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Abstract

Ina Weyl semimetal, a spatially inhomogeneous Weyl node separation caused by lattice deformations
can mimic the action of axial electromagnetic fields. Such fields can locally drive a chiral magnetic
effect, alocal macroscopic current, in equilibrium. In the present work, we study the interplay of
external and intrinsic magnetic fields and explore the fate of bulk boundary oscillations in systems
subjected to strain gradients. We show that the emerging intrinsic fields leave distinct hallmarks on the
period of the oscillations by modifying the particle trajectories. This makes the oscillations depend on
the geometry of the system in an analytically traceable manner. We, therefore, predict that quantum
oscillations are a natural way to observe and quantify intrinsic magnetic fields, both of which have not
been achieved yet in the solid state.

Band structures of three-dimensional crystalline materials can exhibit non-degenerate band crossings,
functioning as monopoles emitting a momentum space equivalent of magnetic flux. These momentum space
defects must come in pairs of opposite charges due to periodicity of the Brillouin zone. Electrons in the vicinity
of such so-called Weyl nodes can be assigned a quantum number, chirality, determined by the charge of the
‘Berry monopole’. The chirality can couple to observable transport phenomena and affect response functions for
the system. As the terminology implies, there is a one-to-one correspondence between the effective theory
describing these low energy excitations, and the physics of the high energy Weyl fermions. Hence, Weyl
semimetals (WSMs), materials hosting such nodes, offer a pathway for realizing relativistic phenomenain 3 + 1
dimensions, representing a microcosm contained within a solid state sample [1-7].

The consequences of the chiral charges in field theory are well known and celebrated. In particular, the chiral
magnetic effect (CME) is a current response from a single specie of Weyl fermions generated along the direction
an externally applied magnetic field [1, 8]. The same phenomenon is expected to occur in WSM, due to the
structure of the bulk Landau levels developing around the Weyl point: the lowest Landau level disperses in the
direction of the field, with a group velocity that is determined by the sign of the topological charge of the nodes.
However, the detection of the CME in a solid state system is made complicated by the Nielsen-Ninomiya
theorem, dictating that the CME vanishes in equilibrium due to a cancellation of contributions from nodes of
opposite chiralities [9—12]. Pair of nodes of opposite chiralities host counter propagating modes that cancel one
another, resulting in zero total CME in equilibrium. One can obtain a non cancellation of the CME only in non-
equilibrium conditions, either through dynamics, or through an imbalance of chiral chemical potentials
[13-19].

In stark contrast to the discussion above, a CME arising from pseudo-magnetic fields can be sustained locally
even in equilibrium conditions. Since such fields act with an opposite sign on the two types of chiral fermions,
their contributions to equilibrium currents are added to one another instead of canceling. The only constraint
imposed on such currents, is that they must vanish when integrating over the entire sample [20-22]. This
phenomenon is linked to a known fact from classical electromagnetism—bound currents as a result of
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inhomogeneous magnetization can flow within a medium so long as the total dissipation-less current vanishes
when averaged over the volume of the sample.

Deformed bulk-boundary quantum oscillations in the presence of pseudo-fields

In this work we address an outstanding challenge concerning the physics of WSM by proposing a direct way to
detect and quantify the emergence of pseudo-magnetic fields and the resulting pseudo-CME. We achieve this by
exploring the effects of inhomogeneities on a known and proven experimental scheme: quantum oscillations
due to semiclassical trajectories traversing the bulk and surface of WSM [23-25]. Originally, this striking
transport measurement was used to prove the existence of bulk-surface trajectories that result in a coherent
periodic motion driven solely by the external magnetic field via the CME. In the present work we show that the
addition of pseudo-magnetic fields generated by strain, can deform the bulk quasiparticle trajectories and hence
have immediate and quantifiable effects on the period of the oscillations. Moreover, these effects allow for direct
extraction of the pseudo-magnetic field magnitude from the experiment.

The emergence of the pseudo-fields in Dirac materials has been shown to have striking consequences in
graphene. In WSMs it has recently been claimed to play a key role both in the understanding of the physics of
Fermi arcs, as well as in driving an equilibrium CME, or give rise to novel forms of the chiral anomaly in the
presence of electric fields. Both in graphene, as well as in WSM, lattice deformations couple to the electronic
degrees of freedom as gauge potentials that do not break time-reversal symmetry, but nevertheless result in the
formation of Landau levels [26, 27]. Preserving time-reversal symmetry comes about through the coupling of the
pseudo-fields with an opposite sign to the two valleys of graphene, or to Weyl points of opposite chiral charges in
WSM. While pseudo-fields can emerge via any mechanism that renders the Weyl node positions space
dependent, such as lattice deformation or an inhomogeneous magnetization, the emergent pseudo-gauge fields
couple to fermions of opposite chirality with an opposite sign [20, 21, 28—34]. Time-reversal preserving pseudo-
fields in Weyl-like systems have been recently demonstrated in meta-materials [35].

