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CHAPTER 1

PRELUDE
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In the beginning of the twentieth century two fundamental discoveries in the-
oretical physics completely revolutionized our understanding of the physical world
around us. The first, Einstein’s theory of relativity, led to a deeper understanding of
the nature of space and time, the concept of mass and ultimately, the general the-
ory of relativity provided a beautiful geometrical description of gravity, generalizing
Newton’s theory. The second, quantum mechanics, provided an extremely success-
ful description of the subatomic world, explaining previously puzzling properties of
light and atoms. However, that could not be the end of the story. Theoretical physi-
cists have always sought to find the ultimate theory of nature describing all phenom-
ena, from the subatomic to the extra-galactic scale. This instinct had led Maxwell in
the late ninetienth century to unify electricity and magnetism in his mathematically
beautiful theory of electromagnetism. So theorists were soon trying to put relativity
and quantum mechanics into one packet, a quantum theory of gravity.

The quest for unification dominated most of twentieth century theoretical physics.
By the 1950s, Richard Feynman, Julian Schwinger and Tomonaga Shin’ichiro, based
on earlier work by Paul Dirac, Wolfgang Pauli and others, had successfully unified
the classical theory of electromagnetism - a theory which is inherently special rel-
ativistic - with quantum mechanics. The offspring of this merging was the theory
known as quantum electrodynamics (QED). It was the first example of a consis-
tent quantum field theory (QFT), a theory which forced us to replace the notion of
Newtonian particles with that of fields pervading spacetime. What we call particles,
became now the local excitations, or ripples, of fields which can propagate in space
and time.

By that time, however, two more fundamental forces of nature, namely the weak
and the strong nuclear forces, had been discovered and a plethora of new parti-
cles was being detected in cosmic ray experiments and later in accelerators. After
decades of intense experimental and theoretical work by many physicists, Sheldon
Glashow, Abdus Salam, and Steven Weinberg proposed in the late 1960s the elec-
troweak theory, a theory that unifies the weak interaction with quantum electrody-
namics. This was the first example of a new type of a quantum field theory, known
as Yang-Mills theory or non-abelian gauge theory. However, it was not until 1971,
when Gerard ’t Hooft proved the renormalizability of Yang-Mills theory - an essen-
tial property of any meaningful QFT - that the theory of electroweak interactions
was accepted as a viable quantum field theory. This, together with further work
by Frank Wilczek, David Gross and David Politzer and by Gerard ’t Hooft, paved
the way for the formulation of quantum chromodynamics (QCD) a few years later,
another Yang-Mills theory that describes the strong nuclear force. The culmination
of all this theoretical work, and decades of brilliant experimental discoveries, was
what is known today as the ‘standard model of particle physics’, which effectively
describes the interactions between all known fundamental particles and forces in
nature - except gravity.
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CHAPTER 1 - PRELUDE

Various attempts at quantizing the general theory of relativity ended in failure.
Unlike Maxwell’s classical theory of the electromagnetic field or classical Yang-Mills
theory, the perturbative quantization of general relativity leads to uncontrollable in-
finities which render the resulting quantum theory useless. Technically, one says that
Einstein’s gravity is not a ‘renormalizable’ field theory. Even when supergravity - a
generalized theory of gravity that possesses a powerful symmetry between bosons
and fermions known as ‘supersymmetry’ - was discovered in 1976 by Daniel Freed-
man, Peter van Nieuwenhuizen and Sergio Ferrara, the problem of infinities in the
perturbative quantization of gravity was not resolved. Nevertheless, Stephen Hawk-
ing succeeded in 1974 to combine general relativity and quantum field theory in a
semiclassical calculation and predicted that black holes are thermodynamic objects
and radiate as black bodies.

In the same way that quantum field theory, the successful merging of special
relativity and quantum mechanics, taught us that we should not think of particles as
tiny billiard balls but as localized excitations of fields, a quantum theory of gravity
would await an even more radical revision of the concept of a ‘particle’: there are no
particles as such - they are all different vibration modes of one-dimensional extended
objects, known as ‘strings’.1 Even though this idea might sound crazy and arbitrary
at first, it is precisely what is needed in order to cure the undesirable infinities in the
perturbative quantization of general relativity. The fundamental reason why these
infinities arise in the first place is that ‘gravitons’, the quanta of the gravitational
force, interact at a single point in spacetime. This is no longer the case in string
theory, however. Gravitons arise as certain vibration modes of strings, which are
extended objects, and so they no longer interact at a single point. This is one of
the main reasons why string theory provides a consistent quantum theory of gravity.
Moreover, it turns out that replacing point particles by strings, and not by higher-
dimensional extended objects, is not arbitrary at all. The perturbative quantization
of higher-dimensional extended objects is simply not consistent - remarkably, for the
same reason that gravity cannot be quantized perturbatively. Higher-dimensional
extended objects, such as membranes and the so-called ‘D-branes’, do arise in string
theory however, but (at least so far) not as the fundamental degrees of freedom.

It is amusing that, historically, string theory did not first arise as a quantum the-
ory of gravity. Its roots in fact go back to the mid 1960s when physicists were trying
to develop a theory of the strong intercations. The so-called ‘dual string models’ were
put forward to explain the huge number of hadrons - strongly interacting particles -
that were being detected in particle accelerators. However, it was soon realized that
these string models were not the correct description of the strong interaction and
they were abandoned when QCD was discovered. In 1974, however, Joel Scherk

1In fact, these one dimensional extended objects can be thought of as the localized excitations of a
‘string field’, in the same way that point particles arise as the local excitations of fields in QFT, but there
is no complete formulation of string field theory yet.
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and John Schwarz suggested that string theory could provide a theory of quantum
gravity. Although, this idea was not considered seriously for many years, it initi-
ated a tremendous effort in theoretical physics and mathematics, which has resulted
in the mathematically beautiful modern string theory and which is still continuing
undiminished.

In 1974, however, there was another important development that connected the
strong interaction with string theory in a completely new way. It was QCD itself
however that was being connected with string theory this time. Soon after its dis-
covery, it was realized that very little could be said about the low energy regime of
quantum chromodynamics. In this limit QCD is strongly coupled and the perturba-
tive calculations one most often relies on cannot be trusted. Since QCD is a highly
non-linear theory, however, there is hardly any alternative analytic method of cal-
culation besides perturbation theory. Gerard ’t Hooft then suggested an alternative
line of attack, relying on the fact that QCD is an SU(3) gauge theory - this means
that particles that interact via the strong interaction carry three types of ‘charge’, or
three ‘colors’. He observed that if one considers an SU(N) gauge theory instead and
allows the number of colors N to become very large, even infinite, then the theory
simplifies significantly. If one can calculate the properties of the theory for N →∞,
then, instead of the standard perturbation expansion in the QCD coupling constant,
one can use a perturbative expansion in 1/N around the N → ∞ limit. Although,
admittedly, the hope of approximating N = 3 by N = ∞ in this fashion would
seem to defy any attempt at a logical justification, this approximation remarkably
does capture some of the features of QCD. What is even more remarkable though is
that the expansion in 1/N turns out to be a topological expansion in the genus of
compact Riemann surfaces. This is precisely the sort of expansion that appears in
perturbative string theory as well! Since the N →∞ limit of QCD is still too difficult
to solve, the corresponding string theory is still missing.

For many years this bold idea of ’t Hooft remained largely vague, mainly because,
even in the large N limit, gauge theories are still very complicated theories. Two
very different lines of research, however, merged when Juan Maldacena conjectured
in 1997 that a supersymmetric version of QCD, the N = 4 SU(N) super Yang-
Mills theory in four dimensions is dual to Type IIB superstring theory. The latter
is the offspring of many years of research on string theory as a theory of quantum
gravity - such theories had been put forward precisely because conventional QFT
could not accommodate gravity. Suddenly, a consistent theory of quantum gravity
was conjectured to be equivalent to a QFT without gravity! This was then the first
concrete realization of the holographic principle, introduced by ’t Hooft in 1993 and
substantiated by Leonard Susskind in 1994. According to this principle, quantum
gravity requires that all dynamical degrees of freedom of a gravitational theory in
D-dimensions are localized in a (D−1)-dimensional space without gravity - in a way
analogous to the way a two-dimensional holographic image encodes information

4



CHAPTER 1 - PRELUDE

about a three-dimensional object.
The above conjectured duality between N = 4 SU(N) super Yang-Mills theory

and Type IIB superstring theory, known as the AdS/CFT correspondence, if true, is
a very useful tool, both from the point of view of quantum gravity, but also from
the QFT perspective. First, although superstring theory as we know it is a consistent
theory of quantum gravity, at present we only have a perturbative definition of string
theory. The AdS/CFT correspondence, however, identifies a particular string theory
with a gauge theory, of which we have a full non-perturbative definition. In this
sense then the AdS/CFT conjecture provides a non-perturbative definition of string
theory, and hence, of quantum gravity.

On the other hand, strongly coupled gauge theories are very difficult to study.
Remarkably, the AdS/CFT correspondence relates the strongly coupled regime of the
gauge theory to the low energy limit of string theory, which is classical supergravity
- a much more tractable theory! This is precisely the point of view we adopt in this
thesis. We will study how information about the strongly coupled gauge theory is
encoded in classical gravity and we will develop techniques that allow one to extract
this information in the most efficient way.

ORGANIZATION OF THE THESIS

This thesis begins with an introduction to the basic ideas of superstring theory
and the AdS/CFT correspondence in Chapter 2. I have decided to include this ma-
terial in the hope that it will provide a reasonably self-contained but at the same
time succinct introduction to the subject of the gauge/gravity duality. Of course,
in no way do I claim to have succeeded in reaching this goal. Given the vast and
ever growing literature on the subject, however, and being strongly influenced by my
own frustration at trying to navigate through this volume of information, I could not
resist the temptation of taking some extra time to write this introductory material. I
feel my effort will be justified if one or two graduate - and why not undergraduate -
students find it useful.

Chapter 3 is a significantly revised and expanded version of the paper [1] with
Kostas Skenderis. After reviewing the concept of ‘asymptotically locally AdS spaces’
and their relevance for the AdS/CFT correspondence in Section 3.1, I present sys-
tematically the method of holographic renormalization for the computation of gen-
eral renormalized correlation functions of the gauge theory using classical super-
gravity, both in its original incarnation (Section 3.2) and in the Hamiltonian formal-
ism developed in [1] (Section 3.3). The method is then applied to some examples in
Section 3.4 and some general results valid in any dimension are derived. Moreover,
a section on AdS3 has been included, where some results that were not published
elsewhere are presented.

5



Chapter 4 is based on the paper [2] with Kostas Skenderis and it concerns
the evaluation of correlation functions in holographic renormalization group flows.
First, Poincaré domain walls are considered in Section 4.1 and their field theory
interpretation in terms of deformations by marginal operators or vacuum expec-
tation values of scalar operators is substantiated. In the beginning of the section
on Poincaré domain walls I have included some unpublished results on a domain
wall solution that was discovered in [1]. AdS-sliced domain walls are then dis-
cussed in Section 4.2. The rest of the chapter is devoted to an extensive analysis
of the geometry and the holographic correlation functions of the Janus solution, a
non-supersymmetric but stable dilatonic AdS-sliced domain wall solution of gauge
supergravity.

Finally, in Chapter 5, I present results reported in [3] with Kostas Skenderis. This
chapter concerns certain properties of asymptotically AdS black holes. After some
preliminary considerations, the variational problem for AdS gravity with Dirichlet
boundary conditions is formulated in Section 5.1.3. General derivations of the con-
served charges of asymptotically locally AdS black holes are presented in Section
5.2, followed by a general proof of the first law of black hole mechanics for such
black holes in Section 5.3. The chapter concludes with some applications in Section
5.4.

OMISSIONS

Regretably, the time frame for writing this thesis, as well as, the distinct nature
of the content made me decide not to include here my work with Professor M. Cvetič
on supersymmetric standard-like model building and Yukawa couplings calculations
in the context of orientifold compactifications of Type IIA string theory. However,
details of this work can be found in the three publications [4, 5, 6] with Professor
Cvetič.
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CHAPTER 2

SUPERSTRING THEORY & THE

ADS/CFT CORRESPONDENCE

7



2.1. TYPE IIB SUPERSTRINGS

This chapter is intended as a pedagogical introduction to the subject of gauge/
gravity dualities. Of course, it is by no means an authoritative or thourough review
of this vast subject. My aim is to present, from my limited point of view, the basic
background necessary to understand the subject of the rest of this thesis. With this
in mind, I have tried to present the material in a self-contained manner, to the
extent this was possible. Inevitably, many important aspects of the story are not
even mentioned, and I often had to refer to other sources for material I decided not
to include. However, I have made no attempt to cite the original papers or even to
cite any of the relevant papers in this chapter, as this would be an almost impossible
task. Instead, I cite various reviews or textbooks, and occasionally some papers,
where I think this is useful.

I begin in Section 2.1 with a review of string theory, with emphasis on Type IIB
superstrings, which is the string theory relevant for the AdS/CFT duality. This sec-
tion ends with a discussion of the low energy limit of this string theory, namely Type
IIB supergravity, as well as, its various p-brane solutions and their modern under-
standing as D-branes. Some aspects of the maximally supersymmetric Yang-Mills
gauge theory in four dimensions are then presented in Section 2.2. The AdS/CFT
correspondence is discussed in Section 2.3, with particular emphasis on the super-
gravity approximation of the duality and on the calculation of correlation functions.
Various technical results are collected in the appendices.

2.1 TYPE IIB SUPERSTRINGS

Strings are one-dimensional extended objects which move in a D-dimensional
ambient spacetime, M . As they move they span a two-dimensional surface, Σ, which
is referred to as the ‘world-sheet’. This is the analogue of the ‘world-line’ that is
traversed by a zero-dimensional object, or a particle. The dynamics of such a particle
is equivalent to the statement that its world-line between any two fixed points has
minimum proper length. Analogously, the dynamics of a string follow from a ‘least
area principle’. If we take for now the ‘target’ spacetime M to be flat D-dimensional
Minkowski space, and

X : Σ ↪→M (2.1)

is the embedding map of the world-sheet into M , then the proper area of Σ is given
by √

−det ∂aXµ∂bXµ, (2.2)

where a, b = 0, 1 run over the world-sheet coordinates {σ0, σ1}, with −∞ < σ0 <

+∞, 0 ≤ σ1 < 2π, and target space indices µ = 0, . . . , D − 1 are lowered with
the flat Minkowski metric ηµν = diag (−1, 1, · · · , 1). So, the world-sheet trajectory,
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CHAPTER 2 - SUPERSTRING THEORY & THE ADS/CFT CORRESPONDENCE

Xµ(σ0, σ1), is required to be a local minimum of the Nambu-Goto action

SNG[X] = −T
∫

Σ

d2σ
√
− det ∂aXµ∂bXµ. (2.3)

The constant T is the string tension and is related to the Regge slope1 α′ by

T =
1

2πα′
. (2.4)

We now want to describe the quantum dynamics of strings. One would ideally
want to have a second quantized formulation of string theory in terms of string fields,
analogous to the ordinary quantum field theoretic description of particles. A second
quantized description would allow for a deeper understanding of the off-shell and
non-perturbative properties of strings, such as dynamical symmetry breaking and
vacuum selection. However, it has proved particularly difficult to formulate such a
description of string theory. An extensive discussion of many efforts in this direction
can be found in [7]. Lacking a general second quantized formulation, we resort to a
first quantized formulation, where the embedding map Xµ(σ0, σ1) of a single string
is quantized.

The Nambu-Goto action (2.3) would be the natural starting point for such a
first quantized description of strings were it not for the non-polynomial dependence
on the embedding Xµ and its derivatives. Although some effort has been put into
quantizing the Nambu-Goto action, it is customary to use a classically equivalent
action which is polynomial in Xµ as the starting point for a quantum description of
strings. The Polyakov action

SP [X, γ] = −T
2

∫

Σ

d2σ
√−γγab∂aXµ∂bXµ (2.5)

is seen to be equivalent to (2.3) upon eliminating the world-sheet metric γab using its
equation of motion. Nevertheless, there is no guarantee that the quantum theories
following from the Nambu-Goto and the Polyakov actions are equivalent, but it is
believed that this is the case, at least in certain special cases.

