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Modelling Hadronic Matter

Débora P. Menezes
Departamento de Fsica, Universidade Federal de Santa Catarina, Florianpolis, Brazil

E-mail: debora.p.m@ufsc.br

Abstract. Hadron physics stands somewhere in the diffuse intersection between nuclear and
particle physics and relies largely on the use of models. Historically, around 1930, the first
nuclear physics models known as the liquid drop model and the semi-empirical mass formula
established the grounds for the study of nuclei properties and nuclear structure. These two
models are parameter dependent. Nowadays, around 500 hundred non-relativistic (Skyrme-
type) and relativistic models are available in the literature and largely used and the vast majority
are parameter dependent models. In this review I discuss some of the shortcomings of using
non-relativistic models and the advantages of using relativistic ones when applying them to
describe hadronic matter. I also show possible applications of relativistic models to physical
situations that cover part of the QCD phase diagram: I mention how the description of compact
objects can be done, how heavy-ion collisions can be investigated and particle fractions obtained
and show the relation between liquid-gas phase transitions and the pasta phase.

1. Introduction and historical perspectives
Hadron physics is a field of studies that lies in between nuclear and particle physics, taking
advantage of quantum field theory techniques. The ideal scenario for the investigation of hadron
physics problems would be the use of quantum chromodynamics (QCD) solutions, which to date,
are not feasible. One can rely on two possibilities: lattice QCD and effective theories. So far,
lattice QCD presents results for a restricted space of the QCD phase diagram (zero or very
low chemical potentials) [1] and hence, the use of effective models has been very important in
advancing our knowledge in a wider scenario, where finite chemical potentials are present.

The nuclear physics modelling history started with two very simple models: the liquid drop
model, introduced in 1929 [2] and the semi-empirical mass formula, presented in 1935 by Bethe
and Weizsäcker [3]. Both models are so close to each other in basic ideas that their nomenclature
is very often just mixed up.

The liquid drop model was developed from the observation that the nucleus has behavior and
properties that resemble the ones of an incompressible fluid, such as:

• The nucleus has low compressibility due to its internal almost constant density;

• The nucleus presets well defined surface;

• The nucleus radius varies with the number of nucleons as R = RoA
1/3, where R0 �

1.2× 10−15 m;

• The nuclear force saturates and it is isospin independent.

A typical nuclear density profile is shown in Fig. 1, from where one can see that the density
is almost constant up to a certain point and then it drops quite rapidly close to the surface,
determining the nucleus radius.
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Figure 1. Neutron and proton density profiles obtained with two different methods (solution of
the Dirac equation and the Thomas-Fermi approximation) and different models. Figure taken
from [4].

The binding energy B of a nucleus A
ZXN is given by the difference between its mass mc2 and

the mass of its constituents (Z protons and N neutrons):

B = (Zmp +Nmn − (m(AX)− Zme))c
2 = (Zm(1H) +Nmn −m(AX))c2, (1)

where m(AX) is the mass of the chemical element AX and is given in atomic mass units. The
binding energy per nucleon B

A is plotted in Fig. 2, from where one can see that the curve is
relatively constant and of the order of 8, 5 MeV except for light nuclei. A successful attempt
to reproduce this curve was made with the semi-empirical mass formula, which is a parameter
dependent expression used to fit the experimental results. It is given by:

B(Z,A) = avA− asA
2
3 − ace

2Z(Z − 1)

A
1
3

− ai
(N − Z)2

A
+ δ(A). (2)

The quantities in this expression refer to a volume term, a surface term, a Coulomb term,
an energy symmetry term and a pairing interaction term. Details on how these terms where
obtained are easily found in many textbooks. See, [5],[6], for instance. Of course, many
parameterizations can be obtained from the fitting of the data. One possible set is av = 15, 68
MeV, as = 18, 56 MeV, ac × e2 = 0, 72 MeV, ai = 18, 1 MeV and

δ =

⎧⎪⎪⎨
⎪⎪⎩
34 A−3/4MeV, even-even nuclei,

0, even-odd nuclei,

−34 A−3/4MeV, odd-odd nuclei.

(3)

Although very naive, these two models combined can explain many important nuclear physics
properties. One example is nuclear fission, that depends on the balance between the Coulomb
and the surface terms [5].