The principle behind the effect of pseudo-fields on quantum oscillations is simple: quantum oscillations
stem from trajectories that traverse the bulk via the dispersion of the lowest Landau level, combined with a
semiclassical sliding motion along the arcs at the surface perpendicular to the direction of the field [23, 24].
When fixing the direction of the external magnetic field such trajectories are deformed due to intrinsic magnetic
fields. This is because particles in the bulk are forced to move in the direction of the total effective magnetic field
felt by the Weyl node, which is a superposition of the two components (external and intrinsic).

Below we derive the relevant formula for the period of the semiclassical oscillations. As we show, deformed
trajectories have a strong quantifiable effect on the density of states (DOS) as well as the frequency of oscillations
in experimentally available responses (e.g. conductivity). While oscillations in the absence of pseudo-fields are
periodic and depend only on the total momentum space enclosed by the Fermi arcs [23, 24], with bulk pseudo-
fields the interval between oscillations becomes field-, pseudo-field-, as well as thickness dependent. We support
our predictions with numerical simulations performed using a tight-binding model compatible with the physics
of Cd;As,, a Dirac semimetal on which the original quantum oscillations experiment was performed [25].

Analytic considerations: geometric factors affecting the oscillation period

To make our discussion concrete, consider a film of a WSM. For simplicity, we consider a WSM with a single
pair of Weyl nodes, but the analysis straightforwardly generalizes. We take the Weyl node separation p, to be
along p, as depicted in figure 1. Then the low energy Hamiltonian is

Hy=xv(p £py) - 0 — Uy (1)

where v is the velocity, which we take here to be isotropic (the case of anisotropic velocity is discussed in the
Methods section), and p is the chemical potential offset with respect to the Dirac point. We note that written in
this form, p, couples to the Hamiltonian as an axial vector potential. When p, is a constant, its importance is in
the separation of nodes but beyond that it brings about no other interesting additional structure to the Weyl
cones, since V x p, = 0.Inhomogeneous strain, however, renders the Weyl node separation space-dependent
[20,21, 31, 36],and maymake V X p,non-zero. For simplicity we consider a strain profile that makes Py
depend linearly on the z coordinate. As we show below, such profile corresponds to a physical strain
configuration. In such case we can write the Weyl nodes separation as p,(z) = (by — Bsz)y. Now, taking the
curl of py(z) we can define Bs = 1/eV X p,(x) = BsX, which is a pseudo-magnetic field that couples to Weyl
nodes of opposite chirality with an opposite sign. Therefore, this position-dependent Weyl node separation and,
as aresult, bulk strain leads to intrinsic pseudo-magnetic fields. We note however, that unlike in the case of
regular magnetic field, p, is not a gauge-dependent quantity as it is directly observable as a bandstructure
parameter [37]. The pseudo-magnetic field breaks the linear Dirac spectrum around each node into Landau
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Figure 1. Semiclassical closed trajectories that produce quantum oscillations. The upper left panel describes the mixed momentum
space and real space picture, where the motion in the bulk is shown in real space and follows the direction of the externally applied
magnetic field. The surface trajectories are illustrated in momentum space of the surface plane, where particles’ trajectories drift along
the Fermi arc to exchange chirality before sinking back into the bulk. The upper right panel presents the real space map of the
trajectory. In the lower left panel the mixed trajectories are shown again in the presence of a pseudo-field Bs, perpendicular both to the
nodal separation as well as the external field. The top and bottom arcs have different lengths and the bulk trajectories are tilted. On the
right the deformed real space trajectory is shown.

levels, with a dispersion relation

en(ky) = Esgn(mvyk; + 2457, 2
colky) = —sgn(Bs) vks. €

Here and later ¢, = /2 = 1. As the pseudo-magnetic field acts oppositely in the two Weyl nodes, for

1
VeB(Bs) ’
the given node configuration the chirality of the lowest Landau level is the product of the sign of Bs in that node
and the corresponding Weyl node chirality.

We now turn to the influence of B5 on the bulk trajectories. Assuming an externally applied field in the z

direction, B = BZ the total field experienced by a particle with chirality s (with s = +1)is
B, = B + sBs = B + sBs#. (4)

The intrinsic field thus tilts the bulk trajectories from the direction of the external field by an angle
6 = tan~! Bs /B. Hence, the bulk path traversed is of length L' = L/ cos® = L1 + (Bs/B)?,where Lis the
thickness of the sample.

