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1. Introduction

The derivation of the field equations of
motion was considered in many papers which
used different approaches.One can find in/1.2/
references to the literature on this subject,

We should turn to this problem in
connection with +the superfield +theory
The superfields (SF below) are rather
complicated objects, each of them
contains many fields of integer and half-
integer spins. Therefore the derivation of
the adequate equations for them is an urgent
and nontrivial task. Notice that only the
simplest scalar SF-general and chiral - have
been considered in detail up to now. The
equations of motion for them were conjectured
by some apt unification of the equations of
motion for fields entering into their compo-
sition/3% | However, at present some higher
SF are also of interest, in particular, the
spinor and vector ones. The first one is
connected with an attempt to find the gene-
ral supersymmetric version’/% of the Yang-
Mills theory. In such a theory the spinor
SF is the gauge SF. The vector SF generated
by the supercurrent of Ferrara and Zumino %/
is needed in & possible supersymmetric ge-
neralization of the gravitational theory.



The starting point in these models is the
derivation of the free equations of motion.
Now it becomes impossible to seek for these
equations by some sorting due to the higher
complexity and due toc increasing number of
the operator structures. A certain clear
algorithm is needed to obtein them. In the
present paper such a procedure is proposed.
It is based on the properties of the pro-
Jection operators selecting the irreducible
representations, The new feature consists
in establishing the role and in using the
roots of the projection operators ( i.e,,
the sgquares of these root operators are the
projection operators), Besides we clear up
that the Rarita-Schwinger equations for
spin-vector field and the Pauli-Fierz equa-
tions for symmetric tensor field in fact
contain square roots of the projection ope=
rators, Therefore the approach under consi-
deration has some pedagogical value in the
ordinary field theory also. The use of the
projection properties permits one to define.
easily the Green functions,

The paper is planned as follows., We
begin with some necessary information con=
cerning the SF theory and in particular wve
recall the composition of irreducible super-
multiplets in the SF with arbitrary spin.
Further we formulate a general idea of the
derivation of the equations, It is illust-
reted then by the examples of the standard
equations for the spin 3/2 and 2 fields.,.
Afterwards the equation for the spinor SF
is discussed in detail.

II. Preliminaries

We use the following notations: @,
denotes four-component Majorana spinor co-

Ordiﬂates; —%—{yp,yy}: ’I,_n} = diag(+--—-); ys :yo}/l yzyq;

_ i . 0123 4, 3B_(c-1)Ba
O =3 [%‘,yul. € =1; 67=(C P Ga,

where C = iy°y2 is the charge conjugation
matrix; 0 a=9 9k,
The supersymmetry algebra

S 1--L B P |
UpSal=mgloy, 2y S (P8 1-0, (1)
< B, B
Ssa.s l“(y#)a p#
is realized on the S8F

o, (x.B):Al(x)+ 5“:,0“ i(x) + -}9'6 F, (X)+l&-6y5 6G(x)

+h—5iypy56Ap: (x) + %56.5“¢ai(x)+ (2)
~ 2

+-31-2-(ae) D;(x).

Here i is some external Lorentz index (e.g.,
the scalar SF ®(x, #), the spinor SF ¢ (x,0),
the vector &F ®,(x, #) , ete.). We sey that
the SF ®,(x,8) has external spin J if it
obeys the irreducibility conditions for
Poincare spin § with respect to the index

i . For example, the SF & (x,0) has external
spin 1 if a#¢F=0 and spin 0 if 3P¢V-JV¢p

The irreducible representations of
algebra (1) (with nonzero mass) are label-
led by 'the eigenvalues of the second Casi~
mir operator {a generalization of the
square of the Pauli-Lubanski vector)/7/

¥io—m?Y(Y+]),
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where Y is an integer or half-integer cal-
led superspin. A representation with su-
perspin Y contains four ordinary (Poinca-
re) spins J

vyl oy 1
J = 2,Y,Y,Y+ -'2'—. (3)

In Ref.’8 it was shown that the SF
(2) realize reducible representations of
the supersymmetry. Note the remarkable

duality:an SF with external spin j containé

fogr irreducible multiplets with super-~
spins Y !