2.1.1 LOCAL SYMMETRIES

The action (2.5) has a number of local as well as global symmetries which play
a crucial role in the quantization of the system. Starting with the local symmetries,

1This terminology originates in the early days of string theory, when it was put forward as an effective
description of certain aspects of hadronic physics. In particular, a multitude of hadronic resonances
were discovered and it was observed that the lightest particle with a given spin J satisfied the relation
m2 = J/α′ for some constant α′. It later emerged that such behavior is characteristic of spinning strings
with tension given by (2.4).
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the Polyakov action is invariant under world-sheet diffeomorphisms

σa 7−→ fa(σ), (2.6)

under which the world-sheet metric γab transforms as a second-rank tensor and the
embedding map Xµ as a scalar. Moreover, local Weyl rescalings of the world-sheet
metric

γab 7−→ e2ω(σ)γab, (2.7)

are also a symmetry of (2.5). Although world-volume diffeomorphism invariance
is a symmetry of the generalization of the Polyakov action for higher-dimensional
extended objects such as membranes, local Weyl invariance is unique to strings. To
understand the consequences of this symmetry we start with the observation that the
Polyakov action contains no derivatives of the world-sheet metric, which is therefore
non-dynamical. In fact this remains true even if we add an Einstein-Hilbert term to
the Polyakov action, since such a term is topological, namely the Euler characteristic
of the world-sheet Σ. The integration over the world-sheet metric γab in the path
integral then simply imposes the constraint

Tab = − 2
T

1√−γ
δSP
δγab

= 0, (2.8)

where

Tab = ∂aX
µ∂bXµ − 1

2
γabγ

cd∂cX
µ∂dXµ (2.9)

is the stress tensor of the embedding Xµ. It is traceless as a consequence of Weyl
invariance of the Polyakov action. Another special property of any two-dimensional
(pseudo)-Riemannian manifold Σ is that it is conformally flat. In other words, the
space of metrics on Σ, Met(Σ), locally takes the form Met(Σ) ≈ Diff(Σ)×Weyl(Σ).
Indeed, the world-sheet metric γab has three independent components and so it is
always possible to transform it locally to the flat Minkowski metric ηab by means
of a diffeomorphism (two independent functions) and a Weyl transformation (one
independent function). It follows that we can gauge-fix the world-sheet metric, γab,
to the flat metric ηab and then replace the path integral over γab by the volume of the
gauge (i.e. local symmetry) group, namely Diff(Σ)×Weyl(Σ), as long as we impose
the constraint (2.8) on the Hilbert space of Xµ. Of course Met(Σ) ≈ Diff(Σ) ×
Weyl(Σ) does not hold globally and the path integral contains a sum over world-
sheet topologies as well as an integral over the moduli space of Riemann surfaces

MΣ = Met(Σ)/Diff(Σ)×Weyl(Σ). (2.10)

A careful analysis of the Jacobian resulting from the replacement of the path integral
over Met(Σ) with an integral over the moduli spaceMΣ leads to the covariant BRST
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CHAPTER 2 - SUPERSTRING THEORY & THE ADS/CFT CORRESPONDENCE

quantization of the Polyakov string. A clear exposition of this procedure can be
found in D’Hoker’s lectures in [8].

From now on we will consider Euclidean world-sheets Σ and we will gauge-fix
the metric to the flat metric δab. It will also be convenient to introduce complex
coordinates

z = σ1 + iσ2, z̄ = σ1 − iσ2, (2.11)

where σ2 = iσ0. The gauge-fixed Euclidean version of the action (2.5) is

S =
1

2πα′

∫

Σ

d2z∂zX
µ∂z̄Xµ. (2.12)

The reason why the perturbative quantization of string theory is tractable is pre-
cisely that this gauge-fixed action still possesses a large local symmetry group. The
conformal transformation

z 7−→ f(z), z̄ 7−→ f̄(z̄), (2.13)

where f(z) is an arbitrary analytic function, leaves (2.12) invariant. The Hilbert
space of the Polyakov string is therefore described by a two-dimensional confor-
mal field theory (CFT). Since the conformal group in two dimensions is infinite-
dimensional, these are highly constrained quantum field theories which in many
cases can be solved exactly. We will not discuss the CFT description or the spectrum
of the bosonic string that we have studied so far, but instead we will later discuss the
CFT description and the spectrum of the superstring, which will be directly relevant
to the subject of this thesis.

2.1.2 GLOBAL SYMMETRIES

Having discussed the local symmetries of the Polyakov action, let us now examine
its global symmetries. Global symmetries are the ‘internal’ symmetries acting on the
embedding Xµ but not on the world-sheet coordinates or metric. The gauge-fixed
action (2.12) then has the same global symmetries as the Polyakov action (2.5),
namely translations and rotations in D-dimensional Minkowski spacetime, which
together make up the Poincaré group in D dimensions.

So far we have assumed that the target space manifold M is flat Minkowski
spacetime but this is not necessary. Indeed the field theory defined by (2.12) makes
sense in an arbitrary background M with a Lorentzian metric Gµν(X) or even with
an antisymmetric tensor field Bµν(X). As we shall see, such background fields arise
as coherent states of the low energy string spectrum. We therefore consider the
non-linear sigma model

S =
1

2πα′

∫

Σ

d2z (Gµν(X) +Bµν(X)) ∂zXµ∂z̄X
ν . (2.14)

11
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The fact that this action leads to a consistent quantum field theory is another mirac-
ulous property of the two-dimensional world-sheet. Such a non-linear sigma model
on the world-volume of a higher-dimensional object, such as a membrane, leads to
a non-renormalizable quantum field theory, which is therefore meaningless. The
global symmetry group of the action (2.14) is not necessarily the Poincaré group but
rather the isometry group of the background metric and antisymmetric B-field.

2.1.3 WORLD-SHEET VERSUS TARGET SPACE SUPERSYMMETRY

Bosonic string theory in flat Minkowski spacetime as described by the CFT de-
fined by the action (2.12) has a number of drawbacks. Most importantly, its spec-
trum contains a tachyon, i.e. a state of negative mass, which means that flat space is
an unstable vacuum of bosonic string theory. Although such an instability could be
addressed in the context of a second quantized formulation of string theory, it ren-
ders the perturbative first quantized theory completely meaningless. Moreover, the
perturbative spectrum of bosonic string theory contains no fermionic states. Even
though this is not an inconsistency of the bosonic theory in itself, it shows that
bosonic string theory cannot possibly provide a description of the fermions, such
as electrons and quarks, that we observe in the real world. Again, in the context
of a second quantized string theory, this would not necessarily rule out the bosonic
string which could possibly arise as a particular vacuum of the theory, while the the-
ory possesses other vacua too whose perturbative spectrum does contain fermions.

Since we are lacking a satisfactory second quantized formulation of string theory,
we will have to guess other possible vacua of the theory which do contain fermions.
In practice this means that we will try to modify the string action (2.14) in such a
way that the theory can still be quantized perturbatively, it is perturbatively stable
- i.e. no tachyons - and the spectrum contains fermions. There are two common
approaches to this problem. First, the so-called Green-Schwarz (GS) superstring
theory, introduces target space fermions on the world-sheet, which transform under
the spinor representation of the Lorentz group SO(1, D−1), in addition to the target
space vector Xµ. It turns out that the maximal number of independent spinors one
can add and still have a consistent theory is two. The corresponding theory then has
N = 2 target space supersymmetry. The Neveu-Schwarz-Ramond (RNS) formulation
of superstrings, on the other hand, introduces world-sheet fermions on the world-
sheet. The presence of fermions in the perturbative spectrum in this formulation
is less obvious, but it can be shown that the two formulations, at least within the
framework of the so-called ‘light-cone quantization’, are equivalent and indeed lead
to precisely the same theories. However, the GS superstring turns out to be very
difficult - or impossible - to quantize in a manifestly covariant way. We will therefore
follow the RNS formulation below to derive the essential features of superstrings
that we will need later.
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The first step is to generalize the bosonic action (2.14). Recall that a crucial
property of this action is that it is invariant under conformal transformations on the
plane. It is then only reasonable to require that we maintain this property while
introducing in addition world-sheet supersymmetry. It turns out that these symme-
tries combine to form a larger symmetry known as ‘superconformal’ symmetry. We
explain how this symmetry arises as a generalization of conformal symmetry in two
dimensions in Appendix 2.A.1. Roughly speaking, a superconformal transformation
is an analytic diffeomorphism on the super-complex plane, or superspace, parame-
terized by two commuting coordinates z, z̄ and two anticommuting coordinates θ, θ̄.
Demanding that the world-sheet action is invariant under superconformal transfor-
mations and its bosonic part is given by (2.14), determines its form completely.

To see this first note that superconformal invariance requires that the bosonic
fields Xµ and their supersymmetry partners we are about to introduce must trans-
form consistently under superconformal transformations, i.e. they must form a so-
called ‘superconformal multiplet’. This is ensured if we combine these fields into a
superconformal tensor, which is defined in Appendix 2.A.1. In particular, the most
general superconformal tensor which contains Xµ as its bosonic part takes the form

Xµ =

√
2
α′
Xµ + iθψµ+ + iθ̄ψµ− + θθ̄Fµ, (2.15)

where ψµ±(z, z̄) are anticommuting functions on the world-sheet and Fµ(z, z̄) is a
commuting auxiliary field. The fields D+Xµ and D−Xµ then transform as supercon-
formal tensors of weight (1, 0) and (0, 1) respectively. It is then easy to show that
the action

S =
1
4π

∫

Σ

d2zd2θ (Gµν(X) +Bµν(X))D−XµD+Xν (2.16)

is invariant under superconformal transformations. Moreover, carrying out the in-
tegrations over the anticommuting coordinates θ, θ̄ we find (after eliminating the
auxiliary field using its equation of motion)

S =
1
4π

∫

Σ

d2z

{
2
α′

(Gµν +Bµν) ∂zXµ∂z̄X
ν +Gµνψ

µ
+Dz̄ψν+

−Gµνψ
µ
−Dzψν− +

1
2
Rµνρσψ

µ
+ψ

ν
+ψ

ρ
−ψ

σ
−

}
, (2.17)

where

Dz̄ψµ+ = ∂z̄ψ
µ
+ +

(
Γµρσ +

1
2
Hµ

ρσ

) √
2
α′
∂z̄X

ρψσ+,

Dzψµ− = ∂zψ
µ
− +

(
Γµρσ −

1
2
Hµ

ρσ

) √
2
α′
∂zX

ρψσ−, (2.18)

Rµνρσ = Rµνρσ +
1
2
∇ρHµσν − 1

2
∇σHµρν +

1
4
HλµσH

λ
νρ − 1

4
HλµρH

λ
νσ, (2.19)
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and
Hµνρ = ∂µBνρ + ∂ρBµν + ∂νBρµ, (2.20)

with Γµρσ and Rµνρσ denoting respectively the Christoffel symbol and the Riemann
tensor of the metric Gµν . Note that after the θ and θ̄ integrations, the background

metric and antisymmetricB-field, as well as their curvatures, are evaluated at
√

2
α′X.

The action (2.17) is the desired generalization of (2.14) since it has the same bosonic
part2 and it possesses superconformal symmetry.

2.1.4 FREE SUPERSTRINGS

We will soon return to the supersymmetric non-linear sigma model action (2.17)
and its significance for the low energy effective description of the string dynam-
ics. However, let us now examine the superstring spectrum in flat Minkowski back-
ground with vanishing B-field. Although the superspace formulation is compact and
powerful, we will use the component formulation here to make the discussion more
transparent. The superstring action then takes the form

S =
1
4π

∫

Σ

d2z

(
2
α′
∂zX

µ∂z̄Xµ + ψµ+∂z̄ψ+µ − ψµ−∂zψ−µ

)
. (2.21)

As we already know, it is invariant under conformal transformations as well as the
supersymmetry transformation

δεX
µ = −i

√
α′

2
(εψµ+ + ε̄ψµ−), δεψ

µ
+ = iε

√
2
α′
∂zX

µ, δεψ
µ
− = −iε̄

√
2
α′
∂z̄X

µ,

(2.22)
where ε(z) is an infinitesimal anticommuting analytic function. The conserved Noether
currents for these symmetries are respectively

T (z) = − 1
α′
∂zX

µ∂zXµ − 1
2
ψµ+∂zψ+µ, TF (z) = i

√
2
α′
ψµ+∂zXµ, (2.23)

together with their antiholomorphic counterparts. These currents generate the full
N = 1 superconformal algebra in two dimensions.

At this point we should recall that conformal symmetry appeared in the gauge-
fixed bosonic action (2.12) as a left-over symmetry from the bigger Diff(Σ)×Weyl(Σ)
invariance of the Polyakov action (2.5). As a consequence, we concluded that one
should impose the constraint (2.8) on the Hilbert space. In complex coordinates,
z, z̄, the tracelessness of the stress tensor implies Tzz̄ = 0, while the components

2In (2.12) we have omitted the factors
p

2/α′ in the argument of the background fields to simplify
the notation.
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Tzz and Tz̄z̄ are respectively the Noether currents, T (z) and T̄ (z̄), that generate
conformal transformations. Therefore, we must impose the constraints

T (z) = 0, T̄ (z̄) = 0 (2.24)

on the Hilbert space of the superstring. As we will see, these constraints ensure
that the negative-norm states in the Hilbert space of the bosonic fields Xµ decouple.
Although this would be sufficient for the bosonic string, in the superstring there are
more negative-norm states in the Hilbert space of the fermionic fields ψµ±. In order
for these negative-norm states to decouple it turns out that one should impose the
constraints

TF (z) = 0, T̄F (z̄) = 0 (2.25)

on the Hilbert space of the superstring. However, constraints cannot be imposed
at one’s will. They must be imposed by a path integral over an auxiliary field such
as the world-sheet metric γab, in the case of the Virasoro constraint (2.8). Indeed,
the superconformal invariant action (2.21) turns out to be the gauge-fixed version
of an action with sDiff(Σ)× sWeyl(Σ) invariance, i.e. with local world-sheet super-
symmetry, or supergravity. The fermionic constraints (2.25) are then imposed by the
path integral over the supersymmetric partner of the world-sheet metric, namely the
world-sheet gravitino, χαa , where α is an index in the Dirac spinor representation of
the world-sheet SO(2) local frame group, while a is the usual world-sheet index.
However, we will not need the explicit form of the world-sheet supergravity action
here. It is sufficient to know that such an action exists and hence, the constraint
(2.25) can be imposed consistently.

OPES

Let us now return to the gauge-fixed action. The equations of motion are

∂z∂z̄X
µ = 0, ∂z̄ψ

µ
+ = 0, ∂zψ

µ
− = 0, (2.26)

so that ψµ+(z) is holomorphic, ψµ−(z̄) is antiholomorphic and Xµ is the sum of a
holomorphic and antiholomorphic part, namely Xµ(z, z̄) = Xµ

+(z) + Xµ
−(z̄). Since

the action is quadratic in the world-sheet fields we can immediately obtain the two-
point functions

〈Xµ
+(z)Xν

+(w)〉 = −α
′

2
ηµν log(z − w), 〈ψµ+(z)ψν+(w)〉 =

ηµν

z − w
, (2.27)

and analogously for the antiholomorphic parts, while all other two-point functions
vanish. This implies that the superstring Hilbert space will take the form

Hsuperstring ≈ HX+ ⊗Hψ+ ⊗ H̄X− ⊗ H̄ψ− . (2.28)
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Since the antiholomorphic part H̄X− ⊗H̄ψ− is essentially a copy of the holomorphic
part HX+ ⊗ Hψ+ , we will focus for the time being on the holomorphic part alone.
Moreover, the X+ and ψ+ Hilbert spaces can be discussed separately.

