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The consistency of the cosmological data with the ΛCDM concordance model can be assessed
through the estimation of the AL parameter. We will show that a 2.6σ discrepancy with the
expected unity value is measured using the profile likelihood method applied to the Planck
public likelihoods. AL is highly correlated to the reionisation optical depth τ and one also
observes a � 2σ discrepancy between the high-� and the low-� Planck results on this parameter.
We address those points using Hillipop, a high-� likelihood, built from temperature Planck
data. It makes use of foreground templates derived from the Planck data themselves, and has
the interesting feature to point to a lower τ value than the official one, fully in agreement with
the low-� likelihood results. While the AL value is still high using Planck data alone, we have
combined Hillipop with the ACT and SPT data to further constrain the foreground nuisance
parameters. We will show that this combination permits to recover an AL value in agreement
with one, keeping a τ value fully compatible between all the considered datasets and to get a
coherent picture of the ΛCDM scenario. This work is further detailed in 1.

1 Appetizer: Profile likelihoods

The wide-spread approach used in Cosmology for parameter estimation is based on Bayesian
inference using Monte Carlo Markov chains algorithms to explore the likelihood function. In
contrast, in Particle Physics, the frequentist profile likelihood method is used in most casesa.
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Figure 1 – χ2 distribution in the (X,Y ) plane (left), and corresponding posterior distribution (middle), and profile
likelihood for X (right).

Beyond philosophical matters, a potential difference between both approaches is the so-called
volume effect. Consider a problem for which we want to infer two parameters (X and Y), which
likelihood function L, or more precisely the χ2 defined as:

χ2 = −2 lnL (1)

aOne can also considered the Neyman CL construction as in 5.
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is shown on figure 1, and present two minima (around X � −15 and X � 2), and a banana
shape. If one wants to estimate the mean and error on X using the Bayesian method, one would
build the marginal posterior such that:

P (X) =

∫
L(X,Y )p(X,Y )dY (2)

which is represented on the middle of the figure. On the other hand, the profile likelihood (on
the right hand side), is simply built for each X value as the point in the Y dimension which
maximises the likelihood function:

L(X ) = max
Y
L(X ,Y) . (3)

One can straigforwardly show, in this precise example, that, in the Bayesian case, the mean
value of the posterior distribution (around X � 1) is far from matching the one of the best
fit (blueish zone in the 2D distribution corresponding to the points where the likelihood is
maximum), while, by construction, the mean value deduced from the profile likelihood method
is exactly degenerated with the best fit (as the higher likelihood area of the parameter space is
the “most likely” to be the true one).

Hopefully for the Planck data and the standard ΛCDM cosmology, such case does not show
up 3 2 4, but when considering extensions to ΛCDM one should be aware that such situations
may occur. To ensure that the physics results do not depend on the statistical method (or at
least to understand the discrepancies if any), we have build a sofware in which both approaches
can be tested in a unique framework (CAMEL) that can be found here: camel.in2p3.fr. It
makes use of CLASS 6 as Boltzman solver.

2 Planck Likelihoods

We first remind the two Planck released likelihoods 2, which are considered in the following:
lowTEB, the low� temperature and polarisation map based likelihood, and Plik: a gaussian
high-� temperature likelihood. On top of Plik, to better constrain the SZ sector (thermal and
kinetic), a constraint has been used, derived from ACT data which writes:

ASZ = ZkSZ + 1.6AtSZ = 9.5μK2 (4)

with a dispersion of 3μK2.
Hillipop 2 is another high-� Planck likelihood (� > 50) based on cross-spectra at 100, 143,

217 and 353GHz, with temperature data, which can be used as an alternative to Plik. The
main differences between them occur from the choice we have made in the likelihood building:
we use 15 cross-spectra from 6 maps 7, the intercalibration coefficients are defined at the map
level, we use different masks to further reduce the contamination from the foregrounds and
the parameterization of the foregrounds is based on templates derived from the Planck data
themselves.

3 Parameter estimation

3.1 Hillipop combined with lowTEB

Table 1 shows a comparison of the ΛCDM parameters infered from Plik and Hillipop, using the
lowTEB likelihood for the low-� part.

The main differences that show up are for τ and As (not suprisingly since both are correlated
through the fact that the measured C� spectrum scales as ∝ Ase

−2τ ). As the estimation of
those parameters is mainly driven by the low-� data, one may therefore wonder why they are so
different.
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Table 1: ΛCDM parameters estimated with the Plik+lowTEB likelihoods (middle column) and with
Hillipop+lowTEB (last column).

