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Abstract. Cyclic cohomology has been recently adapted to the treatment of Hopf symmetry in
noncommutative geometry. The resulting theory of characteristic classes for Hopf algebras and
their actions on algebras allows to expand the range of applications of cyclic cohomology. It is
the goal of the present paper to illustrate these recent developments, with special emphasis on the
application to transverse index theory, and point towards future directions. In particular, we highlight
the remarkable accord between our framework for cyclic cohomology of Hopf algebras on one hand
and both the algebraic as well as the analytic theory of quantum groups on the other, manifest in the
construction of the modular square.
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Introduction

Cyclic cohomology of noncommutative algebras is playing in noncommutative
geometry a similar rôle to that of de Rham cohomology in differential topology
[11]. In [14] and [15], cyclic cohomology has been adapted to Hopf algebras and
their actions on algebras, which are analogous to the Lie group/algebra actions on
manifolds and embody a natural notion of symmetry in noncommutative geometry.
The resulting theory of characteristic classes for Hopf actions allows in turn to
widen the scope of applications of cyclic cohomology to index theory. It is the
goal of the present paper to review these recent developments and point towards
future directions.

The contents of the paper are as follows. In �1 we recall the basic notation per-
taining to the cyclic theory. The adaptation of cyclic cohomology to Hopf algebras
and Hopf actions is reviewed in �2, where we also discuss the relationship with
Lie group/algebra cohomology. �3 deals with the geometric Hopf algebras arising
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in transverse differential geometry and their application to transverse index theory.
Finally, �4 illustrates the remarkable agreement between our framework for cyclic
cohomology of Hopf algebras and both the algebraic as well as the analytic theory
of quantum groups.

1. Cyclic cohomology

Cyclic cohomology has first appeared as a cohomology theory for algebras ([5],
[7], [26]). In its simplest form, the cyclic cohomology HC��� � of an algebra
� (over � or � in what follows) is the cohomology of the cochain complex
�C�

λ �� �� b�, where Cn
λ �� �, n � 0, consists of the (n� 1)-linear forms ϕ on �

satisfying the cyclicity condition

ϕ�a0�a1� ����an� � ��1�nϕ�a1�a2� ����a0�� a0�a1� ����an �� (1.1)

and the coboundary operator is given by

�bϕ��a0� � � � �an�1� �
n

∑
j�0

��1� j ϕ�a0� � � � �aja j�1� � � � �an�1�

���1�n�1ϕ�an�1a0�a1� � � � �an��

(1.2)

When the algebra� comes equipped with a locally convex topology for which the
product is continuous, the above complex is replaced by its topological version:
Cn
λ �� � then consists of all continuous (n�1)-linear form on � satisfying (1.1).

Cyclic cohomology provides numerical invariants of K-theory classes as fol-
lows ([8]). Given an n-dimensional cyclic cocycle ϕ on � , n even, the scalar

ϕ�Tr�E�E� ����E� (1.3)

is invariant under homotopy for idempotents

E2 � E �MN�� � �� �MN�� ��

In the above formula, ϕ�Tr is the extension of ϕ to MN�� �, using the standard
trace Tr on MN�� �:

ϕ�Tr�a0�µ0�a1�µ1� � � � �an�µn� � ϕ�a0�a1� � � � �an�Tr�µ0µ1 � � �µn��

This defines a pairing ��ϕ �� �E�	 between cyclic cohomology and K-theory, which
extends to the general noncommutative framework the Chern-Weil construction of
characteristic classes of vector bundles.

Indeed, if � �C∞�M� for a closed manifold M and

ϕ� f 0� f 1� ���� f n� � �Φ� f 0d f 1
d f 2
 � � �
d f n	� f 0� f 1� ���� f n �� �

where Φ is an n-dimensional closed de Rham current on M, then up to normaliza-
tion the invariant defined by (1.3) is equal to

�Φ� ch��� �	�
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here ch��� � denotes the Chern character of the rank N vector bundle � on M
whose fiber at x �M is the range of E�x� �MN�� �.

Note that, in the above example,

ϕ� f σ�0�� f σ�1�� ���� f σ�n�� � ε�σ�ϕ� f 0� f 1� ���� f n� �

for any permutation σ of the set �n� � �0�1� ����n�, with signature ε�σ�. However,
the extension of ϕ�Tr to MN�� �, used in the pairing formula (1.3), retains only
the cyclic invariance.

A simple but very useful class of examples of cyclic cocycles on a noncom-
mutative algebra is obtained from group cohomology ([10], [3], [12]), as follows.
Let Γ be an arbitrary group and let � � � Γ be its group ring. Then any nor-
malized group cocycle c � Zn�Γ�� � , representing an arbitrary cohomology class
�c��H��BΓ� �H��Γ�, gives rise to a cyclic cocycle ϕc on the algebra � by means
of the formula

ϕc�g0�g1� � � � �gn� �

�
0 if g0 � � �gn �� 1
c�g1� � � � �gn� if g0 � � �gn � 1

(1.4)

extended by linearity to � Γ.
In a dual fashion, one defines the cyclic homology HC��� � of an algebra �

as the homology of the chain complex �Cλ
� �� �� b� consisting of the coinvariants

under cyclic permutations of the tensor powers of � , and with the boundary op-
erator b obtained by transposing the coboundary formula (1.2). Then the pairing
between cyclic cohomology and K-theory (1.3) factors through the natural pairing
between cohomology and homology, i.e.,

ϕ�Tr�E�E� ����E� � �ϕ � ch�E�	 � (1.5)

where, again up to normalization,

chn�E� � E��� ��E �n�1 times� (1.6)

represents the Chern character in HCn�� �, for n even, of the K-theory class �E� �
K0�� �.

The cyclic cohomology of an (unital) algebra � has an equivalent descrip-
tion, in terms of the bicomplex �CC����� �� b� B�� defined as follows. With Cn�� �
denoting the linear space of (n�1)-linear forms on A, set

CCp�q�� � �Cq�p�� �� q � p�

CCp�q�� � � 0� q � p �
(1.7)

The vertical operator b : Cn�� ��Cn�1�� � is defined as

�bϕ��a0� � � � �an�1� �
n

∑
j�0

��1� j ϕ�a0� � � � �aja j�1� � � � �an�1�

���1�n�1ϕ�an�1a0�a1� � � � �an��

(1.8)
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The horizontal operator B : Cn�� ��Cn�1�� � is defined by the formula

B � NB0�

where

B0ϕ�a
0� � � � �an�1� �ϕ�1�a0� � � � �an�1�� ��1�nϕ�a0� � � � �an�1�1��

�Nψ��a0� � � � �an� �
n

∑
0

��1�n j ψ�aj�aj�1� � � � �aj�1��
(1.9)

Then HC��� � is the cohomology of the first quadrant total complex
�TC��� �� b�B�, formed as follows:

TCn�� � �
n

∑
p�0

CCp�n�p�� �� (1.10)

On the other hand, the cohomology of the full direct sum total complex
�TCΣ

� �� �� b�B�, formed by taking the direct sums

TCΣ
n �� � � ∑

p��

CCp�n�p�� �� (1.11)

gives the ( ��2-graded) periodic cyclic cohomology groups HC�per�� �.
There is a dual description for the cyclic homology of � , in terms of the dual

bicomplex �CC����� �� b� B�, with Cn�� � �� �n�1 and the boundary operators b,
B obtained by transposing the corresponding coboundaries. The periodic cyclic
homology groups HCper

� �� � are obtained from the full product total complex
�TC�

Π�� �� b�B�, formed by taking direct products as follows:

TCn
Π�� � �ΠpCCp�n�p�� �� (1.12)

The Chern character of an idempotent e2 � e � � is given in this picture by the
periodic cycle �chn�e��n�2�4���� , with components:

ch0�e� � e� ch2k�e� � ��1�k �2k�!
k!

