presence of a black hole should effectively introduce a mass gap in the spectrum because
of the presence of a new length scale in the theory, namely the size of the black hole. Ref. [10] argued
that in the large Nc and strong coupling limit, the energy of most of the O(N2

c ) states in the theory is
lifted to stringy scales and only O(1) states remain accessible to be radiated by a finite energy object
such as a localised black hole. Therefore, Hawking radiation should be an O(1) effect and therefore not
visible in the classical bulk gravity limit.

Most of the previous attempts in constructing localised braneworld black holes have been numerical.
Using the methods of [11, 12], localised black holes on a 4-brane with radius up to ∼ 0.2ℓ and on a
5-brane with radius up to ∼ 2.0ℓ where constructed in [13, 14] and [15] respectively. Therefore, none
of these results could be used to test the aforementioned conjecture. More recently, using the same
numerical methods as the previous references, [16] (see also [17]) revisited the problem and could not find
a solution at all, no matter the size of the black hole. It was then argued that even arbitrarily small static
braneworld black holes could not exist. Finally, we should point out that [18] (see also [19]) constructed
the near-horizon geometry of extremal (i.e., zero temperature) localised black holes on a 4-brane and
they could find black holes of arbitrary radius, either very small or very large compared to the radius
of AdS5. However, in this case the non-existence conjecture can be bypassed because the black holes in
question have zero temperature and therefore they are not expected to Hawking radiate and thus they
should be static.

So far we have summarised the state of the art concering the existence (or non-existence) of localised
braneworld black holes previous to our work [20, 21]. In these articles we used the new (and better)
formulation of the numerical problem of [22] (see [23] for a review) to construct five-dimensional localised
braneworld black holes in the RSII model with radii ranging from ∼ 5× 10−3ℓ up to ∼ 100ℓ, and thereby
solving the long-standing existence problem of these objects. The rest of this article is devoted to review
these papers. In §2 we will briefly review the numerical method of [22] which has proven to be crucial in
our work. Then, in §3 we will consider its application to the numerical construction of localised black holes
in the RSII braneworld model. Somewhat as an aside, we will first discuss in §3.1 the construction of a

29 However, refs. [6, 7] found an analytic solution for the case of a (2+1)-dimensional brane.
30Only when the black hole on the brane is large compared to the radius ℓ of AdS5 one can sensibly describe it as a

CFT-corrected black hole.
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solution in AdS5 whose boundary metric is 4d Schwarzschild. We then argue in §3.2 that large braneworld
black holes can be viewed as perturbations of the previous AdS/CFT solution. In this subsection we also
consider the numerical construction of braneworld black holes of arbitrary radius. In §4 we present our
conclusions.

2 The Harmonic Einstein equation

In this section we will provide a short review of the new formulation of the Einstein equations introduced
in [22] (see [23] for a thorough review) for finding static (or stationary) spacetimes and which is especially
well-suited for numerics. This formulation played a key role in our numerical construction of braneworld
black holes.

Suppose that we want to solve the Einstein equations,

Rab = 0 , (2.1)

on a d-dimensional spacetime (M, g). For simplicity we will start considering the vacuum case but, as we
shall see, we can (and we will) incorporate a cosmological constant Λ. Including matter fields should not
be difficult as long as they obey elliptic equations. In this article we will only consider static spacetimes
and therefore we can Wick-rotate the time direction and consider the associated Riemannian problem.
The generalisation of the formulation of the Einstein equations that we will outline below to the stationary
case can be found in [24]. Furthermore, we will be interested in spacetimes containing a black hole and
hence, in the Euclidean setting, they possess a U(1) isometry generated by the Killing vector field ∂τ .
The period of τ is chosen so that there are no conical singularities and the horizon corresponds to the
fixed point set of ∂τ and there is no boundary there.

Since we are interested in finding static spacetimes we would expect to be able to solve the equations
as a boundary value problem. But in order to be able to do that we first need to cast the equations (2.1)
in a manifestly elliptic form. The character of a certain equation is determined by the so called principal
symbol. To see what this is, lets think of (2.1) as an operator acting on the metric and lets linearise it
around a fixed background:

δRab ≡ ∆Rhab = ∆Lhab +∇(avb) , (2.2)

where

∆Lhab = −1

2
∆hab −R c d

a b hcd (2.3)

is the Lichnerowicz operator and va = ∇bhba − 1
2 ∂ah. Then the principal symbol of the linear operator

∆R is obtained from the highest derivative terms in ∆R,

Pghab =
1

2
gcd (∂a∂chbd + ∂b∂chad − ∂c∂dhab − ∂a∂bhcd) , (2.4)

and substituting the derivatives by vectors ξa ∈ Rd to get

Pg(ξ)hab =
1

2

(
ξa ξ

chcb + ξb ξ
chca − ξ2hab − ξa ξbh

)
. (2.5)

Then, an operator is said to be elliptic if Pg(ξ)hab ̸= 0 for all ξ and for every point x in M. Physically
this means that locally it should not be possible to find short wavelength perturbations that propagate
as waves. But clearly (2.5) is not elliptic because for perturbations of the form hab = ξ(avb), which in real
space correspond to the usual short distance behaviour of pure gauge modes ∇(avb), we have Pg(ξ)hab = 0
for all ξ. In practice the lack of ellipticity of (2.1) implies that we cannot solve it as a boundary value
problem.

From the previous discussion, we have seen that the obstruction to ellipticity comes from the pure
gauge modes. Therefore, in order to turn (2.1) into a manifestly elliptic system of equations we have
to fix the gauge. The proposal of [22] basically consists on adding a gauge-fixing term to (2.1) while
preserving the general covariance. More specifically, instead of solving (2.1) we will solve the so called
Harmonic Einstein equation:

RHab = 0 , RHab ≡ Rab −∇(aξb) , ξa = gbc(Γabc − Γ̄abc) , (2.6)
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where Γ is the Levi-Civita connection associated to the spacetime metric g and Γ̄ is a reference connection
on M. For simplicity we will consider Γ̄ to be the Levi-Civita connection associated to a reference metric
ḡ on M, but one could be more general. The great advantage in considering the Harmonic Einstein
equations is that (2.6) is manifestly elliptic; the principal symbol of this operator is given by

PHg hab = −1

2
gcd∂c∂dhab , (2.7)

which is manifestly elliptic for any Riemannian background metric g. We should mention that the
Harmonic Einstein equation (2.6), with Γ̄ chosen as the Levi-Civita connection associated to a reference
metric ḡ on M, was used in the early 80’s by DeTurck to show that Ricci flow is parabolic. We will come
back to this point later.

The proposal of [22] is to solve (2.6) instead of (2.1), and since the former is manifestly elliptic, it
can be solved as a boundary value problem. Therefore, a basic question that we have to address is to
determine under which conditions or, more precisely, for which boundary conditions the solutions to (2.6)
are Einstein, and hence ξa = 0.31 Solutions to (2.6) with a non-vanishing vector ξa are known in the
literature as Ricci solitons. Their existence is controlled by the equation

∇2ξa +R b
a ξb = 0 , (2.8)

which follows from contracting (2.6) with ∇a and using the contracted Bianchi identity. In the context
of the dynamical (time-evolution) problem, ξa satisfies a wave equation. Then, in order for the solutions
to the Harmonic Einstein equation be Einstein it suffices to choose initial data for which ξ and its time
derivative vanish on the initial Cauchy surface. Then the above wave equation guarantees that ξ vanishes
throughout the time-evolution and the Harmonic Einstein equation gives rise to an Einstein metric in
harmonic coordinates. However, in the present context we are interested in the elliptic problem and the
situation is more delicate.32

Before we continue with the discussion on the existence of Ricci solitons, note that the cosmological
constant term in the Einstein equations has no derivatives of the metric and therefore it does not affect the
character of the equations, and the same is true for the Harmonic Einstein equation. Therefore, from now
on will consider the Harmonic Einstein equation augmented with a non-positive cosmological constant
term. The reason for the importance of the sign of the cosmological constant will become apparent in a
moment.

In favourable circumstances it is possible to prove the non-existence of Ricci solitons on certain
manifolds with suitable boundary conditions. Indeed, Bourguignon [27] proved that there are no Ricci
solitons on a compact manifold without boundary for any choice of vector ξa. For non-compact manifolds
and for different asymptotic boundary conditions of interest (flat, Kaluza-Klein and AdS), ref. [20] could
show the non-existence of Ricci solitons. Their argument is as follows. Contracting (2.8) with ξa and
using (2.6) one finds,

∇2ϕ+ ξa∂aϕ = −2Λϕ+ 2(∇aξb)(∇aξb) ≥ 0 , ϕ ≡ ξaξa . (2.9)

Note that in order for this inequality to hold it is crucial to work in the Riemannian setting and that
Λ ≤ 0. Ref. [20] showed that solutions to this equation are governed by a maximum principle, so that if ϕ
is non-constant then its maximum must be attained at the boundary of the manifold and the normal outer
gradient there must be positive. Then, imposing suitable regularity conditions and that the spacetime
metric is asymptotically flat, AdS or KK it is possible to show that in fact ϕ must be zero everywhere.
From this and the fact that the metric is Riemannian one then deduces that ξa = 0 (see [20] for the
details).

Although the maximum principle described above allows one to show that in some situations the
solutions to the Harmonic Einstein equation must in fact be Einstein, there are situations in which it
does not apply. For instance, that is the case for the braneworld black hole, where the Israel junction
conditions allow for the existence of a maximum of ϕ on the brane. However, even in these adverse cases,
since the Harmonic Einstein equations are elliptic the solutions should be locally unique as long as the
problem is well-posed. Therefore, if one finds a solution to (2.6) numerically it is always possible to check
whether ξa vanishes or not.

31Note that for ξa = 0, the spacetime coordinates satisfy a harmonic-type equation: ∆gxa = −gbcΓ̄abc.
32Ricci solitons are known to exist on manifolds with a positive cosmological constant [26].
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Methods for solving the Harmonic Einstein equations

In the following we will briefly describe the methods that can be used to solve (2.6) numerically. These
are to simulate Ricci flow and a Newton’s method. We will discuss each of them in turn.

Since (2.6) is elliptic, a general method for solving this equation is to consider the associated parabolic
equation,

∂

∂λ
gab = −2RHab , (2.10)

where λ is the (fictitious) flow time. This equation is known as the Ricci-DeTurck flow equation, and
it has been used in the context of Ricci flow. The basic idea is to start with some initial guess for the
metric, gab|λ=0 and let it evolve according to this equation until one reaches a fixed point. Clearly fixed
points of this equation are solutions to the original Harmonic Einstein equation (2.6).

As discussed in [22], a remarkable property of the Ricci-DeTurck flow (2.10) is that it is diffeomorphic
to the Ricci flow,

∂

∂λ
gab = −2Rab , (2.11)

which is independent of the vector field ξa. This implies that given some initial metric, while its evolution
under (2.10) in the space of metrics on M depends on the choice of reference metric ḡ, its path on the
space of geometries (i.e., metrics up to diffeomorphisms) in M is independent of ḡ. This allows one to
address, in an invariant manner, the existence or non-existence of fixed points, and therefore solutions to
(2.6). This will be important later when we provide numerical evidence for the existence of braneworld
black holes.

Another question that we have to address is that given some generic initial data, under which con-
ditions the Ricci-DeTurck flow (2.10) will converge to it? It turns out that an Einstein metric is an
attractive fixed point of the Ricci flow if and only if the Lichnerowicz operator ∆L around this particular
background is positive, i.e., it has no negative eigenvalues [22]. However, for many of the known black
holes spacetimes ∆L possess negative modes, which are the analogue of the negative mode of the Eu-
clidean Schwarzschild black hole discovered by Gross, Perry and Yaffe [28]. Therefore they are unstable
fixed points of Ricci flow and generic initial data will not converge to these Einstein metrics. It may seem
then that Ricci flow is not a very useful method in practice for finding new types of black holes if the
latter have negative modes. We will now explain that this is not quite the case if the black hole that we
are trying to find has one, and only one, negative mode. In this case, as explained in [22] (see also [23]),
the positive modes lie on a co-dimension one surface Σ in the space of geometries around the fixed point
that we are interested in. Then, if we start the flow on Σ (or very close to Σ), the flow will remain on
this hypersurface and it will tend to the desired fixed point asymptotically in flow time. Therefore, the
main difficulty consists on constructing suitable initial data that lies on Σ. In §3.2 we will see how this
can be implemented in practice for the case in which the black hole of interest has one negative mode. If
the number of negative modes is greater than one, then Ricci flow becomes more difficult to implement
(because finding initial data that lies sufficiently close to Σ is more difficult) and therefore less useful.

As we have seen, Ricci flow is a very elegant method for numerically constructing new types of black
holes but it becomes less useful if the latter have negative modes. There is another standard method to
solve (2.6) numerically which does not depend on whether the fixed point has positive or negative modes.
This method is known as Newton’s method. Its main disadvantage is that it is not geometric in nature,
it explicitly depends on the choice of reference metric and it is more difficult to implement. In practice
it works very well if the initial guess is sufficiently close to the fixed point.

The idea of Newton’s method is to start with some initial guess gab that does not solve (2.6), and
iteratively correct this guess gab → gab + ϵ hab, where the correction satisfies

∆Hhab = −RHab(g) , (2.12)

and ∆H is the linearisation of RHab around the initial guess. Here ϵ is a parameter that can be taken
between 0 and 1 depending on how close we are to the fixed point. Clearly the only requirement for
this algorithm to work is that ∆H has to be invertible, which implies that this operator cannot have
zero modes. In general this should not be a problem since the boundary conditions should take care
of eliminating any zero modes and rendering the fixed point locally unique. In the results that we will
present in the coming sections we used this method extensively.
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3 Braneworld black holes

In this section we will present our results for the numerical construction of braneworld black holes in
the RSII model. But before we do that, in §3.1 we will pause to describe a seemingly unrelated solution
in AdS5. More specifically, we will describe a black hole solution in AdS5 such that the boundary
metric is conformal to 4d asymptotically flat Schwarzschild. As we shall see, this solution will allow us
to understand the existence of large braneworld black holes in RSII. The actual construction of these
solutions will be described in §3.2.

3.1 AdS5-CFT4 solution

In this subsection we will numerically construct a static and axisymmetric spacetime in AdS5 such that
the boundary metric is conformal to the 4d asymptotically flat (AF) Schwarzschild black hole. Moreover,
we will require that the metric deep in the interior asymptotes to the Poincare horizon of AdS. This
solution can be trivially uplifted to 10d taking the product with an S5 and therefore, using the AdS/CFT
correspondence, it should be the gravitational dual of N = 4 super Yang-Mills (SYM) in the background
of Schwarzschild in a certain vacuum state. With this boundary conditions, we conjecture that the dual
field theory should not correspond to a thermal state, which typically corresponds to the Hartle-Hawking
state; we believe that this geometry is the classical dual of the CFT in the Unruh or the Boulware states.
This has important implications for the existence of braneworld black holes in the RSII model.

3.1.1 Metric ansatz and boundary conditions

We want to find a static Einstein metric which is asymptotically locally AdS such that the boundary metric
is in the same conformal class as the 4d asymptotically flat Schwarzschild black hole. Considering the
Wick-rotated Euclidean section, the spacetime manifold will be asymptotically locally hyperbolic (ALH)
with a conformal boundary metric given by 4d Schwarzschild, whose isometry group is U(1)× SO(3). It
has been shown that a regular static ALH Einstein metrics must inherit the isometries of the boundary
metric [29] and therefore we do not need to assume these isometries. Furthermore, we will require that
the metric approaches the Poincare horizon of AdS far from the conformal boundary.

Taking into account the previous considerations we are now ready to write down our ansatz for the
metric:

ds2 =
ℓ2

(1− x2)2

(
4 r2 f(r)2 eT dτ2 + x2g(x) eS dΩ2

(2) +
4

f(r)2
eT+r2f(r)Adr2 +

4

g(x)
eS+x

2B dx2

+
2 r x

f(r)
F dr dx

)
,

(3.1)

where f(r) = 1 − r2, g(x) = 2 − x2 and the range of the coordinates can be chosen to be r, x ∈ [0, 1]
without loss of generality. X = {T, S,A,B, F} are smooth functions which depend on r and x only and
they are the unknowns. Recall that in order to solve (2.6) we have to specify a reference metric on M;
here we will choose the reference metric to be as in (3.1) with X = 0.

In these coordinates, r = 0 corresponds to the horizon and smoothness of the manifold there requires
X to be smooth in r2. Therefore, all functions X will have a Neumann condition at r = 0. Notice
that we have constructed the metric ansatz (3.1) in such a way that gττ = κ2 grr at r = 0 without any
further condition on X, where κ is a constant so that the period of τ is 2π/κ. This ensures the absence
of conical singularities at r = 0. Having 4d Schwarzschild with unit horizon radius as the conformal
boundary metric fixes κ = 1. Similarly, x = 0 is the axis of spherical symmetry and all functions X
should be smooth in x2 and hence obey a Neumann condition. Again, the absence of conical singularities
at x = 0 is ensured by the form our ansatz (3.1). r = 1 corresponds to the Poincare horizon of AdS and,
as discussed in [20], we have to impose a Dirichlet boundary condition there so that X = 0. Finally,
x = 1 is the conformal boundary of AdS and in order to obtain a metric in the same conformal class as
4d AF Schwarzschild we have to impose X = 0 there.

Notice that the problem has two length scales, namely the radius of AdS5 ℓ and the radius of the
boundary black hole R0. Fixing ℓ = 1 there is one scale left, namely R0. But since R0 only appears as an

JGRG21 Programme



64 I27-02: Braneworld black holes

Figure 1: Evolution of the radius of the horizon S2, R(z), of the embedding along the flow. The dashed
line corresponds to the initial data and the solid black line is the fixed point. The snapshots are drawn
at intervals of ∆λ = 0.05.

overall factor in the boundary metric and since it is only the conformal class of the latter that is relevant,
we can always set R0 = 1 without loss of generality and we shall do that henceforth.

3.1.2 Ricci-DeTurck flow

In this subsubsection we will describe how we can numerically construct the desired solution using Ricci
Flow. Ref. [20] proved that for our metric (3.1) with the boundary conditions previously described, a
solution to the Einstein Harmonic equation (2.6) cannot be a Ricci soliton. We should emphasise though
that a priori we do not know whether an Einstein metric satisfying the desired boundary conditions
exists on M. Therefore, if such a solution does not exist then the Ricci-DeTurck flow will inevitably form
a singularity in finite flow time or expand indefinitely for any initial data. Moreover, there is a second
complication: we do not know a priori if the desired solution will be an attractive fixed point of Ricci
flow, i.e., it will not have negative modes. In the present situation we could expect that the fixed point,
if it exists, will not have negatives modes. The heuristic argument is that in AdS/CFT the boundary
geometry is non-dynamical and although in our case the boundary metric is 4d Schwarzschild, which is
known to have a negative mode [28], the fact that it is pinned on the boundary should project out any
potential negative modes. In practice we will see that this is indeed what happens. However, a priori it
is not possible to know whether the fixed point of interest will have negative modes or not; one has to
simulate the flow and see if it converges to a fixed point for generic initial data. Because we could prove
that no Ricci solitons can exist with our boundary conditions, if the flow converges to a fixed point then
it must be the Eintein solution we are seeking.

The details of the numerical implementation of the Ricci-DeTurck flow can be found in [20]. It suffices
to say that for results presented here we chose as initial data the reference metric and we found that it
converged to a fixed point without having to perform any fine-tuning. This fixed point is the solution
that we are seeking and, furthermore, since generic initial converges to it we immediately deduce that it
is an attractive fixed point and therefore it cannot have negative modes. A direct calculation confirms
this latter fact. To present our results, we may embed the horizon of the geometry along the flow into

hyperbolic space with the same radius ℓ in axisymmetric coordinates, ds2 = ℓ2

z2 (dz
2 + dR2 +R2 dΩ2

(2)) as

a surface of revolution R = R(z). We fix R(0) = 1 and in Fig. 1 we present the evolution of R along the
flow.

Now that we have found the Einstein metric that we were seeking, we can extract the boundary stress
tensor of the dual field theory using the standard prescription of holographic renormalisation [30]. The
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Figure 2: Expectation value of the stress tensor of the dual field theory. In black we depict the ⟨T τ
τ ⟩

component, in red the ⟨T R
R ⟩ component and in blue the ⟨T Ω

Ω ⟩ components. As this figure shows, at
R = R0 we have ⟨T τ

τ ⟩ = ⟨T R
R ⟩, which guarantees the regularity of the stress tensor on the horizon. At

large distances, R→ ∞, the various components of the stress tensor decay like 1/R5.

calculation is standard (see [20] for the details) and the result, in Schwarzschild coordinates, is

⟨T j
i ⟩ = N2

c

2π2

1

R4
diag

{
3R0

4R

(
1− R0

R

)
+ t4(R) ,

3R2
0

4R2
−
(
t4(R) + 2 s4(R)

)
,

− 3R0

8R
+ s4(R) , −

3R0

8R
+ s4(R)

} (3.2)

where the entries correspond to the ττ , RR and 2-sphere components respectively. The functions t4(R)
and s4(R) are related by the conservation of the stress energy tensor (which is implied by the bulk
equations of motion) and therefore they are not independent. In any case, they can be determined from
fitting the bulk (numerical) solution to the near boundary (x→ 1) expansion.

We note that the stress tensor is traceless, as it should be since the boundary metric is Ricci flat
and therefore there is no anomaly in the dual CFT. Also, on the horizon R = R0 we find that all the
components of ⟨T j

i ⟩ are finite and that ⟨T τ
τ ⟩ = ⟨T R

R ⟩, which guarantees that the stress tensor is regular
there. At large distances from boundary black hole, the various components of the stress tensor decay
like 1/R5. This behaviour matches precisely that linear results of [3].

At the beginning of the section we claimed that our boundary conditions in the IR should imply that
the vacuum state of the dual CFT should be either the Unruh or the Boulware vacuum. We will now
argue why this is the case. First, one should bear in mind that in the bulk we have performed a classical
gravity computation and therefore we only have access to the O(N2

c ) piece of the stress tensor, not the
full quantum stress tensor. And, as we shall see, at this order we cannot distinguish between the Unruh
and the Boulware vacua. On the other hand, if in the IR we had a horizon with some finite temperature
then these other boundary conditions would be the relevant ones the Hartle-Hawking state. Moreover,
the O(N2

c ) piece of the stress tensor would differ from ours, among other things because at R→ ∞ there
should be finite energy density. For our stress tensor, the energy density decays like 1/R5, indicating
that at far distances the theory is in the vacuum.

The O(N2
c ) piece of our stress tensor is very interesting since it is regular on both the future and the

past event horizons. This must be attributed to a strong coupling effect since for free field theories the
Unruh state is time dependent and singular in the past event horizon whereas for the Boulware state it
is static but singular both horizons. Moreover, we conjecture that our stress tensor should correspond to
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the Unruh state since this is the only physically relevant one captured by our solution. We expect that
the time dependence is an O(1) effect that could be detected including 1-loop graviton corrections in the
bulk. Since, as this AdS/CFT solution explicitly demonstrates, strong coupling effects significantly alter
the behaviour of field theories in black hole backgrounds, then this should also apply to the existence of
braneworld black holes in the RSII model. In particular, the non-existence conjecture of [8, 9] was based
on free field theory intuition and our results show that this is does not apply at strong coupling and large
Nc.

The physical picture for this strongly interacting CFT in the Schwarzschild background in our vacuum
state is the following. The self-interactions of the CFT are attractive since they are dual to gravity in
the bulk which is attractive. On the other hand, there should be Hawking radiation coming out of the
black hole, and the pressure created by this radiation perfectly balances the attractive self-interactions of
the CFT at every radius. Therefore, there is a static equilibrium at every radius between the radiation
and CFT plasma giving rise to an O(N2

c ) stress tensor. Also, note that since the boundary geometry
is non-dynamical the black hole should be regarded as being a source with infinite energy. Finally, at
asymptotic infinity there is no flux of energy since 1

N2
c
⟨T τ
τ = O(R−5) at large R.

We close this subsubsection discussing the stability of our solution. From the shape of the horizon (see
black curve in Fig. 1), it could be that there is an instability of the Gregory-Laflamme type. However, it
turns out that the proper length of the horizon in the direction orthogonal to the boundary is too small
for the unstable modes to fit. In addition, our solution has no negative modes and therefore we expect
that it will be stable. However, we have not performed a proper study of the perturbations and it is
important to include the possibility of instabilities that involve the internal space in the full 10d solution
or that are localised near the tip of the horizon in the bulk.

3.2 Black holes in the RSII model

In this subsection we will review the numerical construction of [21] of braneworld black holes in the RSII
model, together with some new results [31].

3.2.1 Large braneworld black holes from AdS/CFT

Consider first the near boundary expansion of the AdS5-CFT4 solution described in the previous subsub-
section in the standard Fefferman-Graham coordinates:

ds2 =
1

z2
(
dz2 + g̃µν(z, x) dx

µ dxν
)
, (3.3)

with

g̃µν(z, x) = g(0)µν (x) + z2
(
R(0)
µν (x)−

1

4
g(0)µν (x)R

(0)(x)

)
+ z4

(
g(4)µν (x) + tµν(x)

)
+ 2z4 log z h(4)µν (x) +O(z6) ,

(3.4)

and the expressions for g(4) and h(4) are given in [30]. Here g
(0)
µν is the boundary metric (4d Schwarzschild

in our case), R
(0)
µν is the Ricci tensor corresponding to this metric, and tµν is related to the vev of the

stress tensor of the boundary CFT by ⟨TCFTµν ⟩ = tµν/(4πG5). In our case the boundary stress tensor is
given by (3.2).

Now assume that there exists a smooth solution in AdS5 such that its boundary metric is given by a

perturbation of 4d Schwarzschild, g
(0)
µν = gSchwµν + ϵ2 hµν and deep in the IR it asymptotes to the Poincare

horizon of AdS5.
33 Ref. [21] argued that if such a perturbation exists then it is possible to slice the

resulting spacetime with a RSII brane located at z = ϵ. Moreover, the induced metric on the brane is
given by

γµν =
ℓ2

ϵ2
(
gSchwµν + ϵ2 hµν

)
. (3.5)

From this equation it is clear that the radius of the black hole on the brane is parametrically much larger
than the radius of AdS5. Furthermore, the induced geometry on the brane is given by 4d Schwarzschild

33For a well-posed boundary value problem one expects to be able to slightly deform the boundary data and find a nearby
solution.
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plus a small, O(ϵ2), perturbation. Therefore, we conclude that in RSII 4d gravity is recovered on the
brane for black holes whose size is much larger than the radius of AdS5.

In the absence of brane matter, [21] showed that the perturbation hµν satisfies the perturbed Einstein
equations with a source given precisely by the CFT stress tensor computed in §3.1 (see also [32]):

δGµν = 16πG4 ⟨TCFTµν ⟩ , (3.6)

where δGµν is the perturbation of the Einstein tensor around 4d Schwarzschild and the right-hand-side is
given by (3.2). Finally we mention that including matter on the brane then the CFT stress tensor does
not give rise to the main correction (see [21] for the details).

3.2.2 Large braneworld black holes in RSII

In the previous subsubsection we argued that given the existence of the AdS5-CFT4 solution described
in §3.1, then it should be possible to perturb it and construct a large black hole on the brane. In this
subsubsection we will describe how this can be done in practice.

Since we expect that large braneworld black holes should be well-approximated by the AdS5-CFT4

solution, we start by making an ansatz that is “close” to the AdS/CFT solution (3.1):

ds2 =
ℓ2

∆(r, x)2

(
4 r2 f(r)2 eT dτ2 + x2g(x) eS dΩ2

(2) +
4

f(r)2
eT+r2f(r)Adr2 +

4

g(x)
eS+x

2B dx2

+
2 r x

f(r)
F dr dx

)
,

∆(r, x) = (1− x2) + ϵ (1− r2) ,

(3.7)

and f(r) = 1 − r2, g(x) = 2 − x2 as before. Here ϵ is a parameter that effectively measures the radius
of AdS5 with respect to the radius of the black hole on the brane. Therefore, taking ϵ → 0 we recover
the AdS5-CFT4 solution described in §3.1. In our calculation we will vary this parameter to effectively
move along the branch of solutions and therefore it need not be small when the black hole on the brane
is small compared to the radius of AdS5. As in §3.1, the functions X = {T, S,A,B, F} are the unknowns
and they depend on the coordinates r and x only. The coordinate ranges can be taken to be the same as
in §3.1, and similarly for the boundary conditions. The main difference though is that now we will place
the brane at x = 1 by imposing the usual Israel junction conditions there. Notice that the form of the
function ∆(r, x) is such that it does not vanish at x = 1 and hence there is no UV conformal conformal
boundary there.

On the other hand, when the black hole on the brane is very small the expectation is that the full
spacetime should be “close” to that of 5d asymptotically flat Schwarzschild black hole (see for instance
[13, 16]). Then we can also construct an ansatz which is well suited for the small black hole limit by
building in it the 5d AF Schwarzschild geometry as follows:

ds2 =
ℓ2

∆(r, x)2

(
4 r2 g(r) f(r)2 eT dτ2 + x2g(x) eS dΩ2

(2) +
4

f(r)2g(r)
eT+r2f(r)Adr2 +

4

g(x)
eS+x

2B dx2

+
2 r x

f(r)
F dr dx

)
,

(3.8)
where the functions f(ξ), g(ξ) and ∆(r, x) have the same definitions as above and similarly for the
coordinate ranges and boundary conditions. The virtue of this ansatz (3.8) is that stripping off the
conformal factor ℓ2/∆(r, x)2 and setting X = 0 it reduces to 5d AF Schwarzschild with a unit horizon
radius, and therefore it should be well-suited for finding small RSII black holes.

We will solve numerically the Harmonic Einstein equations with a negative cosmological constant,

Rab +
4

ℓ2
−∇(aξb) = 0 , ξa = gbc(Γabc − Γ̄abc) , (3.9)

where Γ̄ is a reference connection associated to a reference metric ḡ. For the latter we will take (3.7) or
(3.8), depending on the situation, with X = 0 in either case. The boundary conditions for the metric are
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the usual regularity at the horizon (r = 0) and at the axis of symmetry (x = 0), and at r = 1 we will
require that the metric reduces to the extremal Poincare horizon of AdS5. We want to place the brane
at x = 1 and therefore will impose the Israel junction conditions with no matter on the brane,

Kij =
1

ℓ
γij (3.10)

where Kij is the extrinsic curvature of the x = 1 hypersurface and γij is the corresponding induced
metric. Notice that (3.10) only imposes conditions on the components of the metric tangent to the brane,
namely T , S and A. Therefore we still need to provide extra boundary conditions for the remaining metric
components. Since we want to find solutions to (3.9) which are Einstein, one would be tempted to require
ξr = ξx = 0 at x = 1 in order to fully specify the boundary value problem while ensuring the vanishing
of the DeTurck vector field. It turns out though that these boundary conditions are not compatible with
ellipticity, that is to say, there is not a locally unique solution that satisfies these boundary conditions.
As shown in [20], it turns out that the correct (i.e., compatible with a regular elliptic problem) boundary
conditions are F = 0 and ξx = 0 at x = 1. The condition on ξx can be understood from the fact that
ξx generates diffeomorphisms in the directions orthogonal to the brane and requiring the vanishing of
this component of the DeTurck vector fixes the location of the brane. However, with these boundary
conditions a complication arises, and it is that the maximum principle argument of [20] cannot be used to
rule out the existence of Ricci solitons on M. The reason is that (3.10) together with ξx = 0 and F = 0
at x = 1 imply that ∂nξr =

2
ℓ ξr on the brane, where ∂n denotes the outward pointing normal derivative.

Although this condition is compatible with ξr = 0, it does not imply it and, furthermore, is compatible
with the existence of a maximum of ϕ on the brane. Therefore, we will have to check a posteriori if the
solutions to (3.9) are Ricci solitons. At this stage it suffices to say that we did not find any evidence for
the latter.

3.2.3 Results: Ricci flow

As we have explained in §2 we can numerically solve (3.9) simulating the associated Ricci flow equation,
(2.10). This method works particularly well if the fixed point is attractive but, as we will now argue,
large braneworld black holes, if they exist, should be unstable fixed points of the flow. The reason is
that, contrary to the AdS/CFT situation in §3.1 where the boundary geometry is non-dynamical, now
gravity on the brane is dynamical. Moreover, we have argued in §3.2.1 that large braneworld black holes
should be well-approximated by 4d Schwarzschild, which is known to have a negative mode. Therefore,
by continuity one should expect them to have at least one negative mode.

The fact that the fixed point we are trying to find is unstable should not stop us from using this
method, especially if the fixed point is expected to have only one negative mode. More importantly,
one of the main advantages of the Ricci flow method is that it can provide convincing evidence for the
existence of a fixed point on a certain manifold in a coordinate invariant manner. This property of Ricci
flow is especially attractive in the context of finding static and non-extremal braneworld black holes in
RSII, since the existence of such solutions has been questioned [8, 9, 16].

Since we expect the solutions we seek will have one negative mode, we will have to introduce a
parameter in our ansatz, eq. (3.7) or (3.8). Then we will have to fine-tune this parameter so that the
initial data lies close enough to the hypersurface in the space of geometries on M which is orthogonal to
the negative mode. One way (certainly not the only one) of doing this is to replace in (3.7) or (3.8) the
ττ and rr components of the metric by [23]

gττ → k(r) gττ , grr → k(r) grr , k(r) = 1− α(1− r2)2 , (3.11)

where α is the parameter that we will fine-tune. Notice that with this parameter we can vary the surface
gravity while keeping the size of the time-circle at infinity and hence the temperature fixed.

With this one-parameter generalisation of our ansatz we simulated (2.10), using the reference metric
as our initial data. For the actual numerical implementation of the flow we evolved in time using simple
forward Euler method and at every time along the flow we imposed the boundary conditions described in
the previous subsection. This implies solving the Israel junction conditions (3.10), which are non-linear
equations, at every time step. This is important in order to correctly simulate the flow on M, which now
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Figure 3: Radius of the black hole on the brane, R4/ℓ, as a function of the Ricci flow time λ for
α = 0.490583 (black), 0.5 (red), 0.49 (blue), and fixed inverse temperature β = 4π ℓ. For the flow with
α ≈ α∗, the radius of the black hole on the brane remains constant for an arbitrarily long time, and thus
providing strong evidence for the existence of a fixed point and hence a braneworld black hole with this
horizon radius.

has a brane as a boundary. To solve this non-linear problem numerically we used Newton’s algorithm
described in §2, now applied to the boundary conditions. This method has the advantage that it homes
in the solution very quickly if one starts sufficiently close to it. Since as initial data we took the reference
metric (with the same value of the parameter α) which satisfies all boundary conditions, including (3.10).
Then, taking sufficiently small time-steps, we could efficiently use the previous solution as the initial
guess and the latter was always close to the actual solution corresponding to the next time step.

For fixed horizon temperature, as we varied α we observed two markedly different flows depending on
the value of this parameter: For α > α∗ the horizon expands indefinitely and for α < α∗ a singularity
forms in finite flow time. On the other hand, for α sufficiently close to the critical value α∗ the flow stays
close to the fixed point for an arbitrarily long flow time. The existence of these flows provides strong
evidence for the existence of a fixed point, and therefore a braneworld black hole. In Fig. 3 we present
our results for the Ricci flow of a braneworld black hole of R4/ℓ ≈ 1.2 and α∗ ≈ 0.490583. In this case it
is also worth noting that for the fine-tuned flow and in the region of the flow where R4/ℓ is approximately
constant, the DeTurck vector vanishes (within numerical accuracy) everywhere on the spacetime and in
particular on the brane. Therefore, we conclude that the metric we are finding is not a Ricci soliton.
Finally, we mention that as we vary the temperature of the black hole on the brane we have to fine-tune
the parameter α so as to find the new critical value. In any case, we observed the existence of a critical
flow for braneworld black holes of sizes 0.1 ≲ R4/ℓ ≲ 10, thereby finding strong numerical evidence for
the existence of such solutions.

We want to emphasise that this result is independent of the choice of reference metric and it provides
global information on the space of geometries on M. In particular it tells us about the existence of an
Einstein metric on M and therefore, a localised black hole on the brane.

3.2.4 Results: Newton’s method

In the previous subsubsection we used Ricci flow to provide strong evidence for the existence of braneworld
black holes of various sizes. However, the Ricci flow method is not very useful in practice to find the
solutions to high accuracy since this requires a considerable amount of fine-tuning. In addition, for every
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Figure 4: Area of the horizon as a function of its radius on the brane. The black (green) dots correspond to
the data obtained with the ansatz (3.7) and (3.8) respectively. In the overlapping region both ansatze give
same results for the various physical quantities. The red (blue) line corresponds the area of the horizon
as a function of its radius for a 5d and 4d asymptotically flat Schwarzschild black hole respectively. Note
that we have used log scale in both axes.

different temperature we have to do the fine-tuning again and therefore this method is not optimal for
exploring the branch of solutions. In fact, as pointed out in [22], it may be that for certain black hole
sizes our initial data (3.11) may fail to intersect the hypersurface in the space of geometries where the
fixed point lies, and therefore we would not be able to find solutions.

To efficiently explore the branch of solutions we will use Newton’s method. We find that for black
holes whose radius on the brane is large (R4/ℓ ≳ 10) using (3.7) and the reference metric as the initial
guess is sufficient for the algorithm to converge. Similarly, using the ansatz (3.8) and the reference metric
as the initial guess Newton’s method can find solutions for sufficiently small black holes (R4/ℓ ≲ 0.1).
We should point out that sometimes it may not be so easy to find a suitable initial guess which lies close
enough to the solution. In those cases, one can use Ricci flow and with a fair amount of fine-tuning it is
possible to construct a good enough initial guess so that Newton’s method can home in the solution very
quickly.

To numerically construct the solutions we have used a pseudspectral collocation approximation in both
the r and x directions up to 40×40 points. This gives highly accurate results and the data presented here
is based on this latter resolution. Once we had found one solution then we could easily find nearby ones
by varying slightly the temperature, perturbing accordingly the reference metric and use the old solution
as the new initial guess. Using this procedure and combining both ansatze, eqs. (3.7) and (3.8), we could
find braneworld black holes whose radius on the brane was within the range 5 × 10−3 ≲ R4/ℓ ≲ 100.
The results are displayed in Fig. 4 , where we plot the full five-dimensional area of the horizon against
the radius of the black hole on the brane obtained with the ansatz (3.7) (black dots) and (3.8) (green
dots) respectively. We clearly see that in the overlapping region both ansatze give the same results. On
that plot we also display the behaviour of the area as a function of its radius for a 5d (red) and 4d
(blue) asymptotically flat Schwarzschild black hole. As one can clearly see from this plot, the geometry
of braneworld black holes smoothly interpolates between a 5d behaviour when the black hole is small
(R4 ≪ ℓ) and a 4d behaviour when it is large (R4 ≫ ℓ).34 Therefore, we indeed find that standard 4d

34In the context of Kaluza-Klein black holes there is a similar interpolation between 5d and 4d black hole physics, but in
that case it is not smooth since there is a singular topology change transition.
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Figure 5: Difference |T0 − T | between the function T controlling the norm of ∂τ in the AdS5-CFT4

(denoted by T0) and in braneworld black holes (denoted by T ) of sizes R4/ℓ = 1, 5, 10, 30 from top to
bottom. As the black hole on the brane becomes larger the difference |T0 − T | converges uniformly to
zero.

GR is recovered on the brane when the black holes are sufficiently large.

In §3.2.2 we argued that large braneworld black holes should be “close” to the AdS5-CFT4 solution
discussed in 3.1. Now that we have constructed the solutions numerically we can make a more quantitative
comparison. In Fig 5 we consider the difference between the function T appearing in the ττ component
of metric in the AdS5-CFT4 solution and in braneworld black holes of sizes R4/ℓ = 1, 5, 10, 30. Since this
function is associated to the norm of the Killing field ∂τ it is a gauge invariant quantity. As we can see
from this plot, as the black hole on the brane becomes larger it is better and better approximated by the
AdS/CFT solution. This provides a nice confirmation of the correctness of the argument in §3.2.1.

Ref. [21] also considered the embeddings of the spatial cross sections of the horizon into H4 for
braneworld black holes of various sizes. In Fig. 2 of this reference one can see that the intrinsic geometry of
the horizon becomes closer to the AdS/CFT solution as the black hole on the brane becomes larger, which
is yet another confirmation that large braneworld black holes are well-approximated by the AdS/CFT
solution. One can check that the shape of the horizon is pancake-like in accordance with previous
expectations [4, 6, 7], so that the extent of the horizon in the directions tangent to the brane is much
larger than the extent into the bulk. This should imply that Gregroy-Laflamme-type of instabilities
[33, 34] that could cause ripples to develop along the directions transverse to the brane should not fit
into the horizon. Therefore we expect that large braneworld black holes to be dynamically stable under
this type of perturbations. We can provide evidence for this by computing the spectrum of the Harmonic
Einstein equation about our solutions restricted to stationary and axisymmetric modes. Note that in
Newton’s algorithm we already have to compute the linearisation of the Harmonic Einstein equation.
In addition, for transverse and traceless modes, the spectrum of the Harmonic Einstein equation about
an Einstein solution coincides with the spectrum of the Lichnerowicz operator. We display our results
in Fig. 6. As can be seen from this plot, there exists one and only one negative mode, which tends
to the negative mode of the asymptotically flat 5d Schwarzschild solution when the black hole on the
brane is small. Small braneworld black holes are close to the latter solution and therefore they should be
stable. The absence of zero modes and new negative modes as we move towards braneworld black holes
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Figure 6: Spectrum of the Lichnerowicz operator computed about our solution. We find that there is
one and only one negative mode, which provides evidence that braneworld black holes are dynamically
stable under Gregory-Laflamme instabilities. Note that the negative mode tends to the negative mode
of the asymptotically flat 5d Schwarzschild black hole when R4/ℓ becomes sufficiently small.

of larger radius suggests that these should also be dynamically stable. It would be interesting to carry
out a detailed analysis of the gravitational perturbations.

Finally present some results of the various numerical convergence tests that we have performed.
Recall that with the boundary conditions (3.10) we could not analytically prove the non-existence of
Ricci solitons. Therefore, a posteriori we have to check that indeed our solutions are Einstein. To check
this we can monitor the quantity ϕ = ξaξa as we increase the resolution of our code; if the solutions are
Einstein, then this quantity should tend to zero in the continuum limit. If that is the case, then we can
use it to measure the numerical error. In Fig. 7 we present the convergence tests for the ansatz (3.7) (the
other ansatz (3.8) gives similar results). As this plot clearly shows, ϕmaxR

2
4 → 0 in the continuum limit

and in accordance with our discretisation scheme. Note that the numerical error is larger for very large
or very small black holes, which is expected since we have to resolve widely separated scales, namely the
horizon radius on the brane and the radius of AdS.

4 Conclusions

In this article we have reviewed the recent results of [20, 21] where the numerical construction of localised
black holes on the brane of all sizes in the RSII model was done. A crucial aspect of these works was the
use of the new method of [22, 23] for casting the Einstein equations in a manifestly elliptic form. We have
reviewed this new approach in §2, together with two basic algorithms (Ricci flow and Newton’s method)
for numerically solving the resulting non-linear equations as a boundary value problem. The Ricci flow
method has the great advantage of being a geometric method that can provide invariant information
about the existence of solutions to the equations (2.6). This is of special importance in the context of
the braneworld black holes in RSII, whose existence was not clear before the previous works. Newton’s
method, although more difficult to implement and being non-geometrical, converges very quickly and it
allows to find solutions to a high accuracy.

In §3, firstly we have seen how to construct a solution in AdS5 such that its boundary metric is
conformal to 4d Schwarzschild and in the IR tends to the Poincare horizon of AdS. This solution is
especially relevant for the braneworld black hole problem since large braneworld black holes can be very
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Figure 7: Maximum value of ϕ over the whole domain, including the brane, for braneworld black holes
of radius R4/ℓ = 13.35, 5.04, 1.13, 0.07 as a function of the number of grid points N . This quantity tends
to zero in the continuum limit, indicating that our solutions are indeed Einstein. A similar behaviour is
observed for black holes of other sizes.

well approximated by this AdS/CFT solution. In addition, the non-existence arguments of [8, 9] could be
applied to this solution as well, and its existence shows that they are not correct. In §3.2 we have reviewed
(and extended) the results of [21], where black holes on the brane with radius 5×10−3 ≲ R4/ℓ ≲ 100 were
constructed. This work settles down the issue of the existence of braneworld black holes. In addition, we
have provided evidence that these objects should be dynamically stable.
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Abstract
There are several solutions to the Einstein equation exhibiting naked-singularity for-
mation in gravitational collapse, which could possibly serve as counterexamples to
the cosmic censor hypothesis. It has not been examined seriously, however, whether
or not such naked singularities are indeed visible to asymptotic observers in astro-
physically realistic stellar collapse, such as the core collapse and the delayed collapse
in the final stage of stellar evolution. In this study, we set the spherically symmet-
ric mass distribution which is motivated by the astrophysical scenarios and evolve it
with vanishing pressure for simplicity. We show that even if a naked singularity could
appear at the centre, the naked singularity is hidden behind an event horizon and
cannot be observed by a distant observer. With this illustration, we argue the exis-
tence of an “astrophysical censor” that prohibits singularities formed in astrophysical
gravitational collapse from being observed by a distant observer.

1 Introduction

Singularity theorems have been one of the most important developments in the theory of classical general
relativity [1]. These theorems ensure that under very general and physically reasonable conditions sin-
gularities are bound to occur in nature. To ensure the validity of classical laws of physics, a hypothesis
that a physically realistic gravitational collapse within classical general relativity will never result in a
naked singularity, called cosmic censorship [2], was proposed. By a globally naked singularity we mean
the existence of future-directed non-spacelike curves from a singularity to a far-away observer, implying
the violation of weak censorship. If all the future-directed non-spacelike curves fall back into the singu-
larity we only have the violation of strong censorship, where the singularity is termed as a locally naked
singularity.

If the cosmic censorship is violated in any sense, it would be important whether the violation can
be tested experimentally or observationally. In this study we analyze the formation of singularity and
its causal structure based on the astrophysically realistic collapse scenarios in the final stage of stellar
evolution, such as the core collapse and the delayed collapse. One can say that naked singularities are
harmless in a sense if they do not disturb an asymptotic observer. For the asymptotic observer the
violation of strong censorship causes no harm. Therefore, as for the direct testability of the violation of
the cosmic censorship, it is important whether or not the weak cosmic censorship conjecture is preserved
or not. With this perspective we analyze here the well known Lemâıtre-Tolman-Bondi model [3] with the
initial conditions where naked singularities are known to appear as an outcome of the evolution.

We begin with reviewing the basic framework of the dust-collapse model. The next section deals with
the main results of this study. We work in the geometrized unit (c = G = 1), otherwise denoted.

2 Spherical dust (LTB) model as stellar collapse

The energy-momentum tensor of a pressureless fluid is written as Tµν = ρuµuν , with the energy density
ρ and the normalized velocity field uµ (uµuµ = −1). Solving the Einstein equations with the spheri-
cally symmetric ansatz, the Lemâıtre-Tolman-Bondi (LTB) solution is obtained in comoving synchronous

35Email address: umpei@rikkyo.ac.jp
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coordinates (uµ = δµt ) as

ds2 = −dt2 + R′2

1 + f(r)
dr2 +R2(t, r)dΩ2, Ṙ2 = f(r) +

F (r)

R
, ρ(t, r) =

F ′

8πR2R′ , (2.1)

where X ′ = ∂rX, Ẋ = ∂tX, and dΩ2 is the line element of a unit two-sphere. F (r) and f(r) are
integration constants, and fixed once the initial distributions of mass and velocity of the fluid are specified.
Integrating equation of Ṙ, we obtain R = R(t, r) in an implicit form

t− ts(r) = −R
3/2

√
F
G

(
−fR
F

)
, (2.2)

where ts(r) is a constant of integration and G(y) =
Arcsin

√
y

y3/2
−

√
1−y
y (0 < y ≤ 1). With the coordinate

degrees of freedom available, one can choose initial time at t = 0 and fix R(0, r) = r without any loss of
generality. Then, the expression for time when a fluid element defined by a particular r = const. value
plunges into the shell-focusing singularity, which is defined by R = 0, is given by

ts(r) =
r3/2√
F
G

(
−fr
F

)
. (2.3)

For spherically symmetric systems the condition for the existence of an apparent horizon (i.e., an inner
boundary of the region containing trapped surfaces), corresponds to the existence of two-spheres whose
outward normals are null, is given by R = F .

In LTB models, we have the following relation between the singularity and the apparent horizon
(AH) curve tAH(r) = ts(r) − FG(−f). This equation is crucial in understanding the causal structure of
singularity in LTB models. Since G is a positive and convex function, the positivity of mass F implies
tAH(r) < ts(r) for the non-central shells (r > 0). It is only at the centre that the regularity condition on
the initial data demands the mass function F should be zero and hence the singularity and the apparent
horizon appear simultaneously, i.e., tAH(0) = ts(0). Thus it is only the central singularity which can
be a naked shell-focusing singularity. In what follows we shall be interested in the central shell-focusing
singularity.

In this study, we assume the following simple form of the density profile at the initial time t = 0,

ρ(0, r) =

{
ρc

(
1−

( r
L

)n)
, 0 ≤ r ≤ rb

0, r > rb
, (2.4)

where ρc, L, and rb (≤ L) are positive constants, and n = 1, 2, or 3. Here, ρc is the central density;
r = rb gives the boundary of the star; L is a parameter controlling the gradient of the density as well as
n. Since F (r) is twice the Misner-Sharp quasi-local mass, the above ansatz of density distribution fixes
F (r) as

1

2
F (r) = 4π

∫ r

0

ρ(0, r)r2dr. (2.5)

The LTB spacetime is connected to an outer Schwarzschild spacetime whose mass M is given by M =
1
2F (rb). For our purpose, it is convenient to choose (M,ρc, rb, n) as a set of parameters specifying a
model. The remaining parameter L can be given in terms of these parameters

L = rb

(
12π

(n+ 3)(4π − 3M/ρcr3b )

)1/n

. (2.6)

In addition to F (r), the LTB solution has another arbitrary function f(r), which is related to the initial
velocity distribution of fluid elements Ṙ(0, r). We assume that all fluid elements are at rest Ṙ(0, r) = 0
at the initial time, which is called the momentarily static case. Such a case is realized by taking f = −F

r .
This condition is very different from the usual “marginally bound” models, where collapsing shells are at
rest at spatial infinity, corresponding to vanishing f . The momentarily static condition is astrophysically
motivated because the collapse to a black-hole formation will begin when a dynamical instability sets in.
Such an instability is due to: the electron-capture at a static massive stellar core; the photo-dissociation
reactions at a core of very massive stars in the prompt core-collapse scenario; the cooling and mass
fall-back at a newly born neutron star in the delayed collapse scenario [4].
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Figure 1: (a) The trapping of the Cauchy horizon (solid) by the apparent horizon (dashed) in the r-
R plane. The Cauchy horizon emanating from the central singularity R = r = 0 is trapped by the
apparent horizon at (rtrap, Rtrap) = (0.673, 0.00379), which is enough inside the stellar surface located
at r = rb = 10.5, and then plunges into the non-central singularity lying on R = 0 at r = 0.790. (b)
A conformal diagram of the LTB solution mimicking the initial mass distribution of the astrophysically
realistic collapse in the final stage of stellar evolution. The central (r = 0) singularity is locally naked but
not globally. Namely, the Cauchy horizon (CH, thick solid) is trapped by the apparent horizon (AH, thin
dashed) and plunges into the non-central (r > 0) singularity without reaching the surface of collapsing
star (r = rb). The line EH (thin solid) represents the event horizon.

3 Results: Astrophysical censorship

The nakedness of the central singularity is determined by examining the null rays locally around the
singularity for given initial conditions F and f [5]. In our models F and f are characterized by the
parameters (M,ρc, rb, n). It can be shown that for n = 1 and n = 2 the singularity is naked, while for
n = 3 the singularity can be either naked or censored, depending on other factors. We stress here that
the n = 2 profile is most physically plausible, since it models the mass distribution of stars in hydrostatic
equilibrium. This is because in the presence of pressure p = p(ρ), the pressure gradient can be balanced at
the centre with the gravitational force, which is proportional to r, only for n = 2. For n = 1, the pressure
gradient force dominates the gravitational force, while the situation is reversed for n = 3. Therefore, we
show the results only in the n = 2 case.

Since we have a wide three-dimensional parameter space of (M,ρc, rb) even if n is fixed, it is practical
to take several sets of numerical values of (M,ρc, rb), each of which is realized by a typical equation of
state of neutron star. In this article, we adopt ρc = 2.00 × 1015 [g/cm3], M = 2M⊙, rB = 10.5 [km],
n = 2 (e.g., see [6]). For a given set of (M,ρc, rb, n), parameter L is determined through equation (2.6).
Given the background spacetime parameters, what to do is to obtain the Cauchy horizon by integrating
numerically the radial null geodesic equation from the central singularity.

The Cauchy horizon numerically obtained is shown in figure 1(a). One can see that R increases with
r at first along the Cauchy horizon, but then encounters the apparent horizon at R = Rtrap = 3.79 [m]
and eventually plunges into the non-central singularity R = 0 at r > 0. In order to see that this trapping
point is enough inside the collapsing star, we define the proper radius of collapsing star at the time of
trapping by Rb := R(ttrap, rb), where ttrap is the time of trapping measured in the t-coordinate. In the
present case, Rb = 7.56 [km]. Thus, Rtrap/Rb ≃ 0.05% and we can say that the trapping happens enough
inside the star. In other words, the naked singularity cannot be globally naked, preserving the weak
cosmic censorship hypothesis. A conformal diagram is depicted in figure 1(b).
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4 Concluding remarks

We saw above that the naked singularities appearing in the collapse of massive stars cannot be globally
naked. Here, we illustrate that globally naked singularities can happen only for parameters that are
unrealistic from an astrophysical point of view. As in the above argument we take n = 2, the same
value of ρc as before, and set rb = L. Then, only parameter left to be fixed is the mass M . Integrating
null geodesic equation numerically up to the surface for various values of M , one can easily find that for
M ≥ 0.2466M⊙ the Cauchy horizon is trapped by the apparent horizon before reaching the surface of
star, whereas for M < 0.2466M⊙ the Cauchy horizon is not trapped within the stellar interior. Thus,
the globally naked singularities can appear only for collapse of the small-mass regime that is far below
the masses of the observed neutron stars (∼ 1.5M⊙) and the maximum mass (∼ 1.5M⊙) of the neutron
star for the extremely soft equation of state.

Finally, we would like to stress that we are not in the position to claim that there appear locally naked
singularities in the astrophysically realistic collapse. The appearance of naked singularities in our analysis
is entirely because we choose the dust as a matter model and the situation can be very different in other
choice. Instead, our conclusion is that even if a naked singularity could appear at the centre of realistic
stellar collapse, it will be hidden behind an event horizon and cannot be observed by a distant observer.
Since the exposition of the central naked singularity to a distant observer depends on the dynamics of
not central but surrounding region, our conclusion is not very sensitive to the choice of matter models.
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[3] G. Lemâıtre, Ann. Soc. Sci. Bruxelles I A 53, 51 (1933); R. C. Tolman, Proc. Nat. Acad. Sci. 20,
169-176 (1934); H. Bondi, Mon. Not. Roy. Astron. Soc. 107, 410-425 (1947).

[4] G. E. Brown, H. Bethe, Astrophys. J. 423, 659 (1994).

[5] P. S. Joshi and I. H. Dwivedi, Phys. Rev. D 47, 5357 (1993) [arXiv:gr-qc/9303037].

[6] S. L. Shapiro and S. A. Teukolsky, New York, USA, Wiley (1983) 645 p.

JGRG21 Programme



80 O27-02: Cosmic censorship in overcharging a charged black hole

Cosmic censorshipin overcharging a charged black hole with a
charged particle

Soichiro Isoyama 36(a)

(a)Yukawa institute for theoretical physics, Kyoto University, Sendai 606-8502, Japan.

Abstract
There is a claim that a static charged black hole (Reissner-Nordström black hole)
can be overcharged by absorbing a charged test particle. If it is true, it might give
a counter example to the weak cosmic censorship conjecture. However, so far the
proposed process has only been analyzed within a test particle approximation. We
here argue that all the back reaction effects can be properly taken into account when
we consider the trajectory of a particle on the border between the plunge and bounce
orbits. In such marginal cases we find that the Reissner-Nordström black hole can
never be overcharged via the absorption of a charged particle. Since all the plunge
orbits are expected to have a higher energy than the marginal orbit, we conclude that
there is no supporting evidence that indicates the violation of the cosmic censorship
in the proposed overcharging process.

1 Introduction

General relativity is the most successful classical theory of gravity and it has brought us deep a under-
standing of spacetime. Nevertheless, when we evolve the Einstein equations with a well-posed initial
condition, singularities, at which general relativity and all established theories lose their predictability,
are known to form. However, in most cases singularities are hidden by event horizons as in the case
of black holes and cannot be seen by a distant observer. This statement is known as the weak cosmic
censorship conjecture proposed by Penrose [1] and has still been an open question in general relativity.

According to the uniqueness theorem, all stationary asymptotically flat black holes in Einstein-
Maxwell system are described by Kerr-Newman solutions, which are specified uniquely by the mass
M , the charge Q and the angular momentum J satisfying

M2 ≥ Q2 + (J/M)2 . (1.1)

When the equality is saturated, the black holes are called extremal, and a naked singularity appears
when M2 < Q2 + (J/M)2. If it were really possible, we would say that the black hole is overcharged or
overspinned via matter absorption.

Recently, there arise some claims that Eq. (1.1) is indeed saturated if one consider the process of
particle absorption with the initial black hole being prepared slightly below the extremal limit. However,
as already mentioned in Refs. [3], these proposed processes were analysed within the test particle limit.
That is, the back reaction effects due to the presence of a particle must be taken into account in these
analyses before concluding that they were a genuine counterexample to the cosmic censorship conjecture.

To address the role of back reaction effects in the overcharging/overspining issue, we discuss whether
a Reissner-Nordström (RN) black hole can be overcharged or not by the capturing of a charged particle,
taking into account all possible back reaction effects, which is originally proposed in Ref. [3]. 37

2 Overcharging a Reissner-Nordström black hole without back
reaction effects

We consider a point particle with rest mass µ and charge q radially falling toward a nearly extremal
RN black hole with mass M and charge Q. By assumption, these parameters satisfy µ < q ≪ Q < M .

36Email address: isoyama@yukawa.kyoto-u.ac.jp
37In this article, we use the units in which G = c = 1, but we explicitly write κ2 = 8πG in Sec. 3.2, respecting the original

notations in Ref. [4]. The sign convention of the metric as (−,+,+,+).

JGRG21 Programme



S. Isoyama 81

Due to the spherical symmetry of a RN black hole, we can choose the coordinate system such that the
trajectory of a particle is along the axis without loss of generality. Then, the trajectory is represented by
zα(s) = (T (s), R(s), 0, 0) with the proper time s along the world line of the particle in the (t, r, θ, ϕ)
coordinate.

In the above setup, if the following two conditions are satisfied, we would say that a RN black hole is
possibly overcharged. The first condition is that the particle is in a plunge orbit. For plunge orbits there
is no turning point where the radial velocity becomes zero. Therefore the condition is(

dR

ds

)2

> 0, for R ≥ r+ , (absorption condition) (2.1)

where r+ := M +
√
M2 −Q2 is the value of the radial coordinate of the event horizon. The second

condition is on the total energy of the final state. After the absorption of the particle, the system will
approach another RN geometry with mass Mfinal = M + E and charge Qfinal = Q + q. The condition
that the final RN geometry exceeds the extremal bound is given by

M + E < Q+ q . (overcharging condition) (2.2)

In Ref. [3], it was demonstrated that radial orbits in a rather wide range of parameter space satisfy the
conditions (2.1) and (2.2) as long as the back reaction effects are neglected. In fact, both the absorption
and overcharging conditions are satisfied under the parametrization, for 1 < b < a , c <

√
a2 − b2 ,

M := 1 + 2ϵ2 , Q := 1 , E := aϵ− 2bϵ2 , q := aϵ , µ := cϵ , (2.3)

where 0 < ϵ≪ 1 and the coefficients a, b and c are assumed to be O(1) real numbers.

3 Back reaction effects on the overcharging process

As was already emphasized in Ref. [3], the analysis in the previous section is not sufficient because the back
reaction effects associated with particle presence in general also scales as O(ϵ2). We have to compute the
total amount of energy in the final state of the whole system to the accuracy of O(ϵ2), taking into account
the effects of back reaction. At the same time, we have to examine how the absorption condition (2.1) is
modified once the back reaction effects are taken into account.

Given that the self-force calculation is still in its preliminary stage, here, we propose to bypass these
difficult tasks by focusing on the marginal orbits that pass through an unstable equilibrium state. The
basic strategy that we use here is to relate the unstable equilibrium state to an exact solution known as
the double Reissner-Nordström (DRN) static solution [5, 6] that must include all the backreaction effects
on the total energy of the system in equilibrium. At the same time, we also evaluate the energy loss of
the system via radiation emitted to infinity through the infall of the particle from the equilibrium state
to the black hole horizon to the accuracy of O(ϵ2), which can be readily achieved using the standard
black hole perturbation method. 38

3.1 Total energy of a charged black hole and a charged particle in equilibrium

As a first step to examine the overcharging condition (2.2) for the marginal orbits, we here extract the
total energy of the system composed of a charged black hole and a charged particle in the equilibrium
state, Eeq, using the DRN solution of the Einstein-Maxwell equations [5, 6].

The DRN solution is characterized by five parameters: masses of the RN sources m1, m2, their
charges e1, e2, and the separation between them ℓ and by a constraint that assures the existence of the
equilibrium state without any conical singularities between the two charged objects. The metric, the
static electromagnetic potential and the relevant equation are all presented in the original paper [5].

38 To extend our argument to more general cases, we assume that the other plunge orbits result in final states that have
higher energies than the final state in the case of the marginal trajectory, whose energy is deduced under the conditions
that the mass and charge of the initial black hole and the charge of the plunging particle are fixed. Once we accept this
rather reasonable assumption, the avoidance of overcharging in the marginal cases is extended to general plunge orbits.
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From the asymptotic form the metric and the electromagnetic potential, we find that the total energy
of the DRN is m1 +m2 and the total charge is e1 + e2. Moreover, one can prove, under the assumptions
m2 > m1 > 0 and e2 > e1 > 0,

Eeq > q +Q, (3.1)

which means that the total energy never goes below the extremal bound in the equilibrium configuration.
39

3.2 Energy flux radiated from a charged particle

In the preceding section, with the help of the DRN solution, we showed that the total energy of the
equilibrium state of a charged particle in a RN black hole cannot be less or equal to its total charge.
Nevertheless, it is not sufficient yet to exclude the possibility that a RN black hole is overcharged by
absorbing a charged particle. The energy loss via the electromagnetic and gravitational radiation can
reduce the total energy as the particle falls from the equilibrium position to the event horizon of the
black hole. Then the total energy in the final state will be given by Eeq −E∞ with E∞ being the energy
radiated away to infinity.

To estimate E∞, we here adopt a linear black hole perturbation formalism developed by Kodama and
Ishibashi [4]. After decomposing the perturbations into the Fourier-Harmonic components, the energy
flux carried by electromagnetic and gravitational waves to infinity is expressed as

E∞ =

∫ +∞

0

dω
∑
l

8πl(l+ 1)ω2

9κ2ν(M + ν)

(
|X+|2

|W+|2
+

(l− 1)(l+ 2)

16

|X−|2

|W−|2

)
, (3.2)

whereW± := O(1) is a real number and l is the angular index of the scalar spherical harmonics Ylm(θ, ϕ).
The expressions for X± given in Eq. (3.2) schematically takes the form [7]

O(ϵ)×
∫ r0

r+

I(r)eiωT (r)dr, (3.3)

where I(r) is a certain regular function of r bouded above in the integrated region, whose typical scale
of variation is O(M−1), and r0 is the radial position of the equilibrium configuration.

Actually, radiated energy is O(ϵ4) or higher. It is obvious from Eq. (3.3) that |X±(ω)| is suppressed
by a factor of O(ϵ). In addition, the particle’s velocity (dR/ds) is always suppressed in the present setup
given by Eqs (2.3). Since the back ground radial equation of motion of the particle takes 40

(
dR

ds

)2

=
1

µ2

(
E − qQ

R

)2

− f(R) =: V (o)(R) . (3.4)

Since V (o)(r) is a quadratic function of 1/r bounded from below and both V (o) and dV (o)/dr vanishes
at r = r0, V

(o) takes its maximum value at r = r+, in the interval of our interest between r+ and r0.
Hence, we have

V (o)(r) ≤ V (o)(r+) =
1

µ2

(
E − qQ

M +
√
M2 −Q2

)2

=
4(a− c)2

c2
ϵ2 +O(ϵ3). (3.5)

This implies that the velocity of a particle dR/ds given in Eq. (3.4) is always at most O(ϵ).
When the particle moves very slowly, the amount of emitted radiation is also expected to be small.

This intuition can be made explicit in the expression for X± as follows. One can see that each expression

39We would like to comment on the correspondence between the DRN solution and the equilibrium configuration of a
test particle in a RN black hole. While these two picture are written in the very different manner, we found that they were
uniquely identified with the accuracy of O(ϵ2).

40The energy of the particle E is defined by E := −(∂t)a(µua + qAa) where (∂t) is the Killing field associated with the
time coordinate t, Aa is the vector electro-magnetic potential of the background RN black hole and ua := dza/ds is the
four velocity of the particle.
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in Eq. (3.3) is regular on the boundaries of the integral. Here we replace eiωT (r) with an equivalent
expression

f

iω

(
dR

ds

)(
f
dT

ds

)−1(
∂eiωT (r)

∂r

)
, (3.6)

and perform integration by parts. This additional suppression owing to the dR/ds factor guarantees that
the total energy emitted to infinity is at most O(ϵ4).

To summarize, the total energy emitted to infinity by a particle that falls from the unstable stationary
point to the horizon, E∞, is always suppressed, and it cannot be as large as O(ϵ2) for any parameter
choice.

4 Conclusion

In this work, we have examined the back reaction effects of O(ϵ2) when a charged particle whose mass
and charge are of O(ϵ) is absorbed by a nearly extremal RN black hole. To avoid the technical difficulties
related to the electromagnetic and gravitational self-force, we concentrated on the case of the marginal
orbit, which is the separatrix dividing the plunge and recoil orbits. We first showed that, with the aid of
an exact solution, the total energy of the system is always greater than the total charge for the equilibrium
configuration that the marginal orbit passes through. Then, we demonstrated that the radiative energy
loss as the particle is falling into the black hole from the equilibrium position is O(ϵ4) or higher.

Combining these results, we succeeded in proving that the total energy of the system composed of a
charged particle and a black hole is always greater than their total charge for the marginal orbit :

Eeq − E∞ > q +Q. (4.1)

In short, the back reaction effects prevent a nearly extremal RN black hole from being overcharged, and
hence we conclude the cosmic censorship conjecture is not violated.

As was mentioned in Sec. 3, our discussion relies on the assumption that the marginal orbit passes
through the unstable stationary configuration. Although it is difficult to imagine that this is not the case,
to obtain a definitive answer to the question whether these assumptions are correct or not, it is necessary
to solve the orbital evolution directly including the self-force effects. In the case of a charged particle
in the non-vanishing electro-magnetic background, even the fundamental formulation describing the self-
force effects has not yet been developed to the level applicable to the overcharging problem discussed in
this paper. We hope we will return to this point in near future and draw a definitive conclusion whether
or not the cosmic censorship conjecture is prevailed in this overcharging process.
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High-velocity collision of particles around a Kerr black hole
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Abstract
We derive a general formula for the center-of-mass (CM) energy for the near-horizon
collision of two general geodesic particles around a Kerr black hole. We find that if
the angular momentum of the particle satisfies the critical condition, the CM energy
can be arbitrarily high. We then apply the formula to the collision of a particle
orbiting an innermost stable circular orbit (ISCO) and another generic particle near
the horizon and find that the CM energy is arbitrarily high if we take the maximal
limit of the black hole spin. In view of the astrophysical significance of the ISCO,
this implies that particles can collide around a rapidly rotating black hole with a very
high CM energy without any artificial fine-tuning. We next apply the formula to the
collision of general inclined geodesic particles and show that, in the direct collision
scenario, the collision with an arbitrarily high CM energy can occur near the horizon
of maximally rotating black holes not only at the equator but also on a belt centered
at the equator between latitudes ±42.94◦. This is also true in the scenario through
the collision of a last stable orbit particle. This strongly suggests that if signals due
to high-energy collision are to be observed, such signals will be generated primarily
on this belt.