Other important subjects related to nuclear physics that can be explained by parameter
dependent nuclear models is the fusion of elements in the stars and the primordial
nucleosynthesis. The abundance of chemical elements in the observable universe is the following:
71% is Hydrogen, 27% is Helium, 1.8% are Carbon to Neonium elements, 0.2% are Neonium
to Titanium, 0.02% is Lead and only 0.0001% are elements with atomic number larger than
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Figure 2. Binding energy per nucleon as a function of the number of nucleons. Figure taken
from [5].

Figure 3. Possible chemical elements synthesized in stellar fusion.

60. If one looks at Fig. 2, it is easy to identify the element with the largest binding energy,
which is 56Fe. It is then, possible to explain why elements with atomic numbers A ≤ 56 can
be synthesized in the stars by nuclear fusion and heavier elements are only expected to be
synthesized in supernova explosions. For a rough idea of the possible chains of fusion taking
place in stars, one can look at Fig. 3.

Once the star is born, it takes sometime fusing all the chemical elements in its interior,
until it dies. Depending on its mass, the death is more or less spectacular. According to the
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Figure 4. Hertzspring and Russel Diagram. Notice that the temperature increases from right
to left.

Hertzspring and Russel (HR) diagram, depicted in Fig. 4, the star spends most of its time in the
main sequence, the central line of the diagram. A star like the sun becomes a white dwarf after
its death, shown at lower luminosities and higher temperatures, towards the left corner of the
diagram. Stars with masses higher than 8 solar masses (M�) become either a neutron star or
a black hole and these compact objects are not shown in the HR Diagram for obvious reasons:
they do not emit visible light waves and their luminosity is negligible or inexistent. Hadronic
models can also be used to explain neutron stars properties and their internal constituents.

If one wants to have a broader view of the possible use of parameter dependent hadronic
models, one should look at the QCD phase diagram, shown in Fig. 5. Low baryonic densities
are related to low chemical potentials. As already stated, LQCD can only describe zero (or very
low) chemical potential systems. For the understanding of the physics represented in the rest
of the QCD diagram, effective hadronic models are an essential tool. Compact stars are cold
objects with high internal baryon densities. In heavy ion collisions (RHIC/USA, LHC/CERN),
matter is hot and baryon density is low. In experiments at FAIR (GSI, Germany) and NICA
(Dubna, Russia), the baryon density is not too low and the temperatures not too high. Next, I
discuss how we can choose or build appropriate models to tackle these specific problems.

2. Existing non-relativistic and relativistic models
From the development of the very first nuclear physics models, the main idea was to satisfy
experimental values. In almost one century of research, the models became more and more
sophisticated, but they remain valid if and only if nuclear bulk properties are satisfied. The
most important of these properties are the binding energy, the saturation density, the symmetry
energy, its derivatives and the incompressibility. One can easily notice that all of them are
related to the semi-empirical mass formula given in Eq. (2). However, many different parameter
sets can satisfy the same constraints, but what happens when one moves to higher densities or
to finite temperature, situations present in the QCD phase diagram? A simple example of what
happens is shown in Fig. 6 for some non-relativistic, Skyrme-type (SHF) and relativistic mean
field (RMF) models. Although all models reproduce correctly the binding energy value at more
or less the same saturation density and the incompressibility, which is a derivative of the energy
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Figure 5. QCD phase diagram.

Figure 6. Binding energy as a function of baryon density for different Skyrme-type (SHF) and
relativistic (RMF) models. This figure is a courtesy of Dr. Jirina Stone.

density acquires similar values also at the saturation density, once the density increases, they
deviate considerably from each other.

In Fig. 7, an even broader pattern is seen if one looks at the symmetry energy. At the
saturation point, again all models give approximately the same values, but at larger densities
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Figure 7. Symmetry energy as a function of the baryon density. The expressions relate the
symmetry energy with its slope (L) and curvature (Ksym) and nm means nuclear matter. This
figure is a courtesy of Dr. Jirina Stone.

anything is possible, from curves that increase to models that produce curves that decrease
and even become zero at no so high baryon densities. So, how to choose one model? By
choosing adequate constraints and checking whether the models satisfy them, as done is [7] for
non-relativistic models and in [8] for relativistic ones.