The above two-point functions can be encoded in the so-called ‘Operator Product
Expansions’ (OPEs)

Xµ
+(z)Xν

+(w) ∼ −α
′

2
ηµν log(z − w), ψµ+(z)ψν+(w) ∼ ηµν

z − w
, (2.29)

where Xµ and ψµ+ are now treated as quantum operators. The OPEs reflect the
singularity structure of the product of two operators when they approach each other,
i.e. as z → w. In order to make sense of composite operators, such as the Noether
currents (2.23), at the quantum level we must introduce a procedure for removing
these singularities. Such a procedure is called ‘normal ordering’ and is denoted by
: :. For example,

T (z) = − 1
α′

: ∂zX
µ
+(z)∂zX+µ(z) : −1

2
: ψµ+(z)∂zψ+µ(z) :, (2.30)

where

: ∂zX
µ
+(z)∂zX+µ(z) := lim

w→z
{
∂wX

µ
+(w)∂zX+µ(z)− 〈∂wXµ

+(w)∂zX+µ(z)〉
}
,

: ψµ+(z)∂zψ+µ(z) := lim
w→z

{
ψµ+(w)∂zψ+µ(z)− 〈ψµ+(w)∂zψ+µ(z)〉

}
. (2.31)

From the OPEs (2.29) of the fundamental fields and the explicit form of the
superconformal Noether currents one can derive the following OPEs:

T (z)∂zX
µ
+(w) ∼ 1

(z − w)2
∂wX

µ
+(w) +

1
z − w

∂2
wX

µ
+(w) + · · · ,

T (z)ψµ+(w) ∼ 1/2
(z − w)2

ψµ+(w) +
1

z − w
∂wψ

µ
+(w) + · · · , (2.32)

TF (z)Xµ
+(w) ∼ − 1

z − w
i

√
α′

2
ψµ+(w) + · · · ,

TF (z)ψµ+(w) ∼ 1
z − w

i

√
2
α′
∂wX

µ
+(w) + · · · , (2.33)

T (z)T (w) ∼ c/2
(z − w)4

+
2

(z − w)2
T (w) +

1
z − w

∂wT (w) + · · · ,

T (z)TF (w) ∼ 3/2
(z − w)2

TF (w) +
1

z − w
∂wTF (w) + · · · ,

TF (z)TF (w) ∼ 2c/3
(z − w)3

+
2

z − w
T (w) + · · · , (2.34)
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where c = 3D/2.
The first two OPEs simply reflect the fact that ∂zX

µ
+(z) and ψµ+(z) are conformal

tensors (see (2.197)), or conformal primary fields, of conformal weight 1 and 1/2
respectively. The second two OPEs are precisely the supersymmetry transformations
(2.22) since, for example,

δεψ
µ
+(z) = {QF , ψµ+(z)} =

∮
dw

2πi
ε(w)TF (w)ψµ+(z) = iε(z)

√
2
α′
∂zX

µ
+(z), (2.35)

where the last equality results from the contour integral around the simple pole in
the TFψ

µ
+ OPE. Together these OPEs are equivalent to the statement that the super-

field D+Xµ = iψµ+(z) + θ
√

2
α′ ∂zX

µ
+(z) is a superconformal tensor (see (2.198)), or

superconformal primary field, of weight 1/2 (of course this refers to the holomorphic
weight. We are supressing the antiholomorphic weight, which is zero in this case.)

The last three OPEs, however, contain crucial new information on the string
dynamics. Since T (z) and TF (z) are the Noether currents of the superconformal
symmetry, we expect that their OPEs are equivalent to the N = 1 superconformal
algebra in two dimensions. This is indeed the case as we will see soon, with one
caveat though. The algebra one would obtain at the classical level by extending
the super-Euclidean algebra of Appendix 2.A.1 to include arbitrary conformal trans-
formations corresponds the OPEs (2.34) but with the parameter c equal to zero.
Such OPEs would imply that the Noether currents T (z) and TF (z) are conformal
primary fields of weight 2 and 3/2 respectively, or equivalently, that the supercur-
rent T(z, θ) = − 1

2TF (z) + θT (z) is a superconformal primary field of weight 3/2.
However, a non-zero c means that the conformal transformation of the stress ten-
sor T (z) and the supersymmetry transformation of the fermionic current TF (z) are
anomalous. In particular, integrating the infinitesimal conformal transformation of
the stress tensor

δεT (z) = −
∮

dw

2πi
ε(w)T (w)T (z) = − c

12
∂3
z ε(z)− 2T (z)∂zε(z)− ε(z)∂zT (z), (2.36)

one finds that under a finite conformal transformation z 7−→ z′(z)

T ′(z′) = (∂zz′)−2
(
T (z)− c

12
{z′; z}

)
, (2.37)

where

{z′; z} =
∂3
zz
′

∂zz′
− 3

2
(∂2
zz
′)2

(∂zz′)2
(2.38)

is known as the ‘Schwarzian derivative’ of z′ with respect to z. This transformation
rule is precisely the transformation of a conformal primary field of weight (2, 0)
except for the term involving c, which is therefore anomalous.
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THE CONFORMAL ANOMALY

To understand the significance of this anomalous term in the two-point function
of the stress tensor we must revisit the gauge-fixing of the Polyakov action (2.5).
Namely, we argued that one can use the world-sheet diffeomorphism and Weyl in-
variance of the classical action to make the world-sheet metric flat. However, it is
not guaranteed that we will be able to maintain these symmetries at the quantum
level since a regulator that preserves both these symmetries may not exist. Indeed,
in order to be able to consistently integrate over all world-sheet metrics, the sigma
model must still make sense as a quantum theory for any fixed world-sheet metric,
γab. Consider then the correlation function

〈· · · 〉γ =
∫

[dX] · · · e−S[X,γ], (2.39)

where S[X, γ] is the Euclidean version of the Polyakov action (2.5) and γ is an
arbitrary but fixed world-sheet metric. By the definition of the stress tensor we have

δγ〈· · · 〉γ =
1
4π

∫
d2σ

√
γδγab(σ)〈Tab(σ) · · · 〉γ . (2.40)

Using this identity we can expand the partition function

Z[γ] =
∫

[dX]e−S[X,γ] (2.41)

to second order around the flat metric δab. The result is (see Polchinski [9], eq.
(3.4.22))

log
Z[δ + δγ]
Z[δ]

≈ 1
8π

∫
d2z

∫
d2z′δγz̄z̄(z, z̄)δγz̄z̄(z′, z̄′)〈Tzz(z)Tzz(z′)〉δ, (2.42)

where only terms quadratic in δγz̄z̄ have been kept. Inserting the anomalous two-
point function of the stress tensor and integrating this expression one obtains, in
covariant form,

Z[γ] = Z[δ] exp
(

c

96π

∫
d2σ

√
γRγ¤−1

γ Rγ

)
, (2.43)

where c = D for the Xµ action alone. However this result is general and holds for
any covariant world-sheet action that defines a (free) CFT. However, the value of the
parameter c does depend on the particular theory. The exponent on the right hand
side is known as the ‘Polyakov non-local action’, not to be confused with the Polyakov
string action (2.5). It is a direct manifestation of the fact that Weyl invariance (and
hence conformal invariance) is broken at the quantum level. To see this we first
evaluate

δ
(√
γRγ¤−1

γ Rγ
)

= 2δγabT ab, (2.44)

18



CHAPTER 2 - SUPERSTRING THEORY & THE ADS/CFT CORRESPONDENCE

where T ab is the so-called Liouville stress tensor and is given by

Tab ≡ 1
2
∇a(¤−1

γ Rγ)∇b(¤−1
γ Rγ)−∇a∇b(¤−1

γ Rγ)

− 1
2
γab

[
1
2
∇c(¤−1

γ Rγ)∇c(¤−1
γ Rγ)− 2Rγ

]
. (2.45)

Since T aa = Rγ , it follows that under an infinitesimal Weyl transformation, γab =
2δω(σ)δab,

δωZ[δ] =
c

24π

∫
d2σδω(σ)〈Rγ〉δ. (2.46)

Comparing with (2.40), we conclude

〈T aa 〉γ = − c

12
〈Rγ〉γ . (2.47)

This now tells us directly that conformal invariance is broken at the quantum level
and the parameter c, which is known as the central charge for reasons we will dis-
cuss shortly, measures this breaking. Although we have derived this result in two
dimensions, it is actually quite universal. Throughout this thesis we will see many
aspects of the conformal anomaly in various dimensions.

Although this would not be disastrous if we were just interested in the CFT on a
curved world-sheet, it is unacceptable if we want to integrate over arbitrary world-
sheet metrics. Since we have shown above that for the superstring c = 3D/2, we
seem to be in trouble. What saves the day is the way the gauge-fixing is implemented
at the quantum level via the covariant BRST quantization procedure. Namely, the
gauge fixing introduces Faddeev-Popov ghosts for both the Xµ and ψµ± CFTs. These
unphysical degrees of freedom define a superconformal field theory themselves with
central charge cghosts = −15. We will not need the explicit structure of these sCFTs
for our discussion. The only piece of information we need is the fact that the total
central charge of the superstring CFT is

ctotal =
3D
2

+ cghosts =
3
2
(D − 10). (2.48)

Hence, the superstring makes sense only in ten spacetime dimensions! Even though
this result may not be very encouraging for someone who wants to see superstring
theory as a theory describing our four-dimensional physical world, let us accept it at
this point and see how far we can get.

MODE EXPANSIONS & MODE ALGEBRAS

Let us now construct explicitly the string Hilbert space. To this end we first need
to impose suitable boundary conditions on the dynamical fields. Here we only discuss
the closed string, that is we consider world-sheets that are topologically a cylinder,
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which is conformally equivalent to the complex plane with the origin removed. The
bosonic fields, Xµ, then must be single-valued on the complex plane, which implies
that we should impose the periodic boundary condition

Xµ(e2πiz, e−2πiz̄) = Xµ(z, z̄). (2.49)

However, the fermionic fields ψµ+(z) and ψµ−(z̄) are only required to be doubly peri-
odic. This allows for two possible boundary conditions, namely

ψµ+(e2πiz) = ±ψµ+(z). (2.50)

Each of these boundary conditions leads to a different sector of the ψµ+ Hilbert space.
The sector with periodic boundary conditions on the plane is known as the Neveu-
Schwarz or NS sector, while antiperiodic fermions on the plane lead to the Ramond
or R sector. The fermion Hilbert space is then the direct sum of these two sectors

Hψ+ = HNS
ψ+

⊕HR
ψ+
. (2.51)

Since ∂zXµ and ψµ+ are holomorphic functions on the annulus C − {0} by the
equations of motion, they admit Laurent expansions in the vicinity of the origin.
Taking into account the possible boundary conditions we arrive at the mode expan-
sions

Xµ
+(z) =

1
2
xµ+ − i

√
α′

2
αµ0 log z + i

√
α′

2

∑

n∈Z−{0}

1
n

αµn
zn
,

ψµ+(z) =
∑

r∈Z+ν

ψµr

zr+
1
2
,

{
ν = 1

2 , for NS
ν = 0, for R

(2.52)

where

αµn =

√
2
α′

∮
dz

2π
zn∂zX

µ
+(z), ψµr =

∮
dz

2πi
zr−

1
2ψµ+(z). (2.53)

Note that Xµ
+(z) is not single-valued due to the logarithmic term, but the sum

Xµ(z, z̄) = Xµ
+(z) + Xµ

−(z̄) is single-valued provided αµ0 = α̃′µ0 , where α̃′µ0 is the
zero mode of the antiholomorphic field Xµ

−(z̄). In fact

pµ =
1
2
(pµ+ + pµ−) =

1
2πα′

∮
(dz∂zXµ − dz̄∂z̄X

µ) , (2.54)

where pµ+ =
√

2
α′α

µ
0 and pµ− =

√
2
α′ α̃

µ
0 , is the total momentum carried by the closed

string. Similarly, xµ = 1
2 (xµ+ + xµ−) is the center of mass position of the string. Using

the OPEs (2.29) one can now determine the mode algebra, which is

[xµ, pµ] = iηµν , [αµm, α
ν
n] = mδm+n,0η

µν , {ψµr , ψµs } = δr+s,0η
µν . (2.55)
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The Noether currents (2.23) also admit Laurent expansions of the form

T (z) =
∑

m∈Z

Lm
zm+2

, TF (z) =
∑

r∈Z+ν

Gr

zr+
3
2
, (2.56)

where ν is the same ν that appears in the mode expansion of ψµ+ in (2.52), i.e.
ν = 1/2 for the NS sector and ν = 0 for the R sector. From the current OPEs (2.34)
we now derive the mode algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0,

[Lm, Gr] =
1
2
(m− 2r)Gm+r,

{Gr, Gs} = 2Lr+s +
c

12
(4r2 − 1)δr+s,0. (2.57)

This algebra is the infinite dimensional N = 1 superconformal (or super-Virasoro)
algebra in two dimensions. It is a so-called ‘central extension’ of the classical super-
conformal algebra corresponding to c = 0. Thus the name ‘central charge’ for the
parameter c.

NAIVE SPECTRUM & SUPER-VIRASORO CONSTRAINTS

NS sector

We are now in a position to define the Hilbert space HX+⊗HNS
ψ+

. The vacuum of
HX+ is labeled by the eigenvalue of the zero mode of Xµ

+ which is the momentum
operator pµ. Since there are no fermionic zero modes in the NS sector we define the
vacuum by

pµ |0, k〉NS = kµ |0, k〉NS , αµm |0, k〉NS = 0, ψµr |0, k〉NS = 0, for m, r > 0.
(2.58)

The full Fock space is now constructed by acting with the negative modes on the
vacuum in all possible ways.

R sector

Consider next HX+ ⊗HR
ψ+

. Of course HX+ remains the same but now there are
fermionic zero modes satisfying the SO(1, D − 1) Clifford algebra

{Γµ,Γν} = 2ηµν , (2.59)

where Γµ ≡ √
2ψµ0 . The Ramond sector vacuum then carries a representation of this

Clifford algebra, namely

ψµ0 |0, α, k〉R =
1√
2
(Γµ)βα |0, β, k〉R , (2.60)
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where (Γµ)βα belong to the usual 2D/2-dimensional matrix representation of the
Clifford algebra. It follows that the Ramond vacuum is a Dirac spinor of SO(1, D−1),
for it transforms under the Lorentz generators, Jµν0 = − i

4 [Γµ,Γν ], as

Jµν0 |0, α, k〉R = (Σµν)βα |0, β, k〉R . (2.61)

Otherwise, the Ramond vacuum is defined as usual by

pµ |0, α, k〉R = kµ |0, α, k〉R , αµm |0, α, k〉R = 0, ψµr |0, α, k〉R = 0, for m, r > 0,
(2.62)

and the Fock space is built by acting on the vacuum by the negative modes in all
possible ways.

Physical states

In order to construct the physical Hilbert space we need to impose the super-
Virasoro constraints

T (z) = 0, TF (z) = 0 (2.63)

on the Hilbert space. However, It is not possible to impose these as operator equa-
tions and still get a non-trivial theory. Instead we will require that

〈φ|T (z) |χ〉 = 0, 〈φ|TF (z) |χ〉 = 0 (2.64)

hold for any physical states |φ〉 , |χ〉. We need to keep in mind though that T (z)
transforms anomalously under conformal transformations and so the first condition
does not have an invariant meaning. So we should specify whether we impose this
on the cylinder or the annulus, the two being conformally related. It turns out that
in order for all negative norm states to decouple we need to impose this condition
on the cylinder.