1 Introduction

Many black hole candidates have been observed in X-ray binaries and galactic centres. In the former
case, electromagnetic radiation emitted from accretion disks around black holes of mass ∼ 10M⊙ is
observed. In the latter case, the central objects are believed to be supermassive black holes of mass
∼ 106 − 109M⊙. However, no direct signature of black hole horizons has been observed yet. In the near
future, the observation with the resolution of the black hole horizon scale might catch the direct image
of the black hole horizon, which is called a black hole shadow, in terms of the millimeter electromagnetic
waves. Moreover, when gravitational radiation from black holes is observed, it will directly reveal the
spacetime geometry in the vicinity of black hole horizons.

Astrophysical black holes are generally rotating and uniquely described by a Kerr metric, in which
the line element is given by

ds2 = −
(
1− 2Mr

ρ2

)
dt2 − 4Mar sin2 θ

ρ2
dϕdt+

ρ2

∆
dr2 + ρ2dθ2

+

(
r2 + a2 +

2Mra2 sin2 θ

ρ2

)
sin2 θdϕ2, (1.1)

where ρ2 = r2+a2 cos2 θ and ∆ = r2−2Mr+a2. If 0 ≤ |a| ≤M , ∆ vanishes at r = r± =M±
√
M2 − a2.

The horizon radius is given by rH = r+. The angular velocity of the horizon is given by

ΩH =
a

r2H + a2
=

a

2M(M +
√
M2 − a2)

. (1.2)

We define the nondimensional Kerr parameter a∗ = a/M . We can assume a ≥ 0 without loss of generality.
Bañados et al. [1] proposed a scenario where rapidly rotating black holes may act as particle accel-

erators. More precisely, they considered the following scenario. Let us drop two particles of the same
rest mass at rest at infinity on the equatorial plane of a rotating black hole and assume that the two

41Email address: harada@rikkyo.ac.jp
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particles collide near the horizon. If the maximum spin limit a∗ → 1 is taken and the angular momentum
of either particle is fine-tuned, then the centre-of-mass (CM) energy, which is the invariant measure of
the collision energy, can be arbitrarily high.

In this article, we discuss the robustness and the condition for this phenomenon in more general
situations. This article is based on the collaboration with M. Kimura [2, 3].

2 The collision of general geodesic particles

The CM energy of particles 1 and 2 at the same spacetime point is defined by

E2
cm = −(p1 + p2)

a(p1 + p2)a = m2
1 +m2

2 − 2gabp
a
1p
b
2, (2.1)

where pai and mi are the four-momentum and the rest mass of particle i(= 1, 2), respectively. This is a
scalar quantity, therefore coordinate-independent and in principle observable. This is the energy of the
two colliding particles observed by a local observer which is at rest in the centre-of-mass frame of the two
particles.

The general geodesic equations are integrable with four conserved quantities [4]. The conserved
quantities are the rest mass m, the energy E, the angular momentum L and the Carter constant Q. The
geodesic orbits are given by the following set of first-order ordinary differential equations:

ρ2ṫ = −a(aE sin2 θ − L) + (r2 + a2)P/∆, (2.2)

ρ2ϕ̇ = −
(
aE − L/sin2 θ

)
+ aP/∆, (2.3)

ρ2ṙ = σr
√
R, (2.4)

ρ2θ̇ = σθ
√
Θ, (2.5)

where · = d/dλ, σr = ±1, σθ = ±1,

P = P (r) = (r2 + a2)E − aL, (2.6)

R = R(r) = P 2 −∆[m2r2 + (L− aE)2 +Q], (2.7)

Θ = Θ(θ) = Q− cos2 θ
[
a2(m2 − E2) + L2/sin2 θ

]
. (2.8)

The condition ṫ > 0 must be satisfied for physical particle orbits, which is called the ‘forward-in-time’
condition. In the near-horizon limit, this reduces to

L ≤ Ω−1
H E ≡ Lc. (2.9)

We consider the collision of two particles outside the event horizon. Then, we can show that the CM
energy is bounded except in the limit to the horizon. For the near-horizon collision, the CM energy is
given by

E2
cm = m2

1 +m2
2 +

1

r2H + a2 cos2 θ

[
(m2

1r
2
H +K1)

E2 − ΩHL2

E1 − ΩHL1
+ (m2

2r
2
H +K2)

E1 − ΩHL1

E2 − ΩHL2

−2(L1 − a sin2 θE1)(L2 − a sin2 θE2)

sin2 θ
− 2σ1θ

√
Θ1σ2θ

√
Θ2

]
, (2.10)

where Ki ≡ Qi+(Li− aEi)
2. Therefore, if the angular momentum of either of the particles is fine-tuned

so that Li → Ω−1
H Ei, the CM energy Ecm can be arbitrarily high. We call particles with L = Ω−1

H E
critical particles.

We can define the effective potential as follows:

1

2
ṙ2 +

r4

ρ4
V (r) = 0, (2.11)

where

V (r) = −R(r)
2r4

. (2.12)

It is useful to classify critical particles in terms of the behaviour of the effective potential at the horizon.
The classification is summarised in Table I.
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Table 1: The classification of critical particles in terms of V (rH), V ′(rH) and V ′′(rH).

Class V (r) at r = rH BH spin Scenario

I V = V ′ = 0, V ′′ < 0 |a| =M Direct collision
II V = V ′ = V ′′ = 0 |a| =M LSO (ISCO) collision
III V = V ′ = 0, V ′′ > 0 |a| =M Multiple scattering
IV V = 0, V ′ > 0 0 < |a| < M Multiple scattering

3 The collision of an ISCO particle

The Kerr black hole has an innermost stable circular orbit (ISCO) and its generalisation to non-equatorial
orbits, which is called a last stable orbit (LSO). The ISCO is important in astrophysical contexts. The
inner edge of the standard accretion disk is usually given by the ISCO. In the extreme-mass-ratio-inspirals
(EMRIs), the transition of the adiabatic inspiral phase to the plunge phase occurs at the ISCO. We can
see that the fine-tuning is naturally realised by an ISCO particle: as a∗ → 1, rISCO → rH and L→ Ω−1

H E.
We consider the collision of an ISCO particle with another generic particle. We consider two distinct

kinds of collision of an ISCO particle. The one is the near-horizon collision, where the ISCO particle
plunges to the vicinity of the horizon and collide with a counterpart particle there. The other is the
on-ISCO collision, where the ISCO particle collide with a counterpart at the ISCO radius. The schematic
figures for these two kinds of collision are shown in Fig. 1. For the near-horizon collision of an ISCO

Figure 1: Left panel: the near-horizon collision of an ISCO particle plunging from the ISCO. Right
panel: the collision of an ISCO particle at the radius of the ISCO

particle with a generic counterpart, we obtain

Ecm

2m0
≈ 1

21/231/4

√
2e2 − l2

4
√
1− a2∗

(3.1)

for a∗ ≈ 1. For the collision of an ISCO particle with a generic counterpart at the ISCO radius, we obtain

Ecm

2m0
≈ 1

21/631/4

√
2e2 − l2

6
√
1− a2∗

(3.2)

for a∗ ≈ 1.
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4 High-velocity collision apart from the equatorial plane

It is intriguing whether the high-velocity collision is restricted to that on the equatorial plane or not.
Here, we concentrate ourselves on the direct collision scenario and the ISCO collision scenario, for which
the high-velocity collision with the critical particles is of classes I and II, respectively, because the physical
relevance of the other cases is not clear. This implies that we can assume V = V ′ = 0 and V ′′ ≤ 0 at
r = rH . Consequently, the black hole must be maximally rotating and θ is restricted. The allowed region
is the belt centered at the equator between latitudes ±42.94◦.
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Figure 2: Left panel: the highest latitude as a function of the specific energy of the critical particle.
Right panel: The allowed region of the high-velocity collision.

5 Summary

We reach the following conclusion. The CM energy of two colliding geodesic particles near the horizon
can be arbitrarily high in the maximal rotation limit with the fine-tuning of the angular momentum. The
required fine-tuning of the angular momentum is naturally realised by a particle orbiting the ISCO or
LSO. The high-velocity collision can occur not only at the equator but also at the latitude between ±43◦

near the horizon in the maximal rotation limit of the black hole.
As future prospects, we would like to raise the investigation of the effects of gravitational radiation

reaction and self-force and the theoretical predictions to astrophysical observation.
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Bosenova collapse of axion cloud around a rotating black hole
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Abstract
Motivated by possible existence of stringy axions of ultralight mass, we study nu-
merically the behavior of axion field around a rotating black hole (BH). Due to the
superradiant instability, the axion field grows extracting the rotational energy of the
BH. The nonlinear self-interaction becomes important as the field value gets large, and
our result suggests that the nonlinear effect leads to an explosive phenomena, which
is analogous to the bosenova observed in experiments of Bose-Einstein condensate.

1 Introduction

Recently, it was pointed out that the string theory may be probed through cosmology or astrophysics
by observing the phenomena caused by “axions” [1]. In addition to the QCD axion, the stringy axions
or axionlike particles have been proposed and discussed: In string theory, many moduli arise when extra
dimensions are compactified, and some of them behave as axionlike scalar fields with ultralight mass. The
typical number of the axionlike fields is 10-100, and it leads to a generic landscape of stringy axions, the
so-called “axiverse”. An axion of mass 2× 10−20eV ≲ µ ≲ 3× 10−10eV is expected to cause interesting
phenomena around an astrophysical black hole (BH). The axion field would form a quasibound state and
grow by the superradiant instability [2], which is caused by the fact that the energy of the field can be
negative in the ergoregion (i.e., the superradiant mode). If the negative energy falls into the horizon,
the outside energy increases in time. The growth rate normalized by BH mass, MωI , depends on the
ratio of half of the gravitational radius to the Compton wavelength of axion Mµ (in the Planck units
c = G = ℏ = 1). The instability is effective for Mµ ∼ 1, and its typical time scale is τ ∼ 107M .

One of the important effect in the BH-axion system is the nonlinear self-interaction of axions. The
potential U(Φ) of the axion field is periodic as typically given by U(Φ) = f2aµ

2[1− cos(Φ/fa)], where the
equation of the axion is

□Φ− U ′(Φ) = 0. (1.1)

Although the Klein-Gordon equation [U(Φ) = (1/2)µ2Φ2] gives a good approximation for small Φ/fa,
as the field grows large, the nonlinear effects should become relevant. One of the expected nonlinear
phenomena is the “bosenova”, which is explosive phenomena observed after collapse of Bose-Einstein
condensates of Rb85 in experiments [3]. If the bosenova happens also in the BH-axion system, its details
and the observational consequence have to be studied. This is the purpose of our work. We develop a
3D code to simulate nonlinear axion field in a Kerr spacetime. Here, the axion field is treated as a test
field, and the background geometry is fixed to be the Kerr spacetime.

2 Numerical method and code

In developing a code, there were two difficulties. The first difficulty is that the numerical instability
happens in the Boyer-Lindquist coordinates because the time coordinate basis is spacelike in the ergore-
gion. We solved this problem by adopting zero-angular-momentum observer (ZAMO) coordinates. The
ZAMOs are observers such that they stay at fixed r and θ, but move in ϕ direction with angular velocity
Ω(r, θ) so that their angular momenta are zero. The ZAMO coordinates (t̃, ϕ̃, r̃, θ̃) are introduced via

t̃ = t, ϕ̃ = ϕ− Ω(r, θ)t, r̃ = r, θ̃ = θ. (2.1)

42Email address: hyoshino@post.kek.jp
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Figure 1: The peak value φpeak of the field (left panel) and its location r
(peak)
∗ with respect to the tortoise

coordinate (right panel) as functions of time in simulation (A).
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Figure 2: Fluxes FE and FJ of energy and angular momentum, respectively, toward the horizon in
simulation (A).

Since the coordinate basis of t̃ is timelike everywhere, stable simulations become feasible. The second
difficulty is that the ZAMO coordinates become gradually distorted, which causes growth of the numerical
error. We solved this problem by “pulling back” the ZAMO coordinates. When the ZAMO coordinates
become distorted, we introduce new ZAMO coordinates which are not distorted at that time, and continue
time evolution with the new coordinates. Iterating these processes, longterm evolution was realized.

Our code is a three-dimensional code of the ZAMO coordinates (r̃∗, θ̃, ϕ̃). The sixth-order finite
differencing is used in spatial directions, and time evolution is proceeded with the fourth-order Runge-
Kutta method. Typically, we used the grid size ∆r∗/M = 0.5 and ∆θ = ∆ϕ = π/30, and the Courant
number C := ∆t/∆r∗ = (3/2π)∆θ. In pulling back the coordinates, we applied the seventh-order

Lagrange interpolation. The coordinate range of r∗ is r
(in)
∗ ≤ r∗ ≤ r

(out)
∗ , where r

(in)
∗ and r

(out)
∗ are

typically adopted as −200M and 300–1000M , respectively. The pure ingoing boundary condition is

imposed at r
(in)
∗ , and the field value is fixed at r

(out)
∗ . In order to assess the code, we checked the

convergence with respect to grid size and the conservation of energy and angular momentum. We also
simulated numerically the quasibound state of the linear Klein-Gordon equation, and confirmed that the
numerical data agree well with the semianalytic solution. In particular, we could reproduce growth rate
of the superradiant instability with the deviation of 1.7% from the semianalytic results. Therefore, our
code has the ability to describe the energy extraction by superradiance fairly accurately.

3 Numerical results

We present the results of typical two simulations (A) and (B), for which the effect of nonlinearlity is weak
and strong, respectively. Both simulations are done under the parameter a/M = 0.99 and Mµ = 0.4,
and as the initial condition, we chose l = m = 1 mode of the quasibound state of Klein-Gordon field, but
with the different initial amplitude φpeak(0) = 0.6 (A) and 0.7 (B).

3.1 Simulation (A): Weakly nonlinear case

The left panel of Fig. 1 shows the peak value of the field φpeak := sup[φ], and the right panel shows the

position r
(peak)
∗ of the peak with respect to the tortoise coordinate r∗ as functions of t/M . Both φpeak

and r
(peak)
∗ oscillate with the period ≃ 700M , and φpeak increases when the peak location approaches

the horizon because the field gets compacted in a small region. Figure 2 shows the energy and angular
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Figure 3: Same as Fig. 1 but for simulation (B).
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Figure 4: Left panel: A snapshot of the field in the equatorial plane θ = π/2 at t = 500M [shown by
the density plot in the plane (r∗/M, ϕ)]. Right panel: Snapshots of the field φ as a function of r∗/M at
ϕ = 0 in the equatorial plane θ = π/2 for t/M = 0, 350, and 700.

momentum fluxes FE and FJ toward the horizon evaluated at r∗ = −100M . The nonlinear effect appears
after t/M ≃ 100. Although both FE and FJ oscillate, their mean values are always negative and their
absolute values become larger around t = 500M : The extraction of energy and angular momentum
becomes more efficient due to the nonlinear effect.

3.2 Simulation (B): Strongly nonlinear case

The left panel of Fig. 3 shows the peak value φpeak, and the right panel shows the position of the peak

r
(peak)
∗ as functions of t/M . In contrast to (A), r

(peak)
∗ approaches the horizon only once, and after that, it

fluctuates around r∗ = 10M : The bosenova is happening here. Left panel of Fig. 4 shows the density plot
of the axion field φ at t = 500M in the (r∗/M, ϕ) plane. During the bosenova, the peak periodically splits
into two parts, one remaining around r∗ ≃ 10M and the other falling into the BH. This periodic split
generates ingoing waves of angular frequency ωNL ≃ 0.72/M , which violates the superradiant condition
ω < mΩH = 0.434/M . Right panel of Fig. 4 shows the snapshots of the field on the ϕ = 0 line on the
equatorial plane θ = π/2 at time t/M = 0, 350, and 700. At t/M = 350, the peak of the field becomes
very high and around this time the bosenova begins to happen. At t/M = 700, the infalling waves of
relatively high frequency can be seen for r∗ ≲ 0.
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Figure 5: Same as Fig. 2 but for simulation (B).
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Figure 6: The energy density dE/dr∗ (left) and the angular momentum density dJ/dr∗ (right) with
respect to the tortoise coordinate r∗ at time t/M = 0, 750, and 1500 for simulation (B).

Figure 5 shows the energy and angular momentum fluxes FE and FJ toward the horizon. During
the bosenova, FE is positive up to t = 1000M . Here, the dominant contribution comes from the high-
frequency waves generated by the nonlinear effect. Therefore, the extraction of energy is prevented by the
bosenova. On the other hand, FJ continues to be negative, and the waves continue to extract the angular
momentum from the BH. The left and right panels of Fig 6 show the energy and angular momentum
densities with respect to r∗, dE/dr∗ and dJ/dr∗, at t/M = 0, 750, and 1500. At t/M = 750 and 1500,
most of the energy is contained in 0 ≲ r∗/M ≲ 30. In right inset of each panel that highlights the
distant region, a small bump can be seen around r∗/M = 400 for t/M = 750. This bump is moving to
outside approximately at the speed of light. Therefore, a small explosion happened in the bosenova. At
t/M = 1500, more amount of energy and angular momentum can be seen at the distant place.

4 Summary

As the result of our simulations, we found the following: (A) When the initial peak value is small, the
nonlinear effect causes periodic change of peak location and the peak value, and enhances the energy and
angular momentum extraction; (B) When the initial peak value is large, the nonlinear effect causes an
explosion, the bosenova. During the bosenova, high-frequency waves violating the superradiant condition
are generated, and thus, the energy flux toward the horizon becomes positive terminating the superradiant
instability. After JGRG21, we performed supplementary simulations in order to assess whether the
bosenova happens or not taking account of the possibility that the nonlinear effect saturates the growth
by superradiant instability. The result shows no evidence for saturation, and therefore, the bosenova is
likely to happen as a result of the superradiant instability. Studying observational consequence of the
bosenova, such as gravitational wave emission, is an interesting issue to be explored.
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Abstract

We show that cosmic-ray experiments impose a tight constraint on some particle dark
matter models if the primordial black holes exist as a part of the dark matter in the
Universe.

1 Introduction

The identity of dark matter (DM) is one of the challenging problems in contemporary cosmology. Since
we do not have satisfactory DM candidates in the standard model of particle physics and inflationary
cosmology, the existence of DM indicates that we need physics beyond the standard model of the Universe.

One approach is to introduce a new particle that is stable and neutral. A major class of such candidates
is weakly interacting massive particles (WIMPs), which has mass roughly between 10 GeV and TeV, and
weak-scale annihilation cross sections. In the standard scenario, the WIMPs are produced as thermal
relics, which are in thermal equilibrium with the hot plasma in the early Universe and decouple when
the annihilation rate falls below the expansion rate. Then, the present relic density is determined by its
annihilation cross section as,

ΩWIMPh
2 ≃ 0.1

(
⟨σv⟩

3× 10−26 cm3s−1

)−1

, (1.1)

where ⟨σv⟩ is thermal average of a product of the annihilation cross section and velocity. Hence, the
annihilation cross section ⟨σv⟩ ∼ 3 × 10−26 cm3s−1, which is the typical size of the weak-scale cross
section, can provide the present DM density.

In some particle DM models, however, DM-candidate particles are predicted to have larger cross
sections and then smaller abundance. In these models, DM should be mixture of WIMPs and another
component. A candidate of such a component is primordial black holes (PBHs), which are black holes
formed in the early Universe as a result of the gravitational collapse of the primordial density fluctuations.
Though the mass of PBHs can have a wide range of values depending on the spectral shape of the density
fluctuations, PBHs can be the dominant component of DM only if their masses are in the mass range
1020−26 g, where there are no constraints from gravitational lensing experiments and others [1].

If a part of DM consists of PBHs, WIMPs are accreted by PBHs and form minisize halos around
them. The minisize halo formed around a PBH is called ultracompact minihalo (UCMH) [2–4]. The
number density of WIMP in the UCMHs is so high that a small fraction of them can lead to significant
enhancement of the cosmic ray signal from WIMP annihilations [5–7]. Therefore, we expect that the
cosmic-ray experiments can provide stringent constraints on the number/annihilation rate of UCMHs
and then a model of WIMP. In this paper, we investigate the constraint on models of WIMP from
cosmic-ray experiments in the case that a fraction of DM in the Universe consists of PBHs and UCMHs
are formed around them.

43Email address: rsaito@yukawa.kyoto-u.ac.jp

JGRG21 Programme



R.Saito 93

2 Enhancement of annihilations by the primordial black holes

In this section, we briefly introduce the WIMP accretion process on the PBHs and estimate consequent
enhancement of the annihilation rate in the galactic halo in the present Universe.

First, we estimate the enhanced WIMP abundance assuming that a fraction of the DM consists of
PBHs at their formation time:

ρPBH,i = (1− fWIMP)ρc,i, ρWIMP,i = fWIMPρc,i, (0 ≤ fWIMP ≤ 1) (2.1)

where ρc,i is the DM density at the formation time. If the fraction of WIMPs is small, the accretion
mostly occurs in the radiation-dominated era. In the radiation-dominated era, a mass shell with radius r
feels force from the central PBH and the radiation in the inner region. Hence, the accretion is governed
by the following equation,

d2r

dt2
= −GMPBH

r2
+
L2

r3
− 8πG

3
ρradr, (2.2)

where L = ||r × v|| is angular momentum per mass for a WIMP and ρrad is the energy density of the
radiation. Since the forces from the PBH and radiation are the central force, the angular momentum is
conserved during the accretion. The angular momentum of WIMPs is originated from peculiar velocity
induced gravitationally and thermally. The former is irrelevant to the present analysis because the
fluctuations in the gravitational potential do not grow much in the radiation-dominated era. The WIMPs
have the thermal velocity dispersion

√
3Tkd/mWIMP at the kinetic decoupling and the velocity decreases

as ∝ (1 + z) after that. Hence, the thermal velocity is provided by the Maxwell distribution with a
dispersion,

σt ≃ 35 cm/s
( mWIMP

100 GeV

)− 1
2

(
Tkd

10 MeV

)− 1
2
(

1 + z

1 + zeq

)
, (2.3)

where Tkd is temperature of the Universe at the kinetic decoupling, which is determined by scattering
cross sections with light particles, and zeq is redshift at the matter-radiation equality.

The WIMP density profile in the UCMHs can be estimated by solving Eq.(2.2) with initial conditions,

r = ri,
dr

dt
= Hiri + vi cos θ, (2.4)

where Hi and vi are the Hubble parameter and the thermal velocity at the initial time and θ is angle
between the radial direction and the initial velocity. Since the angular momentum is conserved, L can
be written as L = rivi sin θ using the initial radius and velocity. After the WIMPs are decoupled from
the Hubble expansion, their motion can be well approximated by the Keplerian motion with a definite
energy and angular momentum. Hence, time-averaged energy density of WIMP is given by,

ρWIMP =
1

4πr2

∫
2dµ

Tvr
, (2.5)

where dµ represents energy for WIMPs with initial radius ri − ri + dri and velocity vi − vi + dvi,

dµ ≡ 4πr2i ρWIMP,idrif(vi)d
3vi, (2.6)

and T and vr are their period and radial velocity after the decoupling. Here, f(v) is the Maxwell
distribution with the dispersion (2.3). The energy density (2.5) becomes higher for smaller angular
momenta because the centrifugal force prevent the WIMPs from being bound by the PBHs. Since
the accretion is most efficient at the matter-radiation equality, the density is typically comparable to
fWIMPρeq ∼ 105fWIMP GeV/cm3 if the angular momentum is negligible and the accretion occurs effi-
ciently.

In an inner high-dense region, the high annihilation rate reduces the density and the profile becomes
shallower. This shallower profile develops from a radius Ra where the density becomes comparable to

ρa ≡ mWIMP

⟨σv⟩(t0 − ti)
= 8× 109 GeV/cm3

( mWIMP

100 GeV

)( ⟨σv⟩
3× 10−26 cm3/s

)−1

, (2.7)
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where t0 − ti is time elapsed from the formation of the UCMH, 4× 1017 s.

Provided the WIMP density, we can estimate the the annihilation rate per PBH as,

Γ =
1

m2
WIMP

∫
dr 2πr2ρWIMP(r)

2⟨σv⟩. (2.8)

The density profile (2.5) is determined by mass, cross sections, and PBH mass. Hence we can unam-
biguously calculate it if a particle DM model and PBH mass are provided. Since the WIMP density in
the UCMHs is typically O(104−5) larger than the local density ρ⊙ = 0.3 GeV/cm3, a tiny fraction of
PBHs can induce a large annihilation rate. Therefore, we expect that some models of WIMP are tightly
constrained by cosmic-ray experiments in the presence of PBHs.

3 Gamma-ray constraints

Here, we consider the constraints from gamma-ray experiments as the Fermi gamma-ray space telescope
[8]. The signals from the UCMHs are similar to that from the decaying DM with mass 2mWIMP. Hence
it is convenient to introduce a corresponding life time defined by

τ−1
c ≡ nPBH,⊙

ρ⊙/2mWIMP
Γ, (3.1)

where nPBH,⊙ is local number density of PBHs. By using the corresponding lifetime (3.1), we can read
the constraints on UCMHs from those on decaying DM. In Fig. 1, we have depicted the constraints on
the corresponding lifetime for wino dark matter using the constraints on decaying DM in Ref. [9]. For
PBH masses larger than 1024 g, where the angular momentum is negligible compared to the gravitational
force from the PBHs, the resultant corresponding lifetime has a similar value and the wino dark matter
is excluded for all parameter region. Though the constraint becomes weaker for smaller PBH masses,
where the angular momentum is relevant, we can see that the wino dark matter is excluded for large
parameter region in the PBH-DM window 1020−26 g.

Figure 1: Gamma-ray constraints for wino dark matter. Each dots represent the corresponding lifetime
for different PBH mass and wino mass. The parameter region below the red line is excluded by the Fermi
observations of the isotropic diffuse gamma-ray.
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4 Summary

In this paper, we have seen that some models of WIMP can be tightly constrained by cosmic-ray exper-
iments as the Fermi gamma-ray space telescope in the presence of a tiny amount of PBHs. The PBHs
produced at the early Universe can form a minisize halo called UCMH around them by accreting the
surrounding WIMPs. The WIMP density in the UCMHs is so large that a tiny amount of the PBHs
can induce a large annihilation rate and then the UCMHs become gamma-ray sources for the Fermi
gamma-ray space telescope. The signal from the UCMHs depends on a model of WIMP and PBH mass.
As an example, we have investigated the constraint from the Fermi gamma-ray space telescope for wino
dark matter and found that it is excluded for large parameter region in the PBH-DM window 1020−26 g.
Though we have considered wino dark matter here, similar tight constraints are expected to be obtained
for models which predict smaller DM abundance. If the existence of PBHs are shown, it is expected that
tight constraints are imposed on particle DM models by cosmic-ray experiments.
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Abstract
The stability properties of relativistic stars against gravitational collapse to black hole
is a classical problem in general relativity. A sufficient criterion for secular instability
was established by Friedman, Ipser and Sorkin (1988), who proved that a sequence
of uniformly rotating barotropic stars is secularly unstable on one side of a turning
point and then argued that a stronger result should hold: that the sequence should
be stable on the opposite side, with the turning point marking the onset of secular
instability. We show here that this expectation is not met. By computing in full
general relativity the F -mode frequency for a large number of rotating stars, we show
that the neutral-stability point, i.e., where the frequency becomes zero, differs from
the turning point for rotating stars. Using numerical simulations we validate that
the new criterion can be used to assess the dynamical stability of relativistic rotating
stars.

1 INTRODUCTION

The stability of a relativistic star against collapse to black hole is one of the most important predictions
of general relativity. While this problem is reasonably well understood for nonrotating stars, this is not
the case for rotating stars and is particularly obscure when the stars are rapidly rotating. A milestone
in this landscape is the criterion for secular stability proposed by Friedman, Ipser and Sorkin (1988),
who proved that a sequence of uniformly rotating barotropic stars is secularly unstable on one side of a
turning point. They then argued, based on an expectation that viscosity leads to uniform rotation, that
the turning point should identify the onset of secular instability. While for nonrotating star the turning
point coincides with the secular-instability point, for rotating stars it is only a sufficient condition for a
secular instability. Lacking other guides, the turning point is routinely used to find a dynamical instability
in simulations.

Our understanding of the dynamical instability of relativistic stars in uniform rotation can be im-
proved by determining the neutral-stability line, that is the set of stellar models whose frequency of the
fundamental mode of quasi-radial oscillation (F mode) is vanishingly small. While this problem is chal-
lenging from a perturbative point of view, especially when the rate of rotation becomes high, it can be
tackled through numerical calculations. We have therefore simulated in full general relativity 54 stellar
models and calculated accurately the corresponding F -mode frequency via a novel analysis of the power
spectral density (PSD) of the central rest-mass density. We find that it coincides with the turning point
for spherical stars, but not for rotating stars, with the difference increasing with the angular momentum.

Unless stated differently, we use units in which c = G =M⊙ = 1.

2 Numerical Setup and Initial Data

All of our calculations have been performed in full general relativity (GR) using the Whisky2D code
described in detail in Kellerman et al. [1]. This is a 2-dimensional (2D) code based on the 3-dimensional
(3D) Whisky code [2], and exploiting the condition of axisymmetry through the “cartoon” method [3]. In
essence, the evolution of the spacetime is obtained using the 2D version of Ccatie, a finite-differencing

44Email address: kentaro.takami@aei.mpg.de
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code providing the solution of a conformal traceless formulation of the Einstein equations [4], while the
equations of relativistic hydrodynamics are solved a flux-conservative formulation of the equations.

The initial equilibrium stellar models are built using the rns code [5] as isentropic, uniformly rotating
relativistic perfect-fluid polytropes with equation of state p = KρΓ , e = ρ+ p

Γ−1 , where p is the pressure,
ρ the rest-mass density, K the polytropic constant, Γ the polytropic exponent, and e the energy density.
We have here set K = 100 and Γ = 2. Furthermore, because we are not interested here in extracting
gravitational-wave information, we place the outer boundary at a few stellar radii and use a uniform grid
with spacing ∆x = ∆z = h ranging between h = 0.04M⊙ for the rapidly rotating models and up to
h = 0.1M⊙ for the slowly rotating ones.

As discussed by many authors, the truncation error in the initial data is sufficient to trigger pertur-
bations in the star, which will start to oscillate in a number of eigenmodes. However, because we need
to determine the eigenfrequency of the F mode, it is important that as much as possible of the initial
perturbation energy goes into exciting that mode. For this reason we introduce an initial perturbation
using the eigenfunction of the F mode for a nonrotating neutron star with the same central density, and
which can be computed from linear perturbation theory.

3 Methodology and Accuracy

As customary, we extract the F -mode frequency by performing a discrete Fourier transform of the evo-
lution of a representative hydrodynamical quantity, such as the central rest-mass density ρc, and by
inspecting the corresponding PSD. Defining as FN the frequency of the largest peak in the numerical
PSD, previous studies determined the value of the F -mode frequency, F , by fitting the PSD with a
known analytic function or by taking the derivative of the PSD. The frequency obtained in these ways
depends sensitively on the fitting function used, on the shape of the PSD around FN, and on the evolution
time τ . We here use a different approach. Because FN will tend to F as the evolution time τ → ∞, we
simply consider the evolution of FN for increasingly large values of τ . What we find in this way is that
FN(τ) is an oscillating function around F , whose amplitude is however bounded by two envelopes which
have a clear 1/τ dependence. Fitting for these envelopes and extrapolating for τ → ∞ we obtain a very
accurate and possibly optimal value for F . This approach turns out to give an excellent measure of the
F -mode eigenfrequency.

4 RESULTS

The space of parameters is spanned by central rest-mass density and the angular momentum of the
rotating models. To cover the largest possible region of parameters we have evolved 54 stellar models of
relativistic stars with ρc in the range [ρmin, ρmax] = [8 × 10−4, 3.18 × 10−3] and dimensionless rotation
parameter β between zero and the mass-shedding limit.

We show as filled blue circles in Fig. 1 all of the computed F -mode frequencies, where the squares of
the F -mode frequencies (F )2 are reported as function of ρc and β. Shown as a solid magenta line is the
analytic fitting of the frequency for nonrotating stars, while dashed blue lines show sequences of rotating
stars having the same rest-mass density. All models simulated have nonzero F -mode frequencies and
their number diminishes for (F )2 ≈ 0. This is because for these models the oscillation timescale tends
to become extremely large, thus becoming intractable in numerical simulations. In addition, models
near the neutral point could also be artificially induced to collapse simply by the accumulation of the
truncation error, thus preventing any reliable measure. As a result, our analysis has been constrained
to values of the frequencies F ≳ 2.2 × 10−3 ≃ 0.45 kHz. Fortunately, however, the quality of the data
and the smoothness in which they appear in Fig. 1, allow us to compute an analytic fit of the function
(F )2 = (F )2(ρc, β) and thus determine analytically the neutral-stability line where (F )2 = 0.

It is convenient to use a fitting function (Ffit)
2(ρc, β) that is linear in β and such that (F )2fit(ρmax, 0) = 0

by construction

(F )2fit(ρc, β) = (F )2fit(ρc, 0) + β

5∑
n=0

bn(ρc)
n =

5∑
n=0

an(ρc)
n + β

5∑
n=0

bn(ρc)
n , (4.1)
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Figure 1: Square of the F -mode frequencies (blue
filled circles) as a function of ρc and β. The
dashed green area shows models above the mass-
shedding limit, and the red solid line marks the
neutral stability (cf. Fig. 2).

Figure 2: Stability lines in a (ρc,M) diagram.
The two solid black lines mark sequences with ei-
ther zero or mass-shedding angular momentum.
The solid red line is the neutral-stability line,
“thickened” by the error bar. The blue dashed
line is instead the turning-point criterion for sec-
ular stability. Marked with empty or filled circles
are representative models with constant angular
velocity O1, O2, O3, or constant initial central rest-
mass density R1, R2, R3.

where an, bn are constant coefficients, which a least-square fitting with the data reveals to be

a5 = 6.978× 108 , a4 = −7.757× 106 , a3 = 3.621× 104 ,

a2 = −9.599× 10 , a1 = 1.172× 10−1 , a0 = 2.110× 10−7 ,

b5 = −5.599× 1010 , b4 = 4.862× 108 , b3 = −1.612× 106 ,

b2 = 2.545× 103 , b1 = −1.896 , b0 = 3.357× 10−4 .

Using expression (4.1), it is straightforward to compute the neutral-stability line in a (ρc, β) plane as
the one at which (F )2fit(ρc, β) = 0. Of course this line will be “thickened” by the uncertainty associated
to the fit which, to be conservative, we consider to be σmax. While a neutral-stability line is already
very informative in a (ρc, β) plane, its greatest impact can be appreciated in the more traditional (ρc,M)
diagram. This is shown in Fig. 2, where the two solid black lines refer to sequences of nonrotating and
mass-shedding models, respectively. Drawn as solid red is the neutral-stability line “thickened” by the
error bar σmax. Finally, shown as a blue dashed line is the turning-point criterion for secular stability
along a sequence of constant angular momentum J , i.e., (∂M/∂ρc)J=const = 0.

Clearly, the new neutral-stability criterion does coincide with the turning-point criterion for nonrotat-
ing stars, but it differs from it as the angular momentum is increased, moving to smaller central rest-mass
densities. While unexpected, this difference does not point to a conflict between the two criteria. This is
because the turning-point criterion is only a sufficient condition for secular instability of rotating stars;
stated differently, while a rotating stellar model which is at or to the right of the turning-point line is
expected to be also secular unstable, the opposite is not true. Hence, the two criteria are compatible
as long as the secular instability line lies to the left of the neutral-stability line. Therefore, along a
J = const. sequence of stellar models we expect the following order with increasing rest-mass density:
secular instability, dynamical instability, turning-point.

To validate that the neutral-stability line should be used in place of the turning-point line to distinguish
stellar models that are dynamically unstable from those that are instead stable, we have considered 6
models whose properties fall in a small region near the two stability lines. More specifically, we consider
two different sequences having either constant angular velocity, i.e., models O1, O2, O3 in Fig. 2, or
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constant ρc, i.e., models R1, R2, R3. The predictions for these models are different according to which
criterion is used for stability. In fact, while models O1, R1 are expected to be stable for both criteria and
models O3, R3 are expected to be unstable for both criteria, models O2, R2 are predicted to be stable on
a dynamical timescale by the turning-point criterion but unstable by the neutral-stability criterion.

To test these predictions we have evolved these configurations maintaining the same computational
setup (but without an initial perturbation). As expected, models O1, R1 are found to be stable over a
few oscillations, while models O3, R3 are found to collapse to black holes within a oscillation. Similarly,
models O2, R2 are also found to collapse to black holes over a timescale which is only slightly larger
than that of models O3, R3. We conclude that the neutral-stability line can indeed be used to mark the
boundary of a dynamically unstable region.

5 Conclusions

The stability of rotating relativistic stars against gravitational collapse to black hole is an old problem in
general relativity, impacting all those astrophysical problems where a neutron star may be produced and
induced to collapse as a result of mass accretion. Despite the importance of this problem, no analytic
a criterion is known for a dynamical stability of rotating stars. Important progress was made about 20
years ago, when a criterion for secular stability was proposed by Friedman et al. [6], who suggested that
a turning point along a sequence of stellar models with constant angular momentum can be associated
with the onset of a secular instability. Although this criterion is only a sufficient condition for the
development of a secular instability, it has been systematically used to limit the region of dynamical
instability in simulations of relativistic stars.

To improve our understanding of the dynamical instability of relativistic stars in uniform rotation,
we have computed the neutral-stability point for a large class of stellar models, i.e., the set of stellar
models whose F -mode frequency is vanishingly small. These have allowed us to produce an analytic
fit of the data and deduce from this the neutral-stability line. The latter coincides with the turning-
point line of Friedman et al. [6] for nonrotating stars, but differs from it as the angular momentum is
increased, being located at smaller central rest-mass densities as the angular momentum is increased.
This difference does not contradict turning-point criterion since the latter is only a sufficient condition
for secular instability.

To test this result we have evolved stellar models whose properties fall in a small region near the
two stability lines, paying special attention to those stellar models that are predicted to be stable on a
dynamical timescale by the turning-point criterion but unstable by the neutral-stability line. Numerical
evidence that these model do collapse to black holes allows us to conclude that the neutral-stability line
can be used effectively to mark the boundary to dynamical instability.

The details of this work appear in [7].
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Abstract
We show that the shear modes in the neutron star crust are quite sensitive to the
existence of nonuniform nuclear structures, the so-called “pasta”. Due to the existence
of pasta phase, the frequencies of shear modes are reduced, where the dependence of
fundamental frequency is different from that of overtones. Since the torsional shear
frequencies depend strongly on the structure of pasta phase, through the observations
of stellar oscillations, one can probe the pasta structure in the crust, although that
is quite difficult via the other observations. Additionally, considering the effect of
pasta phase, we show the possibility to explain the all observed frequencies in the
SGR 1806-20 with using only crust torsional shear modes.

1 Introduction

The soft gamma repeaters (SGRs) are considered as one of the most promising candidate of magnetars,
which are neutron stars with strong magnetic fields. The sporadic X- and gamma-ray bursts are radiated
from SGRs, while SGRs rarely emit much stronger gamma-rays called “giant flares”. Up to now, at
least three giant flares have been detected, which are the SGR 0526-66, the SGR 1900+14, and the SGR
1806-20. Through the timing analysis of these decaying tail, the quasi-periodic oscillations (QPOs) have
discovered, which are in the range from tens Hz up to a few kHz [1]. Since the QPOs are believed as the
outcomes of the neutron star oscillations, the observations of QPOs in SGRs could be first evidences to
detect the neutron star oscillations directly.

It is considered that the neutron star crust exists from the bottom of the ocean of melted iron
inward to the boundary with the inner fluid core at a density of order the saturation density of nuclear
matter. Although nuclei in the crust form a bcc lattice due to Coulomb interactions, according to the
recent studies, the nuclear structure in the bottom of crust could be nonuniform, i.e., with increasing
the density, the shape of nuclear matter region is changing from sphere (bcc lattice) into cylinder, slab,
cylindrical hole, and uniform matter (inner fluid core). This variation of nuclear structure is known as
the so-called “pasta structure”. The density that the cylinder structure appears, ρp, depends on the
nuclear symmetry energy expressed with the density symmetry coefficient L, which is suggested to be
order ρp ∼ 1013 g/cm3 via the calculations of the ground state of matter in the crust. However, it
might be quite difficult to verify the existence of pasta structure by using the observation of neutron star
properties such as mass and radius, because the width of pasta phase is around 10% of the crust, which
is less than a few hundred meters. In contrast, in this article, we will calculate the torsional oscillations
of neutron star with pasta phase and show that the frequencies of shear modes depend strongly on the
presence of pasta phase and on ρp. The more details of this study can be seen in [2].

2 Shear Modulus in Crust

Previously, there are many calculations about the oscillations of magnetars (e.g., [3–6]), where they
assume that nuclei form bcc lattice in the crust when the crust torsional oscillations are considered.
With this assumption, the shear modulus of the crust is suggested as

µ = 0.1194× ni(Ze)
2/a, (2.1)

45Email address: sotani@astro.auth.gr
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where ni is the ion number density, a = (3/4πni)
1/3 is the average ion spacing, and +Ze is the ion charge.

On the other hand, it is pointed out that the elastic properties in the pasta phase could be liquid crystals
rather than a crystalline solid [7]. That is, unlike the case of bcc lattice, the shear modulus should be
decreasing in the pasta phase as increasing the density. This picture is thought to be natural, because
the structure of nuclear matter changes gradually as mentioned the above and at last the shear modulus
becomes zero in the fluid core. In order to realize such a relation about the shear modulus, we adopt
Eq. (2.1) in the crust except for the pasta phase, while in the pasta phase it is assumed that the shear
modulus can be expressed as the cubic function with respect to the density, which satisfies that µ should
connect to Eq. (2.1) smoothly at ρ = ρp and become zero smoothly at the boundary with the core, i.e.,
µ = c1(ρ− ρc)

2(ρ− c2), where c1 and c2 are some constants determined by the boundary conditions (see
Fig. 1). Of course, this simple relation of µ in the pasta phase might be a kind of toy model, although
expressed the rough behavior, because that should depend on the microscopic structure including the
matter composition and/or the nuclear symmetry energy. Still, this relation is thought to be enough to
examine the dependence of shear oscillations on the existence of pasta phase as a first step. Anyway, as
a result of the fall-off of shear modulus, one can expect that the shear velocity will become smaller, and
that the frequencies of shear modes will also decrease.
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Figure 1: Adopted shear modulus µ as a function of relative radius r/R.

3 Torsional Shear Modes

The torsional shear modes can be described with using one perturbation variable, which is the angular
displacement of the stellar matter, Y(t, r). The non-zero component of perturbed matter quantities is
ϕ-component of the perturbed 4-velocity of fluid, δuϕ, which is expressed with Y as

δuϕ = e−Φ∂tY(t, r) sin−1 θ∂θPℓ(cos θ). (3.1)

Assuming that the perturbed variable has a harmonic time dependence, such that Y(t, r) = eiωtY(r), the
perturbation equation reduces to

Y ′′ +

[(
4

r
+Φ′ − Λ′

)
+
µ′

µ

]
Y ′ +

[
ϵ+ p

µ
ω2e−2Φ − (ℓ+ 2)(ℓ− 1)

r2

]
e2ΛY = 0, (3.2)

where ϵ and p correspond to the energy density and pressure, respectively, and the prime denotes the
derivative with respect to r. With appropriate boundary conditions, the problem to solve becomes the
eigenvalue problem. We impose a zero traction condition at the boundary between the inner core and
the crust, and the zero-torque condition at the stellar surface.

4 Numerical Results

We examine the frequencies of torsional shear modes, as varying the value of ρp in the range of ρp =
1013 − 1014 g/cm3, because that value is not certain but suggested to be order 1013 g/cm3 as mentioned
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before. The left panel of Fig. 2 shows the fundamental frequencies of torsional shear modes with ℓ = 2 as
a function of the stellar mass, where the broken line corresponds to the frequencies for the stellar model
without pasta phase and the solid lines are corresponding to those with pasta phase with different values
of ρp. Obviously, one can observe that the frequencies of shear modes depend strongly on the existence
of pasta phase. In fact, compared with the frequency for the stellar model without pasta phase, those
with pasta phase are reduced to 12.0%, 34.9%, and 49.3% for ρp = 1×1014, 4×1013, and 1×1013 g/cm3,
respectively. While, in the right panel of Fig. 2, the frequencies of 1st overtones of shear modes with
ℓ = 2 are plotted as a function of the stellar mass. Unlike the fundamental modes, the frequencies with
higher ρp are almost same as that without pasta phase. Still, one can see the dependence of the frequency
on the existence of pasta phase with lower ρp. In fact, the frequencies with pasta phase are different from
that without pasta phase in 0.4%, 46.0%, and 67.0% for ρp = 1 × 1014, 4 × 1013, and 1 × 1013 g/cm3,
respectively. This dependence might be difficult to explain in analogy with the Newtonian limit, but
one could be possible to obtain the additional information of the crust property via the observation of
frequencies of overtones.

Since the both frequencies of fundamental and overtone shear modes depend strongly on the presence
of pasta phase, whose effect has been neglected so far, one needs to consider this effect on the shear
oscillations. Additionally, owing to this strong dependence, it could be possible to probe the properties
of pasta phase via the observations of stellar oscillations and stellar mass, although the constraint on the
pasta phase is quite difficult via the other observations of neutron stars. In contrast to simple relation
of µ adopted in this article, we will make an examination with more realistic shear model in the pasta
phase in the future.
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Figure 2: Frequencies of fundamental torsional shear modes (left) and first overtones (rihgt) with ℓ = 2
as a function of neutron star mass.

At last, we will compare the calculated frequencies of shear modes with the observed QPO frequencies
in giant flare. Especially, in this article we focus on the QPO frequencies in the SGR 1806-20, i.e., 18,
26, 30, and 92.5 Hz in less than 100 Hz, because this phenomenon has the most observed frequencies
among the detected giant flares in the past [1]. The previous calculations are shown the difficulty to
explain the all observed frequencies with using only crust shear modes [3]. That is, the fundamental
ℓ = 2 mode, which is the possible lowest frequency, is considered to correspond to the observed frequency
of 18 Hz and the fundamental ℓ = 3 mode is corresponding to 26 or 30 Hz. But, the spacing of shear
frequencies with different ℓ is larger than the spacing between the observed frequencies of 26 and 30 Hz.
In practice, according to such a traditional identification, we can explain the observed frequencies with
the crust shear modes with pasta phase as shown in the left panel of Fig. 3, i.e., 18, 30, 92.5 Hz can
be identified as ℓ = 2, 3, and 10 fundamental modes within a few percent accuracy, where the expected
stellar mass is M = 1.5M⊙. However, we find the possibility to explain the all observed frequencies with
using only crust shear modes, if ρp would be small. As shown in the right panel of Fig. 3, the observed
frequencies of 18, 26, 30, and 92.5 Hz can be identified as ℓ = 3, 4, 5, and 16 fundamental shear modes
within a few percent accuracy again, where the expected stellar mass is M = 1.5M⊙. This is important
suggestion to explain the observed QPO frequencies in giant flares, which could become a directing post
in the asteroseismology with neutron stars.
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Figure 3: Comparison for the frequencies with the observed QPO frequencies in SGR 1806-20 with
ρp = 1014 g/cm−3 (left) and with ρp = 2× 1013 g/cm−3 (right).

5 Conclusion

We consider the effect of nonuniform nuclear structure, the so-called “pasta”, in the neutron star crust on
the torsional shear modes. Based on the suggestion that the elastic properties in the pasta phase could be
liquid crystals, the frequencies of shear modes are calculated with simple relation of shear modulus. As a
result, due to the existence of pasta phase, one can observe the smaller frequencies than those expected
without pasta phase. This result indicates not only the importance to take into account the pasta phase,
but also the possibility to probe the pasta structure via the observations of the stellar oscillations, such
as the QPO frequencies in giant flares. Furthermore, we show the possibility to explain the observed
QPO frequencies with using only crust shear modes with pasta phase, which is quite difficult with the
traditional identification without pasta phase. In order to find the most suitable stellar model with the
observations, we need to adopt more realistic pasta structure and to examine systematically with different
EOSs, where the additional effects, such as superfluidity inside the star as well as the stellar magnetic
field, should be also taken into account. Still, we believe that the pasta structure in the neutron star
curst could play an important role in the stellar oscillations.
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Abstract
We propose a new method of investigating nonlinear dynamics focusing on the
physical phenomena of rotating stars in Newtonian gravity which appear in secu-
lar timescale. Since acoustic waves normally interact with the surrounding material
in dynamical timescale, we need a special technique to achieve secular timescale in
dynamical approach. We particularly focus on r-mode instability and construct a nu-
merical scheme of killing the effect of acoustic wave by imposing an anelastic condition
at every timestep. Although we only explain the rotating star in Newtonian gravity
here, this technique can be also applied to relativistic gravitation (conformally flat
approximation in general relativity). Boundary condition for solving pressure Poisson
equation and future extension from the anelastic conditions are also discussed.

1 Introduction

Various secular instabilities hidden in the rotating star may potentially grow, telling us full of internal
structure of the star. r-mode instability occurs when the backward modes in the rotating frame amplify
because of gravitational wave emission. g-mode instability occurs in the non-adiabatic evolution or
convectively unstable case. It comes from the oscillation of the fluid elements because of the restoring
force of buoyancy. Secular bar mode instability occurs when the magnitude of rotation exceeds some
threshold. Energy dissipation such as gravitational radiation or viscosity plays a crucial role to trigger
this instability. Kelvin-Helmholtz instability occurs when the deviation of the velocities between the
different fluid layers exceeds some critical value. All instabilities occur in secular timescale are related in
some way to the energy transition of the material in dissipative manner. Investigating these instabilities
potentially tell us the local structure of rotating stars.

In order to understand the behaviour of these instabilities in secular timescale, dynamical approach
is one way to explore the problem. However this is not at all an easy task, since the evolution period
of the dynamics is restricted by the characteristic timescales of the system. For the neutron star, the
shorter timescales are acoustic time and the rotation period of the star. These timescales are considered as
dynamical since the characteristic timescale is in the order of ∼ 1/

√
ρc, where ρc is the characteristic rest-

mass density (central rest-mass density) of the star. The longer timescales is viscosity time, gravitational
radiation reaction time and nonlinear growth time. These timescale are considered as secular, since the
characteristic timescale is around ∼ 106 times of dynamical time in the standard neutron star. In order
to focus on the phenomena of the secular timescale, we have to kill the effect of dynamical one and relax
the timestep restriction.

There are two representative attempts to investigate r-mode instability in dynamical approach. One is
to find the saturation amplitude of r-mode instability. Lindblom, Tohline and Vallisneri [1] find that the
saturation amplitude is in the order of unity, using the 3-D hydrodynamic simulation in Newtonian gravity
with radiation reaction potential. In order to achieve secular timescale with dynamics, the authors have
to impose large amplitude to the radiation reaction potential. While the computation from 1-D evolution
with partially including three wave interaction leads the saturation amplitude in the order of 10−3,
depends on the property of the interaction term [2]. The other is to focus on the final fate of the r-mode
instability. Gressman et al. [3] find that the energy dissipation of r-mode leads catastrophically decay
to differentially rotating configuration in dynamical timescale, using the 3-D simulation in Newtonian

46Email address: saijo@rikkyo.ac.jp
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gravity. In fact they impose an initial condition of r-mode amplitude as unity. However, the computation
from 1-D evolution with coupling network leads the conclusion that Kolmogorov-type cascade occurs in
secular timescale after reaching the saturation amplitude around ∼ 10−3 [4]. From these two attempts of
investigating the properties of r-mode instability in dynamical approach, it is useful to have an alternative
approach to cover the linear regime to nonlinear regime, and to cover dynamical timescale to secular
timescale.

Nowadays, we are in the stage to investigate the r-mode instability through gravitational wave de-
tection in the ground base detector through the global cooperation of the gravitation wave detection
network. At present the upper limit of the r-mode amplitude from the youngest known stars are around
the order of 10−4 [5]. Once we detect gravitational waves from the unstable modes of neutron stars, we
are able to investigate the interior structure of neutron stars in principle.

2 Anelastic approximation in linear regime

Here we assume that the rotating star is composed of perfect fluid in Newtonian gravity. The basic
equations are continuity equation, Euler equation, the energy equation and the gravitational field equation
as

∂ρ

∂t
+∇i(ρv

i) = 0,

∂

∂t
(ρvi) +∇j(ρv

jvi) = −∇ip− ρ∇iΦ,

∂ε

∂t
= − p

ρ2
∇j(ρv

j),

△Φ = 4πρ,

where ρ is the rest-mass density, vi the velocity, p the pressure, Φ the gravitational potential, and ε the
specific internal energy. In order to close the system, we have to impose the equation of state of the
matter p = p(ρ, ε).

Next, we linearised the basic equations in order to control the acoustic wave easily [6]. Although
we only introduce the case of Newtonian gravity here, we can extend the case automatically up to
conformally flat approximation in general relativity [7]. We perturb the rest mass density ρ, velocity vi,
and the specific enthalpy h(≡ ε+ p/ρ) from the equilibrium configuration as

ρ = ρeq + δρ,

vi = vieq + δvi,

h = heq + δh.

Then the linearised basic equations are

D

Dt
δρ = −∇j(ρeqδv

j), (2.1)

D

Dt
δvi = −vjeq∇jv

i
eq − δvj∇jv

i
eq −

1

ρ
∇ip−∇iΦ, (2.2)

D

Dt
δh = −δvj∇jheq − (Γ− 1)heq∇jδv

j , (2.3)

assuming Γ-law equation of state [p = (Γ−1)ρε]. Note that we use the Lagrangian time derivative D/Dt
as

D

Dt
≡ ∂

∂t
+ vjeq∇j .

assuming that the equilibrium configuration of the star is rotating uniformly. Here we kill the acoustic
wave of δh in the rotating frame, that is to say, imposing the condition that the source term of Eq. (2.3)
to be zero. This condition with no shock leads

∇j(ρeqδv
j) = 0.
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Therefore we do not need to evolve in time the fluctuation of the rest-mass density δρ. Together with the
divergence of the linearised Euler equation, we can formally have the elliptic type of equation for δh as

△δh = Sh(δh, δv
i, all force terms).

Imposing a boundary condition to the equilibrium enthalpy heq at the surface of the star, we can achieve
large timestep ∆t for explicit time evolution (around 100 times efficient comparing with the existence of
the acoustic waves in Ref. [6] using spectral method).

3 Anelastic approximation in nonlinear regime

Next we relax the condition of the linear perturbation in the previous section. We deviate the rest mass
density, velocity, and the specific enthalpy from the equilibrium as

ρ = ρeq +∆ρ,

vi = vieq +∆vi,

h = heq +∆h.

Note that the quantities ∆ρ, ∆vi, ∆h are not necessary small compared to those of equilibrium configu-
ration. Then the basic equations are

D

Dt
ρ+∇j(ρ∆v

j) = 0, (3.1)

D

Dt
(ρ∆vi) +∇j(ρ∆v

j∆vi) = −ρvjeq∇jv
i
eq − ρ∆vj∇jv

i
eq −∇ip− ρ∇iΦ, (3.2)

D

Dt
∆h = −∆vj∇jh− (Γ− 1)h∇j∆v

j . (3.3)

The robust way of solving these equations is to kill the acoustic wave by replacing the source term of
the specific enthalpy as zero, and evolve in time. However, propagation of ∆h in acoustic wave is not
completely killed because of the numerical fluctuation. In fact, the system is numerically unstable from
∇ip term from my demonstration.

Next, we try to control the acoustic wave at each timestep. The source term for time evolution of the
specific enthalpy equation [Eq. (3.3)] can be written as

∇j(ρ∆v
j) = 0, (3.4)

where we assume Γ-law equation of state with no shock. This anelastic condition makes the evolution
equation simple. First we only need to perform time evolution in Euler equation. Second, taking the
divergence of the Euler equation, we can derive the pressure Poisson equation as

△p = −∇i

[
ρ(∇iΦ+△vj∇jv

i
eq + vjeq∇jv

i
eq) +∇j(ρ∆v

j∆vi) +
D

Dt
(ρ∆vi)

]
.

Note that we do not impose anelastic condition here. We can impose two type of boundary condition for
solving the pressure Poisson equation. One is the Dirichlet boundary condition p = 0 at stellar surface,
and the other the Neumann boundary condition (∂p/∂n) = 0, where n is the orthogonal unit vector on
the stellar surface configuration.

Since the anelastic condition [Eq. (3.4)] should be satisfied at each timestep, we have to add a trick in
order to satisfy the constraint through evolution. Here we use the same technique which has been used in
MAC (mark in cell) method for computing Navie-Stokes equations in incompressible fluid [8]. Instead of
solving the pressure Poisson equation with anelastic condition, we impose time derivative part [∇i(ρ∆v

i)]
in the source term with future finite time differencing. We also put a constraint that the every next time
step of the quantity ∇i(ρ∆v

i) is set to be zero. Imposing this time derivative part, we can control the
constraints [∇i(ρ∆v

i) = 0], which is removed at every next timestep.
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4 Discussion

We propose a method of investigating secular instabilities of rotating stars with a dynamical approach.
This is a natural extension of the anelastic approximation in the linear regime to focus on the nonlinear
dynamics in secular timescale.

Since we control the fluctuation of the acoustic wave propagation by introducing the pressure Poisson
equation, constraint scheme seems to be stable through evolution. However the difficulty goes to the
pressure Poisson equation. The boundary condition should be imposed on the stellar surface configuration.
If the numerical error is crucial from the stellar surface, careful treatment of the boundary condition such
as surface fitting coordinate or sophisticated extrapolation method from the interior of the star up to
the surface should be necessary. The efficient technique for solving the pressure Poisson equation may be
also required. Also there is no guarantee that the source term of the pressure Poisson equation is positive
inside the star when imposing this anelastic condition, we have to be careful about the validity regime of
this approximation.

Anelastic approximation is a first step for relaxing the incompressibility of the fluid, and it enables
us to explore the phenomena of secular timescale through dynamics. The next step along this line is to
take low Mach number approximation, which allows us to treat the thermodynamical variation partially,
but still killing the propagation effect of the acoustic waves. Such case has been already discussed in
combustion fluid. It may be useful when we investigate complicated equation of state of rotating star in
secular timescale.
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Abstract

We investigate how gravity affects Q-balls.

1 Introduction

Q-balls, a kind of nontopological solitons, appear in a large family of field theories with global U(1)
(or more) symmetry. It has been argued that Q-balls with the Affleck-Dine (AD) potential could play
important roles in cosmology. For example, Q-balls can be produced efficiently and could be responsible
for baryon asymmetry and dark matter. Because Q-balls are typically supposed to be microscopic objects,
their self-gravity is usually ignored.

However, if we contemplate the results on boson stars, we notice the possibility that self-gravity
can be important even if it is very weak. For example, in the case of the potential Vmini = m2ϕ2/2,
equilibrium solutions, called (mini-)boson stars, exist due to self-gravity, though no equilibrium solution
exists without gravity. From this motivation, we have investigated the following three models. The first

one is V3(ϕ) :=
m2

2 ϕ
2 − µϕ3 + λϕ4 [1]. The second one is V4(ϕ) :=

m2

2 ϕ
2 − λϕ4 + ϕ6

M2 [2]. Interestingly,
gravitating Q-balls (boson stars) in these two models have a common property that stable Q-balls with
arbitrarily small charge exist no matter how weak self-gravity is, while Q-ball properties in flat spacetime
fairly depend on the potentials.

From the theoretical point of view, however, models with logarithmic terms are more natural. Specif-
ically, in the AD mechanism noted above, there are two types of potentials: gravity-mediation type and

gauge-mediation type. The former type is described by the potential, Vgrav.(ϕ) :=
m2

2 ϕ
2

[
1 +K ln

(
ϕ
M

)2]
.

In flat spacetime equilibrium solutions for K ≥ 0 are nonexistent while those for K < 0 are existent. If
we take self-gravity into account, stable Q-balls exist even for K = 0 since the potential coincides with
Vmini. In our previous paper [3], we have shown that gravitating “Q-balls” exist, which are surrounded
by Q-matter, even for K > 0. Here, we extend our analysis to the gauge-mediation type [4],

Vgauge(ϕ) := m4 ln

(
1 +

ϕ2

m2

)
with m > 0 . (1.1)

We shall show that gravitating Q-balls with (1.1) have a common property with Vmini, V3 and V4.

2 Analysis method of equilibrium Q-balls

We begin with S =
∫
d4x

√
−g
{ R

16πG − 1
2g
µν∂µϕ · ∂νϕ− V (ϕ)

}
, where ϕ = (ϕ1, ϕ2) is an SO(2)-

symmetric scalar field and ϕ :=
√
ϕ · ϕ =

√
ϕ21 + ϕ22. We assume a spherically symmetric and static

spacetime, ds2 = −α2(r)dt2 +A2(r)dr2 + r2(dθ2 + sin2 θdφ2). For the scalar field, we assume (ϕ1, ϕ2) =

ϕ(r)(cosωt, sinωt) and suppose Vgauge Model. We rescale the quantities as ϕ̃ ≡ ϕ
m , Ṽgauge ≡ Vgauge

m4 =

ln(1 + ϕ̃2), ω̃ ≡ ω
m , κ = Gm2, t̃ ≡ mt, r̃ ≡ mr.

We review their equilibrium solutions in flat spacetime (κ = 0). The scalar field equation reduces to

ϕ̃′′ = − 2
r̃ ϕ̃

′ − ω̃2ϕ̃ +
dṼgauge

dϕ̃
. This is equivalent to the field equation for a single static scalar field with

47Email address: tamaki@ge.ce.nihon-u.ac.jp
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Figure 1: For a thick-wall Q-ball for ω̃2 ≃ 1.999.
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Figure 2: −Vω for a thick-wall Q-ball ω̃2 ≃ 1.999.

the potential Vω := Ṽgauge − ω̃2ϕ̃2/2. If we introduce ϵ2 := 2 − ω̃2, the two limits ϵ2 → 2 and ϵ2 → 0
correspond to the thin-wall limit and the thick-wall limit, respectively.

If one regards the radius r as “time” and the scalar amplitude ϕ(r) as “the position of a particle”,
one can understand Q-ball solutions in words of Newtonian mechanics. To discuss gravitational effects
later, it is useful to estimate the central value ϕ0 := ϕ̃(0) in flat spacetime. Because Vω ≈ 0 at r = 0,
its order of magnitude is estimated as a solution of Vω = 0 (ϕ̃(0) ̸= 0). For Vgauge with the thick-wall

condition ϵ2 ≪ 1, we obtain ϕ20

(
1− ω̃2

2

)
− ϕ4

0

2 ≃ 0, where we have used Maclaurin expansion of ln(1+ ϕ̃2)

and neglected higher order terms O(ϕ50). Then, we obtain ϕ0 ≃ ϵ.

3 Gravitating Q-balls

The potential picture described above is effective in arguing equilibrium solutions also in curved spacetime.

In this case, Vω should be redefined by Vω := Ṽgauge − ω̃2

2α2 ϕ̃
2. “The potential of a particle”, −Vω, is now

“time”-dependent, which sometimes plays an important role, as we see below.

First, we show the result on a thick-wall Q-ball with ω̃2 ≃ 1.999 in Fig. 1. We put κ = 0.0005 for
a gravitating Q-ball. The metric functions α(r̃), A(r̃) and the field amplitude ϕ̃(r̃) are shown in (a)
and (b), respectively. Because α(r̃) and A(r̃) are close to one, one may think that gravity acts as small
perturbations. However, looking at ϕ̃(r̃), we find that gravity changes its shape drastically.
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Figure 3: For a Q-ball for ω̃2 ≃ 0.35.

We explain the reason for this result by using the potential −Vω, as shown in Fig. 2. For the flat case
κ = 0, −Vω is fixed as shown by a solid line. As a result, the scalar field with a relatively large value
(ϕ̃ ≃ 9.68×10−2) at the initial time r̃ = 0 rolls down and climb up the potential and finally reaches ϕ̃ = 0
at the time r̃ → ∞. On the other hand, for the gravitating case κ = 0.0005, −Vω changes from a dotted
line to a solid line as “time” r̃ goes. An important point is that the sign of −dVω

dϕ̃
changes near the origin.

Therefore, the scalar field should take a sufficient small value (ϕ̃ ≃ 4.96× 10−3) to satisfy ϕ̃(∞) = 0.
Second, we show the result on a relatively thin Q-ball with ω̃2 ≃ 0.35 in Fig. 3. The metric functions

α(r̃), A(r̃) and the field amplitude ϕ̃(r̃) are shown in (a) and (b), respectively. (a) tells us that, compared
with the case ω̃2 ≃ 1.999, the gravitational field is fairly stronger near the origin but approaches the flat
spacetime faster as r̃ → ∞. (b) indicates that the size of the Q-ball becomes smaller due to self-gravity.

We can also explain the reason for this result by using the potential −Vω. −Vω for a gravitating case
κ = 0.0005 changes from a dotted line to a solid line as “time” r̃ goes. An essential difference from the
former thick-wall case is that this change occurs “quickly”. Thus, weaker gravity does not necessarily
mean a smaller influence to Q-balls and it is interesting to investigate its influences for various ω̃2.
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Figure 4: Q-ϵ2 relation for κ = 0, 0.0005 and 0.004.

It is instructive to depict the Q-ϵ2 in Fig. 4. For the thick-wall solutions ϵ2 ≪ 1 with gravity, as we
explained using Fig. 2, Q-ball charge is very small because ϕ̃(0) ≪ 1, and there is no lower bound of Q,
contrary to the flat case. It should be argued carefully whether or not there remain thick-wall solutions
with Q→ 0 in the weak gravity limit κ ̸= 0.
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4 Thick-wall solutions for κ ̸= 0

We consider thick-wall solutions (ϵ2 ≪ 1) with weak gravity by expressing the metric functions as

α2 = 1 + h(r), A2 = 1 + f(r), (|h| ≪ 1, |f | ≪ 1), (4.1)

and we shall take up to first order in h and f hereafter. As we discussed for the flat spacetime in Sec. II,
we evaluate ϕ0 := ϕ̃(0) as a solution of Vω = 0 with (4.1), ϵ2 + ω̃2h(0)− ϕ20 ≃ 0, where we have neglected
higher order terms O(ϕ50). Let us consider the limit ϵ2 → 0. For the flat case κ = 0, ϕ0 ≃ ϵ since h(0)
can be taken to be zero identically. However, for any small κ ̸= 0, it is not evident whether or not h(0)
can be negligible and we should compare the order of h(0) with that of ϵ2. For this purpose, we should
also estimate it by using the Einstein equations. To do this, we assume a top-hat configuration,

ϕ̃(r̃) ∼ ϕ0 ≪ 1 for r̃ <
C

ϵ
, C = const. (4.2)

From the Einstein equations, we find

−Gtt +Gii :=

(
r̃2α′

A

)′

= 8πκr̃2Aα

(
ω̃2ϕ̃2

α2
− V

)
, (4.3)

where i denotes spatial components. If we take the weak field approximation (4.1) and the thick-wall
approximation ϵ2 ≪ 1, we obtain (r̃2h′)′ ≃ 16πκr̃2ϕ̃2. With the central boundary condition h′(0) = 0
and the approximation (4.2), we can integrate as h′ ≃ 16

3 πκϕ
2
0r̃, for r̃ < C

ϵ . With the outer boundary

condition h(Cϵ ) ≃ h(∞) = 0, we can integrate it as h(0) ≃ − 8
3πκϕ

2
0
C2

ϵ2 . By using Vω = 0, we obtain

ϕ20 =
3ϵ4

8πκC2 + 3ϵ2
. (4.4)

This formula clearly shows how ϕ0 converges as ϵ → 0 and κ → 0; it depends on their convergent

rates. If ϵ2 ≫ κC2, we have ϕ0 ≃ ϵ, as in the flat case. If ϵ2 ≪ κC2, we have ϕ0 ≃ ϵ2

2C

√
3

2πκ . In the real

situation, κ is very small but a nonzero constant, while ϵ is variable and determined by initial conditions.
Therefore, if we discuss the thick-wall limit in weak gravity, the latter result applies. In this case, because
Q ∝ ϕ̃2r̃3 ∼ ϕ20

1
ϵ3 ∼ ϵ, there is no lower bound of Q as expected. Moreover, the point A in Fig. 4 can be

interpreted as the point when ϵ2 ∼ κC2.
We want to examine what types of potentials we can apply the above results. To obtain the result

for ϵ2 ≪ κC2, we have only assumed that the leading order in Vω (or that in the Maclaurin series) is
quadratic, ϕ̃2. Therefore, the above results hold true not only for AD model but also general models in
which a positive mass term is a leading order one.