�e�2k�1� 1
2
� e�2k�� k � 1� (1.13)

The functors HC0 and HC0 from the category of algebras to the category of
vector spaces have clear intrinsic meaning: The first assigns to an algebra � the
vector space of traces on � , while the second associates to � its abelianization
� ��� �� �. From a conceptual viewpoint, it is important to realize the higher
co/homologies HC�, resp. HC�, as derived functors. The obvious obstruction to
such an interpretation is the non-additive nature of the category of algebras and
algebra homomorphisms. This has been remedied in [9], by replacing it with the
category of Λ-modules over the cyclic category Λ.
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The cyclic category Λ is a small category, obtained by enriching with cyclic
morphisms the familiar simplicial category ∆ of totally ordered finite sets and
increasing maps. We recall the presentation of ∆ by generators and relations. It has
one object �n� � �0� 1� � � �� n� for each integer n� 0, and is generated by faces
δi : �n� 1�� �n� (the injection that misses i), and degeneracies σj : �n� 1�� �n�
(the surjection which identifies j with j�1), with the following relations:

δ jδi � δiδ j�1 for i � j�

σ jσi � σiσ j�1 for i 
 j�

σ jδi �

���
��
δiσ j�1 i � j�

1n if i � j or i � j�1�

δi�1σ j i � j�1�

(1.14)

To obtain Λ one adds for each n a new morphism τn : �n�� �n� such that,

τnδi � δi�1τn�1� 1 
 i
 n�

τnσi � σi�1τn�1� 1 
 i
 n�

τn�1
n � 1n�

(1.15)

Note that the above relations also imply:

τnδ0 � δn � τnσ0 � σnτ
2
n�1 � (1.16)

Alternatively, Λ can be defined by means of its “cyclic covering”, the cate-
gory EΛ. The latter has one object ���n� for each n � 0 and the morphisms f :
���n�� ���m� are given by non decreasing maps f :���, such that f �x�n� �
f �x��m� �x � �. One has Λ � EΛ��, with respect to the obvious action of �
by translation.

To any algebra � one associates a module� � over the category Λ by assigning
to each integer n� 0 the vector space Cn�� � of (n�1)-linear forms ϕ�a0� � � � �an�
on � , and to the generating morphisms the operators δi : Cn�1 �Cn, σi : Cn�1 �
Cn defined as follows:

�δiϕ��a
0� � � � �an� � ϕ�a0� � � � �aiai�1� � � � �an�� i � 0�1� � � � �n�1 �

�δnϕ��a
0� � � � �an� � ϕ�ana0�a1� � � � �an�1� ;

�σ0ϕ��a
0� � � � �an� � ϕ�a0�1�a1� � � � �an� � (1.17)

�σ jϕ��a
0� � � � �an� � ϕ�a0� � � � �aj�1�aj�1� � � � �an�� j � 1� � � � �n�1 �

�σnϕ��a0� � � � �an� � ϕ�a0� � � � �an�1� ;

�τnϕ��a
0� � � � �an� � ϕ�an�a0� � � � �an�1� �

These operations satisfy the relations (1.14) and (1.15), which shows that �� is
indeed a Λ-module.
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One thus obtains the desired interpretation of the cyclic co/homology groups
of a k-algebra � over a ground ring k in terms of derived functors over the cyclic
category ([9]):

HCn�� �� Extn
Λ�k

��� �� and HCn�� �� TorΛn ��
��k���

Moreover, all of the fundamental properties of the cyclic co/homology of algebras,
such as the long exact sequence relating it to Hochschild co/homology ([8], [23]),
are shared by the functors Ext�Λ/TorΛ� -functors and, in this generality, can be at-
tributed to the coincidence between the classifying space BΛ of the small category
Λ and the classifying space BS1 � P∞�� � of the circle group.

Let us finally mention that, from the very definition of Ext�Λ�k
��F� and the

existence of a canonical projective biresolution for k� ([9]), it follows that the
cyclic cohomology groups HC��F� of a Λ-module F , as well as the periodic ones
HC�

per�F�, can be computed by means of a bicomplex analogous to (1.7). A similar
statement holds for the cyclic homology groups.

2. Cyclic theory for Hopf algebras

The familiar antiequivalence between suitable categories of spaces and matching
categories of associative algebras, effected by the passage to coordinates, is of
great significance in both the purely algebraic context (affine schemes versus com-
mutative algebras) as well as the topological one (locally compact spaces versus
commutative C�-algebras). By extension, it has been adopted as a fundamental
principle of noncommutative geometry. When applied to the realm of symmetry, it
leads to promoting the notion of a group, whose coordinates form a commutative
Hopf algebra, to that of a general Hopf algebra. The cyclic categorical formulation
recalled above allows to adapt cyclic co/homology in a natural way to the treatment
of symmetry in noncommutative geometry. This has been done in [14], [15] and
will be reviewed below.

We consider a Hopf algebra � over k � � or � , with unit η : k �� , counit
ε : � � k and antipode S : � � � . We use the standard definitions ([25])
together with the usual convention for denoting the coproduct:

∆�h� �∑h�1��h�2� � h �� � (2.1)

Although we work in the algebraic context, we shall include a datum intended to
play the rôle of the modular function of a locally compact group. For reasons of
consistency with the Hopf algebra context, this datum has a self-dual nature: It
comprises both a character δ �� �:

δ �ab� � δ �a�δ �b� � �a�b �� � (2.2)

and a group-like element σ �� :

∆�σ� � σ �σ � ε�σ� � 1� (2.3)
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related by the condition
δ �σ� � 1� (2.4)

Such a pair �δ �σ� will be called a modular pair. The character δ gives rise to a
δ -twisted antipode �S � Sδ :� �� , defined by

�S�h� �∑
�h�

δ �h�1�� S�h�2�� � h �� � (2.5)

Like the untwisted antipode, �S is an algebra antihomomorphism:

�S�h1h2� � �S�h2��S�h1�� �h1�h2 �� ��S�1� � 1�
(2.6)

a coalgebra twisted antimorphism:

∆�S�h� �∑
�h�

S�h�2��� �S�h�1��� �h �� � (2.7)

and it also satisfies the identities:

ε Æ �S � δ � δ Æ �S � ε � (2.8)

We start by associating to� , viewed only as a coalgebra, the standard cosim-
plicial module known as the cobar resolution ([1], [4]), twisted by the insertion of
the group-like element σ �� . Specifically, we set Cn�� � �� �n, �n� 1, and
C0�� � � k, then define the face operators δi : Cn�1�� ��Cn�� �, 0
 i
 n, as
follows, if n � 1:

