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Abstract
In aWeyl semimetal, a spatially inhomogeneousWeyl node separation caused by lattice deformations
canmimic the action of axial electromagnetic fields. Suchfields can locally drive a chiralmagnetic
effect, a localmacroscopic current, in equilibrium. In the present work, we study the interplay of
external and intrinsicmagnetic fields and explore the fate of bulk boundary oscillations in systems
subjected to strain gradients.We show that the emerging intrinsic fields leave distinct hallmarks on the
period of the oscillations bymodifying the particle trajectories. Thismakes the oscillations depend on
the geometry of the system in an analytically traceablemanner.We, therefore, predict that quantum
oscillations are a natural way to observe and quantify intrinsicmagnetic fields, both of which have not
been achieved yet in the solid state.

Band structures of three-dimensional crystallinematerials can exhibit non-degenerate band crossings,
functioning asmonopoles emitting amomentum space equivalent ofmagneticflux. Thesemomentum space
defectsmust come in pairs of opposite charges due to periodicity of the Brillouin zone. Electrons in the vicinity
of such so-calledWeyl nodes can be assigned a quantumnumber, chirality, determined by the charge of the
‘Berrymonopole’. The chirality can couple to observable transport phenomena and affect response functions for
the system. As the terminology implies, there is a one-to-one correspondence between the effective theory
describing these low energy excitations, and the physics of the high energyWeyl fermions.Hence,Weyl
semimetals (WSMs), materials hosting such nodes, offer a pathway for realizing relativistic phenomena in 3+1
dimensions, representing amicrocosm containedwithin a solid state sample [1–7].

The consequences of the chiral charges infield theory arewell known and celebrated. In particular, the chiral
magnetic effect (CME) is a current response froma single specie ofWeyl fermions generated along the direction
an externally appliedmagnetic field [1, 8]. The same phenomenon is expected to occur inWSM, due to the
structure of the bulk Landau levels developing around theWeyl point: the lowest Landau level disperses in the
direction of thefield, with a group velocity that is determined by the sign of the topological charge of the nodes.
However, the detection of theCME in a solid state system ismade complicated by theNielsen-Ninomiya
theorem, dictating that the CMEvanishes in equilibriumdue to a cancellation of contributions fromnodes of
opposite chiralities [9–12]. Pair of nodes of opposite chiralities host counter propagatingmodes that cancel one
another, resulting in zero total CME in equilibrium.One can obtain a non cancellation of theCMEonly in non-
equilibrium conditions, either through dynamics, or through an imbalance of chiral chemical potentials
[13–19].

In stark contrast to the discussion above, a CME arising frompseudo-magnetic fields can be sustained locally
even in equilibrium conditions. Since suchfields act with an opposite sign on the two types of chiral fermions,
their contributions to equilibrium currents are added to one another instead of canceling. The only constraint
imposed on such currents, is that theymust vanishwhen integrating over the entire sample [20–22]. This
phenomenon is linked to a known fact from classical electromagnetism—bound currents as a result of
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inhomogeneousmagnetization canflowwithin amedium so long as the total dissipation-less current vanishes
when averaged over the volume of the sample.

Deformed bulk-boundary quantumoscillations in the presence of pseudo-fields

In this workwe address an outstanding challenge concerning the physics ofWSMby proposing a direct way to
detect and quantify the emergence of pseudo-magnetic fields and the resulting pseudo-CME.We achieve this by
exploring the effects of inhomogeneities on a known and proven experimental scheme: quantumoscillations
due to semiclassical trajectories traversing the bulk and surface ofWSM [23–25]. Originally, this striking
transportmeasurement was used to prove the existence of bulk-surface trajectories that result in a coherent
periodicmotion driven solely by the externalmagnetic field via theCME. In the present workwe show that the
addition of pseudo-magnetic fields generated by strain, can deform the bulk quasiparticle trajectories and hence
have immediate and quantifiable effects on the period of the oscillations.Moreover, these effects allow for direct
extraction of the pseudo-magnetic fieldmagnitude from the experiment.