In order to determine the period of quantum oscillations, we follow the analysis in [24], and derive the phase
space quantization condition for the closed quasiparticle trajectories

yg p-dr=2n(n+ ), (5)

where 7yis a constant offset. According to the discussion above, the integral for the mixed bulk-surface
trajectories is broken into two pieces, due to the presence of the intrinsic and external vector potentials, namely
the integral is taken over four segments of the trajectories, including the two arcs, and two bulk branches linking
the top and the bottom surfaces. See figure 1 for depiction of the trajectories in the mixed real-momentum and
purely real spaces. For the arcs, the integral yields

f p - dr=¢ed, 6)
where @ is the total flux enclosed by the real space orbit in the surface plane. If the surface encircled is S, then[38]:
& = SB = BS;/p 7)

with S; the momentum space area enclosed by the arcs. At small chemical potential this area is approximately
givenby S = ko(u + 1) /v, where ko is the total length of the arcs, 11 is the chemical potential measured from
the Weyl nodes, (19 is the chemical potential offset as discussed in [24] and v the Fermi velocity at the surface
which we take to be equal to that of the bulk. Note that in principle, ky may depend on Bs: the presence of Bs in
the bulk necessarily means the length of the two arcs on opposite surfaces is inequivalent. Here, we will analyze
the simplest case in which strain enhances the arc length on one surface by the same amount it shortens the arc
on the opposite surface. Then, the total length of the surface trajectory is not modified by Bs, although Bs is finite
in the bulk. This corresponds to the physical strain, corresponding to bending the WSM field, discussed in [39].
In the Methods section we discuss other cases where changes in the two arcs do not compensate one another.
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In the bulk, the trajectory of the particles is parallel to the total magnetic field, so that"

fp -dr = L\J1 + (Bs/B) (ZM/V). (8)

Defining Lo = 2L+/1 + (Bs/B)? and summing the two contributions together we have
2m(n + ) = plege /v + eBSiLp. 9)
From equation (9) we can obtain our first testable prediction. The positions of the bulk-boundary energy
levels represent the points in which the chemical potential fulfills equation (9) and are given by:
o=t )y — Kopol
e Les + koZ

(10)

and are strongly affected by Bs. Increasing Bs makes the levels more dense. Furthermore, we can consider
quantum oscillations as a function of B or Bs. At Bs = 0, the oscillations’ period is A(1/B) & 2me/S;. Asasmall
Bs is introduced, a correction is added to the denominator, Sy — Sy + 2ueLBZ /vB, making the oscillations
non-periodic, as the separation between peaks becomes magnetic field dependent. Moreover, as opposed to the
case of a purely external magnetic field, the separation between peaks is now thickness dependent. In the
opposite limit Bs >> B, we obtain A(1/B) = 2me/(Sx + 2uLBs/v), from which itis clear that that while
oscillations are periodic in 1/B, Bs decreases the period of oscillations, and makes it depend on the sample
thickness.

Thus we obtain our main experimental predictions: closed bulk-boundary trajectories produce peaks in
DOS at energies corresponding to the solutions of the equation (10). These can be observed in conductance
(Shubnikov-de Haas, SAH) and magnetization (de Haas-van Alphen, dHvA).

Numerical tests: modified DOS

To confirm the validity of the results above and their applicability to realistic materials and conditions we
performed numerical simulations of a discretized Hamiltonian applicable to Cd;As, and Na3Bi Dirac
semimetals. In these semimetals we can neglect the spin—orbit coupling, thus we use the basis of a single spin,
[sT, p1). In this basis the continuous Hamiltonian reads:

H(b = (fp /gj] an

where:
E =e + mgp’ + msnpﬁ; (12)
Ep = ey + mp1p] + myppf, (13)

p. = p, £ ip, pj=(p,, p,), and the parameters used are summarized in figure 2. Note that we use the particle-
hole symmetric version of the model for simplicity (E, = —E;). For this model we identify: distance between the

Weylnodes p, = ( lnf‘ , 0, 0), and velocities around the Weyl points, v, = 2./e;m; | ,and v = A.For the
s |

purpose of our simulations we set v; = v| by changing A. This makes comparison to (10) straightforward.
We use the same procedure as in [39] to introduce the Bs field according to the displacement vector:

u = (2axz, 0, 0), (14)

where a controls the strength of the strain. From this we compute the elements of the symmetric strain tensor
ujj = (Ojuj + Oju;) /2. Then uy; = 2ax,and uy; = 2azand correspondingly the pseudo-magnetic field
generated by the strain. In this model the 1,5 has much smaller contribution to the pseudo-magnetic field than
u;;1 due to asmall prefactor (@p,)?, where 4 is the lattice constant of the material. For Cd;As, this prefactor is
~1/57[39]. We thus only use u;;, which gives uniform pseudo-magnetic field in y direction of strength

Bs = 20427—2 cot ap,,. Such strain corresponds to the modification of hopping in x direction according to:

ty — (1 — 202). (15)

Such modification makes the distance between the Weyl nodes, set by hopping in z direction, position-
dependent, in accordance with the definition of Bs we used above.