δ0�h
1� � � ��hn�1� �1�h1� � � ��hn�1�

δ j�h
1� � � ��hn�1� �h1� � � ��∆h j� � � ��hn�1

�∑
�hj�

h1� � � ��hj
�1�
�hj

�2�
� � � ��hn�1� 1 
 j 
 n�1�

δn�h
1� � � ��hn�1� �h1� � � ��hn�1�σ �

(2.9)

while, if n � 1:
δ0�1� � 1� δ1�1� � σ �

Next, the degeneracy operators σi : Cn�1�� �� Cn�� �, 0 
 i 
 n� are defined
by:

σi�h
1� � � ��hn�1� �h1� � � �� ε�hi�1�� � � ��hn�1

�ε�hi�1�h1� � � ��hi�hi�2� � � ��hn�1�
(2.10)
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and, for n � 0:
σ0�h� � ε�h�� h �� �

The remaining features of the given data, namely the product and the antipode of
� together with the character δ �� �, are used to define the candidate for the
cyclic operator, τn : Cn�� ��Cn�� �� as follows:

τn�h
1� � � ��hn� ��∆n�1�S�h1�� �h2� � � ��hn�σ

�∑
�h1�

S�h1
�n��h

2� � � ��S�h1
�2��h

n� �S�h1
�1��σ �

(2.11)

Note that
τ2

1 �h� � τ1�
�S�h�σ� � σ�1�S2�h�σ �

therefore the following is a necessary condition for cyclicity:

�σ�1 Æ �S�2 � I� (2.12)

The remarkable fact is that this condition is also sufficient for the implementation
of the sought-for Λ-module.

A modular pair �δ �σ� satisfying (2.12) is called a modular pair in involution.

Theorem 1. ([14, 15]) Let � be a Hopf algebra endowed with a modular pair
�δ �σ� in involution. Then � �

�δ �σ�
� �Cn�� ��n�0 equipped with the operators

given by (2.9) – (2.11) is a module over the cyclic category Λ.

The cyclic cohomology groups corresponding to the Λ-module � �
�δ �σ�

, de-

noted by HC�
�δ �σ��� �, can be computed from the bicomplex �CC����� �� b� B��

analogous to (1.7), defined as follows:

CCp�q�� � �Cq�p�� �� q� p�

CCp�q�� � � 0� q � p�
(2.13)

the operator

b : Cn�1�� ��Cn�� �� b �
n

∑
i�0

��1�iδi� (2.14)

is explicitly given, if n � 1, by

b�h1� � � ��hn�1� �1�h1� � � ��hn�1

�
n�1

∑
j�1

��1� j ∑
�hj�

h1� � � ��hj
�1�
�hj

�2�
� � � ��hn�1

� ��1�nh1� � � ��hn�1�σ �
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and, if n � 0
b�c� � c � �1�σ�� c � k�

the operator B : Cn�1�� ��Cn�� � is defined by the formula

B � Nn Æ �σ�1 Æ �1���1�nτn�1�� n � 0� (2.15)

where �σ�1 : Cn�1�� ��Cn�� �� is the extra degeneracy operator

�σ�1�h
1� � � ��hn�1� ��∆n�1�S�h1�� �h2� � � ��hn�1

�∑
�h1�

S�h1
�n��h

2� � � ��S�h1
�2��h

n� �S�h1
�1��h

n�1� (2.16)

�σ1�h� � δ �h�� h �� �

and
Nn � 1���1�nτn � � � ����1�n2

τn
n� (2.17)

Explicitly:

Nn�h
1� � � ��hn� (2.18)

�
n

∑
j�0

��1�n j∆n�1�S�hj� �hj�1� � � ��hn�σ � �S2�h0�σ � � � �� �S2�hj�1�σ

�
n

∑
j�0

��1�n j∆n�1�S�hj� �hj�1� � � ��hn�σ �σh0� � � ��σh j�1

�
n

∑
j�0

��1�n j ∑
�hj�

S�hj
�n�

�� � � ��S�hj
�2�

�� �S�hj
�1�

��

�hj�1� � � ��hn�σ�σh0� � � ��σh j�1�

In particular, for n � 0:

B�h� � δ �h�� ε�h�� � h �� � (2.19)

The expression of the B-operator can be simplified by passing to the quasi-isomor-
phic normalized bicomplex �CC̄���

�δ �σ�
�� �� b� B̄�� defined as follows

CC̄p�q
�δ �σ�

�� � �C̄q�p�� �� q� p�

CC̄p�q
�δ �σ�

�� � �0� q � p �
(2.20)

where
C̄n�� � � �Ker ε��n� �n� 1� C̄0�� � � k�

while the formula for the b-operator remains unchanged, the new horizontal oper-
ator becomes

B̄ � Nn Æ �σ�1� n� 0� (2.21)
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in particular, for n � 0, one has

B̄�h� � δ �h�� � h �� � (2.22)

An alternate description of the cyclic cohomology groups HC��δ �1��� �, in terms
of the Cuntz-Quillen formalism, is given by M. Crainic in [16].

We should also mention that the corresponding cyclic homology groups

HC�δ �σ�
n �� � � TorΛn ��

�
�δ �σ�

�k�� (2.23)

can be computed from the bicomplex �CC����� �� b� B�� obtained by dualizing
(2.13) in the obvious fashion:

CCp�q�� � �Hom�Cq�p�� ��k�� q � p�

CCp�q�� � �0� q � p�
(2.24)

with the boundary operators b and B the transposed of the corresponding cobound-
aries.

When applied to the usual notion of symmetry in differential geometry, the
“Hopf algebraic” version of cyclic cohomology discussed above recovers both
the Lie algebra co/homology and the differentiable cohomology of Lie groups,
as illustrated by the following results.

Proposition 2. ([14]) Let � be a Lie algebra and let δ : �� � be a character of �.
With � ��� denoting the enveloping algebra of �

�
, viewed as a Hopf algebra with

modular pair �δ �1�, one has

HC�
per�δ �1� �� �����

�

∑
i���2�

Hi ���� δ ��

where � δ is the 1-dimensional �-module associated to the character δ .

Remark 3 In a dual fashion, one can prove that

HCper �δ �1�
� �� �����

�

∑
i���2�

Hi ���� δ �� (2.25)

Proposition 4. ([14]) Let � �G� be the Hopf algebra of polynomial functions on
a simply connected affine algebraic nilpotent group G, with Lie algebra �. Then its
periodic cyclic cohomology with respect to the trivial modular pair �ε �1� coincides
with the Lie algebra cohomology:

HC�
per �� �G���

�

∑
i���2�

Hi ���� ��
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Remark 5 Since by Van Est’s Theorem, the cohomology of the nilpotent Lie
algebra � is isomorphic to the differentiable group cohomology H�d �G�, the above
isomorphism can be reformulated as

HC�
per �� �G����

�

∑
i���2�

Hi
d �G�� ��

Under the latter form it continues to hold for any affine algebraic Lie group G,
with the same proof as in [14] .

Hopf algebras often arise implemented as endomorphisms of associative alge-
bras. A Hopf action of a Hopf algebra � on an algebra � is given by a linear
map,� �� �� � h�a� h�a� satisfying the action property

h1�h2a� � �h1h2��a�� �hi �� � a �� � (2.26)

and the Hopf-Leibniz rule

h�ab� �∑h�1��a�h�2��b�� �a�b �� � h �� � (2.27)

In practice, � first appears as a subalgebra of endomorphisms of an algebra
� fulfilling (2.27), and it is precisely the Hopf-Leibniz rule which dictates the
coproduct of � . In turn, the modular pair of � arises in connection with the
existence of a twisted trace on � .