The emergence of the pseudo-fields inDiracmaterials has been shown to have striking consequences in
graphene. InWSMs it has recently been claimed to play a key role both in the understanding of the physics of
Fermi arcs, as well as in driving an equilibriumCME, or give rise to novel forms of the chiral anomaly in the
presence of electric fields. Both in graphene, as well as inWSM, lattice deformations couple to the electronic
degrees of freedom as gauge potentials that do not break time-reversal symmetry, but nevertheless result in the
formation of Landau levels [26, 27]. Preserving time-reversal symmetry comes about through the coupling of the
pseudo-fields with an opposite sign to the two valleys of graphene, or toWeyl points of opposite chiral charges in
WSM.While pseudo-fields can emerge via anymechanism that renders theWeyl node positions space
dependent, such as lattice deformation or an inhomogeneousmagnetization, the emergent pseudo-gauge fields
couple to fermions of opposite chirality with an opposite sign [20, 21, 28–34]. Time-reversal preserving pseudo-
fields inWeyl-like systems have been recently demonstrated inmeta-materials [35].

The principle behind the effect of pseudo-fields on quantumoscillations is simple: quantumoscillations
stem from trajectories that traverse the bulk via the dispersion of the lowest Landau level, combinedwith a
semiclassical slidingmotion along the arcs at the surface perpendicular to the direction of thefield [23, 24].
Whenfixing the direction of the externalmagnetic field such trajectories are deformed due to intrinsicmagnetic
fields. This is because particles in the bulk are forced tomove in the direction of the total effectivemagnetic field
felt by theWeyl node, which is a superposition of the two components (external and intrinsic).

Belowwe derive the relevant formula for the period of the semiclassical oscillations. Aswe show, deformed
trajectories have a strong quantifiable effect on the density of states (DOS) aswell as the frequency of oscillations
in experimentally available responses (e.g. conductivity).While oscillations in the absence of pseudo-fields are
periodic and depend only on the totalmomentum space enclosed by the Fermi arcs [23, 24], with bulk pseudo-
fields the interval between oscillations becomes field-, pseudo-field-, as well as thickness dependent.We support
our predictionswith numerical simulations performed using a tight-bindingmodel compatible with the physics
of Cd As3 2, a Dirac semimetal onwhich the original quantumoscillations experiment was performed [25].

Analytic considerations: geometric factors affecting the oscillation period

Tomake our discussion concrete, consider a film of aWSM. For simplicity, we consider aWSMwith a single
pair ofWeyl nodes, but the analysis straightforwardly generalizes.We take theWeyl node separation p0 to be
along px as depicted infigure 1. Then the low energyHamiltonian is

( ) · ( )s m=   -H v p p , 10 0 0

where v is the velocity, whichwe take here to be isotropic (the case of anisotropic velocity is discussed in the
Methods section), andμ0 is the chemical potential offset with respect to theDirac point.We note that written in
this form, p0 couples to theHamiltonian as an axial vector potential.When p0 is a constant, its importance is in
the separation of nodes but beyond that it brings about no other interesting additional structure to theWeyl
cones, since  ´ =p 00 . Inhomogeneous strain, however, renders theWeyl node separation space-dependent
[20, 21, 31, 36], andmaymake  ´ p0 non-zero. For simplicity we consider a strain profile thatmakes p0
depend linearly on the z coordinate. Aswe showbelow, such profile corresponds to a physical strain
configuration. In such casewe canwrite theWeyl nodes separation as ( ) ( ) ˆ= -z b B z yp0 0 5 . Now, taking the
curl of ( )zp0 we can define ( ) ˆ=  ´ =e x B xB p15 0 5 , which is a pseudo-magnetic field that couples toWeyl
nodes of opposite chirality with an opposite sign. Therefore, this position-dependentWeyl node separation and,
as a result, bulk strain leads to intrinsic pseudo-magnetic fields.We note however, that unlike in the case of
regularmagnetic field, p0 is not a gauge-dependent quantity as it is directly observable as a bandstructure
parameter [37]. The pseudo-magnetic field breaks the linearDirac spectrum around each node into Landau
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levels, with a dispersion relation

ℓ( ) ( ) ( )=  + - k n v ksgn 2 , 2n x x B
2 2

5

( ) ( ) ( )= - k B vksgn . 3x x0 5

Here and later ℓ ( ) ( )
= =, 1B B eB B

1
5

5
. As the pseudo-magnetic field acts oppositely in the twoWeyl nodes, for

the given node configuration the chirality of the lowest Landau level is the product of the sign ofB5 in that node
and the correspondingWeyl node chirality.