An important constraint is the isospin symmetric nuclear matter incompressibility (or
compression modulus) K0. The incompressibility values can be inferred from experiment and
from theory. Experimentally, results coming from giant resonances, mainly isoscalar giant
monopole (GMR) and isovector giant dipole (GDR) resonances can be used. Theoretically,
values for the incompressibility can be obtained with Hartree-Fock plus random-phase-
approximation (RPA) calculations, for instance. A reasonable value, adopted in [8] is K0 =
230± 40 MeV.

The symmetry energy (J) and its slope (L0) at the saturation density are also important
constraints. Experimental data for the symmetry energy can be obtained from heavy-ion
collisions, pygmy dipole resonances, isobaric analog states, GMR and GDR. A restricted band
for the values of J (25 < J < 35 MeV) and L0 (25 < L0 < 115 MeV) based on 28 experimental
and observational data is given in [9].

The volume part of the isospin incompressibility, known as Kτ,v, which depends on several
liquid drop model quantities is also a constraint that can be used. When it is extracted from
a simple fitting to GMR data, it includes not only volume, but also surface contributions and
hence, its use is a bit more controversial. In [8] it was chosen to be Kτ = −550± 150 MeV.

With the help of the above mentioned constraints, 240 non-relativistic Syrme models and
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263 relativistic mean field models were assessed, in describing nuclear matter up to 3 times
nuclear saturation density. Out of the Skyrme-type models, 16 were approved [7] and out of the
relativistic models, 35 were approved [8]. Of course, many other models also satisfy most of the
constraints, but not all of them. Hence, when one model is chosen, a complete understanding
of where it fails is possible. If one believes that his/her preferred model fails at satisfying
constraints that he/she does not think important for the application that will be done, the use
of the model can still be justified.

In what follows, I will just discuss results obtained with relativistic models because Skyrme-
type models present some problems that I would like to avoid. The most common ones are:
Many of the equations of state are only suited at low densities because they become a-causal;
Non-relativistic models lead to symmetry energies that decrease too much after 3ρ0, as seen in
Fig. 7, which is a very serious deficiency if we want to apply them to the study of neutron
stars, a highly asymmetric system. Of course, these problems can be cured with the inclusion
of three-body forces, but them the calculations become much more complicated. Relativistic
models, on the other hand, are Lorentz invariant and generally causal; if they are extended to
finite temperature systems, anti-particles appear naturally and, mesonic degrees of freedom are
explicitly treated. Moreover, the very same models can be applied to describe the physics of
different regions of the QCD phase diagram.

3. Relativistic models for astrophysical studies
Essential ingredients for astrophysical model calculations can be obtained from appropriate
equations of state (EOS). Once the EOS are computed, they are used as input to the Tolman-
Oppenheimer-Volkoff equations (TOV) [10], which yield as output some macroscopic stellar
properties, as masses, radii and central energy densities. Other static properties, as the moment
of inertia and rotation rate can also be inferred. The EOS are also used in calculations involving
the dynamical evolution of supernova, protoneutron star evolution and cooling, conditions for
nucleosynthesis and stellar chemical composition, transport properties and protoneutron star
internal temperature.

So far, many detailed aspects have been extensively studied and are well-known as matter
at zero temperature, symmetric nuclear and pure neutron matter, low density matter, including
clusterization and the pasta phase, high density matter and matter in β-equilibrium. However,
an EOS that covers the complete QCD phase diagram parameter space in (T, μB) in a single
model still requires improvements. To date, there are just a few of these EOS and the CompOSE
(CompStar Online Supernovae Equations of State) [11] is the result of the effort of many nuclear
physicists to provide astrophysicists with reliable EOS ready to be used in numerical simulations.

Having motivated the use of relativistic models, one example of a complete Lagrangian density
that describes baryons interacting among each other by exchanging scalar-isoscalar (σ) , vector-
isoscalar (ω) vector-isovector (ρ) and scalar-isovector (δ) mesons is the following:

LNL = Lbm + Lσ + Lω + Lρ + Lδ + Lσωρ, (4)

where

Lbm =
∑
b

ψb(iγ
μ∂μ −Mb)ψb + gσbσψbψb − gωbψbγ

μωμψb − gρb
2
ψbγ

μ
ρμ
τψb + gδbψb

δ
τψb,(5)

Lσ =
1

2
(∂μσ∂μσ −m2

σσ
2)− A

3
σ3 − B

4
σ4, (6)