Yzi“'}i':i!i'j""l?' (h)

The projection operators extracting
these irreducible representations out of
the SF with arbitrary spinj are also cal~-
culated and the corresponding supplemen-
tary conditions are derivea’t/ ,

Finally, let us remind an important
operator - the spinor derivative Duﬂv .
It obeys the same commutation relations
(1) as §, and anticommutes with §

1S, .Dgl = 0. “
For this reason alf;the operators invari-
ant under the supersymmetry transformations
are constructed out of D, , In particular,
the projection operators mentioned above
and the equation of motion operators we
are interested in are polynomials in D, .

III, Equations of Motion

It is instructive to start with an
analysis of some features of the standard
equations for the ordinary fields. In the
field theory the elementary particles are
described by fields which are functions

of the coordinates ¢,(x) transforming ac-
cording to some representations of the Lo-
rentz group (i stands for a set of Lorentz
indices). At the same time these fields
give also representations of the Poincare
group (with P, realized as ig_ ). The lat-
ter are reducible (at least bdcause the
value of P2 is not fixed). On the other
hand, it is natural to associate such cha-
racteristics of the particles as mass and
spin with the irreducible representations
of the Poincare group. So we have to impose
certain conditions on the functions ¢,(x)
that single out the corresponding irredu-
cible part, First of all, we require that
the particle momentum P, lies on the
mass-shell
2 ] :

P¢;“‘m¢’i' (5)
Further, depending on the Lorentz index 1 ,
the field can describe one or more spins.
It is conventionally assumed that one
field describes one spin (as a rule, the

highest it contains). In this connection

the supplementary conditions are imposed:
R. ¢ = 0, (6)
i} i

vhere R, means a set of differential ope-
rators. Equation (6) excludes all the spins
except the highest one.

However, certain troubles arise when
the Klein-Gordon equation (S) and the sup-
plementary conditions (6) are written down
separately.In this case the introduction of
the interaction can lead to contradictions.
Therefore it is strongly preferable to write

Eqs.(5) and (6) in the form of & single diffe-

rential equation



Y ¢i=0- (7)
Now Eqs. (5) and (6) are obtained as corol-
laries of Eq. (7). For instance, when spin
1 is described by a vector field ap(x)

Eqs. (5) and (6) read

2 H _
Dap&)+m a#h)=& d aJx)_O.

This couple of equations is equivalent to
the Proca equation

1% 2
aa#(x)-a#a au(x)+?| a#(!t)=0- (8)

There is also one more requirement
vhich concerns the order of the operator
o in Eq. (7)., One assumes that =, is
0f the first order for the Fermi fields and
of the second ~ for the Bose fields.

How to deduce equations of the type
(7T) satisfying all the requirements formu-
lated above? The answer is prompted by the
Proca equation (8), Let us rewrite it in
the form

-n(ﬂl)#"au.maap, (9)
where

| 4,0

(MY = = =5—
is the projection operator for spin 1. Now
it is clear that the field a,(x) -
=-n/m?(ﬂ‘)”a¢x) obeys the supplemen-
tary condition (of the type (6)) 6ﬂaﬂ=0.
Then (Mt)'a = a and Eq. (9) reduces
to Eq. (5).° #

This example suggests a general idea.
Let Ny, be the projection operator ext-
racting the representation we are dealing

with out of the field ¢;(x) . Multiply it
by the -o in power g sufficient to cancel
the nonlocality and write the equation

(-0)tm, g = (m g, (10)

Thus the irreducible representation 1s
singled out. However, the order of Eq. {10)
may be too high. Suppose that, e.g., q= 2
and a second order equation is required.
Then one can find (in general, not uniguel-
ly) an operator n= Vy(=o)¥ 1l defined by