We now turn to the influence ofB5 on the bulk trajectories. Assuming an externally applied field in the z
direction, ˆ= BzB the totalfield experienced by a particle with chirality s (with s=±1) is

ˆ ˆ ( )= + = +s Bz sB xB B B . 4s 5 5

The intrinsicfield thus tilts the bulk trajectories from the direction of the external field by an angle
q = - B Btan 1

5 . Hence, the bulk path traversed is of length ( )q¢ = = +L L L B Bcos 1 ,5
2 where L is the

thickness of the sample.
In order to determine the period of quantumoscillations, we follow the analysis in [24], and derive the phase

space quantization condition for the closed quasiparticle trajectories

∮ · ( ) ( )p g= +np dr 2 , 5
c

where γ is a constant offset. According to the discussion above, the integral for themixed bulk-surface
trajectories is broken into two pieces, due to the presence of the intrinsic and external vector potentials, namely
the integral is taken over four segments of the trajectories, including the two arcs, and two bulk branches linking
the top and the bottom surfaces. See figure 1 for depiction of the trajectories in themixed real-momentum and
purely real spaces. For the arcs, the integral yields

· ( )ò = Fep dr , 6

whereΦ is the totalflux enclosed by the real space orbit in the surface plane. If the surface encircled is S, then[38]:

ℓ ( )F = =SB BS 7k B
4

with Sk themomentum space area enclosed by the arcs. At small chemical potential this area is approximately
given by ( )m m= +S k vk 0 0 , where k0 is the total length of the arcs,μ is the chemical potentialmeasured from
theWeyl nodes,μ0 is the chemical potential offset as discussed in [24] and v the Fermi velocity at the surface
whichwe take to be equal to that of the bulk.Note that in principle, k0may depend onB5: the presence ofB5 in
the bulk necessarilymeans the length of the two arcs on opposite surfaces is inequivalent. Here, wewill analyze
the simplest case inwhich strain enhances the arc length on one surface by the same amount it shortens the arc
on the opposite surface. Then, the total length of the surface trajectory is notmodified byB5, althoughB5 is finite
in the bulk. This corresponds to the physical strain, corresponding to bending theWSM field, discussed in [39].
In theMethods sectionwe discuss other cases where changes in the two arcs do not compensate one another.

Figure 1. Semiclassical closed trajectories that produce quantumoscillations. The upper left panel describes themixedmomentum
space and real space picture, where themotion in the bulk is shown in real space and follows the direction of the externally applied
magnetic field. The surface trajectories are illustrated inmomentum space of the surface plane, where particles’ trajectories drift along
the Fermi arc to exchange chirality before sinking back into the bulk. The upper right panel presents the real spacemap of the
trajectory. In the lower left panel themixed trajectories are shown again in the presence of a pseudo-fieldB5, perpendicular both to the
nodal separation aswell as the external field. The top and bottom arcs have different lengths and the bulk trajectories are tilted.On the
right the deformed real space trajectory is shown.
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In the bulk, the trajectory of the particles is parallel to the totalmagnetic field, so that4

· ( ) ( ) ( )ò m= +L B B vp dr 1 2 . 85
2

Defining ( )= +L L B B2 1eff 5
2 and summing the two contributions togetherwe have

ℓ( ) ( )p g m+ = +n L v eBS2 . 9k Beff
4

From equation (9)we can obtain ourfirst testable prediction. The positions of the bulk-boundary energy
levels represent the points in which the chemical potential fulfills equation (9) and are given by:

ℓ
( )

