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Abstract. The Gauss - Bonnet invariant is one of the most promising candidates for a
quadratic curvature correction to the Einstein action in expansions of supersymmetric string
theory. We study these Gauss - Bonnet black holes (and their properties) which could be formed
at future colliders if the Planck scale is of order a TeV, as predicted by some modern brane
world models.

1. Introduction
It has been pointed out that black holes could be formed at future colliders if the Planck scale
is of order a TeV, as is the case in some extra-dimension scenarios [1, 2]. This idea has driven
a considerable amount of interest (see e.g. [3]). The same phenomenon could also occur due to
ultrahigh energy neutrino interactions in the atmosphere [4]. Most works consider that those
black holes could be described by the D-dimensional (D ≥ 5) generalized Schwarzschild or Kerr
metrics [5]. The aim of this work is to study the experimental consequences of the existence of
the Gauss-Bonnet term (as a step toward quantum gravity) if it is included in the D-dimensional
action. This approach should be more general and relies on a real expansion of supersymmetric
string theory.

2. Black hole formation at colliders
The ”large extra dimensions” scenario [6] is a very exciting way to address geometrically
the hierarchy problem (among others), allowing only the gravity to propagate in the bulk.
The Gauss law relates the Planck scale of the effective 4D low-energy theory MPl with the
fundamental Planck scale MD through the volume of the compactified dimensions, VD−4, via:

MD =
(

M2
Pl/VD−4

)1/(D−2)

. It is thus possible to set MD ∼ TeV without being in contradiction

with any currently available experimental data. This translates into radii values between a
fraction of a millimeter and a few Fermi for the compactification radius of the extra dimensions
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(assumed to be of same size and flat, i.e. of toroidal shape). Furthermore, such a small value for
the Planck energy can be naturally expected to minimize the difference between the weak and
Planck scales, as motivated by the construction of this approach. In such a scenario, at sub-weak
energies, the Standard Model (SM) fields must be localized to a 4-dimensional manifold of weak
scale ”thickness” in the extra dimensions. As shown in [6], as an example based on a dynamical
assumption with D=6, it is possible to build such a SM field localization. This is however the
non-trivial task of those models.

Another important way for realizing TeV scale gravity arises from properties of warped extra-
dimensional geometries used in Randall-Sundrum scenarios [7]. If the warp factor is small in the
vicinity of the standard model brane, particle masses can take TeV values, thereby giving rise
to a large hierarchy between the TeV and conventional Planck scales [2, 8]. Strong gravitational
effects are therefore also expected in high energy scattering processes on the brane.

In those frameworks, black holes could be formed by the Large Hadron Collider (LHC).
Two partons with a center-of-mass energy

√
s moving in opposite directions with an impact

parameter less than the horizon radius r+ should form a black hole of mass M ≈ √
s with

a cross section expected to be of order σ ≈ πr2
+. Thoses values are in fact approximations

as suppression effects should be considered [9, 10] and are taken into account in the section 5
of this paper. Although the accurate corss section values are not yet known, a semiclassical
analysis of quantum black hole formation is now being constructed and the existence of a closed
trapped surface in the collision geometry of relativistic particles in demonstrated. To compute
the real probability to form black holes at the LHC, it is necessary to take into account that
only a fraction of the total center-of-mass energy is carried out by each parton and to convolve
the previous estimate with the parton luminosity [1]. Many clear experimental signatures are
expected [2], in particular very high multiplicity events with a large fraction of the beam energy
converted into transverse energy with a growing cross section. Depending on the value of the
Planck scale, up to approximately a billion black holes could be produced at the LHC.

3. Schwarzschild - Gauss - Bonnet black holes
The classical Einstein theory can be considered as the weak field and low energy limit of a
some quantum gravity model which is not yet built. The curvature expansion of string gravity
therefore provides an interesting step in the modelling of a quasiclassical approximation of
quantum gravity. As pointed out in [11], among higher order curvature corrections to the
general relativity action, the quadratic term is especially important as it is the leading one
and as it can affect the graviton excitation spectrum near flat space. If, like the string itself, its
slope expansion is to be ghost free, the quadratic term must be the Gauss - Bonnet combination:
LGB = RµναβRµναβ −4RαβRαβ +R2. Furthermore, this term is naturally generated in heterotic
string theories [12] and makes possible the localization of the graviton zero-mode on the brane
[13]. It has been successfully used in cosmology, especially to address the cosmological constant
problem (see e.g. [14] and references therein) and in black hole physics, especially to address
the endpoint of the Hawking evaporation problem (see e.g. [15] and references therein). We
consider here black holes described by such an action:

S =
1

16πG

∫
dDx

√−g

[
R + λ(RµναβRµναβ − 4RαβRαβ + R2) + . . .

]
, (1)

where λ is the Gauss - Bonnet coupling constant. The measurement of this λ term would allow
an important step forward in the understanding of the ultimate gravity theory. Following [16],
we assume the metric to be of the following form:

ds2 = −e2νdt2 + e2αdr2 + r2hijdxidxj
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where ν and α are functions of r only and hijdxidxj represents the line element of a (D − 2)-
dimensional hypersurface with constant curvature (D − 2)(D − 3). The substitution of this
metric into the action [11] leads to the following solutions:

e2ν = e−2α = 1 +
r2

2λ(D − 3)(D − 4)
×

1 ±

√√√√1 +
32π

3−D
2 Gλ(D − 3)(D − 4)MΓ(D−1

2 )
(D − 2)rD−1


 .