To impose the physical state conditions on the Hilbert space we first express
the superconformal current modes in terms of the modes of the fundamental fields.
Using the definitions (2.23) we easily find

Lm =
1
2

∑

n∈Z
◦◦α

µ
m−nαnµ◦◦+

1
4

∑

r∈Z+ν
(2r −m)◦◦ψ

µ
m−rψrµ◦◦+ a(ν)δm,0,

Gr =
∑

m∈Z
ψµr−mαmµ, (2.65)

where ◦◦ ◦◦ denotes ‘mode normal ordering’ (i.e. negative modes to the left) and
the ordering constant a(1/2) = 0, a(0) = D/16 is simply the vacuum energy

a(ν) = z2〈T (z)〉ν = 〈L0〉ν . (2.66)
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The physical state conditions (2.64) now translate into

Lcylinder
n |φ〉 = 0, Gr |φ〉 = 0, for n, r ≥ 0. (2.67)

From the anomalous transformation (2.37) of the stress tensor one can derive the
relation

Lcylinder
m = Lm − c

24
δm,0, (2.68)

between the Virasoro modes on the cylinder and on the annulus, where c = 3D/2.
However, it turns out that in order for all negative-norm states to decouple we need
to use c′ = 3(D − 2)/2 in this relation. This can be understood by going to the
lightcone gauge which shows that only D − 2 spacetime dimensions contribute to
the ‘physical’ degrees of freedom. Since D = 10,3 we have

Lcylinder
m = Lm − 1

2
δm,0. (2.69)

For the NS vacuum these conditions reduce to

(L0 − 1
2
) |0, k〉NS =

(
α′

4
k2 − 1

2

)
|0, k〉NS = 0, (2.70)

which means that it has a negative mass squared M2 ≡ −k2 = −2/α′. Since the NS
vacuum is also a scalar under the spacetime Lorentz group, this is a tachyon! The
existence of a tachyon in the bosonic string spectrum was one of the major moti-
vations for studying the superstring, but it seems this has not solved the problem.
However, we will see soon that it is possible to consistently project out the tachyon
of the superstring spectrum, which was not possible for the bosonic string.

For the R vacuum the physical state conditions reduce to

G0 |0, α, k〉R = 0 ⇐⇒ kµΓµ |0, α, k〉R = kµ(Γµ)βα |0, β, k〉R = 0, (2.71)

which is precisely the massless Dirac equation. The Ramond ground state is there-
fore a massless Dirac spinor.

If we include the antiholomorphic sectors then we can summarize the low energy
spectrum as follows:

• HX+ ⊗HNS
ψ+

⊗ H̄X− ⊗ H̄NS
ψ−

The ground state, |0, k〉NS ⊗ |0, k〉NS , is a tachyon with mass M2 = −2/α′.
The first excited states are massless and take the form εµν(k)ψ

µ
−1/2 |0, k〉NS ⊗

ψ̄ν−1/2|0, k〉NS . These can be decomposed into states that transform irreducibly
under SO(1, 9), namely the graviton corresponding to the symmetric traceless
part of εµν , the antisymmetric B-field corresponding to the antisymmetric part
of εµν and the dilaton corresponding to the trace of the polarization tensor.

3We know this from our previous discussion of the ghost sCFT, but it can also be derived it the present
context by the requirement that all negative-norm states decouple.
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• HX+ ⊗HR
ψ+
⊗ H̄X− ⊗ H̄NS

ψ− or HX+ ⊗HNS
ψ+

⊗ H̄X− ⊗ H̄R
ψ−

These sectors contain spacetime fermions. The ground state takes the form
|0, α, k〉R ⊗ ζµ(k)ψ̄

µ
−1/2|0, k〉NS , is massless, and can be decomposed into an

irreducible spinor, the dilatino, and an irreducible vector-spinor, the gravitino.
Analogously for the NS-R ground state.

• HX+ ⊗HR
ψ+
⊗ H̄X− ⊗ H̄R

ψ−

This sector contains again spacetime bosons. The ground state |0, α, k〉R ⊗
|0, β, k〉R is massless and decomposes into a direct sum of antisymmetric tensor
representations of SO(1, 9).

This spectrum has many of the desirable features, namely it contains a graviton,
an antisymmetric B-field and a dilaton, which in fact also appear in the spectrum
of the bosonic string, but also spacetime fermions and various antisymmetric tensor
fields. However, there is still a tachyon and also, a theory which contains a massless
gravitino and is not supersymmetric is ill-defined (see e.g. D’Hoker’s lectures in
[8]). Since there is a massless gravitino in the spectrum, the only way to make
the theory consistent is to project out certain states so that the spectrum becomes
supersymmetric. This will automatically project out the tachyon since it obviously
has no supersymmetric partner. The Gliozzi-Scherk-Olive (GSO) projection of the
RNS superstring spectrum does exactly this!

GSO PROJECTION

To implement the GSO projection we define the world-sheet fermion number
operator, F , by the property

{(−1)F , ψµr } = 0, ∀ r (2.72)

in both NS and R sectors. This determines F uniquely up to an overall sign corre-
sponding to the F -assignment of the vacuum in each sector. Making such a choice
for the NS and R vacua, the world-sheet fermion number operator takes the form

(−1)F =

{
−(−1)

P
r>0 ψ

µ
−rψrµ , for NS,

Γ(−1)
P

r>0 ψ
µ
−rψrµ , for R,

(2.73)

where Γ = Γ0Γ1 · · ·Γ9 is the chirality matrix in ten dimensions. The GSO projection
then amounts to the projections

HNS
ψ+

7−→ 1
2

(
1 + (−1)F

)HNS
ψ+
, HR

ψ+
7−→ 1

2
(
1± (−1)F

)HR
ψ+
, (2.74)

and similarly for the antiholomorphic sectors. For the Ramond sector there is a free-
dom to choose the chirality of the ground state and this can be done independently
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in the holomorphic and antiholomorphic sectors. It is important that this projection
is compatible with the physical state conditions since

[(−1)F , Lm] = 0, {(−1)F , Gr} = 0, ∀ m, r, (2.75)

which follows trivially from the explicit form of (−1)F .
In the NS sector, the GSO projection removes the tachyon while it keeps all

massless states. In the R sector, it reduces the R vacuum from a Dirac spinor to
a Weyl spinor. In ten dimensions it is possible to impose the Majorana condition
together with the Weyl condition, in which case the Ramond ground state becomes
a Majorana-Weyl spinor, i.e. a Weyl spinor with real components. Such a spinor
has eight real degrees of freedom after imposing the massless Dirac equation, which
precisely matches the eight real degrees of freedom of a massless SO(1, 9) vector in
the NS sector! This, together with the fact that we have removed the tachyon form
the NS sector, suggests that we have succeeded in constructing a supersymmetric
spectrum. Indeed, choosing the same chirality for the vacuum of the holomorphic
and antiholomorphic Ramond sectors, we obtain the massless spectrum of Type IIB
superstring theory, which is shown in Table 2.1 and is manifestly supersymmetric. It
is nothing more than the Clebsch-Gordan decomposition of the tensor product V ⊗V̄
of the SO(1, 9) representations V of the holomorphic and V̄ of the antiholomorphic
sectors. In the NS-NS sector this involves the tensor product of two vector represen-
tations, in the R-NS and NS-R sectors it involves the tensor product of a vector and
a Majorana-Weyl spinor representation, while in the R-R sector one needs to evalu-
ate the tensor product of two Majorana-Weyl spinors of the same chirality. The fact
that the gravitinos and the dilatinos have opposite chirality and that the four-form
C

(4)+
µνρσ has a self-dual field strength can be easily seen from the Clebsch-Gordan de-

composition. However, we should point out that it is not the forms C(p) that appear
directly in this decomposition, but rather their field strengths F (p+1). Through the
Clebsch-Gordan decomposition, the Dirac equation satisfied by the Majorana-Weyl
spinors translates into the equations

k[µF
(p+1)
ν1...νp+1]

= 0, kµF (p+1)
µν2...νp+1

= 0, (2.76)

for the antisymmetric tensor fields F (p+1), which are precisely the Fourier-transformed
field equations for an abelian higher spin gauge field, namely

dF (p+1) = 0, ∗dF (p+1) = 0. (2.77)

The Bianchi identity dF (p+1) = 0 is then solved by putting F (p+1) = dC(p) locally,
which results in the form fields appearing in table 2.1. As we will discuss in the
next section, the fact that only the field strengths F (p+1), and not the forms C(p),
appear in the perturbative superstring spectrum has physical significance and led to
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sector field chirality degrees of freedom
graviton Gµν - 35

NS-NS B-field Bµν - 28
dilaton Φ - 1

R-NS gravitino χαµ + 56
dilatino λα − 8

NS-R gravitino χ′αµ + 56
dilatino λ′α − 8
axion C(0) - 1

R-R 2-form C
(2)
µν - 28

4-form C
(4)+
µνρσ - 35

Table 2.1: The massless spectrum of Type IIB superstring theory.

the discovery of D-branes.4

Finally, although we have only seen that the massless spectrum of the Type IIB
superstring is supersymmetric, it can be shown that this actually holds at each mass
level. Indeed, a simple counting of the bosonic and fermionic states at each mass
level confirms this.

2.1.5 IIB SUPERGRAVITY

In the previous section we obtained the massless spectrum of the Type IIB su-
perstring and we connected the various states with target space fields, such as the
target space metric Gµν , the gravitino χαµ etc. However, it seems a rather non-trivial
statement to say that, for example, the symmetric traceless tensor we obtained in
the NS-NS sector is somehow related to the metric Gµν appearing in the non-linear
sigma model (2.17)! We will now try to justify why this is in fact true. The re-
quirement that this non-linear sigma model (or a generalization thereof) can be
consistently coupled to quantum gravity in two dimensions, i.e. that superconfor-
mal invariance survives at the quantum level, will then determine the dynamics of
these background fields! In fact we got a glimpse of this dynamics in the previous
section when we argued that the Dirac equation for the Ramond ground states im-
plies that the RR fields satisfy the field equations (2.77) in flat space. It will turn
out that the low energy dynamics of the massless degrees of freedom of Type IIB
superstring theory is described by Type IIB supergravity.

4 I am grateful to Professor Massimo Bianchi for bringing to my attention the reference [10], where
a R-R ‘vertex operator’ that couples directly to the scalar potential C(0) of Type IIB string theory was
proposed.
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So let us first motivate the connection between the superstring spectrum and the
background fields in the non-linear sigma model. We will be rather sketchy here
since a careful analysis of this connection requires some rather technical tools that
we have not explained so far and which we will not need later, such as the ghost
sCFT that as we mentioned above arises from the covariant BRST quantization of the
superstring, ‘vertex operators’, ‘picture changing’ etc. Details about these concepts
can be found in standard texts such as Polchinski [9]. For our purposes it suffices
to know that states in a CFT are in one-to-one correspondence with operators. An
operator φ(z, z̄), inserted at the origin of the complex plane, ‘creates’ an asymptotic
state |φ〉 on the cylinder via

|φ〉 ≡ lim
z,z̄→0

φ(z, z̄) |0〉 , (2.78)

where |0〉 is the vacuum. An important special case of this operator-state correspon-
dence is the correspondence between conformal primary fields and the so-called
‘highest weight states’. In this sense then, the massless states of the superstring
spectrum correspond to insertions of certain operators on the world-sheet. These
operators, which are known as ‘physical vertex operators’, can have various dif-
ferent representations in terms of the fundamental world-sheet fields (including the
ghosts), each representation corresponding to a so-called different ‘picture’. In a cer-
tain picture then, the vertex operator that corresponds to the graviton takes roughly
the form

V(k, ε) ∼ εµν(k)
∫

Σ

d2zd2θD−XµD+Xνeik·X, (2.79)

where Xµ is the world-sheet superfield5 (2.15) and εµν(k) is symmetric and trace-
less.

Ignoring the B-field in the non-linear sigma model (2.16), take the metric to be
infinitesimally close to the flat Minkowski metric

Gµν(X) = ηµν + εµν(X), (2.80)

and Fourier-transform the linear perturbation so that

εµν(X) =
∫
d10kεµν(k)eik·X. (2.81)

We can now expand the sigma model action (2.16) as

e−S = e−S0

(
1− 1

4π

∫
d10kεµν(k)

∫

Σ

d2zd2θD−XµD+Xνeik·X + · · ·
)
, (2.82)

where S0 is the world-sheet action corresponding to the flat metric ηµν . But this
shows that fluctuations of the background metric Gµν couple to the graviton ver-
tex operator (2.79)! In other words, the background metric can be viewed as a

5We have set α′ = 2 temporarily to avoid combersome notation.
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coherent state of gravitons. Moreover, it can be shown that the physical state condi-
tions that must be imposed on the polarization tensor εµν(k), namely tracelessness,
transversality kµεµν = 0, and masslessness k2 = 0, imply Einstein’s equations for the
background metric Gµν! A similar connection between states and background fields
can be established for the rest of the massless states in the Type IIB string spectrum.

Now that we have seen some evidence for the relation between the massless su-
perstring spectrum and the background fields in the non-linear sigma model, let us
try to understand how the string dynamics determines the dynamics of the back-
ground fields. However, there are more background fields coming from the super-
string spectrum than just the metric and B-field that appear in the sigma-model
action (2.16). Indeed, one can relatively easily generalize the sigma model action to
incorporate the dilaton, Φ, but this involves a term proportional to the world-sheet
curvature, R, which vanishes for the flat metric we use in (2.16). To write this term
properly we would need to develop an N = 1 world-sheet local superspace as op-
posed to the rigid superspace we developed in Appendix 2.A.1, which would take
us too far astray. We will therefore content ourselves with the statement that the
dilaton coupling is roughly of the form

Sdilaton ∼
∫

Σ

d2zd2θRΦ(X), (2.83)

while its bosonic part is (exactly)

Sdilaton =
1
4π

∫

Σ

d2σ
√
γRγΦ(X). (2.84)

Nevertheless, to include the background fields coming from the R-NS, NS-R and R-R
sectors in the sigma model action turns out to be even harder due to subtleties relat-
ing to the vertex operator that creates the Ramond vacuum. A relatively easier way
to approach this problem is to use the Green-Schwarz formulation of the superstring
which we will not describe in this thesis. In fact, even if we could write down the
full non-linear sigma model action involving all background fields, it would not help
our discussion significantly since to determine the dynamics of the background fields
one must do a two-loop calculation using this action! This calculation, first done in
[11], is far too technical to be included even in most textbooks, but a significant part
of the analogous calculation for the bosonic string can be found in D’Hoker’s lectures
[8].

Let us then just describe the basic idea of such a calculation and state the result.
We start with the observation that α′ has units of (length)2. For backgrounds that
have a typical radius of curvature rc >>

√
α′, the parameter

√
α′/rc is then small

and can be used in a perturbation expansion. This is analogous to the ~ (or loop)
expansion in standard quantum field theory. Since rc essentially sets the ‘unit of
length’ in spacetime, a spacetime derivative is of order 1/rc and so the perturbation
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expansion is actually a derivative expansion, i.e. an expansion in
√
α′∂µ, which is

dimensionless. The non-linear sigma model can then be quantized perturbatively.
Such a quantization involves as usual a regularization scheme, which will break
the Weyl invariance of the classical action (since we insist on a Diff(Σ)-invariant
scheme). As we know this leads to a non-zero trace for the world-sheet stress ten-
sor. On general grounds, the trace of the stress tensor will be proportional to the
vacuum expectation values of the relevant and marginal operators.6 Since there is
no tachyon, we are left only with the marginal operators which correspond precisely
to the massless spectrum. That is

〈T aa 〉 = Σiβi〈Oi〉, (2.85)

where Oi are the graviton, B-field, dilaton and other massless vertex operators. The
‘beta functions’ βi can now be computed perturbatively in the α′-expansion. For the
NS-NS fields the result is [11]

βGµν = α′Rµν + 2α′∇µ∇νΦ− α′

4
HµρσHν

ρσ +O(α′2),

βBµν = −α
′

2
∇ρHρµν + α′∇ρΦHρµν + +O(α′2),

βΦ = −α
′

2
¤Φ + α′∇µΦ∇µΦ +

α′

24
HµνρH

µνρ − α′

2
R+O(α′2). (2.86)

The condition that the sigma model is Weyl-invariant at the quantum level is then

βGµν = βBµν = βΦ = 0. (2.87)

The equation βΦ = 0 follows from the other two, which can be viewed as the dy-
namical equations for the background fields! They can be derived from the action

SNSIIB =
1

2κ2
10

∫
d10x

√
−Ge−2Φ

(
R+ 4∂µΦ∂µΦ− 1

12
HµνρH

µνρ +O(α′)
)
, (2.88)

where κ2
10 = 8πG10 and G10 it Newton’s constant in ten dimensions. Inclusion of

the other massless fields leads to the full Type IIB supergravity which we will now
summarize.