( )
p g m

º
+ -

+


n v k l

L k

2
10n

B

B

0 0
2

eff 0
2

and are strongly affected byB5. IncreasingB5makes the levelsmore dense. Furthermore, we can consider
quantumoscillations as a function ofB orB5. AtB5=0, the oscillations’ period is ( ) pD »B e S1 2 k. As a small
B5 is introduced, a correction is added to the denominator, m +S S eLB vB2k k 5

2 , making the oscillations
non-periodic, as the separation between peaks becomesmagnetic field dependent.Moreover, as opposed to the
case of a purely externalmagnetic field, the separation between peaks is now thickness dependent. In the
opposite limit B B5 , we obtain ( ) ( )p mD = +B e S LB v1 2 2k 5 , fromwhich it is clear that that while
oscillations are periodic in 1/B,B5 decreases the period of oscillations, andmakes it depend on the sample
thickness.

Thuswe obtain ourmain experimental predictions: closed bulk-boundary trajectories produce peaks in
DOS at energies corresponding to the solutions of the equation (10). These can be observed in conductance
(Shubnikov-deHaas, SdH) andmagnetization (deHaas-vanAlphen, dHvA).

Numerical tests:modifiedDOS

To confirm the validity of the results above and their applicability to realisticmaterials and conditions we
performed numerical simulations of a discretizedHamiltonian applicable toCd3As2 andNa3BiDirac
semimetals. In these semimetals we can neglect the spin–orbit coupling, thuswe use the basis of a single spin,
∣  ñs p, . In this basis the continuousHamiltonian reads:

⎛
⎝⎜

⎞
⎠⎟( ) ( )= +

-
H k

E Ap

Ap E
, 11

s

p

where:

( ) = + +^E e m p m p ; 12s s s x s
2 2

( ) = + +^E e m p m p , 13p p p x p
2 2

( )=  =p p p p p pi , ,y z y z , and the parameters used are summarized infigure 2. Note thatwe use the particle-
hole symmetric version of themodel for simplicity ( = -E Ep s). For thismodel we identify: distance between the

Weyl nodes ( )=
^

p , 0, 0e

m0
s

s
, and velocities around theWeyl points, =^ ^v e m2 s s , and vP=A. For the

purpose of our simulationswe set =v̂ v by changingA. Thismakes comparison to (10) straightforward.
We use the same procedure as in [39] to introduce theB5 field according to the displacement vector:

( ) ( )a= xzu 2 , 0, 0 , 14

whereα controls the strength of the strain. From this we compute the elements of the symmetric strain tensor
( )= ¶ + ¶u u u 2ij i j j i . Then a=u x213 , and u11=2αz and correspondingly the pseudo-magnetic field

generated by the strain. In thismodel the u13 hasmuch smaller contribution to the pseudo-magnetic field than
u11 due to a small prefactor ( ˜ )ap0

2, where ã is the lattice constant of thematerial. ForCd3As2 this prefactor is
≈1/57 [39].We thus only use u11, which gives uniform pseudo-magnetic field in y direction of strength

a= B ap2 cotc

ea5 0. Such strain corresponds to themodification of hopping in x direction according to:

( ) ( )a -t t z1 2 . 15x x

Suchmodificationmakes the distance between theWeyl nodes, set by hopping in z direction, position-
dependent, in accordancewith the definition ofB5 we used above.

4
Generically, the integral ·ò p dr will also contain another contribution from the dot product of the nodal separation vector p0 and the

externalfield (see [24]), however, for our choice of directions, this contribution is zero. In addition, the contribution proportional to
·ò A dr also vanishes, as the bulk trajectories enclose no net flux.
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To introduce a realmagnetic fieldwe use the standard Peierls substitution

( )( )t te , 16x
Bya h e

x
i

which produces a realmagnetic field in the z direction.With both real and pseudo-magnetic field present only x
direction remains infinite in the simulations. Thus, even though the obtained agreementwith the theory seen in
figures 2 and 3 is very good, we could not get rid of the finite-size effects completely.