5 Conclusion and discussion

We have investigated how gravity affects Q-balls by exemplifying the case with the AD potential V (ϕ) :=

m4 ln(1 + ϕ2

m2 ). Surprisingly, stable Q-balls with arbitrarily small charge exist, no matter how weak
gravity is, contrary to the case of flat spacetime. The result for the gravitating case is a universal
property which has been known to hold for various potentials [1–3]. Our results suggest that gravity may
play an important role in the Q-ball formation process.
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Abstract
The future detection of gravitational wave forces us to consider the many ways in
which astrophysics, gravitational wave theory and fundamental theory will interact.
In this paper, I summarize some recent work done to develop such an interface. In
particular, I concentrate on how non-vacuum astrophysical environments can mod-
ify the gravitational wave signal emitted by compact binary inspirals, and whether
signatures from the former are detectable by current and future gravitational wave
detectors. I also describe the interface between gravitational wave modeling and
fundamental theory, focusing on the status of the parameterized post-Einsteinian
framework (a general framework to detect deviations away from General Relativity
in future gravitational wave data) and its current data analysis implementation.

1 Multi-Messenger Gravitational Wave Astrophysics

The future detection of gravitational waves opens fertile ground to develop a collaboration between astro-
physics, gravitational wave theory and data analysis. The traditional way in which such interdisciplinary
work was thought to happen was fairly sequential: astrophysics would predict which sources gravitational
wave theorist should model; theorist would provide highly accurate models for such systems; and data
analysts would take such models and implement them in pipelines to maximize the probability of detect-
ing a signal. An accurate astrophysical system and waveform model are crucial as the first detections
will consist of signals that are completely buried in instrumental noise.

Once a signal has been detected, feedback in this cycle can occur. That is, data analysts can extract
the best-fit parameters for the signal detected and, given enough detections, create population models
of the distribution of system parameters in the low-redshift universe. For example, given a sufficient
number of compact binary signals, one could construct the distribution of masses, mass ratios, spins, etc.
This information could then be returned to the astrophysics community to see how it matches predicted
population models.

Another route in which feedback can occur is through the data placing constraints on General Rel-
ativity. Given a single detection, data analysts can determine the probability that the foundational
assumptions of General Relativity remain valid in strongly gravitating, highly dynamical systems, where
tests of Einstein’s theory currently do not exist. The most stringent tests we have today come from bi-
nary pulsar observations (see e.g. [1]), but the gravitational compactness of such bodies, the characteristic
mass of the system divided by its orbital separation, remains minuscule. Compact binary coalescences
can in principle sample horizon-scale compactnesses, thus allowing for the most stringent tests yet.

The interaction of gravitational wave theory with astrophysics is a two-way street. One way to proceed
is to focus on how the dynamical evolution of a gravitational system affects the astrophysical environment.
An example of this is the evolution of a circumbinary accretion disk when its binary black hole nucleus
coalesces. In this process, the binary emits ∼ 5− 10% its rest mass in gravitational waves, depending on
the orbital characteristics of the system. A change in rest mass leads to a modification in the Newtonian
potential that the circumbinary accretion disk is bounded to, forcing the latter to readjust and leading
to shocks in the material that then emits electromagnetic radiation (see e.g. [2, 3]).

A different way to proceed is to focus on how the astrophysical environment modifies the gravitational
wave evolution. Let us revisit the example given above, ie. that of a circumbinary accretion disk with a
comparable-mass binary black hole in a quasi-circular inspiral. One could imagine that the mere presence

49Email address: nyunes@physics.montana.edu
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of the accretion disk might modify the evolution of the binary, for example due to angular momentum
transport by the disk or the disk’s self-gravity. Surely, these and other effects will have an impact on the
binary’s inspiral rate, but are such effects measurable by future gravitational wave detectors? For the
current example, the answer is likely no. That is, the effect of the accretion disk is probably too small to
be detectable by LISA, because the comparable mass binary’s inertia is too great relative to the effect of
the disk.

The effect of the astrophysical environment on the gravitational wave signal is not always negligible,
however, and the prototypical system where the former matters is extreme mass-ratio inspirals. These
systems consist of a solar-mass compact object spiraling into a supermassive black hole in a generic
orbit. Due to the extreme mass-ratio, any small perturbation produced by a non-vacuum, astrophysical
environment can have drastic effects on the small object’s trajectory. Moreover, such systems can remain
in the sensitivity band of low-frequency gravitational wave detectors for tens of years, depositing hundreds
of thousands of radians of phase information in any given year. Thus, any small perturbation can
accumulate over a year, leading to an observable effect. In this paper, I will describe a few papers [4–6] that
have studied two possible astrophysical environment effects on extreme-mass ratio inspiral gravitational
waves: the effect of accretion disks and the effect of massive perturbers.

The interaction of gravitational wave theory and data analysis with fundamental theory can also pro-
ceed in two different ways. Until very recently, the standard approach was top-down: one would pick a
modified gravity theory, derive its equations of motion and solve them to find its predicted gravitational
wave radiation. Once a prediction had been made, one could construct a template bank for this modified
theory and then, given a gravitational wave detection consistent with General Relativity, constrain how
large the parameters of the modified theory can be. Examples of this approach exist for Brans-Dicke
theory [7–12, 14], dynamical Chern-Simons gravity [15, 16], phenomenological massive graviton propa-
gation [8, 9, 13, 14, 17, 18], gravitational Lorentz-violation [19], and gravitational parity violation [20],
violations of Local Position Invariance [21] and the existence of extra-dimensions [22].

The problem with any of these approaches is that the construction of template banks and subsequent
analysis of detected signals is computationally expensive for each alternative theory. Moreover, it is
unclear which modified theory effect to concentrate on, since none of the above models is particularly
more theoretically appealing than General Relativity. For example, in the massive graviton case, there
is no self-consistent theory at the level of the action that would lead to such massive graviton effects.

Lacking such a particular compelling model, a new framework to constrain deviations from Gen-
eral Relativity was recently proposed: the parameterized post-Einsteinian (ppE) framework [23]. This
approach proposes to enhance the General Relativity template banks (spanned by system parameters)
through the addition of new, well-motivated theory parameters. These parameters are such that when
they acquire certain numerical values, they lead to waveforms predicted by all the modified gravity the-
ories described above. The advantage of such an approach is that one need only concentrate on the
construction of a single template bank. Matched filtering with elements from this bank would then allow
the data to select the theory that best matches the signal, thus lifting the fundamental theoretical bias
that General Relativity must be a priori correct. In this paper, I will summarize the current status of
the ppE framework.

2 Gravitational Wave Modeling

Gravitational wave modeling has a long history and it would be quite pretentious and inappropriate to
attempt a complete description here. Instead, I will only summarize the bits and pieces of gravitational
wave modeling that will be necessary to understand the modeling of astrophysical and modified gravity
effects, focusing on compact binary coalescences (inspiral-phase only) and ignoring any tidal deformation
of the compact objects. I refer the interesting reader to the following review papers [24] for post-
Newtonian, comparable-mass inspiral modeling, [25] for self-force, extreme-mass ratio modeling, [26]
for approximate, extreme-mass ratio modeling, and references therein.
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2.1 Comparable-Mass Compact Binary Quasi-Circular Inspirals

Let us begin with the modeling of gravitational waves emitted by comparable-mass, compact binary
inspirals. The observed quantity at the detector is not the time-domain waveform, but the response func-
tion: a quantity constructed from the contraction of the response tensor with the (transverse-traceless)
gravitational wave metric perturbation:

h(t) = F+(θS , ϕS , ψS)h+ + F×(θS , ϕS , ψS)h×, (2.1)

where h+,× are the plus- and cross-polarized gravitational wave metric perturbations, while F+,× are
beam-pattern functions . These functions characterize the response of the detector to an incoming
gravitational wave and are slowly-varying.

The Fourier transform of the response function can be evaluated analytically if we assume that the
phase varies on a much shorter time-scale than the amplitude, ie. in the stationary phase approxima-
tion [27]. Let us define the cosine and sine responses for the dominant ℓ = 2 mode

h(t) = hC(t) + hS(t) , hC(t) = A QC(ι, β) cos 2ϕ , hS(t) = A QS(ι, β) sin 2ϕ , (2.2)

where A = −M/DL (2πMF )
2/3

is a slowly-varying amplitude, while

QC(ι, β) ≡ 2
(
1 + c2i

)
c2βF+ − 4cis2βF× , QS(ι, β) ≡ 2

(
1 + c2i

)
s2βF+ + 4cic2βF× , (2.3)

and ci = cos ι, c2β = cos 2β and s2β = sin 2β, with ι and β the inclination and polarization angles
respectively. Then, the Fourier transform in the stationary phase approximation is

h̃C(f) = −
(

5

384

)1/2

π−2/3M5/6

DL
QC(ι, β) [2F (t0)]

−7/6
e−i(Ψ+π/4) , (2.4)

while h̃S(f) = ih̃C→S(f). The phase of the gravitational wave Fourier transform is

Ψ[F (t0)] = 2π

∫ F (t0) F ′

Ḟ ′

(
2− f

F ′

)
dF ′. (2.5)

The quantity t0 is the stationary-point , defined by 2ϕ̇(t0) = 2πf , essentially the region in which the
Fourier transform does not average out. In Eq. (2.4), DL is the luminosity distance, M = η3/5m is the
chirp mass, with η = m1m2/m

2 the symmetric mass ratio and m = m1 +m2 the total mass, while F is
the orbital frequency.

Gravitational wave detectors are the most sensitive to the phase of the response function, Eq. (2.5),
whose functional form is controlled by the orbital frequency’s evolution equation. In vacuum General
Relativity, the orbital frequency can only evolve due to the emission of gravitational waves. Using the
balance law Ė = −⟨LGW⟩, i.e. the rate of change of the binary’s binding energy is exactly balanced
by the flux of gravitational wave energy-momentum suitably averaged over several wavelength, one can
derive

dF

dt
≡ Ė

dE/dF
∼ 48

5πM2
(2πMF )

11/3
(2.6)

to leading order in 2πMF ∼ v3, where v is the binary’s orbital velocity. Of course, if Kepler’s third
law is modified or if additional sinks of energy-momentum are present, for example due to scalar-field
emission or to accretion-disk induced angular momentum transport, then the gravitational wave phase
will be modified accordingly. Ignoring these effects for the moment, the Fourier transform is then

h̃(circ) = −
(

5

384

)1/2

π−2/3M5/6

DL
Q(i, β) f−7/6 exp

[
i

(
2πftc − ϕ̄c −

π

4
+

3

128
(πMf)

−5/3

)]
, (2.7)

where Q = QC + iQS and we have retained only the Newtonian term in the phase.
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2.2 Extreme Mass-ratio, Compact Binary Quasi-Circular Inspirals

Let us now consider extreme-mass ratio inspirals in a quasi-circular orbit confined to the equatorial plane
of the supermassive black hole. The dominant ℓ = 2, gravitational wave mode accumulates a phase

ϕGW = 2

∫ tf

tf−Tobs

Ω(t) dt = 2

∫ Rf

R0

Ω(r)
dr

ṙ
=

1

16

MSMBH

mCO
R

5/2
f

(1 + τ

R4
f

)5/8

− 1

 (2.8)

where Tobs is the observation time, Ω is the orbital angular frequency, MSMBH is the supermassive black
hole mass, mCO is the stellar-mass compact object’s mass and (R0, Rf ) are theMSMBH-normalized initial
and final orbital radius respectively. The quantity τ here is the dimensionless observation time defined
by τ ≡ (256/5)(mCOTobs/M

2
SMBH). One can verify that for low-frequency gravitational wave detectors,

with peak sensitivity in the micro- to deci-Hz band, the accumulated gravitational wave phase can reach
millions of radians for separations in (R0, Rf ) ∈ (30MSMBH, RISCO), where RISCO is the radius of the
innermost stable circular orbit for a test-particle on a geodesic of the background spacetime.

The accumulation of gravitational wave phase information clearly depends on the rate of inspiral, ṙ.
This quantity can be computed from ṙ = Ė/(dE/dr), which again depends both on the binary’s binding
energy E(r) and its rate of change. If additional sinks of energy are present in the problem or if the
binding energy is deformed, then the accumulated gravitational wave phase will be different than what
one would expect for a vacuum inspiral.

The accumulated gravitational wave phase in Eq. (2.8) can be used as a quick measure of how im-
portant non-vacuum or non-General Relativity effects are, but this measure is only approximate since
it uses Newtonian relations, which are highly inaccurate for extreme-mass ratio inspiral. A much more
appropriate scheme is that of the effective-one-body approach, recently implemented for extreme-mass
ratio inspirals in [28, 29] and references therein. In this scheme, one maps the two-body inspiral into an
effective inspiral of a test-particle with mass η in orbit around a supermassive black hole with mass m.
The equations of motion then reduce to the Hamilton-Jacobi equations

dr

dt
=

A(r)√
D(r)

∂Ĥreal

∂pr∗
,

dΦ

dt
=
∂Ĥreal

∂pΦ
, (2.9)

dpr∗
dt

= − A(r)√
D(r)

∂Ĥreal

∂r
,

dpΦ
dt

= F̂Φ . (2.10)

where Ĥreal ≡ Hreal/µ is the reduced (i.e., dimensionless) real Hamiltonian and F̂Φ := FΦ/µ is a reduced
radiation-reaction force that controls the rate of inspiral (there is no radial component on average here
because we are dealing with an equatorial, quasi-circular orbit). The azimuthal radiation-reaction force

can be modeled via F̂Φ = η−1L̇ = −η−1L̇GW = −(ηΩ)−1ĖGW, where L̇ is the rate of change of the
binary system’s orbital angular momentum, while L̇GW and ĖGW are the angular momentum and energy
radiated in gravitational waves.

The energy flux is composed of several contributions. The most accurate model for the average, energy
flux radiated to infinity is the factorized resummation

ĖGW =
2

16π

ℓ=8∑
ℓ=2

m=ℓ∑
m=1

(mΩ)2 |Rhℓm|2 , (2.11)

where R is the distance to the observer and hℓm is the harmonically-decomposed gravitational wave metric
perturbation. In addition to this, there is also energy flux into any trapped surfaces, black hole horizons,
that can be modeled by solving the Teukolsky equation perturbatively in a post-Newtonian expansion
(see e.g. [30, 31]). Of course, if there are additional sinks of energy, these must also be accounted for here
by adding contributions to the total energy flux.

2.3 Gravitational Wave Signatures

In the previous sections, we have briefly summarized some salient features of gravitational wave mod-
eling for comparable-mass and extreme mass-ratio quasi-circular inspirals, but are modifications in this
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modeling observable? A plausibly criterion to decide whether a certain gravitational wave modification
is detectable by a given detector is the following:

δϕGW ≥
{

10/ρ if ρ ≥ 10 ,
0 if ρ ≤ 10 ,

(2.12)

where ρ2 is the square of the signal-to-noise ratio (SNR), defined as

ρ2(h) = 4

∫
df

Sh(f)
|h̃|2 . (2.13)

As before, h̃ is the Fourier transform of the measured gravitational wave response function, while Sh(f)
is the spectral noise density curve of the detector. The piece-wise nature of this criterion accounts for
the fact that there is a threshold SNR below which the signal cannot be detected in the first place.

The above requirements give us a rough sense of when a certain modification might be detectable,
but can such a modification be distinguishable from a vacuum waveform. To address this question, one
can consider the SNR of the waveform difference

ρ2(δh) ≡ min
λ2

[
4

∫
df

Sn(f)

∣∣∣h̃1(f)− h̃2(f ;λ2)
∣∣∣2] , (2.14)

where h̃1 and h̃2 are the Fourier transforms of two waveforms (the “signal” and “template”), normalized

such that ρ(h1) = ρ(h2) = 1. The template depends on parameters λ⃗2 that may be different from the
true astrophysical ones, where the minimum difference corresponds to the best fit. One can then consider
this SNR, minimized over template parameters, to construct a measure similar to that of Eq. (2.12).
The minimization will partially account for the effect of possible template parameter degeneracies with
non-vacuum or non-General Relativity effects.

3 Astrophysical Imprints

In this section, we consider two astrophysical environment effects in the modeling of gravitational waves.
We begin with massive perturbers, summarizing the results of [4], and then move on to accretion disk
effects, summarizing the results of [5, 6]. I refer the interested reader to these papers and the many
references therein, which will not be included in this paper for simplicity.

3.1 Massive Perturbers

Let us consider an extreme-mass ratio inspiral, where the stellar-mass compact object is in a quasi-
circular, equatorial orbit around a spinning supermassive black hole. Let us now imagine that there is
a third compact object, with mass MSec and at a distance rSec from the supermassive black hole. We
here imagine that MSec is comparable to MSMBH and much greater than mCO. This scenario is depicted
in Fig. 1. Clearly, this is a three-body system, composed of two sub-binaries: the extreme-mass ratio
system and the MSMBH −MSec system. Because of this, the extreme mass-ratio gravitational waves will
be emitted from an accelerated frame (a frame that rotates due to the presence of the secondary).

The modifications to the trajectories of the small body can be modeled in the framework of the
effective-one-body scheme described in Sec. 2.2. The dominant effect is simply a Doppler shift in the
extreme mass-ratio inspiral gravitational wave frequencies, which then leads to an integrated modification
in the gravitational wave phase. The implementation of this correction is simple: divide the right-hand-
side of Eq. (2.10) by the appropriate Doppler factor

Φ̇ ≡ Ω → Φ̇ = Ω [1 + vlos(t, δ = π/2)] , (3.1)

where vlos is the velocity along the line of sight

vlos(t) =

(
MSec

MTot

)
vNewt cos (ωNewtt+ δ) sin (ι) . (3.2)
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ι
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z

MSMBH

MSec

rSec

JSec

Figure 1: Schematic view of the extreme-mass ratio system (in the xy plane), the massive perturberMSec

(at a distance rSec), and the line of sight. ι is the inclination between the primary-secondary supermassive
black hole’s orbital angular momentum vector and the line of sight.

with vNewt = (GMTot/rSec)
1/2 the Newtonian virial velocity, ΩNewt = (GMTot/r

3
Sec)

1/2 the Newtonian
angular velocity for an object in a circular orbit, and δ an initial phase offset, with (ΩNewtt+δ) the orbital
phase of the MSMBH −MSec system. A constant relative speed can be re-absorbed in a redefinition of
the masses, and thus, it does not lead to a measurable correction. In Eq. (3.1), we have ignored the
appropriate Lorentz factor Γ, since vNewt/c≪ 1, and we have removed the constant velocity drift in vlos
by choosing δ = π/2.

This simple modeling neglects other gravitational wave generation effects. One could incorporate such
effects by introducing an external, vectorial force (the product of the the total mass of the system and
the time derivative of the velocity of Eq. (3.2)) to Hamilton’s equations. Such a modeling would require
a non-adiabatic evolution, which would lead to eccentric and inclined extreme-mass ratio trajectories.
The magnitude of this correction, however, is small, as it scales with the tidal force of the perturber
on the center of mass of the extreme mass-ratio inspiral, relative to the stellar-mass compact object’s
acceleration due to the secondary supermassive black hole. Since the tidal force scales as ∼ MSec/r

3
Sec,

this effect is suppressed relative to the acceleration by a factor of r/rSec ∼ 10−4 for an extreme-mass ratio
inspiral with orbital separation 30MSMBH and a primary-secondary binary orbital separation of 0.01 pc.
This ratio would not be small if the perturber were in the near-zone (less than a gravitational wavelength
away) from the center of mass of the extreme-mass ratio system.

We can now estimate what the distance and mass of the secondary black hole must be for its ef-
fect on extreme mass-ratio inspiral gravitational to be detectable by a LISA-like mission. The time-
dependent Doppler shift described above leads to a correction in the gravitational wave phase of ∆ϕGW =
v̇losTobsN/(2c), where N is the number of radians in the waveform, Tobs is the observation time. Let us
further define ϵ as the detectable fractional phase shift: ϵ ≡ ∆ϕGW,detect/N , a fiducial value of which is
ϵ = 10−7, or 0.1 radians over ∼ 106 radians for a typical one-year inspiral.

The definition of ϵ is a curve in rSec − MSec space that delineates the secondary parameters that
would lead to a sufficiently large dephasing to be detectable. This is shown in Fig. 2 for a range of ϵ
values. Any secondary system with mass and separation above the curves would be observable. The solid
curves plot the relation described in the previous paragraph, while the dashed curves account for the next
v̈lost

2 order effect. For comparison, the region of (MSec, rSec) space that falls in the pulsar-timing-array
sensitivity band are also shown. Of course, the gravitational waves that would be detectable by pulsar-
timing-arrays would be those generated by the MSMBH −MSec binary, and their distance to Earth would
have to be sufficiently small. In principle, however, this scenario allows for the possibility of coincident
future detection of gravitational waves from LISA-like detectors and pulsar-timing-arrays.

Just because an effect is sufficiently large to be in principle measurable does not imply that it can
be distinguished from other vacuum effects. One must therefore worry about possible degeneracies of
vacuum system parameters with those introduced by the secondary perturber (MSec and rSec in this
case). We can get a sense of whether this is the case by computing the Fourier transform of the modified
gravitational wave in the stationary-phase approximation. Following Sec. 2.1, one finds the following
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Figure 2: Range of secondary masses and separations that could be measurable by LISA given a
sufficiently strong EMRI. The region above the solid and dashed lines would be observable. Measurement
of the leading-order effect gives a determination of the combination (MSec sin ι)/r

2
Sec, while measuring

the next-order effect gives a determination of the combination (MSec sin ι)
3/2/r

7/2
Sec . Thus measuring both

effects together allows both MSec sin ι and rSec to be determined.

correction to the phase

∆Ψ =
3

128
(πMf)

−5/3

[(
25

1248

MMSec

r2Sec
− 25

2496

MMSecMTott
2
c

r5Sec

)
(πMf)

−8/3

+
125

1032192

M2MSecMTottc
r5Sec

(πMf)
−16/3 − 625

1094713344

M3MSecMTot

r5Sec
(πMf)

−8

]
. (3.3)

where we have neglected a constant term that is no measurable. Observe that the corrections introduced
by MSec cannot be re-absorbed by a redefinition of vacuum system parameters, which implies that
the effect of the secondary are (at worst) weakly-correlated vacuum terms. Moreover, if one could
independently constrain the coefficients in from of the dominant f−8/3 term and also the f−16/3 and f−8

terms, one would be able to break the degeneracy between MSec and rSec in the leading-order term.

3.2 Accretion Disks

Let us now consider a different astrophysical environment: an extreme mass-ratio system in a circular
equatorial orbit that is embedded in the accretion disk associated with the supermassive black hole. We
refer the interested reader to [5] for astrophysical scenarios that could lead to this configuration. Of
course, the effect of such a disk on the extreme-mass ratio inspiral will depend on the disk properties,
which are not accurately known. One must then think of all possible effects that could be present and
determine which one leads to the largest correction to extreme-mass ratio inspirals.

The dominant effect is that induced by the gravitational torque induced by spiral density waves in
the accretion disk (ie. migration torque in planetary dynamics). Migration can occur whether a gap is
cleared out or not, with the former leading to the largest effects. One might naively think that the stellar-
object’s mass accretion would also greatly modify the object’s motion, but this is not the case because of
quenching by a variety of processes, predominantly limited gas supply and radiation pressure. Migration
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then becomes dominant, but its effect on gravitational waves still depends on the disk’s properties. If one
models the latter as an α (Shakura-Sunyaev) disk (where viscosity is proportional to the total pressure),
then all disk effects become negligible. But if the disk is better described by a β profile (where viscosity
is proportional to gas pressure only) in the radiation-dominated (extreme-mass ratio) regime, then the
effect of migration would be measurable. Therefore, if such an accretion disk effect is detected one would
know that the disk associated with that particular extreme mass-ratio binary is of β type.

Figure 3 summarizes the impact of the main accretion disk effects on the gravitational wave. This
figure plots the dephasing (the difference between the gravitational wave phase computed with and
without disk effects) as a function of the final orbital radius, assuming a one year inspiral. The left
and right panels show results for different extreme mass-ratios, while the different curve colors and
styles correspond to different disk effects: black is for accretion onto the small compact object, blue is
for migration and green is for azimuthal winds. The latter corresponds to a difference in the orbital
compact object velocity and the gas velocity, which can push the former forward or backward. The
total accumulated gravitational wave phase is denoted by a thin magenta line, while the thick magenta
lines correspond to two (an optimistic and a pessimistic) measures of the accuracy of a classic LISA-like
mission. Notice that migration can lead to dephasing of order 102 − 103 radians for β disks, while the
same effect is essentially negligible for α disks. Therefore, a measurement of such disk effects could allow
us to infer disk properties related to migration.

Figure 3: Gravitational wave dephasing as a function of final radius in units of MSMBH induced by
different disk effects. Solid (dotted) curves correspond to α (β) disks, with different colors indicating
different disk effects: black corresponds to Bondi-Hoyle-Lyttleton (BHL) accretion onto the small object,
green to azimuthal winds and blue to migration. The thin, solid magenta line is the total accumulated
gravitational wave phase in vacuum. The thick, solid (dashed) magenta line corresponds to a measure
of the accuracy to which LISA can measure the gravitational wave phase for a source at 1 Gpc (10
Mpc). Observe that certain disk effects, like migration, can leave huge imprints on the gravitational wave
observable, inside the LISA accuracy bucket, provided the disk is a β one.

As before, a simple dephasing argument does not guarantee that disk effects can be disentangled
from other vacuum system parameters. One can get a sense of whether such disentanglement is possible
by computing the Fourier transform of the gravitational wave response function in the stationary-phase
approximation:

Ψ/Ψvac = 1− Ã1α
c1
1 ṁ

c2
SMBH,1M

ã3
SMBH,5q

ã4
0 uã50 , (3.4)

and

|h̃|/|h̃|vac = 1− B̃1α
c1
1 ṁ

c2
SMBH,1M

ã3
SMBH,5q

ã4
0 uã50 , (3.5)

where α1 = α/0.1 is the normalized α-viscosity parameter, ṁSMBH,1 ≡ ṁSMBH/0.1 is the normalized

supermassive black hole accretion rate ṁ ≡ ṀSMBH/ṀSMBH,Edd with ṀSMBH,Edd the Eddington rate.
Similarly, MSMBH,5 = MSMBH/(10

5M⊙) is a normalized supermassive black hole mass, q0 ≡ q/10−4 is
the normalized mass-ratio q = MSMBH/mCO and u0 ≡ (πMf)/(6.15 × 10−5) is a normalized reduced
frequency for a gravitational wave frequency of 10−2 Hz. The parameters (Ã1, B̃1, ãi, ci) are given in

JGRG21 Programme



120 I28-02: Gravitational Waves from Compact Binaries as Probes of the Universe

Table 1. Of course, these expressions are only valid when the accretion disk effects are small perturbations
away from the vacuum evolution (ie. at sufficiently small separations).

Ã1 B̃1 ã3 ã4 ã5 c1 c2
BHL α 3 (−8) 2 (−7) 1 4 −20/3 −1 −5
BHL β 1 (−5) 1 (−4) 6/5 79/25 −79/15 −4/5 −17/5
W α 6 (−17) 1 (−16) 1 16/5 −16/3 −1 −3
W β 6 (−12) 4 (−11) 6/5 59/25 −59/15 −4/5 −7/5
M1 α 3 (−10) 4 (−9) 1 16/5 −16/3 −1 −3
M1 β 1 (−6) 3 (−6) 6/5 59/25 −59/15 −4/5 −7/5

M2 αSC 8 (−6) 2 (−5) 1 −2/5 −8/3 0 1
M2 βSC 6 (−3) 2 (−2) 1/4 −1/8 −25/12 1/2 5/8
M2 βIPP 6 (−4) 2 (−3) 4/7 −17/70 −7/3 2/7 11/4

Table 1: Columns are parameters in Eqs. (3.4) and (3.5) and rows are disk effects. The notation
x (y) = x× 10y in radians for Ã1 and dimensionless for B̃1. Observe that the frequency exponent ã5 < 0,
implying that these accretion disk effects are dominant at small frequencies (large radii).

The important result here is that the dependence of the disk effects with frequency, ie. the parameter
ã5, is of opposite sign with respect to those that arise in the vacuum gravitational wave phase. This is
because disk corrections are largest for large radii, equivalent to weak-field vacuum effects, while post-
Newtonian corrections to the vacuum gravitational wave phase are largest for small radii, equivalent
to strong-field effects. This suggests that migration effects are weakly correlated with vacuum system
parameters, as one could not reabsorb these disk effects by choosing different vacuum parameters.

4 Modified Gravity Imprints

In this section, we discuss how modified gravity imprints can manifest in the gravitational wave observable.
We describe a scheme developed to constrain such imprints, the so-called parameterized post-Einsteinian
(ppE) framework. We mainly follow the presentation in [16] and the recent results of [32].

4.1 Top-Down Approach

One approach to testing Einstein’s theory with gravitational wave observations is a top-down one: pick a
modified gravity theory, study its consequences and match-filter gravitational wave data with a template
bank specifically constructed for that theory to test for possible deviations consistent with that theory.
Most studies carried out so-far considered only quasi-circular coalescences in the inspiral phase. For such
waveforms, the modified Fourier transform of the response function in the stationary-phase approximation
can be modeled as

h̃(f) = h̃GR(f) (1 + αua) eiβu
b

, (4.1)

where the GR transform was already described in Sec. 2.1, while (a, b) are numbers and (α, β) are
functions of system parameters and parameters of the theory. We present their values in the Table 2.

Let us explain how the symbols of Table 2 are defined. In Brans-Dicke theory, S is the difference in the
square of the sensitivities and ωBD is the Brans-Dicke coupling parameter [9]. In the phenomenological
massive graviton theory, D is a certain distance measure, z is redshift and λg is the Compton wavelength
of the graviton [9]. In the parity violation case, the amplitude deformation depends on the inclination
angle and the beam pattern angles via [20]

δA =

(
F 2
+ + F 2

×
)
ci
(
1 + c2i

)
F 2
+ (1 + c2i ) + 4F 2

×c
2
i

, (4.2)

while v is a measure of parity violation. In non-dynamical Chern-Simons (CS) gravity [33], the quantity
δϑ̇CS is the time derivative of the CS scalar field (ie. the magnitude of the canonical embedding coor-
dinate) [20]. In a varying Newton’s constant theory, Ġc is the value of the time derivative of Newton’s
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Theory α a β b

Brans-Dicke 0 · − 5
3584

S2

ωBD
η2/5 − 7

3

Massive Graviton 0 · − π2DM
λ2
g(1+z)

−1

Parity Violation 4vδA 1 0 ·
Non-Dynamical CS Gravity 4πδϑ̇CSδA 1 0 ·

G(t) Theory − 5
512 ĠM − 8

3 − 25
65536 ĠcM −13

3

Lorentz Violation 0 · − π2−γ

(1−γ)
Dγ

λ2−γ
LV

M1−γ

(1+z)1−γ −αLV − 1

Conservative EDGB 5
6η

−4/5ζEDGB
4
3

25
64η

−4/5ζEDGB − 1
3

Extra Dimensions 0 · − 75
2554344

dM
dt η

−4(3− 26η + 24η2) −13
3

Table 2: Parameters that define the deformation of the response function in a variety of modified gravity
theories. The notation · means that a value for this parameter is irrelevant, as its amplitude is zero. All
other parameters are defined in the text.

constant at coalescence [21]. In the phenomenological Lorentz-violating theory, λLV is a distance scale at
which Lorentz-violation becomes important, while γ is the graviton momentum exponent in the defor-
mation of the dispersion relation [19]. In Einstein-Dilaton-Gauss-Bonnet gravity, ζEDGB is the coupling
parameter in the theory, and we here present only the modification in the response function introduced by
the deformation of the background Schwarzschild metric [34]. In theories with extra dimensions, dM/dt
is the mass loss due to gravitons leaking into the extra dimension.

As one can see from the above table, there are many possible deviations from General Relativity
that one could consider, and none of the above has been sufficiently well-studied to determine whether
any of them are compelling alternatives. A top-down approach would require us to construct as many
template banks as there are alternative theories to consider. Of course, each of these banks would contain
additional dimensions in parameter space (and thus many more templates), as one would have to allow for
variations of the fundamental parameters of the modified theories. This might increase the computational
cost beyond current capabilities.

But perhaps the biggest drawback of a top-down approach is that one must pick a theory before-
hand, and this does not allow the data to select the theory that fits it best. Instead, this choice is made
by the gravitational wave theorist or data analyst. It is entirely possible that, if General Relativity is
incorrect in the strong field, none of the above theories will represent the correct modification. Thus, if
one implements a top-down approach, one is forcing a certain fundamental bias into the analysis, ie. the
fundamental bias that we, as theorists, know what modifications of gravity are possible.

4.2 Bottom-Up Approach

A new scheme has been proposed to alleviate this fundamental bias: the ppE framework [16]. In this

scheme, one enhances General Relativity templates h̃GR, which depend on system parameters λ⃗Sys,

through the introduction of theory parameters λ⃗ppE:

h̃(f ; λ⃗Sys) → h̃GR(f ; λ⃗Sys) + δh̃(f ; λ⃗Sys; λ⃗ppE) . (4.3)

When these parameters acquire certain values, the templates reduce exactly to those predicted in Gen-
eral Relativity, ie. δh̃(f ; λ⃗Sys; λ⃗

GR
ppE) = 0. When they acquire other values, the templates reduce to the

predictions of modified gravity theories. The idea then is to match filter or perform Bayesian statistics
with this enhanced template bank to allow the data to select the best-fit values of λ⃗ppE that best fit the
signal.

This framework emerges from a generalization of the parameterized post-Newtonian scheme, developed
in the 1970’s to test modified gravity theories with Solar System experiments [35–40]. That scheme
proposed the enhancement of the main quantity which all Solar System observables depend on, the
weak-field expansion of the metric tensor in a certain coordinate system and gauge, by theory (ppN)
parameters:

gµν(x
µ; λ⃗Sys) → gµν(x

µ; λ⃗Sys, λ⃗ppN) . (4.4)
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When these parameters vanish, then the metric tensor reduces exactly to that predicted by General
Relativity gµν(x

µ; λ⃗Sys, 0), while when they don’t, they describe the weak-field expansion of the metric

tensor in a plethora of modified gravity theories. The idea is then to constrain the values of λ⃗ppN by
measuring Solar-System observables that depend on the metric tensor.

The ppN and ppE frameworks, however, differ in the priorities that drive the parameterized General
Relativity deviations. While the former does not care about how many theory ppN parameters are
introduced, in the latter we wish to minimize the number of ppE parameters. Otherwise, the inclusion
of too many ppE parameters dilutes the information in the extracted best-fit, raising the false-alarm
probability. One must then find a balance between the number of parameters introduced and the amount
of bias contained in the templates.

The precise form of ppE templates clearly depends on the system under consideration and the level
of theoretical complexity that one wishes to include. Keeping in line with the rest of this paper, we
concentrate here on non-spinning, quasi-circular inspirals. In their original work, [16] also proposed ppE
templates that contain the merger and ringdown phases in a hybrid fashion, but we will not discuss these
here. As for the theoretical complexity, this depends on the number of additional ppE theory parameters
one wishes to include.

The simplest ppE realization, which we refer to as the restricted ppE templates, is the following [41, 42]

δh̃(f ; λ⃗Sys;α, β) = h̃GR (α uaPN) eiβu
bPN

, (4.5)

where the theory parameters (α, β) are to be searched over, while (aPN, bPN) are numbers equal to
some of the post-Newtonian predictions for amplitude and phase frequency exponents, ie. (aPN, bPN)
are not allowed to vary. For example, a Newtonian prediction for the amplitude and phase frequency
exponents would be aNewt = −7/3 and bNewt = −5/3, while a 1.5PN prediction would be a1.5PN = 1 and
b1.5PN = −2/3.

One can think of these tests as consistency checks of the post-Newtonian expansion. That is, given
a detection of a gravitational-wave, one can in principle measure the chirp mass and the mass ratio
by detecting the Newtonian and 1PN corrections to the phase. Allowing for a 1.5PN parameterized
deviation in the phase then allows one to check whether this term is indeed as predicted by the post-
Newtonian expansion. Alternatively, one can also think of these tests as straw-men indicators for GR
consistency/inconsistency. That is, given a low signal-to-noise ratio detection, one can ask whether the
signal detected is consistent with a General Relativity hypothesis (α, β) = (0, 0) [43].

The great disadvantage of the restricted ppE formalism is that, although one might be able to discern
whether deviations are present, one cannot tell what kind of deviations those are. To alleviate this
problem, one can introduce free ppE templates, the simplest version of which is [16]

δh̃(f ; λ⃗Sys;α, β) = h̃GR (α ua) eiβu
b

, (4.6)

where now (α, β, a, b) are free ppE parameters. Observe that different choices of ppE parameters can
recover all the modified theory predictions listed in Table 2. Furthermore, one can show that a generic
power-series deformation of the binding energy or the gravitational wave luminosity will lead to a metric
with the above ppE parameterization [16].

Given a stretch of gravitational wave data, one can then search via matched filtering with free ppE
templates and allow the data to select the (α, β, a, b) ppE parameters that fit it best. If a deviation is
present, such a procedure would not only signal the presence of a deviation, but it would also signal what
type of phase or amplitude deformation is introduced. That is, one would know the best-fit numerical
values of a and b, which encode what type of modified gravity effect is present. For example, as suggested
by Table 2, a non-zero detection of β associated with b = −7/3 would signal the presence of a scalar dipolar
mode, while one associated with b = −13/3 would signal the existence of an anomalous acceleration.

We have recently carried out a detailed Bayesian analysis with free ppE waveforms, whose main results
are shown in Fig. 4 [32]. This figure shows the (3σ)-bounds on β for different values of b (ie. an exclusion
plot for anything above the dotted curves), given gravitational wave detections consistent with General
Relativity. The different dotted curves correspond to different binary systems, where we consider the
inspiral phase only. For comparison, we also plot current bounds on β from the double binary pulsar, as
well as a few Solar System constraints. Observe that for b ≳ −2, gravitational wave observations could
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Figure 4: Left: (3σ)-bounds on β for different values of b for a single SNR = 20 aLIGO/aVirgo detection.
The two dotted lines correspond to two sources with different mass ratios, total masses, and sky locations,
but both at redshift z = 0.1 (DL = 462Mpc). The solid line is the (3σ)-bound on β from the golden
pulsar (PSR J0737-3039), while other symbols are bounds from Solar System experiments and other
aLIGO analyses. Right: Same as left but for two classic-LISA sources at redshift z = 1 and z = 3.

rule out a large sector of (β, b) parameter space that is currently unconstrained. These results where
confirmed using both a Fisher analysis as well as mapping out the likelihood surface with a Markov-
Chain Monte-Carlo techniques.

Given a gravitational wave detection, one can also ask whether a General Relativity waveform (an
Einstein hypothesis) or a non-General Relativity waveform (a non-Einstein hypothesis) best fits the data.
This can be established by computing the Bayes factor or the odds-ratio of these two hypothesis. When
using ppE templates, the hypothesis become nested, but the above described analysis can still be easily
carried out. The Bayes factor will increase the larger (α, β) are, and so assuming a threshold Bayes factor
of 10 (1 to 10 betting odds that one of the two hypothesis is incorrect and the other is correct) one can
derive the accuracy to which (α, β) can be measured as a function of b. Implementing such a scheme,
one obtains similar results to those already plotted in Fig. 4.

5 A Roadmap for the Future

The era of multi-messenger gravitational wave astrophysics is at our doorstep. A full exploitation of
gravitational wave information will require a deep collaboration between astrophysicists, gravitational
wave modelers, general relativists and data analysts. In this paper, I have described recent efforts to
extract information about the astrophysical and theoretical environment in which compact binaries might
be evolving.

On the astrophysical side, we have seen that the presence of a secondary perturber or an accretion
disk can lead to observable effects in extreme-mass ratio inspiral gravitational waves. As for the former,
these effects become non-negligible when secondary perturbers are at a distance of 0.1 pc or less from
the center of mass of the extreme-mass ratio binary, given secondary masses of 107M⊙. As for the
latter, angular momentum transport due to density waves, analogous to planetary migration, can leave
observable signatures in extreme-mass ratio binaries embedded in the thin disks, provided the latter are
of β-type. These effects seem weakly degenerate with other system parameters, as suggested by a simple
Fourier analysis.

On the fundamental theory side, we have seen that a top-down approach leads to a variety of wave-
form predictions. There is no particular modified gravity theory that is more compelling than General
Relativity, which forces us to consider all theories on an equal footing. Performing a data analysis study
for all such theories might be computationally prohibitive. Instead, one can carry out a bottom-up ap-
proach by match-filtering with ppE templates. These waveforms enhance General Relativity templates
with certain well-motivated theory parameters, which then allows the data to select the parameters that
best fit it, lifting some degree of fundamental bias.
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A variety of paths present themselves for future studies. One could, for example, consider other
astrophysical environment effects, or other specific top-down modified gravity theories, to discover what
the corrections to the waveform are. Alternatively, one could consider whether the presence of an as-
trophysical environment could prohibit tests of Einstein’s theory. This seems quite unlikely, given that
modified gravity effects if present should be there always, while astrophysical environment effects should
only affect a hand-full of sources. Finally, a realistic implementation of the ppE idea will require the gen-
eralization of the free ppE model to more complex and accurate waveforms. If this is not accomplished,
mismodeling bias is likely to contaminate ppE studies, hindering the ability of gravitational waves to
constrain Einstein’s theory. Work along this lines is promising.
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Constraint propagation and constraint-damping
in the C2-adjusted formulation

Takuya Tsuchiya50(a), Gen Yoneda(a) and Hisa-aki Shinkai(b)

(a)Department of Mathematical Sciences, Waseda University, Okubo, Shinjuku, Tokyo, 169-8555, Japan
(b)Faculty of Information Science and Technology, Osaka Institute of Technology, 1-79-1 Kitayama,

Hirakata, Osaka 573-0196, Japan.

Abstract
In order to perform accurate and stable long-term numerical calculations, we con-
struct new sets of ADM and BSSN evolution equations by adjusting constraints to
their right-hand-sides. We apply a method suggested by Fiske (2004), which adds
functional derivative of the norm of constraints, C2. We derive their constraint prop-
agation equations (evolution equations of constraints) in flat spacetime, which show
that C2 itself evolve decaying. We also perform numerical tests with the polarized
Gowdy-wave testbed, and show that the constraint-damping appears. The life-times
of the standard ADM and BSSN simulations are improved as about twice as longer.

1 Introduction

In numerical relativity, the standard way to integrate the Einstein equations is 3+1 splitting of spacetime.
The fundamental spacetime splitting is the Arnowitt-Deser-Misner (ADM) formulation [1]. However, it is
known that the ADM formulation is not suitable formulation to perform long-term simulations in strong
gravitational fields [2]. To perform simulations such as coalescences of binary neutron stars and/or black
holes, many formulations are suggested, one of the most commonly used among the numerical relativists
is the so-called Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation [3].

The current formulations use the constraint-damping technique which is obtained by adding the con-
straint equation to the evolution equations. Fiske [4] suggested a method of constructing a set of evolution
equations which we call “C2-adjusted system”. We apply his system to the ADM and BSSN formula-
tions. To see the effect of the adjustments, we analyze the constraint propagation of the C2-adjusted ADM
and BSSN formulations, and we also perform some numerical tests to confirm the constraint-damping
behaviors.

2 General Idea of C2-adjusted system

Suppose dynamical variables ui obeys a set of evolution equations with constraint equations, Ca;

∂tu
i = f(ui, ∂ju

i, . . . ), (2.1)

Ca = g(ui, ∂ju
i, . . . ). (2.2)

Fiske [4] proposed an adjustment of the evolution equations in the way of

∂tu
i = f(ui, ∂ju

i, · · · )− κij
(
δC2

δuj

)
, (2.3)

where κij is a positive-definite constant coefficient, and C2 is the norm of constraints which is defined
as C2 ≡

∫
CaC

ad3x. The term (δC2/δuj) is the functional derivative of C2 with uj . We call the set of
(2.3) with (2.2) as “C2-adjusted formulation”. The associated constraint propagation equation becomes

∂tC
2 = h(Ca, ∂iC

a, · · · )−
∫
d3x

(
δC2

δui

)
κij
(
δC2

δuj

)
. (2.4)

50Email address: tsuchiya@akane.waseda.jp
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If we set κij so as the second term in the RHS of (2.4) becomes dominant than the first term, then
∂tC

2 becomes negative, which indicates that constraint violations are expected to decay to zero.

3 Applications

Now, we apply the idea of C2-adjusted system to the ADM and BSSN formulations.

3.1 C2-adjusted ADM Formulation

3.1.1 Evolution Equations

We apply C2-adjusted system to the ADM formulation. The evolution equations are formally written as

∂tγij = [Original Terms]− κγijmn

(
δ(CADM)2

δγmn

)
, (3.1)

∂tKij = [Original Terms]− κKijmn

(
δ(CADM)2

δKmn

)
, (3.2)

where (CADM)2 is the norm of the constraints, which we set

(CADM)2 ≡
∫

{(HADM)2 + γijMADM
i MADM

j }d3x, (3.3)

and both coefficients, κγijmn and κKijmn, are supposed to be positive definite. The adjusted terms,
(δ(CADM)2/δγmn) and (δ(CADM)2/δKmn), are explicitly written as eqs. (A1) and (A2) in [5], respectively.

3.1.2 Constraint Propagation Equations

In order to investigate the effect of the constraint-damping due to the adjusted terms in (3.1)-(3.2), we
show the constraint propagation equations in the flat spacetime:

∂tHADM = [Original Terms]− 2κγ∆
2HADM, (3.4)

∂tMADM
i = [Original Terms] + κK∆MADM

i + 3κK∂i∂j(MADM)j , (3.5)

where, we set the coefficients as κγijmn = κγδimδjn and κKijmn = κKδimδjn. In both equations (3.4)-
(3.5), we see the diffusion terms, −2κγ∆

2HADM and κK∆MADM
i , respectively. These terms contribute

to the damping of the constraint violations.

3.2 C2-adjusted BSSN Formulation

3.2.1 Evolution Equations

Next, we apply the idea to the BSSN formulation. The evolution equations are formally written as

∂tφ = [Original Terms]− λφ

(
δ(CBSSN)2

δφ

)
, (3.6)

∂tK = [Original Terms]− λK

(
δ(CBSSN)2

δK

)
, (3.7)

∂tγ̃ij = [Original Terms]− λγ̃ijmn

(
δ(CBSSN)2

δγ̃mn

)
, (3.8)

∂tÃij = [Original Terms]− λÃijmn

(
δ(CBSSN)2

δÃmn

)
, (3.9)

∂tΓ̃
i = [Original Terms]− λij

Γ̃

(
δ(CBSSN)2

δΓ̃j

)
, (3.10)
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where all the coefficients λφ, λK , λγ̃ ijmn, λÃijmn, and λ
ij

Γ̃
are positive definite. (CBSSN)2 is a function

of the constraints HBSSN, MBSSN
i , Gi, A, and S, which we set as

(CBSSN)2 =

∫
{(HBSSN)2 + γijMBSSN

i MBSSN
j + cGγijGiGj + cAA2 + cSS2}d3x, (3.11)

where, cG, cA, and cS are Boolean parameters (0 or 1). These three parameters are introduced to prove
the necessity of the algebraic constraint terms in (3.11). The adjusted terms in (3.6)-(3.10) are then
written down explicitly, as shown as eqs. (A1)-(A5) in [6], respectively.

3.2.2 Constraint Propagation Equations

In order to see the effect of the adjusted terms in (3.6)-(3.10), we derive the constraint propagation
equations in the flat spacetime:

∂tHBSSN = [Original Terms] +
(
−128λφ∆

2 − (3/2)λγ̃∆
2 + 2λΓ̃∆

)
HBSSN

+ cG
(
−(1/2)λγ̃∆∂m − 2λΓ̃∂m

)
Gm + 3cSλγ̃∆S, (3.12)

∂tMBSSN
a = [Original Terms] +

{
(8/9)λKδ

bc∂a∂b + λÃ∆δa
c + λÃδ

bc∂a∂b

}
MBSSN

c − 2cAλÃ∂aA,

(3.13)

∂tGa = [Original Terms] + δab
(
(1/2)λγ̃∂b∆+ 2λΓ̃∂b

)
HBSSN

+ cG
(
λγ̃∆δ

a
b + (1/2)λγ̃δ

ac∂c∂b − 2λΓ̃δ
a
b

)
Gb − λγ̃cSδ

ab∂bS, (3.14)

∂tA = [Original Terms] + 2λÃδ
ij(∂iMBSSN

j )− 6cAλÃA, (3.15)

∂tS = [Original Terms] + 3λγ̃∆HBSSN + cGλγ̃∂ℓGℓ − 6cSλγ̃S. (3.16)

where we set the coefficient parameters, λγ̃ijmn = λγ̃δimδjn, λÃijmn = λÃδimδjn and λΓ̃
ij = λΓ̃δ

ij for

simplicity. In the above equations, we see the appearances of diffusion terms (−128λφ∆
2 − (3/2)λγ̃∆

2 +
2λΓ̃∆)HBSSN, λÃ∆MBSSN

a , cG(λγ̃∆− 2λΓ̃)G
a, −6cAλÃA and −6cSλγ̃S, respectively. These terms con-

tribute to the damping of the violations. If we set the parameters, cG, cA and cS , are zero, equations
(3.14)-(3.16) turn not to include diffusion terms. Therefore, (CBSSN)2 should include Gi, A and S.

4 Numerical Tests

We perform simulations of the polarized Gowdy wave which is one of the testbeds for comparing formu-
latiuons [7]. The numerical parameters are the same with those in [7].
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Figure 1: L2 norm of each constraint in the polarized Gowdy wave test with the ADM formulations.
The L2 norm of the constrains are shown as a function of the backward time. We adopt the parameters
same with the line (c) in Fig.2 of [5].
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In Figure 1, we show that the constraint violations with the ADM formulaitons. We see that the
adjusted cases decrease the violation, and the lifetime of simulations becomes about 1.7 times longer
than that of the standard case. Next, in Fig.2, we show that the constraint violations with the BSSN
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Figure 2: L2 norm of each constraint with the BSSN formulations. We adopt the parameters same with
the line (C) in Fig.8 of [6].

formulations. We see the similar effects, and the lifetime of simulations of the adjusted case becomes
more than twice longer than that of the standard case.

5 Summary

In this report, we reviewed the idea of the C2-adjusted system and applied the system to the ADM and
BSSN formulations. We see the effect of constraint-damping due to the adjusted terms by showing the
constraint propagation equations. We performed the simulations with these formulations in the Gowdy
wave testbed and confirmed the constraint-damping behaviors and the life time of the simulations be-
comes longer than those of the standard cases. Please refer [6] for more details.

This work was partially supported by Grant-in-Aid for Scientific Research Fund of Japan Society of
the Promotion of Science No. 22540293 (HS).
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Effects of hyperon in binary neutron star mergers
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Abstract
Numerical simulations for the merger of binary neutron stars are performed in full gen-
eral relativity incorporating both nucleonic and hyperonic finite-temperature equa-
tions of state (EOS) and neutrino cooling for the first time. It is found that even for
the hyperonic EOS, a hypermassive neutron star is first formed after the merger for
the typical total mass ≈ 2.7M⊙, and subsequently collapses to a black hole (BH). It
is shown that hyperons play a substantial role in the post-merger dynamics, torus for-
mation around the BH, and emission of gravitational waves (GWs). In particular, the
existence of hyperons is imprinted in GWs. Therefore, GW observations will provide
a potential opportunity to explore the composition of the neutron star matter.

1 Introduction

The properties of the neutron star (NS) matter, in particular its equation of state (EOS), are still poorly
understood. In recent years, the influence of non-nucleonic degrees of freedom, such as hyperons, meson
condensations, and quarks, on properties of the NS matter has been discussed extensively [1]. Generally
speaking, presence of such exotic particles results in softening of EOS. This effect reduces the maximum
mass of NS. The recent mass measurement of PSR J1614-2230 (MJ1614−2230 = 1.97 ± 0.04M⊙) [2] gave
a strong impact on the properties of the NS matter, indicating that stiff EOSs are preferable. However,
it does not still constrain the existence of exotic particles in NS [1, 3].

There are a number of numerical studies exploring effects of such exotic phases on stellar core col-
lapse [4]. By contrast, effects of the exotic particles on dynamics and gravitational waves (GWs) from
binary neutron stars (BNS) mergers and hypermassive neutron stars (HMNS) subsequently formed have
not been studied in detail (but see recent studies in [5]), although the coalescence of BNS is one of the
most promising sources for next-generation kilo-meter-size GW detectors.

Among exotic particles, Λ hyperons are likely to appear first in (cold) NS around the rest-mass
density above several times of the nuclear matter density. We here present the first results of numerical-
relativity simulations for the BNS merger performed incorporating a finite-temperature EOS including
contributions of Λ hyperons [8] (Hyp-EOS). We ignore the contributions of Σ hyperons because recent
experiments suggest that Σ hyperons feel a repulsive potential [7] while Λ hyperons feel an attractive
potential [6], and hence, Λ hyperons are likely to appear first and to be dominant.

2 Setting

Numerical simulations in full general relativity are performed using the same method and formulation as
in [9]52. In addition to the ordinary hydrodynamic equations, we solve evolution equations for the neutrino
(Yν), electron (Ye), and total lepton (Yl) fractions per baryon, taking account of weak interaction processes
and neutrino cooling employing a general relativistic leakage scheme [11, 12]. The results with Hyp-EOS
are compared with those with a finite-temperature nucleonic EOS [13] (Shen-EOS). The maximum mass
of zero-temperature spherical NS for Hyp-EOS is Mmax,Hyp ≈ 1.8M⊙. This is smaller than that for
Shen-EOS, Mmax,Shen ≈ 2.2M⊙. Simulations with finite-temperature EOSs with exotic phases which can
produce a stable NS with mass larger than MJ1614−2230 should be performed in the future studies.

51Email address: sekig@yukawa.kyoto-u.ac.jp
52Einstein’s equations are solved in the so-called Baumgarte-Shaprio-Shibata-Nakamura (BSSN)-puncture formulation [10]

with dynamical gauge conditions for the lapse function and the shift vector; a fourth-order finite differencing in space and
a fourth-order Runge-Kutta time integration are used; a conservative shock capturing scheme with third-order accuracy in
space and fourth-order accuracy in time is employed for solving hydrodynamic equations
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Figure 1: (a) Maximum rest-mass density, maximum matter temperature, and maximum mass fraction
of hyperons as functions of time for H135 (solid red), H15 (dotted black), S135 (dashed green), S15
(short-dotted cyan), and S16 (dashed-dotted blue). The vertical thin lines show the time at which a BH
is formed. (b) Neutrino luminosities for H135 and S135 (top), H15 and S15 (middle), and S16 (bottom).
The dotted vertical lines show the time at which a BH is formed. The solid and dashed curves correspond
to the result with the Hyp-EOS and Shen-EOS, respectively.
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Figure 2: (a) The torus mass as a function of time after the BH formation. (b) fGW(t) in the HMNS
phase, smoothed by a weighted spline.

Numerical simulations are performed in a non-uniform grid [9]53, and we confirm that the convergence
is achieved except for stochastic behaviors due to convective motions. Outer boundaries are located in a
local wave zone. During the simulations, we check the conservation of baryon rest-mass, total gravitational
mass, and total angular momentum, and find that the errors are within 0.2%, 1%, and 2%, respectively,
for the high-resolution runs. We focuses on the merger of equal-mass BNS. The gravitational mass of
single NS in isolation isMNS = 1.35 and 1.5M⊙ for Hyp-EOS (referred to as H135 and H15). We perform
simulations with the initial condition of about 3–4 orbits before the onset of the merger until the system
relaxes to a quasistationary state. We compare the simulation results with those for Shen-EOS with
MNS = 1.35, 1.5, and 1.6M⊙ (referred to as S135, S15, and S16) obtained in [9].

3 Results

Figure 1(a) plots the evolution of maximum rest-mass density, ρmax, maximum temperature, Tmax, and
maximum mass fraction of hyperons, XΛ,max as functions of t − tmerge where tmerge is an approximate
onset time of the merger. After the merger sets in, XΛ,max increases to be ≳ 0.1 in accordance with the

53The inner domain is composed of a finer uniform grid and the outer domain of a coarser nonuniform grid. The grid
resolution in the inner zone is chosen so that the major diameter of each neutron star in the inspiral orbit is covered by 60
and 80 grid points for low- and high-resolution runs, respectively
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Figure 3: (a) GWs observed along the axis perpendicular to the orbital plane for the hypothetical distance
to the source D = 100 Mpc. (b) The effective amplitude of GWs defined by 0.4f |h(f)| as a function of
frequency for D = 100 Mpc. The noise amplitudes of a broadband configuration of broadband-LIGO and
LCGT are shown together.

increase in ρmax, and hyperons play a substantial role in the post-merger dynamics and emission of GWs.

A HMNS is first formed after the merger, supported by the centrifugal force and thermal contributions
to the pressure [5, 9]. They subsequently contract by emission of GWs, and for H135, H15, and S16,
they collapse to a black hole (BH) at t = tBH where tBH − tmerge ≈ 11.0, 3.1, and 8.9 ms, respectively.
After the BH formation for H135, H15, and S16, an accretion torus is formed around the BH. Figure 2(a)
plots the torus mass, Mtorus, as a function of time. Mtorus in a quasistationary state is ≈ 0.082, 0.035,
and 0.10M⊙ for H135, H15, and S16, respectively, with ρmax ≈ 1013 g/cm3 (see Fig. 1(a)). Interestingly,
Mtorus is smaller for H135 than that for S16 in spite of the longer lifetime of the HMNS. This is likely
because the HMNS for H135 just before the BH formation is more compact than that for S16. Our results
suggest that the emergence of non-nucleonic degrees of freedom such as hyperons would have a negative
impact for driving a short-gamma ray burst for which formation of a massive torus is preferred [14].

Figure 1(b) plots neutrino luminosities as functions of time. Electron antineutrinos are dominantly
emitted for all the models as found in the previous studies [9, 15]. Soon after the BH formation, µ/τ
neutrino luminosity steeply decreases because high temperature regions are swallowed into the BH, while
luminosities of electron neutrinos and antineutrinos decrease only gradually because these neutrinos are
emitted via charged-current processes from the massive accretion torus [9]. These features in neutrino
luminosities are quantitatively the same for Hyp-EOS and Shen-EOS models, and hence, it would be
difficult to extract information of the NS matter only from the neutrino signal.

Figure 3(a) plots the plus mode (h+) of GWs as a function of tret − tmerge where tret is the retarded
time. GWs from the inspiral phase (for tret ≲ tmerge) agree well with each other for the models with
Hyp-EOS and Shen-EOS for the same mass. On the other hand, quasi-periodic GWs from the HMNS
show differences. In particular, the characteristic GW frequency, fGW, increases with time for Hyp-EOS
models, as clearly observed in the effective amplitude [see Fig. 3(b)] defined by heff ≡ 0.4f |h(f)| where
h(f) is the Fourier transform of h+ − ih× with h× being the cross mode and the factor 0.4 comes from
taking average in terms of directions to the source and rotational axis of the HMNS. Reflecting the shift
of the characteristic frequency, the prominent peak in the GW spectra for Hyp-EOS models (H135 and
H15) is broadened. We here note that the lifetime of the HMNS is longer for H135 than that for S16.
The reason for this broadening of the peak is described as follows in more detail.

In the case that hyperons are absent, the HMNS slightly contract simply due to the angular momentum
loss (weakening centrifugal force) via GW emission. By contrast, in the case that hyperons are present,
XΛ increases with the contraction of the HMNS, resulting in the relative reduction of the pressure. As a
result, the HMNS further contract. Recent studies showed that fGW is associated with the frequency of
f -mode which is approximately proportional to

√
MH/R3

H where MH and RH are the mass and radius of
the HMNS [16]. This indicates that fGW should increase with time. To see that this is indeed the case,
we show fGW(≡ dϕNP/dt) calculated from a Weyl scalar Ψ4 ≡ Ψe−iϕNP in Fig. 2(b). It is clearly seen

JGRG21 Programme



Y. Sekiguchi 133

that the mean value of fGW in the HMNS phase is approximately constant for Shen-EOS models. By
contrast,fGW for H135 increases with time as the HMNS becomes compact.

4 Summary

We have reported effects of hyperons on the BNS merger in numerical-relativity simulations incorporating
finite-temperature, both hyperonic and nucleonic EOS, microphysical processes, and neutrino cooling. We
showed that for the adopted hyperonic EOS, a BH is not promptly formed and a HMNS is first formed
for the typical total mass of BNS, as in the nucleonic Shen-EOS. The HMNS subsequently collapse to a
BH and a massive torus is formed around the BH. The torus mass for the hyperonic EOS is smaller than
that for the nucleonic EOS. We further showed that for the hyperonic EOS, the characteristic frequency
of GWs, fGW, from the HMNS increases by a factor of ∼ 20–30% during their evolution via GW emission,
by contrast with that for the nucleonic EOS in which fGW is approximately constant. Our results open
a possibility to constrain the composition of the NS matter via observation of GW from the HMNS.
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Abstract
Numerical simulations for the merger of binary neutron stars are performed in full gen-
eral relativity incorporating both nucleonic and hyperonic finite-temperature equation
of states and neutrino cooling for the first time. It is found that for the nucleonic
and hyperonic equation of states, a hyper massive neutron star (HMNS) with a long
lifetime (≳ 10 ms) is the outcome for the total mass 2.7 M⊙. It is shown that the
typical total neutrino luminosity of the HMNS is ∼ 3 × 1053 erg/s and the effective
amplitude of gravitational waves from the HMNS is 2− 4× 10−22 at f ≈ 2.1 kHz for
a source of distance of 100 Mpc. We present the neutrino luminosity curve when a
black hole is formed for the first time as well.

1 Introduction

Coalescence of binary neutron stars (BNS) are drawing attention of researchers in various fields because it
is one of most promising source for next generation kilo-meter-size gravitational-wave (GW) detectors [1]
and a possible candidate for the progenitor of short-hard gamma-ray bursts [2] as well as a high-end
laboratory of the nuclear theory [3]. Motivated by these facts, numerical simulations have been extensively
performed for the merger of BNS in the framework of full general relativity in the past decade since the
first success in 2000 [4].

BNSs evolve due to gravitational radiation reaction and eventually merge. Before the merger sets in,
each neutron star is cold, (i.e., thermal energy of constituent nucleons is much smaller than the Fermi
energy), because thermal energy inside the neutron stars is significantly reduced by neutrino and photon
coolings due to the long-term evolution (typically ≳ 108 yrs) until the merger. By contrast, after the
merger, shocks are generated by hydrodynamic interactions, which heat a merged object, hyper massive
neutron star (HMNS), up to ∼ 30−50 MeV, and hence, copious neutrinos are emitted. So far, numerical
relativity simulations in which both the nuclear theory based finite temperature equation of state (EOS)
and neutrino cooling are properly taken into account have not been done yet. In addition, the properties
of the neutron star matter are still poorly understood. In recent years, the influence of non-nucleonic
degrees of freedom, such as hyperons, meson condensations, and quarks, on properties of the neutron
star matter has been discussed extensively. Among exotic particles, Λ hyperon are believed to appear
first in (cold) neutron star around the rest mass density of ρ ∼ 2− 3 ρnuc, where ρnuc ≈ 2.8× 1014g/cm3

is the nuclear matter density. To explore the neutron star matter properties in BNS merger, we adopt
Shen-EOS for the nucleonic EOS [5] and a finite-temperature EOS including contributions of Λ hyperons
as the hyperonic EOS [6]. In this proceeding, we present the first results of numerical relativity simulation
for the BNS merger performed incorporating both a finite-temperature EOS and neutrino cooling based
on Sekiguchi et al. [7].

2 Framework

Numerical simulations in full general relativity are performed using the following formulation and nu-
merical schemes: Einstein’s equations are solved in the original version of Baumgarte-Shapiro-Shibata-
Nakamura-puncture formulation; a fourth-order finite differencing in space and a fourth-order Runge-
Kutta time integration are used; a conservative shock capturing scheme with third-order accuracy in
space and fourth-order accuracy in time is employed for solving hydrodynamic equations. We solve evo-
lution equations for neutrino (Yν), electron (Ye), and total lepton (Yl) fractions per baryon, taking into
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account weak interaction processes and neutrino cooling employing a general relativistic leakage scheme
for electron type (νe), electron anti-type (ν̄e), and other types (µ/τ) of neutrinos (νx) [8] as well. We
implement Shen-EOS, tabulated in terms of the rest-mass density (ρ), temperature (T ), and Ye or Yl, as
the nucleonic EOS and a finite-temperature EOS including contributions of Λ hyperons (Hyp-EOS) as
the hyperonic EOS. These EOS produce a maximum mass of zero-temperature spherical NS of ≈ 2.2M⊙
for Shen-EOS and ≈ 1.8M⊙ for Hyp-EOS. Although Hyp-EOS cannot pass through the observational
constraint of PSR J1614-2230 (MJ1614−2230 = 1.97 ± 0.04M⊙), it deserves employing to explore the
impact of hyperons on the BNS merger.

Numerical simulations are performed preparing a non-uniform grid as in [10]. The inner domain is
composed of a finer uniform grid and the outer domain of a coarser nonuniform grid. The grid resolution
in the inner zone is chosen to cover the major diameter of each neutron star in the inspiral orbit by
60 and 80 grid points for low- and high-resolution. Outer boundaries are located in a local wave zone
at ≈ 560 − 600km. As a monitor of the accuracy, we check the conservation of baryon rest-mass, total
gravitational mass, and total angular momentum and find that they are preserved within the accuracy
of 0.5%, 1%, and 3%, respectively, for the high-resolution runs.

Sekiguchi et al. [7] focuses on the merger of equal mass BNS with total mass raging from 2.7M⊙
to 3.2M⊙. In this proceeding, we report the models with total mass 2.7M⊙. There are two possible
fates of BNS: If its total mass M is greater than a critical mass Mc, a BH will be formed soon after the
onset of the merger, while a differentially rotating HMNS will be formed for M < Mc. Mc for Shen-EOS
(Hyp-EOS) is 2.8−2.9M⊙ (2.3−2.4M⊙). Therefore, we expect that Shen-EOS model will form a HMNS
and Hyp-EOS model will collapse to a BH.

2.1 Numerical results

Figure 1 plots the evolution of maximum rest-mass density, ρmax, maximum temperature, Tmax, and
maximum mass fraction of hyperons, XΛ,max as functions of t − tmerge where tmerge is an approximate
onset time of the merger. Before the merger (t < tmerge), ρmax and Tmax for Hyp-EOS model agree well
with those for the corresponding Shen-EOS model, because XΛ,max in this phase is small as O(10−2)
and effects of hyperons on dynamics are not significant. After the merger sets in (t > tmerge), on the
other hand, XΛ,max increases to be ≳ 0.1 in accordance with the increase in ρmax, and hyperons play a
substantial role in the post-merger dynamics. Although the total mass, M , is larger than the maximum
mass of the zero-temperature spherical NS for all the models, a HMNS is formed after the merger,
supported by the centrifugal force and thermal contribution to the pressure [7, 9]. They subsequently
contract by emission of GWs, which carry energy and angular momentum from the HMNS; ρmax increases
in the gravitational radiation timescale. For Hyp-EOS model, it collapses to a black hole (BH) at t = tBH

where tBH − tmerge ≈ 11.0 ms. At t − tmerge ∼ 20 ms for Shen-EOS model, the degree of its nonaxial
symmetry becomes low enough that the emissivity of GWs is significantly reduced. Because no dissipation
process except for the neutrino cooling is present, the HMNS will be alive at least for a cooling time,
tcool ≡ Eth/Lν ∼ 2–3 s, where Eth is total thermal energy and Lν is total neutrino luminosity [7].

Figure 3 plots neutrino luminosities as functions of time for three flavors (νe, ν̄e, and sum of νx). It
is found that electron anti neutrinos are dominantly emitted for any model. The reason for this is as
follows: The HMNS has a high temperature, and hence, electron-positron pairs are efficiently produced
from thermal photons, in particular in its envelope. Neutrons efficiently capture the positrons to emit anti
neutrinos whereas electrons are not captured by protons as frequently as positrons because the proton
fractions is much smaller than the neutron fraction. Such hierarchy in the neutrino luminosities was re-
ported also in Ruffert et al. [11]. Soon after the BH formation, µ/τ neutrino luminosity steeply decreases
because high temperature regions are swallowed into the BH, while luminosities of electron neutrinos and
anti neutrinos decrease only gradually because these neutrinos are emitted via charged-current processes
from the massive accretion torus. These features in neutrino luminosities are quantitatively the same for
Hyp-EOS and Shen-EOS models, and hence, it would be difficult to extract information of the neutron
star matter only from the neutrino signal.