2
=(-0) W, (11)

"o Tix

and write an equation of the right order
26, = (12)
™ ¢-1 -mé, =0.
Equation {10) follows from Eq. {12)
2 2 - 4 . ’
(=0) W, b =79 =m, (mog)) =md,

This means that Eq. (12) selects the same
representation, ) .
A classical illustration for this

"root" triek is the Dirac equation. The
vispinor field ¢,(x) describes spin l/?
only. So here the projection operator 1s
gsimply 1 and Eq. (10) takes the form of
Eq. (5)

~op_(x) = mzv,ba(x).

We need a first order equation so we find
the «x

a

ﬂ:d— 0= iJ
and arrive to the common Dirac equation
idy-my=0,
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The derivation of some other known
field equations gives nontrivial examples
how to handle the "root method”. So, spin
3/2 1is usually described by a spin-vector
field y, (x) . At the same time this
field contains two spins 1/2. The supple-

mentary conditions excludlng these super-
fluous spins are

" #
0# ¢a 0; (y!‘ Sb )a:: 0.

We want to find an equation of motion con-
taining these supplementary conditions,
Consider the projection operator extract-
ing spin 3/2 out of the field wa#

i -1

2 %9,
uv,aff o

1

f“"lﬂﬁ aﬂ " "3'"?“ y")“ﬂ+ (13)

1
+?5_[a(apyu'-avy;&)]aﬁ"
Then we write down the localized operator
(- puw,aB « It includes second order
derivatives and we need a first order
equation ( Yoy 1is a fermion field). So
wve have to extract the square root of
(-o) I + There exists a one-parameter
set of such roots. In the ‘equations obtained
8 one-parameter change of field variables
¢F - +ﬁly y ¢V can be made. Final-
ly, the restrlctzon that the equations must
correspond to hermitian Lagrangians leads
to the Rarita~Schwinger set of equatlons

(A-my  -ala,y" ¥, +vy,0 Vg )

+--—-(3a —2a+l)y Five l/i +(32 <3a+1)my y '/’V =0.
| Y

10

Here a is an arbitrary real parameter.

‘The next example is the symmetric ten-
sor field h describing spin 2 and super-

fluous spins 0 and 1 too., The correspond-

ing supplementary conditions

*h =0, nt <0
Hy I3

'shéuld follow from the equations of motion.

The projection operator -for spin 2 is°
7= -9 9 /o)
(T =1 =99,

l - s o-Llr o7 15)
3 T (15

Mwp =7 Tup * 2 Mo wAp

and it has terms withao™2 , The operator

(-0) is local but has too. high ardgr
derivatives. So a sguare root is required
again, Just as .in the previous case Wwe
obtain a one- parameter set, then 1ntroduce

“the changes hyp 2 hyp+Bay, L , rest-

rict ourselves to the Lagranglan type
equations and come to the common Fierz-Pau-

1i set of equations
A A ) Ap
A - ~ta d & hy +
Dh.w-aua h‘\v d,d h‘\.u+ 1+2a(nw Ap

A 2+4a+3a2___ A

w EreT L oh -
N 2(1+2a) 2 A

+6#avh w (16)

2
. lia+a 2 A2
[ —— 1 v h A+ m h}w-o.