Generically, the integral f p - dr will also contain another contribution from the dot product of the nodal separation vector p, and the
external field (see [24]), however, for our choice of directions, this contribution is zero. In addition, the contribution proportional to
f A - dr also vanishes, as the bulk trajectories enclose no net flux.
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Figure 2. Density of states of the single spin block of particle-hole symmetric Cd;As, under both external magnetic field and stress-
produced pseudo-magnetic field. Parameters of the simulations are: e; = ¢, = 0.0574 eV, m,, = m,, = 9.014 eV nm?,

my|| = mp| = 6.407 eV nm?, A = 1.212 87 eV nm. The simulation is performed on a cubic lattice with lattice constanta = 8 nm,
the thickness of the material is 240 nm, and the width of the stripe is 480 nm. External magnetic fieldis B = 0.05 T. Horizontal scale
shows the effective pseudo-magnetic field, and vertical is the energy as measured from the Weyl nodes. Striped lines are expressions
from (10) without a free parameter.

DOS [an.

1/B1/T]

(a)

Figure 3. (a), (b): Same as figure 2, but now varying 1/B on the horizontal axis, while keeping Bs constant. (a): Bs = 0.25 T, and (b):
Bs = 0.1 T.(c): Linecuts of (a) and (b) at z = 0.002 eV, showing that the periodicity of the quantum oscillations gets shifted with Bs.

To introduce a real magnetic field we use the standard Peierls substitution

t, — e/ /o, (16)

which produces a real magnetic field in the z direction. With both real and pseudo-magnetic field present only x
direction remains infinite in the simulations. Thus, even though the obtained agreement with the theory seen in
figures 2 and 3 is very good, we could not get rid of the finite-size effects completely.

Discussion and outlook

In our numerical results we show DOS of a slab of the Cd;As, for a fixed B(Bs), while varying B5(B)
correspondingly. This allows us to model the two experimental scenarios. We imagine putting a sample into
fixed external field and continuously bending it to create the pseudo-magnetic field (see figure 3 for the change in
DOS, corresponding to this scenario). Alternatively, one can fix the bend of the sample and change the external
field (see figure 2 for similar results in this case). We show the result of the equation (10) without fitting
parameters together with the numerically computed DOS. There is visible disagreement for small Bs regime seen
in figure 2, as the traverse of the Fermi arc is the relatively large part of the trajectory. The linear dependence of
the trajectorylength in (9) on the chemical potential is a simplistic approximation for the motion along Fermi
arc, thus causing discrepancy. The good agreement otherwise shows reliability of our model for predicting the
influence of the external and pseudo-fields. Thus our prediction enable extraction of the values of Bs asa
function of strain applied to material by applying external magnetic field and measuring SdH or dHvA quantum
oscillations.

We stress that results presented here apply both to time-reversal- and inversion-broken WSM, since one can
think of the latter as two time-reversed copies of the former. While locally the pseudo-CME mightadd uptoa
zero net contribution in time reversal symmetric systems due to the cancellation between time reversed pairs of
nodes, the trajectories are still modified by them, and the effect on quantum oscillations should still be present.
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Figure Al. Dispersion relation along k, for 80 x 240 nm slab of the Weyl semimetal. (a): B= Bs = 0 T, (b):B=0.5T,B5; =0T,
(¢): B = 0.5 T, Bs = 0.25 T. The rest of the parameters are the same as in figure 2. (b) and (c) Show Landau levels forming and the
dependence of their energies on Bs.