ΛCDM parameter Plik+lowTEB Hillipop+lowTEB
Ωbh

2 0.02222± 0.00023 0.02221± 0.00023
Ωch

2 0.1197± 0.0022 0.1192± 0.0022
H0 67.31± 0.96 67.51± 0.97
τ 0.078± 0.019 0.072± 0.020

ln(1010As) 3.089± 0.036 3.068± 0.038
ns 0.9655± 0.0062 0.9645± 0.0071

σ8 0.829± 0.014 0.816± 0.015

The τ value derived from the lowTEB likelihood using the profile likelihood method reads:

τ = 0.067+0.023
−0.021 lowTEB , (5)

2.2σ away from the Plik only value:

τ = 0.172+0.038
−0.042 Plik , (6)

while we have with Hillipop τ = 0.134+0.038
−0.048, with similar errors than Plik, but a mean value

closer to the lowTEB estimate (1.2σ). Having shown that Hillipop seems to be more coherent
with the lowTEB likelihood, one can go one step further and open the ΛCDM parameter space
to another parameter: AL.

3.2 AL

In Boltzman codes, weak lensing enters the prediction of the CMB spectrum through a convo-
lution of the unlensed spectrum with the lensing potential power spectrum CΨ

� , which, at first
order, smoothes the peaks. A fudge factor AL has been introduced 9 10, which scales CΨ

� in
the C� estimation. If its fitted value is 1, the weak lensing is well modeled and the data are in
agreement with ΛCDM, on the other hand, if we found AL = 0 this would lead to the conclusion
that the data do prefer a theory where the weak lensing is ignored. When measuring AL different
from 1 indicates either a problem in the model, or remaining systematics in the data.

Results are summarized in table 2 for different configurations for Plik: the first line corre-
sponds to the published result, while the second line shows the systematics linked to the MCMC
and the Boltzman solver, finally a comparison between the last and second lines shows the
impact of the profile analysis wrt the Bayesian one, pushing AL to even higher values.

Table 2: AL values obtained for different Boltzman solvers and/or statistical methods as stated in the last column
for the Plik+lowTEB likelihoods.

AL = 1.22± 0.10 Plik+lowTEB, camb/MCMC 8

AL = 1.24± 0.10 Plik+lowTEB, CLASS/MCMC

AL = 1.26+0.11
−0.10 Plik+lowTEB, CLASS/profile

One can go through the same exercise with Hillipop, and one would get:

AL = 1.22+0.11
−0.10 [Hillipop + lowTEB,CLASS/profile]. (7)

This result is of the same order of magnitude than the Plik result, still with a lower τ value as
shown before. It has to be noted also that, at this stage, one observes a correlation between
AL and AkSZ . For this reason, instead of using an ad-hoc prior to mimic the very-high-� ACT
and SPT data (as in Eq. 4), we do prefer to directly use those data to further consider the full
correlation matrix of cosmological and nuisance parameters.
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3.3 Combining SPT and ACT data with Hillipop

The data considered here are the following ones: ACT 11, SPTHigh 12 and SPTLow 13, with
the corresponding nuisance parameters (cf. 1 for more details). They are called VHL in the
following. When extending the foreground templates up to those high-� regions and proceeding
with a profile likelihood fit, we end up with:

AL = 1.03± 0.08 Hillipop + lowTEB + VHL (8)

fully compatible with 1, and passing successfully the test. This allows to get a coherent picture
of ΛCDM which parameters are shown in table 3.

Table 3: Estimates of cosmological parameters using MCMC techniques for the six ΛCDM parameters, when
combining lowTEB, Hillipop, and VHL likelihoods.

Parameter Hillipop+lowTEB+VHL

Ωbh
2 0.02200± 0.00019

Ωch
2 0.1200± 0.0020

100θs 1.04200± 0.00040
τ 0.059± 0.017
ns 0.9630± 0.0054

ln(1010As) 3.045± 0.032

σ8 0.811± 0.013
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7. Tristram, M., Maćıas-Pérez, J. F., Renault, C., & Santos, D. 2005, MNRAS, 358, 833
8. Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2015, arXiv:1502.01589
9. Lewis, A., & Challinor, A. 2006, Phys. Rep., 429, 1
10. Calabrese, E., Slosar, A., Melchiorri, A., Smoot, G. F., & Zahn, O. 2008, Phys. Rev. D,

77, 123531
11. Das, S., Louis, T., Nolta, M. R., et al. 2014, J. Cosmology Astropart. Phys., 4, 014
12. Reichardt, C. L., Shaw, L., Zahn, O., et al. 2012, ApJ, 755, 70
13. Story, K. T., Reichardt, C. L., Hou, Z., et al. 2013, ApJ, 779, 86

10