Discussion and outlook

In our numerical results we showDOSof a slab of theCd3As2 for afixedB(B5), while varyingB5(B)
correspondingly. This allows us tomodel the two experimental scenarios.We imagine putting a sample into
fixed externalfield and continuously bending it to create the pseudo-magnetic field (see figure 3 for the change in
DOS, corresponding to this scenario). Alternatively, one canfix the bend of the sample and change the external
field (see figure 2 for similar results in this case).We show the result of the equation (10)without fitting
parameters together with the numerically computedDOS. There is visible disagreement for smallB5 regime seen
infigure 2, as the traverse of the Fermi arc is the relatively large part of the trajectory. The linear dependence of
the trajectory length in (9) on the chemical potential is a simplistic approximation for themotion along Fermi
arc, thus causing discrepancy. The good agreement otherwise shows reliability of ourmodel for predicting the
influence of the external and pseudo-fields. Thus our prediction enable extraction of the values ofB5 as a
function of strain applied tomaterial by applying externalmagnetic field andmeasuring SdHor dHvA quantum
oscillations.

We stress that results presented here apply both to time-reversal- and inversion-brokenWSM, since one can
think of the latter as two time-reversed copies of the former.While locally the pseudo-CMEmight add up to a
zero net contribution in time reversal symmetric systems due to the cancellation between time reversed pairs of
nodes, the trajectories are stillmodified by them, and the effect on quantumoscillations should still be present.

Figure 2.Density of states of the single spin block of particle-hole symmetric Cd3As2 under both externalmagneticfield and stress-
produced pseudo-magnetic field. Parameters of the simulations are: = =e e 0.0574 eVs p , = =^ ^m m 9.014 eV nms p

2,

 = = =m m A6.407 eV nm , 1.212 87 eV nms p
2 . The simulation is performed on a cubic latticewith lattice constant a=8 nm,

the thickness of thematerial is 240 nm, and thewidth of the stripe is 480 nm. Externalmagnetic field isB=0.05 T.Horizontal scale
shows the effective pseudo-magnetic field, and vertical is the energy asmeasured from theWeyl nodes. Striped lines are expressions
from (10)without a free parameter.

Figure 3. (a), (b): Same asfigure 2, but now varying 1/B on the horizontal axis, while keepingB5 constant. (a):B5=0.25 T, and (b):
B5=0.1 T. (c): Linecuts of (a) and (b) atμ=0.002 eV, showing that the periodicity of the quantumoscillations gets shiftedwithB5.
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The case ofDirac semimetals ismore subtle: it is known that the strain can develop spin–orbit coupling
gapping out theDirac semimetals like Cd3As2, as the symmetry protecting the cones is broken [40, 41].
Nevertheless, we predict that smallB5 is still accessible in the experiment in the limit of highmagnetic field or
high chemical potential with respect toDirac point compared to spin–orbit gap. In the first case the twoWeyl
cones corresponding to the sameDirac cone have opposite spins, and are shifted in energy andmomentumdue
to Zeeman term (neglected so far, since it has a trivial effect of shifting the oscillations in energy for the two-node
WSM). Thus, we predict two sets of quantumoscillations corresponding to the two spin sectors to be present. In
the second case the gap near theDirac points does not influence the physics at high chemical potential and our
predictions remain intact.We note that the two sets of oscillations should be distinguishable in the experiment,
similar to the purely bulk and bulk-boundary sets of oscillations in [25].We also notice that themovement of
one set of the oscillations with applied strainwould help to clearly distinguish their bulk-boundary nature from
the bulk set of quantumoscillation ormore exotic phenomena likemagnetophonon oscillations [42, 43].
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Appendix

A.1. Dispersion relation
To corroborate thefindings of themain text, here we present the dispersion relations forB=B5=0 T;
B=0.5 T,B5=0 T; andB=0.5 T,B5=0.25 T infigures A1(a)–(c) correspondingly.

A.2. Changes in the total arc length
In this sectionwe consider the generic case inwhich the total length of the Fermi arcs ismodified by the existence
of a bulkB5. This can occur, for example, in strained samples where strain is applied on one surface and gradually
relaxes to zero away from that surface such that the opposite side of the samplemaintains the original unstrained
value.