The mass of the black hole can then be expressed [11, 16] in terms of the horizon radius r+,

M =
(D − 2)π

D−1
2 rD−3

+

8πGΓ
(

D−1
2

)
(

1 +
λ(D − 3)(D − 4)

r2
+

)

where Γ stands for the Gamma function. The temperature is obtained by the usual requirement
that no conical singularity appears at the horizon in the euclidean sector of the hole solution,

TBH =
1
4π

(e−2α)′ |r=r+=
(D − 3)r2

+ + (D − 5)(D − 4)(D − 3)λ
4πr+

(
r2
+ + 2λ(D − 4)(D − 3)

) . (2)

In the case D = 5, those black holes have a singular behavior [16] and, depending on the value of
λ, can become thermodynamically unstable or form stable relics. For D > 5, which is the only
relevant hypothesis for this study (as D = 5 would alter the solar system dynamics if the Planck
scale is expected to lie ∼TeV), a quantitatively different evaporation scenario is expected.

4. Flux computation
Using the high-energy limit of multi-dimensional grey-body factors [17], the spectrum per unit
of time t and of energy Q can be written, for each degree of freedom, for particles of type i and
spin s as:

d2Ni

dQdt
=

4π2
(

D−1
2

) 2
D−3

(
D−1
D−3

)
r2
+Q2

e
Q

TBH − (−1)2s
.

This is an approximation as modifications might arise when the exact values of the greybody
factors are taken into account due to their dependence, in the low energy regime, on both
the dimensionality of the spacetime and on the spin of the emitted particle. Fortunately,
as demonstrated in the 4-dimensional case [18], the pseudo-oscillating behaviour induces
compensations that makes the differences probably quantitatively quite small. The mean number
of emitted particle can then be written as

Ntot =
15(D − 2)π

D−9
2 ζ(3)

Γ(D−1
2 )G

3
4Nf + Nb
7
8Nf + Nb

×
[

rD−2
init+

D − 2
+ 2(D − 3)λrD−4

init+

]
(3)

where Nf and Nb being the total fermionic and bosonic degrees of freedom, rinit+ is the initial
horizon radius of a black hole with mass Minit and, interestingly, the ratio of a given species i
to the total emission is given by :

Ni

Ntot
=

αsgi
3
4Nf + Ntot

where αs is 1 for bosons and is 3/4 for fermions and gi is the number of internal degrees of
freedom for the considered particles. The mean number of particles emitted by a Schwarzschild
- Gauss - Bonnet black hole ranges from 25 to 4.7 depending on the values of λ and D, for
MD ∼ 1 TeV and Minit ∼ 10 TeV. Those values are decreased to 5 and 1.05 if Minit is set at 2
TeV. Figure 1 shows the flux for different values of λ and D.
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Figure 1. Integrated flux as a function of
the total energy of the emitted quanta for an
initial black hole mass M = 10 TeV. Upper
left: λ = 0, D = 6, 7, 8, 9, 10, 11. Upper right :
λ = 0, 5 TeV−2, D = 6, 7, 8, 9, 10, 11. Lower left :
D = 6, λ = 0.1, 0.5, 1, 5, 10 TeV−2. Lower right :
D = 11, λ = 0.1, 0.5, 1, 5, 10 TeV−2.

5. Kerr case
According to the models of black hole creation at new colliders an appearing black hole can
have a non-zero spinning moment, therefore, it has to be described by some extended version
of Kerr metric. This work is in progress, here we would like to present few details. In D > 4
space times Kerr - Gauss - Bonnet metric does not contain any new types of singularities, all the
difference from corresponding pure Kerr black hole is only in the Hawking temperature value,
and, therefore, in evaporation speed.

The most convenient way to obtain Kerr - Gauss - Bonnet black hole solution is to use Kerr
- Schild parametrisation in the form:

ds2 = −(du + dr)2 + (dr)2 + ρ2(dθ)2 + (r2 + a2) sin2 θ(dϕ)2

+ 2a sin2 θdrdϕ + β(r, θ)(du − a sin2 θdϕ)2

+ r2 cos2 θ

(
dx2

5 + sin2 x5(dx2
6 + sin2 x6(...dx2

N )...
)

. (4)

where β(r, θ) is the function under consideration and

ρ2 = r2 + a2 cos2 θ

At the infinity one has the pure Einstein [5] case, so, if Λ = 0

lim
r→∞β(r, θ) =

µ

rN−5(r2 + a2 cos2 θ)
+ . . . ,

in dS/AdS case

lim
r→∞β(r, θ) = C(N)

Λr4

r2 + a2 cos2 θ
+ . . . ,

where C(N) is numerical coefficient depending upon the number of space time dimensions (N).
Here we present numerical 3D plots of β = β(r, θ) in 6D cases for different values of Λ

(α = 1), so, one can see that the behavior of the plots is rather continious and is without any
new topologies (as in [15]). The calculation of Hawking temperature and the evaporation process
details is in progress now.

6. Discussion
In case the Planck scale lies in the TeV range due to extra dimensions, this study shows that,
beyond the dimensionality of space, the next generation of colliders should be able to measure
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Figure 2. 6D plot of β(r, θ) againgt r and
a ∗ cos θ in asymptotically flat case (left plot) and
when cosmological constant Λ �= 0 (right plot)
when string coupling constant is set to be α = 1.

the coefficient of a possible Gauss - Bonnet term in the gravitational action. This would allow
an important step forward in the construction of a full quantum theory of gravity. It is also
interesting to notice that this would be a nice example of the convergence between astrophysics
and particle physics in the final understanding of black holes and gravity in the Planckian region.

Then, as studied in [16, 20], a cosmological constant could also be included in the action.
On the theoretical side, this would be strongly motivated by the great deal of attention paid
to the Anti-de Sitter and, recently, de Sitter / Conformal Field Theory (AdS and dS /CFT)
correspondences. On the experimental side, this would open an interesting window as there is no
unambiguous relation between the D-dimensional and the 4-dimensional cosmological constants.
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