The anti neutrino luminosity for the long-lived HMNS for Shen-EOS model is Lν̄ ∼ 2 × 1053erg/s
with small time variability. It is greater than that from the protoneutron stars found after supernovae
[12]. Averaged neutrino energy is ϵν̄ ∼ 20 − 30 MeV. The sensitivity of water-Cherenkov neutrino
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detectors such as Super-Kaminokande and future Hyper-Kamiokande (HK) have a good sensitivity for
such high-energy neutrinos in particular for electron anti neutrinos. The detection number for electron
neutrinos is approximately estimated by σ∆TLν̄/(4πD

2ϵν̄) where σ is the total cross section of the
detector against target neutrinos, ∆T is the lifetime of the HMNS, and D is the distance to the HMNS.
For one-Mton detector such as HK, the expected detection number is ≳ 10 for D ∼ 5 Mpc, neutrinos from
the HMNS may be detected and its formation may be confirmed. Note that GWs from the HMNS will
be simultaneously detected for such a close event, reinforcing the confirmation of the HMNS formation.

Figure 3(a) plots the plus and cross mode (h+,×) of GWs as a function of tret − tmerge where tret
is the retarded time tret = t − D − 2M log(D/M), extracted from the metric in the local wave zone.
The waveforms are composed of the so-called chirp waveform, which is emitted when the BNS is in an
inspiral motion (for tret ≲ tmerge, and the merger waveform (for tret ≳ tmerge). The GW amplitude
is |h+,×| ≲ 2 × 10−22 for a source at a distance D = 100 Mpc. GWs from the inspiral phase (for
tret ≲ tmerge) agree well with each other for the models with Hyp-EOS and Shen-EOS. On the other
hand, quasi-periodic GWs from the HMNS (for tret ≳ tmerge) show differences. First, the amplitude of
quasi-periodic GWs damps steeply at the BH formation for Hyp-EOS model. This is because the HMNS
collapses to a BH due to the softening of the EOS before relaxing to a stationary spheroid. Second,
the characteristic GW frequency, fGW, increases with time for Hyp-EOS model. These facts are clearly
observed in the effective amplitude [see Fig. 3(b)] defined by heff ≡ 0.4f |h(f)| where h(f) is the Fourier
transform of h+ − ih× and the factor 0.4 comes from taking average in terms of direction to the source
and rotational axis of the HMNS. Reflecting a shorter lifetime of the HMNS in Hyp-EOS model, the
peak amplitude of heff(f) is smaller. Reflecting the shift of the characteristic frequency, the prominent
peak in the GW spectrum for Hyp-EOS model is broadened. The effective amplitude 2 − 4 × 10−22 for
D = 100 Mpc suggests that for a specially-designed version of advanced GW detectors such as broadband
LIGO, which has a good sensitivity for a high-frequency band, GWs from the HMNS oscillations may be
detected with S/N = 5 if D ≲ 20 Mpc or the source is located in an optimistic direction.

3 Summary

We have reported the first results of numerical-relativity simulation performed incorporating both a finite-
temperature nucleonic EOS and hyperonic EOS as well as neutrino cooling effect. We showed that for
both the nucleonic and hyperonic EOS, HMNS is the canonical outcome and BH is not promptly formed
after the onset of the merger for the canonical value of the neutron star mass 1.35M⊙. For the nucleonic
EOS, the lifetime of the formed HMNS is much longer than its dynamical timescale, ≫ 10ms, and will
be determined by the timescale of neutrino cooling. For the hyperonic EOS, the HMNS subsequently
collapse to a BH. Neutrino luminosity of the HMNS was shown to be high as ∼ 3 × 1053erg/s. The
effective amplitude of GWs is 2− 4× 10−22 at fpeak ≈ 2.1 kHz for a source distance of 100 Mpc. If the
BNS merger happens at a relatively short distance or is located in an optimistic direction, such GWs
may be detected and HMNS formation will be confirmed.
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Figure 1: Maximum value of rest-mass density, atter temperature, and mass fraction of hyperons as
functions of time for H135 (red) and S135 (green). The vertical thin lines show the time at which a BH
is formed.
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Abstract
The networks of domain walls bounded by cosmic strings naturally arise in the theory
of complex scalar field with a potential which has multiple degenerate minima. In
particular, QCD axion models predict the formation of such string-wall networks in
the early universe. Based on 3D lattice simulations, we investigate the radiation of
axion particles and gravitational waves from these defect networks, and discuss its
implications for axion cosmology.

1 Introduction

Topological defects are non-trivial field configurations which are formed if some symmetries are spon-
taneously broken in the early universe. These defects can be surface-like (domain walls) or vortex-like
(cosmic strings), depending on the structure of symmetry groups (for review, see [1]). In this work, we
consider a kind of hybrid defect which arises from some sequence of symmetry breaking. If a spontaneous
breaking of some global U(1) symmetry is followed by a breaking of discrete symmetry, strings attached
to domain walls will be formed. Such a series of symmetry breaking naturally occurs in some particle
physics models, and we especially consider the model of axions.

Axion is a pseudo Nambu Goldstone boson which arises from the spontaneous breaking of the U(1)
Peccei-Quinn (PQ) symmetry, introduced in order to solve the strong CP problem of the quantum
chromodynamics (QCD) [2–5]. This U(1) symmetry is broken when the temperature of the universe
becomes comparable to the axion decay constant Fa. Later, axion acquires a mass due to the non-
perturbative effect in QCD, and discrete subgroup of U(1) is spontaneously broken. As a consequence,
networks of domain walls bounded by strings are formed around the QCD era [6]. In some cases, these
string-domain wall networks survive for a long time, and they can be another source of the stochastic
background of gravitational waves [7].

2 Model of domain walls bounded by strings

We consider the model of a complex scalar field ϕ with the Lagrangian density given by

L =
1

2
∂µϕ

∗∂µϕ− V (ϕ), (2.1)

where the scalar potential is given by

V (ϕ) =
λ

4
(ϕ∗ϕ− η2)2 +

m2η2

N2
DW

(1− cosNDWθ). (2.2)
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Here, θ is the angular part of the scalar field (i.e. ϕ = |ϕ|eiθ). The first term in eq. (2.2) is usual
mexican-hat potential, which causes spontaneous breaking of U(1) symmetry. In the early universe, U(1)
symmetry is broken when the temperature of the universe falls below the energy scale ∼ η. At this time,
the scalar field gets a vacuum expectation value |⟨ϕ⟩|2 = η2, and cosmic strings are formed. The second
term in eq. (2.2) may arise due to the non-perturbative effect of QCD. Because of the presence of this
term, the U(1) symmetry is explicitly broken into its subgroup ZNDW . This term becomes non-negligible
when the mass of the angular part of the scalar field m becomes greater than the friction term which
comes from the cosmic expansion, m ≳ H, where H is the Hubble parameter. Then, the angular part of
the scalar field begins to roll down to one of NDW degenerate minima represented by

θ =
2πk

NDW
, k = 0, 1, . . . , NDW − 1. (2.3)

At this stage, the discrete ZNDW symmetry is spontaneously broken, and domain walls are formed,
separating theNDW vacua. These domain walls are attached to cosmic strings around their boundaries [1].

The value of NDW depends on models, which we do not specify here. However, the evolution of the
defect networks is different between the case with NDW = 1 and others. If NDW = 1, it can be shown that
domain walls bounded by strings are unstable, and they disappear immediately after the formation [8].
On the other hand, if NDW > 1, the string-wall networks are stable, and they eventually dominate the
energy density of the universe. If it occurs after the era of big bang nucleosynthesis, it conflicts with
standard cosmology [9].

In order to solve this problem, Sikivie [6] phenomenologically introduced a term

δV = −Ξη3(ϕe−iδ + h.c.) (2.4)

in the potential (2.2), where Ξ is a dimensionless parameter which is assumed to be much less than unity.
This term lifts degenerate vacua, breaking the discrete symmetry explicitly. If this kind of term exists in
the potential, it affects as a pressure on walls, which eventually annihilate them. We can naively estimate
the life time of the networks tdec by the ratio between the surface energy density of domain walls σ and
the difference of the potential energy between two neighboring vacua,

tdec ∼ σ/(Ξη4/NDW) (2.5)

where σ ≃ 9mη2/N2
DW for axionic domain walls [10].

In our previous study [7], we found that string-wall networks actually disappears in the time scale
given by eq. (2.5) and pointed out that it is possible to probe axion models with NDW > 1 by observing
gravitational waves produced by these defect networks. Also, the cosmological abundance of cold axions
produced by string-wall networks gives another constraint on the model parameters. In this work, we are
going to give a concrete analysis of gravitational waves and axion radiations from string-wall networks
by numerically computing the spectrum of these radiations.

3 Spectrum of gravitational waves and radiated axions

In the numerical studies, we follow the evolution of two real scalar fields ϕ1 and ϕ2 which are defined by
ϕ = ϕ1 + iϕ2. We solve the classical equations of motion derived from the Lagrangian density (2.1) on
the 3-dimensional lattice with 5123 points. Note that, this model has three parameters, λ, NDW and m
(η is fixed to be unity). In numerical simulations, we use the values λ = 0.1 and m = 0.1, and vary the
value of NDW.

To calculate the spectrum of gravitational waves, we use the formalism developed in [11]. Here,
gravitational waves are described as spatial metric perturbations from the spatially flat Friedmann-
Robertson-Walker background,

ds2 = dt2 −R2(t)(δij + hij)dx
idxj , (3.1)

and they obey the linearized field equation

ḧij + 3Hḣij −
∇2

R2
hij =

16πG

R2
TTT
ij , (3.2)
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where TTT
ij is the transverse-traceless component of the stress-energy tensor. The solution of eq. (3.2) is

formally given as a time integral of TTT
ij convoluted with Green’s functions [11]. Then the fraction of the

energy density of gravitational waves is described by

Ωgw(k, t) ≡
dρgw/d ln k

ρc(t)
=

4

3πV

G2

R4H2
Sk(t), (3.3)

where V is the volume of the simulation box, ρc = 3H2/8πG is the critical density of the universe, and
Sk(t) is some function of k and t which can be calculated by using the formal solutions of eq. (3.2).

Figure 1 (a) shows the result of the gravitational wave spectrum. The slope of the spectrum changes
at two characteristic scales corresponding to the Hubble radius (k/R ∼ H) and the width of the domain
walls which is given by the mass of the axion (k/R ∼ m). Also, there is nearly flat (but slightly red-tilted)
spectrum extends between two relevant scales. These results are similar to the spectrum obtained in the
context of simple model with real scalar field, investigated in [12].

We also compute the spectrum P (t, k) of radiated axions which is defined by

1

2
⟨ȧ(t,k)∗ȧ(t,k′)⟩ = (2π)3

k2
δ(3)(k− k′)P (t, k), (3.4)

where ⟨. . . ⟩ represents an ensemble average and ȧ(t,k) is the Fourier component of the time derivative of
the axion field, whose value is obtained from simulated data of ϕ. To give a precise estimation of P (t, k),
we excise the contaminations which come from the moving defects (strings and domain walls) by using
the technology developed in [13].

Figure 1 (b) shows the result of the spectrum of radiated axions. The spectrum has a peak at
comoving momentum k ≈ 3, which roughly corresponds to the scale of the mass of the axion. Therefore,
the radiated axions are mildly relativistic, and their contribution to the present abundance of the cold
dark matter can be large [14].
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Figure 1: The spectra of (a) gravitational waves and (b) axions produced by string-wall networks, eval-
uated at the final time of numerical simulations with NDW = 3 and 6.

4 Discussions

We investigated the cosmological scenario in which the networks of domain walls bounded by strings exist
for a ling time. Assuming that they disappear around the time given by eq. (2.5) without causing any
cosmological disasters, we expect that significant amounts of gravitational waves and axions are produced
from these defect networks before their annihilation. The present abundance of radiated axions can be
estimated as

Ωah
2 ≃ 6×

(
6

NDW

)3/2(
10−56

Ξ

)1/2(
1010GeV

Fa

)1/2

, (4.1)

JGRG21 Programme



K. Saikawa 141

where h is the current value of the Hubble parameter in units of 100 km sec−1Mpc−1 and Fa ≡ η/NDW

is the axion decay constant. By requiring that it must not exceed the present abundance of cold dark
matter ΩCDMh

2 ≃ 0.11, it is possible to constrain the model parameters such as Fa and Ξ. Also the
present abundance of gravitational waves is estimated as

Ωgwh
2 ≃ 5× 10−15

(
6

NDW

)6(
10−56

Ξ

)2(
1010GeV

Fa

)4

. (4.2)

From numerical studies, we found that the spectrum of gravitational waves extends between two relevant
scales, the Hubble radius and the mass of axions. These scales correspond to the frequencies between
f ∼ 10−10 Hz and f ∼ 10 Hz, if we take NDW = 6, Ξ = 10−56 and Fa = 1010GeV. It might be possible to
observe such a signal of gravitational waves in future space-borne interferometers with higher sensitivities,
such as DECIGO [15]. Therefore, the observation of gravitational waves gives another constraint on the
model parameters. More detailed analysis will be presented in future publications [16].
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Abstract
We investigate a statistical anisotropy on the Cosmic Microwave Background (CMB)
bispectrum, which can be generated from the primordial non-Gaussianity induced by
quantum fluctuations of a vector field. We find new configurations in the multipole
space of the CMB bispectrum given by ℓ1 = ℓ2+ℓ3+2, |ℓ2−ℓ3|−2 and their permuta-
tions, which violate the rotational invariance, such as an off-diagonal configuration in
the CMB power spectrum. We also find that in a model presented by Yokoyama and
Soda (2008), the amplitude of the statistically anisotropic bispectrum in the above
configurations becomes as large as that in other configurations such as ℓ1 = ℓ2 + ℓ3.
As a result, it might be possible to detect these contributions in future experiments,
which would give us novel information about the physics of the early Universe.

1 Introduction

The current cosmological observations, particularly Cosmic Microwave Background (CMB), tell us that
the Universe is almost isotropic, and primordial density fluctuations are almost Gaussian random fields.
However, in keeping with the progress of the experiments, there have been many works that verify the
possibility of the small deviation of the statistical isotropy, e.g., the so-called “Axis of Evil”. The analyses
of the power spectrum by employing the current CMB data suggest that the deviation of the statistical
isotropy is about 10% at most (e.g., Refs. [1]). Toward more precise measurements in future experiments,
there are a lot of theoretical discussions about the effects of the statistical anisotropy on the CMB power
spectrum, [2], e.g., the presence of the off-diagonal configuration of the multipoles in the CMB power
spectrum, which vanishes in the isotropic spectrum.

As is well known, it might be difficult to explain such statistical anisotropy in the standard inflation-
ary scenario. However, recently, there have been several works about the possibility of generating the
statistically anisotropic primordial density fluctuations in order to introduce nontrivial dynamics of the
vector field [3]. In Ref. [4], the authors considered a modified hybrid inflation model where a waterfall
field couples not only with an inflaton field but also with a massless vector field. They have shown that,
owing to the effect of fluctuations of the vector field, the primordial density fluctuations may have a small
deviation from the statistical isotropy and also the deviation from the Gaussian statistics. If the primor-
dial density fluctuations deviate from the Gaussian statistics, they produces the non-zero higher order
spectra (corresponding to higher order correlation functions), e.g., the bispectrum (3-point function), the
trispectrum (4-point function) and so on. Hence, in the model presented in Ref. [4], we can expect that
there are characteristic signals not only in the CMB power spectrum but also in the CMB bispectrum.

With these motivations, in this work, we calculate the CMB statistically anisotropic bispectrum
sourced from the curvature perturbations generated in the modified hybrid inflation scenario proposed in
Ref. [4], on the basis of the useful formula presented in Ref. [5]. Then, we find the peculiar configurations
of the multipoles which never appear in the isotropic bispectrum, like off-diagonal components in the
CMB power spectrum. In this paper, in accordance with Ref. [6], we present these consequences.

2 Statistically anisotropic non-Gaussianity in curvature pertur-
bations

In this section, we briefly review the mechanism of generating the statistically anisotropic bispectrum
induced by primordial curvature perturbations proposed in Ref. [4], where the authors set the system

58Email address: mare@nagoya-u.jp
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like the hybrid inflation wherein there are two scalar fields: inflaton ϕ and waterfall field χ, and a vector
field Aµ coupled with a waterfall field. The action is given by

S =

∫
dx4

√
−g
[
1

2
R− 1

2
gµν(∂µϕ∂νϕ+ ∂µχ∂νχ)− V (ϕ, χ,Aν)−

1

4
gµνgρσf2(ϕ)FµρFνσ

]
. (2.1)

Here, Fµν ≡ ∂µAν −∂νAµ is the field strength of the vector field Aµ, V (ϕ, χ,Aµ) is the potential of fields
and f(ϕ) denotes a gauge coupling. To guarantee the isotropy of the background Universe, we need the
condition that the energy density of the vector field is negligible in the total energy of the Universe and
we assume a small expectation value of the vector field. Therefore, we neglect the effect of the vector field
on the background dynamics and also the evolution of the fluctuations of the inflaton. In the standard
hybrid inflation (only with the inflaton and the waterfall field), the inflation suddenly ends owing to the
tachyonic instability of the waterfall field, which is triggered when the inflaton reaches a critical value
ϕe. In the system described using Eq. (2.1), however, ϕe may fluctuate owing to the fluctuation of the
vector field and it generates additional curvature perturbations.

In this work, in order to calculate the CMB bispectrum explicitly, we focus on a case that the scale
invariance is kept in the spectrum of the vector perturbations, which is realized for f ∝ a, a−2 with a
being the scale factor. Furthermore, we adopt a simple model whose potential looks like an Abelian Higgs
model in the unitary gauge as [4]

V (ϕ, χ,Ai) =
λ

4
(χ2 − v2)2 +

1

2
g2ϕ2χ2 +

1

2
m2ϕ2 +

1

2
h2AµAµχ

2 , (2.2)

where λ, g, and h are the coupling constants, m is the inflaton mass, and v is the vacuum expectation
value of χ. Then, applying the δN formalism, the bispectrum of primordial curvature perturbations
depending on A is obtained as⟨

3∏
n=1

ζ(kn)

⟩
= (2π)3Fζ(k1,k2,k3)δ

(
3∑

n=1

kn

)
,

Fζ(k1,k2,k3) = CP iso
ζ (k1)P

iso
ζ (k2)Â

aÂbδcdPac(k̂1)Pbd(k̂2) + 2 perms. ,

C ≡ −g2β
ϕe
Ne

( g

hA

)2
,

(2.3)

where Ne ≡ ∂N/∂ϕe with N being the e-folding number, ϕ2e = (λv2 − h2A2)/g2, A ≡ |A|, Pij(k̂) ≡
δij − k̂ik̂j , and ˆdenotes a unit vector. P iso

ζ and gβ quantify the statistically isotropic and statistically
anisotropic parts in the power spectrum of curvature perturbations given by⟨

2∏
n=1

ζ(kn)

⟩
= (2π)3P iso

ζ (k)

[
1 + gβ

(
Â · k̂

)2]
δ

(
2∑

n=1

kn

)
. (2.4)

These are expressed with respect to β ≡ h4A2/(g4f2e ϕ
2
e), as P iso

ζ (k) ≈ Pϕ(k)(1 + β)/(2ϵ) and gβ ≈
−β/(1+β). Here, fe, Pϕ, and ϵ ≡ (∂V/∂ϕ/V )2/2 denote f when the inflation ends, the power spectrum of
inflatons, and a slow-roll parameter, respectively. Note that in the above expression, we have neglected the
effect of the longitudinal polarization in the vector field for simplicity and the terms that are suppressed
by a slow-roll parameter η ≡ ∂2V/∂ϕ2/V . Since the current CMB observations suggest gβ < O(0.1) (e.g.,
Refs. [1]) and N−1

e ≃ −
√
2ϵ, the overall amplitude of the bispectrum in this model, C, does not seem to

be sufficiently large to be detected. However, even if gβ ≪ 1 and ϵ≪ 1, C can become greater than unity
for g2ϕe/(hA)

2 ≫ 1. Thus, we expect meaningful signals also in the CMB bispectrum. Then, in the
next section, we closely investigate the CMB bispectrum generated from the primordial bispectrum given
by Eq. (2.3) and discuss a new characteristic feature of the CMB bispectrum induced by the statistical
anisotropy of the primordial bispectrum.

3 Imprints on the CMB bispectrum and discussions

In this section, we show some results of the CMB bispectra generated from the primordial bispectrum,
which has statistical anisotropy owing to the fluctuations of the vector field, given by Eq. (2.3). We also
discuss the special signals of this CMB bispectrum, which vanish in the statistically isotropic bispectrum.
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The CMB fluctuation can be expanded in terms of the spherical harmonic function as ∆X(n̂)
X =∑

ℓm aX,ℓmYℓm(n̂), where n̂ is a unit vector pointing toward a line-of-sight direction, and X denotes the
intensity (≡ I) and polarizations (≡ E,B). Then, the CMB bispectrum generated from the bispectrum
of the primordial curvature perturbations can be expressed as [5]⟨

3∏
n=1

aXn,ℓnmn

⟩
=

[
3∏

n=1

4π(−i)ℓn
∫ ∞

0

d3kn

(2π)3
TXn,ℓn(kn)Y ∗

ℓnmn(k̂n)

]
(2π)3Fζ(k1,k2,k3)δ

(
3∑

n=1

kn

)
,(3.1)

where TX,ℓ is the transfer function of the scalar mode [7]. By dealing with the complicated angular
dependence, we can obtain an explicit form of this bispectrum [6]. That equation implies that, owing
to the vector field A, the CMB bispectrum has a direction dependence, and hence, the dependence on
m1,m2,m3 cannot be confined only to a Wigner-3j symbol, namely,⟨

3∏
n=1

aX,ℓnmn

⟩
̸= BX1X2X3,ℓ1ℓ2ℓ3

(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)
. (3.2)

This fact truly indicates the violation of the rotational invariance in the bispectrum of the primordial
curvature perturbations and leads to the statistical anisotropy on the CMB bispectrum.

In the discussion of the CMB power spectrum, if the rotational invariance is violated in the primor-
dial power spectrum as Eq. (2.4), the signals in the off-diagonal configurations of ℓ also have nonzero
values [2]. Likewise, there are special configurations in the CMB bispectrum induced from the statistical
anisotropy on the primordial bispectrum as Eq. (2.3). The selection rules of the Wigner symbols suggest
that the CMB statistically anisotropic bispectrum in this case (3.1) could be nonzero in the multipole
configurations given by

ℓ1 = |ℓ2 ± ℓ3| ± 2 , (3.3)

and two permutations of ℓ1, ℓ2, ℓ3. In contrast, in these configurations, the CMB isotropic bispectrum

defined in Ref. [8] vanishes owing to the triangle condition of the Wigner-3j symbol

(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)
and the nonzero components arise only from

|ℓ2 − ℓ3| ≤ ℓ1 ≤ ℓ2 + ℓ3 . (3.4)

Therefore, the signals of the configurations (3.3) have the pure information of the statistical anisotropy
on the CMB bispectrum.

Figure 1 shows the CMB anisotropic bispectra of the intensity mode given by Eq. (3.1) with C = 1
for the several configurations of ℓ’s and m’s as a function of ℓ3. The red solid line and green dashed
line satisfy the special relation (3.3), namely, ℓ1 = ℓ2 + ℓ3 + 2, |ℓ2 − ℓ3| − 2, and the blue dotted line
obeys a configuration of Eq. (3.4), namely, ℓ1 = ℓ2 + ℓ3. From this figure, we confirm that the signals
in the special configuration (3.3) are comparable in magnitude to those for ℓ1 = ℓ2 + ℓ3. Therefore, if
the rotational invariance is violated on the primordial bispectrum of curvature perturbations, the signals
for ℓ1 = |ℓ2 ± ℓ3| ± 2 can also become beneficial observables. It might be possible to detect these
contributions of the statistical anisotropy in future experiments, which would give us novel information
about the physics of the early Universe. Of course, also for the E-mode polarization, we can give the
same discussions and results.

Although we assume a specific potential of inflation to show the statistical anisotropy on the CMB
bispectrum explicitly, the above calculation and discussion will be applicable to other inflation models
where the rotational invariance violates 59.
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Abstract

We present calculations of cosmic (super-)strings contribution to cosmic microwave
background anisotropy and polarization spectrum due to gravitational weak lensing.
We clarify the dependence of the CMB polarization due to weak lensing on the in-
tercommuting probability explicitly. As the intercommuting probability decreases,
the spectra of the convergence, the lensed temperature, and polarization increase
because the number density of string segment becomes larger. An important fea-
ture for observing CMB polarizations is that the small scale lensed spectra due to
cosmic (super-)string network could decay slowly, compared with primordial scalar
perturbations.

1 Introduction and Summary

It is naturally expected that topological defects, appearing as solutions to the field equation in various
models of particle physics, have formed during phase transitions in the early universe through spontaneous
symmetry breakings. Recently cosmic strings have attracted a renewed interest in the context of string
cosmology since it was pointed out that a new type of cosmic strings, so-called cosmic superstrings, may
be formed at the end of stringy inflation (see e.g. [1]). One of observationally important features of cosmic
superstrings compared to field-theoretic ones arises from the fact that, The intercommuting probability
for field-theoretic strings, P , has been shown to be almost always unity, while the value of P can be
significantly smaller for cosmic superstrings (see e.g. [2]).

The CMB polarizations, especially the B-mode could be a useful probe of cosmic strings through
the future observations such as PLANCK, CMBPol, ACTPol, SPTPol, and LiteBIRD. In this paper, we
investigate gravitational weak lensing due to cosmic (super-)strings as yet another source of the B and
other modes. The BB polarizations are induced by lensing as the partial conversion of the primary EE
polarizations. First we calculate the spectrum of the convergence field due to strings. Then we obtain the
temperature and polarization spectra of the CMB, clarifying how they can vary according to the value of
the intercommuting probability P . We find that the contributions from segments located at low redshifts
are dominant and low mutipole modes of lensing are essential even at high ℓ in CMB. The amplitude of
the spectra increases as P decreases, because the smaller the probability P is, the larger the amplitude
of the power spectrum of the induced scalar lensing potential is. An interesting feature observed in the
small scale limit is that the string-lensed spectra decay more slowly than that of the primordial scalar
perturbations. The characteristic power-law behavior will help us distinguish cosmic (super-)strings from
other secondary effects. Even if the strings have only small tension, the string weak lensing could serve
as the dominant source for the BB polarization on sufficiently small scales.
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2 Convergence field due to a string network

We assume that strings can be well approximated as Nambu-Goto strings and the gravitational field of
strings is sufficiently weak that we can solve the linearized Einstein equations. The convergence κ can be
described by the stress-energy tensor Tµν as

κ = 4πG

∫ χS

0

dχ
(χS − χ)χ

χS
TµνK̄

µK̄ν

∣∣∣∣
η=η0−χ

, (2.1)

where χS, η0 denote the comoving distance from a lens object to last scattering surface and the conformal
time at present, we have introduced K̄µ = (1, n̂), and n̂ denotes the line-of-sight. To see the contribution
due to string segments, we should evaluate the stress-energy tensor of a string. In this gauge, the stress-
energy tensor in the transverse gauge can be described as

Tµν(r, η0 − χ) = µ

∫
dσ

(
1 ṙkL
ṙlL ṙkLṙ

l
L − rkL

′
rlL

′

)
δ3 (r− rL(σ, ηlc(σ))) , (2.2)

where we have introduced the three-dimensional coordinate with the origin O as r, and the embedding
function of the string position along the line-of-sight as rL = rL(σ, ηlc(σ)). we introduce ηlc(σ) as
the conformal time along the intersection of the observer’s past light-cone and the string worldsheet,
ηlc(σ) = η0 − |rL(σ, ηlc(σ))| [6] .

In this paper, we use the formalism proposed in [6, 7] for the angular power spectrum due to cosmic
(super-)strings. Since the observed sky map of the convergence due to string segments can appear
as a superposition of those due to each segment, the total contributions of the convergence can be
decomposed into each contribution of each string segment. In our treatment, we first introduce a segment
index “(i)” to denote the contribution from each segment between the last scattering surface and the

present. For simplicity, we also assume that the i-th lens object is localized at χ = χ
(i)
L , namely thin-lens

approximation. Under this assumption, the distance between the observer and the i-th lens object can

be approximated as |r(i)L (σ, ηlc(σ))| ≈ χ
(i)
L . Hence, the stress-energy of the string network along the ray,

r = χn̂, can be well approximated as

Tµν(χn̂, η0 − χ)K̄µK̄ν ≈
∑

(i)∈segments

1

χ
(i)
L

Σ(i)(n̂)δ
(
χ− χ

(i)
L

)
, (2.3)

where Σ(i)(n̂) denotes surface energy density for the i-th segment [7]:

Σ(i)(n̂) ≈ µ

∫
ds δ

(
n̂− n̂

(i)
L (s)

)
, (2.4)

where we have introduced the angular position of the i-th segment along the ray as n̂
(i)
L (s) ≡ r

(i)
L (χ

(i)
L s, η0−

χ
(i)
L )/χ

(i)
L , the worldsheet angular coordinate as s = σ/χ

(i)
L . Substituting Eq. (2.3) into Eq. (2.1), the

spherical coefficient of the convergence field is given by

κℓm ≈
∑
(i)

4πGµ
χS − χ

(i)
L

χS

∫
ds Y ∗

ℓm

(
n̂
(i)
L

)
≡
∑
(i)

κ
(i)
ℓm , (2.5)

then the angular power spectrum of the convergence can be written as

Cκκℓ =
1

2ℓ+ 1

∑
m

[⟨∑
(i)

∣∣κ(i)ℓm∣∣2⟩+
⟨ ∑

(i)̸=(j)

κ
(i)
ℓmκ

(j)∗
ℓm

⟩]
, (2.6)

Now the string segments are assumed to be distributed randomly between the last scattering surface and
the present consistently with the string network model. This implies that there is no correlation between

two different segments, ⟨κ(i)ℓmκ
(j)∗
ℓm ⟩ = 0 for (i) ̸= (j). Then, the 1-segment contribution dominates the

angular power spectrum and the power spectrum of the convergence can reduce to [7]

Cκκℓ ≈
∫ zLSS

zmin

dz
dV

dz

∫
dΘL · dn

dΘL
Gκκℓ (ΘL, z) , (2.7)
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where (dV/dz)dz is the differential comoving volume element at redshift z, (dn/dΘL) · dΘL is the co-
moving number density of string segments with the parameters in the range [ΘL,ΘL + dΘL]. And Gκκℓ
is given by

Gκκℓ (z) ≈ 2π

(
Gµ

χS − χ
(i)
L

χS

)2
2

(1− v2rms) ℓco(z) ℓ

∫ 2ℓ/ℓco(z)

−2ℓ/ℓco(z)

duPℓ(cos(u/ℓ)) . (2.8)

where ℓco is the angular scale which corresponds to the correlation length of the string network [6].
This characteristic scale can be obtained by solving the velocity-dependent one-scale model with the
intercommuting probability P [5, 6].

In order to investigate the dependence on the intercommuting probability P , the total angular power
spectra of the convergence, Cκκℓ , with various values of P are shown in Fig. 1. The typical amplitudes
of the lensing power spectrum at ℓ = 10 for are Cκκℓ=10 ≈ 6.0 × 102(Gµ)2 for P = 1, 4.6 × 103(Gµ)2 for
P = 10−1, 8.7 × 104(Gµ)2 for P = 10−3, and 3.0 × 106(Gµ)2 for P = 10−6. The spectrum for large
ℓ behaves as ℓ−1. The spectrum has a larger amplitude and a broader shape as P decreases. These
properties can be understood by considering that the number density of string segments is larger and the
correlation length for a string network is shorter for smaller P .

primordial scalar perturbations
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Figure 1: The all-sky total angular power spectrum Cκκℓ with Gµ = 2 × 10−7. The curves are, from
bottom to top, for P = 1, 10−1, 10−3, and 10−6. The gray dotted lines show the asymptotic behavior
∝ ℓ−1 for large ℓ. For comparison, the power spectrum of the convergence due to primordial scalar
perturbations is shown in black solid curve.

3 Lensed power spectra from cosmic (super-)strings

Lensing involves deflections that remap the temperature and polarization fields. The lensing effect is
conventionally expressed as the change of the direction vector by an angular gradient of the scalar lensing
potential ϕ and the a rotation of the psedo-scalar lensing potential ϖ [8]:

n̂ → n̂+∇n̂ ϕ(n̂) + (∗∇n̂)ϖ , (3.1)

where ∇n̂ represents the angular derivative, i.e., the covariant derivative on the sphere, ∗ is the ninety-
degree rotation operator. We will simply assume the psedo-scalar lensing potential is negligible, and the
lensing potential is given by

κ(n̂) =
1

2
∇2

n̂ ϕ(n̂) . (3.2)

Once the convergence field due to the cosmic (super-)string network is given, we can calculate the lensing
potential through Eq. (3.2) and the angular power spectrum of the CMB temperature anisotropy and
polarizations by using the formula developed in [4]. Figure 2 show the BB angular power spectra induced
by the gravitational lensing due to cosmic (super-)strings. For the string components, the normalization
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of the spectra is related to the string tension as CBB
ℓ ∝ (Gµ)2, and we took Gµ = 2×10−7 for all the plots.

In this figure one can see that the amplitude of the spectra increases as P decreases. This is because
the smaller the probability P is, the larger the amplitude of the power spectrum of the induced scalar
lensing potential is. For comparison, contributions from the inflationary density perturbations are also
shown. The cosmological parameters are chosen to match the current CMB data. For BB, in the large
scale limit the differences between the lensed and unlensed spectrum can be well approximated by white
spectrum, namely C̃BB

ℓ − CBB
ℓ = constant. On the other hand, an interesting feature observed in the

small scale limit is that the string-lensed BB spectra decay more slowly than that of the primordial scalar
perturbations. Actually, the spectra are approximately in proportion to the angular power spectrum
of the convergence, ℓ2(C̃BB

ℓ − CBB
ℓ ) ∝ Cκκℓ [3], and therefore we have that ℓ2(C̃BB

ℓ − CBB
ℓ ) ∝ ℓ−1 (see

Fig. 1). This characteristic power-law behavior will help us distinguish cosmic (super-)strings from other
secondary effects. Even if the strings have only small tension, the string weak lensing could serve as the
dominant source for the BB polarization on sufficiently small scales.
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PLANCK+ACTPol

EPIC-2m
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P = 1

weak lensing from 

primordial scalar perturbations
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Figure 2: The BB polarization angular power spectrum in the units of µK2. The curves are, from
bottom to top, the difference between the lensed and unlensed spectra for P = 1 (red), 10−1 (orange),
10−3 (green), and 10−6 (blue), with Gµ = 2 × 10−7. The spectrum due to the primordial density
perturbations is shown as the black curve for comparison. The unlensed primordial spectra due to
inflationary tensor perturbation with r = 0.1 (not lensed by density perturbations) is shown in gray solid
line. For comparison, the spectrum with r = 0.01 is also shown in gray solid line. The dotted lines in
orange are the sensitivity curve of PLANCK, EPIC-2m, combined PLANCK+SPTPol, and LiteBIRD.
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Abstract
In the pre-recombination era, cosmological density fluctuations can naturally generate
magnetic fields through Thomson scatterings. In previous studies, only the magnetic
field generation from the initially- adiabatic fluctuations has been considered. Here we
investigate the generation of cosmological magnetic fields sourced by the primordial
non-adiabatic fluctuations based on the cosmological perturbation theory, using the
tight-coupling approximations between photon and baryon fluids. We will show that
the magnetic fields are generated from the non-adiabatic density perturbation at the
pre-recombination era and evaluate the power spectrum of generated magnetic fields
in the case of the non-adiabatic perturbation with the blue power spectrum. Finally
we obtain that the amplitude of the generated magnetic fields is about 10−20 Gauss
on 1Mpc. This amplitude can be amplified up to the magnetic fields in galaxies.

1 Introduction

The magnetic fields in galaxies and in clusters of galaxies are observed and the typical strength is about
1µGauss. The origin of these fields is not clear yet [1]. This is one of the significant problem in the
modern cosmology. It has been considered that very weak large-scale magnetic fields generated in the
early universe are amplified by the dynamo mechanism after galaxy formation [2].

Many mechanisms generating primordial magnetic fields are proposed, such as the generation from the
second-order density perturbation at the pre-recombination era [3–6]. In this era, protons and electrons
move interacting with photons by the Thomson scattering. As the mass of electrons is much smaller
than one of protons, the cross section of the Thomson scattering for electrons is larger and it causes the
magnetic fields.

The primordial fluctuations are generated in the very early universe, for example, at the time of
inflation. They evolve into anisotropies of the cosmic microwave background (CMB) and act as the seed
of the large-scale structure. In a simplest single-field inflation model, only adiabatic fluctuations are
produced. However in other models such as a multi-field inflation model inspired by the string theory,
non-adiabatic fluctuations are also produced. Actually, adiabatic fluctuations are known as the main
component of the fluctuations from the CMB observations. However, the non-adiabatic fluctuations can
still exist as a sub-dominant component. For example, in ref. [7], it is indicated that the power spectrum
of non-adiabatic fluctuations may have a very blue spectrum.

In previous studies, initially-adiabatic fluctuations are considered for the generation of magnetic fields.
In this case, however, it has been shown that the fields can not be generated at the first order of the tight
coupling approximation (TCA) for the Thomson scattering [4, 5].

We will show that the magnetic fields can be generated at the first-order expansion of the TCA if the
primordial non-adiabatic fluctuations of baryons exist [8],

C(x⃗) :=
δn̄(1)

n̄(0)
− 3

4

δρ̄
(1)
γ

ρ̄
(0)
γ

. (1.1)

Then there is a possibility that the strength of the primordial magnetic fields is stronger than that of the
fields only from adiabatic fluctuations if the non-adiabatic fluctuations have a blue spectrum. Therefore
it is important to examine the magnetic fields generated by the non-adiabatic fluctuations.

64Email address: smaeda@tap.scphys .kyoto-u.ac.jp
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2 Generation of the magnetic fields from the non-adiabatic fluc-
tuations

The EoMs for each spices (γ, p, e) are

∇νT(γ)i
ν = κγpi + κγei , (2.1)

∇νT(p)i
ν = enpEi + κpei + κpγi , (2.2)

∇νT(e)i
ν = −eneEi + κepi + κeγi , (2.3)

where κabi in the right-hand side are collision terms. κabi for the Thomson scattering between photons
and charged particles are

κγei = −κeγi = −4
3σTneργ

[(
u(γ)i − u(e)i

)
− 1

4u(e)jΠ
j
γ i

]
, (2.4)

κγpi = −κpγi = −m2
e

m2
p

4
3σTnpργ

[(
u(γ)i − u(p)i

)
− 1

4u(p)jΠ
j
γ i

]
, (2.5)

where Πγ is anisotropic stress of photons. κabi for the Coulomb scattering between charged particles are

κpei = −κepi = −e2npneηC
(
u(p)i − u(e)i

)
. (2.6)

The metric in the Poisson gauge is given by the flat-Friedmann spacetime:

ds2 = a2(η)
[
− (1 + 2ϕ) dη2 + 2χidηdx

i + (1− 2R) δijdx
idxj

]
, (2.7)

where dη = dt/a is the conformal time.
Subtracting EoMs for proton and electron, we obtain “the Ohm’s law”,

Ei =
1− β3

1 + β

4σT
3e

aργ(1− 2R)

[
δv(γb)i −

1

4
v(b)jΠ

j
γ i

]
:=

1− β3

1 + β

4σT
3e

aργ(1− 2R)∆v(γb)i, (2.8)

where we use δvbγ >> δvpe → 0.
Substituting eq. (2.8) into the induction equation of the magnetic fields, we obtain(
a3Bi

)′
= −1− β3

1 + β

4σT
3e

ϵijka2
[
∂j
(
ργ∆v(γb)k

)
+ ργ∂j(ϕ− 2R)∆v(γb)k +

1

a2
(
ργvja

2∆v(γb)k
)′]

.(2.9)

It shows that the velocity difference between photons and baryons and anisotropic stress of photon
generate the magnetic field.

We use the tight coupling approximation (TCA) for the Thomson scattering so as to represent ∆v(γb)i
by the well-known perturbative quantities. When the dynamical timescale is longer than the timescale
of the Thomson scattering, we can expand the physical quantities under the TCA. At zeroth order in
the TCA, all fluid components move together with the same velocity vi. We set the photon frame as the
“background” in the TCA. In other words, physical quantity for zeroth-order TCA is the same as that
of photon. The quantity ∆v(γb)i in eq. (2.9) is expressed

∆v(γb)i = ∆v
(I)
(γb)i +∆v

(II)
(γb)i + · · · . (2.10)

The equation which determines the velocity difference between baryon and photon is provided from
the subtraction of the EoM for photon from baryon

ρ′γ
ργ

(
v(γ)i + χi

)
− n′

n

(
v(b)i + χi

)
+
(
δv(γb)i

)′
+ 4Hδv(γb)i

− (ϕ+ 2R)

[
ρ′γ
ργ
v(γ)i −

n′

n
v(b)i +

(
δv(γb)i

)′
+ 4Hδv(γb)i

]
−5R′δv(γb)i +

1

4

∂iργ
ργ

+ ∂j

(
v(γ)iv

j
(γ)

)
− 1

1 + β
∂j

(
v(p)iv

j
(p) + βv(e)iv

j
(e)

)
= −α(1− 2R)∆v(γb)i, (2.11)
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where α is defined as

α :=
1 + β2

1 + β
(1 +R)

4aσT ργ
3mp

, (2.12)

with R := (3mp(1 + β)n)/(4ργ).

Using the TCA, we solve eq. (2.11) for ∆v
(I,1)
(γb)i and ∆v

(I,2)
(γb)i and obtain the evolution equation of the

magnetic fields

(
a3Bi

)′
=

1− β3

1 + β

4σT
3e

a2ρ̄(0)γ ϵijk
[
2a2H
ᾱ(0)

ω(2)i +
R̄(0)

1 + R̄(0)
ϵijk∂jC̄

(1)∆v
(I,1)
(γb)k

]
, (2.13)

where ω(2)i is defined as the photon’s vorticity which follows(
a2ω(2)i

)′
+

HR̄(0)

1 + R̄(0)
a2ω(2)i =

R̄(0)

2(1 + R̄(0))2
ᾱ(0)ϵijk∂jC̄

(1)∆v
(I,1)
(γb)k. (2.14)

Here

∆v
(I,1)
(γb)i =

1

ᾱ(0)

[
Hv(1)i − 1

4

∂iδρ̄
(1)
γ

ρ̄
(0)
γ

]
, (2.15)

Eq. (2.13) tells us that the non-adiabatic fluctuations contribute as the source at the first-order TCA.

3 Power spectrum of the generated magnetic fields

In order to obtain the evolution of the perturbation and evaluate the power spectrum of the generated
magnetic fields, we solve the linearized Einstein equations. Finally we obtain the power spectrum of the
magnetic fields as

2π2

k3
PB(k) =

(
1− β3

1 + β

σT ρ̄
(0)
γ0

ea3

)2

(2π2)2
∫
d3p|⃗k × p⃗|2Pna(p)Pa(|⃗k − p⃗|)×

×
∫ η

0

dη1

∫ η

0

dη2a
−2
1 a−2

2 {g(k⃗, p⃗, η1)g(k⃗, p⃗, η2) + f(k⃗, p⃗, η1)f(k⃗, p⃗, η2)}, (3.1)

where

f(k⃗, p⃗, η) :=
1

(2π)3/2
η2R̄(0)

2(1 + R̄(0))

1

ᾱ(0)
|⃗k − p⃗|2 j1(y)

y
, (3.2)

g(k⃗, p⃗, η) :=
1

(2π)3/2
1

ᾱ(0)

|⃗k − p⃗|2

2η(1 + R̄(0))

∫
dη̃

(η̃)2R̄(0)

1 + R̄(0)

j1(ỹ)

ỹ
(3.3)

and y = |⃗k − p⃗|η/
√
3.

Pa(k) is the power spectrum of the adiabatic fluctuations. Pna(k) is the power spectrum of the
non-adiabatic fluctuations of baryon defined by

Pna
Pa

:=

(
ΩCDM

Ωb

)2 A
1−A

(
k

k0

)n2−1

, (3.4)

where k0 is a pivot scale. A is represented as the ratio of the cold dark matter isocurvature fluctuation
to the sum of the adiabatic and the isocurvature fluctuations.

We perform the numerical integration for A ≃ 0.1, 0.01 and n2 ≃ 4 to calculate the amplitudes of the
magnetic fields at the radiation-matter equality time and show the result in Fig. 1. The circle and plus
mark represent the contribution of the slip term ⟨SS∗⟩ (f term) for each A and the square and cross
mark represent the contribution of the vorticity term ⟨ΩΩ∗⟩ (g term) for each A. From this figure we find
that the vorticity term is less important at the generation of the magnetic fields at pre-recombination
era. The physical magnetic field strength is about 10−20 Gauss at 1Mpc. The generated magnetic fields
have a blue spectrum k1.16 and so the larger strength is expected at the smaller scales.
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Figure 1: Calculated physical amplitudes of magnetic fields for several comoving wave numbers (k). The
plus and cross mark represent the contributions of the slip term and vorticity term respectively. Here we
set A ≃ 0.1(circle and square mark), A ≃ 0.01(plus and cross mark) and n2 = 4.

4 Summary

We discussed the generation of magnetic fields by non-adiabatic fluctuations at the pre-recombination
era. Firstly we showed that non-adiabatic fluctuations generate magnetic fields using the tight coupling
approximation. We found that magnetic fields are generated at the first-order expansion of the tight
coupling approximation. This result should be compared with the case of initially-adiabatic fluctuations,
where magnetic fields are created only at the second order.

Secondly we calculated the power spectra of magnetic fields at the radiation-matter equality time
considering the non-adiabatic fluctuations with a blue spectrum. We found that the fields have a blue
spectrum B ∝ k1.16 for n2 = 4, and the amplitude is about B ∼ 10−20 Gauss at the comoving scale of
1Mpc if the maximum amount of non-adiabatic fluctuations allowed from CMB observations is considered.
Because the spectrum is bluer than those from the adiabatic fluctuations found in refs. [3, 6], this fields
may dominate the primordial magnetic fields at small scales. The amplitude would be enough to be
amplified to the present fields in galaxies by the dynamo mechanism [2].
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Construction of gauge-invariant variables of linear metric
perturbations on general background spacetime
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Abstract
An outline of a proof of the decomposition of linear metric perturbations into gauge-
invariant and gauge-variant parts on an arbitrary background spacetime which admits
ADM decomposition is briefly discussed. We explicitly construct the gauge-invariant
and gauge-variant parts of the linear metric perturbations based on some assumptions.
This implies that we can develop the higher-order gauge-invariant perturbation theory
on an arbitrary background spacetime.

Introduction — Higher-order general-relativistic perturbations have very wide applications. Among
these applications, second-order cosmological perturbations are topical subject due to the precise measure-
ments in recent cosmology. Higher-order black hole perturbations are also discussed in some literature.
Moreover, as a special example of higher-order perturbation theory, there are researches on perturbations
of a spherical star, which are motivated by researches into the oscillatory behaviors of a rotating neutron
star. Thus, there are many physical situations to which general-relativistic higher-order perturbation
theory should be applied.

As well-known, general relativity is based on the concept of general covariance. Due to this general
covariance, the “gauge degree of freedom”, which is unphysical degree of freedom of perturbations, arises
in general-relativistic perturbations. To obtain physical results, we have to fix this gauge degrees of free-
dom or to extract some invariant quantities of perturbations. This situation becomes more complicated in
higher-order perturbation theory. Therefore, it is worthwhile to investigate higher-order gauge-invariant
perturbation theory from a general point of view.

According to these motivations, in Ref. [1], we proposed a procedure to find gauge-invariant variables
for higher-order perturbations on an arbitrary background spacetime. This proposal is based on the
single assumption that we already know the procedure to find gauge-invariant variables for linear-order
metric perturbations (Conjecture 1 in this article). Under this assumption, we summarize some formulae
for the second-order perturbations of the curvatures and energy-momentum tensor for the matter fields
in Refs. [2, 3]. Confirming that the above assumption is correct in the case of cosmological perturbations,
in Refs. [4], the second-order gauge-invariant cosmological perturbation theory was developed. Through
these works, we find that our general framework of higher-order gauge-invariant perturbation theory
is well-defined except for the above assumption for linear-order metric perturbations. Therefore, we
proposed the above assumption as a conjecture in Ref. [3]. If this conjecture is true, our general-relativistic
higher-order gauge-invariant perturbation theory is completely formulated on an arbitrary background
spacetime and has very wide applications. The main purpose of this article is to give a brief outline of a
proof of this conjecture. Details of this issue is given in Ref. [5].

Perturbations in general relativity — The notion of “gauge” in general relativity arise in the theory
due to the general covariance. There are two kinds of “gauges” in general relativity. These two “gauges”
are called as the first- and the second-kind gauges, respectively. The distinction of these two different
notion of “gauges” is an important premise of our arguments. The first-kind gauge is a coordinate system
on a single manifold M. The coordinate transformation is also called gauge transformation of the first
kind in general relativity. On the other hand, the second-kind gauge appears in perturbation theories
in a theory with general covariance. In perturbation theories, we always treat two spacetime manifolds.
One is the physical spacetime M which is our nature itself and we want to clarify the properties of

65Email address: kouji.nakamura@nao.ac.jp
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M through perturbations. Another is the background spacetime M0 which has nothing to do with our
nature but is prepared by hand for perturbative analyses. The gauge choice of the second kind is the point
identification map X : M0 7→ M. We have to note that the correspondence X between points on M0

and M is not unique in the perturbation theory with general covariance. General covariance intuitively
means that there is no preferred coordinate system in the theory. Due to this general covariance, we
have no guiding principle to choose the identification map X . Actually, as a gauge choice of the second
kind, we may choose a different point identification map Y from X . This implies that there is degree of
freedom in the gauge choice of the second kind. This is the gauge degree of freedom of the second kind in
perturbation theory. The gauge transformation of the second kind is understood as a change X → Y of
the identification map.

To define perturbations of an arbitrary tensor field Q̄, we have to compare Q̄ on the physical spacetime
Mλ with Q0 on the background spacetime M0 through the introduction of the above second-kind gauge
choice Xλ : M0 → Mλ. The pull-back X ∗

λ , which is induced by the map Xλ, maps a tensor field Q̄ on
Mλ to a tensor field X ∗

λ Q̄ on M0. Once the definition of the pull-back of the gauge choice Xλ is given,
the perturbations of a tensor field Q̄ under the gauge choice Xλ are simply defined by the evaluation of
the Taylor expansion at M0:

XQ := X ∗
λ Q̄λ

∣∣
M0

= Q0 + λ
(1)
XQ+

1

2
λ2

(2)
XQ+O(λ3), (0.1)

where
(1)
XQ and

(2)
XQ are the first- and the second-order perturbations of Q̄, respectively.

When we have two different gauge choices Xλ and Yλ, we have two different representations of the
perturbative expansion of the pulled-backed variables X ∗

λ Q̄λ
∣∣
M0

and Y∗
λQ̄λ

∣∣
M0

. Although these two
representations of the perturbations are different from each other, these should be equivalent because of
general covariance. This equivalence is guaranteed by the gauge-transformation rules between two differ-
ent gauge choices. The change of the gauge choice from Xλ to Yλ is represented by the diffeomorphism
Φλ := (Xλ)−1 ◦Yλ. This diffeomorphism Φλ is the map Φλ : M0 → M0 for each value of λ ∈ R and does
change the point identification. Therefore, the diffeomorphism Φλ is regarded as the gauge transforma-
tion Φλ : Xλ → Yλ. The gauge transformation Φλ induces a pull-back from the representation XQλ of
the perturbed tensor field Q in the gauge choice Xλ to the representation YQλ in the gauge choice Yλ.
Actually, the tensor fields XQλ and YQλ, which are defined on M0, are connected by the linear map Φ∗

λ

as YQλ = Φ∗
λ
XQλ. According to generic arguments concerning the Taylor expansion of the pull-back of

tensor fields on the same manifold [6], we obtain the order-by-order gauge-transformation rules for the
perturbative variables (1)Q and (2)Q as

(1)
YQ− (1)

XQ = £ξ(1)Q0,
(2)
YQ− (2)

XQ = 2£ξ(1)
(1)
XQ+

{
£ξ(2) +£2

ξ(1)

}
Q0. (0.2)

where the vector fields ξa(1) and ξ
a
(2) are the generators of the gauge transformation Φλ.

The notion of gauge invariance considered in this article is the order-by-order gauge invariance pro-

posed in Ref. [3]. We call the kth-order perturbation
(k)
X Q is gauge invariant iff

(k)
XQ =

(k)
YQ for any gauge

choice Xλ and Yλ. Through this concept of the order-by-order gauge invariance, we can develop the
gauge-invariant perturbation theory.

Construction of gauge-invariant variables — First, we consider the metric perturbation. The metric
ḡab on M, which is pulled back to M0 using a gauge choice Xλ, is expanded in the form of Eq. (0.1):
X ∗
λ ḡab = gab + λXhab + (λ2/2)Xlab + O3(λ), where gab is the metric on M0. Although this expansion of

the metric depends entirely on the gauge choice Xλ, henceforth, we do not explicitly express the index of
the gauge choice Xλ if there is no possibility of confusion. Through these setup, in Ref. [1], we proposed
a procedure to construct gauge-invariant variables for higher-order perturbations. Our starting point to
construct gauge-invariant variables is the following conjecture for the linear-order metric perturbation
hab defined by the above metric expansion:

Conjecture 1 If there is a symmetric tensor field hab of the second rank, whose gauge transformation
rule is Yhab − Xhab = £ξ(1)gab, then there exist a tensor field Hab and a vector field Xa such that hab is
decomposed as hab =: Hab + £Xgab, where Hab and Xa are transformed as YHab − XHab = 0, YX

a

− XX
a = ξa(1) under the gauge transformation (0.2), respectively.
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In this conjecture, Hab and X
a are gauge-invariant and gauge-variant parts of the perturbation hab. In

the case of the perturbation theory on an arbitrary background spacetime, this conjecture is a highly
non-trivial statement due to the non-trivial curvature of the background spacetime, though its inverse
statement is trivial.

An outline of a proof of Conjecture 1 — To give an outline of a proof of Conjecture 1 on an arbitrary
background spacetime, we assume that the background spacetimes admit ADM decomposition. Therefore,
the background spacetime M0 considered here is n+ 1-dimensional spacetime which is described by the
direct product R × Σ. Here, R is a time direction and Σ is the spacelike hypersurface (dimΣ = n)
embedded in M0. This means that M0 is foliated by the one-parameter family of spacelike hypersurface
Σ(t), where t ∈ RF is a time function. Then, the metric on M0 is described by

gab = −α2(dt)a(dt)b + qij(dx
i + βidt)a(dx

j + βjdt)b, (0.3)

where α is the lapse function, βi is the shift vector, and qab = qij(dx
i)a(dx

i)b is the metric on Σ(t).
Since the ADM decomposition (0.3) is a local one, we may regard that the arguments in this article

are restricted to that for a single patch in M0 which is covered by the metric (0.3). Further, we may
change the region which is covered by the metric (0.3) through the choice of the lapse function α and
the shift vector βi. The choice of α and βi is regarded as the first-kind gauge choice, which have nothing
to do with the second-kind gauge. Since we may regard that the representation (0.3) of the background
metric is that on a single patch in M0, in general situation, each Σ may have its boundary ∂Σ.

To prove Conjecture 1, we first consider the components of the metric hab as hab = htt(dt)a(dt)b +
2hti(dt)(a(dx

i)b) + hij(dx
i)a(dx

j)b. Under the gauge-transformation rule Yhab − Xhab = £ξ(1)gab, the
components {htt, hti, hij} are transformed as

Yhtt − Xhtt = 2∂tξt −
2

α

(
∂tα+ βiDiα− βjβiKij

)
ξt

− 2

α

(
βiβkβjKkj − βi∂tα+ αqij∂tβj + α2Diα− αβkDiβk − βiβjDjα

)
ξi, (0.4)

Yhti − Xhti = ∂tξi +Diξt −
2

α

(
Diα− βjKij

)
ξt −

2

α
M j
i ξj , (0.5)

Yhij − Xhij = 2D(iξj) +
2

α
Kijξt −

2

α
βkKijξk, (0.6)

where M j
i is defined by M j

i := − α2Kj
i + βjβkKki − βjDiα + αDiβ

j . Here, Kij is the components
of the extrinsic curvature of Σ in M0 and Di is the covariant derivative associate with the metric qij
(Diqjk = 0). The extrinsic curvature Kij and its trace K are related to the time derivative of the metric
qij by Kij = − (1/2α) [∂tqij −Diβj −Djβi] and K := qijKij , respectively.

Inspecting gauge-transformation rules (0.4)–(0.6), we consider the decomposition of the components
{hti, hj} into the set of the variables {h(V L), h(V )i, h(L), h(TV )i, h(TT )ij} as follows:

hti =: Dih(V L) + h(V )i −
2

α

(
Diα− βkKik

) (
h(V L) −∆−1Dk∂th(TV )k

)
− 2

α
M k
i h(TV )k, (0.7)

hij =:
1

n
qijh(L) +Dih(TV )j +Djh(TV )i −

2

n
qijD

kh(TV )k + h(TT )ij

+
2

α
Kij

(
h(V L) −∆−1Dk∂th(TV )k

)
− 2

α
Kijβ

kh(TV )k, (0.8)

Dih(V )i = 0, qijh(TT )ij = 0 = Dih(TT )ij . (0.9)

Here, we assume the existence of Green functions of the elliptic derivative operators ∆ := DiDi and
F := ∆ − 2

α

(
Diα− βjKij

)
Di − 2Di

{
1
α

(
Diα− βjKij

)}
, and the existence and the uniqueness of the

solution Ai to the integro-differential equation

D k
j Ak +Dm

[
2

α
K̃mj

{
F−1Dk

(
2

α
M l
k Al − ∂tAk

)
− βkAk

}]
= Lj (0.10)

for given a vector field Lj . Although the derivation of Eq. (0.7)–(0.9) is highly non-trivial, we only note
that the relation (0.7)–(0.9) between the variables {hti, hij} and {h(V L), h(V )i, h(L), h(TV )i, h(TT )ij}
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is invertible if we accept above three assumptions. In other words, the fact that we based on these
assumptions implies that we have ignored perturbative modes which belong to the kernel of the above
derivative operators and trivial solutions to Eq. (0.10) if there exists. These modes should be separately
treated in different manner. We call these modes as zero modes. The issue concerning about treatments
of these zero modes is called zero-mode problem, which is a remaining problem in our general framework
on higher-order general-relativistic gauge-invariant perturbation theory.

Under these assumptions, the gauge-transformation rules for the variables {h(V L), h(V )i, h(L), h(TV )i,
h(TT )ij} are summarized as follows:

Yh(V L) − Xh(V L) = ξt +∆−1Dk∂tξk, Yh(V )i − Xh(V )i = ∂tξi −Di∆
−1Dk∂tξk, (0.11)

Yh(L) − Xh(L) = 2Diξi, Yh(TV )l − Xh(TV )l = ξl, Yh(TT )ij − Xh(TT )ij = 0. (0.12)

From these gauge-transformation rules, we may define the components of the gauge-variant part Xa by
Xi := h(TV )i and Xt := h(V L) − ∆−1Dk∂th(TV )k. Then, we obtain the gauge-variant part Xa of the
perturbation hab as Xa := Xt(dt)a + Xi(dx

i)a. Using the above variables Xt and Xi, we can construct
gauge-invariant variables for the linear-order metric perturbation hab:

−2Φ := htt +
2

α

(
∂tα+ βiDiα− βjβiKij

)
Xt − 2∂tXt

+
2

α

(
βiβkβjKkj − βi∂tα+ αqij∂tβj + α2Diα− αβkDiβk − βiβjDjα

)
Xi, (0.13)

−2nΨ := h(L) − 2DiXi, νi := h(V )i − ∂tXi +Di∆
−1Dk∂tXk, χij := h(TT )ij . (0.14)

Actually, we can easily confirm that these variables Φ, Ψ, νi, and χij are gauge invariant. We also
note that the variable νi satisfies the property Diνi = 0 and the variable χij satisfies the properties
χij = χji, q

ijχij = 0, and Diχij = 0. The original components {htt, hti, hij} of the metric perturbation
hab is rewritten in terms of these gauge-invariant variables and the variables Xt and Xi. These repre-
sentation shows that we may define the gauge-invariant variables Hab so that Hab := −2Φ(dt)a(dt)b +
2νi(dt)(a(dx

i)b) + (−2Ψqij + χij) (dx
i)(a(dx

j)b). This leads to assertion of Conjecture 1. □
Summary — We proposed an outline of a proof of Conjecture 1 for an arbitrary background spacetime.

Conjecture 1 states that we already know the procedure to decompose the linear-order metric perturbation
hab into its gauge-invariant part Hab and gauge-variant part Xa. Conjecture 1 is the only non-trivial
part when we consider the general framework of gauge-invariant perturbation theory on an arbitrary
background spacetime. Although there will be many approaches to prove Conjecture 1, in this article,
we just proposed an outline a proof. We also note that our arguments do not include zero modes.
The existence of zero modes is also related to the symmetry of the background spacetime. To resolve
this zero-mode problem, careful discussions on domains of functions for perturbations and its boundary
conditions at ∂Σ will be necessary. Besides this zero-mode problem, we have almost completed the general
framework of the general-relativistic higher-order gauge-invariant perturbation theory. The outline of a
proof of Conjecture 1 shown in this article gives rise to the possibility of the application of our general
framework not only to cosmological perturbations [3, 4] but also to perturbations of black hole spacetimes
or perturbations of general relativistic stars. Therefore, we may say that the wide applications of our
gauge-invariant perturbation theory will be opened. We leave these development as future works.
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Abstract
We discuss the Hawking temperature of near-equilibrium black holes using a semiclas-
sical analysis. We introduce a useful expansion method for slowly evolving spacetime,
and evaluate the Bogoliubov coefficients using the saddle point approximation. For a
spacetime whose evolution is sufficiently slow, such as a black hole with slowly chang-
ing mass, we find that the temperature is determined by the surface gravity of the
past horizon. We study the Hawking temperature of the AdS–Vaidya spacetime and
discuss implications of our results in the context of the AdS/CFT correspondence.

1 Introduction

The fact that black holes possess thermodynamic properties has been intriguing in gravitational and
quantum theories, and is still attracting interest. Nowadays it is well-known that black holes will emit
thermal radiation with Hawking temperature proportional to the surface gravity of the event horizon [1].
This result plays a significant role in black hole thermodynamics. Moreover, the AdS/CFT correspondence
opened up new insights about thermodynamic properties of black holes. In this context we expect that
thermodynamic properties of conformal field theory (CFT) matter on the boundary would respect those
of black holes in the bulk. In particular, stationary black holes correspond to thermal equilibrium of the
dual field theory at finite temperature equal to the bulk Hawking temperature.

When time dependence is sufficiently weak, we may expect thermodynamic properties of a black
hole to persist. This expectation partially stems from physical insight on ordinary thermodynamics
systems, in which thermodynamic properties persists when the system is sufficiently near equilibrium and
quasistationary. If black hole thermodynamics is robust enough, such insight on usual thermodynamic
systems leads to the above expectation on dynamical spacetimes and black holes. Within the context of
the AdS/CFT correspondence, thermodynamic properties of dynamical black holes lead to new insights
into the dynamics of strongly coupled field theory on the boundary. One typical problem in this line is
thermalization processes in the boundary field theory, which is holographically modeled by formation of
the bulk black hole and its equilibration into a stationary state.

Based on these interests, we consider nonstationary spacetimes, and try to determine the Hawking
temperature measured by observers in the asymptotic region. One naive way to do this would be to
define a certain time coordinate to associate temperature of the black hole (future) horizon to that
measured by asymptotic observers. Even though this procedure is seemingly natural from the viewpoint
of black hole thermodynamics or horizon dynamics, it is puzzling from the viewpoint of causality, since
this temperature is determined using information in the future region for that observer. In the AdS/CFT
setup, if we were to define temperature at a point on the boundary in this way, we would need information
in the bulk region, which is not causally accessible from that boundary point. Such a property would
not be desirable if we care about causality in the bulk and boundary, especially when time dependence
comes into the story.

To avoid such problems, we consider the conventional derivation of the Hawking radiation based
on Bogoliubov transformations for nonstationary background. An advantage of this method is that we
can naturally determine temperature measured by asymptotic observers using only information causally
available to them. Particularly, we focus our attention on an eternal black hole rather than black hole
formation by gravitational collapse [2] because we are interested in near-equilibrium system such as tran-
sition from an equilibrium state to another equilibrium state. We clarify how the Hawking temperature
changes when a black hole becomes dynamical, for instance, due to mass accretion to the black hole, and

66Email address: kinoshita@tap.scphys.kyoto-u.ac.jp

JGRG21 Programme



S. Kinoshita 159

show that the Hawking temperature of dynamical black holes can be naturally associated with “surface
gravity” of the past horizon. See also [3] in detail.

2 Estimation of Bogoliubov coefficients

We introduce two null coordinates u, which gives a natural time for observers in the asymptotic region,
and U , which is the affine parameter on the past horizon. To probe a nonstationary spacetime, we
use wave packets which are localized in both the time and frequency domains rather than plane waves
spreading over the whole time. The wave packet is peaked around a time u = u0 with width ∼ ∆u, which
are the time and duration of the observation, respectively. The Bogoliubov coefficients between the wave
packet modes and ūω̂ ∝ e−iω̂U are given by

Aωω̂

Bωω̂

}
= ± 1

2π

√
ω̂

ω

∫ ∞

−∞
w∆u(u− u0)

dU

du
e±iωu−iω̂U(u)du, (2.1)

where w∆u(x) is a window function which goes sufficiently fast to zero outside the interval ∆u around
x = 0. In addition, we assume that analytic continuation of w∆u(x) is varying slowly at least for |x| < ∆u
in the complex plane. Using the Klein–Gordon product, these coefficients are written as Aωω̂ = (ψω, ūω̂)
and Bωω̂ = −(ψ∗

ω, ūω̂), where we have constructed the wave packet localized around time u = u0 and
frequency ω as ψω(u) =

1√
4πω

w∆u(u−u0)e−iωu. We note that Aωω̂ and Bωω̂ satisfy the following relation∫∞
0

dω̂
(
|Aωω̂|2 − |Bωω̂|2

)
= (ψω, ψω), which follows from the completeness of {ūω̂}. The number density

in terms of the wave packet mode ψω is given by
∫∞
0

dω̂|Bωω̂|2/(ψω, ψω), which is roughly the number of
particles generated in the frequency band of width ∼ 1/∆u around frequency ω.

Let us suppose that the evolution of the background spacetime is sufficiently slow around u = u0
within time interval ∆u. To clarify what slowly evolving is, we shall introduce the following quantity

κ(u) ≡ − d

du
log

dU

du
. (2.2)

If the background spacetime is stationary, κ(u) becomes a constant and it is nothing but the surface
gravity of the black hole (Killing) horizon. Therefore, we may state that the spacetime is evolving slowly
when κ(u) is almost constant during ∆u. In that case, we may express κ(u) as κ(u) = κ0 [1 + ϵf(u)],
where f(u) is a real function which satisfies f(u0) = 0 and |f(u)| ≤ 1 for |u− u0| < ∆u, and ϵ is a small
parameter. In other words, this assumption implies

∆κ

κ0
≤ ϵ for |u− u0| < ∆u, (2.3)

where ∆κ ≡ |κ(u) − κ0|. For discussions below, we further assume that analytic continuation of f(u)
satisfies |f(u)| ≤ 1 for any complex u such that |u− u0| < ∆u.