(1+2a)2

Finally, a few words ébout.the massless
case. The massless equations are obtained
from the massive ones simply putting m =0,
What about the irreducibility conditions now?
Note that the massless equations do not

1.



lead to corollaries of type (5) and (6).
Moreover, the character of the representa-
tions at m =0 changes substantially and

the conditions (6) lose their sense now.
They are replaced by one or more gauge inva-
riances of the equation which make the
superfluous degrees of freedom entirely
arbitrary, i.e., unessential, For instance,
the Proca equation (8) becomes at m=0 in-
variant under the gauge transformation

ap(x) - ap(x) + a#.;, {x)

where ¢(x) is an .arbitrary scalar function.
The Rarita-Schwinger equations (14) are
invariant at m=0 under substitutions

a~1
sb# (x) *rﬁ#(X) +r3#«\(x) + Jy# Ax)

with arbitrary spinor function A(x) , ete.
Now we can transfer all these consi~
derations to the SF case, Note one peculia-
rity only, Each 8F contains bosons as well
as lermions, To establish the right order
of the SF equation operator the following
arguments are used, The SF equations must

follow from the action principle 0.1t/

S = fd¥x d% 8(x, 9).

(17)
Here fd*0 is understood as a Grassmann
integral s 1.2, fﬂad0f3=3aﬂ . This

means that the dimensionality [d0]=-l"(in
cm) because [01=1/2 |, Then{f1= -2 since
[S1=0 (in units h=c=1), Let us
write the kinetic term in the Lagrangian
in the form

S?k -=115'i ”ijq)j .

12

where 7;; 1is the equation of motion opera-
tor, Now it is clear that

() =-2-21001. (18)

Finally, the dimensionality of the SF is
determined by the dimensionality of the
component field with the leading spin. To .
make clear this statement consider the ge-
neral scalar SF ®(x,#), Suppose we are in-
terested in the highest superspin Y=1/2
which includes the leading spin 1. This spin
is carried by the field A (x) (see the de-
composition (2)) end it is natural to
ascribe to it the canonical dimensionality
em~l, Therefore the SF dimensionality equals
0 and according to Eq. (18)[#}j=-2 ., This is
just the dimensionality of the localized pro-
jJection operator for superspin 1/2/8.9/,

ra(-o)u'?, oY% 1, L (5D )?

40

Thus we find the equation/411/

(a +-}T(ﬁo)2}¢+m2m=o. (19)

As was to be expected, the irreducibility.
condition DD®=0 (see Ref.’8? ) follows
from Eq. (19) at m#0 and at m=0 there
arises a gauge invariance

® »® +DDA,

where A(x, ) 1is an arbitrary scalar super-
function. If one writes Eq.(19) in terms

of the component fields and eliminates the
auxiliary fields one obtains a set of the
standard equations for a vector, a scalar
and two spinors (at m =0 <~ for a vector and
a spinor),

13
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Now we turn to the spinor &F,

IV. The Spinor Superfield

The spinor.SF is defined by its decompo~
sition . :

. (1 - ~- {3) - -
o, 0= (045 F 2 0004 L 50y 94 L3y 00 e

Ba
+-}i_a.y O )+ Lo, o”wé“’(x)+ 200y Ty
(2) ¢ H 20)
Ya = (U, 14U,y g+ iU ¥, + iUy, v vilgY o “wBa
(6) . . Y
!/Ba ={u 14 uyyg+ingy, +1-uf“y#y5+ g o, )ﬁa .

If v, is a Majorana E&F then all the Fermi
rields -~ v V@) , D), ¢ B, v B, g Dix)
are also Maaorana flelds and all the Bose-
fields Uy, s , vy, are real,

These fields involve a considerable
number of spins among which the leading spin
3/2 is the most interesting (it is connec~
ted with the field .3 ), The leading
spin enters into the supermultiplet with
the highest superspin 1, which is singled
out by the projection operator/8/

(ﬂl)aB=-§-(1+ —(-D—Df—) lf-ﬁ- -8-1--i8 D-iyvySD(fJ‘wys')dB(ZI)

or equivalently by the supplementary con-
ditions

DDY_ -0, D% -o. (22 )

14

We wish to find an equation which des-
cribes only this superspin 1 but.- not super-
splns 1/2 and 0. I

- Let- the spinvector field ¢ "~ .have
the canonical dimensionality cﬁL3/2 ‘Then
the :dimensionality of the SF ¥ (x,8) is
cm -1/2 and according to Egq. (18%) the equa—
tion operator must have dimensionallty em™1
The localized projection operatdor (21) has:
dimensionality cm™2 and therefore we have.
to extract its square root. There exists
a family of such roots with arbltrary pa-
rameters £ , g

n(€,n)= -—é-[(cosf} g Sin€)(61d ~iy y Diyky D) +
+ cosy. (DD +3y55y50)+5inq.y5(35D +y Dy D).