Getting back to equation (9), we note that both Leff and Sk depend onB,B5, and L.Writing out Sk explicitly

( ) ( ( ) ) ( ) ( )p g m m+ = ¢ + +n L v k B evB k B evB2 2 . 170 5 0 5 0

where ( ) ( ( ) ( )) ( )= +k B k B k L B k z B0, , 2, ,0 5 0 5 0 5 0 5 is theWeyl node separation as a function of position in z
direction andB5. This expression transforms to equation (9)when k0(0)=k0(L)=k0.

Let us now estimate the change in the overall arc length as follows.We assume thatB5 is uniform in the bulk
of the sample, i.e theWeyl node separation changes linearly fromone surface to another in the z direction.Hence
the total arc length is given by

( ) ( ) ( )= + -k z B k B z z, , 180 5 0 5 0

where z0 denotes the position inwhich the nodal separation is unperturbed.We set the sample position between
z=0 and z=L, so that ( ) = -k B k B z0,0 5 0 5 0 and ( ) ( )= + -k L B k B L z,0 5 0 5 0 and the change is the total
length of the arcs can be estimated as ( )-B L z25 0 and is linear inB5 and L.

Figure A1.Dispersion relation along kx for 80×240 nm slab of theWeyl semimetal. (a):B=B5=0 T, (b):B=0.5 T,B5=0 T,
(c):B=0.5 T,B5=0.25 T. The rest of the parameters are the same as infigure 2. (b) and (c) ShowLandau levels forming and the
dependence of their energies onB5.
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Consequently, while we expect oscillations, theywill not be at constant intervals as a function ofB orB5.We
can consider the two limits of B B 15 and B B 15 . For the latter, » ¢L L andwe get that

( ) ( )( ) ( )p m mD = +B ev k B1 2 190 5 0

the expression is of a similar form to the one appearing in [24], but now k0 changes linearly inB5. For B B5 we
have that ¢ »L LB B5 so that

( ) ( ( ) ) ( ) ( )p g m m+ = + + n LB vB k B evB k B evB2 2 205 0 5 0 5 0

and therefore

( ) [ ( )( )] ( )p m m mD = + + -B ev e LB k B1 2 2 . 215 0 5 0
1

And the denominator again changes linearly in bothB5, L.

A.3. Unisotropic Fermi velocity
In equation (1) the Fermi velocity was taken to have a constant and isotropic value, v. In practice, the Fermi
velocitymight have a different value depending on the direction, hencewe now extend the calculation to the case
where ( )

= ^ ^v v v v, , z . Sincewe choose the direction of the external field to be in the z direction and
perpendicular to the surface, we take the surface velocity to be v⊥ as well. Themodification introduced by the
anisotropy affect equation (8), where v should be replaces by an effective velocity which is a combination of
v⊥and vzweighted by themagnitude ofB andB5, i.e

( ) ( ) ( )q q= +^v v vsin cos , 22b z
2 2

where ( ) ( )q = º- -B B xtan tan1
5

1 . vb can bewritten as

[ ] ( )= + +-
^v x x v v1 23b z

2 2 2 21
2

hence equation (8) becomes

· ( )ò m=
+

+^

L
x

x v v
p dr 2

1
. 24

z

2

2 2 2

The quantization condition (9) then becomes

( )
( )( )

( )p g m
m m

+ =
+

+
+

+

^ ^
n L

x

x v v

k B

v eB
2 2

1
. 25

z

2

2 2 2

0 5 0

As expected, when v⊥ and vz are comparable, the same analysis that is presented in themain text holds.
Alternatively, if one of these velocities ismuch larger than the other, the result depends on themagnitude of x
and can showdifferent dependencies on x. For example, if v̂ vz and x?1, we find that

( )
+

+
=

+

+
»

^ ^ ^ ^

x

x v v

x

v x v v

x

v

1 1

z z

2

2 2 2

2

2 2

while if x=1we have

( )
+

+
=

+

+^ ^ ^

x

x v v

x

v x v v

1 1
.

z z

2

2 2 2

2

2 2

The result in this case clearly depends on the hierarchy of x and vz/v⊥. For  ^x v vz one gets ( )v̂ x1 , while
for  ^x v vz the result is ( )+ ^x v v1 z

2 as the lowest order correction in x.
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