Then, we may expand U ′(u), U(u) and U ′′(u) with respect to ϵ as

U ′(u) = U ′
0 exp

(
−
∫ u

u0

κ(x)dx

)
= U ′

0 exp {−κ0 (δu+ ϵg(u))} = U ′
0e

−κ0δu
(
1− ϵκ0g(u) +O(ϵ2)

)
,

U(u) = U0 +

∫ u

u0

U ′(x)dx = U0 + U ′
0

(
1− e−κ0δu

κ0
− ϵκ0

∫ u

u0

e−κ0(x−u0)g(x)dx+O(ϵ2)

)
,

U ′′(u) = −κ(u)U ′(u) = −κ0 (1 + ϵf(u))U ′
0e

−κ0δu
(
1− ϵκ0g(u) +O(ϵ2)

)
,

(2.4)
where we defined U0 = U(u0), δu = u− u0 and g(u) =

∫ u
u0
f(x)dx. Note that |g(u)| ≤ |δu| follows from

the assumption |f(u)| ≤ 1 for |δu| < ∆u.
Now, to evaluate those coefficients (2.1) by the saddle point approximation, we will consider the

integral
∫∞
−∞ expϕ(u)du, where ϕ(u) ≡ log dU

du ± iωu− iω̂U(u). Here, the saddle point u = u∗ is given by

ϕ′(u∗) = 0. We also expand the saddle point as u∗ = u
(0)
∗ + ϵu

(1)
∗ + O(ϵ2). Solving ϕ′(u∗) = 0 order by
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order of ϵ, we find

δu
(0)
∗ = − 1

κ0
log

(
κ0r

ω̂U ′
0

)
− i

κ0

(π
2
∓ θ
)
, u

(1)
∗ = −g

(
u
(0)
∗
)
−
f
(
u
(0)
∗
)

κ0re∓iθ
, (2.5)

where we have defined re∓iθ ≡ 1∓ iω/κ0, which satisfies r ≫ 1 because of the geometric optics approx-
imation ω/κ0 ≫ 1. We expand ϕ(u∗) and ϕ′′(u∗) with respect to ϵ as ϕ(u∗) − ϕ(u0) ≡ ϕ0 + ϵϕ1 and
ϕ′′(u∗) ≡ ϕ′′0+ϵϕ

′′
1 where O(ϵ2) terms are omitted. To guarantee that the perturbative expansion above is

valid and that the calculation of the saddle point approximation is not affected by the correction terms,
we should require each of correction terms to be much smaller than their leading term. Under these
assumptions, we find that the integral in Eq. (2.1) can be evaluated by the saddle point approximation
as ∣∣∣∣∫ ∞

−∞
w∆u(δu)e

ϕ(u)du

∣∣∣∣ ≃ U ′
0

∣∣∣w∆u

(
δu

(0)
∗
)∣∣∣ eReϕ0

√
2π

|ϕ′′0 |
. (2.6)

So that the suppression due to the window function, w∆u, is weak and the integral value becomes close
to that for the unwindowed function, the saddle point should satisfy |δu∗| ≲ ∆u. For the imaginary part

of u
(0)
∗ the condition |δu∗| ≲ ∆u becomes ∆u−1 ≲ κ0, and for the real part it becomes a condition on ω̂,

given by κ0re
−κ0∆u/U ′

0 ≲ ω̂ ≲ κ0re
κ0∆u/U ′

0. If ω̂ is out of this region, no saddle point exists between
|u − u0| ≲ ∆u, and then the integral will be suppressed due to the window function. This condition
means that only the Kruskal modes of ω̂ with limited frequency band can have correlations with the wave
packet mode ψω due to its localization in the time domain.

Consequently, sufficient conditions for the saddle point approximation to be valid are given by

ϵκ0 ≪ 1

∆u
≲ κ0 ≪ ω,

∣∣f ′(u)∣∣≪ κ0r, (2.7)

for |u − u0| < ∆u. Note that the condition on ϵ, ϵκ0 ≪ ∆u−1, can be rewritten as ∆κ∆u ≪ 1, where
∆κ is defined by Eq. (2.3). If we can take the time interval ∆u(≳ κ−1

0 ) satisfying this condition, we
have a sufficiently small ϵ ≪ 1 for which Eq. (2.7) holds. Roughly speaking, this condition is indicating
that the time variation of κ(u) should be sufficiently moderate to satisfy 1

κ2
0

dκ
du ≪ 1 between the interval

|u − u0| ≲ κ−1
0 . Under these assumptions, at the leading order we have |Aωω̂|2/|Bωω̂|2 ≃ exp (2πω/κ0),

which implies the spectrum observed at the time u = u0 becomes a thermal one with temperature
κ(u0)/2π for high frequencies ω ≫ κ0.

Now, we consider the geometrical meaning of κ(u) defined by Eq. (2.2). Ingoing null vectors with
respect to null coordinates u and U are written as ka = (∂/∂u)

a
and k̄a = (∂/∂U)

a
, respectively. Note

that U is an affine parameter on the past horizon because it is one of the Kruskal coordinates. Using
ka = U ′(u)k̄a, we have ka∇ak

b = (ka∇aU
′(u))k̄b + (U ′)2k̄a∇ak̄

b. The last term vanishes because U is
the affine parameter. As a result, we obtain ka∇ak

b = −κ(u)kb. We shall call κ(u) “surface gravity” for
the past horizon because it describes the inaffinity of the null generator ka of the past horizon, which is
defined by the asymptotic time at the null infinity. When the spacetime is stationary, the past horizon and
κ(u) coincide with the Killing horizon and its surface gravity, respectively. In this sense, κ(u) is a natural
extension of surface gravity of stationary spacetimes. (In Ref. [2], it was called “peeling properties” for
gravitational collapse.) It is worth noting that the surface gravity for the past horizon is not determined
only by local geometrical quantities on that horizon but also by the relation between the time coordinates
on the horizon and in the asymptotic region. In fact, the Killing vector which defines the surface gravity
of the Killing horizon is also determined using the asymptotic time in a stationary case.

Roughly speaking, the particles of the Hawking radiation observed in the asymptotic region start from
the vicinity of the horizon and propagate along outgoing null geodesics. Every outgoing null ray arriving
at the null infinity experiences the near-horizon region of the past horizon rather than the (future) event
horizon. Based on this observation, it seems to be natural that the spectrum is affected by the surface
gravity near the past horizon.
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Figure 1: κ(u) and a quasistatic temperature 2πTqs = 2(2m(v))1/4 for various injection times ∆v.

3 Application to AdS–Vaidya

In this section, we consider an explicit example of transitions from an initial equilibrium state to another
equilibrium state. We will focus attention on the AdS–Vaidya spacetime. This is a toy model to describe
a thermalization process in the AdS/CFT correspondence. We consider the 5D AdS–Vaidya spacetime
ds2 = [−F (v̄, z)dv̄2−2dv̄dz+dx⃗23]/z

2, where F (v̄, z) is given by F (v̄, z) = 1−2m(v̄)z4, and the curvature
radius of the AdS is set to unity. We suppose that the mass functionm(v̄) ism0 (v̄ < 0),m0+∆m sin2 πv̄

2∆v
(0 ≤ v̄ ≤ ∆v) and m0+∆m (v̄ > ∆v). During an interval ∆v, the null fluid is injected into the black hole
with mass m0, and the mass eventually becomes m0 +∆m. For the AdS–Vaidya, Bondi energy observed
at the boundary is described by the mass function m(v̄). Note that the time coordinate v̄ is nothing but
asymptotic time at the boundary. In the context of the AdS/CFT correspondence, m(v̄) corresponds to
the energy density of the CFT matter. Therefore, the duration of the injection ∆v will represent the
time scale of energy density change.

Now we shall consider the Hawking temperature in the current case. We introduce double-null coor-
dinates (u, v) as z = z(u, v), v̄ = v. In these coordinates, the boundary z = 0 is described by u = v.
An asymptotic time t at the boundary is given by t = u+v

2 , and it is equal to v (or u) there. In Fig. 1,

for ∆v = 0, 2, 10, 50 we plot κ(u) together with a quasistatic temperature 2πTqs = 2 (2m(v))
1/4

, which
is naively determined from the mass functions m(v) in a similar manner to static black holes. We can
observe that both curves begin to coincide as the injection time becomes longer. In other words, the
variation of the temperature κ(u) tends to follow the variation of the black hole mass m(v). These results
lead us to the conclusion that, even if the mass injection is rapid, the temperature will gradually change
over a time scale no shorter than the thermal time scale ∼ κ−1. In this sense, we may say that there
is a finite relaxation time irrespective of the speed of energy injection. When energy injection and the
resultant black hole evolution is slower than this relaxation time, the temperature tends to evolve in a
similar way to the mass injection.
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Universal Property of Quantum Gravity implied by Uniqueness
Theorem of Bekenstein-Hawking Entropy
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Abstract
We search for a universal property of quantum gravity, where “universal” means to be
independent of any existing model of quantum gravity. To do so, we investigate deeply
the basis of black hole thermodynamics. The uniqueness of Bekenstein-Hawking
entropy lets us extract a reasonable universal property of quantum gravity from the
conditions justifying Boltzmann formula. The universal property indicates a repulsive
gravity at Planck length scale, otherwise stationary black holes can not be regarded
as thermal equilibrium states of gravity. (This manuscript is based on [1] )

1 Introduction

As mentioned in the abstract, we investigate the basis of black hole thermodynamics in order to search
for universal properties of quantum gravity, where “universal” means to be independent of any existing
model of quantum gravity (such as the super string theory, loop quantum gravity, causal dynamical
triangulation, and so on). The basic concept of black hole thermodynamics is the following consideration:
Because a stationary black hole emits the thermal radiation (Hawking radiation), the black hole is in a
thermal equilibrium state of gravity. And, usually, the micro-scopic origin of black hole (thermal state
of gravity) is expected to be the quantum states of gravity. This basic concept depends on the thermal
radiation theory.

By accepting the above concept of black hole thermodynamics, it is reasonable to require that the
quantum gravity satisfies the presupposition of thermal radiation theory, otherwise we can not regard
black holes as thermal equilibrium states by observing the Hawking radiation. Here, the presupposition of
thermal radiation theory (Planck spectrum of radiation emitted by thermal equilibrium body) is that the
ordinary thermodynamics and quantum statistical mechanics work well on any thermal equilibrium body,
at least in laboratory systems. Therefore, it is natural to require that the basic idea of statistical mechanics
is applicable to thermal equilibrium states of not only laboratory systems but also quantum gravity (black
holes). Here, the basic idea of statistical mechanics is, for example, the Boltzmann formula, SBH = lnΩg,
where SBH is the Bekenstein-Hawking entropy and Ω is the number of states of black hole counted by
the underlying quantum gravity.

From the above consideration, let us adopt the following two suppositions in order to search for a
universal property of quantum gravity,

Supposition 1: A stationary black hole is a thermal equilibrium state composed of micro-states of
underlying quantum gravity. This is based on the Hawking radiation.

Supposition 2: Basic formalism of statistical mechanics (e.g. Boltzmann formula, grand partition func-
tion and so on) is applicable to underlying quantum gravity so as to describe the thermal equilibrium
states (black holes). This is based on the presupposition of thermal radiation theory.

The issues for each supposition are as follows:

Issue on Supposition 1 (Uniqueness of BH entropy): Note that, if the Boltzmann formula, SBH =
lnΩg, holds for black holes, then it defines the Bekenstein-Hawking entropy SBH uniquely in micro-
scopic point of view. This means that the Boltzmann formula can never work well unless the
uniqueness of entropy is proven in macro-scopic point of view of thermodynamics (without using

67Email address: saida@daido-it.ac.jp
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any micro-scopic theory) [2–4]. In ordinary thermodynamics, the uniqueness of entropy is proven
by some basic requirements of thermodynamics[2, 3]. However, as summarized in Sec.2, some basic
requirements of ordinary thermodynamics do not hold in black hole thermodynamics [1, 5, 6]. Then,
it is not necessarily manifest whether the uniqueness of SBH holds in black hole thermodynamics.
Hence, we have to prove the uniqueness of SBH before the discussion of Boltzmann formula.

Issue on Supposition 2 (Justification of Boltzmann formula): Once the uniqueness of Bekenstein-
Hawking entropy SBH is proven in macro-scopic point of view, we can proceed to the investigation
of Boltzmann formula. Note that the validity of Boltzmann formula in ordinary quantum statistical
mechanics is justified by some intrinsic properties of Hilbert space of ordinary quantum mechan-
ics. Those intrinsic properties appear in Ruelle-Tasaki theorem and Dobrushin theorem [4, 7, 8] as
summarized in Sec.3. Then, if SBH is given by the Boltzmann formula, we can expect that those
theorems of ordinary quantum mechanics are related with some property of underlying quantum
gravity. Some universal property of quantum gravity may be extracted from those theorems.

Sec.2 is for the uniqueness of SBH , and Sec.3 is for the two theorems of ordinary quantum mechanics.
Then, Sec.4 shows a conclusion about the universal property of quantum gravity.

2 Uniqueness Theorem of Bekenstein-Hawking Entropy

In the rigorous axiomatic formulation of ordinary thermodynamics (e.g. see Lieb and Yngvason [2] or
Tasaki [3]), the basic axioms consist of not only the “four laws of thermodynamics” but also some more
requirements. One of the axioms of ordinary thermodynamics modified in black hole thermodynamics is
the classification requirement of state variables; all thermodynamic state variables are classified into two
categories, extensive variables (e.g. energy, entropy and so on) and intensive variables (e.g. temperature,
pressure and so on). Here the extensivity and intensivity are defined by the scaling behavior as follows:
Under the scaling of “system’s size” V → αV and N → αN (where V is volume and N is mol-number
for a gas in a container), the extensive variable X is scaled as X → αX, and the intensive variable Y is
invariant Y → Y . This classification of state variables is frequently used in many theorems of ordinary
thermodynamics including the uniqueness theorem of entropy.

On the other hand, in the framework of black hole thermodynamics, e.g. for Schwarzschild black hole
of radius RBH , some representative state variables are as follows: The Bekenstein-Hawking entropy is
SBH = πR2

BH , the Hawking temperature is TBH = (4πRBH)−1 and the internal energy is EBH = RBH/2,
where we use the units c = 1, G = 1, ℏ = 1. For this Schwarzschild black hole, the basic scaling is given
by the scaling of length size RBH → λRBH , and we find the scaling behaviors, SBH → λ2SBH , TBH →
λ−1TBH and EBH → λEBH [5]. This implies that the state variables in black hole thermodynamics should
be classified not into two categories, but into three categories; the extensive variables (e.g. SBH), intensive
variables (e.g. TBH) and energy variables (e.g. EBH). In this classification, the energy variables, which
are extensive in ordinary thermodynamics, form one independent category in black hole thermodynamics,
since the scaling behavior of energy is different from that of extensive variables. Furthermore, the scaling
behavior of extensive and intensive variables are different from that of ordinary thermodynamics. But,
the scaling behavior of [extensive variable]×[intensive variable] (e.g. TBHSBH) is the same with that of
energy variables. [1, 6]

Because the classification of state variables are changed, the uniqueness of SBH in black hole ther-
modynamics is not manifest. However as shown in ref.[1], the uniqueness of SBH can be proven with
modifying the proof of uniqueness in ordinary thermodynamics. The statement of theorem is:

Uniqueness Theorem of Entropy: Let K be an extensive variable which increases along irreversible
adiabatic processes. Then there exist two constants a(> 0) and b such that K = aSBH + b, where
SBH is the Bekenstein-Hawking entropy. (See ref.[1] for the proof.)

This statement is the same with that in ordinary thermodynamics. Once this theorem is proven, we can
proceed to the investigation of Boltzmann formula. In this sense, we can regard the conclusion in Sec.4
as a result implied by the uniqueness of SBH .
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3 Conditions Justifying Boltzmann Formula

This section is not for black hole but for ordinary quantum mechanics. For simplicity in this section,
consider the system of N identical particles in the region of volume V with no external field, and:

• Interaction potential : Φ(x⃗1, · · · , x⃗N ) =
∑∞
j=1 ϕ

(j)(x⃗i1 , · · · , x⃗ij ) , where ij ∈ (1, · · · , N) .

• Energy eigen value : Ek(V,N) ,where k = 0, 1, 2, · · · and Ek ≤ Ek+1 (“=” is for degenerated states.)

• Number of states : Ω(V,N ;U) := “Number of eigen states satisfying Ek ≤ U” = max
Ek≤U

k .

For the first, let us show the Ruelle-Tasaki theorem which clarifies the sufficient conditions for the validity
of Boltzmann formula [1, 4, 7]:

Ruelle-Tasaki Theorem: Suppose the following two conditions of interaction potential Φ(x⃗1, · · · , x⃗N ):

Condition A: Arbitrary j-particle interaction, ϕ(j), becomes negative for sufficiently large distri-
bution of j particles. That is, there exists a constant rA (> 0), such that

ϕ(j)(x⃗i1 , · · · , x⃗ij ) ≤ 0 for rA ≤ min
k,l=1,··· ,j

|x⃗ik − x⃗il | . (3.1)

Condition B: Interaction potential Φ is bounded below. That is, there exists a constant ϕB (> 0),
such that

Φ(x⃗1, · · · , x⃗N ) ≥ −N ϕB . (3.2)

Then, the following limit exists uniquely; σ(ε, ρ) := lim
t.l.

lnΩ(V,N ;U)

V
, where limt.l. means the

thermodynamic limit defined by V → ∞ with fixing ρ := N/V and ε := U/V at constant values.

By this theorem, the thermodynamics limit of lnΩ(V,N ;U) is defined well. Furthermore, it can be also
proven that σ(ε, ρ) is concave about its arguments (ε, ρ) and monotone increasing about ε, and remains
constant along reversible adiabatic processes [4]. These behaviors are some characteristic properties of en-
tropy already known in thermodynamics. Then, in statistical mechanics, it is assumed that lnΩ(V,N ;U)
is equal to the entropy (the Boltzmann formula).

Obviously, the above conditions A and B are the sufficient conditions for the validity of Boltzmann
formula. Furthermore, a system, which holds Boltzmann formula but violates conditions A or B, has
not been found experimentally. Hence, at least in laboratory systems, it is reasonable to require that any
physical system satisfies the conditions A and B.

Next, let us show the Dobrushin theorem which clarifies the necessary condition of the existence of
thermal equilibrium states for the system under consideration [1, 7, 8]:

Dobrushin theorem: Consider the case satisfying following presuppositions:

Presupposition C: The j-particle interactions for j ̸= 2 disappear, and the total interaction
potential Φ is a sum of two-particle interactions, Φ(x⃗1, · · · , x⃗N ) =

∑
1≤i<j≤N

ϕ(2)(x⃗i, x⃗j).

Presupposition D: ϕ(2)(x⃗, y⃗) ∝ |x⃗− y⃗|−α, where α > 0.

Under these presuppositions, if the ground partition function of the system can be defined uniquely

(i.e. if thermal equilibrium states exist), then the following integral, I
(2)
V , is non-negative,

I
(2)
V :=

1

V 2

∫∫
V

d3x1 d
3x2 ϕ

(2)(x⃗1, x⃗2) ≥ 0 . (3.3)

Obviously, I
(2)
V ≥ 0 is the necessary condition for the existence of thermal equilibrium states. Note that

the presuppositions C and D are natural when we consider the gravity.
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4 Conclusion

Our supposition 2 in Sec.1 implies that the ordinary quantum mechanics and quantum gravity shears the
same properties which justify the validity of Boltzmann formula and the existence of thermal equilibrium

states. The sufficient conditions A and B and the necessary condition I
(2)
V ≥ 0 are expected to be such

properties 68. Note that, these three conditions (A, B and I
(2)
V ≥ 0) are for the interaction potential.

On the other hand, although it is not clear whether the full quantum gravity is expressed by using the
interaction potential Φ or Hamiltonian, but the semi-classical expression of quantum gravity should be
expressed by an effective Lagrangian using an interaction potential. Hence, our suggestion is:

Implication from the above: The interaction potential in the effective Lagrangian of quantum gravity

should satisfy the conditions A, B and I
(2)
V ≥ 0, in order to regard a stationary black hole as a

thermal equilibrium state of quantum gravity whose entropy is given by the Boltzmann formula.
The typical form of the effective potential is shown in the figure below. This means that the semi-
classical correction to Einstein-Hilbert action expresses a repulsive gravity at a short lengths scale
(which may be the Planck scale).

In this manuscript, any existing model of quantum gravity is not used. (See ref.[1] for detail.) Therefore,
this implication can be regarded as a universal property of quantum gravity.

φ(2)
(r)

0
rA r

Lower Bound

IV    > 0
φ(2)

(r > rA) < 0

(2)

Figure 1: Effective potential of quantum gravity at semi-classical level. Thermal equilibrium states of
gravity (black holes) may not exist unless a repulsive region appears, where rA may be Planck scale.
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Time Evolution of Evaporating Black Rings
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Abstract
It was shown that a five-dimensional Myers-Perry black hole loses its mass and an-
gular momenta by Hawking radiation and evolves toward a state with nonvanishing
nondimensional rotation parameters similarly to the case of a four-dimensional Kerr
black hole. In order to extend this analysis to the case of a black ring, we derive a
set of equations that determines time evolution of quasistationary evaporation of a
black ring, by approximating a thin black ring by a boosted black string.

1 Introduction

In four spacetime dimensions, a stationary, asymptotically flat, vacuum black hole is completely char-
acterized by its mass and spin. In particular, the topology of its event horizon must be a sphere. By
contrast, in five dimensions, there are black objects with nonspherical topologies. In this paper, we focus
on a black ring of the S1 × S2 horizon topology. The black ring solution rotating in the direction of S1

was found by Emparan and Reall [1]. Since a five-dimensional spacetime can have two angular momenta,
Pomeransky and Sen’kov [2] extended it to black rings with two independent rotation parameters (i.e.,
rotating in both directions of S1 and S2).

A black hole is known to evaporate due to the effect of quantum fields in curved spacetime as shown
by Hawking [3]. It is generally believed that by the Hawking radiation, a black hole loses its mass and
angular momentum and approaches a nonrotating black hole regardless of its initial state. However,
Chambers et al. [4] showed that a four-dimensional Kerr black hole evolves to a final evolutionary state
with the nonvanishing nondimensional rotation parameter, a/M ∼ 0.555, if only the massless scalar field
is taken into account (i.e., in the absence of fields with nonzero spin). This analysis was extended to
five-dimensional Myers-Perry black holes by Nomura et al [5]. They showed that any such black hole
with nonzero rotation parameters a and b evolves toward an asymptotic state with a/M1/2 = b/M1/2 ∼
0.1975(8/3π)1/2. Here, this value is independent of the initial values of a and b. It is interesting to extend
these studies to the case of black rings, and this is the purpose of our work.

2 Black Ring

The metric of a Pomeransky-Sen’kov black ring is

ds2 = −H(y, x)

H(x, y)
(dt+Ω)

2
+
F (x, y)

H(y, x)
dψ2+2

J(x, y)

H(y, x)
dψdϕ−F (y, x)

H(y, x)
dϕ2− 2R2H(x, y)

(x− y)
2
(1− ν)

2

(
dx2

G(x)
− dy2

G(y)

)
,

(2.1)
where the 1-form Ω is

Ω = −
2Rλ

√
(1 + ν)

2 − λ2

H(y, x)

[(
1− x2

)
y
√
νdϕ+

1 + y

1− λ+ ν

{
1 + λ− ν + x2yν (1− λ− ν) + 2νx (1− y)

}
dψ

]
.

(2.2)
The explicit form of the functions G, H, J and F can be found in Ref. [2]. Here, we follow the notation
of Ref. [2], except that we choose the signature (−,+,+,+,+) for the metric, exchange ϕ and ψ, and
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use R instead of k. The coordinate ranges are −∞ < t < +∞, 0 < ϕ,ψ < 2π, −1 ≤ x ≤ 1 and
−∞ < y < −1. R is a parameter of dimension of length, which determines the characteristic scale. λ
and ν are dimensionless parameters satisfying 0 ≤ ν < 1 and 2

√
ν ≤ λ < 1 + ν, which determine two

nondimensional rotational parameters. The regular event horizon exists at y =
(
−λ+

√
λ2 − 4ν

)
/2ν.

The solution is asymptotically flat, and spacelike infinity is located at x = y = −1. The coordinates
(x, ϕ) parametrize the two-sphere S2 and ψ parametrizes the circle S1. One recovers the Emparan-Reall
black ring by setting ν = 0.

Here, we consider a thin black ring limit where the ratio of the S1 radius to the S2 radius becomes
infinity,

λ→ 0, Rλ = finite, (2.3)

and define new parameters a(≡MKa∗), MK and coordinates r, z and θ as

ν = a2∗λ
2/4, Rλ =

√
2MK , y = −

√
2R

r
, ψ = − z√

2R
, x = cos θ. (2.4)

Here, a∗ is fixed in taking the limit. Then the black ring solution is reduced to the so-called boosted Kerr
string solution

ds2 = −
(
1− 2MKr cosh

2 σ

ρ2

)
dt2 +

2MKr sinh 2σ

ρ2
dtdz +

(
1 +

2MKr sinh
2 σ

ρ2

)
dz2 +

ρ2

∆
dr2 + ρ2dθ2

+

(
r2 + a2

)2 −∆a2 sin2 θ

ρ2
sin2 θdϕ2 − 4MKr coshσ

ρ2
a sin2 θdtdϕ− 4MKr sinhσ

ρ2
a sin2 θdzdϕ, (2.5)

where ρ2 = r2+a2 cos2 θ,∆ = r2−2MKr+a
2. Here a is the rotation parameter, MK is the mass density

of the boosted Kerr string, and σ := arctanh(1/
√
2) is the boost parameter. The outer and inner horizons

are located at r = r± :=MK ±
√
M2
K − a2.

3 Emission Rate

In this section, we consider the emission of massless scalar particles from the Pomenransky-Sen’kov black
ring by Hawking radiation. The evolution of a scalar field is governed by the Klein-Gordon equation in
curved spacetime

(−g)−1/2
∂µ
(√

−ggµν∂νΦ
)
= 0, (3.1)

where g is the determinant of the metric (2.1). To quantize the field, we expand it in terms of eigenmodes
as Φ = e−iωteimϕeinψΨ(x, y). The expected number of particles emitted per unit time is formally given
by

⟨N⟩ = Γ(ω, l̃,m, n)

e(ω−nΩψ−mΩϕ)/T − 1
, (3.2)

where l̃ is the eigenvalue of Ψ(x, y) (which has not been determined as we will mention later), Ωψ is the

angular velocity along ψ, Ωϕ is the angular velocity along ϕ, and Γ(ω, l̃,m, n) is the greybody factor,
which is identical to the absorption probability of the incoming wave of the corresponding mode. We can
evaluate the emission rates of the total mass and angular momenta, which give changes of the black ring
mass M and angular momenta Jψ and Jϕ as

− d

dt

 M
Jψ
Jϕ

 =
1

2π

∑
l̃,m,n

∫ ∞

0

dω⟨N⟩

 ω
n
m

 , (3.3)

where
∑

means summing up over all modes. Note that it is difficult to estimate the emission rates
generally because no one has succeeded in separating the coordinates x and y and two-dimensional
numerical calculation of eigenfunctions is required.

Here, we consider the situation where the eigenvalue of l̃ can be approximately evaluated: a black
string limit discussed above. For the boosted black string (2.5), we can separate the wave equation, and
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therefore, we approximate the evolution of a scalar field in a black ring spacetime by that in a boosted
Kerr string spacetime. In this situation, the scalar field can be separated as

Φ = e−iωtR(r)eikzeimϕSmℓ (θ), (3.4)

where Smℓ (θ) is the spheroidal harmonic function. From the coordinate transformation (2.4), the relation
between n of a black ring and k of a boosted black string is n = 2kR tanhσ. The expected number of
particles emitted per unit time is given by

⟨N ′⟩ = Γ′(ω, ℓ,m, k)

e(ω−kV−mΩϕ)/T ′ − 1
, (3.5)

where T ′ is the temperature of the horizon and V is the linear velocity of the horizon along the string
direction,

T ′ =
r+ − r−

4π
(
r2+ + a2

)
coshσ

, V = tanhσ. (3.6)

Γ′(ω, ℓ,m, k) is the greybody factor of the boosted Kerr string spacetime. The emission rates (3.3) is
evaluated by summing over ℓ, k instead of l̃, n and using ⟨N ′⟩ instead of ⟨N⟩. In order to determine the
emission rates, we need to calculate the greybody factors.

4 Greybody Factor

In the following, we evaluate the greybody factors for a massless scalar fields in a boosted Kerr string
spacetime. Substituting the ansatz (3.4) into the Klein-Gordon equation (3.1) in the background of (2.5),
we get the following angular and radial wave equations for Smℓ (θ) and R(r)[7],

0 =
1

sin θ
∂θ (sin θ∂θS

m
ℓ ) +

[
a2
(
ω2 − k2

)
cos2 θ − m2

sin2 θ
+ λℓm

]
Smℓ , (4.1)

0 = ∆∂r (∆∂rR)−∆
[
k2r2 + a2ω2 − 2ωma coshσ + λℓm

]
R+

[ [
ω
(
r2 + a2

)
−ma coshσ

]2
+ 2MKr

(
r2 + a2

)
cosh2 σ (ω − k tanσ)

2 − 2MKr
(
r2 + a2

)
ω2 −m2a2 sinh2 σ + 4kmaMKr sinhσ

]
R,

(4.2)

where λℓm is the separation constant which is determined as an eigenvalue of (4.1). For small a2
(
ω2 − k2

)
,

the eigenvalues associated with the spheroidal wave functions Smℓ are λℓm = ℓ (ℓ+ 1)+O
(
a2
(
ω2 − k2

))
[8].

As we mentioned in the previous section, the greybody factor is calculated as the absorption prob-
ability of the incoming waves of the corresponding mode. Defining new parameters ω̃, k̃, the tortoise
coordinate r∗ and a new wave function u as

ω̃ = ω coshσ + k sinhσ, k̃ = ω sinhσ + k coshσ, dr∗ =
r2+ + a2

∆
dr, u =

(
r2+ + a2

)
R, (4.3)

the radial wave equation (4.2) can be rewritten as the equation of Schrödinger type:[
d2

dr2∗
+ ω̃2 − V (r)

]
u = 0, (4.4)

where V (r) is the effective potential

V (r) =
∆
{
2MKr(r

2 − 2a2) + a2(r2 + a2)
}

(r2 + a2)4
+

∆(ω̃2a2 + λℓm) + 4mω̃MKar −m2a2

(r2 + a2)2
. (4.5)

As the boundary condition, we impose the ingoing condition at the horizon. Then, u behaves as

u(r∗) ∼

{
e−iω̃r∗ at r → ∞,

Aine
−iω′r∗ +Aoute

iω′r∗ at r → r+.
(4.6)
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Here ω′ = ω −mΩ′
ϕ, where Ω′

ϕ = a/(2Mr+). The greybody factor is written as

Γ = 1− |Aout/Ain|2, (4.7)

which has to be evaluated numerically.
Now, let us consider the case of the Emparan-Reall black ring, i.e. a = 0. In this case, Smℓ becomes

the spherical harmonic function and the calculation becomes much simpler compared to the case a ̸= 0.
We developed a code to calculate the greybody factors in this situation. Here we show the example of
the behavior of the greybody factors for the modes of three lowest even l numbers in Fig.1.
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Figure 1: Greybody factors for the scalar modes k = m = 0, ℓ = 0, 2, 4 (from left to right).

5 Summary

In this article, we have given a set of equations to calculate the quasistationary evaporation of large radius
black rings. In our formulation, the behavior of a scalar field in a black ring spacetime is approximated
by that in a boosted Kerr string spacetime. We showed a typical example of the numerical results of the
greybody factors, and we are currently calculating the greybody factors for various other modes. The
numerical determination of the evolution of a black ring by Hawking radiation will be completed soon.

Acknowledgments

This work is supported by the JSPS Grant-in-Aid for Scientific Research (A) No. 22244030.

References

[1] R. Emparan and H. S. Reall, Phys. Rev. Lett. 88, 101101 (2002).

[2] A. A. Pomeransky and R. A. Sen’kov, [hep-th/0612005].

[3] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

[4] C. M. Chambers, W. A. Hiscock and B. Taylor, Phys. Rev. Lett. 78, 3249 (1997).

[5] H. Nomura, S. Yoshida, M. Tanabe and K. -i. Maeda, Prog. Theor. Phys. 114, 707 (2005).

[6] H. Elvang and R. Emparan, JHEP 0311, 035 (2003).

[7] O. J. C. Dias, Phys. Rev. D 73, 124035 (2006)

[8] S. A. Teukolsky, Astrophys. J. 185, 635 (1973).

JGRG21 Programme



M. Hotta 171

Quantum energy teleportation and black hole
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Abstract
Recently a protocol of quantum teleportation has been proposed which attains effec-
tive energy transportation by local operations and classical communication without
breaking local energy conservation. This provides a new method of energy extrac-
tion from black holes. It is argued that information about zero-point fluctuation
of quantum fields outside a black hole has a very close connection with black hole
entropy.

1 Introduction

Interplay between quantum physics and quantum information theory has attacted much attention.
Especially, quantum black hole is one of the striking examples. It is well known that black holes carry their
own entropy, which is proportional to horizon area. It is shown that entanglement entropy of conformal
fields in quantum information theory is equal to BTZ black hole entropy [1]. Recently, a protocol of
quantum energy teleportation (QET) [2] sheds a new light on this entropy. This protocol reveals that
information about zero-point fluctuation of quantum fields outside a black hole has a deep relationship
with black hole entropy. This presentation is based on my recent paper [3].

2 Horizon shrinkage induced by QET

QET is a quantum protocol which effectively transports energy [2]. Performing a distant measurement
of vacuum fluctuation, the zero-point energy becomes active and can be extracted by local operation
dependent on the measurement result. This provides a new method of energy extraction from black
holes. Outside a black hole, we perform a measurement of quantum fields and obtain information about
the quantum fluctuation. Then positive-energy wave packets of the fields are generated during the
measurement and fall into the black hole. Even after absorption of the wave packets by the black hole,
we can retrieve a part of the absorbed energy outside the horizon by using QET. This energy extraction
yields a decrease in the horizon area, which is proportional to the entropy of the black hole. However,
if we accidentally lose the measurement information, we cannot extract energy anymore. The black-
hole entropy is unable to decrease. Therefore, the obtained measurement information has a very close
connection with the black hole entropy.
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Abstract
In the open inflation scenario, phase transition from false vacuum inflation at a local
minimum to slow-roll inflation is mediated by the quantum tunneling. In this work, we
present a concrete multi-field open inflation model, explicitly showing how the bubble
is nucleated by tunneling of scalar fields, and how slow-roll inflation in the nucleated
bubble follows. This model is the first viable open inflation model with a simple
potential. Multi-field tunneling is described by multi-field instanton method, which is
an natural extension to the Coleman-De Luccia(CDL) instanton method. Evolution
of the universe in the bubble obeys equations of motion for the open Friedmann-
Lemâıtre-Robertson-Walker(FLRW) universe.

1 Introduction

Recently, quantum tunneling of a scalar field in inflationary era is keenly studied in the context of string
landscape, which predicts many local minima in the potential for scalar fields, where scalar fields are
stable classically but unstable due to quantum effects [1–3]. Quantum tunneling of a scalar field with
gravity was first studied by Coleman and De Luccia[4, 5], and they found that the tunneling proceed
via bubble nucleation, inside of which can be regarded as open FLRW universe because of the O(4)-
symmetry of the instanton. In the case slow-roll inflation after the tunneling lasts for moderate number
of e-foldings, say, about 50 or 60, the universe becomes almost flat at the end of the inflation but small
cuvatrture remains, and ΩK,0 ∼ 10−2 − 10−3 might be observed in future observation. In fact, Freivogel
et al. suggested that this kind of situation is preferred in string landscape[6]. The inflation scenario in
which the universe bears small negative curvature because of the tunneling before slow-roll inflation is
often called open inflation[7, 8]. Since open infaltion can be seen as the outcome of string landscape,
studies of open inflation might give us some indication about string landscape.

It is known that there has been a trouble in cnstructing a single-field open inflation model, that only
a model with very artificial potential is possible[9]. This is because the condition for existence of a CDL
instanton require the potential barrier to be steep, however, the condition for slow-roll inflation require
flat potential tilt, and very artificial potential is needed in order to match these two oppsitely oriented
condition at the same time.

However, let us consider a model with two scalar fields. One of which called “tunneling field” plays a
major role in quantum tunneling, and the other called “inflaton” plays a major role in slow-roll inflation.
In this case, it is expceted that open infaltion is realized with simple potential by choosing the potenial
barrier for the tunneling field steep while the potential for the inflaton after the tunneling flat. Systems
with many scalar fields in inflationary era are also motivated by string landscape.

In this study, we propose a concrete multi-field model with simple potential, and make sure that open
inflation scenario is indeed realized by explictly studying the evolution, which includes quantum tunneling
and slow-roll inflation after the tunneling. This multi-field open inflation model is the first open inflation
model with simple potenial.

2 Scenario and Model

The brief scenario of our multi-field open inlflation model is as follows. In the begining, two scalar fields
are trapped at a false vacuum for a long time. Then, quantum tunneling happens where the tunneling

71Email address: sugimura@yukawa.kyoto-u.ac.jp
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field play a main role. On the other side of the potential barrier, the inflaton starts to roll slowly due
to the coupling between the two scalar fields, and causes slow-roll inflation. The slow-inflation continues
until the inflaton reach the true vacuum where reheating occurs in the usual manner. The schematic
picture of this scenario is drawn in the Fig. 1.

Figure 1: The schematic picture of our multi-field open inflation scenario. The color corresponds to the
potential: lighter region is higher and darker region is lower. The vertical axis is inflaton’s field value,
and the horizontal axis is tunneling field’s field value.

To realize this multi-field open inflation scenario, we propose a concrete model with a simple potential,

V (σ, ϕ) = ασ2
{
(σ − σ0)

2
+M2

V

}
+

(
1

2
m2
ϕϕ

2 +
β

2
σ2 (ϕ− ϕ0)

2

)
. (2.1)

Here, σ is the tunneling field and ϕ is the inflaton, first part of the potential is important in tunneling,
and second part makes it possible for ϕ to slow-roll only after the tunneling by the coupling to σ. We
take the parameters as α = 0.1, σ0 = 2mpl, MV = 0.2mpl, β = 0.1, mϕ = 10−6mpl, ϕ0 = 15mpl. The
false vacuum is located near (σ0, ϕ0), and the true vacuum is located at (0, 0).

3 Bubble Nucleation and Multi-filed Instanton

In this section, we study the quantum tunneling of scalar fields via bubble nucleation. Multi-field tun-
neling with gravity is expected to be described with multi-field instanton method, which is a natural
extension to the CDL instanton method[10]. In the multi-field instanton method, we solve equations of
motion for an instanton,

ā′′

ā
+

1

3m2
pl

(
σ̄′2 + ϕ̄′2 + V (σ̄, ϕ̄)

)
= 0 ,

σ̄′′ + 3
ā′

ā
σ̄′ − Vσ̄(σ̄, ϕ̄) = 0 , ϕ̄′′ + 3

ā′

ā
ϕ̄′ − Vϕ̄(σ̄, ϕ̄) = 0 , (3.1)

with boundary condition,

ā(0) = ā(τend) = 0 , ā′(0) = −ā′(τend) = 1 , σ̄′(0) = σ̄′(τend) = 0 , ϕ̄′(0) = ϕ̄′(τend) = 0 . (3.2)

Here, τ is imaginary time and ′ is derivative with respect to τ , ā is an instanton for the scale factor of
the universe in Euclidean spacetime, and ϕ̄ and σ̄ are instantons for ϕ and σ, respectively. It is known
from the CDL argument[5] that the action for the instanton gives the tunneling rate and that the inside
of the bubble is written as an open FLRW universe which statrts with scalar fields whose values are given
by the instanton’s value at τ = 0.

We nemerically find the solution which satisfies these equations with the potential given by Eq. (2.1),
and the result is ploted in Fig. 2.
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Figure 2: Multi-field instanton for the potenial give by Eq. (2.1)[10].

4 Slow-roll Inflation Inside the Bubble

In this section, we study the evolution of the univese inside the bubble. The evolution equation are those
for a open FLRW universe,

ä

a
+

1

3m2
pl

(
σ̇2 + ϕ̇2 − V (σ, ϕ)

)
= 0 ,

σ̈ + 3
ȧ

a
σ̇ + Vσ(σ, ϕ) = 0 , ϕ̈+ 3

ȧ

a
ϕ̇+ Vϕ(σ, ϕ) = 0 , (4.1)

where ˙ denotes a derivative with respect to t and a is the scale factor of the open FLRW universe.
The initial conditions at t = 0 are given from the multi-field instanton method as a(0) = 0, σ(0) =
σ̄(0), ϕ(0) = ϕ̄(0), as we mentioned before.

We calculated these equations numerically with the potential given by Eq. (2.1), and the result is
plotted in Fig. 3. Contribution to the Hubble square H2, or the energy density of the univese, from each
component are plotted in Fig. 4, and it is apparent that the inflaton indeed causes slow-roll inflation.
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Figure 3: The evolution of the scalr fields
in the nucleated bubble[10]. left:evolution
of the inflaton. right:evolution of the
tunneling field. The inflaton slowly rolls
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of e-foldings, from the nucleation point,
ϕ ∼ 15mpl, to the bottom of the potential,
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Figure 4: The contribution to Hubble square H2

from each component, H2
ϕ ,H

2
σ ,H

2
k which are from

infalton, tunneling field, and curvature of the uni-
verse, respcetively. Curvature dominance after the
bubble nucleation soon comes to an end, and then
slow-roll inflation by the inflaton follows.
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5 Conclusion

We proposed a multi-field open inflation in Sec. 2 which is expected to realize multi-field open inflation
scenario. The tunneling via bubble nucleation and the slow-roll inflation inside the bubble is explicitly
calculated in Sec. 3 and Sec. 4, respectively. In Sec. 4, we can see that slow-roll inflation indeed occurs in
the bubble, and now we are sure that open inflation scenario is indeed realized in our model of multi-field
open inflation model. In this model, we assume two scalar fields, one is a tunneling field the other is an
inflaton, which plays a major role in tunneling and slow-roll inflation, respectively. Since the potenial for
these two scalar fields has simple form, it can be said that we succeed in constructing a open inflation
model with simple potential for the first time.

Now, we have a concrete model for the multi-field open inflation and know how the evloution of
the universe proceeds in this model. Thus, it is possible to calculate some observable quantity in our
model like the powerspecturm for the curvature perturbation, which is already known for a single field
model[11, 12].

It is also interesting to study the bispecturm for the curvature perturbation in open inflation model,
which is now we are working for, since the bispectrum is now getting available thanks to the development
of the technology [13, 14]. A trace of open inflation might be found in the bispectrum, and as we
mentioned in introduction, it might be a trace of string landscape.
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Abstract
We investigate density perturbations sourced by a curvaton with a generic energy
potential. The key feature of a curvaton potential which deviates from a quadratic
is that the curvaton experiences a non-uniform onset of its oscillation. This sources
additional contributions to the resulting density perturbations, and we especially find
that the non-Gaussianity parameter fNL can become large: 10 ≲ fNL ≲ 30 in a hilltop
Nambu-Goldstone curvaton scenario.

We explore density perturbations sourced by a curvaton rolling along an arbitrary energy potential.
The key feature of a curvaton potential which deviates from a quadratic one is that the curvaton field with
large-scale field fluctuations starts its oscillation at different times at different patches of the universe.
Such behaviour contributes to the curvaton energy density perturbations in addition to that sourced
directly from the original field fluctuations. We find that such non-trivial conversion processes of the field
fluctuations into the density perturbations can lead to strong enhancement/suppression of the density
perturbations of the universe, as well as for their non-Gaussianities.

It is worthwhile to investigate curvaton potentials which deviate from simple quadratic ones, both from
observational and theoretical reasons: Considering a curvaton whose field fluctuations were generated
during the inflationary era (which is the case studied in this paper), in order for the curvaton to produce
the density perturbation spectrum which is red-tilted (i.e. with negative spectral index ns−1) as suggested
by latest CMB observations [1–3] without relying on specific inflation mechanisms, the curvaton needs
to be located along a potential with negative curvature during inflation. This obviously suggests the
curvaton potential to take non-trivial forms. Furthermore, explicit curvaton models constructed in the
framework of microscopic physics can naturally possess intricate energy potentials, e.g., curvatons in
supersymmetric models [5], a stringy curvaton model in [6] from a D-brane moving along the internal
compactified space giving rise to a multi-dimensional periodic curvaton potential. [7] also discusses a
string realization of the curvaton, where the potential is a linear combination of exponential terms.

We also apply our general results to the case where the curvaton is a pseudo-Nambu-Goldstone
(NG) boson [8] of a broken U(1) symmetry. The periodic curvaton potential necessarily possesses not
only minima but also maxima, around which the potential curvature is negative so that the resulting
density perturbation spectrum can become red-tilted. We explore the parameter space of NG curvatons
producing a red-tilted density perturbation spectrum as suggested by observations, and show that the
allowed regions for the inflationary energy scale and the reheating temperature (i.e. when the inflaton
decays) are strongly constrained, unless the NG curvaton is located close to the maximum of its potential
during inflation. In such hilltop cases, the resulting density perturbations are extremely enhanced, thus
relaxing the bounds on the inflation/reheating scales. Non-Gaussianity of the density perturbations also
increases in the hilltop limit to values 10 ≲ fNL ≲ 30 in most part of the allowed parameter window,
which will be tested by upcoming CMB measurements. Such mild increase of non-Gaussianity towards
the hilltop limit is actually a rather generic feature of hilltop curvatons. The detailed calculations and
discussion can be found in Ref. [10].

Let us comment on initial conditions of hilltop curvaton models. So far we have simply assumed
that the curvaton sits near the local maximum. This may be justified if the curvaton is charged under
some symmetry, which is unbroken during early stage of the inflation or pre-inflationary epoch. This
ameliorates the amount of fine-tuning of the initial condition for the hilltop curvaton. On the other
hand, in the NG curvaton model, there is no special point in its field space since the curvaton has an
approximate shift symmetry. Then, a priori, there is no particular reason to believe that the curvaton

72Email address: fumi@tuhep.phys.tohoku.ac.jp

JGRG21 Programme



F. Takahashi 177

initially sits near the local maximum. However, we do not know whether the conventional naturalness
argument can be really applied to the determination of parameters in the early universe. For example,
the parameters may be determined in a similar fashion as in the anthropic argument for explaining the
present value of the cosmological constant [9]. Suppose that the prior probability of the initial position
of the NG curvaton has a flat distribution in the field space. Assuming that all the other parameters are
fixed, it is conceivable that only the universe with the curvaton initially sitting near the local maximum
is anthropically selected, if it does not lead to the habitable universe otherwise. For instance, this is
expected to be the case, if the inflaton mainly decays into the hidden sector while the curvaton decays
into the standard model particles. Thus, the apparent fine-tuning of the initial condition of the NG
curvaton based on the conventional naturalness argument may be due to our ignorance of the mechanism
about how those parameters are determined.

Both from observational and theoretical reasons, it is important to investigate in detail the conversion
process of the curvaton field fluctuations into the resulting density perturbations. In this work, we have
provided generic analytic expressions incorporating effects due to non-uniform onset of the curvaton
oscillation, which open up new possibilities for the curvaton paradigm.
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Abstract
We develop a theory of nonlinear cosmological perturbations on superhorizon scales
for a multi-component scalar field in the context of inflationary cosmology. We employ
the ADM formalism and the spatial gradient expansion approach. We provide a
formalism to obtain the solution in the multi field case up to the order of ϵ2 where
ϵ = 1/(HL) is a small parameter representing the ratio of the Hubble radius to the
characteristic length scale L of perturbation. This formalism can be applied to the
calculation of the superhorizon evolution of the primordial non-Gaussianity beyond
the so-called δN formalism, equivalent to O(ϵ0).

1 Introduction

The CMB anisotropy observation by WMAP [1] clearly showed us that the primordial curvature pertur-
bations are nearly scale invariant and their statistics is Gaussian to very high accuracy. This is perfectly
in agreement with the predictions of the standard, canonical single-field, slow-roll inflation. Nevertheless,
an indication was found in the CMB data as well as in the large scale structure data that there may
be a detectable level of non-Gaussianity in the curvature perturbation. Consequently a lot of attention
has been paid in recent years to possible non-Gaussian features in the primordial curvature perturbation
from inflation. Apparently this direction of research involves nonlinear cosmological perturbations.

There are mainly two approaches to nonlinear cosmological perturbations. One is the standard pertur-
bative approach. This is basically straightforward and can in principle deal with most general situations
as long as the perturbation expansion is applicable. But the equations can become very much involved
and quite often the physical transparency may be lost.

The other is the spatial gradient expansion approach [2]. In this approach, the field equations are
expanded in powers of spatial gradients and hence this is applicable only to perturbations on superhorizon
scales. Nevertheless, it has a big advantage that the full nonlinear effects are taken into account at each
order of the gradient expansion. Actually, non-Gaussianities in numerous models have been investigated
in the last decade using the δN formalism, which corresponds to the lowest order in gradient expansion.

However, there are cases where the δN formalism is not applicable as is reported in [3]. Although
we have neglected the spatial gradient terms in the δN formalism, those spatial gradient terms become
important if a temporary violation of the slow-roll condition occurs. And hence, we need to further
develop the theory of non-linear cosmological perturbation applicable to a wider class of inflation model
taking into account the higher order in gradient expansion, which is dubbed the “Beyond δN formalism”.

2 Leading order in gradient expansion

Firstly, we revisit the lowest order in gradient expansion and see that the lowest order equations coincide
with the background equations. This means once we obtain the background homogeneous solutions, the
solution at the lowest order in gradient expansion will be automatically given in terms of those solutions.

We use the ADM metric

ds2 = gµνdx
µdxν = −α2dt2 + γ̂ij(dx

i + βidt)(dxj + βjdt) , (2.1)

73Email address: naruko@yukawa.kyoto-u.ac.jp
74Email address: ytakamizu@aoni.waseda.jp
75Email address: misao@yukawa.kyoto-u.ac.jp

JGRG21 Programme



A. Naruko 179

where α, βi and γ̂ij are the lapse function, the shift vector and the spatial three metric respectively.
(Greek indices µ, ν run over µ, ν = 0, 1, 2, 3, and Latin indices i, j = 1, 2, 3.) The spatial metric is futher
decomposed as

γ̂ij = a2(t)e2Ψγij , (2.2)

where a(t) is the scale factor for our local universe and the determinant of γij is normalised to be unity.
The extrinsic curvature Kij is defined by

Kij =
1

2α

(
∂tγ̂ij − γ̂jkD̂iβ

k − γ̂ikD̂jβ
k
)
, (2.3)

where D̂ is the covariant derivative compatible with the spatial metric γ̂ij and also is decomposed as

Kij = a2(t)e2Ψ
(
1

3
Kγij +Aij

)
, (2.4)

where K and Aij are the trace and traceless components of Kij . It is known that we can assume
Aij = O(ϵ2) becauseAij rapidly decays on superhorizon scales in the inflationary universe [2]. Hereinafter,
using the degree of freedom of the choice of spatial coordinates, we drop the shift vector, which is called
as the time-orthogonal threading.

As for matter field, we consider a M component scalar field whose action is given by

S = −
∫
d4x

√
−g
[
1

2
gµνδIJ∂µϕ

I∂νϕ
J + V (ϕ)

]
; (I, J,K = 1, 2, · · · ,M) (2.5)

where although we restrict the scalar field metric to a simple one δIJ , the generalisation will be straight-
forward. From this action, the energy mometum tensor of this scalar field is obtained

Tµν = δIJ∂µϕ
I∂νϕ

J +

[
−1

2
gαβδIJ∂αϕ

I∂νϕ
J − V (ϕ)

]
gµν . (2.6)

Now we write down the Einstein equations. At the leading order in gradient expansion where all
spatial gradient terms and Aij are neglected, we have only three equations, two constraints and one
evolution equation for K,

K2 =
3

2
δIJ∂τϕ

I∂τϕ
J + 3V , (2.7)

∂iK =
3

2
δIJ∂iϕ

I∂τϕ
J , (2.8)

∂τK =
3

2
δIJ∂τϕ

I∂τϕ
J . (2.9)

where τ is the proper time τ defined as

τ(t, xi) ≡
∫
xi=const.

dt α(t, xi) , (2.10)

On the other hand, the explicit form of K under the time-orthogonal threading is

K = − 1

α

∂t

(
a3e3Ψ

)
a3e3Ψ

= −3
∂τ

(
aeΨ

)
aeΨ

. (2.11)

With the following two identifications,

aeΨ ⇔ a , τ ⇔ t , (2.12)

we can see the correspondence between K and −3H and also the correspondence between the structure of
the lowest order equations and that of the background equations. Therefore, if we obtain the background
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solution, ϕ(t)|background = ϕ0(t), we can give the solution at the lowest order in gradient expansion just by
changing the time coordinate t by τ , ϕg(t, xi)|gradient = ϕ0(τ). Thus the solution are given by a function
of τ by using the background solutions.

In passing, in the standard cosmological perturbation theory, the e-folding numberN , N = −
∫
dtH(t),

is more convenient than the cosmic time t. Then, we change the time coordinate and use the e-folding
number as the time coordinate below. And also the non-linear e-folding number N is defined as,

N ≡ −1

3

∫
xi=const.

dτK(t, xi) = −
∫
xi=const.

dt
(
H + ∂tΨ(t, xi)

)
. (2.13)

Rewriting equations (2.7) and (2.9) with the time coordinate N , we again see the correspondence between
those equations and the background equations with the time coordinate N .

3 Uniform N slicing

It is known that, in the case of a single scalar field, the non-linerar curvature perturbation on the comoving
slicing is conserved on superhorizon scales at the lowest order in gradient expansion. At this order, we
can show the coincidence among four common slices using the Einstein equations,

comoving = uniform K = uniform energy = uniform N (3.1)

As we have seen in the last section, the lowest-order solutions are expressed in terms of functions of N .
According to the above coincidence, especially the coincidence between the comoving and uniform N
slices, we can change N by N in solutions on the comoving slicing.

On the other hand, at the next-leading order in gradient expansion, we need to take into account
the spatial gradient terms, which are given spatial derivatives of the lowest order solutions. If the lowest
order solutions are given by functions of N , we can easily evaluate them, which is the case in single field
models. However, if the above coincidence does not hold, we cannot calculate them any more because
the lowest order solutions are given by functions of N , and N is inhomogeneous in general, which will
happen in multi-field case.

Therefore, the choice of slicing becomes crucial when we go to higher order in gradient expansion and
we need to appropriately choose the time coordinate. Especially, in order to evaluate spatial gradient
terms, we have to choose the uniform N slicing. On this slicing, the curvature perturbation does not
evolve from Eq (2.13) and is given by a time-independent function f(xi),

ΨN = f(xi) . (3.2)

4 Beyond δN formalism

In the uniform N slicing and time-orthogonal threading, the scalar field equation is given as

K

3
∂N

(
K

3
∂Nϕ

I

)
− K2

3
∂Nϕ

I − 1

a2e2Ψ

(
Di −

DiK

K
+DiΨ

)
DiϕI + δIJ

∂V

∂ϕJ
= 0 , (4.1)

where D is the covariant derivative compatible with the spatial metric γij . Using the Einstein equations,
we can rewrite Eq (4.1) as,

V

3

(
1− 1

6
∂NϕJ∂Nϕ

J

)−1

∂2Nϕ
I − V ∂Nϕ

I + δIJ
∂V

∂ϕJ

=
1

a2e2Ψ

[
∂2Nϕ

I

6− ∂NϕJ∂NϕJ
− 4∂Nϕ

I

](
R− 4D2Ψ− 2DiΨDiΨ

)
+

1

a2e2Ψ

(
Di −

DiK

K
+DiΨ

)
DiϕI − 1

a2e2Ψ

[
DiΨD

i

(
1

K

)
−D2

(
1

K

)
+DiϕJD

iϕJ
]
∂Nϕ

I .

(4.2)
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The lowest-order equation is obtained when the RHS is neglected because it involves the two spatial
derivatives. Although we need to take into account the RHS at this order, it is regarded as the source
term. Since they are given by spatial derivatives of the lowest order solutions, we can solve Eq (4.2)
by integrating the RHS once the lowest order solutions are obtained. And then, we can express the
next-leading order solution of the scalar field as a function of e-folds N , the initial conditions of scalar
field and spatial metric,

ϕ
I(2)
N (t, xi) = ϕ

I(2)
N

[
N,ϕ(tini), γij(tini)

]
. (4.3)

Inserting this into the Hamiltonian constraint, we can also express the extrinsic curvature, K(2) on the
uniform N slice as a function of e-folds and the initial conditions of ϕ and γij as

K
(2)
N = K

(2)
N

[
N,ϕ(tini), γij(tini)

]
. (4.4)

Now we consider the gauge transformation from the uniform N slice to the uniform K slice and
evaluate the curvature perturbation on the uniform K slicing using the solutions on the uniform N slice.
We determine the generator n ≡ Ñ −N from the uniform N to uniform K slices by Eq (4.4). Since K
is uniform on the uniform K slice, n satisfies the following equation

K
(2)
N

[
N,ϕ(tini), γij(tini)

]
= K

(2)
N

[
N + n, ϕ(tini) + δϕ(tini), γij(tini) + δγij(tini)

]
. (4.5)

By solving Eq (4.5), we can determine the generator n. The gauge transformation for Ψ is given by

Ψ̃(2)(N + n(0)) = Ψ(2) − (Ψ
(0)
N + n

(0)
N )n(2) − α(0)2

6a2e2Ψ(0)(1 + n
(0)
N )2H2

γij(0)∂in
(0)∂jn

(0) . (4.6)

Inserting n into Eq (4.6), we obtain the solution of Ψ on the uniform K slice.
At the lowest order in gradient expansion, Ψ can be regarded as the curvature perturbation. However,

at the next-leading order, we need to take into account the contribution form the scalar part C in γij ,
which is subtracted from γij as

C = γij

∣∣∣
scalar

≡ −3

4
△−1

{
∂i
[
e−3Ψ(0)

∂j
(
e3Ψ

(0)

γ
(2)
ij

)]}
, (4.7)

By applying the gauge transformation for γij ,

γ̃
(2)
ij (N + n(0)) = γ

(2)
ij − γ

(0)
ijNn

(2) − α2

a2e2Ψ
(
1 + n

(0)
N

)2
H2

(
n
(0)
i n

(0)
j − 1

3
γkln

(0)
k n

(0)
l γij

)
, (4.8)

we can also evaluate the spatial metric γij on the uniform K slice. Finally, by subtracting the C part
from γij , we can give the explicit form of the curvature perturbation on the uniform K slice,

RK ≡ ΨK +
1

3
CK (4.9)
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Abstract
We develop a theory of nonlinear cosmological perturbations on superhorizon scales
for a multi-component scalar field with a general kinetic term and a general form
of the potential in the context of inflationary cosmology. We employ the ADM for-
malism and the spatial gradient expansion approach, characterised by O(ϵ2), where
ϵ = 1/(HL) is a small parameter representing the ratio of the Hubble radius to the
characteristic length scale L of perturbations. We provide a formalism to obtain the
solution in the multi field case, if we know a complete set of solution of scalar fields.
This formalism can be applied to the calculation of the superhorizon evolution of a
primordial non-Gaussianity beyond the so-called δN formalism, equivalent to O(ϵ0).

1 Introduction

The PLANCK satellite launched last year is expected to bring us much finer data and it is hoped that non-
Gaussianity may actually be detected. As a consequence, non-Gaussianity from inflation has been a focus
of much attention in recent years. To study possible origins of non-Gaussianity, the δN -formalism [2–4]
turned out to be a powerful tool for the estimation of non-Gaussianity. We investigate a possible origin of
non-Gaussianity, namely, non-Gaussianity due to a temporary non-slow roll stage on superhorizon scales.
In order to investigate such a case, however, the δN -formalism is not sufficient since it is equivalent to
the leading order approximation in the spatial gradient expansion. Thus, to evaluate such situation, it is
necessary to develop a nonlinear theory of cosmological perturbations valid up through the next-leading
order in the gradient expansion.

2 Single-field case

In this section, we will briefly review the nonlinear theory of cosmological perturbations valid up to O(ϵ2)
in the spatial gradient expansion for a single scalar field and follow the previous works [5, 6], where ϵ is
the ratio of the Hubble length scale 1/H to the characteristic length scale of perturbations L, used as a
small expansion parameter, ϵ ≡ 1/(HL), of the superhorizon scales. First of all, we show the main result
in our formula for the nonlinear curvature perturbation, RNL

c ,

RNL
c

′′
+ 2

z′

z
RNL
c

′
+
c2s
4
K(2)[RNL

c ] = O(ϵ4) , (2.1)

which shows two full-nonlinear effects;

1. Nonlinear variable: RNL
c including full-nonlinear curvature perturbation, δN

2. Source term: K(2)[RNL
c ] is a nonlinear function of curvature perturbations.

In (2.1), the prime denotes conformal time derivative and z is a well-known Mukhanov-Sasaki variable:

z = a
H

√
ρ+P
c2s

. The definition of RNL
c will be also seen later, in (2.3) and the source term K(2)[X] is the

Ricci scalar of the metricX, respectively. Of course, in the linear limit, it can be reduced to the well-known
equation for the curvature perturbation on comoving hypersurfaces; RLin

c
′′
+ 2 z

′

z R
Lin
c

′ − c2s∆[RLin
c ] = 0.

We will briefly summarize our formula and show the above results in the following. We consider a
minimally-coupled single scalar field described by an action of the form S =

∫
d4x

√
−gP (X,ϕ), where
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X = −gµν∂µϕ∂νϕ. Note that we do not assume the explicit forms of both kinetic term and its potential,
that can be given as arbitrary function of P (X,ϕ). We adopt the ADM decomposition and employ the
gradient expansion. In the ADM decomposition, the metric is expressed as ds2 = −α2dt2 + γij(dx

i +
βidt)(dxj + βjdt), where α is the lapse function, βi is the shift vector and Latin indices run over 1, 2, 3.
We introduce the extrinsic curvature Kij defined by Kij = − 1

2α (∂tγij −Diβj −Djβi), where D is the
covariant derivative compatible with the spatial metric γij . As a result, the basic equations are reduced
to the first-order equations for the dynamical variables (γij ,Kij), with the two constraint equations.

We further decompose them as γij = a2e2ζ γ̃ij and Kij = a2e2ζ
(

1
3Kγ̃ij + Ãij

)
where a(t) is the scale

factor of the background FRW universe and detγ̃ij = 1. Next, we will employ the gradient expansion.
In this approach we introduce a flat FRW universe (a(t), ϕ0(t)) as a background. As discussed, we
consider the perturbations on superhorizon scales, therefore we consider ϵ ≡ 1/(HL) as a small expansion
parameter and systematically expand equations by ϵ. We assume the condition for the gradient expansion;
∂tγ̃ij = O(ϵ2). This corresponds to assuming the absence of any decaying modes at the leading-order in
the expansion. This is justified in taking FRW spacetime as a background.

When we focus on a contribution arising from the scalar-type perturbations, we may choose the
gauge in which γ̃ij approaches the flat metric. We take the comoving slicing, time-orthogonal gauge:
δϕc(t, x

i) = βic(t, x
i) = O(ϵ3), where δϕ ≡ ϕ− ϕ0 denotes a fluctuation of a scalar field. The subscript c

denotes this gauge throughout this paper. Now we turn to the problem of properly defining a nonlinear
curvature perturbation to O(ϵ2) accuracy. Hereafter we will use the expression Rc on comoving slices to

denote it. Let us consider the linear curvature perturbation which is given as RLin =
(
HLin
L +

HLin
T

3

)
Y ,

where, following the notation in [1], the spatial metric in the linear limit is expressed as γij = a2(δij +
2HLin

L Y δij + 2HLin
T Yij). These expressions in the linear theory correspond to the metric components

in our notation as ζ = HLin
L Y and γ̃ij = δij + 2HLin

T Yij . Notice that the variable ζc reduces to RLin
c

at leading-order in the gradient expansion, but not at second-order and it will be also similar to the
nonlinear theory. Thus to define a nonlinear generalization of the linear curvature perturbation, we need
nonlinear generalizations of HLY and HTY . Our nonlinear ζ is an apparent natural generalization of
HLin
L Y as HLY = ζ. As for HTY , however, the generalization is non-trivial. It corresponds to the O(ϵ2)

part of γ̃ij . As shown in [6], it can be done by introducing the inverse Laplacian operator ∆−1 on the
flat background and we defined the nonlinear generalization of HTY as

HTY = E ≡ −3

4
∆−1

[
∂ie−3ℓ(0)∂je3ℓ

(0)

(ln γ̃)ij

]
. (2.2)

With these definitions of HLY and HTY , we can define the nonlinear curvature perturbation valid up
through O(ϵ2) as

RNL
c ≡ ζc +

Ec
3
. (2.3)

It is easy to show that this nonlinear quantity can be reduced to RLin
c in the linear limit. As clear from

(2.2), finding HTY generally requires a spatially non-local operation, however, in the comoving slicing,
time-orthogonal gauge with the asymptotic condition on the spatial coordinates, we find it is possible to
obtain the explicit form of HTY without any non-local operation as seen in [6]. Finally, we can derive a
nonlinear second-order differential equation that RNL

c (2.3) satisfies at O(ϵ2) accuracy by introducing the
conformal time η, defined by dη = dt/a(t) and the Mukhanov-Sasaki variable. The result can be reduced
to a simple equation of the form (2.1) as a natural extension of the linear version.

3 Multi-field case

We consider a minimally-coupled multi-component scalar field described by an action of the form

S =

∫
d4x

√
−gP (XIJ , ϕK), XIJ ≡ −gµν∂µϕI∂νϕJ (3.1)

where I, J and K run over 1, 2, . . . ,M denoting M-components scalar field. Note that we do not assume
the explicit form of both kinetic terms and their potentials, that can be given as arbitrary function of
P (XIJ , ϕK). The stress energy tensor of the scalar fields is obtained by Tµν = P(IJ)∂µϕ

I∂νϕ
J + Pgµν ,
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where P(IJ) =
1
2

(
∂P
∂XIJ

+ ∂P
∂XJI

)
. Notice that it can not be a perfect fluid form, that is different from a

single scalar system. We introduce the proper time τ and its definition is

τ(t, xi) ≡
∫
xi=const.

dt α(t, xi) (3.2)

since the expression of K at leading-order in gradient expansion with the time-orthogonal threading,

K ≡ − 1
α
∂t(a

3ψ6)
a3ψ6 = −3∂τ (aψ

2)
aψ2 , where ψ = eζ/2, if we associate aψ2 and τ with a and t respectively,

we can check the correspondence between K and −3H. Based on these facts, the structure of the
above equations is same as that of background equations. Hereafter we assume that we have already
solved the background equations and have known their solutions since in general speaking, it is difficult
to construct a solution of a multi-scalar system in a analytic treatment. If we know the background
solution, ϕ(t)|background = ϕ0(t) using this solution, we can give the solution of leading-order in gradient
expansion as ϕg(t, xi)|gradient = ϕ0(τ).

At the next order, the spatial derivative of the leading solution will appear in the equation and they
are regarded as source terms. Then, if we can give the leading order solution, we can solve the equation
at any order in gradient expansion just by integrating the source term. In the standard cosmological
perturbation, the e-folding number N is often used as a time coordinate, which is defined by N =
−
∫
dtH(t). We can generalise this and define the general e-folding number N using extrinsic curvature,

N ≡ 1

3

∫
xi=const.

dτK(t, xi) (3.3)

If we also rewrite basic equation usingN as a time coordinate, we can again easily check that the structure
of equations exactly coincide with that of background equations using N as a time coordinate.

As for a gauge choice, we consider the uniform K slicing which is taken in multi field case. After
inflation, a single component (radiation or matter) will dominate the universe and during those era we
can expect the above coincidence. Therefore, uniform K slice will be also one of the interesting slicings.
At the leading order in the gradient expansion, the evolution equation for the extrinsic curvature can be
used in order to obtain the solution of lapse as

α(0) = − 2Ḣ(t)

E(0)(t) + P (0)(t, xi)
+O(ϵ3), (3.4)

where the superscript: (0) means the order of the expansion. We can express α(0) as a function of τ using
E(0) and P (0). On the other hands, in a single-scalar system, it reads α(0) = 1 and it is the main difference
between single and multi case. Since we have assumed that we can solve the scalar field equation and
express the scalar field as a function of τ , we know the expressions of E(0) and P (0) as a function of
τ . This equation means the inhomogeneity of α is related with that of P (0). The time evolution of the
curvature perturbation: ψ can be obtained only by the perturbation (imhomogenity) of the lapse α,

∂tψ

ψ
=
H

2

(
α− 1

)
. (3.5)

Using the solution of Eq (3.4), we can obtain ψ(0) from (3.5),

log

[
ψ(0)(t, xi)

ψ(0)(t0, xi)

]
=

1

2

∫ t

t0

dt′H(α(0) − 1) +O(ϵ2). (3.6)

From Eq (3.5), the inhomogeneity of α derive the evolution of curvature perturbation. This corresponds to
the fact that if the non-adiabatic exist, the curvature perturbation is not conserved. We need to resolove
Eq (3.4), because the scalar field is the function of proper time, which is given by the time integration
of lapse. Notice that there is a big problem. By solving the Einstein equations, we can express the lapse
function on uniform K slice as a function of scalar field which is also the function of proper time. From
the definition, the proper time is given by the time integral of lapse. We need to solve the following kind
of equation,

α = f
[
ϕ(τ)

]
= f

[
ϕ
(∫

dtα
)]

(3.7)
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It will be almost impossible to solve this equation, at least, in a analytic way. We may need the numerical
calculation. In order to get the solution on uniform K slice, we need to solve the Einstein equations on
uniform N slice since on which the scalar field is expressed by a function of t or N not by τ or N .