However, all these roots are in fact
equivalent because the equations following
from them are connected which each other by
Ys ~transformations:

£y, | ny
W, (3w g (e %),

a [+4 a

Y (x,0)= €5 W(x,0).

Therefore we choose one of these roots
(f=n =0 ) and write down the equation

‘——(613+DD+3}/5[)}15 —1y ysf)ly yg DIV - m‘l‘=0(23)

U81ng the- fact that Eq.(23) contains’

r=y(-0)1l one can easily flnd the inverse
operator

15
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1 =_ﬂ"+m
7 -m D+ m2

1+ %(1-11)1

which defines the Green function and is
needed for the perturbation calculations.

Equation (23) can be obtained from the
action principle

S =7d4xd? 2(x,0) = 5 [ &*xdBT (r-m)v.

One can represent the Lagrange density in
e more convenient form

-— R 1 2 l L]
f"alz"‘"”’""'5‘5”#“"1*1]5"5°pv"” l-Lm#v (214)

using the algebraic‘Properties of the spi-
nor derivatives Dafg and integrating by
parts, _

To be convineed once more that this ,
Lagrangian describes the superspin 1 multi-
plet it is useful to write it down in terms
of component fields (see decomposition (20)),
The final result will be maximally compact
and illustrative if one excluded the super-
fluous degrees of freedom, This is usually
done by means of the equations of motion.

We prefer another procedure which is more
legitimate, This procedure consists in suit-
able changes of the field variables (which
are a propos alsoc suggested by the
equations of motion)., After these changes
the superfluous fields remain still in the
Lagrangian but it becomes evident that

they are unessential (as the equations of
motion for them are trivial).

16
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So the fermionic component fields are
replaced by

w(l}zw
¢,(3’=_.tlf¢'+;}-y5x+iy5)'#¢p— 'Z,L(i” ~m )y

¢1(4)=§'-x —14-}'5¢i vy (id -m)y

(25a)
(5) ‘ : . 1.

(,[/# =l,f1#+—]31ys(lap -my#)l,b +-£—-ly_sy#¢ -le“x
{ i ' - -

¢ 7>-a-12-a (¢+y5x)+-§-}'5(a)’p o) uk ~oy

2 m(id -
+;m(w 4m)¢+m%x

and the bosonic ones by
UlsA, U,=B, U_,“‘a"\’}1
U, <A -Le, JE
4" TpTm ok
Ugyr Em,»fz-l‘;(apvv -4,V,)
L a+6#VP
2

u =b-9 A —mB
p

| 1V
- s Lv -94gv
u v +%1A +24 Ev#+2m P +'“( # s V)

17
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1 : 1 A p
u."»;u;:e#p+_2(ayvv -avvp )+ "j"‘pw\pa AV -

. 1 A A
- szl‘V - Tn-( DE’“} +JP¢3 EVA-GVB E#‘\). (25b)

Then after the integration over d% the
Lagrangian for the fields takes the form

Loy=ghiay -29"0 vy, +dty idyty, -

emgty Yy —mghy AH?(VJIN myy )+
oo " (26)
3 1 ¥ B wh g ath
+2—Iysx +Tm¢.«i) +8B(V DVF -V 6‘#8 VV)+ |
2,2 pv A prafd _ 2.2
+8m v, -8E Euhp d°a ¢ Eaﬁ 16m E“V+
2