IIB SUPERGRAVITY AND ITS SYMMETRIES

There is a unique supergravity in ten dimensions with the spectrum given in table
2.1, namely Type IIB supergravity with N = 2 supersymmetry, which is described in

6There is also a pure anomaly term which arises even when the vevs of these operators vanish, as is the
case for a flat target-space background. As we saw above, this is a constant multiple of the world-sheet
Ricci scalar which can be absorbed as a constant shift in the coefficient of the dilaton vev. However, if we
include the contribution of the ghosts such a term does not arise in the critical dimension.

29



2.1. TYPE IIB SUPERSTRINGS

chapter 12 of Polchinski [9]. For completeness and since IIB supergravity will play
an important role in the rest of this thesis, we repeat its main features here.

We will only consider the bosonic fields, setting the gravitinos and the dilatinos
to zero. The dynamics of the NS-NS fields is given by the action (2.88) above, so it
remains to describe the dynamics of the R-R forms C(0), C(2), C(4)+. Quite naturally
this is described by a Maxwell-type kinetic term and a Chern-Simons coupling:

SRIIB = − 1
4κ2

10

∫
d10x

√
−G

(
F 2

(1) + F̃ 2
(3) +

1
2
F̃+2

(5)

)

− 1
4κ2

10

∫
C(4)+ ∧H ∧ F(3), (2.89)

where

F̃(3) = dC(2) − C(0) ∧H,
F̃+2

(5) = dC(4)+ − 1
2
C(2) ∧H +

1
2
B ∧ F (3), (2.90)

and F (p)
2 ≡ 1

p!Fµ1...µpF
µ1...µp . However, this action must be supplemented by the

self-duality condition
∗F̃+

(5) = F̃+
(5), (2.91)

which cannot be deduced from a covariant action. The self-duality condition must
be imposed on the solutions though and not at the level of the action since this would
result in incorrect equations of motion.

The above action of Type IIB supergravity has an important SL(2,R) symmetry.
Using the field redefinitions

GEµν = e−Φ/2Gµν , τ = C(0) + ie−Φ,

Mij =
1

Im τ

( |τ |2 −Re τ
−Re τ 1

)
, F i(3) =

(
H

F (3)

)
, (2.92)

the action becomes

SIIB =
1

2κ2
10

∫
d10x

√
−GE

(
RE − ∂µτ̄ ∂

µτ

2(Im τ)2
− 1

2
MijF

i
(3) · F j(3) −

1
4
F̃+2

(5)

)

− 1
8κ2

10

εij

∫
C(4)+ ∧ F i(3) ∧ F j(3). (2.93)

SL(2,R) now acts as

τ 7→ aτ + b

cτ + d
, F i(3) 7→ ΛijF

j
(3), Λij =

(
d c

b a

)
,

F̃+
(5) 7→ F̃+

(5), GEµν 7→ GEµν , (2.94)

where a, b, c, d ∈ Rwith ad−bc = 1, and leaves the action (2.93) invariant. Although
SL(2,R) is a symmetry of the low energy effective theory, only the discrete subgroup
SL(2,Z) is a symmetry of the full Type IIB string theory, known as S-duality.
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2.1.6 P-BRANES VERSUS D-BRANES

The supergravity description of the low energy string dynamics is a powerful tool
which can be used in order to extract new information about the structure of the
theory. An obvious question is what are the classical solutions of the supergravity
field equations and what is their significance in the full string theory? However,
given the complexity of the supergravity equations and the variety of solutions one
expects for such a system of non-linear partial differential equations, it might be
useful to sit back for a moment and look at the symmetries of the supergravity action.

We already pointed out in the last section that Type IIB supergravity possesses
an SL(2,R) symmetry under which the dilaton mixes with the axion and the NS-NS
B-field mixes with the R-R two-form C(2). Let us specifically consider the special
SL(2,R) transformation

τ 7→ −1
τ
,

(
H

F (3)

)
7→

(
F (3)

−H
)
, (2.95)

which interchanges the NS-NS B-field with the R-R two-form C(2). This result
should come as a complete surprise on the basis of our perturbative treatment of
the superstring! Somehow the low energy effective description of the theory does
not distinguish between B and C(2), although we know that these two fields have
completely different origin in perturbative string theory. In particular, we know that
the B-field couples minimally to the string world-sheet Σ, i.e. its world-sheet action
is (cf. (2.14))

SB ∼
∫

Σ

B, (2.96)

where B is the pull-back of the form BµνdXµ∧dXν onto Σ, whereas the R-R vertex
operators only involve the field strength F(3) = dC(2). Borrowing the terminology
from classical electromagnetism, we say that the string world-sheet is electrically
charged under the B-field, while it is neutral under the R-R two-form since only
the field strength F(3) = dC(2) couples to it. In fact we have found no object in
perturbative string theory that is ‘electrically charged’ under any of the R-R forms.
The fact that the low energy effective action does not differentiate between B and
C(2), however, strongly suggests that there must exist objects which are electrically
charged under C(2) and indeed under all R-R potentials!

So how do we go about finding these objects? The supergravity action comes to
the rescue again. We will look for solutions of the supergravity equations of motion
which are electrically charged under a single of the R-R potentials C(p+1). Such
solutions should describe p+ 1-dimensional extended objects and will be singular in
the sense that they will be solutions of the equations of motion with a delta function
source at the location of the extended object.
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2.1. TYPE IIB SUPERSTRINGS

Indeed, making an ansatz that possesses an SO(9 − p) × Poincaré(1, p) isome-
try and preserves half of the original 32 supersymmetries (recall that in Type IIB
string theory there are two Majorana-Weyl supercharges of the same chirality com-
ing from the holomorphic and antiholomorphic Ramond vacua, each with 24 real
components), it is possible to find such solutions. The role of supersymmetry here is
crucial. On the practical side, restricting to purely bosonic backgrounds, supersym-
metry requires that we put the gravitino and dilatino variations to zero. This leads
to first order equations in contrast to the second order supergravity equations of mo-
tion. Moreover, in most cases a solution to the first order supersymmetry equations
is also a solution of the supergravity equations. Although this is not automatic, it
is a very powerful tool for simplifying the second order supergravity equations. On
the physical side, the fact that these solutions preserve half of the supersymmetries
means that they are so-called BPS solutions (after Bogomol’nyi, Prasad and Som-
merfeld). We will discuss the significance of this property below, but let us first see
how these solutions look like.

Since we are looking for purely bosonic solutions which are charged under a
single R-R potential C(p+1), we consider the action

Sstring =
1

2κ2
10

∫
d10x

√
−G

[
e−2Φ (R+ 4∂µΦ∂µΦ)− 1

2
F 2

(p+2)

]
, (2.97)

or in the Einstein frame defined by the Weyl transformation in (2.92)

SE =
1

2κ2
10

∫
d10x

√
−GE

(
RE − 1

2
∂µΦ∂µΦ− 1

2
e−

1
2 (p−3)ΦF 2

(p+2)

)
. (2.98)

The elementary (electric) p-brane solution to the equations of motion that follow
from this action takes the form

ds2E = H−(7−p)/8
p d~x2 +H(p+1)/8

p d~y2,

C
(p+1)
01...p = H−1

p − 1,

eΦ = H−(p−3)/4
p , (2.99)

where xµ̄, µ̄ = 0, . . . , p, and ym, m = p + 1, . . . , 9, parameterize respectively the
directions along and perpendicular to the brane, and

Hp = 1 +
kp
r7−p

, p < 7, (2.100)

where r =
√
~y2, is a harmonic function in the transverse directions, i.e.

¤⊥Hp = 0. (2.101)

kp is a constant related to the ‘electric’ charge and ADM mass of the p-brane and we
will come back to it shortly.
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In writing the p-brane solution we have assumed that the asymptotic value of
the dilaton vanishes. However, this need not be the case and indeed the asymptotic
value of the dilaton plays a very important role in string theory. From the way
the dilaton couples to the world-sheet (see (2.84)) we see that a constant dilaton
multiplies the Euler characteristic of the world-sheet7

χ ≡ 1
4π

∫

Σ

d2σ
√
γRγ = 2− 2h, (2.102)

where h is the genus of the compact Riemann surface Σ. So it leads to a factor e−χΦ0

in the string partition function which involves a sum over world-sheet topologies.
This sum then becomes an expansion in

gs ≡ eΦ0 , (2.103)

which therefore has an interpretation as the string coupling constant. If we now
include the string coupling in Newton’s constant in front of the supergravity action
(so that κ10 ∼ gs), then the p-brane solution we presented above remains valid. kp
can then be shown to depend linearly on gs, while the ADM mass (or tension) and
R-R charge of the p-brane, which are equal, turn out to be inversely proportional to
the string coupling

Tp ∼ 1/gs. (2.104)

This is indicative of non-perturbative or soliton-like behavior and implies that a
p-brane becomes very massive at weak string coupling. Indeed, we already know
from the form of the Polyakov action that the tension of the fundamental string is
independent of the string coupling. This can also be confirmed by looking for a
supergravity solution which is charged under the NS-NS B-field instead of the R-R
two-form. Such a solution can in fact be obtained from the p = 1 brane solution in
(2.99) by replacing C(2) 7→ B and Φ 7→ −Φ and one can easily verify that its ADM
mass is independent of the string coupling. p-branes therefore become arbitrarily
massive compared to the fundamental strings at weak coupling and one expects that
they completely decouple from the perturbative sector. This is in agreement with the
fact that we did not find any object carrying RR charge in string perturbation.

As we mentioned above, p-branes are also BPS objects, i.e. they preserve half
supersymmetries. BPS objects correspond to very special massive representations of
the supersymmetry algebra, called ‘short’ or BPS multiplets, that have only half of
the expected number of states. The reason is that such multiplets satisfy the so-called
‘BPS bound’, which means that the mass is equal to some central charge (e.g. the
R-R charge for the p-brane) in the supersymmetry algebra. This in turn implies that
half of the supercharges can be consistently set to zero as operators, which leaves
us with only half creation operators and hence half of the states. Since relaxing

7For unoriented world-sheets or world-sheets with boundaries this formula should be modified.

33



2.1. TYPE IIB SUPERSTRINGS

the BPS mass/charge equality would lead automatically to an abrupt doubling of
the states in the supermultiplet, it follows that the BPS condition is robust under
adiabatic changes of any continuous parameters in the theory. In particular, the
mass/charge equality does not receive any quantum corrections - an example of a
‘non-renormalization theorem’.

Another consequence of the BPS property of p-branes, is that they can be super-
imposed. Indeed, replacing the harmonic function (2.100) in the p-brane solution
(2.99) by the multi-center harmonic function

H(~r) = 1 +
∑

i

kip
|~r − ~ri|7−p , (2.105)

leads to an equally good solution of the supergravity equations. Such a solution
represents a number of parallel p-branes, each located at position ~ri in the transverse
space. One can even put a number Ni of p-branes on top of each other at each
location ~ri simply by multiplying kip by Ni.

D-BRANES

A major breakthrough in our understanding of these extended objects came with
the discovery of Polchinski [12] that, although p-branes decouple from the pertur-
bative sector of closed strings, they do appear in perturbation theory as boundary
conditions for open strings. We have not discussed open strings so far and we will not
go into the details of their rich physics since we will not need it directly in this the-
sis. Nevertheless, it is easy to generalize our discussion of closed strings to include
open strings. The main difference is that open strings have ‘open’ ends and therefore
they span a world-sheet Σ that has a boundary ∂Σ. The classical string equations of
motion must then be supplemented by appropriate boundary conditions. There are
two types of possible boundary conditions, namely Neumann boundary conditions
allowing the open string end to move freely, or Dirichlet boundary conditions, which
correspond to fixing the end of the string.

Imagine now that we impose Neumann boundary conditions on the coordinates
X µ̄, µ̄ = 0, . . . , p (which include time), and Dirichlet boundary conditions on the rest
of the coordinatesXm, m = p+1, . . . , 9. This defines a p+1-dimensional hyperplane
which preserves an SO(9 − p) × Poincaré(1, p) subgroup of the full Poincaré(1, 9)
isometry group of ten-dimensional Minkowski spacetime. Moreover, it can be shown
to preserve half supersymmetries, exactly as the p-brane solution did. In fact these
hyperplanes are dynamical objects: open string excitations correspond to deforma-
tions of the hyperplane in exactly the same way that closed string excitations cor-
respond to deformations of the background geometry. The dynamics of the low
energy excitations and the way these couple to the closed string fields is encoded in
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the effective action (see Chapter 13 of Polchinski [9] and the lectures [13])

SDp = −µp
∫
dp+1ξTr

{
e−Φ [−det (Gab +Bab + 2πα′Fab)]

1/2

+O([X,X])
}

+ iµp

∫

p+1

Tr

[
exp (B + 2πα′F ) ∧

∑

k

C(k)

]
. (2.106)

Here Fab is the field-strength of the gauge field that comes from the open string
sector. When N such ‘planes’, or D-branes, are placed on top of each other this
gauge field becomes non-abelian (i.e. matrix-valued) and transforms according to
the adjoint representation of U(N) (or a subgroup thereof). The trace in the D-
brane action refers to the trace of these N × N matrices. Besides the gauge field,
the embedding fields Xµ become non-abelian as well and the action will receive
corrections involving their commutator, as indicated. The rest of the fields are the
closed string fields pulled-back onto the world-volume of the D-brane. Finally, the
exponential in the last term should be understood as a power series using the wedge
product of forms. The integral over the world-volume of the D-brane then picks the
appropriate power, n, such that 2n + k = p + 1. This low energy effective action of
the D-brane dynamics, which is a generalization of the so-called ‘Dirac-Born-Infeld
action’, is the analog of the Nambu-Goto action (2.3) for the fundamental string.

Using the low energy string dynamics it is now possible to evaluate the D-brane
tension, which, quite remarkably, turns out to be inversely proportional to the string
coupling, exactly as the p-brane tension in (2.104). Isometries, supersymmetry and
tension then all suggest that p-branes andD-branes look very similar. In fact they are
just different manifestations of one and the same extended object, the ‘Dp-brane’!

D-branes are therefore a fundamental constituent of the theory. They are the
elementary carriers of the R-R charge. (See, however, footnote 4.) Although we
started with a theory of closed strings, we see that the theory must contain open
strings as well, which are confined on the world-volume of D-branes. Type IIB string
theory contains D(−1), D1, and D3-branes, as well as D5 and D7-branes, which are
the duals8 of theD1 andD(−1)-branes respectively. In the next section we will focus
on the special properties of the D3-brane and its low energy world-volume theory.

2.2 N = 4 SUPER YANG-MILLS

TheD3-brane of Type IIB string theory is a very special object which is at the core
of the AdS/CFT correspondence to be discussed in the next section. To set the scene,

8These couple minimally to the R-R potentials C(6) and C(8), whose field strengths are the Hodge
duals of the field strengths of C(2) and C(0) respectively. These are singular (i.e. electric) solutions of the
supergravity equations with a delta function source. There also exist ‘magnetic dual’ solutions, such as
the NS5 brane which is the magnetic dual of the fundamental string, but these solutions are non-singular.
We will not discuss these solitonic solutions here.
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we will now take a closer look at the D3-brane, both as a supergravity solution and
its world-volume theory.