Then we have to solve the Einstein equations on uniform N slice. From Eq (3.3), we can reread the
condition of this slice as

α(t, xi)K(t, xi) = −3H(t) ⇔ ∂tψ(t, x
i) = 0. (3.8)

It shows on this slice, curvature perturbation becomes constant which is expressed by a function of xi

only. It is easy to obtain the solution in this gauge. If we have the solution as a function of a cosmic
time t or background e-folding number, then we take gauge a transformation from this gauge to uniform
expansion slice.

4 Summary
We have developed a theory of nonlinear cosmological perturbations on superhorizon scales for a single
and multi-scalar field with a general kinetic term and a general form of the potential to the second-
order in the spatial gradient expansion. The solution to this order is necessary to evaluate correctly
the final amplitude of the curvature perturbation for models of inflation with a temporary violation of
the slow-roll condition. For the single case, we have introduced a reasonable variable that represents
the nonlinear curvature perturbation on comoving slices RNL

c , which reduces to the comoving curvature
perturbation RLin

c in the linear limit. Then we have found that RNL
c satisfies a nonlinear second-order

differential equation, (2.1), as a natural extension of the linear second-order differential equation. Since
the evolution of superhorizon curvature perturbations is genuinely due to the O(ϵ2) effect, our formulation
can be used to calculate the primordial non-Gaussianity beyond the δN formalism which is equivalent to
leading order in the gradient expansion.

Different from the single field case, there is a difficulty in obtaining the solution in multi-field case.
As we have seen, at the leading order in gradient expansion, the equations take the similar forms as
background equations. Then, if we know the solutions of background equations, we can automatically
give the solution at leading-order in gradient expansion. But, there is a pitfall in the multi-field case.
Fortunately, in the case of single field, we can show the coincidence of slices between comoving, uniform
expansion. Thanks to this splendid property, we can change the proper time by cosmic time in the scalar
field solution. Then, we can express the metric by scalar field and the function of time. However, in the
case of multi field, we cannot show this coincidence of slices. This means, for example, by solving the
Einstein equations, we can express the lapse by the function of scalar field, which is also the function of
proper time. The proper time is given by the time integration of lapse. To give the solution properly, we
need to resolve this equation and it will be almost impossible.

We give the formalism to obtain the solution in the case of multi-field. First, we solve the Einstein
equations on uniform e−folding number slice, the solution of scalar fields are given by the function of
cosmic time or background e−folding number. Next, we consider the gauge transformation from above
slice to uniform expansion slice. Applying the derived gauge transformation rules to the solution on above
slice, we can find out the solution on uniform expansion slice.
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Abstract
We study parity violation in graviton non-gaussianity generated during inflation. We
develop a useful formalism to calculate graviton non-gaussianity. Using this formal-
ism, we explicitly calculate the parity violating part of the bispectrum for primordial
gravitational waves in the exact de Sitter spacetime and prove that no parity violation
appears in the non-gaussianity. We also extend the analysis to slow-roll inflation and
find that the parity violation of the bispectrum is proportional to the slow-roll pa-
rameter. We argue that parity violating non-gaussianity can be tested by the CMB.
Our results are also useful for calculating three-point function of the stress tensor in
the non-conformal field theory through the gravity/field theory correspondence.

1 Introduction

The most promising candidate for unifying particle interactions is string theory. String theory predicts a
parity-odd gravitational Chern-Simons interactions in the low energy limit. Thus, experimental or obser-
vational detections of parity violation in the gravity sector certainly provide us with direct information
concerning the UV completion of general relativity or the ultimate unified theory.

A prospective and reliable route to this end is to explore parity violation in relics of inflation in the
early universe. In particular, measurements of parity violation in the primordial gravitational waves
produced during inflation are expected to bring us valuable information about the Planck scale physics.
From this standpoint, it has been intensively discussed how to observe the parity violation in the power
spectrum directly using the laser interferometer and indirectly using ⟨TB⟩ correlation in the cosmic mi-
crowave background (CMB). Remarkably, some speculative gravitational theories with a parity violating
term produce significant parity violation in the power spectrum of primordial gravitational waves. Un-
fortunately, in the conventional inflationary scenario a parity violating term leads to only very small
amount of circular polarization in the power spectrum of primordial gravitational waves (see, e.g. [1, 2]
and references therein).

In principle, we can also seek parity violation in higher-order correlation functions [3, 4]. Since the
power spectrum and the higher-order statistics are often sensitive to different kinds of parity violating
interactions, they may have different correlations with other revealing statistical features. For example,
in a recent paper of Maldacena and Pimentel, they discussed graviton non-gaussianity in the exact de
Sitter spacetime and found that the pattern of parity violating bispectrum is severely constrained by the
conformal invariance [5]. One might then be tempted to deduce that their result implies the unsuppressed
parity-violation in the bispectrum. We argue that this is not immediately obvious since they have not
calculated observable quantities explicitly. In this short article, we develop a new tool to analyze graviton
correlation functions and show that parity violation does not show up in the case of the exact de Sitter
spacetime. A more detailed discussion can be found in [6].

2 A new formalism for graviton correlators

With the aid of the helicity basis, we present a useful method to evaluate graviton non-gaussianity
generated by a parity-violating Weyl cubic term. Tensor perturbations on the Friedmann-Lemâıtre-
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Robertson-Walker (FLRW) universe are given by

ds2 = a2(η)
[
−dη2 + (δij + hij) dx

idxj
]
, hii = ∂ihij = 0 . (2.1)

The gravitational action and the corresponding equations of motion are given by

S =
M2

pl

8

∫
dηd3xa2

(
h′ijh

′
ij − ∂khij∂khij

)
, h′′ij + 2

a′

a
h′ij −∆hij = 0 . (2.2)

We have two physical degrees of freedom for tensor perturbations which are characterized by the sym-
metric polarization tensors. Since we are interested in the presence/absence of parity-violation, it is of

use to expand in a helicity basis e
(±)
ij (k) satisfying

e
(s)
ii (k) = 0 , kje

(s)
ij (k) = 0 , ϵijl

∂

∂xl

[
e
(s)
mj(k)e

ik·x
]
= ske

(s)
im(k)eik·x . (2.3)

The index s = ± specifies two helicity states. We choose the normalization and the phase of polarization
tensors in such a way that

e
(s)
ij (k)e

∗(s′)
ij (k) = δss′ , e

∗(s)
ij (k) = e

(−s)
ij (k) = e

(s)
ij (−k) . (2.4)

In this article we focus on the pure gravity parity-violating sector where the action is composed of the
Weyl tensor Wµνρσ and its Hodge dual. Since the quadratic term is topological, the leading term comes
from the cubic interactions

SPV = −b
∫

dηd3x
√
−gϵµνλρWµν

αβWαβ
γδWλργδ . (2.5)

Since the FLRW universe is conformally flat, this term does not affect the equations of motion (2.2) and
the power spectrum. They could contribute to the non-gaussianity, which we now turn to discuss.

In order to simplify computations, introduce a new variable γij as γ′ij := ah′ij , in terms of which we

notice a useful relation Wµ
νλρ(h) = a−1Wµ

νλρ(γ)
∣∣
Minkowski

. We define

γ±ij :=
1

2

(
γ′ij ∓ iϵjkl∂lγik

)
, (2.6)

which is symmetric, transverse and traceless. We find that a simple relation (W±)3 = 64a−9(γ±)3 holds
irrespective of the expanding history of the universe. Here W± = W ± i ⋆ W are the complexified self-
dual and anti-self-dual Weyl tensors ⋆W± = ∓iW±. In the flat spacetime, the solutions γij with two
helicity states of fixed |k| form a unitary representation of three-dimensional Euclid group [7]. This
representation decomposes into two irreducible representations, which are nothing but helicity states
described by γ±ij . The same is true for the de Sitter spacetime. In [5], another useful method–a spinor
helicity formalism–was invented.

Utilizing above, we can write the parity-violating cubic action (2.5) in a general FLRW background
in terms of these new perturbation variables γ±ij as

SPV = 8ib

∫
dηd3xa−5

[
(γ+ij)

′(γ+jk)
′(γ+ki)

′ − (γ−ij)
′(γ−jk)

′(γ−ki)
′
]
. (2.7)

From this, we can read off the interaction Hamiltonian HPV(η) as

HPV =− 8ib

(2π)6
a−5

∫
d3k1d

3k2d
3k3δ(k1 + k2 + k3)

×
[
(γ+ij(η,k1))

′(γ+jk(η,k2))
′(γ+ki(η,k3))

′ − (γ−ij (η,k1))
′(γ−jk(η,k2))

′(γ−ki(η,k3))
′
]
. (2.8)

We should emphasize that γij = γ+ij + γ−ij does not represent gravitational waves in Minkowski spacetime
but an auxiliary field. From the definition γ′ij := ah′ij , we can give an explicit mode expansion expression
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for γ±ij as:

(
γ±ij
)′

=

∫
d3k

(2π)3/2Mpl

√
2k

∑
s=±

[
e
(s)
ij (k) (∂η ∓ isk) (au′k(η)) as(k)

+ e
∗(s)
ij (−k) (∂η ∓ isk) (au′k(η))

∗
a†s(−k)

]
eik·x , (2.9)

wher uk is the mode function. The main utility of our formalism is that a concise expression (2.7)
considerably simplifies calculations of bispectrum in a general expanding universe.

3 Parity violation

Using the formulation summarized in the previous section, we compute the graviton non-gaussianity.
Let us first consider the simplest case in which the back ground spacetime is pure de Sitter. The mode
function in a de Sitter background reads uk = Hk−1 (1 + ikη) e−ikη, where H is a constant Hubble
parameter. It is worth noting here the following property

γ±ij (η,k) =
(
γ∓ij (η,−k)

)†
. (3.1)

This traces back to the property of helicity basis (2.4) and plays a key rôle in proving no parity violation
in the exactly de Sitter universe.

Introducing the projection operators Π±
ij,kl(p) = e

(±)
ij (p)e

∗(±)
kl (p), we can compute the bispectrum as

⟨γ±i1j1(0,p1)γ
±
i2j2

(0,p2)γ
±
i3j3

(0,p3)⟩

= ±384ibM−6
pl H

5(2π)3p21p
2
2p

2
3δ(p1 + p2 + p3)

5!

(p1 + p2 + p3)6

×
[
Π±
i1j1,kl

(p1)Π
±
i2j2,lm

(p2)Π
±
i3j3,mk

(p3) + Π±
i1j1,kl

(p1)Π
±
i2j2,lm

(p2)Π
±
i3j3,mk

(p3)
]
. (3.2)

Note that the mixed terms ⟨γ+γ+γ−⟩ and ⟨γ−γ−γ+⟩ vanish as expected. These results are in agreement
with those obtained by Maldacena and Pimentel [5].

Even if these correlators are nonvanishing, this does not immediately imply that the parity violation
can be observed. This is due to the fact that neither ⟨(γ+)3⟩ nor ⟨(γ−)3⟩ themselves are direct observables.
To see this more concretely, let us define the right-handed and left-handed circular polarizations by

hR := hije
∗(+)
ij , hL := hije

∗(−)
ij , (3.3)

respectively. A possible observable quantity in which a parity violation is encoded is their difference
⟨(hR)3⟩ − ⟨(hL)3⟩. Using the relation hij(0,k) = −Hk−2[γ+ij(0,k) + γ−ij(0,k)], It is straightforward to
verify that

⟨hR(0,p1)h
R(0,p2)h

R(0,p3)⟩ = 0 , ⟨hL(0,p1)h
L(0,p2)h

L(0,p3)⟩ = 0 . (3.4)

It turns out that there exists no parity violation in a pure de Sitter universe.
Next, let us analyze the case in which the universe undergoes a slowly rolling inflationary expansion.

Since the variable γ±ij does not correspond to the helicity decomposition when the spacetime departs from
de Sitter, we can expect the appearance of parity violation.

When we expand every term up to the first order in the slow roll parameter ϵ := −Ḣ/H2 where H
is now defined by H := ȧ/a, the possible sources of parity violation stem from the following three parts:
(i) change in the asymptotic mode function, (ii) change of γ±ij and (iii) change of the cosmic expansion.
Putting all contributions together, we find that the contribution from (i) is higher-order. Hence the main
cause of parity violation is due to (ii) and (iii). An elementary but lengthy calculation reveals that

hL(0,p1)h
L(0,p2)h

L(0,p3)⟩ = −⟨hR(0,p1)h
R(0,p2)h

R(0,p3)⟩

= 6!(2π)4ϵ(bH2
∗ )(H∗/Mpl)

6δ(3)(p)
(p1 + p2 − p3)(p2 + p3 − p1)(p3 + p1 − p2)

p3(p1p2p3)2
,

(3.5)

JGRG21 Programme



Masato Nozawa 189

where p = p1 + p2 + p3 is the total momentum. Hence parity violation shows up in the bispectrum and
its magnitude is proportional to the slow roll parameter. It is interesting to observe that the bispectrum
of curvature perturbations is also proportional to the slow-roll parameter in the conventional single
inflationary scenario [3].

It should be stressed that this kind of parity violation can be observed in the CMB through the three-
point correlators ⟨TTB⟩, etc. In the conventional slow-roll inflationary scenario, the amplitude might be
too small to be detected in near future. However, in the non-conventional scenarios, we might have much
larger parity violation.

4 Conclusions

We have developed a useful formalism to evaluate graviton correlation functions. The present formalism
enables us to calculate higher-order parity violating correlation functions rather straightforwardly. As
an illustrating application of this formalism, we studied parity violation in the early universe through
non-gaussianity of gravitons and found that that no parity violation arises in the bispectrum for the exact
de Sitter background. This does not mean that the W 2 ⋆ W term fails to produce any parity violating
interaction. We have shown that the parity violation is not encoded in the graviton non-gaussianity. The
situation is different when the spacetime departs from the exact de Sitter. In slow-roll inflationary case
we have found parity violation in the graviton bispectrum proportional to the slow roll parameter. This
is attributable to the fact that the boost generator in general FLRW spacetime is not the isometry of the
background, thence both of the helicity components would mix except for de Sitter.

We also discussed that parity violation in the bispectrum can be observed e.g., in the ⟨TTB⟩ correlation
in the CMB [8]. It might be also possible to detect the signature of parity violation through direct
observations of primordial gravitational waves using a space interferometer observatory.

It is known that exact de Sitter correlation function is related to correlation function of stress tensor
in the conformal field theory through analytic continuation [3]. Hence, the graviton non-gaussianity has
an interesting application. Similarly, our results would be useful for calculating three-point functions of
stress tensor in the non-conformal field theory using gravity/field theory correspondence [9].
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Abstract
We have estimated the masses of the central supermassive black holes of 2442 radio
galaxies from a catalog. Mass estimates based on optical photometry and radio
data are compared. Relationships between the mass of the central black hole Mbh

p

and the redshift zp are constructed for both wavelength ranges (radio and optic).
Upper-envelope cubic regression fits are obtained using the maximum estimates of
the black-hole masses. The optical and radio upper envelopes show similar behavior,
and have very similar peaks in position, zp ≃ 1.9 and amplitude, logMbh

p =9.4. This
is consistent with a model in which the growth of the supermassive black holes is
self-regulating, with this redshift corresponding to the epoch when the accretion-flow
phase begins to end and the nuclear activity falls off.

1 Intoduction

Radio galaxies, which are among the most powerful cosmic objects, allow us to study the evolution of
matter and the dynamics of the expansion of the Universe at different cosmological epochs. Investigations
of these radio sources are linked to several cosmological tests, which permit estimating the parameters and
evolutionary characteristics of the Universe. Radio galaxies are identified with giant elliptical galaxies.

One of the central questions in studies of distant radio galaxies (redshifts z > 0.3) is the origin and
growth rate of supermassive black holes (SMBHs) in their nuclei. The discovery of radio galaxies and
quasars at high redshifts has raised the need to explain the rapid formation of SMBHs in early epochs of
the evolution of the Universe.

An important result obtained from measurements of black-hole masses in nearby galaxies is the
existence of an appreciable correlation between the mass of the central black hole and the mass of the
bulge of the host galaxy, which gives rise to correlations between the black-hole mass and the luminosity
of the bulge [1],[2] and between the black-hole mass and the stellar velocity dispersion σ (e.g. [3]-[6]).
The existence of these correlations can provide constraints on the evolution of AGNs, and can be used to
test whether AGNs precisely follow these relations or not.

Here, we verify two dependences of the black-hole masses on the radio and optical luminosities that
are used in the literature in studies of radio galaxies. We calculated the luminosities using optical data
in the R filter and 5-GHz radio flux densities. We assumed a ΛCDM cosmology with H0= 71 km s−1

Mpc−1, ΩM= 0.27, and ΩΛ = 0.73. We used a catalog of distant radio galaxies with spectroscopic
redshifts z > 0.3, which were selected based on data from the largest available databases [7]-[9].

2 Estimating the SMBH Masses

2.1 Optical Data

To estimate the SMBH masss, we used the relationship between the black-hole masses and R absolute
magnitudes (Mbh − MR) from [6], which was obtained via an analysis of the magnitudes and stellar
velocities in AGNs: log(Mbh

M⊙
) = −0.50(±0.02)MR − 2.27(±0.48) , where MR is the absolute R magnitude

of the bulge, assuming that the bulge of an elliptical galaxy essentially represents the entire galaxy.
Since R observations are not available for all the catalog radio galaxies, we estimated the R luminosities

of a number of objects based on data in other filters using the database of galactic spectral-energy
distributions (SEDs) [10]. Photometric data were used to estimate the ages of the radio galaxies, assuming
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that their SEDs corresponded to the SEDs of elliptical galaxies. We determined the R magnitude using
the redshift and the age of the corresponding model SED track. We used the GISSEL model data [11],
which contains synthetic spectra of elliptical galaxies for ages from 200 million years to 14 billion years,
as the basic library of tracks. This library can be accessed both in the HyperZ package [12] and at the
site http://sed.sao.ru.

The luminosity was calculated using the formula [13]: L = 4πFd2L(z), where F is the measured flux,

dL(z) = (1 + z)
z∫
0

dz
′

H(z′ )
, is the luminosity distance, and

H(z) = H0[ΩR(1 + z)4 +Ωm(1 + z)3 − (Ω0 − 1)(1 + z)2 +ΩΛ]
1/2 is the Hubble parameter. The result-

ing luminosity (more precisely, absolute magnitude) was used to estimate the masses of the central black
holes of the galaxies.

2.2 Radio Data

To calculate the estimated black-hole masses based on radio data, we used the relationship between the

radio luminosity and black-hole mass (P5GHz −Mbh) from [14]: P5GHz ∝
(
Mbh

M⊙

)2.2÷3.0

, where P5GHz

is the total power at 5GHz. Our calculations used the formula: P5GHz ∝
(
Mbh

M⊙

)3.0
. We calculated

the radio power using the standard formula [13]: Pν = 4πd2LS
(

ν
(1+z)

)
(1 + z)−1 , where S

(
ν

(1+z)

)
is the

source flux density at frequency ν taking into account the redshift and dL is the photometric distance.

The value S
(

ν
(1+z)

)
was determined from the continuum radio spectrum of each source, constructed via

fitting with a standard set of functions. We used the spg program [15] of the RATAN-600 continuum
data-reduction system for this purpose. For radio galaxies with measurements at only one frequency, we
took the spectral index to be equal to the median value for our sample [7] at 1.4 GHz (αmed = −0.63).

3 Discussion

In spite of the two-peaked form of the mass distribution, the radio data provide a smaller scatter in the
redshift distribution (Fig.1). Figure shows the least-squares regression fits and upper envelopes for both
types of data.
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Figure 1: Plots of black-hole mass versus redshift for the radio galaxies, based on R optical data (left)
and 5-GHz radio data (right). Regression fits were constructed for the mean and maximum black-hole
masses in intervals ∆z = 0.5.

The range of black-hole masses derived using the radio data is two orders of magnitude smaller than
that for the optically derived masses. The mean radio masses in individual redshift intervals (∆z = 0.5)
are higher than the corresponding optical masses.
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In spite of the difference in the dispersion of the mass estimates, the positions and amplitudes of
the maxima of both upper envelopes are similar: the peak is at zp = 1.78 and logM bh

p = 9.67 for the

optical data, and at zp = 1.92 and logM bh
p =9.38 for the radio data. The location of the maxima in the

redshift range 1.5 < z < 2 could be associated with some sort of systematic effect reflecting real physical
processes. This range of z corresponds to an epoch of massive ”ignition” of radio sources as a result
of mergers between galaxies in galaxy clusters. In this case, due to selection effects, we will most likely
detect objects with the maximum luminosity, which means those with the maximum estimated black-hole
masses, in this range.

Note that this result obtained for our list of radio galaxies is consistent with the results of [16], where
a sample of broad-line quasars from the SDSS was considered. Kelly et al. [16] found that the peak
number density of SMBHs in broad-line quasars occurs at z ∼ 2. The location of the mass-distribution
peak at z ∼ 2 is consistent with a self-regulating growth model for the SMBHs, with this being the epoch
when the end of the accretion-flow phase begins and the nuclear activity starts to fall off.

The M bh
opt−M bh

rad relation indicates the region in which the two methods used to estimate the masses
of the SMBHs are statistically applicable, and shows the amount of scatter obtained using these methods
(Fig.2).
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Figure 2: Plot of M bh
opt versus M

bh
rad for R-band and 5-GHz data fits were obtained for two regions where

the points are concentrated. Data for radio galaxies from different redshift ranges are denoted with
different symbols: 0.3 ≤ z < 0.7(points), 0.7 ≤ z < 1.5 (crosses), and 1.5 ≤ z(triangles).

Three regions of clustering can be distin-guished on this plot. The data for radio galaxies from
different redshift ranges are shown by different symbols: 0.3 ≤ z < 0.7 (points), 0.7 ≤ z < 1.5,(crosses),
and 1.5 ≤ z (triangles). The high concentration of points in the left part of the diagram is due to the large
number of comparatively nearby radio galaxies in the SDSS, for which relatively similar black hole masses
were obtained. Nearly all the radio galaxies in the sample have M bh

opt ≤M bh
rad. For a second group, many

of which are distant radio galaxies with z ≥ 1.5 we observe a correlation between the two mass estimates
for the central objects. The objects in the lower right part of Fig.2 have low optical and high radio mass
estimates. These low estimates from the region of the lower envelope on the left M bh(z) diagram in Fig.1
and the corresponding estimates in the right diagram may be associated with non-elliptical subclasses of
radio galaxies.

We can distinguish several selection effects that are inevitable when estimating the central black-hole
masses, even when care is taken in selecting galaxies according to their optical and radio properties. Their
manifestation can explain differences between results obtained using different methods to determine the
central black-hole masses. These selection effects include the following:
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1)more distant objects tend to be more powerful; i.e., a sample of distant objects contains, on average,
galaxies with higher black-hole masses;

2)although the sample has been cleaned of objects with the properties of quasars (such as broad Hα
emission), some such objects with relatively weak lines may remain in the subsample of comparatively
nearby (z < 0.7) sources;

3)the SDSS objects in our catalog should not include Seyfert 2 galaxies with narrow lines; in spite
of their radio emission, these galaxies have low ratios of their bolometric to Eddington luminosities (see,
e.g., [17]);

4)the presence of evolutionary effects that are strongly manifest in the radio, such as the fact that
some radio galaxies may be observed in early phases of their activity, and that galaxies with central black
holes of the same mass may have radio fluxes differing by an order of magnitude;

5)some comparatively nearby objects whose peak activity in the radio has passed have black-hole
mass estimates derived from velocity dispersions calibrated based on the radio fluxes; in this case,the use
of dependences for more distant galaxies can lead to overestimation of the black-hole masses.

Nevertheless, the similarity of the behaviors of the mass upper envelopes (Fig. 1) suggests that these
estimates are trustworthy for objects with the highest luminosities (close to the Eddington values). The
comparatively small scatter of the radio masses for various z makes it possible to use this diagram to
estimate masses with a mean accuracy of less than an order of magnitude, or even half an order of
magnitude at z > 1.5.
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Abstract
The existence of black holes has been definitely established while zooming-in the
relativistic region is still in difficulty though promising in near future. Sagittarius
A* (Sgr A∗), the most convincing massive black hole at the Galactic center, shows
short time flares with quasi-periodic oscillations (QPO) with P = 17, 22,& 33 min
in near-infrared and X-ray regions originated from near the central black hole. Here
we report the detection of radio QPOs with structure changes using the Very Long
Baseline Array (VLBA) at 43 GHz. We found conspicuous patterned changes of the
structure with P = 16.8, 22.2, 31.4,&56.4 min, roughly in a 3 : 4 : 6 : 10 ratio. The
first two periods show a rotating one-arm structure, while the P = 31.4 min shows
a rotating 3-arm structure, as if viewed edge-on. At the central 50µas the P = 56.4
min period shows a double amplitude variation of those in its surroundings. Spatial
distributions of the oscillation periods indicate that the disk of Sgr A∗ is presumably
almost edge-on, rotating around an axis with PA = −10◦. The observed VLBI images
of Sgr A∗ remain several features of the black hole accretion disk of Sgr A∗ in spite
of being obscured and broadened by scattering of surrounding plasma.
Details of our research are described in [1].

Our VLBA observations at 43 GHz were performed from 9 : 30 to 16 : 30(UT) on 2004 March 8th, 37 ∼
44 hours just after a millimeter wave flare of Sgr A∗ detected with the Nobeyama Millimeter Array. We did
the standard amplitude calibrations using antenna gains and system temperatures with opacity corrections in
AIPS (NRAO). At the last stage of the data calibrations we applied solutions of amplitude and phase from self-
calibration with an image model of the average size and shape of Sgr A∗ at 43 GHz (single elliptical Gaussian with
full width at half maximum of 712µas×407µas, PA = 79.8◦ with 1 Jy in flux density). This manner substantially
reduced the effect of atmospheric variations on the observed visibilities.
We investigated the spatial distributions of oscillations in flux density with two independent methods. The first
one is the comparisons of power spectra of time variations of intensities in 209 small rectangles areas of the image.
We produced 360 snapshot maps from 5-minute integrations with a starting time increment of 30 seconds. Each
map area is 3 mas (east-west) × 6 mas (north-south), divided into 1024 × 2048 cells, produced from CLEAN
with a loop gain of 0.005 down to 10 mJy level. The same restoring beam of 0.15 mas (east-west) × 0.4 mas
(north-south) was applied to each map. We then measured flux density variation in each small rectangle. The
time variations show small pitches similar to, but not the same as, those of other rectangles. We then calculated
their power spectra using a maximum entropy method (MEM). We found confinements of the powers in spatial
distributions of some periods around P = 12.9, 17.2, 30.1, and 55.8 min. Shallower confinements appear around
P = 128.4, and 268 min though they are under-sampled. This method, however, tends to be affected by differences
of u-v sampling between snap shot maps.

We hence used a new method, slit-modulation-imaging (SMI)[2] which is a way of examining the existence of
the periodic structural change with an assuming period and almost free from u-v sampling differences. We tested
around these confined periods of P = 12.9, 17.2, 30.1, and 55.8 min, adding with the P = 22.2 min detected at
X ray flares. Except for P = 12.9 min, we found conspicuous periodic change patterns from P = 16.8, 22.2, 31.4,
and 56.4 min which are roughly commensurable in a 3 : 4 : 6 : 10 ratio (see the figure).
In the case of P = 16.8 min, the peak is in the west of the image at the 1st and the 2nd phase frames, but shifts
eastward, stays in the east at the 3rd, 4th and 5th phase frames, and after that, moves westward again. In the
case of P = 22.2 min, at the 1st phase frame the peak is in the east, moves towards the west at the 2nd phase
frame, shifts further west at the 4th and 5th phase frames, and then moves back towards the east from the 6th

to 8th phase frames. Namely, in the P = 16.8 and 22.2 min structure changes, the brightest position oscillates
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mostly in the east-west direction with the respective period, which looks like a one-arm structure (m = 1) motion
viewed edge-on. Assuming the motions to be projected circular ones, we found the P = 16.8 min orbit is 0.18 mas
while that of the P = 22.2 min is 0.15 mas in diameter, both are tilted with PA = 82◦ nearly the same position
angle as the major axis of the average Sgr A∗ image at 43 GHz. The viewing angles are almost edge-on, 87.0◦

(P = 16.8min) and 87.7◦ (P = 22.2 min) respectively.

In the P = 31.4 min change, one or two peaks appear in each phase frames. The numbers of peaks are
2 → 1 → 2 → 2 → 1 → 2 → 1 → 1 with phase frame change. At first glance this seems random, but a relation
exists. The sum of peak numbers in the two SMI maps just half a period away from each other is always three,
which can be explained by the existence of a three-arm pattern (m = 3) with evenly separation angle rotating
with the period, which we view edge-on.

In the P = 56.4 min change, one peak appears during a half period (the 6th to 8th, and 1st phase frames) and
two peaks appear during the last half period from the 2nd to the 5th phase frame. This is due to the amplitude
of variation at the central 50 µas being twice as large as those of the surroundings. One peak appears when the
central part becomes bright, and two peaks, one on the east and one on the west, appear when the central part
darkens. Unlike other periods, the P = 56.4 min component seems concentrated and excited at the radius close
to the black hole where the relativistic effect are not negligible, and hence it can be a key to distinguishing the
origin of QPOs.

The detected pattern changes are not from noise effects: we simulated changes using faked data with noise
levels showing the comparable amplitude fluctuations with those of real visibility data. SMI images from faked
data show larger variations in not east-west but south-north direction that the spatial resolution is worse, while
those from the observations show the opposite tendency. From the faked data, changes appeared in the image
but none of the periodic regular patterns could be found. Also the faked data showed no coincident occurrence
between spreading size minima and amplitude peaks in the spectra of the whole 209 area. Further, the observed
periodic changes of real data basically did not disappear in SMI-maps with shorter total integration times (195
min) while different changes appeared from faked data.

The radio QPOs reported here have a delay of 1.5 days from the millimeter wave flare, and the distributions
extended to 100 Rs in apparent diameter while the QPOs in NIR and X-ray are just at the flaring time and
estimated to occur around a marginally stable orbit (MSO). The flaring events at MSO would vibrate the whole
system to excite fundamental disk oscillation modes, which would last for several days.

There are features that cannot be explained as Keplerian motions directly governed by centripetal force, but
that are easily interpretable as disk oscillation features. First, The counter rotations occurred simultaneously
between the P = 16.8 min and P = 22.2 min periods, which is difficult to be explained by a single body motion
like hot spot models. Second, the orbit of the shorter period P = 16.8 min is larger than that of the P = 22.2min,
which cannot be realized by a Keplerian motion.

If QPOs originate in a strong gravity field where the relativistic effect plays an important role, the periods of
QPOs should depend on the mass and the spin of a massive black hole. Recent theories of disk seismology predict
that peak frequencies of QPOs can be scaled by a mass of central black holes as an analogy to QPOs in black
hole X-ray binaries (BXB). For example, in GRO J1655-40, a peak frequency of high frequency QPOs is about
3× 102(6.0− 6.6M⊙/MBH) Hz (where M⊙ is a solar mass), with the result that a corresponding peak frequency
using the mass of Sgr A∗ derived from the orbital motions of surrounding stars (3.6 ± 0.3 × 106M⊙) is about
5.1× 10−4 Hz (P = 32min), which is one of our findings. Detailed analysis with the obtained four QPO periods
and wave-warp resonant oscillation model predicts the spin of Sgr A∗ to be 0.44 ± 0.08 and the black hole mass
to be (4.2± 0.4)× 106M⊙ [3].

The apparent angular size of 0.1 mas corresponds to 10.4Rs(1Rs is Schwarzschild radius) assuming the Galac-
tic center distance to be 7.6 kpc, which scale give us that the orbital velocities of bright peak positions are
vP=16.8min = 2.1 c at 8.8 Rs and vP=22.2min = 1.4 c at 7.4 Rs, both are superluminal, but can be explained
as follows.

It is well-known that the VLBI images of Sgr A∗ are obscured and broadened by the scatterings of surrounding
plasma. If we consider the broadening ratio of 2.6 ∼ 3.0 at 43 GHz by scattering, and the magnifying ratio ∼ 1.23
by self-gravitational lensing effect at 3 Rs , the apparent 0.1 mas observed at 43 GHz is equal to 2.8 to 3.3 Rs

in the intrinsic image of Sgr A∗. Taking into these effects, we find that v′P=16.8min = 0.43 c at 2.7 Rs and
v′P=22.2min = 0.68 c at 2.3 Rs, which velocities are comparable to the Keplerian velocities at r = 2− 4Rs from
a black hole.

The amplitude of the QPOs were 22 mJy (P = 16.8min), 24mJy (P = 22.2 min), 25mJy (P = 31.4min),
and 20 mJy (P = 56.4 min) respectively, the total reached 90 mJy, nearly 10 % of the constant flux density
component of the image (= 980 mJy). Such structural changes will cause fluctuations in fringe phase, rate and
amplitude. Existence of oscillations with periods shorter than the whole observing time will be one of the reasons
why the VLBI imaging of Sgr A∗ is difficult so far. However at the same time, the detection of these periodic
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pattern changes means the obscured radio image of Sgr A∗ still bears the imprint of the intrinsic figure. The
VLBA observations of Sgr A∗, together with oscillation analysis, will provide us a unique chance to investigate
the strong gravity field around the massive black hole Sgr A∗ with order of Rs resolutions.
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Figure 1: The slit-modulation-imaging (SMI) maps with the 4 periods P = 16.8(a), 22.2(b),
31.4(c), and 56.4 min (d). The 8 maps show the images in phase frame series with respective peri-
ods. The white filled circles mark the intensity peak position in each map. In P = 31.4 & 56.4 min,
second peaks are also marked with circles. Total amplitudes of respective periods are 22 mJy (P = 16.8
min), 24 mJy (P = 22.2 min), 24 mJy (P = 31.4 min), and 20 mJy (P = 56.4 min), which obtained by
Fourier transform.
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Abstract
We revisit the role of the cosmological constant Λ in the deflection of light by means of
the Schwarzschild-de Sitter metric. In order to obtain the deflection angle α, the time
transfer function approach is adopted, instead of solving the photon geodesic equation
which is frequently used. We show that the cosmological constant does appear in the
deflection angle and it diminishes light bending due to the mass of the central body
M . However in contrast to previous results, for example Rindler and Ishak (Phys.
Rev. D. 76:043006 2007), the leading order effect due to the cosmological constant
does not couple with the mass of the central body M .

1 Introduction

It is popularly considered that the cosmological constant Λ or dark energy in a more general has the highest
potential for explaining the observed accelerating expansion of Universe. However, its details are still far from
clear; therefore this hypothesis must be verified in terms of not only cosmological observations but also other
astronomical/astrophysical measurements.

Among such efforts, it is the most straightforward way to investigate the role of cosmological constant Λ in
the classical tests of general relativity, such as the perihelion advance of planetary orbits and the bending of light
rays. Thus far, it was found that the cosmological constant Λ contributes to the perihelion shift in principle even
though it is presently difficult to detect because of its very small effect (See [1–3] and the references therein).

On the other hand, it has been believed for a long time that the cosmological constant Λ is not related to
the motion of photons, namely light deflection, since the second-order geodesic equation of a photon does not
contain Λ. However recently, Rindler and Ishak [4] pointed out that Λ does affect the bending of light by means
of Schwarzschild-de Sitter or Kottler metric and the invariant formula for the cosine. Subsequently many authors
argued its appearance in many different ways and the generality of these advocated the appearance of Λ in the
deflection angle α. Nevertheless at the moment, it seems a conclusion has not yet been reached; for instance
whether the leading order effect due to Λ is coupled with the mass of the central body M or not. See [5] for a
review and also [6–11].

As we look at the circumstances, the origin of confusion, e.g., the appearance/disappearance of Λ or the
coupling/uncoupling with the mass of the central body M , is essentially attributable to using the standard
geodesic equation of photon to describe light deflection due to Λ because Λ does not appear. Therefore it is
worthy to revisit this problem in terms of another theoretical approach.

In this paper, we will revisit the role of the cosmological constant Λ in terms of the time transfer function
recently proposed in [12, 13], which is originally related to Synge’s world function Ω(xA, xB) and enables us to
circumvent the integration of the null geodesic equation.

2 Outline of the time transfer function

Before calculating the light deflection due to the cosmological constant Λ, let us briefly summarize the time
transfer function method presented in [12, 13].

Synge’s world function is defined by [14],

Ω(xA, xB) ≡
1

2
(λB − λA)

∫ λB

λA

gµν
dxµ

dλ

dxν

dλ
dλ (2.1)

where gµν is a metric tensor of spacetime, xA = (x0A = ctA, x
i
A = x⃗A) and xB = (x0B = ctB , x

i
B = x⃗B) are the

coordinates of the two end points A and B, respectively, on the geodesic world-line, and λ is the affine parameter.
Then, the world function Ω(xA, xB) is defined as the half length of the world-line between A and B.
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It is generally difficult to acquire the world function concretely. Nonetheless, in the case of Minkowskian flat
spacetime, the world function is obtained easily using the parameter equation x(λ) = (xB − xA)λ + xA and by
setting λA = 0 and λB = 1 [12, 14],

Ω(0)(xA, xB) =
1

2
ηµν(x

µ
B − xµA)(x

ν
B − xνA) (2.2)

where xµ (µ = 0, 1, 2, 3) are the Minkowskian coordinates with respect to the Minkowski metric ηµν = diag(−1, 1, 1, 1).
For the null geodesic, the world function Ω(xA, xB) satisfies the condition,

Ω(xA, xB) = 0 (2.3)

because ds2 = 0. Hence, from (2.2) and (2.3), the travel time between A and B, i.e., tB − tA, in the Minkowski
spacetime becomes,

c2(tB − tA)
2 = δij(x

i
B − xiA)(x

j
B − xjA) = R2

AB (2.4)

where δij is Kronecker’s delta symbol. The time transfer function starts from (2.4), and the weak-field approxi-
mation is developed recursively with respect to the gravitational constant G.

If the metric has the form, gµν = ηµν + hµν , |hµν | ≪ 1 (here hµν is a perturbation to ηµν), the time transfer
functions that give the travel time of the light ray are formally expressed as follows:

tB − tA = Te(tA, x⃗A, x⃗B) =
1

c
[RAB +∆e(tA, x⃗A, x⃗B)] (2.5)

= Tr(x⃗A, tB , x⃗B) =
1

c
[RAB +∆r(x⃗A, tB , x⃗B)] (2.6)

where Te(tA, x⃗A, x⃗B) is the emission time transfer function for the spatial coordinates x⃗A, x⃗B and signal emission
time tA, Tr(x⃗A, tB , x⃗B) is the reception time transfer function for the spatial coordinates x⃗A, x⃗B and signal
reception time tB , RAB = |x⃗B − x⃗A|, and ∆e and ∆r are the emission time delay function and reception time
delay function, respectively. ∆e and ∆r characterize the gravitational time delay. In (2.5) and (2.6), RAB comes
from (2.4). Henceforth, A denotes the emission and B denotes the reception.

In general, the time transfer function depends on either the emission time tA or reception time tB and
this feature is applied to obtaining the gravitational time delay in the McVittie spacetime [15]. However if the
spacetime is static, the first order formulae reduce to

∆(1)(x⃗A, x⃗B) =
RAB
2

∫ 1

0

[
g00(1) − 2N i

ABg
0i
(1) +N i

ABN
j
ABg

ij
(1)

]
dµ. (2.7)

We use Eq. (2.7) in this paper and integration of Eq. (2.7) is carried out along the parameter equation x⃗(µ) =
x⃗A + µ(x⃗B − x⃗A). It is found that from Eq. (2.7) in this method, the time delay is calculated with the remaining
form of the metric gµν .

Once the time transfer function T is determined, the direction of the light ray can be obtained by

(k0)A = 1, (ki)A = c
∂T
∂xiA

, (k0)B = 1, (ki)B = −c ∂T
∂xiB

. (2.8)

3 Effect of the cosmological constant on light deflection

Now, let us revisit the contribution of Λ to the light deflection based on the time transfer function. To this end,
we adopt the Schwarzschild-de Sitter or Kottler metric [16],

ds2 = −
(
1− rg

r
− Λ

3
r2
)
c2dt2 +

(
1− rg

r
− Λ

3
r2
)−1

dr2 + r2dΩ2

= −
(
1− rg

r
− Λ

3
r2
)
c2dt2 +

(
1 +

rg
r

+
Λ

3
r2 +O(r2g ,Λ

2)

)
dr2 + r2dΩ2 (3.1)

where rg = 2GM/c2 is the Schwarzschild radius, dΩ2 = dθ2+sin2 θdϕ2, and the dr2 component is linearized from
the first line to the second.

It is beneficial to transform the spherical coordinates into rectangular ones since it is easy to set up the
rectilinear line as the first approximation of the light path. By the coordinate transformation, x = r sin θ cosϕ, y =
r sin θ sinϕ, z = r cos θ Eq. (3.1) is rewritten as (see for example [17]),

ds2 = −
(
1− rg

r
− Λ

3
r2
)
c2dt2 +

[
δij +

(
rg
r

+
Λ

3
r2
)
xixj

r2
+O(r2g ,Λ

2)

]
dxidxj . (3.2)
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For the sake of simplicity, let us set up the coordinate system in such a way that the light path used to integrate
the actual light path is parallel to x-axis and the motion of the photon is restricted to the x-y plane. Hence, Eq.
(3.2) becomes

ds2 = −
(
1− rg

r
− Λ

3
r2
)
c2dt2 +

[
1 +

(
rg
r

+
Λ

3
r2
)
x2

r2
+O(r2g,Λ

2)

]
dx2 (3.3)

in which r =
√
x2 + b2 and b corresponds to the impact factor. Using Eq. (2.7), the time transfer function can

be readily calculated as

T =
1

c
(RAB +∆TGR +∆TΛ) , (3.4)

∆TGR =
GM

c2

[
2 ln

xB +
√
x2B + b2

xA +
√
x2A + b2

−

(
xB√
x2B + b2

− xA√
x2A + b2

)]
, (3.5)

∆TΛ =
Λ

18

[
2(x3B − x3A) + 3b2(xB − xA)

]
. (3.6)

From Eqs. (3.4), (3.5) and (3.6), the direction of the light at the emission point A and the reception point B
are computed using Eq. (2.8), noting that yA = yB = b in our case. Moreover, since the differences between the
directions of the actual light (ki)A, (ki)B at the emission and reception points A,B and those of the straight line
used in the integration are small such that

tanψA ≃ ψA =
kbA
kxA

, tanψB ≃ ψB =
kbB
kxB

. (3.7)

From the fact that T (x⃗A, x⃗B) is the two-point function at A and B based on Synge’s world function Ω(xA, xB),
the deflection angle observed at reception point B is equivalent to ψB . Thus, the deflection angle α is given by

α ≡ ψB = αGR + αΛ +O(r2g,Λ
2), (3.8)

αGR =
GMb

c2

(
2

xB
√
x2B + b2 + x2B + b2

− 2

xA
√
x2A + b2 + x2A + b2

+
xB√

x2B + b2
3 − xA√

x2A + b2
3

)
, (3.9)

αΛ =
Λ

3
b(xB − xA). (3.10)

Eq. (3.9) can be rewritten as

αGR =
GM

c2b

[
2(cosϕA − cosϕB) + sin2 ϕA cosϕA − sin2 ϕB cosϕB

]
(3.11)

where sinϕA = b/
√
x2A + b2, cosϕA = xA/

√
x2A + b2, sinϕB = b/

√
x2B + b2, cosϕB = xB/

√
x2B + b2. For ϕA → π

(the emission point A is located at −∞ along x axis), ϕB → 0 (the reception point B is located at +∞ along x
axis),

αGR = −4GM

c2b
. (3.12)

Eq. (3.12) means that the incoming light ray is bent in the negative direction with respect to the ϕ coordinate.
On the other hand, from Eq. (3.10) the light deflection due to Λ occurs in the positive sense in reference to the ϕ
coordinate. Therefore if we choose the sign of the deflection angle α in such a way that the deflection angle from
the mass of the central body M takes a positive value, then αGR and αΛ can be rewritten as

αGR =
GM

c2b

[
2(cosϕB − cosϕA) + sin2 ϕB cosϕB − sin2 ϕA cosϕA

]
, (3.13)

αΛ = −Λ

3
b(xB − xA). (3.14)

s mentioned above, Eq. (3.13) recovers the deflection angle obtained in the standard manner and the bending
angle due to Λ in Eq. (3.14) seems to be equivalent to the result (see [5] again and the references therein)

αΛ = −Λ

3
Rrb (3.15)

where R corresponds to the impact factor b in Eq. (3.14) and rb is the boundary radius of Schwarzschild-de
Sitter/Kottler vacuole which can be regarded as xB − xA in Eq. (3.14). Therefore in terms of the calculation
based on the time transfer function, we conclude that the leading order term of the light deflection due to Λ is
not coupled with the mass of the central body M .
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Abstract
We performed a nonperturbative sum over geometries in (2+1)-dimensional causal
dynamical triangulation through the help of Monte Carlo simulations, where the
spacial topologies are assumed to be S2 for simplicity. We also studied a case where
the spacial topologies are T 2. The numerical results imply these emerging quantum
universes can be described by solutions of the Einstein equation at macroscopic scales.
We also found that spectral dimensions of these spacetime are roughly 3.

1 Introduction

Causal dynamical triangulation (CDT) is a discrete regularization method for gravitational path integral [1].
In CDT, Lorentzian spacetime geometry is approximated by a simplicial manifold. The simplicial manifold is
constructed by gluing “simplex” in such a way so as to have global proper-time foliation (cf. fig. 1). The simplex
is the Lorentzian tetrahedron (in 2+1-dim) in which some edges are fixed to be space-like and the others are
time-like (cf. fig. 2). The squared length of space-like links is l2s = a2 and the squared length of time-like links is
l2t = −αa2 (α > 0), where α is a relative scaling of space-like and time-like links. Because the spacial topology
change induces causality violation, we forbid the spacial topology to change in time. Then, in (2+1)-dimension
the spacetime topology may be written as a product M = I ×Σ(2), where I denotes an interval and Σ(2) denotes
two dimensional surfaces. For convenience, we chose Σ(2) = S2 or T 2, where S2 is a two-sphere and T 2 is a torus.
Moreover, we set periodic boundary conditions in the time direction. Therefore, we assume spacetime topology
to be M = S1 × S2 or S1 × T 2.

t+1

t

・
・
・

・
・
・

Figure 1: Global proper-time foliation in
3-dimension.

Figure 2: A 3-dimensional simplex with space-like
links and time-like links.

In CDT the continuum path integral for gravity is represented by a sum over all discrete spacetime geometries T .

ZL =

∫
Dg eiSL[g] → ZL =

∑
T

eiS
Regge
L

[T ], (1.1)

81Email address: hikichi@gravity.phys.nagoya-u.ac.jp
82Email address: nambu@gravity.phys.nagoya-u.ac.jp
83Email address: saida@daido-it.ac.jp
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where SL denotes the Einstein Hilbert action and SRegge
L denotes that of discretized version. In an analogy

with quantum field theory, one might hope to define the gravitational path integral by rotating to the Euclidean
signature [2]

α→ −α, SRegge
E := −iSRegge

L , (1.2)

ZE =
∑
T

e−S
Regge
E

[T ]. (1.3)

For a technical reason, we have performed the simulations with (approximately) constant three-volume. We
choose α = 1, and the Euclidean Regge action can be written in the following form [3]

SRegge
E = −κ0N0 + κ3N3, (1.4)

κ0 =
a

4G
, κ3 =

a

4G

(
3

π
arccos

1

3
− 1

)
+

a3Λ

48
√
2πG

, (1.5)

where N0 is the number of vertices, N3 is the number of simplices, G and Λ are respectively Newton’s gravitational
constant and the cosmological constant. Just like statistical mechanics, one can compute various geometric
quantities from this partition function ZE in principle. We computed the partition function ZE by performing
the Monte Carlo simulation.

Figure 3: Monte Carlo snapshot of a typical
sphere universe

Figure 4: Averaged spacial volume in the extended
universe phase, meausred for N3 = 64000 and κ0 =
0.4.

2 Emergence of de Sitter spacetime

We assume spacial topologies S2. Therefore the relevant spacetime topology is S1 × S2. In 3D CDT, there
appears two phases (cf. fig. 3) [4]. Which one emerges depends on the value of κ0 (inverse of gravitational
coupling constant). For sufficiently small κ0, the the averaged 2D spacial volume ⟨V2(t)⟩ at proper time t can be
described by that of the de Sitter instanton (cf. fig. 4)

⟨V2(t)⟩ ∝ cos2(
t

B
), (2.1)

where B is a constant. We provide further evidence that the emergent universe in the extended universe phase is
de Sitter spacetime at macroscopic scales. By studying a diffusion process on the discrete spacetime, we obtain an
effective dimension, that is, the spectral dimension DS . We will check whether the large-scale effective dimension
is consistent with 3 in the extended universe phase (left part of fig. 3). The measuring method is described in
detail in [5], [6]. We consider a randomly walking test particle in a given discrete spacetime configuration. The
particle starts from a given tetrahedron and moves to nearest neighbor tetrahedra at a step. We measure the
return probability P (σ), which is the probability that the particle returns to the initial tetrahedron at σ steps.

JGRG21 Programme



204 P02: Numerical simulation of quantum gravity

We average over the return probabilities with randomly chosing tetrahedra and on different discrete spacetime
configurations. When the diffusion step σ is not so large, the return probability for diffusion on fractal geometry
is well-studied and is given by the formula as follows

P (σ) ∝ σ−DS/2. (2.2)

We can estimate the spectral dimension DS by taking the logarithmic derivative

DS = −2
d logP (σ)

d log σ
+ finite-size correction, (2.3)

as long as the diffusion step σ is not so large. The ansatz, DS = a− be−cσ, gives the best fit with the measured
spectral dimesion DS(σ), where a, b, c are the fitting parameters. For the simulation with N3 = 64000 and
κ0 = 0.4, the best fit become

DS = 2.808− 0.710e−0.026σ. (2.4)

Then, we obtained the extrapolating values

DS(σ = ∞) = 2.81, DS(σ = 0) = 2.10. (2.5)

The spectral dimension in the extended universe phase is approximately 3 at macroscopic scales.

Figure 5: Spectral dimension in the extended
universe phase, meausred for N3 = 64000 and
κ0 = 0.4.

Figure 6: Monte Carlo snapshot of a typical torus
universe, meausred for N3 = 64000 and κ0 = 0.4.

Figure 7: Averaged spacial volume of the torus
universe, meausred for N3 = 64000 and κ0 = 0.4.

Figure 8: Spectral dimension of the torus universe,
meausred for N3 = 64000 and κ0 = 0.4.
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3 The torus universe

Now, we consider a universe with spacial topology T 2. Monte Carlo snapshot of a typical torus universe and the
the averaged 2D spacial volume ⟨V2(t)⟩ at proper time t are shown in Figure 6, 7. This spacetime corresponds to
the following metric at macroscopic scales

ds2 = dτ2 + e2{α(τ)+β(τ)}dx2 + e2{α(τ)−β(τ)}dy2. (3.1)

The corresponding Euclidean Einstein equations are as follows

α̇2 − β̇2 = −Λ

2
, α̈+ 2α̇2 = −Λ

2
, β̈ + 2α̇β̇ = 0, (3.2)

where ˙ denotes a proper-time derivative. Our simulation result seems to correspond to α = const, β = const. So
the effective cosmological constant Λeff = 0 is expected.

In this case, the following fit agrees with the data (cf. fig. 8)

DS = a− b

c+ σ
= 2.826− 1.001

1.001 + σ
, (3.3)

where a, b and c are the fitting parameters. We obtained the asymptotic value for N3 = 64000 and κ0 = 0.4

DS(σ = ∞) = 2.83, DS(σ = 0) = 1.83. (3.4)

The spectral dimension of the torus universe is approximately 3 at macroscopic scales.

4 Summary

We found that the quantum universe emerging from a nonperturbative sum over geometries can be described the
solutions of Euclidean Einstein equation on large scales in both cases of spacetime topologies are S1 × S2 and
S1 × T 2. Moreover, we obtained the effective dimension DS ≈ 3 by studying the diffusion process on the discrete
spacetime ensemble.
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Abstract
We studied the cosmological constraints on the Galileon gravity obtained from ob-
servational data of the growth rate of matter density perturbations, the supernovae
Ia (SN Ia), the cosmic microwave background (CMB), and baryon acoustic oscilla-
tions (BAO). For the same value of the energy density parameter of matter Ωm,0, the
growth rate f in Galileon models is enhanced, relative to the ΛCDM case, because
of an increase in Newton’s constant. The smaller Ωm,0 is, the more growth rate is
suppressed. Therefore, the best fit value of Ωm,0 in the Galileon model, based only
the growth rate data, is quite small. This is incompatible with the value of Ωm,0
obtained from the combination of SN Ia, CMB, and BAO data. On the other hand,
in the ΛCDM model, the values of Ωm,0 obtained from different observational data
sets are consistent. In the analysis of this paper, we found that the Galileon model
is less compatible with observations than the ΛCDM model. This result seems to be
qualitatively the same in most of the generalized Galileon models in which Newton’s
constant is enhanced.

1 Introduction

The modifications to gravity at cosmological distances have recently received much attention as a possible expla-
nation for the current accelerated expansion of the universe.

We compare observed data of the growth rate of matter density perturbations to theoretical predictions.
Whereas the background expansion history in modified gravity is nearly identical to that of dark energy models,
the evolution of matter density perturbations in modified gravity is different from that of dark energy models
(the cosmological constant is the standard candidate for dark energy). Thus, it is important to study the growth
history of perturbations to distinguish modified gravity from models based on the cosmological constant or dark
energy. Therefore, we computed the growth rate of matter density perturbations in Galileon cosmology and
compared it to observational data. In addition, we studied the cosmological constraints on the Galileon model
obtained from SN Ia, CMB anisotropies, and BAO observations so as to test the validity of the model.

2 Model

The action we consider is of the form

S =

∫
d4x

√
−g

[
M2

pl

2
F (ϕ)R+K(ϕ,X)−G(ϕ,X)□ϕ+ Lm

]
, (2.1)

where g is the determinant of the space-time metric gµν , Mpl = (8πG)−1/2 is the reduced Planck mass, R is the
Ricci scalar, and ϕ is a scalar field with a kinetic term X ≡ −(1/2)(∇ϕ)2. The function F (ϕ) depends on ϕ only,
whereas K(ϕ,X) and G(ϕ,X) are functions of both ϕ and X. Lm is the matter Lagrangian. We have used the
notation: (∇ϕ)2 = gµν∇µϕ∇νϕ, □ϕ = gµν∇µ∇νϕ.

Variation with respect to the metric produces the Einstein equations; variation with respect to the Galileon
field ϕ yields the equation of motion. For Friedmann–Robertson–Walker spacetime, the Einstein equations give

3M2
plFH

2 = ρm + ρr − 3M2
plHḞ −K + 2XK,X + 6Hϕ̇XG,X − 2XG,ϕ, (2.2)

−M2
plF (3H2 + 2Ḣ) = pr + 2M2

plHḞ +M2
plF̈ +K − 2XG,X ϕ̈− 2XG,ϕ, (2.3)

84Email address: hirano@ichinoseki.ac.jp
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and the equation of motion for the Galileon field gives

(K,X + 2XK,XX + 6Hϕ̇G,X + 6Hϕ̇XG,XX − 2XG,ϕX − 2G,ϕ)ϕ̈

+(3HK,X + ϕ̇K,ϕX + 9H2ϕ̇G,X + 3Ḣϕ̇G,X + 6HXG,ϕX − 6HG,ϕ −G,ϕϕϕ̇)ϕ̇

−K,ϕ − 6M2
plH

2F,ϕ − 3M2
plḢF,ϕ = 0, (2.4)

where an overdot represents differentiation with respect to cosmic time t and H = ȧ/a is the Hubble expansion
rate. Note that we have used the following partial derivative notation: K,X ≡ ∂K/∂X and K,XX ≡ ∂2K/∂X2

(and similarly for other variables). ρm and ρr are the energy densities of matter and radiation, respectively, and
pr is the pressure of the radiation.

In this paper, as we are interested in the basic parameters of Galileon theory, we consider the following
functions

F (ϕ) =
2

M2
pl

ϕ, (2.5)

K(ϕ,X) = 2
ω

ϕ
X, (2.6)

G(ϕ,X) = 2ξ(ϕ)X, (2.7)

where ω is the Brans–Dicke parameter and ξ(ϕ) is a function of ϕ. This model is the Brans–Dicke theory with
the following self-interaction term: ξ(ϕ)(∇ϕ)2□ϕ. [1, 2]

For the numerical analysis in this paper, we adopt a specific model in which

ξ(ϕ) =
r2c
ϕ2
, (2.8)

where rc is the crossover scale.

3 Density perturbations

The evolution equation for the cold dark matter overdensity δ in linear theory is governed by

δ̈ + 2Hδ̇ − 4πGeffρδ ≃ 0, (3.1)

where Geff represents the effective Newton’s constant in Galileon gravity. For the model specified by Eqs. (2.5),
(2.6), and (2.7), the effective Newton’s constant is given by

Geff =
1

16πϕ

[
1 +

(1 + ξ(ϕ)ϕ̇2)2

J

]
, (3.2)

where

J = 3 + 2ω + ϕ2ξ(ϕ)

[
4
ϕ̈

ϕ
− 2

ϕ̇2

ϕ2
+ 8H

ϕ̇

ϕ
− ϕ2ξ(ϕ)

ϕ̇4

ϕ4

]
. (3.3)

We plot the growth rate f = d ln δ/d ln a in Galileon gravity in Fig. 1 and Fig. 2. ω is the (constant) Brans–
Dicke parameter and Ωm,0 is the energy density parameter of matter at the present day. We set Ωm,0 = 0.30 for
the Galileon model in Fig. 1 and ω = −10000 for the Galileon model in Fig. 2. Ωm,0 for the ΛCDM model is
0.30 in these figures.

4 Observational constraints

In Fig. 1 and Fig. 2, for the same value of Ωm,0, the growth rate f in a Galileon model is enhanced compared
to the ΛCDM case, because of the enhancement of Newton’s constant. The smaller Ωm,0 is, the more suppressed
the growth rate is. Therefore, comparing these with observational data of the growth rate, the best fit value of
Ωm,0 in the Galileon model is quite small.

In Fig. 3, we plot the probability contours in the (Ωm,0, |ω|)-plane in the Galileon model. The contours show
the 1σ (68.3%) and 2σ (95.0%) confidence limits, from the growth rate data, and from the combination of SN Ia,
CMB, and BAO data. (|ω| is the absolute value of the Brans–Dicke parameter; ω < 0.)

In the Galileon model, the allowed parameter region obtained using only the growth rate data does not overlap
with the allowed parameter region obtained from the combination of SN Ia, CMB, and BAO data at all.

In Fig. 4, we plot the probability distribution of the energy density parameter of matter Ωm,0 in the Galileon
model from observational data of (individually) growth rate, SN Ia, CMB, and BAO, and also the combination
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Figure 1: Growth rate f in Galileon gravity as
a function of redshift z for various values of the
Brans–Dicke parameter ω. The parameters are
given by Ωm,0 = 0.30.
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Figure 3: Probability contours in the (Ωm,0, |ω|)-plane for the Galileon model. The contours show the
1σ (68.3%) and 2σ (95.0%) confidence limits, from the growth rate data, and from the combination of
SN Ia, CMB, and BAO data, respectively.

of all data, where the other parameter is marginalized. In the Galileon model, the bounds produced by each set
of observations are inconsistent.

On the other hand, in Fig. 5, we plot the probability distribution of Ωm,0 for the ΛCDM model from
observational data of (individually) growth rate, SN Ia, CMB, and BAO, and also the combination of all data.
In the ΛCDM model, the bounds from each observational data set are consistent.

In Table 1, we list the best fit parameters, the χ2 values, and the differences of the Akaike information criteria
(AIC) and the Bayesian information criteria (BIC) for both the Galileon model and the ΛCDM model. Here, we
use the combination of growth rate, SN Ia, CMB, and BAO data (all data).

5 Conclusions

Galileon gravity is a fascinating model that can induce the accelerated expansion of the present Universe, meets
the requirements of solar system experiments, and can avoid ghost and instability problems. However, through
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Model Best fit parameters χ2 ∆AIC ∆BIC

ΛCDM Ωm,0 = 0.268 550.674 0.00 0.00
Galileon Ωm,0 = 0.316, 582.013 33.339 37.697

ω = −2.69× 106

Table 1: Results of observational tests using growth rate, SN Ia, CMB, and BAO data (all data).

the analysis presented in this paper, we found that the Galileon model is less compatible with observations than
the ΛCDM model.
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Perturbative solutions to the lens equation for multiple lens
planes

With some numerical examples

Koji Izumi 85(a)

(a)Hirosaki University, Japan

Abstract
We make a systematic attempt to determine, as a function of lens and source param-
eters the positions of images by multi-plane gravitational lenses. Numerical tests are
done to investigate if the Taylor expansion method is robust. The method with a
small mass ratio works well for changing a plane separation, whereas it breaks down
in the inner domain near the caustics.

1 Lens equation

Two lens equation for two poinbt masses is

w = z −

1− ν

z∗
+

νd2

z∗ − ϵ∗ − (1− ν)δ2
z

 , (1.1)

where

d2 ≡ D1D2s

D2D1s
, (1.2)

δ2 ≡ DSD12

D2D1S
. (1.3)

2 Iterative solutions

Formar solutions are expressed in taylor series as

z =
∞∑
p2=0

∞∑
p3=0

· · ·
∞∑

pN=0

νp22 νp33 · · · νpNN z(p2)(p3)···(pN ), (2.1)

where the coefficients z(p2)(p3)···(pN ) are independent of any νi. What we have to do is to determine each coefficient
z(p2)(p3)···(pN ) iteratively.

3 Numerical tests

∆ ≡
∣∣∣∣zTaylor − zNum

zNum

∣∣∣∣ , (3.1)

where zTaylor denotes a root obtained by the Taylor expansion method (including the third order corrections)
and zNum denotes the root that is obtained by numerically solving the lens equation. ∆Max denotes the largest
error among four image positions (for double planes) for the chosen parameter values.

85Email address: elym.koji@gmai.com
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Figure 1: Notation: The source and image positions on complex planes are denoted by w and z,
respectively. Locations of N masses are denoted by ϵi for i = 1, · · · , N . Here, we assume the thin lens
approximation for each deflector. The several distances among the observer, source and each lens object
are also defined.

4 Conclusion

We presented a method of Taylor series expansion to solve the multi-plane lens equation in terms of mass ratios
except for the neighbourhood of the caustics.
Future works:Compare the present result with state-of-art numerical simulations.
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Equations of motion in Double Field Theory: from classical
particles to quantum cosmology

Nahomi Kan86(a), Koichiro Kobayashi87(b), and Kiyoshi Shiraishi88(b)

(a)Yamaguchi Junior College, Hofu-shi, Yamaguchi 747–1232, Japan
(b)Yamaguchi University, Yamaguchi-shi, Yamaguchi 753–8512, Japan

Abstract
The equation of motion for a point particle in the background field of double field
theory is considered. We find that the motion is described by a geodesic flow in the
doubled geometry. Inspired by analysis on the particle motion, we propose a modified
model of quantum string cosmology, which includes two scale factors. The report is
based on arXiv:1108.5795, to appear in Physical Review D.

1 Introduction

Double Field Theory (DFT) [1] is the theory of the massless field with a higher symmetry of spacetime including
dual coordinates. Through this theory, Hull, Zwiebach, and Hohm clarified the T-duality symmetry of the massless
field, and new symmetry related to the theory. More recently Jeon, Lee, and Park studied the structure of DFT
using projection-compatible differential geometrical methods in [2].

The present report consists of two parts. In the first part, the motion of the particle in the background
field in DFT is investigated. We show that the geodesic in the 2D-dimensional doubled-spacetime cannot be the
geodesic in the D-dimensional spacetime. The geodesic equation in the D-dimensional spacetime is found to be
the geodesic flow equation. In the second part, we consider the string cosmology with a bimetric model inspired
by the constraint method discussed in the first part. Our method for the restriction on the metrics functions well,
at least in the present reduced model for cosmology.

2 Review of projection-compatible approach

Coordinates are combined with dual coordinates to be XA = (x̃a , x
µ)T , where the suffixes A,B, . . . range over

1, 2, . . . , 2D, while µ, ν, . . . as well as a, b, . . . range over 1, 2, . . . , D. The constant metric is assumed to be expressed
as the following 2D × 2D matrix,

ηAB =

(
0 δaν
δµ
b 0

)
. (2.1)

The suffixes are entirely raised and lowered by this constant metric. Of course, ηACηCB = δAB is satisfied.
The generalized metric is defined as follows:

HAB =

(
gab − gaσbσν

bµσg
σb gµν − bµρg

ρσbσν

)
. (2.2)

Here, gµν and bµν are the metric in D dimensions and the antisymmetric tensor, respectively. It should be noted
that HAB satisfes HACHCB = δAB .

The following projection matrices are defined on the basis of the existence of two kinds of metrics. P ≡
1
2
(η+H), P̄ ≡ 1

2
(η−H) which satisfy P 2 = P , P̄ 2 = P̄ , PP̄ = P̄P = 0. From these, one can derive the identities

P (∂AP )P = P̄ (∂AP̄ )P̄ = 0 or PD
B(∂AHBC)P

C
E = P̄D

B(∂AHBC)P̄
C
E = 0.

Now, the projection-compatible derivative is defined. In other words, both the metrics are “covariantly
constant,” i.e., ∇AηBC = ∇AHBC = 0. So, the covariant derivative of the projection of an arbitrary tensor
coincides with the projection of the covariant derivative of the tensor. Jeon et al.[2] found that the covariant
derivatives including the following connection have the character,

ΓABC ≡ 2P[A
DP̄B]

E∂CPDE + 2(P̄[A
DP̄B]

E − P[A
DPB]

E)∂DPEC . (2.3)

86Email address: kan@yamaguchi-jc.ac.jp
87Email address: m004wa@yamaguchi-u.ac.jp
88Email address: shiraish@yamaguchi-u.ac.jp
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They also obtained the action for the generalized metric, which was previously found by Hohm et al. [1]

S =

∫
dxdx̃ e−2d

(
1

8
HAB∂AHCD∂BHCD − 1

2
HAB∂BHCD∂DHAC − 2∂Ad∂BHAB + 4HAB∂Ad∂Bd

)
,

from the consideration of the projection-compatible geometrical quantities. Here, e−2d =
√
−g e−2ϕ and ϕ is the

dilaton field. If we set all the derivatives on the fields with respect to the dual coordinate zero (∂̃a = 0), the
action for the effective theory for the zero-mode field in string theory is obtained as

S =

∫
dx

√
−g e−2ϕ

[
R+ 4(∂ϕ)2 − 1

12
H2

]
,

where the three-form field H = db is the field strength of the Kalb-Ramond 2-form bij .

3 The geodesic equation is not the equation of motion for a
particle

Next, we consider the equation of motion for a particle. The geodesic equation is given by the following expression
Uµ∇µU

ν = 0, where Uµ ≡ dxµ

ds
= ẋµ, s being a parameter.

The corresponding equation in the projection compatible geometry of Jeon et al. is considered to be

UA∇AU
B = UA(∂AU

B + ΓA
B
CU

C) = 0 , (3.1)

where UA = (Ũa, U
µ)T = dXA

ds
. From the project space ansatz P̄U = 0, we are forced to use Ũa = gaνU

ν .

Moreover, we set ∂̃g = 0 as in the interpretation of DFT. Now, we find that the above equation reads

Uµ∂µU
ν +

1

2
gνµ(∂ρgµσ + ∂σgµρ)U

ρUσ = 0 . (3.2)

It is obviously different from the usual geodesic equation in general relativity (or differential geometry). In general,
it is understood that the usage of the projection has a problem.