Lω = −1

4
FμνFμν +

1

2
m2

ωωμω
μ +

C

4
(g2ωωμω

μ)2, (7)
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Lρ = −1

4

Bμν 
Bμν +

1

2
m2

ρ
ρμ
ρ
μ, (8)

Lδ =
1

2
(∂μ
δ∂μ
δ −m2

δ

δ2), (9)

and

Lσωρ = gσg
2
ωσωμω

μ
(
α1 +

1

2
α1
′gσσ

)
+ gσg

2
ρσ
ρμ
ρ

μ
(
α2 +

1

2
α2
′gσσ

)

+
1

2
α3
′g2ωg

2
ρωμω

μ
ρμ
ρ
μ. (10)

In this Lagrangian density, Lbm stands for the kinetic part of the baryons added to the terms
representing the interaction between them and mesons σ, δ, ω, and ρ. The term Lj represents the
free and self-interacting terms of the meson j, for j = σ, δ, ω, and ρ. The last term, Lσωρ, takes
into account crossing interactions between the meson fields. The antisymmetric field tensors
Fμν and 
Bμν are given by Fμν = ∂νωμ − ∂μων and 
Bμν = ∂ν
ρμ − ∂μ
ρν − gρ(
ρμ × 
ρν). The
baryon masses are Mb and the meson masses are mj . The meson-baryon coupling constants are
normally written as gjb = χjbgj , where gj is the coupling of the meson with the nucleon and χjb

is a value obtained according to su(3) symmetry or potential values. These quantities are quite
important if hyperons are included in the system and a discussion on their values can be seen
in [12] or [17].

The usual steps in a mean field approximation is to treat the meson fields as classical fields
and then calculate the equations of motion via Euler-Lagrange equations assuming that the
system obeys translational and rotational invariance. Once the equations of motion are solved
self-consistently, the energy-momentum tensor is used in the calculation of the EOS. I omit the
calculations, which can be easily found in thousands of papers, [8] and [13] among them.

Next, whenever stellar matter is considered, leptons (generally electrons and muons) have to
be taken into account because of two extra conditions that have to be imposed, β-equilibrium
and charge neutrality. These conditions imply that:

μb = μn − qbμe, μe = μμ,
∑
b

qbnb +
∑
l

qlnl = 0, (11)

where μb and qb are the chemical potential and the electrical charge of the baryons, ql is the
electrical charge of the leptons while nB and nl are the number densities of the baryons and
leptons. In protoneutron stars, before deleptonization, neutrinos have also to be included in the
system. When this is done, the chemical stability condition becomes

μb = μn − qb(μe − μνe), μe = μμ. (12)

In this case, entropy should be fixed to values compatible with simulations of neutron star cooling
and the lepton fractions can reach 0.3-0.4. I do no treat this scenario in the present paper, but
examples of this calculation can be seen in [14], as an example.

3.1. Structure of neutron stars
The internal constitution of a neutron star is believed to be known, although it cannot be
directly tested. Close to the surface of the star, there is an outer and an inner crust and towards
the center, there is also an outer and an inner core. It is widely accepted that the solid crust
is formed by nonuniform neutron rich matter in β-equilibrium above a liquid mantle. This
inhomogeneous phase, known as pasta phase, can exist at densities lower than 0.1 fm−3. In
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Figure 8. Mass-radius curve for GM1LM parametrization of the non-linear Walecka model.
Figure and parametrization taken from [17].

the inner crust nuclei coexist with a gas of neutrons which have dripped out. The center of
the star is composed of hadronic matter and the true constituents are still a matter of intense
debate. It is a common understanding that the outer core should contain hyperons, although
this possibility excludes many EOS that become too soft to explain the existing PSR J1614-2230
and PSR J0348+0432, which are 2M� mass neutron stars [15]. The constitution of the inner
core is more controversial: it can be matter composed of deconfined quarks or perhaps a mixed
phase of quarks and hadrons. All these different internal compositions can be obtained with
parameter dependent hadronic models. A comprehensive discussion on different aspects of the
EOS can be seen in [12]. Here, I only discuss the possible tuning of the EOS, currently taking
place, as an attempt to describe massive stars.