2
»ut.it’.-w---‘.2v:»fiimalA—-Bma‘1 Ap -4b +4m282

The adequacy of the choice of the 8F
equation is confirmed., Really the irredu-
cible superspin 1 representation coentains
spin 3/2 (spinvector field ¥, having the
standard Rarita-Schwinger Lagranglan) two

spins 1 (vector V, and antisymmetric tensor

E, fields with correct Lagrangians) and
spin 1/2 (the field m¢ ), All other fields
are evidently unessential, Further, it is

R

easy to verify that fields w#’ i E#v and
my, form an invariant subspace under the
supersymmetry transformations,

Now we are going to discuss the zeromass
case, The corresponding Lagrangian is ob-
tained by setting in Fq.(24) m=0 . However
we cannot set m=0 in Eq. (26) because
this form is obtained from Eq.{2h) by the
singular at m-0 field changes (25). This
can be explained as follows. The original
decomposition (20) contains the spinor
field ¢ with dimensionality em~1/2, Multi-
plying it by the mass we obtain the canoni-
cal dimensionality em=3/2, The corresponding
part in the Lagrangian (26) is proportional
to m? and this ensures its vanishing as
m+0 ., The situation with the bosonic fields
is different. In the decomposition (20)
there are no fields having spin 1 and dimen-
sionality less than the canonical one cm™+
which would enter into the Lagrangian (26)
with a multiplier ~m and would vanish as
m-+ 0, Therefore at m=0 1in the field
changes (25) one has to omit all the terms
which contain m both in the dencominators
and in numerators. Then the Lagrangian is
written down as

f(x)aa"iﬂgb.u—ZJp i&uyv¢v+¢-;py#iﬂyvlfl +
- b w o 27)
r3xy x +16(Vav —vFa v )_8E¥ e gran
4 5 ¢ gV HvAp
+4e2 -—-2v2 -44b2.
g #

19
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The essential fields here are ¥, (chirali-
ties +3/2) and 'VF {chiralities +1).(Recall
that the zeromass supermultiplets include

only two successive chiralitiess) The equa-
tions for the other fields are trivial.In

particular ’
A g M

d [4 =
pruv 0. “uvip

aAapzo

and we have

E =4 - =
up va auwp LY Bps , (28)
vhere w and s are arbitrary vector and

gcalary %ields, respectively., In other words
the fields E ,, and a, turn out to be unes-
sential due #o the invariance of the Lag-
rangian (27) under the gauge transformations

E g E - -+
v ﬂu+8ﬂwv avw# . ap ap+6ps

The Lagrangian (27) is also invariant under
the standard gauge transformations of the
vector and spinvector fields
Vﬂ* %‘+9#f , f-arbvitrary scalar
function (29a),

é-arbitrary spinor(29p),
funetion
All these transformations have an SF form.

Indeed, the Lagrangian (24) allows the gauge
transformations (at m=0 )

tﬁp *!ﬁp +0Ff.

¥ ¥ _ +D_A, (308)

¥oe¥ +(idy D) 3, (30b)

20
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where A(x,8) and X(x,0) are arbitrary
scalar superfunctions. The first one,

(30a), is connected with the invariance
(29a) of the Proca equation and it enables
us to construct the generalization of the
Yang~Mills theory/5/ mentioned in the
Introduction. The second transformation
(30b) provides the gauge freedom (29b) of.
the Rarita-Schwinger equation and causes 8/
some troubles when introducing interaction.

Ending this section we wish to stress
once more the compactness and effectiveness
of the SF formalism in comparison with the
treatment of the supersymmetric models in
terms of the field components.

Unfortunately we are not yet accustomed
enough to the 8F language. Because of this
we have often need in lengthy and tiresome
caleulations in terms of field components
in order to achieve greater confidence and
apparent clarity.

In conclusion we note that the equations
of motion for other SF can be obtained in
s similar way. In connection with the super-
gravity we are especially interested in
the vector SF, the Lagrange theory of which
will be discussed in a separate paper.
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