Starting with the supergravity description, we see that the D3-brane solution has
a constant dilaton and, although we did not include it in our general discussion of
p-branes above, it admits a constant axion as well. As we have seen, the constant
dilaton defines the dimensionless string coupling, gs = eΦ. Similarly, the constant
axion defines a second dimensionless coupling constant, θ = 2πC(0), whose physical
significance will emerge below. Using the convention that the string coupling is
absorbed in Newton’s constant, the D3-brane metric is the same in the string and
Einstein frames. The full solution is

ds2 = H
−1/2
3 dxµdxµ +H

1/2
3 (dr2 + r2dΩ2

5),

C
(4)+
0123 = H−1

3 − 1, with ∗ F+
(5) = F+

(5),

Φ, C(0) constant (2.107)

where we have written the transverse metric in radial coordinates and xµ, µ =
0, . . . , 3, are coordinates along the brane. For a general multicenter solution the
harmonic function H3(~r) takes the form

H3(~r) = 1 +
N∑

i=1

L4
i

|~r − ~ri|4 , (2.108)

where L4
i = 4πgsNiα′2.

On the other hand, the low energy effective action on a stack of N D3-branes in
a flat gravitational background is the N = 4 SU(N) super Yang-Mills action

S = − 1
2g2
YM

∫
d4xTr

{
FµνF

µν + 2DµX
iDµXi − [Xi, Xj ]2 − 4iχ̄αP− /Dχα

+2Γ̂iβ̄αχ̄
α[Xi, P−χ̃β̄ ]− 2Γ̂iβᾱ ¯̃χᾱ[Xi, P+χβ ]

}
+

θI
8π2

∫
d4xTr (Fµν F̃µν). (2.109)

To understand the structure of this action let us start by pointing out the isomor-
phism SO(6) ≈ SU(4). In particular, the 6 of SO(6) is identified with the antisym-
metric tensor representation of SU(4), while the two Weyl spinor representations
of SO(6) are identified respectively with the 4 and 4̄ of SU(4). The six scalars Xi,
i = 1, . . . , 6, transform under the 6 of SO(6) and the four SO(1, 3) Dirac fermions
χα, α = 1, . . . , 4, transform under the 4 of SU(4). Moreover, χ̃α = −C4χ̄

T
α , where

C4 is the SO(1, 3) (antisymmetric) charge conjugation matrix and Γ̂i are the 8 × 8
SO(6) gamma matrices with components

Γ̂i =

(
(Γ̂i)βα (Γ̂i)βᾱ

(Γ̂i)β̄α (Γ̂i)β̄ ᾱ

)
. (2.110)
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Finally, P± = (1 ± γ5)/2 are the SO(1, 3) chirality projection operators, Dµ is the
covariant derivative with respect to the SU(N) gauge field Aµ, and the trace is over
the SU(N) indices.

The bosonic part of this action can be deduced by expanding the low energy
effective action (2.106) around a flat close string background, although one would
first need to specify the O([X,X]) terms in (2.106). The last term in (2.109) arises
then from the Chern-Simons term in (2.106) with the constant axion becoming the
instanton angle θ = 2πC(0) = θI . The Yang-Mills coupling can also be related to the
string coupling this way with the result [9] g2

YM = 4πgs. However, a more practical
way to deduce the action (2.109) is to use the symmetries that the low energy world-
volume field theory must possess to conclude that it can be no other than the unique
super Yang-Mills SU(N) gauge theory with N = 4 supersymmetry. The full action
can then be obtained by so-called dimensional reduction of the N = 1 super Yang-
Mills theory in ten dimensions on a six-torus. This is the way the action (2.109) was
derived, but we need not go into the details of this derivation here.

The fact that N = 4 super Yang-Mills in four dimensions can be obtained by
dimensional reduction of N = 1 super Yang-Mills in ten dimensions, however, helps
identify its symmetries. First of all we have seen that the action (2.109) has an
SO(6) global symmetry under which the scalars transform in the 6 and the fermions
in the 4. Obviously it is also Poincaré(1,3)-invariant. Perhaps more surprising is the
fact that it is scale invariant as well. This enhances the Poincaré symmetry group to
the full conformal group SO(2, 4) ≈ SU(2, 2). But we know that the action (2.109)
possesses N = 4 supersymmetry. Indeed, one can verify directly that the supersym-
metry transformations

δζAµ = iζ̄αP−γµχα + i
¯̃
ζᾱP+γµχ̃

ᾱ,

δζX
i = (Γ̂i)β̄αζ̄

αP−χ̃β̄ − (Γ̂i)βᾱ ¯̃
ζᾱP+χβ , (2.111)

δζ(P+χα) =
1
2
Fµνγ

µνP+ζα + (DµXi)(Γ̂i)β̄αγ
µP−ζ̃ β̄ +

i

2
[Xi, Xj ](Γ̂ij)βαP+ζβ ,

δζ(P−χ̃ᾱ) =
1
2
Fµνγ

µνP−ζ̃ᾱ − (DµXi)(Γ̂i)βᾱγµP+ζβ +
i

2
[Xi, Xj ](Γ̂ij)β̄

ᾱP−ζ̃ β̄ ,

leave the action invariant. The conformal group combined with these supersymme-
tries form the maximal superconformal group PSU(2, 2|4) in four dimensions.9 A
detailed construction of this superalgebra can be found in Appendix 2.A.2.

The superconformal global symmetry of N = 4 super Yang-Mills is in fact an
exact symmetry even at the quantum level! It has been shown that there are no
ultraviolet divergences in the correlation functions of the fundamental fields and
therefore the perturbative renormalization group β-function vanishes. There are no

9I am grateful to Professor Massimo Bianchi for pointing out to me that the superconformal group is
PSU(2, 2|4) and not SU(2, 2|4).
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instanton corrections to this result and it is believed that the β-function vanishes
identically, which ensures scale invariance, and hence superconformal invariance, in
the full quantum theory.

There is also another discrete global symmetry of this theory which is in fact
analogous to S-duality in Type IIB string theory. Recall that S-duality acts on the
dilaton and the axion as the Möbius transformation

τ 7→ aτ + b

cτ + d
, (2.112)

where τ = C(0) + ie−Φ and ad − bc = 1, a, b, c, d ∈ Z. From the low energy world-
volume theory of the D3-brane we have identified the dilaton (or string coupling)
with the Yang-Mills coupling and the axion with the instanton angle, namely

τ =
θ

2π
+

4πi
g2
YM

. (2.113)

Although there is no proof, this SL(2,Z) ‘duality’ acting on the couplings of N = 4
super Yang-Mills is believed to be an exact symmetry of the full quantum theory,
known as Montonen-Olive duality. The AdS/CFT correspondence maps this duality
to the S-duality of Type IIB string theory.

2.2.1 SUPERCONFORMAL MULTIPLETS

Any local, gauge-invariant operator in d = 4, N = 4 super Yang-Mills of def-
inite scaling dimension is a polynomial in the gauge-invariant fundamental fields
Xi, χα and Fµν , whose scaling dimensions are respectively 1, 3/2 and 2, as well as
their covariant derivatives. In particular, all gauge-invariant operators have positive
dimension. As in two-dimensional superconformal field theory, all such operators
can be grouped into superconformal multiplets which are derived from a set of su-
perconformal primary operators. In two dimensions these would be the operators
we introduced in (2.198). In the present context, superconformal primary operators
are defined as the local gauge-invariant operators O which (anti)commute with the
superconformal generators SI+α̃

[SI+α̃,O} = 0. (2.114)

Since SI+α̃ has dimension −1/2, successive application of these supercharges on a
state created by an operator of definite dimension must eventually annihilate the
state, or else states of negative dimension would be created, which violates unitarity.
This shows that there must exist operators that satisfy (2.114). All local gauge-
invariant operators which are not conformal primaries can be derived from one of
the conformal primaries by successive (anti)commutation with QI+α, i.e.

O′ = [Q, [Q, . . . , [Q,O} . . .}}. (2.115)
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Such operators are said to be superconformal descendants of the superconformal pri-
mary operator O. Note that there are also conformal primary operators which also
have a definite conformal dimension and are defined as gauge-invariant operators
that commute with the special conformal generators Kµ. Since {S, S} ∼ K, a super-
conformal primary operator is also a conformal primary operator but the converse
is not true.

It turns out that in N = 4 super Yang-Mills all superconformal primary operators
(also known as chiral primary operators) can be built out of symmetrized traces of
the scalar operators Xi. We will not go into the details of the construction and
classification of these operators here since we will not need them in this thesis.
More details can be found, for example, in the review [14]. There is a special class
of operators, however, that we will focus on in our subsequent discussion of the
AdS/CFT correspondence. These are the single-trace 1/2-BPS operators10

Ok ∼ sTrX{i1 . . . Xik}, (2.116)

where sTr stands for the symmetrized trace and {} stands for the traceless (with re-
spect to the SO(6) indices) part. The BPS property means that their dimension does
not renormalize and is therefore equal to k. Moreover, these operators transform un-
der the (k+1)(k+2)2(k+3)/12-dimensional representation of the R-symmetry group
SU(4) with Dynkin labels (0, k, 0). Of those, the most relevant to our discussion is
the scalar operator with k = 2, which is the lowest weight state of the so-called ‘su-
pergraviton’ multiplet. This multiplet contains only relevant and marginal operators
(i.e. with conformal dimension ∆ ≤ 4), while all multiplets built on the k > 2 chiral
primary operators contain irrelevant operators. In particular, the supergraviton mul-
tiplet contains the 15 currents of the SO(6) R-symmetry group (these are conformal
primaries of dimension 3) as well as the stress tensor (dimension 4).

2.2.2 SUPERSYMMETRIC VACUA

In order to find supersymmetric vacua we look for zeros of the potential

Tr ([Xi, Xj ]2), (2.117)

which is positive definite. Any such vacuum is in fact a solution of the stronger
condition

[Xi, Xj ] = 0. (2.118)

There are two classes of solutions to this equation, corresponding to the two types of
possible supersymmetric vacua. The first is the superconformal phase, where 〈Xi〉 =
0 for all i = 1, . . . , 6 and the full SU(N) gauge group, as well as superconformal

10There are also multi-trace 1/2-BPS operators, but we will not consider them here.
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invariance remain unbroken. The second is the Coulomb phase, where at least one
of the vevs 〈Xi〉 is non-zero. In this case the gauge group is spontaneously broken
to a subgroup, corresponding to a number of the N D3-branes moving away from
the rest, and superconformal symmetry is also broken spontaneously by the scale
introduced by the vev 〈Xi〉.

2.2.3 IMPLICATIONS OF CONFORMAL INVARIANCE

Finally let us consider the implications of (super)conformal invariance for the
field theory correlation functions. An extensive analysis of this problem can be found
in [15, 16]. It is a standard result in quantum field theory that the classical conser-
vation equations for the Noether currents associated with a given global symmetry
give rise to the so-called Ward identities for the correlation functions. In the case
of the (super)conformal group the Ward identities impose very strong restrictions
on the form of the correlation functions of (super)conformal primary operators. In
fact, conformal invariance alone determines completely the form of the one, two,
and three-point functions of conformal primary operators. Namely, if O∆i(x) are
conformal primary operators of dimension ∆i, conformal invariance determines

〈O∆i(x)〉 = δ∆i,0,

〈O∆1(x)O∆2(x)〉 =
c(∆1,∆2)
|x1 − x2|2∆1

δ∆1∆2 , (2.119)

〈O∆1(x)O∆2(x)O∆3(x)〉 =
c(∆1,∆2,∆3)

|x1 − x2|∆−2∆3 |x2 − x3|∆−2∆1 |x3 − x1|∆−2∆2
,

where c(∆1,∆2) and c(∆1,∆2,∆3) are constants (possibly depending on the cou-
plings of the theory) and ∆ = ∆1 + ∆2 + ∆3. We will see more examples of the
constraints imposed on correlation functions by conformal invariance in Chapter 4.

2.3 THE ADS/CFT CORRESPONDENCE

Now that we have some idea of the basics of both Type IIB string theory and d = 4
N = 4 super Yang-Mills theory, we turn to the celebrated ‘AdS/CFT correspondence’
which relates these two theories in a very non-trivial and constructive way. Let us
start by reviewing the argument of Maldacena [17] motivating this correspondence.
See also [18, 19] and the reviews [20, 14].

Consider N parallel D3-branes placed on top of (or very close to) each other in
flat ten-dimensional Minkowski spacetime. The degrees of freedom of this system
are the closed strings in the bulk as well as the open strings attached to the D3-
branes. In general these are highly interacting, but as we have seen, at low energy
only the massless modes survive and their dynamics can be described by an effective
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action. This action contains two pieces, namely the low energy Type IIB supergravity
action describing the dynamics of the massless closed string modes and the Dirac-
Born-Infeld-type action (2.106) describing the low energy dynamics of open string
modes on the branes and their interactions with the closed string modes. Expanding
this effective action around a flat background (e.g. for the metric we write Gµν =
ηµν + κ10hµν , where κ10 ∼ gsα

′2) and taking the low energy limit (which can be
made more explicit by taking α′ → 0, while keeping gs and N fixed), one sees
that the closed string modes completely decouple from the open string modes on
the branes. Moreover, the closed string interactions describe free supergravity away
from the brane, while the dynamics of the open strings on the flat branes reduces
exactly to N = 4 super Yang-Mills gauge theory.

Let us now look at exactly the same system from a different perspective. We have
seen that a stack on N D3-branes can be described in supergravity by the solution
(2.107) whose metric reads

ds2 =
(

1 +
L4

r4

)−1/2

ηµνdx
µdxν +

(
1 +

L4

r4

)1/2

(dr2 + r2dΩ2
5), (2.120)

where L4 = 4πgsNα′2. Far away from the D3-branes, i.e. r → ∞, this metric
reduces to the flat ten-dimensional Minkowski metric. On the other hand, if we
introduce the new radial coordinate u = L2/r, the D3-brane metric takes the form

ds2 =
(

1 +
L4

u4

)−1/2
L2

u2
ηµνdx

µdxν +
(

1 +
L4

u4

)1/2

L2

(
du2

u2
+ dΩ2

5

)
. (2.121)

Taking the limit u→∞, this metric becomes

ds2 =
L2

u2

(
du2 + ηµνdx

µdxν
)

+ L2dΩ2
5, (2.122)

which we recognize as the metric on AdS5 × S5 (see Appendix 2.A.3), where AdS5

and S5 have the same radius L.
Consider then perturbative string theory around theD3-brane background. Clearly,

away from the branes we have free Type IIB string theory in flat target space. To
see what happens in the second limit, which is known as the ‘near horizon limit’, we
look at the Polyakov action (2.5) with the background metric (2.121) (we ignore
the other background fields). The overall factor L2 of the metric combines with the
factor in front of the string action to an overall factor

L2

4πα′
=

√
λ

4π
, (2.123)

where we have introduced the dimensionless coupling λ ≡ gsN and the relation
L4 = 4πgsNα′2 was used. After removing the factor L2 from the background metric,
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it admits a smooth non-trivial limit as L → 0. In fact it reduces to the AdS5 × S5

metric (2.122) where both factors now have unit radius. We now take the limit
α′ → 0 in such a way that L2/α′, and hence λ, remain fixed. This is precisely the
decoupling limit we considered before and it leads to string theory on AdS5 × S5

with the string tension replaced by
√
λ/4π.

Therefore, from both points of view, the limit α′ → 0, while keeping all dimen-
sionless couplings fixed, leads to two decoupled systems, one of which is Type IIB
string theory (supergravity) in flat Minkowski spacetime. Identifying the second
component in the two different approaches leads to the AdS/CFT conjecture:

Type IIB superstring theory on AdS5 × S5, both factors having radius L4 = 4πgsNα′2,
where N =

∫
Σ5 F

+
(5) is the integer flux of the self-dual five-form through S5 and gs

is the string coupling, is equivalent (dual) to N = 4 super Yang-Mills theory in four
dimensions in its superconformal phase, with gauge group SU(N), Yang-Mills coupling
g2
YM = 4πgs and instanton angle, θ = 2πC(0), given by the expectation value of the

Type IIB axion.