Given a Hopf action� �� �� together with a modular pair �δ �σ�, a linear
form τ :� � � is called a σ -trace under the action of� if

τ�ab� � τ�bσ�a��� �a�b �� � (2.28)

The σ -trace τ is called δ -invariant under the action of� if

τ�h�a�b� � τ�a�S�h��b��� �a�b �� � h �� � (2.29)

If � is unital, the “integration by parts” formula (2.29) is equivalent to the δ -
invariance condition

τ�h�a�� � δ �h�τ�a�� �a �� � h �� �

With the above assumptions, the very definition of the cyclic co/homology of
� , with respect to a modular pair in involution �δ �σ�, is uniquely dictated such
that the following Hopf action principle holds:

Theorem 6. ([14, 15]) Let τ : � � � be a δ -invariant σ -trace under the Hopf
action of� on � . Then the assignment

γ�h1� � � ��hn��a0� � � � �an� � τ�a0h1�a1� � � �hn�an��� (2.30)
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�a0� � � � �an �� � h1� � � � �hn �� , defines a map of Λ-modules γ� :� �
�δ �σ�

� � �,

which in turn induces characteristic homomorphisms in cyclic co/homology:

γ�τ : HC�
�δ �σ��� �� HC��� �; (2.31)

γτ� : HC��� �� HC�δ �σ�
� �� �� (2.32)

As a quick illustration, let us assume that � is a Lie algebra of derivations of
an algebra � and τ is a δ -invariant trace on � . Then (2.32), composed with the
Chern character in cyclic homology (1.13) on one hand and with the isomorphism
(2.25) on the other, recovers the additive map

ch�τ : K��� �� H����� δ �� (2.33)

previously introduced in [6], in terms of �-invariant curvature forms associated to
an arbitrary �-connection. Before applying the isomorphism (2.25), the periodic
cyclic class γ��ch��e�� � HCper�δ �1�

� �� ����� for e2 � e �� , is given by the cycle
with the following components:

γ��ch0�e�� � τ�e��

γ��ch2k�e���h
1� � � � �h2k�

� ��1�k �2k�!
k!

�
τ�eh1�e� � � �h2k�e��� 1

2
τ�h1�e� � � �h2k�e��

�
�

�k � 1� �h1� � � � �h2k �� ����

(2.34)

The Lie algebra cocycle representing the class ch�τ�e� � H����� δ � in terms of the
Grassmannian connection is obtained by restricting γτ� �ch��e�� to 
�� via antisym-
metrization.

3. Transverse index theory on general foliations

The developments discussed in the preceding section have been largely motivated
by a challenging computational problem concerning the index of transversely hy-
poelliptic differential operators on foliations [13]. In turn, they were instrumental
in settling it [14]. The goal of this section is to highlight the main steps involved.

The transverse geometry of a foliation �V�� �, i.e., the geometry of the “space”
of leaves V�� , provides a prototypical example of noncommutative space, which
already exhibits many of the distinctive features of the general theory. In noncom-
mutative geometry, a geometric space is given by a spectral triple �� �� �D�,
where � is an involutive algebra of operators in a Hilbert space � , representing
the “local coordinates” of the space, and D is an unbounded self-adjoint operator
on � . The operator D�1 � ds corresponds to the infinitesimal line element in
Riemannian geometry and, in addition to its metric significance, it also carries
nontrivial homological meaning, representing a K-homology class of � . The con-
struction of such a spectral triple associated to a general foliation ([13]) comprises
several steps and incorporates important ideas from [10] and [20].
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To begin with, we recall that a codimension n foliation � of an N-dimensional
manifold V can be given by means of a defining cocycle �Ui� fi�gi j�, where �Ui�
is an open cover of V , fi : Ui � Ti are submersions with connected fibers onto
n-dimensional manifolds �Ti� and

gi j : f j�Ui�Uj�� fi�Ui�Uj��

are diffeomorphisms such that

� �i� j�� fi � gi j Æ f j on Ui�Uj�

The disjoint union M � �i Ti � �i� can be regarded as a complete transversal
for the foliation, while the collection of local diffeomorphisms �gi j� of M gen-
erates the transverse holonomy pseudogroup Γ. We should note that the notion
of pseudogroup used here is slightly different from the standard one, since we
do not enforce the customary hereditary condition; in particular, any group of
diffeomorphisms is such a pseudogroup.

We shall assume� transversely oriented, which amounts to stipulating that M
is oriented and that Γ consists of orientation preserving local diffeomorphisms.
From M we shall pass by a Diff�-functorial construction ([10]) to a quotient bun-
dle, π : P � M, of the frame bundle, whose sections are the Riemannian metrics
on M. Specifically, P � F�SO�n�, where F is the GL��n���-principal bundle of
oriented frames on M. The total space P admits a canonical para-Riemannian
structure as follows. The vertical subbundle � � TP, � � Kerπ�, carries
natural Euclidean structures on each of its fibers, determined solely by the
choice of a GL��n���-invariant Riemannian metric on the symmetric space
GL��n����SO�n�. On the other hand, the quotient bundle � � �TP��� comes
equipped with a tautologically defined Riemannian structure: Every p � P is an
Euclidean structure on Tπ�p��M� which is identified to�p via π�.

The naturality of the above construction with respect to Diff� ensures that the
action of the holonomy pseudogroup Γ lifts to both bundles F and P. One can thus
form for each the associated smooth étale groupoid F�Γ, resp. P�Γ . An element
of F�Γ or of P�Γ is given by a pair

�x�ϕ� � x � Rangeϕ �

while the composition law is

�x�ϕ�Æ �y�ψ� � �x�ϕ Æψ� if y � Domϕ and ϕ�y� � x �

We let
�F �C∞

c �F�Γ� � resp� �P �C∞
c �P�Γ�

denote the corresponding convolution algebras. The elements of � � �P will
serve as “functions of local coordinates” for the noncommutative space V�� . A
generic element of � can be represented as a linear combination of monomials

a � f U�
ψ � f �C∞

c �Domψ� �
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where the star indicates a contravariant notation. The multiplication rule is

f1U�
ψ1
� f2U�

ψ2
� f1 � � f2 Æ �ψ1�U

�
ψ2ψ1

�

where by hypothesis the support of f1� f2 Æ �ψ1� is a compact subset of

Domψ1�ψ�1
1 Domψ2 � Domψ2ψ1 �

The algebras � � �P and �F admit canonical �-representations on the Hilbert
spaces

L2�P� � L2�P�volP� � resp� L2�F� � L2�F�volF � �

where volP, resp. volF , denotes the canonical Diff�-invariant volume form on P,
resp. on F . Explicitly, for � ��P,

�� f U�
ψ�ξ ��p� � f �p�ξ �ψ�p�� � p � P � ξ � L2�P� � f U�

ψ �� � (3.1)

and similarly for �F . We shall denote by A � ¯� the norm closure of � in this
representation.