Until 2010, when the first neutron star with a 2M� mass was confirmed, most EOS were
considered satisfactory if they yielded maximum masses larger than the canonical 1.44M�.
It is a well established and understood fact that the inclusion of hyperons makes the EOS
softer and then reduces the stellar maximum mass as compared with the nucleons only EOS
counterpart. As the appearance of particles with strangeness content is energetically favorable,
different possibilities were considered with the purpose of making the EOS stiffer, one of them
being the tuning of the unknown meson-hyperon coupling constants. Another clever mechanism
to increase the maximum mass of neutron stars with hyperons in their core is to include an
additional vector meson that mediates the hyperon-hyperon interaction [16], [17]. This approach
has the advantage of not affecting any of the well known nuclear properties, just pushing away
the hyperon threshold and suppressing their fraction at high densities. In Fig. 8, mass-radius
curves are shown for different coupling constants of the GM1LM parametrization of the non-
linear Walecka model [17]. One can see that all choices presented result in quite high maximum
masses, satisfying the new massive star constraint.

I next focus on the stellar crust and the pasta phase, considering its relation with the liquid-
gas phase transition present in the QCD phase diagram.
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3.2. The Pasta phase and liquid-gas phase transitions
The pasta phase is the outcome of the competition between the nuclear and the Coulomb
interactions at very low baryonic densities, giving rise to a frustrated system. Frustration is a
phenomenon characterized by the existence of more than one low-energy configuration. Normally
the Coulomb and nuclear interactions are well separated so that the atomic nucleus presents
itself in the binding situation with which everyone is familiar. However, when these two scales
are comparable, a variety of complex structures may appear. They are known as droplets, rods
and slabs if they are three, two or one-dimensional and their counterparts (bubbles, tubes and
slabs) are also possible, meaning that a 3D phase can be denser inside of the new structure
(meatball) or outside (Swiss cheese), a 2D phase can be represented by a spaghetti or a penne
and a 1D is always lasagna type. The pasta phase becomes the dominant matter configuration
if its free energy (binding energy at zero temperature systems) is lower than the corresponding
homogeneous phase. The typical densities for its existence lie between 0.01 and 0.1 fm−3,
depending on the model, the used parametrization and the temperature [18].

In the search for coexisting phases that give rise to the pasta phase, some points have to
be understood with relation to a binary system: according to [20], when one considers phase
transitions in multicomponent systems, the number of phases that can coexist is given by n+2,
where n is the number of conserved charges. Furthermore, more than two phases can coexist if
and only if each pair of phases form a a binodal and if all the binodals have a common region of
intersection. Based on this criterion, assuming a possibly asymmetric system with two conserved
charges and using a Maxwell construction, one gets:

(
∂μp

∂Yp

)
T,P

≥ 0 and

(
∂μn

∂Yp

)
T,P

≤ 0, (13)

known as diffusive stability, which reflects the fact that in a stable system, energy is required
to change the proton concentration while pressure and temperature are kept constant. In the
above equations, μi, i = p, n is the chemical potential of the proton and neutron and Yp = ρp/ρ
is the proton fraction, where ρi is the density of protons and neutrons and ρ = ρp+ρn. In order
to obtain the binodal section which contains points under the same pressure for different proton
fractions, we use the conditions above together with the Gibbs’ conditions which impose that
both phases have the same pressure and proton and neutron chemical potentials. The pasta
phase can then be obtained with different approaches: the coexisting phases (CP) method, the
Thomas-Fermi approximation, numerical simulations, etc. For detailed calculations, one can
look at [18], [19].

In Fig. 9, a typical case of the comparison of the binding energy of a homogeneous matter with
the pasta phase is shown. One sees that the pasta phase binding energy (solid line) is lower up to
a certain density, when the homogeneous phase (dashed line) becomes the true preferential state.
Different colors represent different structures of the pasta phase. In Fig. 10, different phase
diagrams obtained with the CP and TF methods are shown for fixed proton fractions at different
temperatures. As the temperature increases, the pasta phase shrinks and the homogeneous phase
is also the dominant phase at very low densities, before the onset of the pasta phase. it is worth
pointing out that different approximations and different parametrizations result in quite different
internal structures and also different transition densities from one phase to another.

For completeness, a binodal section, depicting the regions of phase coexistence with two
different relativistic models is shown in Fig. 11.