The case of Dirac semimetals is more subtle: it is known that the strain can develop spin—orbit coupling
gapping out the Dirac semimetals like Cd;As,, as the symmetry protecting the cones is broken [40, 41].
Nevertheless, we predict that small Bs is still accessible in the experiment in the limit of high magnetic field or
high chemical potential with respect to Dirac point compared to spin—orbit gap. In the first case the two Weyl
cones corresponding to the same Dirac cone have opposite spins, and are shifted in energy and momentum due
to Zeeman term (neglected so far, since it has a trivial effect of shifting the oscillations in energy for the two-node
WSM). Thus, we predict two sets of quantum oscillations corresponding to the two spin sectors to be present. In
the second case the gap near the Dirac points does not influence the physics at high chemical potential and our
predictions remain intact. We note that the two sets of oscillations should be distinguishable in the experiment,
similar to the purely bulk and bulk-boundary sets of oscillations in [25]. We also notice that the movement of
one set of the oscillations with applied strain would help to clearly distinguish their bulk-boundary nature from
the bulk set of quantum oscillation or more exotic phenomena like magnetophonon oscillations [42, 43].
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Grushin, and Andrew Potter for useful comments. Numerical simulations were performed using Kwant
code [44].

Appendix

A.1. Dispersion relation
To corroborate the findings of the main text, here we present the dispersion relations for B = Bs = 0 T;
B=0.5T,B5; =0T;and B = 0.5 T, Bs = 0.25 T in figures A1(a)—(c) correspondingly.

A.2. Changes in the total arc length
In this section we consider the generic case in which the total length of the Fermi arcs is modified by the existence
of abulk Bs. This can occur, for example, in strained samples where strain is applied on one surface and gradually
relaxes to zero away from that surface such that the opposite side of the sample maintains the original unstrained
value.

Getting back to equation (9), we note that both L ¢ and S; depend on B, Bs, and L. Writing out Sy explicitly

2 (n + v) = p2L' /v + ko(Bs) /evB) + ko(Bs) 11,/ evB. (17)

where ky(Bs) = (ko(0, Bs) + ko(L, Bs)) /2, ko(z, Bs) is the Weyl node separation as a function of positionin z
direction and Bs. This expression transforms to equation (9) when ky(0) = ko(L) = ko.

Let us now estimate the change in the overall arc length as follows. We assume that Bs is uniform in the bulk
of the sample, i.e the Weyl node separation changes linearly from one surface to another in the z direction. Hence
the total arc length is given by

kO(Z) BS) = kO + BS(Z - ZO)> (18)

where z, denotes the position in which the nodal separation is unperturbed. We set the sample position between
z=0andz = L,sothat kg (0, Bs) = kg — Bszgand ko(L, Bs) = ko + Bs(L — z,) and the change is the total
length of the arcs can be estimated as Bs(L — 2zy) and is linear in Bs and L.
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Consequently, while we expect oscillations, they will not be at constant intervals as a function of B or Bs. We
can consider the two limits of B; /B > 1and Bs /B < 1. For thelatter, L ~ L’ and we get that

A(1/B) = 2mev/ko(Bs) (11 + 1) 19)

the expression is of a similar form to the one appearing in [24], but now k, changes linearly in Bs. For B; > B we
have that L’ ~ LBs /B so that

2n/i (n + ) = (2LBs /vB + ko(Bs) /evB) + ko(Bs) i1/ evB (20)
and therefore
A(1/B) = 2mev[2epLBs + ko(Bs) (1 + po)l ™" 2D

And the denominator again changes linearly in both Bs, L.

A.3. Unisotropic Fermi velocity

Inequation (1) the Fermi velocity was taken to have a constant and isotropic value, v. In practice, the Fermi
velocity might have a different value depending on the direction, hence we now extend the calculation to the case
where vV = (v|, v/, ). Since we choose the direction of the external field to be in the z direction and
perpendicular to the surface, we take the surface velocity to be v, as well. The modification introduced by the
anisotropy affect equation (8), where v should be replaces by an effective velocity which is a combination of

v, and v, weighted by the magnitude of Band Bs, i.e

vy = \/(sin Ov)? + (cosbv,)? , (22)

where § = tan~'(Bs;/B) = tan~!(x). v, can be written as

vy = [1 + x2] 2 x2? + v2 (23)

hence equation (8)becomes

2
fp -dr = ZLMIL. (24)
Javi + 02
The quantization condition (9) then becomes
1 2 ko(B
2r(n + ) = 2Ly tx? L o(Bs)(p + uo). (25)

Javi + v? vieB

As expected, when v, and v, are comparable, the same analysis that is presented in the main text holds.
Alternatively, if one of these velocities is much larger than the other, the result depends on the magnitude of x
and can show different dependencies on x. For example, if v, > v, and x > 1, we find that

1+x* 1+ x2 X

JxE v v+ (/v v

whileifx < 1 wehave
1+x* 1 + x?
Vel vl vx? + (n/)?

The result in this case clearly depends on the hierarchy of xand v, /v, . For x > v, /v, one gets 1/ (v x), while
for x < v, /v, theresultis (1 + x2)v, /v, as the lowest order correction in x.
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