4 Projection and geodesic flow

The following Lagrangian is adopted, and the mechanics derived from it are considered:

L =
1

2
HABẊ

AẊB + λAP̄ABẊ
B . (4.1)

Here, λA is an undecided multiplier. The Euler-Lagrange equation leads to the constraint P̄ Ẋ = 0.
We find that the Hamiltonian is defined as

H =
1

2
HAB(pA − λC P̄CA)(pB − λDP̄DB) . (4.2)

The multiplier can be determined from the Hamilton equation as λA = pA + PABM
B , where MB is an arbitrary

vector. When this is substituted into the above Hamiltonian, we obtain a new Hamiltonian

H⋆ =
1

2
PABpApB . (4.3)

Using the new Hamiltonian, we obtain

ẊA =
∂H⋆

∂pA
= PABpB , ṗA = − ∂H⋆

∂XA
= −1

2
∂AP

BCpBpC = −1

4
∂AHBCpBpC . (4.4)

These equations describe the geodesic flow in the system. The combined equation is found to be

ẌA = ẊC(∂CP
AB)pB − 1

2
PAB∂BP

CDpCpD . (4.5)

Now, let us take the condition ∂̃a = 0 for the correspondence with DFT. If we consider p̃a = 0, we obtain
ẍµ +

{
µ
ρσ

}
ẋρẋσ = 0, the geodesic equation in a usual D dimensional spacetime. We have obtained the geodesic

equation in the D-dimensional spacetime from the geodesic flow in the 2D-dimensional space described by the
generalized metric with natural assumptions.
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5 A simple bi-metric model

We apply a similar method to a modified model for cosmology, which is related to the string cosmology [3]. In
the model here, we consider two metrics, g and g̃. Though our model describes a bi-metric theory, the degree of
freedom is to be mildly restricted. For simplicity of the discussion, we consider bµν = 0. The cosmological action
we consider is

S = −λs
2

∫
dτ

[
1

8
Tr(M ′ηM ′η) + Φ′2 + e−2ΦV

]
, with MAB ≡

(
G̃ 1
1 G

)
, (5.1)

where G and G̃ are the spatial parts of the metrics and Φ ≡ 2d. Here, we add the constant potential V to the
Lagrangian and λs is the constant that represents the scale of string theory [3]. The prime denotes differentiation
with respect to τ .

We now define the “pseudo”-projection matrices P = η+M
2

, P̄ = η−M
2

and we wish to enforce PM ′P =
P̄M ′P̄ = 0 using some constraints. Now, the Lagrangian LΛ with the constraint term is

LΛ =
λs
2

[
−1

8
M ′ABM ′

AB + Λ̄ABP̄
ACM ′

CDP̄
DB + ΛABP

ACM ′
CDP

DB − Φ′2 − e−2ΦV

]
. (5.2)

The Hamiltonian of the system becomes

HΛ = − 4

λs

[
ΠAB − λs

2

(
P̄ACΛ̄CDP̄

DB + PACΛCDP
DB
)]2

− 1

2λs
Π2

Φ +
λs
2
e−2ΦV , (5.3)

where the conjugate momentum for MAB and Φ are represented by ΠAB and ΠΦ, respectively. We consider
simplification by using the assumed relation, P 2 ≃ P and P̄ 2 ≃ P̄ . The symbol ≃ is used to indicate this assumed
approximation adopted by us. Finally, we obtain the Hamiltonian

H∗ ≡ − 8

λs
ΠABPBCΠ

CDP̄DA − 1

2λs
Π2

Φ +
λs
2
e−2ΦV . (5.4)

6 “Minisuperspace” version of the bi-metric model

Next, we examine the previous procedure of modification in the minisuperspace model. We suppose

MAB =

(
Ã(τ)δab 0

0 A(τ)δµν

)
. (6.1)

The Hamiltonian for the minisuperspace version of our modified model is found to be

H∗ = − 2

λsD
(ππ̃ + π̃π −AπAπ − Ãπ̃Ãπ̃)− 1

2λs
Π2

Φ +
λs
2
e−2ΦV . (6.2)

A special solution can be found for the Hamilton equations. The solution is

Ã(τ) =
1

A0
exp

[
− 2√

D
C(τ − τ0)

]
, A(τ) = A0 exp

[
2√
D
C(τ − τ0)

]
+ δ , (6.3)

where A0, τ0, and δ are constants. The similarity to the known string cosmological solution [3] is obvious, up to
the possible constant deviation δ in A. For the solution, we find that AÃ→ 1 when τ → +∞.

7 Quantum cosmology of the bi-metric model

Quantum cosmological treatment of the string cosmology has been widely studied [3]. In our model, the minisu-
perspace Wheeler-DeWitt equation is obtained as[

2

λsD

(
2
∂

∂A

∂

∂Ã
−A

∂

∂A
A
∂

∂A
− Ã

∂

∂Ã
Ã
∂

∂Ã

)
+

1

2λs

∂2

∂Φ2
+
λs
2
e−2ΦV

]
Ψ = 0 , (7.1)

where Ψ is the wave function of the universe. To simplify the description of the system, we use the following

variables: x =
√
D
4

lnA/Ã, y =
√
D
4

lnAÃ. Up to the ordering, we have[
−1 + e−(4/

√
D)y

2

∂2

∂x2
− ∂

∂y

1− e−(4/
√
D)y

2

∂

∂y
+

∂2

∂Φ2
+ λ2

se
−2ΦV

]
Ψ = 0 . (7.2)

JGRG21 Programme



216 P06: Double Field Theory

If we assume a solution of the form, Ψ(x, y,Φ) = Xk(x)YkK(y)ZK(Φ), we find the non singular real solution
for YkK(y) at y = 0 as follows:

YkK(y) = e−
√
k2−2K2yF

(
1 +

√
1− k2 +

√
k2 − 2K2

2
,
1−

√
1− k2 +

√
k2 − 2K2

2
, 1; 1− e−2y

)
, (7.3)

where F (α, β, γ; z) is the Gauss’ hypergeometric function.
If K = ±k, Yk±k(y) has a maximum at y = 0 (see Figure 1). When we construct a wave packet for the

cosmological wave function [3], the peak of this wave packet in terms of parameter y is naturally located at y = 0.
Thus, the approximate scale factor duality AÃ ≃ 1 is expected even at the “beginning” of the quantum universe.
The detailed investigation on the behavior of the universe is left for future research.

Figure 1: 3D-plot of Ykk(y).
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Astrometric microlensing by the Ellis Wormhole

Takao Kitamura

Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan

Abstract
We study the gravitational microlensing effects of the Ellis wormhole in the weak-
field limit. First, we find a suitable coordinate transformation, such that the lens
equation and analytic expressions of the lensed image positions can become much
simpler. Second, we prove that two images always appear for the weak-field lens by
the Ellis wormhole. By using these analytic results, we discuss astrometric image
centroid displacements due to gravitational microlensing by the Ellis wormhole. The
astrometric image centroid trajectory by the Ellis wormhole is different from the
standard one by a spherical lensing object that is expressed by the Schwarzschild
metric. The anomalous shift of the image centroid by the Ellis wormhole lens is
smaller than that by the Schwarzschild lens, provided that the impact parameter
and the Einstein ring radius are the same. Therefore, the lensed image centroid
by the Ellis wormhole moves slower. Such a difference, although it is very small,
will be, in principle, applicable for detecting or constraining the Ellis wormhole by
using future high-precision astrometry observations. In particular, the image centroid
position gives us additional information, so that the parameter degeneracy existing
in photometric microlensing can be partially broken.

1 Introduction

A peculiar feature of general relativity is that the theory admits a nontrivial topology of a spacetime. A solution
of the Einstein equation that connects distant points of space-time was introduced by Einstein & Rosen [1]. This
solution called the Einstein-Rosen bridge was the first solution to later be referred to as a wormhole. Initially,
this type of solution was just a trivial or teaching example of mathematical physics. However, Morris & Thorne
[2] proved that some wormholes are “traversable”, i.e., space and time travel can be achieved by passing through
the wormholes. However, it is hard to observe wormholes. Therefore, we consider the gravitational microlensing
effects by wormholes for find them. In this study, we used the Ellis wormhole metric for simplicity to compare
Schwarzschild one because this metric is also spherical symmetry.

2 The Ellis wormhole

The Ellis wormhole is expressed by the line element

ds2 = dt2 − dr2 − (r2 + a2)(dθ2 + sin2 θdϕ2),

where a is the throat radius of the wormhole. The Ellis wormhole is known to be a massless wormhole. However,
this wormhole deflect light by gravitational lensing because of its curved space-time structure.

The deflection angle α(r) of the Ellis wormhole was derived by Dey & Sen(2008) to be

α(r) = π

(√
2(r2 + a2)

2r2 + a2
− 1

)
,

where r is the closest approach of the light. In the weak-field limit(r → ∞), the deflection angle becomes

α(r) → π

4

a2

r2
+O

(
a

r

)4

.

For the Schwarzschild is

α(r) =
4GM

r
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3 Lens equation for the Ellis wormhole

The lens equation for the Ellis wormhole is

β =
r

DL
− π

4

DLS
DS

a2

r2
(r > 0)

β =
r

DL
+
π

4

DLS
DS

a2

r2
(r < 0).

They are rewritten as

θ3 − βθ2 − 1 = 0 (θ > 0)

θ3 − βθ2 + 1 = 0 (θ < 0),

in the units of θE = 3

√
π

4

DLS
DSD2

L

a2.

By using Cardano’s formula, we obtained the solutions as[3]

θ+ =

(
3

√
1

2
+

√
1

4
+
β3

27
+

3

√
1

2
−
√

1

4
+
β3

27

)−1

θ− =

(
−

3

√
+
1

2
−
√

1

4
− β3

27
−

3

√
1

2
+

√
1

4
− β3

27

)−1

.

The previous paper also used Cardano’s formula[4], however those solutions are complicated. Therefore, we
simplified the expressions by appropriate coodinate transformation.

4 Magnification and Image photo centroid

• The magnification of the brightness
• Photon center
• ∆θPC
Blue line is the Schwarzschild lines, and red line is the Ellis wormhole lines. β0 is the closest distance from

lens to source in units of θE .

In the bottom figures , the dot (·), circle (⃝), plus (+), cross (×) denote the positions for
β

θE
= 0.2, 0.5, 1.0, 1.5,

respectively, where the horizontal axis denotes the direction of the source motion.
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The relative displacement trajectory by the Schwarzschild lens is known to be an ellipse . The bottom figure,
which is Astrometric image centroid displacements(∆θPC), shows that the relative trajectory by the Ellis lens
looks like an ellipse but has a small difference. The shape is symmetric along the x-axis but slightly asymmetric
along the y-axis like a tree leaf.
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5 Summary

We studied the gravitational microlensing effects of the Ellis wormhole in the weak-field limit. First, we performed
a suitable coordinate transformation, such that the lens equation and analytic expressions of the lensed image
positions can become much simpler than the previous ones. Second, we proved that two images always appear
for the weak-field lens by the Ellis wormhole. By using these analytic results, we investigated astrometric image
centroid displacements due to gravitational microlensing by the Ellis wormhole. The anomalous shift of the image
centroid by the Ellis wormhole lens is smaller than that by the Schwarzschild lens, provided that the impact
parameter and the Einstein ring radius are the same. Therefore, the lensed image centroid by the Ellis wormhole
moves slower.
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Flux vacua in DBI type Einstein Maxwell theory
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Abstract
We study compactification of extra dimensions in a theory of Dirac-Born-Infeld (DBI)
type gravity. We investigate the solution for Minkowski spacetime with an S2 extra
space. The solution is derived by the effective potential method in the presence of
the magnetic flux on the extra sphere. We find that, in a certain model, the radius of
the extra space has a minimum value independent of the higher-dimensional Newton
constant in weak-field limit.

1 Introduction

Recently, models including the higher derivative terms are widely studied as a modified version of Einstein gravity.
Moreover, various works are reported about compactification with an extra space in the higher derivative gravity
(for example [1]).

The Dirac-Born-Infeld (DBI) type gravity has been considered by Deser and Gibbons [2] and studied by many
authors. It is expected that the nonlinear nature of the model may remove the possible singularity of spacetime.

In our recent work, we considered a model of Weyl invariant Dirac-Born-Infeld (DBI) type gravity. This model
contains the Weyl gauge field. It is natural to put the gauge field into DBI type gravity, since originally DBI
theory aimed at relaxing the singularity of the electric field.

In the DBI electromagnetism, the Lagrangian is

L = −
√

−det (ηµν + βFµν). (1.1)

In the four-dimensional spacetime they are satisfied that − det(ηµν + βFµν) = 1− β2(E2 −B2)− β4(E ·B)2,

∇ ·D = ∇ · E√
1− β2E2

. (1.2)

In the case of the point charge, the electric field is E ∝ 1√
r4+β2

. The energy density is also finite.

2 Spacetime metric and flux

We first consider the theory with the massless gauge field in six dimensions (thus in the flat spacetime, it seems
to be the DBI electromagnetism), and compactification of the extra dimensions. The Lagrangian of our model is
the following:

L =−
√

−det(f2gMN − α1RMN + βFMN ) + (1− λ)f6√−g, (2.1)

where f is a mass scale. α1, β and λ are dimensionless parameters. M,N range over 0, 1, 2, 3, 5 and 6.
Note that one can rewrite the Lagrangian as in the form

L =−
√
−detMMN + (1− λ)f6√−g

= −
√
−g
√

detMM
N + (1− λ)f6√−g,

where it is satisfied that
MM

N = f2δMN − α1R
M
N + βFMN . (2.2)
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Now we assume that the spacetime is described by a direct product of four-dimensional spacetime and an extra
space, i.e., the line element is written by

ds2 = g(4)µν dx
µdxν + g(2)mndx

mdxn, (2.3)

where µ, ν = 0, 1, 2, 3 while m,n = 5, 6. We will omit the index within the parentheses which indicates the
dimension, as long as confusion would not occur.

We suppose that the four-dimensional spacetime is a maximally symmetric space. The Ricci tensor of the
spacetime is expressed as

Rµν =
1

4
R(4)gµν , (2.4)

where R(4) is the scalar curvature of the four-dimensional spacetime. For the Minkowski spacetime, R(4) equals
to zero. We adopt S2 as the extra space. Then we find

Rmn =
1

2
R(2)gmn =

1

b2
gmn, (2.5)

where R(2) and b are the scalar curvature and the radius of the two-sphere, respectively.
We suppose that the constant magnetic flux penetrates the extra sphere, just as in the model of Ranjbar-

Daemi, Salam and Strathdee (RSS) [3]. Namely we set

Fmn = B
√
g(2)εmn, (2.6)

where g(2) = det gmn. The totally antisymmetric symbol εmn takes the value 1 for (m,n) = (5, 6). The strength
of flux is rewritten as B = B̃/b2 where B̃ is a constant determined from a topological number. Substituting above
ansatze into the Lagrangian, we get the reduced Lagrangian as

L0 =−
√

−g(4)(4πb2)

×


√(

f2 − α1

4
R(4)

)4 [(
f2 − α1

b2

)2
+ β2

B̃2

b4

]
− (1− λ)f6

 .

In this model, the effective Newton constant G in four dimensional spacetime can be read from the expansion
of the Lagrangian in the small curvature limit,

L =
√

−g(4)
[
const. +

1

16πG
R(4) + · · ·

]
. (2.7)

Thus we find (16πG)−1 for the constant radius b0 as

1

16πG
= 4πb0

2f2
(α1

2

)√
(f2 − α1

b0
2 )

2 +
β2B̃2

b0
4 . (2.8)

3 Four dimensional flat spacetime and compactification

We seek the solution for the four-dimensional flat spacetime. According to Wetterich [1], we use the method of
the effective potential for a static solution, instead of solving the equation of motion derived from the Lagrangian
directly. We now define a potential

V (y) = y


√

(1− α1

y
)2 + β2

B̃2

y2
− (1− λ)

 (3.1)

where y = f2b2. Then the equation of motion and the stability condition are equivalent to

dV

dy

∣∣∣
y=y0

= V (y0) = 0,

d2V

dy2

∣∣∣
y=y0

> 0

(3.2)

for the solution y = y0. To make the equations simultaneously satisfied, we must tune the value of λ to be specific
value λ0.
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We consider further scaling of the variable and parameters become convenient. This yields a scaled potential

1∣∣∣βB̃∣∣∣V (y) → U(Y ) = Y

{√
(1− A1

Y
)2 +

1

Y 2
− (1− λ)

}
, (3.3)

where Y = y/|βB̃| and A1 = α1/|βB̃|. In Figure 1, we show the U -Y graph of potentials in the DBIE model and
the RSS model.

the DBIE model

the RSS model

Figure 1: Effective potentials in the DBIE model and the RSS model.

Finally we find the solution for

dU

dY

∣∣∣
Y=Y0

= U(Y0) = 0 and
d2U

dY 2

∣∣∣
Y=Y0

> 0 (3.4)

is given by

Y0 = A1 +
1

A1
,

1− λ0 =
1√

1 +A1
2

(3.5)

for A1 > 0. It is interesting to see the minimal value of the radius of S2 is

√
|βB̃|
f

, which is independent of the
value of α1.

The inverse of the Newton constant is then given by

1

16πG
= 2πf2|βB̃|2

√
1 +A1

2. (3.6)

The squared ratio of the compactification scale and the four-dimensional Planck length is

b0
2

G
= 32π2|βB̃|3

√
(1 +A1

2)3

A1
2 ≥ 32π2|βB̃|3 3

√
3

2
. (3.7)
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Comparing with the result of the RSS model

b0
2

G
= 32π2|βB̃|3 1

A1
, (3.8)

we find that, in our DBI gravity model, the compactification scale cannot be extremely smaller than the Planck
length, provided that |βB̃| ∼ 1.

4 Summary and outlook

The compactification in the DBI gravity with flux in the extra space has been investigated. The parameter region
which allows the compactification has been revealed. We have shown that the small couplings attached to the
curvature realize similar compactification to that of the RSS model.

An interesting dependence of the radius of the extra space on the parameter α1 was found in our model. This
will be of more importance if we consider the parameter as a dynamical variable, or we generalize our model to
include the term such as ϕ2RMN , where ϕ is a scalar degree of freedom.

The analysis on stability against perturbation of higher modes, which deforms the spherical shape of the extra
space, is important, even though the analysis on those modes will be complicated because of the higher-derivative
terms in our model. This issue is left for future works.

Spontaneous compactification to a football-shaped internal space in the presence of a brane is also worth study-
ing in the framework of the DBI type gravity models, because the higher curvature terms affect the geometrical
aspects of conical or nearly conical points on the compact space.

The cosmological evolution of scale factors in our model is an important subject. Since the effective potential
has a finite value at b = 0 in our DBI type model, the initial state of the universe may located at b = 0. The
simple condition is suitable for quantum cosmology, although the derivative terms in our model make the canonical
approach very complicated. (The quantum cosmology of the RSS model was studied by Halliwell [4].)
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Off-equatorial orbits of charged particles in strong gravity with
magnetic dipole field
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Abstract
Interplay between gravitational and electromagnetic action allows for stable, energet-
ically bound off-equatorial motion of charged particles in the case of non-relativistic
dynamics. We study such possibility and the characteristic, if exists, in the Bon-
nor spacetime, which is an exact solution of Einstein-Maxwell equations, and may
describe the exterior solution for a massive object with magnetic dipole moment.

1 Introduction

Classical study of charged particles motion in a purely dipole magnetic field by Störmer[1] provides us with the
basic physical description of radiation belts surrounding a magnetized planet. Radiation belts are known to be
composed of individual ions and electrons whose motion is governed by magnetic forces only. In order to describe
the dynamics of charged dust grains in planetary magnetospheres, when there are much smaller charge to mass
ratios, one may take into account both the planetary gravity and electromagnetic fields [2]. Such studies point
out the existence of the dust grains halo orbits near, e.g. Saturn [3].

The situation is not obvious in case of exact solutions of Einstein-Maxwell equations, where the gravitational
and electromagnetic fields are mutually interconnected. The relativistic counterpart is recently investigated
e.g. [4, 5]. They derived a semi-analytic condition for the halo orbits existence for pseudo-Newtonian model,
Schwarzschild and Kerr-Newman black holes. Their exact location should depend on the type of particles, i.e. the
charge to mass ratio. Possible chaotic motion in the halo orbits may have some astrophysical consequences [5, 6].
In this short article, we briefly discuss the existence of off-equatorial orbits in Bonnor spacetime [7]. Detailed
discussion is in preparation[8].

2 Orbits in Bonnor spacetime

Bonnor[7] derived a solution for Einstein-Maxwell equations, which is given by

ds2 = −
(
P

Y

)2

dt2 +
P 2Y 2

Q3Z
(dr2 + Zdθ2) +

Y 2Z sin2 θ

P 2
dϕ2, (2.1)

where

P = r2 − 2ar − b2 cos2 θ, (2.2)

Q = (r − a)2 − (a2 + b2) cos2 θ, (2.3)

Y = r2 − b2 cos2 θ, (2.4)

Z = r2 − 2ar − b2. (2.5)

The solution contains two independent parameters. The constant a is related to the gravitational mass M ,
a = GM/2 and the other one b is to the magnetic dipole moment µ, b = µG1/2/(2a) = µ/(G1/2M). The
ϕ-component of the electromagnetic potential is given by

Aϕ =
µr sin2 θ

P
. (2.6)

We consider charged particle motion with mass m and charge q. There are two conserved quantities, angular
momentum and energy. They are written as

mL = mZ sin2 θ

(
Y

P

)2
dϕ

dτ
+ qAϕ, (2.7)
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mE = m

(
P

Y

)2
dt

dτ
, (2.8)

where constants L and E denote specific angular momentum and energy. Using them, the motion in meridian
plane is limited as

E2 =
P 4

Q3Z

[(
dr

dτ

)2

+ Z

(
dθ

dτ

)2
]
+ V 2

eff . (2.9)

The effective potential is given by

V 2
eff =

P 2

Y 2

[
1 +

P 2

Y 2Z sin2 θ

(
L− qµ

m

r sin2 θ

P

)2
]
. (2.10)

The condition for off-equatorial orbit is derived by ∂rVeff = 0 and ∂θVeff = 0. After some calculations, we have(qµ
m

)2
=

aY 2S2

rZΛ sin2 θ(r2 + b2 cos2 θ)
, (2.11)

where

S = r4 − 2ar3 − 3b2r2 sin2 θ + 2ab2r(2 sin2 θ − 1)− b4 cos2 θ, (2.12)

Λ = 3r4 − 10ar3 − 2b2r2 cos2 θ − 6ab2r cos2 θ − b4 cos4 θ. (2.13)

The angular momentum L is given by

L =
(qµ
m

) r sin2 θ

P
± 2[arZ(r2 + b2 cos2 θ)]1/2Y sin θ

PΛ1/2
. (2.14)

It is clear that the gravitational field is necessary for the off-equatorial orbit. The condition becomes meaningless
in the limit of no gravity, i.e, mG → 0. The existence of ’halo’ orbits in the Bonnor spacetime outside the
singularity Z > 0 is determined by the following condition

Λ > 0. (2.15)

In order to understand derived condition, we consider weak gravity limit. The effective potential for large r
is given by

V 2
eff =

(
1− 4a

ρ

)[
1 +

1

ρ2 sin2 θ

(
L− qµ

m

(
1 +

3a

ρ

)
sin2 θ

ρ

)2
]
. (2.16)

where ρ = r + a + O(a2) represents the circular radius. This expression agrees with that for non-relativistic
dynamics with Newton gravity and dipole magnetic field. For large radius, the condition (2.11) reduces to(qµ

m

)2
=
GMr3

6 sin2 θ
. (2.17)

Gravity, centrifugal and Lorentz forces are balanced for it. The potential minimum corresponds to the circular
motion along ϕ direction at (r0, θ0), which should satisfy the above relation. With increase of energy E, r(τ) and
θ(τ) of the particle are no longer constant. There are bound orbits in vicinity of (r0, θ0). Some numerical works
are necessary to study the transition of bound to unbound orbits by further increasing E[8].

We next consider the existence condition (2.15). The condition for Λ > 0 in general depends on the polar
angle θ. Two explicit examples are given below. The existence on the equatorial plane (θ = π/2) is limited as

r >
10

3
a =

5

3
GM ≈ 1.666GM. (2.18)

The existence on the pole (θ = π/2) depends on the parameter b2. The lower limit increases with it. For example,
we have for b2 = a2 = (GM/2)2

r > r∗ ≈ 1.835GM (2.19)

Finally, detailed analysis of the existence condition for smaller radius is complicated and will be discussed
elsewhere[8].
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Abstract
The late inspiral, merger, and ringdown of a black hole-neutron star (BH-NS) system
can provide information about the neutron-star equation of state (EOS). Candidate
EOSs can be approximated by a parametrized piecewise-polytropic EOS above nu-
clear density, matched to a fixed low-density EOS; and we report results from a large
set of BH-NS merger simulations that systematically vary two parameters. To within
the accuracy of the simulations, we find that, apart from the neutron-star mass, a sin-
gle physical parameter Λ, describing its deformability, can be extracted from the late
inspiral, merger, and ringdown waveform. This parameter is related to the radius,
mass, and l = 2 Love number, k2, of the neutron star by Λ = 2k2R

5/3M5
NS, and it is

the same parameter that determines the departure from point-particle dynamics dur-
ing the early inspiral. Observations of gravitational waves from BH-NS coalescences
thus restrict the EOS to a surface of constant Λ in the parameter space, thickened
by the measurement error. Using various configurations of a single Advanced LIGO
detector, we find that neutron stars are distinguishable from black holes of the same
mass and that Λ1/5 or equivalently R can be extracted to 10–40% accuracy from
single events for mass ratios of Q = 2 and 3 at a distance of 100 Mpc, while with the
proposed Einstein Telescope, EOS parameters can be extracted to accuracy an order
of magnitude better.

1 Introduction

Construction of second-generation Advanced LIGO detectors is underway, and will soon begin for Advanced
VIRGO and KAGRA, making it likely that gravitational waves from compact binaries will be observed in this
decade. Plans are also in development for the third generation Einstein Telescope (ET) detector with an order-
of-magnitude increase in sensitivity over Advanced LIGO. A major goal of the gravitational-wave program is
to extract from observed waveforms the physical characteristics of their sources and, in particular, to use the
waveforms of inspraling and merging black hole (BH)-neutron star (NS) binaries to constrain the uncertain
equation of state (EOS) of the NS matter. During inspiral the tidal interaction between the two objects leads to
a small drift in the phase of the gravitational waveform relative to a point particle system. Specifically the tidal
field Eij of one star will induce a quadrupole moment Qij in the other star given by Qij = −λEij where λ is an
EOS dependent quantity that describes how easily the star is distorted.

Numerical BH-NS simulations have been done to examine the dependence of the waveform on mass ratio, BH
spin, NS mass, and the neutron-star EOS [2, 3]. The stroner information of the NS is found to be given by a
sharp cutoff of the gravitational-wave spectrum at the merger. We perform an analysis of the detectability of
EOS information with gravitational-wave detectors using these simulations [1], and find that, to within numerical
accuracy, the EOS parameter extracted from the waveform is the same tidal parameter Λ that determines the
departure from point particle behavior during inspiral; here Λ is a dimensionless version of the tidal parameter:

Λ := Gλ

(
c2

GMNS

)5

=
2

3
k2

(
c2R

GMNS

)5

, (1.1)

where MNS, R, and k2 are the NS mass, NS radius, and l = 2 quadrupole Love number, respectively.

2 Numerical simulations and merger waveforms

Gravitational waveforms at the late inspiral and merger stages are computed by numerical relativity simulations
[2]. The initial condition is computed using LORENE and the simulation is performed using the AMR code, SACRA.
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Gravitational waves are extracted using the Weyl scalar Ψ4, and the time integration is performed by the so-called
fixed-frequency integration method [3].

To understand the dependence of the BH-NS waveform on the EOS we systematically vary the free parameters
of a parametrized EOS, or the piecewise polytropic EOS, and then simulate the BH-NS binary coalescence for
each set of parameters. We use a simplified two-parameter version of the piecewise-polytrope parametrization
and uniformly vary each of these parameters. For our two parameters we use the pressure p1 as well as a single
fixed adiabatic index Γ for the core EOS. The crust EOS is given by a single polytrope with the constants
K0 = 3.5966×1013 in cgs units and Γ0 = 1.3569 so that the pressure at 1013 g/cm3 is 1.5689×1031 dyne/cm2. In
total, 21 EOS models are adopted. In this work, we only focus on nonspinning BH-NS binaries and the NS mass
MNS is typically chosen to be 1.35M⊙, with some simulations for 1.2M⊙. The mass ratio, Q ≡ MBH/MNS, is
taken typically to be 2, and some models are chosen to be Q = 3. Namely, our fiducial models areMNS = 1.35M⊙
and Q = 2. See Ref. [1] for the details of the EOS and BH-NS models.

3 Hybrid waveforms

Because our numerical simulations typically begin ∼ 5 orbits before the merger, it is necessary to join the
numerical waveforms to analytic waveforms representing the earlier inspiral. We match the numerical waveforms
to the effective-one-body (EOB) waveforms that include inspiral, merger, and ringdown phases (see Ref. [1] and
references therein) instead of post-Newtonian waveforms which are often not reliable during the last few cycles
for higher mass ratios. This choice also allows us to use longer matching windows that average over numerical
noise and the effects of eccentricity. For simplicity, and because it appears that an accurate description of the
late inspiral dynamics just before merger requires 2PN tidal corrections which are not yet known, we will use the
EOB waveforms without tidal corrections. Our results will therefore be lower limits on the measurability of EOS
parameters, because the EOS dependence is coming solely from the numerical waveforms.

Denote a complex numerical waveform by hNR(t) = hNR
+ (t) − ihNR

× (t) and an EOB waveform with the same
Q and MNS by hEOB(t) = hEOB

+ (t) − ihEOB
× (t). A constant time-shift τ and phase-shift Φ can be applied to the

EOB waveform to match it to a section of the numerical waveform by rewriting it as hEOB(t− τ)e−iΦ. We hold
the numerical waveform fixed, because we must specify a matching window TI < t < TF , and there is only a
small region of the numerical waveforms over which a valid match can be performed. Once the values of τ and Φ
are determined, we will then choose to instead hold the EOB waveform fixed and shift the numerical waveform
in the opposite direction by rewriting it as hshift

NR (t) = hNR(t + τ)e+iΦ. This is done so that all of the numerical
waveforms with the same Q and MNS are aligned relative to a single fixed reference EOB waveform.

Over a matching window TI < t < TF , the normalized match between the waveforms is defined as

m(τ,Φ) =
Re
[
z(τ)eiΦ

]
σNRσEOB(τ)

, (3.1)

where

z(τ) =

∫ TF

TI

hNR(t)h
∗
EOB(t− τ) dt (3.2)

and the normalizations for each waveform in the denomenator are defined as

σ2
NR =

∫ TF

TI

|hNR(t)|2 dt (3.3)

and

σ2
EOB(τ) =

∫ TF

TI

|hEOB(t− τ)|2 dt. (3.4)

The time-shift τ and phase Φ are chosen to maximize the match m(τ,Φ) for a fixed matching window. Explicitly,
the phase is determined analytically to be Φ = − arg[z(τ)]; plugging this result back into Eq. (3.1), the time-
shift is given by maximizing |z(τ)|/[σNRσEOB(τ)] over τ . As stated above, once τ and Φ are found we shift the
numerical waveform in the opposite direction to generate hshift

NR (t) = hNR(t+ τ)e+iΦ.
A hybrid waveform is generated by smoothly turning off the EOB waveform and smoothly turning on the

shifted numerical waveform over a splicing window SI < t < SF which can be chosen independently of the
matching window. We employ Hann windows

woff(t) =
1

2

[
1 + cos

(
π[t− SI ]

SF − SI

)]
(3.5)

won(t) =
1

2

[
1− cos

(
π[t− SI ]

SF − SI

)]
. (3.6)
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The hybrid waveform is then written

hhybrid(t) =


hEOB(t) t < SI
woff(t)hEOB(t) + won(t)h

shift
NR (t) SI < t < SF

hshift
NR (t) t > SF

. (3.7)

4 Parameter estimation

The output of a gravitational-wave detector s(t) = n(t) + h(t) is the sum of detector noise n(t) and a possible
gravitational-wave signal h(t). Stationary, Gaussian noise is characterized by its power spectral density (PSD)
Sn(|f |) defined by

⟨ñ(f)ñ∗(f ′)⟩ = 1

2
δ(f − f ′)Sn(|f |) . (4.1)

The gravitational wave signal is given in terms of the two polarizations of the gravitational wave by

h(t) = F+h+(t) + F×h×(t), (4.2)

where F+,× are the detector response functions and depend on the location of the binary and the polarization
angle of the waves. We assume the binary is optimally located at the zenith of the detector and optimally
oriented with its orbital plane parallel to that of the detector. This condition is equivalent to averaging h+ and
h× (F+ = F× = 1/2).

It is well known that the optimal statistic for detection of a known signal h(t) in additive Gaussian noise is

ρ =
(h|s)√
(h|h)

(4.3)

where the inner product between two signals h1 and h2 is given by

(h1|h2) = 4Re

∫ ∞

0

h̃1(f)h̃
∗
2(f)

Sn(f)
df. (4.4)

In searches for gravitational-wave signals from compact binary mergers, a parametrized signal h(t; θA) is known
in advance of detection, and the parameters θA must be estimated from the measured detector output s(t). The
parameters θA of an inspiral are estimated by maximizing the inner product of the signal s(t) over the template
waveforms h(t; θA). In the high signal-to-noise limit, the statistical uncertainty in the estimated parameters θ̂A

arising from the instrumental noise can be estimated using the Fisher matrix

ΓAB =

(
∂h

∂θA

∣∣∣∣ ∂h∂θB
)∣∣∣∣

θ̂A
. (4.5)

Note that θ̂A are the parameter values that maximize the signal-to-noise. The variance σ2
A = σAA = ⟨(∆θA)2⟩

and covariance σAB = ⟨∆θA∆θB⟩ of the parameters are then given in terms of the Fisher matrix by

⟨∆θA∆θB⟩ = (Γ−1)AB . (4.6)

For hybrid waveforms, the partial derivatives in the Fisher matrix must be approximated with finite differences.
It is most robust to compute the derivatives of the Fourier transforms used in the inner product. We rewrite the
Fourier transform of each waveform in terms of the amplitude A and phase Φ as exp[lnA− iΦ]. The derivatives
∂ lnA/∂θA and ∂Φ/∂θA are then evaluated with finite differencing.

In general, errors in the parameters θA are correlated with each other forming an error ellipsoid in parameter
space determined by the Fisher matrix ΓAB . The uncorrelated parameters that are best extracted from the signal
are found by diagonalizing ΓAB . These new parameters are linear combinations of the original parameters θA.
We focus attention below on the two parameters log(p1) and Γ, and fix all other parameters as follows. We use
the masses and spins determined from the numerical simulations and fix the time and phase shifts as determined
during the hybrid waveform construction. We therefore construct the error ellipses in {log(p1),Γ} parameter
space and identify the parameter with the smallest statistical errors. We will leave an analysis of correlations due
to uncertainty in masses and BH spin to future work.

JGRG21 Programme



K. Kyutoku 231

5 Results

For the BHNS systems discussed here, the greatest departure from binary BH behavior occurs for gravitational-
wave frequencies in the range 500–5000 Hz. As a result, detector configurations optimized for detection of BH-NS
systems with low noise in the region below 500 Hz are not ideal for estimating EOS parameters. We therefore
present results for the broadband aLIGO and the ET-D configurations.

We find that the resulting 1–σ error ellipses in the 2-dimensional parameter space {log(p1),Γ} for an optimally
oriented BH-NS with Q = 2 and MNS = 1.35M⊙ at a distance of 100 Mpc are aligned with surfaces of constant
Λ1/5. This indicates that, as expected, Λ1/5 is the parameter that is best extracted from BH-NS gravitational-
wave observations. Because Λ1/5 and R are so closely aligned, we will use these two parameters interchangeably.
The uncertainty in these quantities is ∼ 10–40% for broadband aLIGO and ∼ 1–4% for ET-D. The uncertainties
for the higher mass ratio Q = 3 are somewhat larger than for Q = 2, but not significantly so. It is not clear how
rapidly the uncertainty in Λ1/5 and R will increase as the mass ratio is increased toward more realistic values. On
the one hand the tidal distortion is likely to be much smaller for larger Q. On the other hand the overall signal
will be louder, and the merger and ringdown will occur at lower frequencies where the noise is lower. Additional
simulations for higher Q are needed to address this question.
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Abstract
We study a vacuum Bianchi IX universe in the context of Hořava-Lifshitz (HL) gravity.
In particular, we focus on the classical dynamics of the universe and analyze how
anisotropy changes the history of the universe. If the initial anisotropy is large, we
find the universe which ends up with a big crunch after oscillations if a cosmological
constant Λ is zero or negative. For Λ > 0, we find a variety of histories of the
universe, that is de Sitter expanding universe after oscillations in addition to the
oscillating solution and the previous big crunch solution. This fate of the universe
shows sensitive dependence of initial conditions, which is one of the typical properties
of a chaotic system. If the initial anisotropy is near the upper bound, we find the
universe starting from a big bang and ending up with a big crunch for Λ ≤ 0, while
de Sitter expanding universe starting from a big bang for Λ > 0.

1 Introduction

Among attempts to construct a complete quantum gravitational theory, Hořava-Lifshitz (HL) gravity has been
attracted much interest as a candidate for such a theory over the past years. HL gravity is characterized by its
power-counting renormalizablity, which is brought about by a Lifshitz-like anisotropic scaling as t→ ℓzt, x⃗→ ℓx⃗,
with the dynamical critical exponent z = 3 in the ultra-violet (UV) limit [1]. In order to recover general relativity
(or the Lorentz invariance) in our world, one expects that the constant λ converges to unity in the infrared (IR)
limit in the renormalization flow. Although it has been argued that there exist some fundamental problems in
HL gravity, some extensions are proposed to remedy these difficulties. It is intriguing issue whether or not HL
gravity can be a complete theory of quantum gravity.

As pointed out by earlier works, a big bang initial singularity may be avoided in the framework of HL
cosmology due to the higher order terms in the spatial curvature Rij in the action[2]. In this context, many
researchers have studied the dynamics of the Friedmann-Lemaitre-Robertson-Walker (FLRW) universe in HL
gravity. Although we have also shown a singularity avoidance in HL cosmology[3], the following question may
arise: Is this singularity avoidance generic? Is such a non-singular spacetime stable against anisotropic and/or
inhomogeneous perturbations? In order to answer for these questions, we have to study more generic spacetime
than the FLRW universe.

Therefore it is important to study whether or not non-singular universes in the present HL cosmology still exist
with anisotropy and/or inhomogeneity. In the present paper, we shall investigate the possibility of the singularity
avoidance in homogeneous but anisotropic Bianchi IX universe. Since we are interested in a singularity avoidance,
we focus on an oscillating universe and analyze how anisotropy changes the history of the universe.

2 Bianchi IX universe in Hořava-Lifshitz gravity

First we introduce our Lagrangian of HL gravity, by which we will discuss the Bianchi IX universe. The basic
variables in HL gravity are the lapse function, N , the shift vector, Ni, and the spatial metric, gij . These variables
are subject to the action [1, 4]

SHL =
1

2κ2

∫
dtd3x

√
gN (LK − VHL[gij ]) (2.1)

94Email address:y”underscore”misonou@moegi.waseda.jp
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where κ2 = 1/M2
PL (MPL: the Planck mass) and the kinetic term is given by

LK = K ijK
ij − λK2 (2.2)

with

K ij :=
1

2N
(∂tgij −∇iNj −∇jNi) (2.3)

K := gijK ij (2.4)

being the extrinsic curvature and its trace. The potential term VHL will be defined shortly. In GR we have
λ = 1, only for which the kinetic term is invariant under general coordinate transformations. In HL gravity,
however, Lorentz symmetry is broken in exchange for renormalizability and the theory is invariant under the
foliation-preserving diffeomorphism transformations,

t→ t̄(t), xi → x̄i(t, xj). (2.5)

As implied by the symmetry (2.5), it is most natural to consider the projectable version of HL gravity, for
which the lapse function depends only on t: N = N(t) [1]. Since the Hamiltonian constraint is derived from
the variation with respect to the lapse function, in the projectable version of the theory, the resultant constraint
equation is not imposed locally at each point in space, but rather is an integration over the whole space. In the
cosmological setting, the projectability condition results in an additional dust-like component in the Friedmann
equation [5].

The most generic form of the potential VHL is given by [4]

VHL = 2Λ + g1R+ κ2
(
g2R

2 + g3R
i
jR

j
i

)
+ κ3g4ϵ

ijkR iℓ∇jR
ℓ
k

+κ4
(
g5R

3 + g6RR
i
jR

j
i + g7R

i
jR

j
kR

k
i + g8R∆R+ g9∇iR jk∇iRjk

)
, (2.6)

where Λ is a cosmological constant, Rij and R are the Ricci and scalar curvatures of the 3-metric gij , respectively,
and gi’s (i = 1, ..., 9) are the dimensionless coupling constants. By a suitable rescaling of time we set g1 = −1.
We also adopt the unit of κ2 = 1 (MPL = 1) throughout the paper.

Let us consider a Bianchi IX spacetime, which metric is written as

ds2 = −dt2 + a2

4
e2βijωiωj , (2.7)

where the invariant basis ωi is given by

ω1 = − sinx3dx1 + sinx1 cosx3dx2 ,

ω2 = cosx3dx1 + sinx1 sinx3dx2 ,

ω3 = cosx1dx2 + dx3 . (2.8)

A typical scale of length of the universe is given by a, which reduces to the usual scale factor in the case of the
FLRW universe. We shall call it a scale factor in Bianchi IX model as well. The traceless tensor βij measures
the anisotropy of the universe. The spacelike sections of the Bianchi IX is isomorphic to a three-sphere S3, and
a closed FLRW model is a special case of the above metric in the isotropic limit (βij → 0).

For a vacuum spacetime, without loss of generality, we can assume that βij is diagonalized as

βij = diag
(
β+ +

√
3β−, β+ −

√
3β−,−2β+

)
. (2.9)

The basic equations describing the dynamics of Bianchi IX spacetime in HL gravity are now given by the followings:

H2 =
2

3(3λ− 1)

[
σ2 +

64

a6
V (a, β±) +

8C

a3

]
,

(2.10)

Ḣ + 3H2 =
8

3(3λ− 1)

[
8

a5
∂V

∂a
+

3C

a3

]
, (2.11)

β̇± = σ± (2.12)

σ̇± + 3Hσ± +
32

3a6
∂V

∂β±
= 0 , (2.13)
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where

σ2 :=
1

2
σαβσ

αβ = 3
(
σ2
+ + σ2

−
)
. (2.14)

(σαβ) = diag(σ+ +
√
3σ−, σ+ −

√
3σ−,−2σ+) is the shear tensor of a timelike normal vector perpendicular to the

homogeneous three-space, and σ is its magnitude. It may be convenient to introduce the dimensionless shear by

Σ± =
σ±

H
and Σ =

σ

H
, (2.15)

which measure the relative anisotropies to the expansion rate H. We also introduce the phase variable φ defined
by

φ := arctan

(
σ−

σ+

)
, (2.16)

which parameterizes the direction of the anisotropic expansion. The constant C arises from the projectability
condition and it could be “dark matter” [5], but here we assume C = 0 just for simplicity. The potential V , which
depends on a as well as β±, is defined in [6].

We have performed numerical calculations to investigate the stability of oscillating FLRW universe against
anisotropy. As a result, we have found five types of the fate of the universe.

(A) Anisotropic oscillation : This oscillating solution shows only small deviation from the isotropic FLRWuni-
verse. The scale factor a (and then the volume) oscillates very regularly.

(B) Big crunch after oscillations : An initially oscillating universe eventually collapses into a big crunch (a =
0) after many oscillations because of increase of the anisotropy. This is a singular solution.

(C) From big bang to big crunch : The spacetime starts from a big bang and ends up with a big crunch. This
type of solution cannot avoid singularity.

(D) de Sitter expansion after oscillation : An initially oscillating universe eventually evolves into an exponentially
expanding de Sitter universe because of a cosmological constant.

(E) de Sitter expansion from big bang : the spacetime evolves into de Sitter phase without oscillation. The
large anisotropy makes a jump from the oscillating phase to de Sitter phase in the beginning.

We summarize the results in Figure 1 (the coupling constants are chosen as λ = 1, g1 = 1,Λ = 3/10, g3 = 1, g5 =
−3/100, g9 = 1/100andg2 = g4 = g6 = g7 = 0).

Figure 1: The fate of Bianchi IX universe in terms of initial anisotropy Σ2
0 and φ0. We judge the fate of the

universe at t = 100tPL (tPL: the Planck time). The histories (A), (B), (C), (D) and (E) are represented
by a filled green circle, yellow triangle, red cross, purple diamond and blue square, respectively. The
empty yellow triangle and purple diamond are classified to the histories (B) and (D), respectively, but
those oscillating periods are longer than 100tPL. We have set a0 = 1.0758. ȧ0 is fixed by the constraint
equation [(a) ȧ0 > 0 and (b) ȧ0 < 0].
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3 Conclusion

If the initial anisotropy is large, we find the universe which ends up with a big crunch after oscillations if a
cosmological constant Λ is zero or negative. For Λ > 0, we find a variety of histories of the universe, that is
de Sitter expanding universe after oscillations in addition to the oscillating solution and the previous big crunch
solution. This fate of the universe shows sensitive dependence of initial conditions, which is one of the typical
properties of a chaotic system. If the initial anisotropy is near the upper bound, we find the universe starting
from a big bang and ending up with a big crunch for Λ ≤ 0, while de Sitter expanding universe starting from a
big bang for Λ > 0.
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Abstract
We investigate the geometrical property and the symmetry of the target space of
the five-dimensional Einstein-Maxwell-Chern-Simons system admitting two commut-
ing spacelike Killing vector fields whose Chern-Simons coupling constant is the non-
SUGRA value.

1 Introduction

As well known, the five-dimensional Einstein-Maxwell-Chern-Simons system admitting two commuting spacelike
Killing vector fields whose Chern-Simons coupling constant is the SUGRA value can be reduced to the three-
dimensional gravity-coupled sigma-model. Then the target space is the homogeneous space G2(2)/SO(4) [1, 2].
The solution generating methods using target space symmetry yield fruitful results. Assuming one more timelike
symmetry, one can discuss black hole uniqueness as a boundary value problem using the Mazur identity [3].

However, this is not the case of the non-SUGRA value coupling constant. Although the five-dimensional
Einstein-Maxwell-Chern-Simons system admitting two commuting spacelike Killing vector fields can also be re-
duced to the three-dimensional gravity-coupled sigma-model, the target space is not homogeneous and the sym-
metry of the target space cannot be described by a semisimple Lie algebra.

In this short article, we investigate the geometry and symmetry of this non-homogeneous target space. The
target space is derived in Sec. 2. We show the symmetry of target space in Sec. 3 and investigate the non-
semisimple Lie algebra which associates this symmetry in Sec. 4.

2 Reduction of 5D EMCS system with 2KVs

We consider the five-dimensional Einstein-Maxwell-Chern-Simons system and assume that the spacetime admits
two commuting spacelike Killing vector fields ξ1,ξ2. Then, the metric can be written in the form

g = f−1γijdx
idxj + fIJ(dx

I + wI idx
i)(dxJ + wJjdx

j), (2.1)

where I, J = 1, 2, i, j = 3, 4, 5, f = det(fIJ) and γij , w
I
i and the gravitational potential fIJ = g(ξI , ξJ) are

independent on the coordinates xI . We define the twist 1-form ωI by

ωI = ∗(ξ1 ∧ ξ2 ∧ dξI), (2.2)

and then we obtain

dωI = 2 ∗ (ξ1 ∧ ξ2 ∧R(ξI)). (2.3)

Using these fIJ and ωI , the Ricci tensor R with respect to g and the Ricci tensor (γ)R with respect to the
three-metric γij are related to each other by

(γ)Rij = f−2γimγjnR
mn + f−1fIJRIJγij

+
1

4
f−2f,if,j +

1

4
fIJfKLfIK,ifJL,j +

1

2
f−1fIJωIiωJj . (2.4)

Next, we consider the Maxwell field F = dA and assume that LξIA = 0. We define the electric 1-forms EI and
the magnetic 1-form B by

EI = −ιIF, (2.5)

B = ∗(ξ1 ∧ ξ2 ∧ F ). (2.6)

97Email address: morisawa@keiho-u.ac.jp
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The Maxwell equation dF = 0 ensures the local existence of the electric potentials ΦI such that

dΦI = EI . (2.7)

From the Maxwell equation d ∗ F = −4βF ∧ F , we can show that there locally exists the magnetic potential Ψ
such that

dΨ+ 4βϵPQΦP dΦQ = B, (2.8)

where ϵPQ is the totally skew-symmetric symbol such that ϵ12 = 1. Using these potentials ΦI , Ψ, and the Einstein
equation R = α(T − trT

3
g) (where T is the stress-energy tensor of the Maxwell field), Eq. (2.4) can be written by

(γ)Rij =
1

4
f−2f,if,j +

1

4
fIJfKLfIK,ifJL,j +

1

2
f−1fIJωIiωJj

+α
[
fIJΦI,iΦJ,j + f−1(Ψ,i + 4βϵIJΦIΦJ,i)(Ψ,j + 4βϵKLΦKΦL,j)

]
, (2.9)

and Eq. (2.3) ensures the local existence of the twist potentials λI such that

ωI = dλI + α(ΨdΦI − ΦIdΨ)− 8

3
αβϵPQΦIΦPdΦQ. (2.10)

We can also derive the equation of motion of the potentials fIJ , λI , ΦI and Ψ.

Finally, the Einstein-Maxwell-Chern-Simons system reduces to the equations derived from the action

S =

∫
d3x
√

|γ|γij
(

(γ)R−GAB
∂XA

∂xi
∂XB

∂xj

)
, (2.11)

which describes the three-dimensional gravity-coupled sigma-model with the eight scalar fields XA = {f11, f12,
f22, λ1, λ2, Φ1, Φ2, Ψ} and the target space metric G. Here GAB is given by

GABdX
A ⊗ dXB =

1

4
fIJfKL(dfIJ ⊗ dfKL + dfIK ⊗ dfJL) +

1

2
f−1fIJωI ⊗ ωJ

+α[fIJdΦI ⊗ dΦJ + f−1B ⊗B], (2.12)

where

B = dΨ+ 4βϵPQΦP dΦQ, (2.13)

ωI = dλI + α(ΨdΦI − ΦIdΨ)− 8

3
αβϵPQΦIΦP dΦQ. (2.14)

Here α is the parameter to absorb the normalization of the gauge field, β is related to the coupling constant of
the Chern-Simons term, and α = 24β2 means the SUGRA value.

3 Target space symmetry with non-SUGRA value coupling con-
stant

For the SUGRA value coupling constant α = 24β2, the target space has the fourteen Killing vector fields which
are generators of G2(2) symmetry, and the target space is the homogeneous space G2(2)/SO(4).
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On the other hand, the target space with α ̸= 24β2 has only nine Killing vector fields:

K1 =
∂

∂λ1
, (3.1)

K2 =
∂

∂λ2
, (3.2)

K3 = Φ1
∂

∂Φ1
+Ψ

∂

∂Ψ
+ 2λ1

∂

∂λ1
+ λ2

∂

∂λ2
+ 2f11

∂

∂f11
+ f12

∂

∂f12
, (3.3)

K4 = Φ2
∂

∂Φ2
+Ψ

∂

∂Ψ
+ λ1

∂

∂λ1
+ 2λ2

∂

∂λ2
+ f12

∂

∂f12
+ 2f22

∂

∂f22
, (3.4)

K5 = Φ1
∂

∂Φ2
+ λ1

∂

∂λ2
+ f11

∂

∂f12
+ 2f12

∂

∂f22
, (3.5)

K6 = Φ2
∂

∂Φ1
+ λ2

∂

∂λ1
+ 2f12

∂

∂f11
+ f22

∂

∂f12
, (3.6)

K7 =
∂

∂Ψ
− αΦI

∂

∂λI
, (3.7)

K8 =
∂

∂Φ1
− 4βΦ2

∂

∂Ψ
+ αΨ

∂

∂λ1
+

4

3
αβΦ2ΦJ

∂

∂λJ
, (3.8)

K9 =
∂

∂Φ2
+ 4βΦ1

∂

∂Ψ
+ αΨ

∂

∂λ2
− 4

3
αβΦ1ΦJ

∂

∂λJ
. (3.9)

We obtain the commutation relations as follows:

K1 K2 K7 K8 K9 K3 +K4 K3 −K4 K5 K6

K1 3K1 K1 K2

K2 3K2 −K2 K1

K7 2αK1 2αK2 2K7

K8 −2αK1 8βK7 K8 K8 K9

K9 −2αK2 −8βK7 K9 −K9 K8

K3 +K4 −3K1 −3K2 −2K7 −K8 −K9

K3 −K4 −K1 K2 −K8 K9 2K5 −2K6

K5 −K2 −K9 −2K5 K3 −K4

K6 −K1 −K8 2K6 −K3 +K4

These form a non-semisimple Lie algebra. Hereafter, we denote by g9 this algebra.

4 Non-semisimple Lie algebra g9

4.1 As subalgebra of g2

Now we investigate the non-semisimple Lie algebra g9. First, we show that g9 is a subalgebra of g2. It is easily
confirmed that (K1, K2, K3+K4, K3−K4, K5, K6, K7, K8, K9) obeys the same algebra as the 9 generators (X1,
X2, X7, X6, X11, X4, X3, X5, X8) of the G2(2) symmetry of the target space of the D = 5 minimal supergravity
in Bouchareb et al. [2] upto constant coefficients. The root systems of g2 and g9 are given in Figure 1.

4.2 Ideals of g9

g9(= {K1,K2,K3 +K4,K3 −K4,K5,K6,K7,K8,K9}) has non-trivial ideals:

• {K1,K2}

• {K1,K2,K7}

• {K1,K2,K7,K8,K9}

• {K1,K2,K3 −K4,K7,K8,K9}

• {K1,K2,K3 −K4,K5,K6,K7,K8,K9}

where first four are the solvable ideals, and first three are the nilpotent ideals.
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X11
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X8 X12 X14X2

X1
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Figure 1: (left) The root system of g2 [2], and (right) the root system of g9

4.3 As parabolic subalgebra of g2

Then, we show that g9 is the parabolic Lie subalgebra of g2. The eight Killing vectors {X1, · · · , X8} span the
Borel subalgebra of g2, they are included in the 9 generators {X1, · · · ,X8,X11}. Here, {X1, X2, X3, X5, X8} is
perpendicular to {X1, · · · , X8, X11} and corresponds to {K1, K2, K7, K8, K9} which is the maximal nilpotent
ideal of g9. So, g9 is the parabolic Lie subalgebra of g2.

5 Summary

We investigate the geometry and symmetry of the target space of the five-dimensional Einstein-Maxwell-Chern-
Simons theory with non-SUGRA value coupling constant admitting two commuting spacelike Killing vector fields.
The target space has the nine Killing vector fields and is not homogeneous. These nine Killing vector fields span
the non-semisimple Lie algebra g9, which is the parabolic Lie subalgebra of g2.
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Abstract
We discuss the quantum interference effects in a curved spacetime, and consider the
Chern-Simons gravity as a particular example.

1 Quantum interference effect

The relativistic Lagrangian for a particle with mass m in a curved spacetime is given by

L = −mc
√
gµν ẋµẋν (1.1)

where an overdot denotes d/dt. We consider a system that is weakly gravitating, such that we can expand the
metric about a fixing Minkowski background ηµν . Let us write gµν = ηµν + hµν , with hµν a small perturbation.

At 1PN order [1]

L = −mc2
(
1 + h00 + 2h0i

ẋi

c
− (ẋi)2

c2
+ hij

ẋiẋj

c2

) 1
2

≃ −mc2
(
1 +

1

2
h00 + h0i

ẋi

c
− (ẋi)2

2c2

)
. (1.2)

Schrödinger equation

iℏ ∂
∂t
ψ =

(
1

2m

(
p⃗+mch⃗0

)2
+

1

2
mc2h00

)
ψ. (1.3)

Phase difference in quantum interferometry

∆ =
mc

ℏ

(∫
path ACD

h⃗0 · dr⃗ −
∫
path ABD

h⃗0 · dr⃗
)

=
mc

ℏ

∮
C

h⃗0 · dr⃗

=
mc

ℏ

∫ ∫
S

(∇⃗ × h⃗0) · dS⃗. (1.4)

2 Chern-Simons (CS) gravity

2.1 CS correction

CS gravity modifies GR by the addition of a new term to the action,

SCS =
1

16πG

∫
d4x

1

4
fR⋆R, (2.1)

where G is Newton’s gravitational constant, f is a prescribed external quantity (with units of squared length
in geometrized units) that acts as a coupling constant, R is the Ricci scalar, and the star stands for the dual
operation. The modified field equations can be obtained by varying the action with respect to the metric. The
CS correction to the metric becomes [2]

δg0i = 2
∑
A

ḟ

rA

[
mA

rA
(vA × nA)

i − J iA
2r2A

+
3

2

(JA · nA)
r2A

niA

]
. (2.2)

The gyroscope acquire the precessional Ωi = (∇× g)i, where gi = g0i.
The CS modification to the precession angular velocity is given by

δΩi = 2
∑
A

ḟ
mA

r3A
[3(vA · nA)niA − viA], (2.3)

and defined via δΩi = Ωi − ΩiGR, where ΩiGR is the GR prediction.
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2.2 A particular example

When the number of bodies A=2, we set up the neutron interferometer in the Earth’s surface. v the velocity is
orbital speed of the Earth around the Sun.

The phase difference in Chern-Simons gravity

∆ =
mc

ℏ

∫
S

2ḟ
M

r3
[3(v⃗ · n⃗)n⃗− v⃗] N⃗dS, (2.4)

where n⃗ is the unit position vector of the interferometer from the center of the Earth, and N⃗ is the unit vector of
the interferometry loop.

Figure 1: The neutron interferom-
eter on the Earth
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Figure 2: Earth motion
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Figure 3: Inclination and velocity

3 Time variation

Coordinate rotation

N⃗(t) = R(t)N⃗0 , n⃗(t) = R(t)n⃗0 , R(t) =

 cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1

 . (3.1)

Adding a Daily and Seasonal variation,

[3(v⃗ · n⃗)n⃗− v⃗]N⃗ = (R−1v⃗)T(3(n⃗0 · N⃗0)n⃗0 − N⃗0) (3.2)

v⃗(t) =

 cos(Ωt) sin(Ωt) 0
− sin(Ωt) cos(Ωt) 0

0 0 1

 1 0 0
0 cos(I) − sin(I)
0 sin(I) cos(I)

 cos(Ωt)
sin(Ωt)

0

 v, (3.3)

where Ω is one year cycle and ω is one day cycle. I is axial tilt ; the angle between the Earth’s rotational axis.

(R−1v⃗)x = [cos(Ωt) sin(Ωt) cos(I)− cos(Ωt) sin(Ωt)] sin(ωt)

+[sin2(Ωt) cos(I) + cos2(Ωt)] cos(ωt) (3.4)

(R−1v⃗)y = [cos(Ωt) sin(Ωt) cos(I)− cos(Ωt) sin(Ωt)] cos(ωt)

−[sin2(Ωt) cos(I) + cos2(Ωt)] sin(ωt) (3.5)

(R−1v⃗)z = sin(Ωt) sin(I) (3.6)

Equatorial plane

4 Conclusion

We obtain quantum interference effects in Chern-Simons gravity.

• Daily and seasonal variation by the Earth’s spin and revolution
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Figure 4: Daily variation
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Figure 5: Seasonal variation
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Abstract
The Hilbert-Huang transform is the combination of the empirical mode decomposition
and the Hilbert spectral analysis. Here we investigate a possibility of constructing
an alert system with the Hilbert-Huang transform in search for gravitational wave
signals.

1 Instruction

The Hilbert-Huang transform (HHT), proposed by Huang et al.[1]–[3], is novel data analysis technique used to
detect and characterize physical oscillatory modes in time series data. It can be applied to non-linear and non-
stationary time series data, while traditional analysis methods such as the Fourier transform and the wavelet
transform presume the data is linear and stationary. The HHT has been applied to various fields; biomedical
engineering, financial engineering, image processing, geophysics etc.

The HHT consists of the empirical mode decomposition (EMD), followed by the Hilbert Spectral Analysis
(HSA). The EMD decomposes the data into intrinsic mode function (IMF), each representing a locally monochro-
matic frequency scale of the data. The HSA derives the instantaneous amplitude (IA) and frequency (IF) from the
analytical complex representation of each IMF; the IMF itself and the Hilbert transform of the IMF are the real
and imaginary parts, respectively. The IA and the IF are given by taking the absolute value and by differentiating
the phase.

The IA of some of the IMFs will stand out for a few moments if the noisy data from a detector contains a
real signal of the gravitational waves. Thus we will investigate a possibility of constructing an alert system with
the HHT.

2 The Hilbert Spectral Analysis and the Empirical Mode De-
composition

The Hilbert transform û(t) of a function u(t) is defined by

û(t) =
1

π
P

∫ ∞

−∞

u(t′)

t− t′
dt′ = u(t) ∗

(
1

πt

)
, (2.1)

where P and ∗ denote the Cauchy principal value and the convolution, respectively. By the theory of the Poisson
integral, F (t) = u(t) + iû(t) is the boundary value of a holomorphic function F (z) = F (t+ iy) = a(t)eiθ(t) in the
upper half-plane, if u(t) ∈ Lp(R). Then the instantaneous amplitude (IA) a(t) and the instantaneous frequency
(IF) f(t) is, respectively, defined by

a(t) =
√
u(t)2 + û(t)2 (2.2)

and

f(t) =
1

2π

dθ(t)

dt
where θ(t) = tan−1

(
û(t)

u(t)

)
. (2.3)

98Email address: oohara@astro.sc.niigata-u.ac.jp
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However, for u(t) /∈ Lp(R), the IF obtained using the above method is not necessarily physically meaningful.
For example, u(t) = cosωt + C, where C and ω are constants, does not yield a constant frequency of ω. To
explore the applicability of the Hilbert transform, Huang et al. [2] showed that the necessary conditions to define
a meaningful IF are that the functions are symmetric with respect to the local zero mean and have the same
numbers of zero crossings and extrema. Thus they applied the empirical mode decomposition (EMD) to the
original data u(t) to decompose it into intrinsic mode functions (IMFs) and the residual. Each IMF satisfies the
following conditions: (1) in the whole data set, the number of extrema and the number of zero crossings must
either equal or differ at most by one; and (2) at any point, the mean value of the envelope defined by the local
maxima and the envelope defined by the local minima is zero. The EMD is a series of high-pass filters in a sense.
The algorithm is summarized in the following outline:

• h0(t) = u(t)

• for i = 0 to imax

⋆ hi,0(t) = hi(t)

⋆ for k = 0 to kmax

· Identify the local maxima and minima of hi,k(t).

· Ui,k(t) = the upper envelope joining the local maxima using a cubic spline

· Li,k(t) = the lower envelope joining the local minima using a cubic spline

· mi,k(t) = (Ui,k(t) + Li,k(t))/2

· hi,k+1(t) = hi,k(t)−mi,k(t)

Exit from the loop k if
∑
j

|mi,k(tj)| < ε
∑
j

|hi,k(tj)| with a small parameter ε.

⋆ IMFi(t) = hi,k(t)

⋆ hi+1 = hi(t)− ci(t)

• residual: r(t) = himax+1(t)

The parameter imax specifies the number of IMFs to be extracted from u(t), which is in general set depending
on the characteristics of the signal. The parameter kmax must be a sufficiently large number, namely several
thousand or more, according to the value of ε, since it means failure in the mode decomposition that k exceeds
kmax without satisfying the stoppage criterion.

The EMD can be applied to decompose an observed data into signals and noises. In the original EMD,
however, mode mixing appears frequently. Mode mixing is defined as a single IMF either consisting of signals of
widely disparate scale, or a signals of a similar scale residing in different IMF components. It is a consequence
of signal intermittency, which could not only cause serious aliasing in the time-frequency distribution, but also
make the individual IMF devoid of physical meaning. To overcome the drawback, Wu and Huang [4] proposed
the ensemble EMD (EEMD), which defines the true IMF components as the mean of an ensemble of trials, each
consisting of the signal plus a white noise of finite amplitude. The signal usually appears in an IMF of a small
value of i with the EMD, namely i = 1 in the following case, while it shifts to i = 3 with the EEMD since the
IMF1 and IMF2 contain only noises. Thus we specify imax = 6 in the following.

For example, we applied the EMD and the EEMD to a sine-Gaussian signal plus a Gaussian noise;

u(t) = s(t) + n(t) = a exp
[
−(t/τ)2

]
sin(2πft) + n(t), (2.4)

where f =300 Hz, τ = (0.1 sec)/(2π) = 0.016 sec. The noise n(t) is generated by Gaussian random variates with
mean zero and standard deviation σ = 1. Figure 1 shows the signal s(t) and u(t) of a = 3.12 (SNR = 20) and

a = 1.56 (SNR = 10), as well as the noise n(t) (SNR = 0), where SNR is defined by SNR =

√∑
i

h(ti)/σ. The

IMF 1 and its IA with the EMD are shown in Fig.2 and 3, and the IMF 3 and its IA with the EEMD in Fig.4
and 5.

3 Signal Search with the HHT

We consider the possibility of constructing an alert system with the HHT in search for gravitational wave signals.
Here we will call an alert if we find an excess power in an IMF, that is, the IA is greater than a certain critical
value IAc for the duration δt > δtc. Then further analysis will be carried out to investigate whether a real signal
is contained.
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Fig.1: The signal + the Gaussian
noise of σ = 1.

Fig.2: The IMF1 with the EMD.

Fig.3: The instantaneous amplitude
of IMF1 with the EMD.

Fig.4: The IMF3 with the EEMD.

Fig.5: The instantaneous amplitude
of IMF3 with the EEMD.

There are some parameters to be fixed in the EMD and the EEMD for this purpose. The most important
parameter is the stoppage criterion ε of the EMD. We look for the optimal values of ε, IAc and δtc with the signal
given by Eq.(2.4). For each parameter set of ε, IAc and δtc, we examine the rate of missing signals for SNR = 10
and 20 as well as the rate of false alert for SNR = 0 or noise only, using 400 samples, each of which is generated
by adding a Gaussian random variate with a different seed to the signal of 1 second long. The sampling frequency
of the data is 4096 Hz. We choose the parameters for the EEMD as follows; the size of ensemble N = 100, the
standard deviation of the Gaussian noise to be added to each trial σe = 2. We tried other values of σe but we
found that this value is optimal. As for N , we verified that the results hardly change even with N > 100 but the
value N ≈ 50 is too small.

First, we performed the EMD procedure for 400 samples of each data with the EMD stoppage criteria ε =
10−2, 10−3 and 10−4. The alert criteria was examined for IAc = 0.5, 0.8 and 1.0; δtc =0.005 sec and 0.01 sec.
The results are shown in Tables 1. The column ‘false’ shows the number of false alert in 400 sample data for noise
only data (SNR=0), while the numbers of missing signals for 400 sample data including signal of SNR=10 and
20 are shown in the column ‘miss10’ and ‘miss20’, respectively. If we accept false alert less than 10% and missing
signals less than 1%, only IAc=1.0 and δtc = 0.01 sec is acceptable for SNR=20, while no acceptable parameter
set is found for SNR=10.

Then we applied the EEMD, the results shown in Table 2. Parameter sets of IAc = 0.8 with (δtc, ε) =
(0.005, 10−3), (0.005, 10−4) and (0.01, 10−3) are suitable for searching signal of SNR ≥ 10.

4 Conclusion

We investigated the possibility of the HHT for the alert system of the gravitational wave search. The EEMD
procudure with some optimal parameters may be promising. The CPU time is less than 5 seconds with Intel
Core i7 920 (2.67 GHz) for analysing 1 sec data using the EEMD with ε = 10−3 and the size of each ensemble
N = 100. However, it is reduced to about 0.05 seconds if 64 core of the latest CPU are used, since calculation in
each trial of the ensemble can be fully parallelized via the message passing interface (MPI).