Evidently, the algebra � depends on the choice of the defining cocycle
�Ui� fi�gi j�. However, if �U �

i � f �i �g
�
i j� is another cocycle defining the same foliation

� , with corresponding algebra � � (resp. A� ), then � and � � are Morita equiv-
alent, while the C�-algebras A and A� are strongly Morita equivalent. We recall
that Morita equivalence preserves the cyclic co/homology and the K-theory/K-
homology. Also, in the commutative case it simply reduces to isomorphism; e.g.,
absent any nontrivial pseudogroup of diffeomorphisms, two manifolds N and N�

are diffeomorphic iff the algebras C∞
c �N� and C∞

c �N
�� are Morita equivalent.

To complete the description of the spectral triple associated to V�� , we need
to define the operator D. In practice, it is more convenient to work with another
representative of the same K-homology class, namely the hypoelliptic signature
operator Q � D�D�. The latter is a second order differential operator, acting on the
Hilbert space

� ��P :� L2�
�� ��
�� �� volP�� (3.2)

it is defined as a graded sum

Q � �d�V dV �dV d�V �� �dH �d�H� � (3.3)

where dV denotes the vertical exterior derivative and dH stands for the horizontal
exterior differentiation with respect to a fixed connection on the frame bundle.
When n � 1 or 2 �mod 4�, for the vertical component to make sense, one has to
replace P with P�S1 so that the dimension of the vertical fiber stays even.

Proposition 7. ([13]) For any a � � , �D�a� is bounded. For any f �C∞
c �P� and

λ �� � , f �D�λ ��1 is p-summable, � p � m � n�n�1�
2 �2n.
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One now confronts a well-posed index problem. The operator D determines an
index pairing map IndexD : K��� �� � as follows:

(0) In the graded (or even) case,

IndexD��e�� � Index �eD�e� � e2 � e �� ;

(1) In the ungraded (or odd) case,

IndexD��u�� � Index �P�uP�� � u �GL1�� � �

where P� � 1�F
2 , with F � Sign�D� .

One of the main functions of cyclic co/homology, its raison d’̂etre in some sense,
is to compute the index pairing via the equality

IndexD�κ� � �ch��D�� ch��κ�	� �κ � K��� �� (3.4)

The cyclic cohomology class ch��D� � HC�
per�� �, i.e., its Chern character in K-

homology, is defined in the ungraded case by means of the cyclic cocycle

τF�a
0� � � � �an� � Trace �a0�F�a1� � � � �F�an�� � aj �� � (3.5)

where n is any odd integer exceeding the dimension of the spectral triple
�� �� �D�; in the graded case, Trace is replaced with the graded trace Traces
and n is even. Being defined by means of the operator trace, the cocycle (3.5)
is inherently difficult to compute. The problem is therefore to provide an explicit
formula for the Chern character in K-homology.

We should note at this point that, for smooth groupoids such as those associ-
ated to foliations, the answer to (3.4) is indeed known for all K-theory classes in
the range of the assembly map from the corresponding geometric K-group to the
analytic one (cf. [11]).

As mentioned before, the functors K-theory/K-homology and cyclic co/homol-
ogy are Morita invariant. Moreover, the corresponding Chern characters are Morita
equivariant, in such a way that both sides of (3.4) are preserved by the canonical
isomorphisms associated with a Morita equivalence datum. Thus, one may as well
take advantage of the Morita invariant nature of the problem and choose from the
start a defining cocycle �Ui� fi�gi j� for � with all local transversals Ti flat affine
manifolds. This renders M itself as a flat affine manifold, although it does not allow
one to assume that the affine structure is preserved by Γ. One can however take the
horizontal component in (3.3) with respect to a flat connection ∇. It is then readily
seen that the operator Q belongs to the class of operators of the form

R � πa�R� �� with R
�
� �� �Ga�n���End�E��SO�n�� (3.6)

where Ga�n� � �n �GL�n��� is the affine group, πa denotes its right regular
representation and E is a unitary SO�n�-module.
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A differential operator R of the form (3.6) will be called affine. If in addition
the principal symbol of R, with respect to (3.7), is invertible then R will be called
an hypoelliptic affine operator.

By an easy adaptation of a classical theorem of Nelson and Stinespring, one
can show that any hypoelliptic affine operator R which is formally self-adjoint is
in fact essentially self-adjoint, with core any dense Ga�n�-invariant subspace of
C∞-vectors for πa.

The hypoelliptic calculus adapted to the para-Riemannian structure of the man-
ifold P and to the treatment of the above operators is a particular case of the
pseudodifferential calculus on Heisenberg manifolds ([2]). One simply modifies
the notion of homogeneity of symbols σ�p�ξ � by using the homotheties

λ �ξ � �λξv�λ
2ξn�� �λ � ��� � (3.7)

where ξv, ξn are the vertical, resp. normal, components of the covector ξ . The
above formula depends on local coordinates �xv�xn� adapted to the vertical fo-
liation, but the corresponding pseudodifferential calculus is independent of such
choices. The principal symbol of a hypoelliptic operator of order k is a function
on the fibers of � ��� �, homogeneous of degree k in the sense of (3.7). The
distributional kernel k�x�y� of a pseudodifferential operator T in this hypoelliptic
calculus has the following behavior near the diagonal:

k�x�y� �∑aj�x�x� y��a�x� log �x� y���O�1� � (3.8)

where aj is homogeneous of degree � j in x�y in the sense of (3.7), and the metric
�x� y�� is locally of the form

�x� y�� � ��xv� yv�
4 ��xn� yn�

2�1�4 � (3.9)

The 1-density a�x� is independent on the choice of metric � � �� and can be obtained
from the symbol of order �m of T , where

m �
n�n�1�

2
�2n

is the Hausdorff dimension of the metric space �P� � � ���. Like in the ordinary pseu-
dodifferential calculus, this allows to define a residue of Wodzicki-Guillemin-
Manin type, extending the Dixmier trace to operators of all degrees, by the equality

�
� T �

1
m

�
P

a�x� � (3.10)

One uses the hypoelliptic calculus to prove ([13]) that the spectral triple
�� �� �D�, or more generally that obtained by replacing Q with any hypoelliptic
affine operator R (in which case D�D� � R), fulfills the hypotheses of the oper-
ator theoretic local index theorem of [13]. Its application allows to express the
corresponding Chern character

ch��R� � ch��D� �HC�
per��P�
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in terms of the locally computable residue (3.10). In the odd case, it is given by the
cocycle ΦR � �ϕn�n�1�3���� in the �b�B�-bicomplex of � defined as follows:

ϕn�a
0� � � � �an� �∑

k

cn�k

�
� a0�R�a1��k1� � � � �R�an��kn� �R��n�2	k	 � aj �� � (3.11)

where we used the abbreviations

T �k� � ∇k�T � and ∇�T � � D2T �TD2 �

k is a multi-index, �k�� k1 � � � �� kn, and

cn�k � ��1�	k	
�

2i�k1! � � �kn!��1 ��k1 �1� � � � �k1 � � � �� kn �n���1Γ��k�� n
2
�;

there are finitely many nonzero terms in the above sum and only finitely many
components of ΦR are nonzero. In the even case, the corresponding cocycle ΦR �
�ϕn�n�0�2���� is defined in a similar fashion, except for ϕ0 (see [13]).