To conclude this discussion, we briefly outline the importance of studying spinodal sections.
The existence of phase transitions from liquid to gas phases in asymmetric nuclear matter (ANM)
is related with the instability regions which are limited by the spinodals. The spinodal instability
is known to be dominated by density fluctuations which lead to a liquid-gas separation with
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Figure 9. npe matter binding energy obtained with the CP method and NL3 parametrization
[21]. Figure taken from [18].
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Figure 10. Phase diagrams obtained with a) NL3 [21] parametrization and CP method for
Yp = 0.5.From bottom to top the colors represent homogeneous phase (T=5 and 10 MeV only),
droplets, rods and homogeneous phase. b)NL3 and TM1 [22] parametrizations with CP and
TF methods for Yp = 0.3. From bottom to top the colors represent droplets, rods, slabs, tubes,
bubbles and homogeneous phase. Figures taken from [18].

restoration of the isospin symmetry in the dense phase. The stability conditions for asymmetric
nuclear matter, keeping volume and temperature constant, are obtained from the free energy
density F , imposing that this function is a convex function of the densities ρp and ρn, i.e. the
symmetric matrix with the elements

Fij =

(
∂2F

∂ρi∂ρj

)
T

, (14)

is positive. This corresponds to imposing that the trace and the determinant of the Fij are
positive: (

∂P

∂ρ

)
T,Yp

> 0

XIII International Workshop on Hadron Physics IOP Publishing
Journal of Physics: Conference Series 706 (2016) 032001 doi:10.1088/1742-6596/706/3/032001

11



P
  (

M
eV

/fm
3

)

Yp

CP

CP

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 11. Binodal section for two different relativistic models. CP refers to the critical point.

and (
∂P

∂ρ

)
T,Yp

(
∂μp

∂Yp

)
T,P

> 0, (15)

where μi =
∂F
∂ρi

∣∣∣
T,ρj �=i

. The spinodal is determined by the values of T, ρ, and Yp for which the

determinant of Fij , (14), goes to zero, i.e. one of the eigenvalues goes to zero and becomes
negative in the instability region. The eigenvalues of the stability matrix are given by

λ± =
1

2

(
Tr(F)±

√
Tr(F)2 − 4Det(F)

)
, (16)

and the eigenvectors δρ± by
δρ±i
δρ±j

=
λ± −Fjj

Fji
, i, j = p, n (17)

The largest eigenvalue is always positive and the other becomes negative at the spinodal. In
Fig. 12 the spinodal sections for a system of protons and neutrons and for another system also
with electrons are shown. The unstable region is defined by the inner part of the spinodal. The
inclusion of electrons make matter much more stable. The dashed line represents the results
obtained for matter in β-equilibrium. The fact that this curve crosses the spinodal section
means that a liquid-gas phase transition occurs at the crust of a cold neutron star, favoring the
existence of a non-homogeneous phase.

Finally, in Fig. 13, we compare the results for liquid-gas transition densities for several
temperatures, two proton fractions and matter in β-equilibrium obtained with different methods.
It is obvious that different methods result in different quantitative results, although all of them
agree with the fact that a liquid-gas transition exist, giving rise to a pasta phase structure at low
densities. Had we used another parametrization, the numerical results would also be different.

XIII International Workshop on Hadron Physics IOP Publishing
Journal of Physics: Conference Series 706 (2016) 032001 doi:10.1088/1742-6596/706/3/032001

12



ρ (fm    )−3
n

−
3

(f
m

   
 )

p
ρ

with electrons

no electrons equilibriumβ

a)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  0.02  0.03  0.04  0.05  0.06  0.07  0.08

TM1

NL3

 0.01

Figure 12. Spinodal section for two parametrizations of the non-linear Walecka model with
and without electrons. Figure taken from [23].
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4. Relativistic models for heavy ion collisions
As far as heavy ion collisions are concerned, they lie in regions of low chemical potentials and high
temperatures in the QCD phase diagram. These temperature and chemical potential are related
to the chemical freeze-out regime, which depends on the beam energy. Hadron multiplicities
are some of the observables that can give information on the medium from which they are
produced. The main facilities running heavy ion collision experiments and the period of data
taken were/are:

• AGS, Brookhaven National Laboratory (BNL), from 1986 to 2000, used Au+Au with energy
range 2.6− 4.3 GeV;