This duality relates two theories we can say very little about. On one hand
quantizing string theory on a curved background has proven very difficult. Indeed
this is an area of intense current research. On the other hand, very little is known
about non-abelian gauge theories like N = 4 super Yang-Mills, even though one
would hope that this particular theory is more tractable due to its high symmetry.
Nevertheless, at present we can only get a glimpse of each of these theories in certain
limits. What makes the AdS/CFT conjecture so remarkable, useful and difficult to
prove is that the limits we can access in each of the two sides are (almost) mutually
exclusive! In other words, the limit of Type IIB string theory that we can handle
corresponds to a completely inaccessible limit of the gauge theory and vice versa.
In that sense then, the correspondence, if true, provides a handle to the previously
inaccessible regions of each of these theories.

One limit that is well-defined on both sides of the theory is the ’t Hooft limit. This
consists in keeping the ’t Hooft coupling λ = g2

YMN = 4πgsN constant while taking
N → ∞. On the gauge theory side only certain Feynman diagrams, the so-called
‘planar diagrams’, survive in this limit. The 1/N expansion then corresponds to an
expansion where the Feynman diagrams are rearranged according to their topology.
Even though, the ’t Hooft limit simplifies the gauge theory dynamics to some extent,
it is still very difficult to solve the theory in this limit. On the string theory side, the
1/N expansion corresponds to the string perturbation expansion since gs = λ/4πN
and λ is kept fixed.

The ’t Hooft limit alone is not sufficient to render either of the two sides of the
correspondence tractable. However, after taking the ’t Hooft limit we are left with a
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free parameter, namely the ’t Hooft coupling λ, which we can tune at our will. An
obvious limit is λ → 0 which corresponds to weakly coupled gauge theory. String
theory, however, in this limit is strongly coupled. On the other hand, we have seen
that 1/

√
λ has taken the role of α′ in the string non-linear sigma model action. The

supergravity approximation, which was equivalent to the α′ → 0 limit in the original
string action, therefore corresponds to the λ → ∞ limit. This is a strong coupling
limit on the gauge theory side and hence very little, if anything, can be said about it
directly. If the correspondence holds, then supergravity on AdS5×S5 can be used to
study the properties of the strongly coupled gauge theory! In the rest of this thesis
we will investigate various aspects of this ‘gauge/gravity’ duality, thus justifying the
title of the thesis.

2.3.1 THE ADS/CFT DICTIONARY

To convince ourselves of the plausibility of the AdS/CFT conjecture, let us check
that the global symmetries of the two theories are the same. We saw earlier that
N = 4 super Yang-Mills theory in four dimensions has an PSU(2, 2|4) global sym-
metry, whose maximal bosonic subgroup is SU(2, 2) × SU(4) ≈ SO(2, 4) × SO(6).
String theory on AdS5 × S5 must therefore have this global symmetry as well. In-
deed, SO(2, 4)× SO(6) is precisely the isometry group of AdS5 × S5 (see Appendix
2.A.3 for a discussion of the isometries of AdS). Moreover, it can be shown that
this background preserves exactly the same number of supersymmetries as ten-
dimensional flat space, that is 32. Hence, the full symmetry group of AdS5 × S5

is the full superconformal group PSU(2, 2|4) as well.
We also saw above that N = 4 super Yang-Mills has another global symmetry,

namely the Montonen-Olive duality. The AdS/CFT conjecture maps the Yang-Mills
coupling and the instanton angle respectively to the vacuum expectation values of
the dilaton and the axion of Type IIB string theory. The Montonen-Olive duality is
therefore directly mapped to the S-duality of Type IIB.

A less trivial task is to match the PSU(2, 2|4) multiplets on the two sides of
the correspondence. A large number of operators in the gauge theory have indeed
been identified with various states on the string theory side. (For a discussion of
this matching we refer to the review [14] and references therein.) Since the full
spectrum of Type IIB string theory on AdS5 × S5 is not known, however, the only
states we know on the string theory side are those obtained by the Kaluza-Klein
reduction of Type IIB supergravity on S5. This procedure consists in expanding the
ten dimensional (massless) supergravity fields in S5 spherical harmonics as

ϕ =
∑

k

ϕkYk(Ω5), (2.124)

where ϕk is a field on AdS5 which transforms under the (0, k, 0) representation
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of the SU(4) R-symmetry group. These fields are generically massive. For scalar
fields, for example, the Kaluza-Klein reduction determines the mass of ϕk to be
m2
k = L−2k(k − 4), where L is the common radius of AdS5 and S5. The AdS/CFT

correspondence relates the 1/2-BPS operators (2.116) with (a linear combination of)
the fields ϕk on AdS5. In particular, the operators in the supergraviton multiplet,
which is built on the k = 2 chiral primary operator, are in one-to-one correspondence
with the field content of D = 5, N = 8 gauged supergravity. This includes 15 gauge
fields and the five-dimensional metric, which are respectively the duals of the 15 R-
symmetry currents and of the stress tensor in the supergraviton multiplet. Although
there is no proof so far, N = 8 gauged supergravity in five dimensions is believed
to be a consistent truncation of Type IIB supergravity in ten dimensions. This means
that any solution of N = 8 gauged supergravity in five dimensions can be lifted to a
solution of the full Type IIB supergravity in ten dimensions. Since the supergraviton
multiplet contains only relevant or marginal operators, the D = 5, N = 8 gauged
supergravity fields are all dual to such operators. In the rest of this thesis we work
within the framework of D = 5, N = 8 gauged supergravity and its dual relevant
and marginal operators.

2.3.2 CORRELATION FUNCTIONS

We have seen that the AdS/CFT conjecture relates the large N , large ’t Hooft
coupling limit of N = 4 super Yang-Mills to Type IIB supergravity on AdS5 × S5.
Moreover, as we discussed in the previous section, the Kaluza-Klein reduction of
Type IIB supergravity on S5 gives rise to a set of five-dimensional fields which are in
one-to-one correspondence with certain operators in N = 4 super Yang-Mills gauge
theory. We now wish to understand in more detail how this correspondence arises
and how it can be used in order to extract information about the strongly coupled
gauge theory.

To this end we restrict ourselves to the field content of D = 5, N = 8 gauged
supergravity and the dual relevant or marginal operators. To be concrete, consider
a scalar gauge-invariant operator O∆ of dimension ∆. The dynamics of such an
operator is encoded in the generating functional

ZCFT[ϕ̄] ≡ eWCFT[ϕ̄] =
〈
e−

R
d4xϕ̄(x)O∆(x)

〉
. (2.125)

By taking successive functional derivatives of the generating functional WCFT [ϕ̄]
with respect to the source ϕ̄(x) one can compute (connected) correlation functions
with arbitrary number of O∆(x) insertions

〈O∆(x1)O∆(x2) . . .O∆(xn)〉c = (−1)n
δ

δϕ̄(x1)
δ

δϕ̄(x2)
· · · δ

δϕ̄(xn)
WCFT [ϕ̄]

∣∣∣∣
ϕ̄=0

.

(2.126)
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For every such operator there exists a dual bulk scalar field ϕ in AdS5 (this would
be the field ϕk with k = ∆ in the notation of the previous section, but here we drop
the subscript.) However, since a similar operator/bulk field correspondence exists in
the context of other AdS/CFT -type dualities as well, we will not restrict ourselves
to AdS5 here. Instead we will consider (d + 1)-dimensional AdS space which has
a d-dimensional conformal boundary (see Appendix 2.A.3), where the field theory
and the operator O∆ live. It will also be convenient to work with the Euclidean
version of AdSd+1, i.e. the hyperbolic space Hd+1.

Ignoring for the moment any possible interactions with other fields, including
the bulk metric, the dynamics of the scalar field ϕ is described by an action of the
form

S =
1
2

∫
dd+1x

√
g

(
gµν∂µϕ∂νϕ+m2ϕ2 + · · · ) , (2.127)

where the dots stand for non-linear terms which we are going to ignore initially. ϕ
then satisfies the linearized equation of motion

(−¤g +m2
)
ϕ = 0. (2.128)

In the upper half plane coordinates (2.220) this equation reads
(−z2

0∂
2
z0 + (d− 1)z0∂z0 − z2

0¤ +m2
)
ϕ = 0, (2.129)

where ¤ is the Laplacian on the boundary, which is located at z0 = 0. We will solve
this equation later, but for now we are just interested in the asymptotic behavior of
its solutions as z0 → 0. It is not difficult to see that there are two possible asymptotic
behaviors, namely

ϕ(z0, ~z) ∼ z
α±
0 , α± =

d

2
±

√
(d/2)2 +m2. (2.130)

Assuming α− < α+, the linearly independent solutions behaving asymptotically as
z
α+
0 and z

α−
0 are known respectively as the normalizable and the non-normalizable

modes. The general solution then will be a linear combination of these two modes
and hence, the leading asymptotic behavior of the solution will generically be

ϕ(z0, ~z) ∼ z
α−
0 ϕ(0)(~z), (2.131)

where ϕ(0)(~z) is some arbitrary function on the boundary.
A statement of the AdS/CFT correspondence, in the supergravity approximation,

is that the generating functional of connected correlators of the gauge-invariant
operatorO∆ is given by the on-shell action Son−shell[ϕ(0)], with the arbitrary function
ϕ(0)(~z) that multiplies the leading asymptotic behavior of the bulk field ϕ being
identified with the source of the dual operator:

WCFT[ϕ(0)] = −Son−shell[ϕ(0)]. (2.132)
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On dimensional grounds then α− = d − ∆, which implies m2 = ∆(∆ − d) and
α+ = ∆. In fact, a similar statement can be made for the strong form of the AdS/CFT
conjecture relating the full Type IIB string theory on AdS5 × S5 with SU(N) N = 4
super Yang-Mills at finite N and any value of the ’t Hooft coupling λ = g2

YMN . The
statement is that the string partition function Zstring is identified with the partition
function ZCFT ofN = 4 super Yang-Mills living on the conformal boundary ofAdS5:

ZCFT = Zstring. (2.133)

In the saddle-point approximation, the string partition function is replaced by the
exponential of the on-shell supergravity action, Zstring ≈ e−SSUGRA . In general there
will be many saddle points, corresponding to various backgrounds with the same
conformal boundary, and so the CFT partition function will involve a sum over these
saddle points.

This is a very useful formulation of the AdS/CFT correspondence since it allows
one to compute correlation functions of the strongly coupled gauge theory using
classical supergravity calculations! As it stands, however, the identification (2.132)
is not well-defined. The reason is that the on-shell action diverges because Hd+1

(and AdSd+1) is non-compact and hence it has an infinite volume. This divergence
can also be understood from the field theory point of view as well. Being a confor-
mal field theory, the correlation functions of the fundamental fields of N = 4 super
Yang-Mills are ultraviolet finite. Indeed, this is necessary for the renormalization
group β-function to vanish. The correlation functions of composite operators such as
O∆, however, will generically contain ultraviolet divergences. The AdS/CFT corre-
spondence relates these divergences to the divergences of the on-shell supergravity
action. Since these are long distance, or infrared, divergences from the supergravity
point of view, the relation between the divergences of the two theories is a UV/IR
relation.

To make sense of the identification (2.132) then we must find a consistent way of
removing these divergences, i.e. we should determine the correct renormalized ver-
sion of (2.132). On the field theory side this can be achieved by the usual renormal-
ization procedure. On the supergravity side, renormalization corresponds to adding
suitable boundary covariant counterterms to the on-shell supergravity action. In the
next chapter we will describe in detail how these covariant counterterms can be de-
termined systematically in a very general setting, a procedure known as holographic
renormalization. Before we delve into the technicalities of the general case, however,
it is instructive to illustrate the general idea in the simple example we considered
above. In fact, many of the important ideas will be present already in this simple
example.

46



CHAPTER 2 - SUPERSTRING THEORY & THE ADS/CFT CORRESPONDENCE

CFT CALCULATION

The quantity that we want to evaluate is the renormalized two-point function
〈O∆(x)O∆(y)〉ren. Let us start with the field theory calculation since it is rather
standard. We have seen that conformal invariance completely determines the form
of the two-point function at separated points, namely

〈O∆(x)O∆(y)〉 =
c(g,∆)
|x− y|2∆ , (2.134)

where c(g,∆) is a constant that depends on the coupling constant of the theory g
and the conformal dimension ∆ of the operator. One may set it to one by a choice of
normalization ofO∆ but we shall not do so. Depending on the conformal dimension,
∆, this correlator may suffer from short distance singularities. Consider the case
∆ = d/2 + k + ε, where ε is an infinitesimal parameter and k is a non-negative
integer. Iterating the identity

1
|x− y|2∆ =

1
2(∆− 1)(2∆− d)

¤ 1
|x− y|2∆−2

, |x− y| 6= 0, (2.135)

where ¤ = δij∂i∂j , k + 1 times, we find

1
|x− y|2∆ =

1
2ε

Γ(1 + ε)Γ(d/2 + ε)
22kΓ(k + 1 + ε)Γ(d/2 + k + ε)

1
d− 2 + 2ε

¤k+1 1
|x− y|d−2+2ε

∼ −1
2ε

ωd−1Γ(d/2)
22kΓ(k + 1)Γ(d/2 + k)

¤kδ(d)(x− y), (2.136)

where ωd−1 = 2πd/2/Γ(d/2) is the volume of the unit (d − 1)-sphere and we have
used the identity ¤(x2)−d/2+1 = −(d − 2)ωd−1δ

(d)(x). We thus find that there is
a pole at ∆ = d/2 + k, or ε = 0. To produce a well-defined distribution we use
differential regularization [21] to subtract the pole and define [22, 23]

〈O∆(x)O∆(0)〉ren = c(g,∆) lim
ε→0

{
1
2ε

Γ(1 + ε)Γ(d/2 + ε)
22kΓ(k + 1 + ε)Γ(d/2 + k + ε)
1

d− 2 + 2ε
¤k+1 1

|x|d−2

(
1

|x|2ε − µ2ε

)}

=
−ck

2(d− 2)
¤k+1 1

|x|d−2

{
log

(
µ2x2

)
+ a(k)

}
, (2.137)

where

ck ≡ c(g,∆)
Γ(d/2)

22kΓ(k + 1)Γ(d/2 + k)
. (2.138)

The constant a(k) reflects the scheme dependence in the subtraction of the pole.
Here we have defined the subtraction in such a way so that a = 0, but other subtrac-
tion schemes, such as minimal subtraction, lead to a non-zero a [23]. The renor-
malized correlator agrees with the bare one away from coincident points but is also
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well-defined at x2 = 0. To allow a direct comparison of the renormalized two-point
function with the result we will obtain below from the bulk calculation, it is useful
to write down its Fourier transform. Using the identity [21]

∫
ddxeip·x

1
|x|d−2

log
(
µ2x2

)
= − 4πd/2

Γ(d/2− 1)
1
p2

log(p2/µ̄2), (2.139)

where µ̄ = 2µ/γ and γ = 1.781072 . . . is the Euler constant, we obtain

〈O∆(p)O∆(−p)〉ren = ck
(−1)k+1

2(d− 2)
4πd/2

Γ(d/2− 1)
p2k log(p2/µ̄2). (2.140)

BULK CALCULATION

Next, we calculate the same two-point function using the AdS/CFT prescription
that we described above. By the change of coordinates z0 = e−r, zi = xi, the upper
half plane metric (2.220) takes the form (we set the radius l = 1 here)

ds2 = dr2 + γijdx
idxj , γij = e2rδij . (2.141)

Fourier-transforming in the transverse coordinates, the equation of motion (2.128)
becomes (

∂2
r + d∂r − p2e−2r −m2

)
ϕ̃ = 0. (2.142)

As we saw above, there are two linearly independent solutions to this equation, say
ϕ̃±, which behave asymptotically as ϕ̃± ∼ e−α±r, with α− = d − ∆ and α+ = ∆.
Shifting the radial coordinate as r̄ = r − log |p|, the general solution then takes the
form

ϕ̃ = a−(p)ϕ̃−(r̄) + a+(p)ϕ̃+(r̄), (2.143)

where a±(p) are arbitrary functions. To completely specify the solution we need
to provide two boundary conditions, one at the boundary r̄ → ∞ and one at the
interior r̄ → −∞. As r̄ → ∞, ϕ̃ ∼ a−(p)ϕ̃−(r̄), and hence specifying a−(p) corre-
sponds to specifying the source ϕ(0)(x) of the dual operator and imposes a Dirichlet
boundary condition on ϕ. Since we want to keep the source arbitrary, we will keep
a−(p) arbitrary. As is well-known from the Laplace problem, there is no freedom of
specifying another function in the interior. However, the solution is required to be
smooth in the interior. At fixed p, there is a unique linear combination of ϕ̃− and
ϕ̃+ that is non-singular as r̄ → −∞. But in order for the solution to be smooth for
arbitrary p, a+(p) must be proportional to a−(p). This means that a necessary, but
not sufficient, condition for the solution to be smooth in the interior is that it takes
the form

ϕ̃ = a−(p) {ϕ̃−(r̄) + ξϕ̃+(r̄)} , (2.144)
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where ξ is an arbitrary constant independent of p. It follows that for smooth solutions

˙̃ϕ = f(r̄)ϕ̃, (2.145)

where f(r̄) is an arbitrary function. Note in particular that even though (2.145)
holds up to a normalizable mode for any solution, that is even for singular solutions,
imposing (2.145) exactly is equivalent to restricting to a subspace of the solution
space that contains all non-singular solutions. Unless ξ is fixed though, this space
will still contain singular solutions as well.