The expression (3.11) is definitely explicitly computable, but its actual com-
putation is exceedingly difficult to perform. Already in the case of codimension 1
foliations, where we did carry through its calculation by hand, it involves comput-
ing thousands of terms. On the other hand, in the absence of a guiding principle,
computer calculations are unlikely to produce an illuminating answer. However, a
simple inspection of (3.11) reveals some helpful general features. For the clarity
of the exposition, we shall restrict our comments to the case R � Q, which is our
main case of interest anyway.

First of all, since the passage from ��F ��F� to ��P��P� involves the rather
harmless operation of taking K-invariants with respect to the compact group K �
SO�n�, we may work directly at the level of the frame bundle, equivariantly with
respect to K. Secondly, since we are interested in the flat case, we may as well
assume for starters that M � �n , with the trivial connection. This being the case,
we shall identify F with the affine group Ga�n�. We may also replace Γ by the full
group Diff���n � and thus work for a while with the algebra

� �n� �C∞
c �F��n��Diff���n ���

We recall that Q is built from the vertical vector fields �Yj
i

; i� j � 1� � � � �n�
which form the canonical basis of ���n��� and the horizontal vector fields �Xk� k �
1� � � � �n� coming from the canonical basis of �n . Therefore, the expression under
the residue-integral in (3.11) involve iterated commutators of these vector fields
with multiplication operators of the form a � f U�

ψ , f �C∞
c �F��, ψ � Γ. Now the

canonical action of GL��n��� on F commutes with the action of Γ and hence ex-
tends canonically to the crossed product �F . At the Lie algebra level, this implies
that the operators on �F defined by

Y j
i � f U�

ψ� � �Y j
i f �U�

ψ (3.12)
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are derivations:
Y j

i �ab� �Y j
i �a�b�aY j

i �b� � (3.13)

The horizontal vector fields Xk on F can also be made to act on the crossed product
algebra, according to the rule

Xk� f U�
ψ� � Xk� f �U�

ψ � (3.14)

However, since the trivial connection is not preserved by the action of Γ, the
operators Xk are no longer derivations of �F ; they satisfy instead

Xi�ab� � Xi�a�b�aXi�b��∑δ k
ji�a�Y

j
k �b�� a�b �� � (3.15)

The linear operations δk
i j are of the form

δ k
i j� f U�

ψ� � γk
i j f U�

ψ � (3.16)

with γk
i j �C∞�F�Γ� characterized by the identity

ψ�ω i
j�ω i

j �∑
k

γ i
jk θ

k � (3.17)

where ω is the standard flat connection form and θ is the fundamental form on
F � F��n�. From (3.17) it easily follows that each δk

i j is a derivation:

δ k
i j�ab� � δ k

i j�a�b�aδ k
i j�b� � (3.18)

The commutation of the Y j
i

with δ c
ab preserves the linear span of the δc

ab. However,
the successive commutators with Xk produces new operators:

δ c
ab�i1 ���ir

� �Xir � � � � �Xi1
�δ c

ab� � � ��� r � 1�

symmetric in the indices i1� � � � � ir. They are all of the form T � f U�
ψ� � h f U�

ψ , with
h �C∞�F�Γ�; in particular, they pairwise commute.

A first observation is that the linear space

��n� �∑� �Y j
i �∑� �Xk �∑� �δ c

ab�i1 ���ir

forms a Lie algebra and furthermore, if we let

� �n� �� ���n��

denote the corresponding enveloping algebra, then � �n� acts on � satisfying a
Leibniz rule of the form

h�ab� �∑ h�0� �a�h�1� �b�� �a�b �� � (3.19)
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A second observation is that the product rules (3.13), (3.15) and (3.18) can be
converted into coproduct rules

∆Y j
i �Y j

i �1�1�Y j
i �

∆Xi �Xi�1�1�Xi�∑
k

δ k
ji�Y j

k � (3.20)

∆δ k
i j �δ k

i j�1�1�δ k
i j�

Together with the requirement:

∆�Z1�Z2� � �∆Z1�∆Z2�� �Z1�Z2 � ��n��

which is satisfied on generators because of the flatness of the connection, they
uniquely determine a multiplicative coproduct

∆ :� �n��� �n��� �n�� (3.21)

One can check that this coproduct is coassociative and also that it is compatible
with the Leibniz rule (3.19), in the sense that

∆h �∑ h�0��h�1� iff ∆�h1 h2� � ∆h1 �∆h2� �hj �� �n�� �a�b �� �

(3.22)
Simple computations show that there is a unique antiautomorphism S of � �n�
such that

S�Y j
i � ��Y j

i � S�δ c
ab� ��δ c

ab� S�Xa� ��Xa � δ c
abY

b
c �

Moreover, S serves as antipode for the bialgebra � �n�; we should note though
that S2 �� I.

To summarize, one has:

Proposition 8. ([14]) The enveloping algebra � �n� of the Lie algebra generated
by the canonical action of �n � �l�n��� on � �n� has a unique coproduct which
turns it into a Hopf algebra such that its tautological action on � �n� is a Hopf
action.

Remark 9 The Hopf algebra � �n� acts canonically on the crossed product al-
gebra �F�M� �C∞

c �F�M��Γ�, for any flat affine manifold M with a pseudogroup
Γ of orientation preserving diffeomorphisms. Using Morita equivalence, one can
always reduce the case of a general manifold M to the flat case. The obstruction
one encounters in trying to transfer the action of� �n�, via the Morita equivalence
data, from the flattened version to a non-flat M is exactly the curvature of the
manifold M. The analysis of this obstruction in the general context of actions of
Hopf algebras on algebras should provide the correct generalization of the notion
of Riemannian curvature in the framework of noncommutative geometry.
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There is a more revealing definition ([14]) of the Hopf algebra � �n�, in terms
of a bicrossproduct construction (cf. e.g. [21]) whose origin, in the case of finite
groups, can be traced to the work of G. I. Kac. In our case, it leads to the inter-
pretation of � �n� as a bicrossproduct of two Hopf algebras, �a�n� and �u�n�,
canonically associated to the decomposition of the diffeomorphism group as a
set-theoretic product

Diff��n � � Ga�n� �Gu�n��

where Gu�n� is the group of diffeomorphisms of the form ψ�x� � x� o�x�. �a�n�
is just the universal enveloping � ��a�n�� of the group Ga�n� of affine motions of
�n , with its natural Hopf structure. �u�n� is the Hopf algebra of polynomial func-
tions on the pro-nilpotent group of formal diffeomorphisms associated to Gu�n�.

The modular character of the affine group δ � Trace : �a�n�� � extends to
a character δ �� �n��. It can be readily verified that the corresponding twisted
antipode satisfies the involution condition �S2 � I. It follows that the pair �δ �1�
fulfills (2.12) and hence forms a modular pair in involution.

The preceding bicrossproduct interpretation allows to relate the cyclic coho-
mology of � �n� with respect to �δ �1� to the Gelfand-Fuchs cohomology [18] of
the infinite-dimensional Lie algebra �n of formal vector fields on �n .