The instantaneous frequency is not used here, but it may be possible to reduce the rate of false alert with it.
Alghough we considered only the signal of a fixed frequency here, we found that the above parameter sets are
applicable for signlas of time-varying frequencies as well. These results will be given elsewhere.
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Table 1: The numbers of false alert and missing signals in 400 sample data with the EMD. False denotes
false alert for noise only data, while miss10 and miss20 denote missing signals for data including signal
of SNR=10 and 20, respectively.
IAc = 0.5, δtc = 0.005
ε false miss10 miss20

10−2 400 0 0
10−3 400 0 0
10−4 400 0 0

IAc = 0.8, δtc = 0.005
ε false miss10 miss20

10−2 399 2 0
10−3 399 0 0
10−4 398 0 0

IAc = 1.0, δtc = 0.005
ε false miss10 miss20

10−2 219 5 0
10−3 178 7 0
10−4 127 4 0

IAc = 0.5, δtc = 0.01
ε false miss10 miss20

10−2 400 14 0
10−3 400 5 0
10−4 400 0 0

IAc = 0.8, δtc = 0.01
ε false miss10 miss20

10−2 179 102 0
10−3 201 73 0
10−4 232 38 0

IAc = 1.0, δtc = 0.01
ε false miss10 miss20

10−2 13 133 0
10−3 9 134 0
10−4 13 97 0

Table 2: The same table of Table 1 with the EEMD.
IAc = 0.5, δtc = 0.005
ε false miss10 miss20

10−2 400 0 0
10−3 400 0 0
10−4 400 0 0

IAc = 0.8, δtc = 0.005
ε false miss10 miss20

10−2 120 52 0
10−3 35 0 0
10−4 3 1 0

IAc = 1.0, δtc = 0.005
ε false miss10 miss20

10−2 4 336 0
10−3 1 12 0
10−4 0 15 0

IAc = 0.5, δtc = 0.01
ε false miss10 miss20

10−2 323 6 0
10−3 268 0 0
10−4 147 3 0

IAc = 0.8, δtc = 0.01
ε false miss10 miss20

10−2 2 174 0
10−3 2 1 0
10−4 0 23 0

IAc = 1.0, δtc = 0.01
ε false miss10 miss20

10−2 0 392 2
10−3 0 76 0
10−4 0 120 0
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Cosmic microwave background anisotropy produced by network
of nonlinear super-structures
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Abstract
Cross-correlation between the cosmic microwave background radiation (CMB) and
galaxy distribution have indicated that nonlinear supervoids and superclusters with
> 100h−1Mpc located at z < 0.75 make cold and hot spots of CMB, respectively. It
is therefore natural to suppose that similar voids and clusters are distributed in the
whole universe. In this paper we study the effect of a supervoid network on the CMB
anisotropy in the ΛCDM model. First, we show that supervoids in high-z produce
smaller effects, contrary to the case of Einstein-de Sitter universe. Next, we calculate
the CMB angular power spectrum Cl, and find it is consistent with that obtained by
WMAP observational data.

1 Introduction

While the cosmic microwave background radiation (CMB) reflects density fluctuations on the last-scattering
surface, it also includes the secondary anisotropy produced by large scale structure, which is called the integrated
Sachs-Wolfe (ISW) effect [1]. Although the secondary anisotropy may be smaller than the primordial anisotropy,
it is important to estimate it not only to evaluate primordial fluctuations precisely but also to explore the large-
scale distribution of dark matter. In fact, Granett, Neyrinck & Szapudi found hot and cold spots on the CMB
associated with void and cluster structures at redshifts 0.4 < z < 0.75 identified in the Sloan Digital Sky Survey
luminous red galaxy catalog [2]. Also, Francis & Peacock showed that the ISW effect due to local structures at
redshift z < 0.3 significantly affects the large-angle CMB anisotropies [3]. These results based on the galaxy-CMB
cross-correlation may suggest an existence of anomalously large perturbations or new physics on scales > 100Mpc.

Motivated by these recent works, Inoue, Sakai & Tomita evaluated the nonlinear ISW effect produced by a
single supervoid or supercluscter in several methods [4]: thin-shell approximation (only for a void), a second-
order perturbation method, and use of the Lemaitre-Tolman-Bondi metric. These analyses not only confirmed
that supervoids and superclusters produce cold and hot spots, respectively, but also revealed their nonlinear
effects, which had not obtained in the linear perturbations theory: a supervoid produces a hot ring around a
cold spot, and a supercluster produces a temperature-dip in the center of a cold spot. Because these quantitative
features agree with the measurement by Granett et al. they strongly indicate that cold and hot spots are evidence
of supervoids and superclusters, respectively, on scales > 100Mpc.

If many supervoids and superclusters are located at z < 0.75, as indicated by the above studies, it is natural
to suppose that similar voids and clusters are distributed in the whole universe. It was shown that, in the model
of a network of empty voids in the Einstein-de Sitter (EdS) universe, voids at high redshift make a dominant
contribution [5]. If this is the case for the present model, nonlinear super-structures at high redshift may give
severe constraint on their abundance. In this paper, as a first step of statistical study of super-structures, we
analyze the ISW effect produced by a supervoid network.

2 CMB anisotropy produced by a single supervoid

In preparation for statistical analysis of a supervoid-network model, we consider a single void in a Friedmann-
Robertson-Walker (FRW) universe with a cosmological constant. We assume that a homogeneous low-density
region is surrounded by a spherical thin shell. The general relativistic equations of motion of the shell were
originally derived by Maeda and Sato [6] and were later rewritten in a more convenient expression [7], which we
use here. Their observational consequences were discussed by Maeda, Sakai & Triay [8].

In this model the integration of the equations of motion require five initial values: the radius of the shell R, its
peculiar velocity v, the density contrast δm, the Hubble parameter contrast δH as well as the background density

99Email address: nsakai@e.yamagata-u.ac.jp
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parameter Ω. Because the initial values of v and δH when |δm| ≪ 1 are determined by the linear perturbation
theory, the initial values we can choose arbitrary are only R and δm.

For an empty void in the EdS universe, Thompson & Vishniac derived an analytic expression of the ISW
effect of the thin-shell model [9]. Inoue & Silk generalize it for a dust-filled void in a flat FRW universe with a
cosmological constant [10]:

∆T

T
=

1

3
(HR)3 cosψ

[
−2δ2H − δ3H + (3 + 4δm)δHΩ+ δmΩ

(
− 6v

HR
+ 1

)

+cos 2ψ
{
2δ2H + δ3H + δmΩ+ (3 + 2δm)δHΩ

}]
, (2.1)

where ψ is the angle between the normal of the shell and the photon leaving the void. In the following analysis
we choose

Ω0 = 0.27, λ0 = 0.73, H0R0 = 0.07, and δ0 = −0.3, (2.2)

as indicated by the previous work [4]. Then all variables in the RHS of (2.1) are determined by numerical
integration of the equations of motion described above.

In Fig. 1 we demonstrate how the ISW effect of a void depends on z, which characterizes both the evolution
and the location of the void. (a) shows (HR)3δm, as a first approximation of the maximum amplitude of (2.1).
In the case of the EdS universe, R ∝ t0.8 and H ∝ t−1, and therefore (HR)3 decreases monotonically. In the
present model, on the other hand, after the cosmological constant becomes dominant at z ≈ 3, H and R gradually
approach to constant and an exponential function, respectively, and hence (HR)3 begins to increase. The effect
of this rapid expansion also changes the apparent radius of temperature fluctuations after z ≈ 3, as shown in Fig.
2(b). This indicates that only supervoids located in z < 3 produce large scale anisotropies of CMB.

Figure 1: ISW effect of a single supervoid. (a) and (b) show the maximum amplitude (ψ = 0) and the
apparent radius, respectively.

3 CMB anisotropy produced by a supervoid network

Next, we consider a model of a supervoid network in a FRW universe with a cosmological constant. The void-
network model in the EdS universe was studied in [5, 9]. The model consists of randomly distributed, equally
sized, and non-overlapped voids, which formed at some time simultaneously. Divide the universe into shells of
the comoving thickness 2rv(t0), as depicted in Fig. 2. For each shell, the probability of a ray intersecting a void
is given by

P =
3

2
F0

{
rv(t)

rv(t0)

}2

, (3.1)

where F0 is the fractional volume of space occupied by voids and normalized at the present t0.
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2rv(t0)

Figure 2: Schematic sketch of a supervoid network model. This structure is the same as in [5, 9]. Divide
the universe into shells of comoving thickness 2rv(t0).

The angular correlation function of the CMB anisotropy C(θ) and its power spectrum Cl are, respectively,
defined by

C(θ) ≡
⟨
∆T

T
(θA)

∆T

T
(θB)

⟩
θ

≡
∑
l

(2l + 1)Cl
4π

Pl(cos θ), (3.2)

where θA and θB are angular positions with the separation angle θ. To calculate C(θ), first we take an average
for each shell defined in Fig. 2, C(θ)shell, and then we sum up them over all shell: C(θ) =

∑
C(θ)shell. The

angular power spectrum are obtained from

Cl = 2π

∫ 1

−1

C(θ)Pl(cos θ)d(cos θ). (3.3)

Figure 3: CMB angular power spectrum as a function of l. (a) shows the ISW effect of our void-network
model with (2.2). (b) shows the observational results, which are quoted from Komatsu et al. [11]

In Fig. 3(a) we plot Cl for the parameter set (2.2). A peak appears at a large angular scale, l < 10, and
amplitudes at a small angular scale, l > 30, are negligible. This is in contrast to the case of a network model of
empty voids in the EdS universe, where a peak appears at very small scale, l > 1000. For comparison, we quote
observational results from Komatsu et al. [11] in Fig. 3(b). Because our theoretical results in (a) does not include
primordial fluctuations, their amplitudes of all scales should be smaller than those in the observational data in
(b). In this sense the observational data at present does no exclude our void-network model.
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To complete the statistical analysis of a super-structure model, it is necessary to estimate the ISW effect of a
supercluster network model and the ordinary SW effect of both models. This is in progress.

The author thanks K. T. Inoue and K. Tomita for useful comments. This work was supported by Grant-in-Aid
for Scientific Research on Innovative Areas No. 22111502.
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Ghost-free Lorentz-violating Weyl gravity

Yuuiti Sendouda100
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Abstract
We present a model of gravity that includes Weyl tensors in the action but can avoid
the emergence of ghost degrees of freedom thanks to spontaneous Lorentz-symmetry
breaking. Within the model, we consider the quantisation of the cosmological tensor
perturbations in the early, Lorentz-violating stage of the inflationary universe, and
find how the spectrum of primordial gravitational waves can be modified compared
to General Relativity.

1 Introduction and summary

Since Stelle’s work in 1978 [1], it has been considered that the addition of the Weyl curvature terms to Einstein’s
General Relativity (GR) leads to pathological instabilities through the emergence of ghost degrees of freedom
(dofs) with negative kinetic terms.

The aim of this presentation is to propose a mechanism that serves to avoid the emergence of ghosts in the
presence of Weyl terms in the action. This is achieved by an introduction of an extra dof that breaks the (local)
Lorentz symmetry of spacetimes spontaneously.

Our simplest ghost-free Weyl gravity model is described in section 2. First of all, it will be shown that in
the regions of spacetime where a unit vector field ua becomes timelike, the equations of motion (eoms) (2.5) for
the metric remain second order in timelike derivatives (i.e., derivatives along ua), so that no new, most probably
dangerous dofs emerge. The model, however, would have novel and observationally relevant features in comparison
with GR as we shall see.

In section 3, first, it will be checked that the gravitons themselves do not become ghost if the sign of the coupling
constant is appropriately chosen. Equation (3.2) for the action of the gravitons on cosmological backgrounds
indicates how the kinetic term of the gravitons is modified from that in GR.

Then we will obtain the growing and decaying solutions on a de Sitter background, as shown in figure 1. The
notable point is that the behaviour of the modes departs from the Minkowski one in the earliest times when the
wavelength of the modes becomes shorter than the scale of Lorentz violation.

Finally we second quantise the gravitons in the Lorentz-violating regime. Our proposal is that the appropriate
“positive frequency” modes are those reducing to harmonic oscillators in the small Hubble limit, H → 0. This
choice of the vacuum state leads to the expression (3.9) for the power spectrum of the primordial gravitational
waves, which appears to depend on the ratio of the Hubble H to the energy scale of Lorentz violation.

We expect that the proposed mechanism can be applied to construct more general higher-curvature gravity
models that are ghost free. Possible modification of the vacuum state will serve as a clue to distinguish this kind
of Lorentz-violating gravity models from GR and between each other.

2 A Weyl gravity model without ghosts

Our model is specified by the action

S[gab, χ] = SEH[gab] + SC [gab, χ] + Sχ[gab, χ] , (2.1)

where

SEH[gab] ≡
M2

Pl

2

∫
d4x

√
−g R (2.2)

is the standard Einstein–Hilbert action,

SC [gab, χ] ≡ γ2

∫
d4x

√
−g Cabcd Cefgh γae γbf γcg ud uh (2.3)

100Email address: sendouda (a) cc.hirosaki-u.ac.jp
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with

ua ≡ ∂aχ√
−∂aχ∂aχ

and γab ≡ gab + ua ub (2.4)

is an apparently hazardous “Weyl” term but now augmented by a scalar field χ , and Sχ[gab, χ] is the action for
χ , the form of which we need not specify for the present purpose.

The full Einstein equations read
M2

PlG
ab − γ2Bab = T abχ , (2.5)

where Gab is the Einstein tensor, Bab is an analogue of the Bach tensor, whose form is presented elsewhere [2],
and T abχ ≡ 2(−g)−1/2 δSχ/δgab is the energy-momentum tensor of χ . The equation of motion for χ is

1√
−g

δSχ
δχ

− γ2 ∇aΓ
a = 0 , (2.6)

where ∇aΓ
a ≡ −(−g)−1/2 δSC/δχ|γ2=1 and its form will also be given in [2].

It can be checked that the tensor Bab actually contains derivatives of the metric up to fourth order, the fact
warning the emergence of ghost dofs and all the possible pathologies associated. The appearance of ghost dofs
is, nonetheless, avoided if ua is timelike. This notable property of our model is all thanks to the fact that the
maximum order of the derivative along ua appearing in Bab is two, the remaining two out of the four being along
the directions orthogonal to ua .

3 Cosmological tensor perturbations

3.1 The action

We assume that a flat Friedmann–Lemâıtre–Robertson–Walker spacetime with the ansatzs gab dx
a dxb = a(τ)2 (−dτ2+

δij dx
i dxj) and χ = χ(τ) is a solution to the eoms. Hereafter a prime denotes derivative with respect to the

conformal time τ .
Let us consider perturbations about a cosmological background. The second-order perturbation of the higher-

curvature term SC depends on the gauge-invariant tensor and vector variables, Hij and Σi ≡ Bi − V ′
i , which are

defined via the decomposition of the perturbed metric: δgij = a2 (2Hij + ∂i Vj + ∂j Vi) and δg0i = aBi with the
transverse–traceless conditions Hi

i = ∂iBi = ∂iVi = 0 , ∂jH
ij = 0 satisfied. The perturbed action in fact reads

(2)SC [Hij ,Σi] = γ2

∫
dτ d3x (1)Cijk0

(1)Cijk0|a(τ)=1

= γ2

∫
dτ d3x

(
2∂kH

′
ij ∂

kH ′ij +
1

4
△Σi△Σi

)
,

(3.1)

where △ ≡ ∂i∂
i .

The vector perturbation remains nondynamical as no time derivative have appeared, whereas the tenser part
now acquires an additional kinetic term with extra spatial derivatives. The action for the tensor perturbations
has, after using the background eoms, the form

ST[Hij ] ≡ (2)(SEH + SC + Sχ)[Hij ]

=
M2

Pl

2

∫
dτ d3x a2

(
H ′
ij H

′ij − ∂kHij ∂
kHij +

1

M2
γ a2

∂kH
′
ij ∂

kH ′ij
)
,

(3.2)

where we have introduced an energy scale of Lorentz violationMγ ≡MPl/(2γ) . We assume γ andMγ are positive
real so that the kinetic term of the graviton remains positive definite.

3.2 Mode functions and their asymptotic behaviour

The tensor perturbation is expanded as

Hij(τ, x⃗) =
1

MPl a(τ)

∑
λ=1,2

∫
d3k

(2π)3/2
aλ
k⃗
(eλ
k⃗
)ij

χλk(τ)

nk(τ)
ei k⃗·x⃗ , (3.3)

where nk(τ) ≡
√

1 + y(τ)2 with y(τ) ≡ k/(a(τ)Mγ) . The reality conditions have been implicitly imposed. In

particular, the polarisation tensors are transverse-traceless, and satisfy (eλ
k⃗
)∗ij = (eλ−k⃗)ij and (eλ

k⃗
)ij (e

λ′

k⃗
)ij∗ = δλλ′ .

Hereafter we concentrate on one of the polarisations and omit the index λ .
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The eom for χk then reads

χ′′
k(τ) + Ωk(τ)

2 χk(τ) = 0 with Ωk(τ)
2 ≡ k2 −H2 −H′

1 + y2
− y2 H2

(1 + y2)2
, (3.4)

where H ≡ a′/a . On de Sitter background, where a = −1/(H τ) with H being constant, the eom reduces to

d2χk
dz2

+
1− 2 z−2 + 4ϵ2 (z2 − 3)

(1 + 4ϵ2 z2)2
χk = 0 , (3.5)

where we have introduced a Hubble-normalised time coordinate z ≡ −k τ = k/(aH) > 0 and a parameter
ϵ ≡ H/(2Mγ) , which we assume is within the range 0 < ϵ < 1. The two linearly independent solutions to the de

Sitter eom (3.5), denoted by χ
(1)
k and χ

(2)
k , are given in terms of the hypergeometric functions [2] whose form is

plotted in figure 1.

0.1 0.5 5.0 10.0 50.0 100.0
z

-1

1

2

3

Χk

n k

Figure 1: The behaviour of the growing and decaying mode functions χ
(1)
k (solid) and χ

(2)
k (dashed) for

ϵ = 0.005.

The late-time asymptotic behaviour of the above two modes, as z → 0, is χ
(1)
k /nk ∼ 1/z and χ

(2)
k /nk ∼ z2/3 ,

respectively, so one concludes that χ
(1)
k is the growing mode whereas χ

(2)
k being decaying. The amplitude of the

growing tensor perturbation after horizon exit, z ≲ 1, behaves as χ
(1)
k /(nk a) → const. , i.e., freezes out, as in

standard inflation. Note also that the above growing and decaying modes are found to be (at least numerically)

fit very well by sinusoidal functions as χ
(1)
k /nk ∼ sin z and χ

(2)
k /nk ∼ − cos z , respectively, in the subhorizon

Lorentz-symmetric regime 1 ≪ z ≪ (2ϵ)−1 .
In the Lorentz-violating regime, z ≳ (2ϵ)−1 , however, the two modes depart from simple harmonic motion.

The early-time asymptotic expansion of the modes as y ≡ 2ϵ z → ∞ is obtained as

χ
(1)
k

nk
∼ c1 y

−1/2−i ν/2 + c∗1 y
−1/2+i ν/2 and

χ
(2)
k

nk
∼ c2 y

−1/2−i ν/2 + c∗2 y
−1/2+i ν/2 , (3.6)

where ν ≡
√
ϵ−2 − 1 , which is positive real for ϵ < 1, and where c1 and c2 are complex constants depending on

ϵ [2]. This expression implies that neither of the solutions obeys simple harmonic motion but, as going back to
earlier times, their amplitude decays and the frequency decreases logarithmically.

3.3 Primordial gravitational waves from quantum fluctuations

We second quantise the tensor perturbations as

Hij(τ, x⃗) → Ĥij(τ, x⃗) =
1

MPl a(τ)

∑
λ=1,2

∫
d3k

(2π)3/2

[
âλ
k⃗
(eλ
k⃗
)ij

χλk(τ)

nk(τ)
ei k⃗·x⃗ + h.c.

]
. (3.7)

Again we shall omit the index λ . The quantum vacuum state |0⟩ is specified via the conditions âk⃗ |0⟩ = 0
and ⟨0|0⟩ = 1. The standard procedure of the canonical quantisation leads to the usual commutation relations

[âk⃗, â
†
k⃗′
] = δ3(k⃗ − k⃗′) and [âk⃗, âk⃗′ ] = [â†

k⃗
, â†
k⃗′
] = 0 if the modes are so normalised that Wronskian χk(τ)χ

′
k(τ)

∗ −
χk(τ)

∗ χ′
k(τ) is i (see [2] for details).
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Here we propose that the suitable positive frequency modes in our de Sitter setup are, modulo a phase factor,
given by

χ+
k =

c−1
1 χ

(1)
k − c−1

2 χ
(2)
k

2
√
2k ϵ ν tanh(π ν/2)

, (3.8)

which is based on the observation that, in the “adiabatic” limit where H → 0, the above defined function turns
out to have a positive frequency with respect to the cosmic time, χ+

k /nk ∝ e−iMγ t . Accordingly, we suppose that
the vacuum state of the universe is specified by this particular choice of the positive frequency modes.

A possible signature of our model would therefore be imprinted in the quantum fluctuations of the vacuum.
Its computation leads to the power spectrum of the primordial gravitational waves after the freeze-out:

P(k) =
2

π2

H2

M2
Pl

Ξ where Ξ ≡
2k z2 |χ+

k |
2

n2
k

∣∣∣∣
z→0

. (3.9)

We find that the spectrum P(k) is scale-invariant as in standard inflation, whereas the amplitude changes de-
pending the value of ϵ ; it once decreases down to about 65% as ϵ increases beyond 0.1, while it diverges as ϵ
further approaches 1, see figure 2.

0.0 0.2 0.4 0.6 0.8 1.0
Ε

0.5

1.0

1.5

2.0
X

Figure 2: The modification factor Ξ for the amplitude of the power spectrum of the tensor perturbations
as a function of ϵ = H/(2Mγ) .
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Einstein Universe under Deconstruction: the case with
degenerate fermions
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Abstract
We study self-consistent static solutions for an Einstein universe in a graph-based
induced gravity. In the generalization of the deconstruction model based on the
graph, the eigenvalues of the graph Laplacian and the adjacent matrix gives the mass
spectrum the particles. Thus we can easily control UV divergences at one-loop level in
such a model. We use the calculation method with the spectrum distribution function
of the graph and search for the static solution supported by the degenerate pressure
of the fermion (at zero temperature). The report is based on arXiv:1110.5697.

1 Introduction

In our previous work [1], the induced gravity [2] model without UV divergences at one-loop level has been
constructed by a generalized method of Dimensional Deconstruction (DD) [3] and a self-consistent solution for an
Einstein static universe has been obtained.

In this brief report, we show the existence of a self-consistent Einstein universe in which strongly degenerate
fermions by the calculation method using the spectral density function of graphs.

2 Induced gravity

Induced gravity has been studied by many authors [2]. The one-loop effective action can systematically be
expressed by an integral form using Schwinger’s proper time method as

1

2
Tr lnH = −1

2

∫ ∞

0

dt

t
Tr
[
e−tH

]
, (2.1)

where H is a Hessian operator which appears in the free-field action of a matter field. The expansion in terms of
the Seeley-DeWitt coefficients can be written as

Tr
[
e−tH

]
=

1

(4πt)2

∫
d4x
√

| det gµν |
[
Tr a0 + tTr a1 + t2 Tr a2 + o(t3)

]
, (2.2)

where gµν denotes the spacetime metric and Tr means the trace over the spacetime indices. The one-loop effective
action for the background fields is given by the collection of the contribution of various matter fields.

The UV divergences arise from the integration in the vicinity of t = 0. If we introduce a UV-cutoff scale Λ,
the lower bound of the integration on t is replaced to 1/Λ2. The divergent parts in terms of the cut-off Λ are

1

64π2
(N0 − 2N1/2 + 2N1)Λ

4 and
1

192π2
(N0 +N1/2 − 4N1)Λ

2R , (2.3)

where N0 is the number of minimal scalar degrees of freedom, N1/2 is the number of two-component fermion
fields, N1 is the number of massless vector fields, and R is the scalar curvature constructed from the metric gµν .

The conditions for their cancelations are solved by N0 = 2N , N1/2 = 2N , and N1 = N , where N = 1, 2, 3, . . . .
For massive fields, since

Ns∑
i=1

e−(m2
s)it = Ns − t

Ns∑
i=1

(m2
s)i + t2

1

2

Ns∑
i=1

(m4
s)i + · · · ≡ Ns − tTrM2

s + t2
1

2
TrM4

s + · · · , (2.4)
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(where M2
s is the mass-squared matrix for spin-s field), the condition on mass-squared matrix for the cancelation

of divergences should be TrM2
S − 4TrM2

D + 3TrM2
V = 0, where M2

S is the mass-squared matrix for the scalar
fields, M2

D is that for the Dirac fields, and M2
V is that for the vector fields.

Now, we construct the field theories with mass matrices which satisfy the cancelation conditions.

3 Graph and mass matrices

We remember the concept of DD [3]. A moose diagram is used to describe this theory, and is no more than a
graph. The N -sided polygon is identified as an example of simple graphs, a cycle graph CN . A graph G consists
of a vertex set V and an edge set E , where an edge is a pair of distinct vertices of G. The graph with directed
edges is dubbed as a directed graph. An oriented edge e = [u, v] connects the origin u = o(e) and the terminus
v = t(e).

Now we introduce several matrices that are naturally associated with a graph [4, 5]. They are the incidence
matrix E(G) = (E)ve, the adjacency matrix A(G) = (A)vv′ , the degree matrix D(G) = (D)vv′ , and the graph
Laplacian (or combinatorial Laplacian) ∆(G) = (∆)vv′ . The relations among them are ∆ = D−A, and ∆ = EET .
The important identities are TrA = 0, and TrA2 = TrD. Thus the relations Tr∆ = TrD and Tr∆2 =
TrD2 +TrD hold.

The model of vector fields, whose mass-squared matrix is f2∆, is [5]

LV = −1

4

∑
v∈V

F vµνF
µν
v −

∑
e∈E

(DµUe)†(DµUe) , (3.1)

where the covariant derivative is DµUe ≡ (∂µ + iAµt(e) − Aµo(e))Ue with |Ue| = f . Here f is a constant with the
dimension of mass. Similarly, any kind of fields can be associated with a graph and their mass-squared matrix
can be written by using the graph Laplacian. For scalar fields, we assign a scalar field ϕv to each vertex v of G. A
mass term for scalar fields can be constructed as f2∑

v,v′∈V ϕv∆vv′ϕv′ . For spinor fields, the mass term can be
expressed by using the incidence matrix E. For example, the Lagrangian density of fermion fields can be written
as [5]

−
∑
v∈V

ψ̄RvD/ ψRv −
∑
e∈E

ψ̄LeD/ ψLe − f
∑
e∈E

∑
v∈V

[(ψ̄Le(E
T )evψRv + h.c.] , (3.2)

where the subscripts L and R denote left-handed and right-handed fermions, respectively. Namely, the left-handed
fermions are assigned to the edges while the right-handed ones are assigned to the vertices. The mass spectrum
of fermions governed by the Lagrangian (3.2) is also given by the eigenvalues of the graph Laplacian [5].

Therefore, the UV divergences can be controlled using the graph Laplacian and we can construct the models
of UV-finite induced gravity. We prepare three graphs, GS , GD and GV . All these graphs have N vertices. If the
graphs associated to their field have the same degree matrix, we find [5]

TrM2
S = TrM2

D = TrM2
V and TrM4

S = TrM4
D = TrM4

V . (3.3)

Therefore we find that the induced vacuum energy and the inverse of the Newton constant at one-loop can be
calculated for selected graphs [6]. Suppose that we select a type of non-simple graphs G{ni} = Cn1 ∪ Cn2 ∪ · · · ,
which has N vertices. Then we can choose different sets {ni} for scalar, Dirac, and vector fields in a model in
order to obtain non-zero value for the Newton and cosmological constants [6].

4 The effective action in an Einstein universe

We assume that the background geometry is given by a static Einstein universe. Carrying out the integration over
t, we expand the effective action in terms of the modes of Laplacian on S3 (with the radius a). The regularized
mode sum for a scalar field with mass m is found to be

Σ′
S(m

2a2) =

∞∑
ℓ=1

ℓ2
[√

ℓ2 +m2a2 − 1− ℓ

(
1 +

m2a2 − 1

2ℓ2
− (m2a2 − 1)2

8ℓ4

)]
− 5m2a2 − 6

120
− 1

8
γ , (4.1)

(where γ is the Euler-Mascheroni constant), and similar expressions are obtained for the fermion field and the
vector field.

Using these expressions, we obtain the effective action

1

2a

∑
i

[
Σ′
S((m

2
0)ia

2)− Σ′
D((m

2
1/2)ia

2) + Σ′
V ((m

2
1)ia

2)
]
. (4.2)
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5 Spectral density function of a graph

For CN , eigenvalues of the adjacency matrix are λk = 2 cos 2πk
N

, (k = 0, 1, . . . , N − 1) . For a large N , we find

lim
N→∞

1

N

N−1∑
k=0

f (λk) =

∫ 1

0

f(2 cosπt)dt =
1

π

∫ 2

−2

f(x)
dx√
4− x2

, (5.1)

then we can define the spectral density function of the cycle graph [7] as

ρ∞(x) =

{
1
π

1√
4−x2

, for − 2 < x < 2

0 , others
for cycle graphs . (5.2)

A large N means that the part of the effective action for a small a (the radius of the universe) is dominant.
Then we approximate the effective action for a small a as

Ω0(fa) ≡
1

2a

∫ 2

−2

[
Σ′
S(f

2a2(2− x))− Σ′
D(f

2a2(2− x)) + Σ′
V (f

2a2(2− x))
] N

π
√
4− x2

dx . (5.3)

The graphs of the type of Cn ∪ Cm ∪ · · · have the same spectral density function for a large N .

6 Strongly degenerate fermions

The thermodynamical potential with strongly degenarate fermions (T = 0) can be expressed only by the chemical
potential µ and the mass spectrum of fermions.

Applying the spectral density function to this, we get

ΩD = −2π2a3

12π2

∫ 2

−2

θ(µ−m(x))

×

[
µ
√
µ2 −m2(x)

(
µ2 − 5

2
m2(x)

)
+

3

2
m4(x) ln

(
µ

m(x)
+

√
µ2

m2(x)
− 1

)]
N

π
√
4− x2

dx , (6.1)

where m2(x) ≡ f2(2− x) and θ(y) is the step function. This is the main contribution for a large N .
The Einstein equations can be written by using the thermodynamical potential Ω, which includes the vacuum

contribution:
∂(µ−1Ω)

∂(µ−1)
= 0 and

∂(µ−1Ω)

∂a
= 0 . (6.2)
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Figure 1: A contour plot of 1
N µ

−1Ω.
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In Figure 1, we show the contour plots for Ω/µ obtained by numerical calculations, whose extremum provides
a self-consistent solution. The horizontal axis indicates the scale factor a, while the vertical one 1/µ, in the unit
of f . One (unstable) solution for a self-consistent Einstein universe can be found. The Casimir effects is essential
in this case.

7 Summary and prospects

We have shown the construction of Graph-based (calculable) induced gravity models. For a large N (the number
of fields), a small a (the radius of the universe), the effective potential (mainly the Casimir energy) and the
thermodynamical potential for the degenerate fermions are evaluated by using the spectral density function of
graphs. We found the existence of a self-consistent solution for a static Einstein universe.

In future work, the trace formula for graph spectrum will be directly applied to the one-loop calculations.
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Asymptotic rigidity of black holes
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Abstract
It is expected that black holes are formed dynamically under gravitational collapses
and approach stationary states. In this paper, we show that the asymptotic Killing
vector at late time should exist on the horizon and then that it can be extended
outside black holes under the assumption of the analyticity of spacetimes. This fact
implies that if there is another asymptotic Killing vector which becomes a stationary
Killing at a far region and spacelike in the “ergoregion,” the rotating black holes
may have the asymptotically axisymmetric Killing vector at late time. Thus, we may
expect that the asymptotic rigidity of the black holes holds.

1 Introduction

Black holes in our Universe are expected to be formed under gravitational collapses, and to finally approach
stationary and vacuum states by radiating and absorbing energy, momentum, and angular momentum. Then
the uniqueness theorem [1] guarantees that the black hole candidates in our Universe are the Kerr black holes.
The key ingredient for the proof of the uniqueness theorem is the rigidity theorem [2–5]. The rigidity theorem
shows that the stationary rotating black holes have axisymmetric Killing vectors. The outline of the proof is as
follows: The stationarity of spacetime implies that there are no gravitational waves around a black hole. Then the
expansion and shear of the event horizon must vanish by virtue of the Raychaudhuri equation and stationarity.
Using the Einstein equations, then, we can find that the null geodesic generator of the event horizon is a Killing
vector. If the black hole is rotating, this new Killing vector may deviate from the stationary Killing vector which
becomes spacelike in the ergoregion. This means that the stationary black holes might have two Killing vectors,
that is, the stationary and axisymmetric Killing vectors. Hence the stationary black holes should rotate rigidly.

However, the late-time phase of black holes produced by gravitational collapses would not be exactly stationary
but nearly stationary. “Nearly stationary” means that the black holes are surrounded by the gravitational waves
at late time. Then we cannot apply the rigidity theorem to such black holes because the expansion and shear
of the null geodesic generator on the event horizon do not vanish due to the presence of the gravitational waves
on the event horizon. Note that the late-time behaviors of the perturbations around the Schwarzschild and Kerr
black holes were examined and it was shown that the perturbations decay at late time both on the horizon and
null infinity at the same rate (for examples, see Refs. [6–8]). In the dynamical processes in gravitational collapses,
however, it is quite nontrivial whether the formed black hole approaches the Kerr black hole. In this paper, we
show that the asymptotic Killing vector, which will asymptotically approach a Killing vector at late time, should
exist on the horizon without assuming any symmetries and then that it can be extended outside of the event
horizon using the Einstein equations. This indicates that if there is another asymptotic Killing vector which will
be an asymptotically stationary Killing vector at a far region, the rotating black hole may have the asymptotically
axisymmetric Killing vector at late time.

2 Bondi-like coordinate and Einstein equations

In this section, introducing the Bondi-like coordinate near the event horizon, we investigate the initial value
problem.

The event horizon is the boundary of the black hole and it is a null hypersurface. Then, we can introduce the
Bondi-like (Gaussian null) coordinates xA = (u, r, xa) near the event horizon as

ds2 = gABdx
AdxB = −Adu2 + 2dudr + hab(dx

a + Uadu)(dxb + Ubdu), (2.1)

104Email address: tanabe@yukawa.kyoto-u.ac.jp
105Email address: shiromizu@tap.scphys.kyoto-u.ac.jp
106Email address: kinoshita@tap.scphys.kyoto-u.ac.jp
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where u is a time coordinate. In this coordinate, the horizon position is taken to be r = 0. We assume that a
cross section of the event horizon is compact in the u = constant hypersurface and its topology is S2. xa are
coordinates on S2. Since the event horizon is a null hypersurface, guu must vanish on the event horizon and
l = ∂/∂u is the null geodesic generator on the event horizon. Furthermore we can choose the coordinate u so that
la = 0 on the event horizon. Then, we have A =̂ 0 and Ua =̂ 0 where =̂ means the evaluation on the event horizon
r = 0.

To solve the vacuum Einstein equations, we formulate the initial value problem in the Bondi coordinates. In
the following, we solve the Einstein equations as the evolution equations in the direction of r. Thus, the initial
value of the metric should be set on the r = constant surface and we take the event horizon r = 0 as the initial
surface. The evolution equations are given by

Rrr = −1

2
(log h)′′ − 1

4
hachbd(hab)

′
(hcd)

′
= 0, (2.2)

RrBh
aB =

1

2
Ua

′′
+

1

2
hach

′
bcU

b′ +
1

4
(log h)′Ua

′
+

1

2
habD̄c[h

′
bc − hbc(log h)

′] = 0 (2.3)

and

RABh
A
ah

B
b = −1

2
Ah

′′
ab −

1

2
A

′
h

′
ab − (ḣab)

′ + (h)Rab +
A

2
hcdh

′
ach

′
bd + LUh′

ab

+
1

2
hcd(h

′
acḣbd + h

′
bdḣac)−

1

2
h

′
ac(D̄bU

c + D̄cUb)−
1

2
h

′
bc(D̄aU

c + D̄cUa)

− 1

2
hachbdU

c′Ud
′
− 1

4
[ ˙(log h)− 2D̄aU

a]h
′
ab −

1

4
(log h)

′
(Ah

′
ab + ḣab − D̄aUb − D̄bUa)

+
1

2
(hbcD̄aU

c′ + hacD̄bU
c′) = 0, (2.4)

where the prime and dot denote the r and u derivative, respectively, D̄a is a covariant derivative with hab and
h = dethab. Also, (h)Rab is the Ricci tensor with respect to hab. The evolutions of the metric functions A, Ua

and hab are determined by Eqs. (2.2), (2.3) and (2.4) completely.
The other components of the Einstein equations are constraint equations on the initial surface. For conve-

nience, we provide the following constraint equation at r = 0

Ruu=̂− 1

2
¨(log h) +

A′

4
˙(log h)− 1

4
hachbdḣabḣcd = 0. (2.5)

3 Late-time symmetry on and near event horizon

In this section, we show that there is late-time symmetry on the event horizon. Then we will extend it outside of
black hole regions.

3.1 Late-time behaviors on event horizon

To investigate late-time behaviors of the event horizon, we introduce the expansion and shear of the null geodesic
generator l = ∂/∂u of the event horizon. The expansion θ and shear σab are defined as

σab +
1

2
θh

(0)
ab =̂ h A

a h B
b ∇AlB

=̂
1

2
ḣ
(0)
ab , (3.1)

where h
(0)
ab =̂hab. σab is the traceless part of ḣ

(0)
ab with respect to h

(0)
ab . Then we can rewrite Eq. (2.5), one of the

constraint equations as

∂wθ(w) = −1

2
θ2(w) − σ(w)abσ

ab
(w), (3.2)

where we used the affine parameter w defined by dw/du = exp
(∫ u

A(1)/2du′
)
. θ(w) and σ(w)ab are expansion and

shear with respect to w. Here we remember that the area law of the event horizon holds for spacetimes satisfying
the null energy condition, that is, θ(w) ≥ 0. Since σ(w)abσ

ab
(w) ≥ 0, Eq. (3.2) implies the inequality

∂wθ(w) +
1

2
θ2(w) ≤ 0. (3.3)
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Then the integration over w gives us

θ(w) ≤
1

1/θ(0) + (w − w0)/2
→ 0 (as w → ∞), (3.4)

where we used the fact of θ(0) = θ(w)(w = w0) ≥ 0. In addition, Eq. (3.2) shows that the shear σ(w)ab should
also vanish as w → ∞. This is shown as a part of the proof of another theorem [9]. From now on, we assume
that w → ∞ corresponds to u → ∞. Then, we see that θ and σab should also vanish as u → ∞. It is natural to
assume that the cross section of the event horizon is compact. Then the vanishing of the expansion implies that
the horizon area approaches a constant and finite value.

Altogether we see the behavior of the metric at late time as LlgAB |horizon → 0 (u→ ∞). Here we impose the
following decaying condition on the event horizon for the metric:

LlgAB =̂O

(
1

un

)
, (3.5)

which explicitly means ḣ
(0)
ab = O(u−n). This equation means that the null geodesic generator of the event horizon

l should be an asymptotic Killing vector at late time (u→ ∞). Thus there is a late-time symmetry on the event
horizon.

3.2 Extension of late-time symmetry

We consider that the decaying condition of Eq. (3.5) can be extended outside of the event horizon as

LlgAB = O

(
1

un

)
. (3.6)

We assume the analyticity of gAB .
Under the presence of the analyticity of spacetimes, the above is equivalent with

(Ln)mLlgAB =̂O

(
1

un

)
, (3.7)

where n = ∂/∂r and m = 0, 1, 2, · · · .
In fact, we can show that this equation holds using the induction. Assuming that Eq. (3.7) holds for all m < k

where k is some positive integer and applying (Ln)k−1 to Eqs. (2.2), (2.3), and (2.4), we can obtain

LlA(k) = O

(
1

un

)
,LlU (k)a = O

(
1

un

)
,Llh(k)

ab = O

(
1

un

)
, (3.8)

where (m) means the evaluation on the event horizon of the m-th derivatives with respect to r. For example,
h
(m)
ab = (Ln)mhab|r=0. Therefore, Eq. (3.8) describes m = k equations of Eq. (3.7).

Using the Einstein equations, we can show that Eq. (3.7), equivalently Eq. (3.6) holds if the spacetime is real
analytic. Hence this fact means that the null geodesic generator l of the event horizon is the asymptotic Killing
vector at late time in the sense of Eq. (3.6).

4 Summary and discussion

We have confirmed that the expansion and shear of the event horizon should decay at late time in the vacuum
spacetimes. Then, assuming the compactness of the cross sections of the event horizon, the null geodesic generators
on the horizon give us an asymptotic Killing vector l at late time. This means that the horizon has late-time
symmetry. By solving the Einstein equations, then, we have found that this late-time symmetry can be extended
outside of the black holes. Therefore, at late time, there is the asymptotic symmetry outside of black holes.

If the black hole rotates and there is another asymptotic Killing vector at late time, k, which will be a
stationary Killing vector at a far distance and spacelike near the horizon, k− l is also an asymptotic Killing vector
expected to correspond to axisymmetry. In this sense, we would expect that the rigidity holds in gravitational
collapse at late time. In these discussions, we assume the compactness of the event horizon. Thus this result
cannot be applied to other null hypersurfaces which do not have a compact cross section.

There is a remaining issue. In the proof of the rigidity theorem, the exact stationarity does show that the
null geodesic generators of the horizon are Killing orbits. On the other hand, our argument could show us that
the null geodesic generators of the horizon is a Killing orbit without assuming the presence of asymptotically
stationary Killing vectors. It is likely that this difference suggests the existence of important and new points in
black hole physics.

JGRG21 Programme



262 P24: Asymptotic rigidity

References

[1] W. Israel, Phys. Rev. 164, 1776 (1967); B. Carter, Phys. Rev. Lett. 26, 331 (1971); S. W. Hawking, Commun.
Math. Phys. 25, 152 (1972); D. C. Robinson, Phys. Rev. Lett. 34, 905 (1975); P. O. Mazur, J. Phys. A15,
3173 (1982); For a review, see M. Heusler, Black Hole Uniqueness Theorems, (Cambridge University Press,
London, 1996); P. O. Mazur, hep-th/0101012; G. L. Bunting, PhD thesis, Univ. of New England, Armidale
(1983).

[2] S. W. Hawking and G. F. R. Ellis, The Large scale structure of space-time, (Cambridge Univ. Press, Cam-
bridge, 1973).

[3] S. W. Hawking, Commun. Math. Phys. 25, 152-166 (1972).

[4] H. Friedrich, I. Racz, R. M. Wald, Commun. Math. Phys. 204, 691-707 (1999).

[5] I. Racz, Class. Quant. Grav. 17, 153-178 (2000).

[6] C. Gundlach, R. H. Price, J. Pullin, Phys. Rev. D49, 883-889 (1994).

[7] L. Barack, A. Ori, Phys. Rev. Lett. 82, 4388 (1999).

[8] L. Barack, A. Ori, Phys. Rev. D60, 124005 (1999).

[9] S. A. Hayward, T. Shiromizu, K. -i. Nakao, Phys. Rev. D49, 5080-5085 (1994).

JGRG21 Programme



K. Yamada 263

Three-body-interaction effects on the relativistic perihelion
precession

Kei Yamada and Hideki Asada

Faculty of Science and Technology,
Hirosaki University, Hirosaki 036-8561, Japan

Abstract
The relativistic perihelion precession due to the three-body interaction is derived.
We consider a hierarchical coplanar three-body system like the Sun-Jupiter-Saturn
one: Both the secondary object as the largest planet corresponding to Jupiter (mass
m2) and the third one corresponding to Saturn (mass m3) orbit around the pri-
mary object corresponding to Sun (mass m1 ≫ m2 ≫ m3), where the mean or-
bital radius of the third body is larger than that of the secondary one (denoted
as ℓ). We investigate the post-Newtonian effects on the motion of the third body
(semimajor axis a, eccentricity e for the Keplerian orbital elements). Under some
assumptions with a certain averaging, the relativistic perihelion precession of the
third mass by the three-body interaction at the post-Newtonian order is expressed
as 6Gm2ℓ

2c−2a−3n(1 + 9e2/16)(1 − e2)−3, where we take the temporal averaging of
the secondary position, G and c denote the gravitational constant and the speed of
light, respectively, and n denotes the mean motion for the third body defined as
2π
√
a3G−1(m1 +m2)−1.

1 Three-body system like Sun-Jupiter-Saturn

Motivation: Iorio pointed out the anomaly in Saturn’s perihelion precession [1], however it is controverted
by updated reports of planetary observations [2, 3]. Although, the researches of three-body interaction for the
relativistic perihelion precession are based only on the numerical integrations. Therefore, it is interesting to
investigate the analytical expression of the perihelion precession due to the relativistic three-body interaction.

Figure 1: Schematic figure of the hierarchical coplanar three-body system with masses m1, m2 and m3.

We consider a hierarchical coplanar three-body system like Sun-Jupiter-Saturn system.
In order to investigate such system, four assumptions are made upon the hierarchical three-body system:
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(i) m1 ≫ m2 ≫ m3

(ii) r ≫ ℓ

(iii) the same orbital plane (coplanar)

(iv) a circular motion for m2

2 The effective metric acting on the third mass

In the post-Newtonian approximation, the line element for N masses is expressed as [4]

ds2 = gµν(t, r)dx
µdxν

=

[
−1 + 2

∑
A

mA

rA
− 2

(∑
A

mA

rA

)2

+ 3
∑
A

mAv
2
A

rA
− 2

∑
A

∑
B ̸=A

mAmB

rARAB

]
dt2

+ 2×
[
−
∑
A

mA

rA

{
7

2
vAj +

1

2

(vA · rA)rAj
r2A

}]
dtdxj

+

[
1 + 2

∑
A

mA

rA

]
δijdx

idxj , (2.1)

where (xµ) = (t, r) for µ = 0, 1, 2, 3, the position of each mass mA is denoted as RA, the relative vectors and
distances are defined as rA ≡ r −RA, RAB ≡ RA −RB , rA ≡ |rA|, RAB ≡ |RAB |.

By using four assumptions, we finally obtain the effective (averaged) metric acting on the third mass as [5]

< ds2 > =

(
−1 +

2mtot

r
+
m2ℓ

2

2r3
+
mtotm2ℓ

2

r4
− mtotm2ℓ

2

ℓ3r

)
dt2

+

(
1 +

2mtot

r
+

3m2ℓ
2

2r3

)
dr2 + r2dφ2

=

(
−1 +

rs
r

(
1− Q

ℓ3

)
+
Q

r3
+
rsQ

r4

)
dt2 +

(
1 +

rs
r

+
3Q

r3

)
dr2 + r2dφ2, (2.2)

which looks like an effective one-body metric with quadrupole moments. Here, we have already used θ = π/2 =
const. and we defined the total mass as mtot = m1 +m2, the effective Schwarzschild radius as

rS = 2mtot, (2.3)

and the effective moment induced by the secondary body as

Q ≡ m2ℓ
2

2
. (2.4)

It follows that the line element given by Eq. (2.2) agrees with the Schwarzschild metric on the equatorial plane
if Q = 0.

3 Perihelion precession for three-body system in GR

As a result, the total deviation from the Newtonian value (= 2π) due to linear Q becomes [5]

∆φQ =
3

2

(16 + 9e2)π

(1− e2)3
Q

a3
. (3.1)

This is a correction to the perihelion (and aphelion) precession per revolution (perihelion→ aphelion→ perihelion).
By dividing this by the orbital period P of the third body, we obtain the corresponding perihelion precession rate
as [5]

ϖ̇Q =
∆φQ
P

= 24
(1 + 9

16
e2)

(1− e2)3
Q

a3
π

P

= 6
(1 + 9

16
e2)

(1− e2)3
m2ℓ

2

a3
n, (3.2)

where n = 2πP−1 is the mean motion of the third mass.
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Table 1: ϖ̇Sat by planets inside the Saturn’s orbit. Eq. (3.2) is used for this evaluation.

planet m2 [kg] ℓ [AU] ϖ̇Sat [arcsec/cy]
Mercury 3.30× 1023 0.387 7.50× 10−12

Venus 4.87× 1024 0.723 3.86× 10−10

Earth 5.98× 1024 1.00 9.08× 10−10

Mars 6.42× 1023 1.52 2.26× 10−10

Jupiter 1.90× 1027 5.20 7.80× 10−6

4 Conclusion

We derived the relativistic perihelion precession due to the three-body interaction for a hierarchical coplanar three-
body system corresponding to the Sun-Jupiter-Saturn one. For the Sun-Jupiter-Saturn system, this precession
yields 7.8× 10−6 arcsec/cy, which is lager than the Lense-Thirring effect by Sun (O(10−7) arcsec/cy). As for the
relativistic three-body-interaction perihelion precession of Saturn, the Jovian contribution is the most dominant
among those by the planets inside the Saturn’s orbit.
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Gravitational collapse of ring objects in five-dimensional
space-time
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Abstract
Numerical studies of gravitational collapses of ring objects are reported. We followed
dynamics of collisionless particles which are distributed in toroidal configurations in
non-rotating space-time, comparing their evolutions both in four and five-dimensional
space-time. All the models evolve into a single spherical black-hole, while we observed
a formation of ring-shaped (S2 × S1) apparent horizon in their earlier stage for large
radius ring matter in five-dimensional cases. The topology change of apparent horizon
occurs as their area gradually increases. Since we do not include any rotations of
space-time, all collapses proceed so quickly that no observer can be escaped from the
center of the ring if he/she observed an appearance of a ring black hole.

1 Introduction

In recent years, the so-called “large extra-dimensional models” have been investigated as a consequence of brane-
world pictures. It is expected that the LHC detects productions (and evaporations) of mini black-holes if our
universe is constructed with higher dimension more than four. With this background, black-holes in higher
dimensional space-time are extensively studied for a decade.

In such studies of higher dimensional black-hole, one of the most interesting aspects is the discovery of black-
ring solution[1] with horizon of S2 ×S1 topology in U(1)×U(1) space. Discovery of black-ring solution indicates
that there is no uniqueness theorem under the assumption of stationary and axisymmetry in higher dimensional
space-time. Furthermore, many interesting discoveries of new black-hole solutions which are called “black objects”
have been reported and their properties are being revealed.

Recently, it was suggested that fat black-ring might be unstable because of the existence of initial data which
violates the local Penrose inequality[2]. However, fully relativistic dynamical features of black-ring, such as the
formation processes and topological transition, are still unknown. We plan to investigate dynamical features of
black-objects using numerical simulations.

In our previous work, we investigated the initial data sequences of non-rotating spheroidal and ring matter
configurations[3]. We numerically solved the Hamiltonian constraint under the assumption of momentarily static
and conformally flat. We found a critical ring radius for ring-shaped apparent horizon (AH) and this results
indicate that a dynamical transition of horizon’s topology from toroidal to spherical may be observed in a time
evolution. We also discussed the validity of the hyper-hoop conjecture using minimum area around matter. We
concluded that hyper-hoop conjecture is valid for the formation of spherical (S3) apparent horizon. Furthermore,
we performed the simulation of gravitational collapses with initial data sequences of spheroidal configurations
using our full general relativity code[4].

In this article, we report the gravitational collapses of non-rotating ring objects in five-dimensional space-time
(5D). Our simulations does not include angular momentum, but the model would be helpful for understandings
of black-ring space-time. We search both AH of spherical and ring-shaped during time evolution.

2 Our numerical approach

2.1 Initial data

The initial data are constructed on four-dimensional space-like hypersurface Σ(4). By assuming the time symmetry,
non-trivial equation is only the Hamiltonian constraint equation. We apply the standard conformal approach to

107Email address: yamada@is.oit.ac.jp
108Email address: shinkai@is.oit.acl.jp
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obtain the spatial metric γij . The equations would be simplified with a conformal transformation,

γij = ψ2γ̂ij for Σ(4), (2.1)

where γ̂ij is a trial base metric which we assume conformal flatness as,

dℓ2 = γ̂ijdx
idxj = dX2 +X2dθ1

2 + dZ2 + Z2dθ2
2, for Σ(4). (2.2)

The Hamiltonian constraint equation, then, becomes

D̂iD̂
iψ = −1

3
κ2ρ̂ for Σ(4). (2.3)

where Di, κ
2 and ρ̂ express the covariant derivative, gravitational constant and total energy density, respectively.

We impose the asymptotically flatness as the outer boundary condition and reflection symmetry as the inner
boundary condition as following

ψ = 1 +
MADM

rN−2
(at outer boundaries), (2.4)

∇ψ = 0 (at inner boundaries), (2.5)

where r =
√
X2 + Z2, and MADM can be interpreted as the ADM mass of the configuration.

2.2 Evolution

We developed our evolution code using the standard 4 + 1 ADM formalism. In the N + 1 ADM formalism, the
metric gµν is written as

gµν =

(
−α2 + βkβ

k βi
βj γij

)
, (2.6)

where µ and ν run from 0 to N +1 and i, j, k run form 0 to N . Evolution equations for the spatial metric γij and
the extrinsic curvature Kij are written as

∂γij
∂t

= −2αKij +Diβj +Djβi, (2.7)

∂Kij

∂t
= α((N)Rij +KKij)− 2αKilK

lj − κ2α

(
Sij +

1

N − 1
γij(ρ− S)

)
−DiDjα+Diβ

mKmj +Djβ
mKmi + βmDmKij ,

(2.8)

where α and βi are the lapse function and shift vector, S is the trace of stress tensor, respectively. We assume
the asymptotical flatness,

γij = δij +
const

rN−2
, (2.9)

at the outer boundary. We also impose the reflection symmetry on the inner boundary.
For the lapse condition, we apply the maximal time slicing condition (K = 0) at t = 0 (for the first time step),

and K-driver condition during time evolution. In 5D, the condition is given by

DiD
iα = α

(
KijK

ij + 2κ2ρ− κ2S − 4κ2

3
(ρ− S)

)
. (2.10)

We solve this elliptic equation by imposing the asymptotically flatness. Solving Eq.(2.10) is computationally ex-
pensive since it is an elliptic partial differential equation. During time evolution, we adopt the K-driver condition,
∂tK = −cK, (where c is a positive constant) which drives K back to zero so that the lapse function approximately
satisfies the maximal time slicing condition. The K-driver for 5D is written down as

∂α

∂t
= ϵDiD

iα− ϵα

(
KijK

ij + 2κ2ρ− κ2S − 4κ2

3
(ρ− S)

)
− ϵβiDiK − ϵcK, (2.11)

where ϵ acts as an effective diffusion constant. We also use zero shift condition βi = 0 since we assume non-rotating
space-time.

We use the 5D Cartoon method[5] for expressing the axisymmetric system for both the initial data set and
time evolution. This method was proposed as a prescription for constructing a symmetric space-time numerically,
in which the essence is not to use curvilinear coordinates but to use the Cartesian coordinates. This idea simplifies
the treatment on the axis.

We express ring configurations by distributing a collisionless particles. Each particle follows the geodesic
equation which we solved using the fourth-order Runge-Kutta method.
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3 Numerical results

Figure 1 shows snapshots of 5D axisymmetric evolutions of ring matter which is described with 5000 particles and
same ADM mass for all cases. We see that when initial ring radius is Rc/M = 0.75, common AH is observed at
t/M = 1.1. While we see that when initial ring radius is Rc/M = 1.5, ring-shape AH is observed at t/M = 1.7.
We also find that topological transition occur to spherical (S3) from ring-shape (S2 × S1) at t/M = 2.7.

In Fig.2, we show the area of both common and ring AHs as a function of coordinate time. We show three
cases of the initial ring radius; 0.5M , 1.5M and 2.0M . Common or ring AH is formed for all cases. We see that
the area of AHs monotonically increases in all cases. Furthermore, we find that the area of common AH is larger
than that of ring AHs, when the topological transition is observed.

For the case of Rc(t = 0)/M = 1.5 (right panel in Fig.1), we check whether the observer at the origin who
watched the appearance of the ring AH can escape outside or not. Fig.3 shows the snapshots of the hypersurfaces
on x and z axis with the proper-time. In Fig.3, solid lines colored by red, blue and green express a common and
ring AH and light ray, respectively. For this case, the light ray which emitted from the inner ring AH reaches to
origin at proper-time t = 1.6 (left panel in Fig.3). Even if the observer tries to escape with the speed of light just
after that time, he/she can not move outside of the common AH.

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t / M = 0.0

t / M = 2.0

AH (t / M = 1.1)

AH (t / M = 2.0)

z 
/ 

M

x / M

(a)

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t / M = 0.0

t / M = 2.7

AH (t / M = 1.7)

AH (t / M = 2.7)

x / M

z 
/ 

M
(b)

Figure 1: Snapshots of time evolutions plotting particles and location of AH. Number of particles are
reduced to 1/10 for figures. We set initial ring radius to Rc/M = 0.75 (left panel) and Rc/M = 1.5
(right panel). We see that a common AH is directly formed at t/M = 1.1 in the left panel, while we see
a topological transition of AHs to spherical from ring-shape at t/M = 2.7 in the right panel.
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Figure 2: Area of AHs is shown for three cases that initial ring radius is 0.5M , 1.5M and 2.0M . Area
is normalized with ADM mass MADM. Dotted lines express ring AH’s area. Common AH’s areas are
expressed by solid lines. AHs monotonically increase in time. We see that the area of common AH is
larger than that of the ring AHs, when the topological transition is observed.
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Figure 3: The snapshots of the hypersurfaces on x and z axis in the proper-time. The arrow indicates
the path of light, which shows the observer at the origin cannot escape if he/she sees the appearance of
a ring-shaped horizon.

4 Discussion

In this paper, we reported gravitational collapses of non-rotating ring configurations in 5D space-time. We found
that topological transition of AH during the ring matter collapses where we observed monotonical increase of the
area of AHs both common and ring AHs. We also found that no observer can escape from the center of the ring
if he/she observed an appearance of a ring black hole since all collapses proceed so rapidly. Up to this moment,
we only checked the existence of apparent horizons, and not the event horizons. The system does not include any
angular momentums. We are implementing our code to cover these studies. This work was supported partially
by the Grant-in-Aid for Scientific Research Fund of Japan Society of the Promotion of Science, No. 22540293.
Numerical computations were carried out on SR16000 at YITP in Kyoto University, and on the RIKEN Integrated
Cluster of Clusters (RICC).
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Abstract
In this paper, we consider a class of model of non-local gravity with a large bare
cosmological constant, Λ, and study its cosmological solutions. In the absence of
matter, we find a power-law expanding universe solution a ∝ tn with n < 1, that is,
a universe with decelarated expansion without any fine-tuning of the parameter. So
the effect of the cosmological constant is effectively screened in this solution. Also it
is found that the solution is ghost-free for a very wide range of parameters. Thus our
solution opens up new possibilities for solution to the cosmological constant problem.

1 Introduction

Since the discovery of the accelerated expansion of the current universe, there arise extensive discussions on the
mechanism to explain the observation within or beyond the Einstein gravity. One of the simplest model is to
modify the right-hand side of the Einstein gravity where a cosmological constant term Λ and other unknown
matter terms are added. Another popular approach involves the modification of gravity, so that the late-time
accelerated expansion can be obtained ’naturally’. Among them, one of the most extensively studied of such
modifications is F (R) theory, where F is an arbitrary function of Ricci scalar R. Recently, inspired by the study
of string/M theory or conventional quantum gravity, another type of the modification of gravity, called non-local
gravity, attracts more and more attentions. In this theory, a non-local term f(□−1R) is added into the action,
where f is an arbitrary function and □−1 is the inverse of d’Alembertian operator. Its cosmological effect and
other various aspects has been studied in [1].

Here we concern on another aspect of non-local gravity. It is proposed in [2] that there is some hope to solve
the cosmological constant problem in this framework. Inspired by their claim, a detailed mechanism to screen the
cosmological constant in the non-local gravity is presented in [3]. However, like the situation of any other theories
with higher-derivatives, here the non-local operator □−1 often involves a wrong sign in the kinetic term, that is
a ghost which will lead to the instability of the system. Some attempts have been made to avoided this problem
around the flat or deSitter spacetime, but now successful up to now.

In this paper, we consider a simple one-parameter family of non-local gravity models with bare cosmological
constant Λ and study their cosmological solutions. The models are characterized by a function f(ψ) = f0e

αψ

where ψ ≡ □−1R, with α being the real, dimensionless parameter. We assume the universe is spatially flat, and
consider the case where there is no matter contribution. Interestingly, we find a power-law solution a ∝ tn, where
a is the cosmic scale factor, with n < 1. This implies that the effect of the cosmological constant is completely
shielded to render the expansion of the universe decelerated. To be specific, as α varies from −∞ to +∞, n
increases monotonically from 0 to 1/2. Thus the universe behaves like a radiation-dominated universe for α≫ 1.
Then we examine if the solution is free from a ghost. To our happy surprise, it is found that for a very wide range
of the parameter α, namely for α > αcr ≈ 0.17, the solution is found to be ghost-free. For this range of α, we
find n > ncr ≈ 0.35.

2 Non-local gravity and ghost-free condition

We consider a class of non-local gravity whose action is given by

S =

∫
d4x

√
−g
{

1

2κ2

[
R
(
1 + f(□−1R)

)
− 2Λ

]
+ Lmatter (Q; g)

}
, (2.1)

where κ2 = 8πG, f is a function that characterizes the nature of non-locality with □−1 being the inverse of the
d’Alembertian operator, Λ is a (bare) cosmological constant and Q stands for matter fields. For definiteness, we

109Email address: yingli@yukawa.kyoto-u.ac.jp
110Email address: misao@yukawa.kyoto-u.ac.jp
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assume matter is coupled minimally to gravity. Therefore, the above may be regarded as an action in the Jordan
frame.

In this simple class of non-local gravity, we rewrite the action into a local form by introducing two scalar fields
ψ and ξ as

S =

∫
d4x

√
−g
[

1

2κ2
{R (1 + f(ψ))− ξ (□ψ −R)− 2Λ}+ Lmatter

]
=

∫
d4x

√
−g
[

1

2κ2
{R (1 + f(ψ) + ξ) + gµν∂µξ∂νψ − 2Λ}+ Lmatter

]
. (2.2)

Assuming a spatially flat FLRW universe with the metric,

ds2 = −dt2 + a2(t)δijdx
idxj , (2.3)

by varying the action with respect to gµν , ξ and ψ, respectively, one obtains the field equations as

0 = −3H2 (1 + f(ψ) + ξ)− 1

2
ξ̇ψ̇ − 3H

(
f ′(ψ)ψ̇ + ξ̇

)
+ Λ+ κ2ρ , (2.4)

0 =
(
2Ḣ + 3H2

)
(1 + f(ψ) + ξ)− 1

2
ξ̇ψ̇ +

(
d2

dt2
+ 2H

d

dt

)
(f(ψ) + ξ)− Λ + κ2P , (2.5)

0 = ψ̈ + 3Hψ̇ + 6Ḣ + 12H2 , (2.6)

0 = ξ̈ + 3Hξ̇ +
(
6Ḣ + 12H2

)
f ′(ψ) , (2.7)

where a dot denotes the time derivative ˙ = d/dt, H = ȧ/a, and ρ = −T 0
0 and P = T ii /3 are the energy density

and pressure of the matter fields, respectively.

To examine whether the theory contains a wrong sign in the kinetic term (ghost) or not, in the following we
take an unperturbed approach, that is to make a conformal transformation of the metric to bring the action into
the one in the Einstein frame, namely the conformal frame in which the gravitational part of the action (2.2)
becomes purely Einstein. For this purpose, from now on, we denote the metric in the Jordan frame by gµν while

the one in the Einstein frame is labeled by the index (E) as g
(E)
µν and consider a conformal transformation,

gµν = Ω2g(E)
µν , (2.8)

and identify the conformal factor as

Ω−2 = 1 + f(ψ) + ξ , (2.9)

then the gravitational part of the action becomes Einsteinian as

S =

∫
d4x
√

−g(E)

{
1

2κ2

(
R(E) − 6∇µ(E)ϕ∇(E)

µ ϕ− 2∇µ(E)ϕ∇(E)
µ ψ − e2ϕf ′(ψ)∇µ(E)ψ∇(E)

µ ψ − 2e4ϕΛ
)

+e4ϕLmatter(Q; e2ϕg(E))
}
. (2.10)

It is now easy to derive the ghost-free condition. Since there are only two scalar fields, the condition for the
absence of a ghost is that the trace and the determinant of the kinetic term matrix are both positive. In the
present case, it is readily seen that only the positivity of the determinant is sufficient, that is,

det

∣∣∣∣ 6 1

1 e2ϕf ′(ψ)

∣∣∣∣ > 0 . (2.11)

In terms of the original fields, this condition is expressed as

f ′(ψ) >
1

6
(1 + f(ψ) + ξ) > 0 , (2.12)

where 1 + f(ψ) + ξ > 0 is a necessary condition from Eq. (2.9). Later the above condition is used to examine if
our cosmological solutions are free from ghosts or not.
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3 Cosmological solutions

As a class of simple non-local gravity models, we consider the case when f(ψ) is given by an exponential function,

f(ψ) = f0e
αψ . (3.1)

we look for cosmological solutions with the assumption that the scale factor is a power-law function of time t,
a ∝ tn. We also assume the absence of matter fields, ρ = P = 0. By solving the system of equations (2.4) - (2.7),
one obtains the following solutions for scalar fields ψ(t) and ξ(t):

ψ(t) =
1

α
ln

[
Λt2

6f0n(n+ 1)

]
, ξ(t) = −1− (2n− 1)αΛt2

2(3n+ 1)(n+ 1)
, (3.2)

where the index n is determined by the second equation in terms of parameter α as

6αn2 + 3(1− α)n− 1 = 0 . (3.3)

so in principle there exist two solutions for n as

n1 =
−3 + 3α+

√
3(3α2 + 2α+ 3)

12α
, n2 =

−3 + 3α−
√

3(3α2 + 2α+ 3)

12α
. (3.4)

which are plotted in fig.1 in terms of real parameter α. From the figure, we notice that an expanding solution is
given by n = n1 for any α and by n = n2 for α < 0. In both cases, n approaches 1/2 for |α| ≫ 1, that is, the
evolution of the universe looks like a radiation-dominated one.

-40 -20 20 40
α

-0.5

0.5

1.0

nHαL

Figure 1: Index n as a function of parameter α. Here the blue line (the one in the middle, which is
regular at α = 0) denotes n = n1 and the red line n = n2.

Inserting solutions eq.(3.2) and (3.4) into the ghost-free condition eq.(2.12), one finds that n2 is excluded,
while for n1, the parameter α is constrained by

α > αcr =
1

15
(7− 2

1
3 − 2

5
3 ) ≈ 0.17 =⇒ 1/2 > n(= n1) > ncr ≈ 0.35 , (3.5)

which implies a decelerated expanding universe in the absence of matter. Thus without any fine-tuning, the
solution successfully screens the effect of the cosmological constant that would have led to accelerated expansion.
It should be noted that Eq. (2.12) implies f ′(ψ) > 0, which reduces to the constraint on the parameter f0 > 0
for a positive α. Thus the solution we have obtained in the above is meaningful only for a positive cosmological
constant Λ.

To explore the behavior of corresponding solutions in the Einstein frame, under the conformal transformation
eq.(2.8), the cosmic proper time tE in the Einstein frame is related to t by dt = ΩdtE , so that

tE =

∫ t

0

dt

Ω
=

√
Λ t2

2
√

(n+ 1)(3n+ 1)
, (3.6)

HE =
1

aE

daE
dtE

=
Ω

a

d

dtE

( a
Ω

)
=

Ω2

a

d

dt

( a
Ω

)
=
nE
tE

, (3.7)
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where nE = (n + 1)/2. Thus, inserting these relationship into solutions in the Jordan frame, eq.(3.2) and (3.5),
one soon obtains the corresponding solutions in the Einstein frame as

ψ(t) =
1

α
ln

[
1

3f0(2nE − 1)

√
Λ(3nE − 1)

nE
tE

]
, (3.8)

ξ(t) = −1− α(4nE − 3)

2

√
Λ

nE(3nE − 1)
tE , (3.9)

where 0.75 > nE > nE,cr ≈ 0.675. Thus we conclude that the screening mechanism is also valid in the Einstein
frame.

Before closing this section, an important comment is in order. As we demonstrated, the theory can be recasted
in the form of a scalar-tensor theory or in the form of Einstein gravity plus two scalar fields. Therefore one might
consider our theory to be simply a scalar-tensor theory that gives rise to a decaying cosmological constant.
Technically this is true. But it should be emphasized that the form of the action for these scalar fields in either
the original frame or the Einstein frame is completely fixed by the original form of non-local gravity given by
eq.(2.1): There is no freedom in maneuvering the form of the Lagrangian for these scalar fields. In other words,
even if one were to regard this theory as a scalar-tenor theory with two non-minimally coupled scalar fields (in
the original Jordan frame), it would be highly non-trivial to find a theory that would lead to a solution with a
decaying cosmological constant which decays sufficiently fast in the original frame as well as in the Einstein frame.

4 Conclusion

We have studied cosmological solutions in a simple class of non-local gravity with cosmological constant. The
model is characterized by a function f(ψ) = f0e

αψ where f0 > 0 and α is a real parameter, and ψ is the
inverse of the d’Alembertian acting on the scalar curvature, ψ = □−1R. In the absence of matter fields, we
have found power-law solutions a ∝ tn with n < 1, that is, with decelerated expansion. We have found that for
α > αcr ≈ 0.17, the solution is ghost-free. Thus without any fine-tuning, the solution successfully screens the
effect of the cosmological constant that would have led to accelerated expansion.
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