• SPS, CERN, from 1986 to 2003, used Pb+Pb with energy range 8.6− 17.2 GeV;

• RHIC, BNL, started in 2000, uses Au+Au with energies reaching 200 GeV

• LHC, CERN, started in 2009, uses Pb+Pb with energies that will reach 5.5 TeV

As examples, I mention the three types of collisions that take place in the LHC. Proton-proton
(p-p) collisions are performed so that as much energy as possible are concentrated in the smallest
possible volume. The aim is to produce elementary particles with the possible highest masses,
as Higgs-like particles. The idea behind the experiments involving lead-lead (Pb-Pb) collisions
is not to produce new particles, but to understand how the ones already known interact with
each other by investigating the properties of the fluid produced in the collision. Finally, proton-
lead (p-Pb) collisions give the basis to study partonic distribution inside the incoming ion.
Comparing the last two reactions, density effects can also be identified.

Both thermal models [25] and quantum hadrodynamical models [26],[27] have been used to
calculate hadron multiplicities quite successfully. Some results are shown in Table 1, from where
one can see that the freeze-out temperatures and chemical potentials show a small dependence
on the different parametrizations. This is due to the fact that the repulsion among the baryons is
small and the hadron production is not very sensitive to the hadron-meson interactions. Hence,
the meson-hyperon coupling constants play only a very limited role.

5. Final remarks
I have tried to show how different aspects of the QCD phase diagram can be investigated with
the help of parameter dependent hadronic models. Two regions of the QCD phase diagram
have received special attention: the region of low temperature and high baryonic density, where
neutron stars are a source of intense investigation and the region of low baryonic densities and
high temperature, represented by the physics taking place in heavy ion collisions.

Other important aspects could also be discussed, as the possible existence and location of the
critical end point (CEP) [28], where the first order transition line shown in Fig. 5 ends. This is
an important topic of recent research. LQCD forsees a crossover transition for the low density
part of the QCD phase diagram, starting from a point with zero chemical potential and high
temperature. Effective models, on the other hand, give a first order phase transition starting at
a zero temperature and high density point. If these curves are to be joined, a CEP is necessary.
If this point does not exist, as advocated my some LQCD results, then the transition would be
of the crossover type all the way down and as a consequence, all calculations involving hadron-
quark phase transitions as the ones in the interior of hybrid stars would have to be revisited or
even ruled out.

It is obvious, from the results presented and discussed, that they are almost always parameter
dependent, what means that their interpretation has to be taken with some care. However,
although one cannot guarantee that the quantitative results are accurate, the knowledge on
the physics has been greatly improved with the help of effective models. As far as physical
constraints are obeyed so that we have some control of the parameters used in different models,
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GM3 Free Exp. Data Exp.
Ratio set 1 set 2
p̄/p 0.671 0.674 0.674 0.65±0.07 STAR

0.64±0.07 PHENIX
0.60±0.07 PHOBOS
0.64±0.07 BRAHMS

p̄/π− 0.046 0.045 0.038 0.08±0.01 STAR
π−/π+ 1.005 1.005 1.004 1.00±0.02 PHOBOS

0.95±0.06 BRAHMS
K−/K+ 0.958 0.960 0.964 0.88±0.05 STAR

0.78±0.13 PHENIX
0.91±0.09 PHOBOS
0.89±0.07 BRAHMS

K−/π− 0.238 0.236 0.231 0.149±0.02 STAR
K∗0/h− 0.063 0.062 0.059 0.06±0.017 STAR

K̄∗0/h− 0.060 0.059 0.057 0.058±0.017 STAR
Λ̄/Λ 0.696 0.698 0.699 0.77±0.07 STAR

Ξ+/Ξ− 0.726 0.717 0.725 0.82±0.08 STAR
T (MeV) 148.3 147.7 145.7
μB (MeV) 32.24 31.60 28.88

χ2
dof 5.71 5.83 6.24

Table 1. Comparison of experimental particle ratios with the ones obtained from the relativistic
mean-field models used in this work for two different meson-hyperon couplings, together with
the chemical freeze-out temperature T , baryonic potential μB and χ2

dof . Also shown are the
results obtained from a free gas (Free). These results were taken from [27].

there is no doubt that these models remain a valuable tool in undestanding many physical
aspects of nature.
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