Theorem 10. ([14]) There is a canonical Van Est-type map of complexes which
induces an isomorphism

∑
i���2�

Hi��n�� HC�
per�δ �1� �� �n��� (3.23)

We now return to the spectral triple ��F ��F �D� associated to �M�Γ� with M
flat. Then we have the canonical Hopf action � �n���F ��F . In addition, the
crossed product �F inherits a canonical trace τF : �F � � , dual to the volume
form volF ,

τF � f U�
ψ� � 0 if ψ �� 1 and τF� f � �

�
F

f volF � (3.24)

Using the Γ-invariance of volF , it is easy to check that the trace τF is δ -invariant
under the action of � �n�, i.e., the property (2.29) holds. We therefore obtain a
characteristic map

γ�F : HC�
per�δ �1� �� �n��� HC�

per��F��

which together with (3.23) gives rise to a new characteristic homomorphism:

χF : H���n�� HC�
per��F�� (3.25)

Passing to SO�n�-invariants, one obtains an induced characteristic map from the
relative Lie algebra cohomology:

χP : ∑
i�p���2�

Hi��n�SO�n��� HC�
per��P�� (3.26)
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which instead of τF involves the analogous trace τP of �P and where p � dimP.
Let us assume that the action of Γ on M has no degenerate fixed point. Re-

call the local formula (3.11) for ch��R�. Using the built-in affine invariance of a
hypoelliptic affine operator R, one can show that any cochain on �P of the form,

ϕ�a0� � � � �an� �

�
� a0�R�a1��k1� � � � �R�an��kn� �R���n�	2k	�� �aj ��P�

can be written as a finite linear combination

ϕ�a0� � � � �an� �∑
α

τP�a
0 hα1 �a

1� � � �hαn �an��� with hαi �� �n��

and therefore belongs to the range of the characteristic map χP. The structure of
the cohomology ring H���n�SO�n�� is well-known ([19]). It is computed by the
cohomology of the finite-dimensional complex

�E�h1�h3� � � � �hm��P�c1� � � � �cn� � d��
where E�h1�h3� � � � �hm� is the exterior algebra in the generators hi of dimension
2i� 1, with m the largest odd integer less than n and i odd, while P�c1� � � � �cn� is
the polynomial algebra in the generators ci of degree 2i truncated by the ideal of
elements of weight � 2n. The coboundary d is defined by

dhi � ci� i odd� dci � 0 for all i�

In particular, the Pontryagin classes pi � c2i are non-trivial for all 2i 
 n.
The final outcome of the preceding discussion is the following index theorem

for transversely hypoelliptic operators on foliations:

Theorem 11. ([14]) For any hypoelliptic affine operator R on P, there exists a
characteristic class � �R� �∑i�n���2�H

i��n�SO�n�� such that

ch��R� � χP�� �R�� � HC�
per��P��

Remark 12 We conclude with the remark that similar considerations, leading to
analogous results, can be implemented for more specialized cases of transverse
geometries, such as complex analytic and symplectic (or Hamiltonian). For exam-
ple, in the symplectic case, which is the less obvious of the two, the transverse
data consists of a symplectic manifold �M2n� ω� together with a pseudogroup
Γsp of local symplectomorphisms. The corresponding frame bundle is the prin-
cipal Sp�n���-bundle Fsp of symplectic frames. Its quotient mod K, where K �
Sp�n��� �O2n � U�n�, is the bundle Psp whose fiber at x � M consists of the
almost complex structures on TxM compatible with ωx. It carries an intrinsic para-
Kählerian structure, obtained as follows. The typical fiber of Psp can be identified
with the noncompact Hermitian symmetric space Sp�n����U�n� and, as such, it
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inherits a canonical Kähler structure. This gives rise to a natural Kähler structure on
the vertical subbundle � of the tangent bundle TPsp. On the other hand, the normal
bundle � � TPsp�� � TM possesses a tautological Kähler structure. Indeed, a
point in Psp is by definition an almost complex structure and thus, together with
ω , determines a “moving” Kähler structure. The entire construction is functorial
with respect to local symplectomorphisms. One can therefore define the symplectic
analogue Qsp of the hypoelliptic signature operator as a graded direct sum

Qsp � �∂̄ �V ∂̄V � ∂̄V ∂̄ �V �� �∂̄H � ∂̄ �H� �

where the horizontal ∂̄ -operator ∂̄H is associated to a symplectic connection. The
corresponding index theorem asserts that, with �M2n� ω� flat, acted upon by an
arbitrary pseudogroup of local symplectomorphisms Γsp, and with

χsp : H���sp
n �U�n��� HC�

per��Psp
�� (3.27)

denoting the characteristic map corresponding to the Lie algebra �sp
n of

formal Hamiltonian vector fields on �
2n , there exists a characteristic class

�sp � ∑i���2�H
i��sp

n �U�n�� such that

ch��Qsp� � χsp��sp� � HC�
per��Psp

��

As in the para-Riemannian case, the proof relies on the local Chern character for-
mula (3.11) and on the cyclic cohomology of the Hopf algebra�sp�n�, associated
to the group of symplectomorphism of �2n in the same manner as � �n� was
constructed from Diff��n�.

4. Quantum groups and the modular square

The definition of cyclic co/homology of Hopf algebras hinges on the existence of
modular pairs in involution. The necessity of this condition may appear as artificial.
In fact, quite the opposite is true and the examples given below serve to illustrate
that most Hopf algebras arising in “nature”, including quantum groups and their
duals, do come equipped with intrinsic modular pairs.

1. We begin with the class of quasitriangular Hopf algebras, introduced by
Drinfeld [17], in connection with the quantum inverse scattering method for con-
structing quantum integrable systems. Such a Hopf algebra comes endowed with
an universal 	-matrix, inducing solutions of the Yang-Baxter equation on each of
their modules. (For a lucid introduction into the subject, see [21]).

A quasitriangular Hopf algebra is a Hopf algebra � which admits an invert-
ible element R �∑i si� ti �� �� , such that

∆op�x� �R∆�x�R�1� �x �� �

�∆� I��R� �R13R23 �

�I�∆��R� �R13R12�

(4.1)
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where we have used the customary “leg numbering” notation, e.g.,

R23 �∑
i

1� si� ti�

The square of the antipode is then an inner automorphism S2�x� � uxu�1, with

u �∑ S�ti�si� u�1 �∑ S�1�ti�S�si��

Furthermore, uS�u� � S�u�u is central in� and one has

ε�u� � 1� ∆u � �R21R��1�u�u� � �u�u��R21R��1 �

A quasitriangular Hopf algebra � is called a ribbon algebra [24], if there
exists a central element θ �� such that

∆�θ� � �R21 R��1 �θ �θ� � ε�θ� � 1 � S�θ� � θ � (4.2)

Any quasitriangular Hopf� algebra has a “double cover” cover �� satisfying the
ribbon condition (4.2). More precisely (cf.[24]):

�� �� �θ ���θ2 �uS�u��

has a unique Hopf algebra structure such that, under the natural inclusion, � is a
Hopf subalgebra.

If� is a ribbon algebra, by setting σ � θ�1 u, one gets a group-like element

∆σ � σ �σ � ε�σ� � 1� S�σ� � σ�1�

such that, for any x � �� ,

�σ�1 ÆS�
2
�x� � σ�1S�σ�1S�x�� � σ�1 S2�x�σ

� σ�1uxu�1σ � θxθ�1 � x�

Thus, �ε �σ� is a modular pair in involution for� .
By dualizing the above definitions one obtains the notion of coquasitriangular,

resp. coribbon algebra. Among the most prominent examples of coribbon alge-
bras are the function algebras of the classical quantum groups (GLq�N�, SLq�N�,
SOq�N�, Oq�N�, and Spq�N�). The analogue of the above ribbon group-like ele-
ment σ for a coribbon algebra � , is the ribbon character δ �� �. The corre-
sponding twisted antipode satisfies the condition �S2 � 1, which renders �δ �1� as a
canonical modular pair in involution for� .

We thus have:

Proposition 13. ([15]) Coribbon algebras and compact quantum groups are each
intrinsically endowed with a modular pair in involution �δ �1�. Dually, ribbon
algebras and duals of compact quantum groups are each intrinsically endowed
with a modular pair in involution �1�σ�.
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For a compact quantum group in the sense of Woronowicz, the stated prop-
erty follows from Theorem 5.6 of [28], describing the modular properties of the
analogue of Haar measure.

2. Evidently, one can produce modular pairs in involution with both δ and σ
nontrivial by forming tensor products of dual classes of Hopf algebras as in the
preceding statement. The fully non-unimodular situation arises naturally however,
in the case of locally compact quantum groups, because of the existence, by fiat
or otherwise, of left and right Haar weights. We refer to [22] for the most recent
and concise formalization of this notion, which is in remarkable agreement with
our framework for cyclic co/homology of Hopf algebras and of Hopf actions. This
accord is manifest in the following construction of a modular square associated
to a Hopf algebra � modeling a locally compact group. Since the inherent ana-
lytic intricacies are beyond the scope of the present exposition, we shall keep the
illustration at a formal level (comp. [27] for an algebraic setting).

By analogy with the definition of a C�-algebraic quantum group in [22], we
assume the existence and uniqueness (up to a scalar) of a left invariant weight ϕ ,
satisfying a KMS-like condition. The invariance means that

�I�ϕ���I� x�∆�y�� � S��I�ϕ�∆�x��I� y��� �x�y �� � (4.3)

while the KMS condition stipulates the existence of a modular group of automor-
phisms σt of� , such that

ϕ Æσt � ϕ � ϕ�xy� � ϕ�σi�y�x�� �x�y �� � (4.4)

Taking ψ � ϕ ÆS�1, one obtains a a right invariant weight,

�ψ� I��∆�x��y�1�� � S��ψ� I��x�1�∆�y��� (4.5)

which is also unique up to a scalar and has modular group σ�t � SÆσt ÆS�1.
It will be convenient to express the above properties in terms of the natural left

and right actions of the dual Hopf algebra �̂ �� � on � . Given ω � �̂ and
x �� , we denote

ω � x �∑ω�x�1��x�2� � �ω� I�∆�x� �

x �ω �∑x�1�ω�x�2�� � �I�ω�∆�x� �
(4.6)

With respect to the natural product of�̂ ,

�ω1 �ω2��x� �� ω1�ω2� ∆�x���∑ω1�x�1��ω2�x�2�� � �x �� �

the left action in (4.6) is the transpose of the left regular representation of�̂ ,
hence defines a representation of the opposite algebra�̂ op on� , while the right
action in (4.6), being the transpose of the right regular representation of�̂ , gives
a representation of the algebra �̂ on � . On the other hand, it is easy to check
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that both actions satisfy the rule (2.27) and therefore (4.6) defines a Hopf action of
the tensor product Hopf algebra �� :� �̂ op��̂ on� ,

�� �� �� � �ω1�ω2� x�� ω1 � x �ω2 � (4.7)

The invariance conditions (4.3) and (4.5) can now be rewritten as follows:

ϕ��ω � x�y� �ϕ�x�S�1�ω� � y���
ψ��x �ω�y� �ψ�x�y �S�ω����

(4.8)

where S�1 occurs in the first identity as the antipode of�̂ op.
The left invariance property of ψ gives the analogue of the modular function,

namely a group-like element δ �� such that

�I�ψ�∆�x� � ψ�x�δ � �x �� �

or equivalently
ψ�ω � x� � ω�δ �ψ�x� � �x �� � (4.9)

The modular element δ also relates the left and right Haar weights:

ϕ�x� � ψ�δ
1
2 xδ

1
2 �� �x �� � (4.10)

In particular, the full invariance property of ϕ under the action of �� is given by

ϕ��ω1 � x �ω2�y� � ϕ�x�S�1�ω1� � y �Sδ�1�ω2���� �ω1�ω2 � �� � x�y �� �
(4.11)

where Sδ�1 denotes the twisted antipode (2.5) corresponding to δ�1.
Let us now form the midweight τ ,

τ�x� � ϕ�δ�
1
4 xδ�

1
4 �� �x �� � (4.12)

One checks that its behavior under the action of �� is as follows:

τ��ω1 � x �ω2�y� � τ�x�S�1
δ 1�2�ω1� � y �Sδ�1�2�ω2��� � (4.13)

for any ω1�ω2 � �� and x�y�� . In other words, τ is �δ -invariant under the action
(4.7), with respect to the character

�δ � δ
1
2 �δ�

1
2 � �� � �� op�� � (4.14)

On the other hand, it follows as in [22], but with a slightly different notation, that
there exists a group-like element σ � �̂ , such that the modular groups of ϕ �ψ
can be expressed as follows:

σt�x� �δ it�2�σ it�2 � x �σ it�2�δ�it�2 �

σ �
t �x� �δ�it�2�σ it�2 � x �σ it�2�δ it�2 � �x �� �

(4.15)
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In terms of the modular group of τ , to be denoted by στt , (4.15) is equivalent to

στ
t �x� � σ it�2 � x �σ it�2� �x �� � (4.16)

This shows that τ is a �σ -trace for the action (4.7) , with group-like element

�σ � σ
1
2 �σ

1
2 � �� � �� op�� � (4.17)

It remains to compute the square of the corresponding doubly twisted antipode of�� ,

�σ�1 ÆS
�d
� σ�1�2 ÆS�1

δ 1�2 �σ�1�2 ÆS
δ�1�2 : �̂ op��̂ � �̂

op��̂ � (4.18)

It suffices to compute the square of σ�1�2 ÆS
δ�1�2 : �̂ � �̂ � or equivalently, the

square of its transpose, for which a straightforward calculation gives:

�σ�1�2 ÆS
δ�1�2�

2 �� σ�1�2�δ�1�2 � I
�̂

�

Since the passage to the opposite algebra gives the reciprocal scalar, it follows that

��σ�1 ÆS
�δ
�2 � I

��
� (4.19)

We summarize the conclusions of the preceding discussion in the following
result:

Theorem 14 (i) The Hopf algebra �� � �̂ op��̂ possesses a canonical mod-
ular pair in involution ��δ � δ

1
2 �δ�

1
2 � �σ � σ

1
2 �σ

1
2 �.

(ii) The Haar midweight τ , given by (4.12), is a �δ -invariant �σ-trace for the
canonical action of �� on� .

The first statement characterizes the construction we referred to as the modular
square associated to a Hopf algebra � that models a locally compact quantum
group. Together with the Haar midweight τ of the second statement, it determines
in cyclic cohomology a modular characteristic homomorphism:

γ�τ : HC�
��δ ��σ�

� �� �� HC��� � � (4.20)
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