This observation is at the very center of the Hamiltonian version of holographic
renormalization that we will discuss in the next chapter. In the Hamiltonian lan-
guage, with the radial coordinate r as the ‘time’ coordinate, the above expression is
equivalent to the following statement:

In the space of smooth solutions, the radial momentum ϕ̇ of the field ϕ is proportional
to the field ϕ itself.

This statement survives even when the full non-linear equations are considered, but
in that case the radial momentum becomes an arbitrary functional of the dynam-
ical field, instead of just being proportional to it. As long as we are interested in
smooth solutions then, solving the equations of motion is equivalent to solving for
the momenta as functionals of the dynamical fields.

Inserting (2.145) into the equation of motion (2.142) we obtain a first order
equation for f(r̄). This reflects the fact that we have eliminated the function a+(p)
by restricting to non-singular solutions. The resulting equation reads

f ′ + f2 + df − e−2r̄ −m2 = 0. (2.146)

Changing variables to χ = e−r̄, y(χ) = exp
∫ χ

d logχ′ (d/2− f(− logχ′)), this equa-
tion becomes a standard Bessel equation, namely

χ2 d
2y

dχ2
+ χ

dy

dχ
− (χ2 + k2)y = 0, (2.147)

where k = ∆ − d/2 as above, and we have used m2 = ∆(∆ − d). Fixing the single
integration constant by requiring that the solution is not singular in the interior and
a sign ambiguity by imposing the asymptotic behavior f ∼ −(d−∆), we obtain the
unique solution

f(− logχ) = −d
2
− d logKk(χ)

d logχ

∼ −(d−∆) +
χ2

(2∆− d− 2)
− χ4

(2∆− d− 2)2(2∆− d− 4)
+ · · ·

+
(−1)k

22k−1Γ(k)2
χ2k logχ2 + a(k)χ2k + · · · (2.148)
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where a(k) is a constant whose explicit value we will not need.
Evaluating the action (2.127) on-shell, we get

Sreg =
1
2

∫

ro

ddx
√
γϕϕ̇, (2.149)

since only the boundary term from the integration by parts contributes. Here we
have introduced a radial cut-off ro to regulate the action. This can be evaluated di-
rectly by Fourier-transforming (2.145) using the above solution for f . The resulting
regulated action is

Sreg = 1
2

∫
ro
ddx

√
γϕ

(
−(d−∆) + −¤γ

(2∆−d−2) −
(−¤γ)2

(2∆−d−2)2(2∆−d−4) + · · ·

+ (−1)k

22k−1Γ(k)2
(−¤γ)k log(−¤γ) + a(k)(−¤γ)k + · · ·

)
ϕ, (2.150)

where the dots stand for terms that do not survive as the regulator is removed.
Since the volume element contains a factor of edro and the scalar field behaves as
ϕ ∼ e−(d−∆)ro asymptotically, this regulated action contains a number of boundary
covariant local power-law singular terms which can therefore be removed by local
boundary covariant counterterms. The fact that the divergences are organized in
boundary covariant terms is very important here. It guarantees that the regular-
ization and renormalization scheme preserves the Ward identities of the boundary
field theory. We will return to this point below. However, the action contains a
logarithmic term as well, which can be written as

(−¤γ)k log(−¤γ) = (−¤γ)k log(e−2ro µ̄2) + (−¤γ)k log(−¤/µ̄2), (2.151)

where ¤ = δij∂i∂j and we have introduced a scale µ̄ on dimensional grounds. The
first of these two terms gives a local logarithmically divergent term, while the second
is a non-local but non-divergent term. The logarithmic divergent term can again be
removed by a local boundary counterterm. This counterterm however breaks partly
covariance on the regulating surface since it depends on the cut-off explicitly and not
merely through the cut-off dependence of covariant quantities, such as the induced
metric γij and the field ϕ, on the regulating surface. We will see below that this
will lead to a violation of the Ward identity associated with scale invariance of the
boundary field theory, which is known as the conformal anomaly. Finally, the term
proportional to the constant a(k) in the action is covariant, local and finite and so
we have the freedom to remove it or not by adding the corresponding finite local
boundary counterterm. This freedom is precisely the scheme dependence we met in
the CFT calculation above.

The renormalized action now is defined as

Sren ≡ lim
ro→∞

(Sreg + Sct) , (2.152)
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where the counterterm action is defined as the negative of the divergent local part
of the regulated action. In this case then, ignoring the scheme dependent contact
terms, we have

Sren =
(−1)k

22kΓ(k)2

∫
ddxϕ(0)(−¤)k log(−¤/µ̄2)ϕ(0), (2.153)

which leads, via the AdS/CFT prescription (2.132) to the two-point function

〈O∆(p)O∆(−p)〉ren =
(−1)k+1

22k−1Γ(k)2
p2k log(p2/µ̄2), (2.154)

which is exactly of the form (2.140) as calculated from the CFT. Comparing the
coefficients, we determine

c(g,∆) =
2kΓ(d/2 + k)
πd/2Γ(k)

, (2.155)

which is precisely the correct coefficient consistent with the Ward identities [24].
We have now seen concretely how the identification (2.132) can be understood

in a precise sense and how it can be employed in order to compute renormalized
CFT correlation functions from supergravity. However, we discovered that such cor-
relation functions will generically depend explicitly on some energy scale µ. For
example, in the case we considered above

µ
∂

∂µ
〈O∆(x)O∆(y)〉ren =

1
22k−2Γ(k)2

¤kδ(d)(x− y). (2.156)

As we will now discuss, this violation of scale invariance in the correlation functions
leads to a non-vanishing trace for the stress tensor of the boundary field theory.

WARD IDENTITIES AND THE CONFORMAL ANOMALY

In a general Lagrangian field theory, symmetries of the classical action11 lead via
Noether’s theorem to conserved currents. For example, Poincaré invariance of the
classical action implies that the stress-energy tensor, Tij , is conserved, i.e.

∂iTij = 0. (2.157)

Similarly, global internal symmetries lead to conserved currents J i,

∂iJ
i = 0. (2.158)

At the quantum level these currents become quantum operators and their classical
conservation laws imply relations among certain correlation functions that involve

11Here, of course, we refer to the classical action of the Lagrangian field theory, not to be confused with
the supergravity action.
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these currents. These identities relating various correlation functions as a result of
the classical Noether theorem are known as Ward identities.

It is often the case, however, that some of the classical symmetries are broken at
the quantum level. This happens because in a quantum field theory various quan-
tities contain ultraviolet divergences which must be regulated and renormalized to
yield a well-defined quantity. However, there may not exist a regulator that pre-
serves all of the classical symmetries of the theory, which leads to the breaking of
some symmetries at the quantum level. We have already seen this effect in the CFT
two-point function calculation above. There, the two-point function of certain com-
posite operators was singular at short distances and required renormalization. This
in turn introduced a scale µ in the renormalized correlation function. Thus even
though the two-point function is scale invariant at long distances, short distance
effects break this scale invariance. This breaking of the classical symmetries at the
quantum level leads to the so-called quantum anomalies in the Ward identities.

An elegant way to write down the Ward identities of a quantum field theory is
in terms of the generating functional of correlation functions of certain operators.
For concreteness, we will consider the generating functional for correlators of the
stress tensor, Tij , a symmetry current, J i, and a scalar composite operator O. The
generating functional then takes the form

Z[g(0), A(0), ϕ(0)] =
∫

[dφA] exp
{
− SCFT[φA; g(0), A(0)] (2.159)

−
∫
ddx

√
g(0)

(
A(0)iJ

i(φA) + ϕ(0)O(φA)
)}

,

where φA represents collectively all fundamental fields of the theory, the background
metric g(0)ij serves as a source for the stress-energy tensor, the background gauge
field A(0)i is the source for the current J i and ϕ(0) is a source for the scalar oper-
ator O. Connected correlation functions can now be computed by differentiating
W [g(0), A(0), ϕ(0)] ≡ logZ[g(0), A(0), ϕ(0)] successively with respect to the sources
and then setting A(0)i and ϕ(0) to zero and g(0)ij to the flat metric δij . The same in-
formation is contained in the one-point functions in the presence of sources, namely

〈Tij(x)〉s = − 2√
g(0)

δW

δgij(0)(x)
,

〈J i(x)〉s = − 1√
g(0)

δW

δA(0)i(x)
,

〈O(x)〉s = − 1√
g(0)

δW

δϕ(0)(x)
, (2.160)

where the subscript s in the correlation functions indicates that the sources are non-
zero. Correlation functions are then computed by further differentiating with respect
to the sources and setting the sources to zero.
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In general, however, such correlation functions will contain ultraviolet diver-
gences. To obtain well-defined correlation functions then, we need to renormalize
the generating functional W [g(0), A(0), ϕ(0)]. We have already seen how this can be
done in the context of the AdS/CFT correspondence in a simple example and we will
consider the general case in the next chapter. So we will take here W [g(0), A(0), ϕ(0)]
to be the renormalized generating functional of connected correlation functions.

The Ward identities can be compactly expressed in terms of the one-point func-
tions in the presence of sources. Let us first consider U(1) gauge transformations
which, when the sources are set to their flat values, correspond to the global in-
ternal symmetry transformation generated by the current J i. Under such a gauge
transformation the sources transform as

δg(0)ij = 0, δA(0)i = Diα(x), δϕ(0) = 0. (2.161)

Invariance under this gauge transformation means that

δg(0)W + δA(0)W + δϕ(0)W = 0, (2.162)

which, using the one-point functions (2.160), leads to the Ward identity

Di〈J i(x)〉s = 0. (2.163)

Next we consider diffeomorphisms under which the sources transform as

δγij(0) = −(Diξj +Djξi), δA(0)i = A(0)jDiξ
j + ξjDjA(0)i, δϕ(0) = ξjDjϕ(0).

(2.164)
Invariance under diffeomorphisms (which becomes Poincaré invariance in flat space)
then implies the Ward identity

Di〈Tij(x)〉s − 〈J i(x)〉sF (0)ij + 〈O(x)〉sDjϕ(0)(x) = 0, (2.165)

where F (0)ij = ∂iA(0)j −∂jA(0)i is the field strength of the gauge field A(0)i and we
have used the one-point functions (2.160) as well as the Ward identity (2.163).

Finally, let us consider Weyl transformations under which the sources transform
as [25]

δg(0)ij = 2δσ(x)g(0)ij , δA(0)i = 0, δϕ(0) = −(d−∆)δσ(x)ϕ(0). (2.166)

However, the generating functional of renormalized correlation functions will not
be in general invariant under such a Weyl transformation. Indeed, we have seen
this already in the quantization of the superstring. The variation of the generating
functional with respect to Weyl transformations defines the conformal anomaly

δσW ≡ A =
∫
ddx

√
g(0)δσ(x)A, (2.167)
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where the anomaly density, A is a local function of the sources. Using the above
transformation of the sources, this then leads to the trace Ward identity

〈T ii (x)〉s = −(d−∆)ϕ(0)〈O(x)〉s +A. (2.168)

In fact, the renormalized generating functional is not invariant even under con-
stant Weyl rescalings, since the renormalization procedure introduces an explicit
scale dependence. The fact that the theory is conformal, however, means that we
can still write down an equation that must be satisfied by constant Weyl rescalings
[26, 22], namely

µ
∂

∂µ
W =

∫
ddx

(
2g(0)ij

δ

δg(0)ij
+ (∆− d)ϕ(0)

δ

δϕ(0)

)
W, (2.169)

where the energy scale logµ = σ, corresponds to a constant Weyl factor σ. This
is precisely the Callan-Symanzik equation for the generating functional of renor-
malized connected correlation functions of the conformal field theory. In a non-
conformal renormalizable field theory, this equation would involve additional terms
proportional to the beta functions of the various couplings in the theory, as well as
terms proportional to the anomalous dimensions of the operators. In a conformal
field theory, the beta functions vanish, while the BPS property of the operators we
are considering means that their anomalous dimensions vanish too.

From the definition (2.167) of the conformal anomaly we also find

µ
∂

∂µ
W =

∫
ddx

√
g(0)A. (2.170)

This relation allows us to evaluate the conformal anomaly, once we know the scale
dependence of the renormalized correlation functions. To see this, recall that the
generating functional can be written in terms of all correlation functions as

W =
∞∑
n=1

(−1)n

n!

∑

{I1,...In}

n∏
m=1

(∫
ddxm

√
g(0)jIm(xm)

)
〈OI1(x1) · · · OIn(xn)〉,

(2.171)
where Im runs over all operators in the theory, in this case Tij , J i and O, and jIm

denotes the corresponding sources. Note that at each level n, one should sum over
all possible n-tuples of operator insertions. Combining these two identities then we
arrive at

∫
ddx

√
g(0)A = (2.172)

∞∑
n=1

(−1)n

n!

∑

{I1,...In}

n∏
m=1

(∫
ddxm

√
g(0)jIm(xm)

)
µ
∂

∂µ
〈OI1(x1) · · · OIn(xn)〉.
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As an example, consider the scalar operator O∆ in a flat background metric and
gauge field, which we considered earlier. Inserting (2.156) into this identity, we
obtain

A =
1

22k−2Γ(k)2
ϕ(0)¤kϕ(0) +O(ϕ3

(0)). (2.173)

If a non-trivial background metric g(0)ij is turned on, this result generalizes to

A =
1

22k−2Γ(k)2
ϕ(0)Pkϕ(0) +O(ϕ3

(0)) +

(
aE +

∑
α

cαWα

)
+DiJ i, (2.174)

where Pk is a covariant differential operator that reduces to ¤k for a flat metric and
transforms covariantly under Weyl transforms g(0) → e2σg(0)

Pk → e−(d/2+k)σPke
(d/2−k)σ. (2.175)

For instance, for k = 1,

P1 = ¤g(0) −
d− 2

4(d− 1)
R[g(0)], (2.176)

which is known as the conformal Laplacian. The two terms inside the parenthesis
in (2.174) are purely gravitational and are present only when d is even. E is the
Euler density, Wα is a basis of Weyl invariants of dimension d and a and cα are
numerical constants that depend on the field content of the theory. For instance, in
d = 4 there is one Weyl invariant (the square of the Weyl tensor), in d = 6 there are
three such tensors, etc. The last term in (2.174) is scheme dependent, i.e. it can be
modified by local finite counterterm terms in the action. The structure of (2.174)
is dictated by the fact that the integrated conformal anomaly is itself conformally
invariant [27, 28], which follows from the Wess-Zumino type consistency condition

(δσ1δσ2 − δσ2δσ1)W = 0. (2.177)

In the next chapter we explain how, in the context of the AdS/CFT duality, all
this information about a quantum field theory is encoded in classical supergravity
and we develop a systematic approach for extracting this information.

2.A APPENDIX

2.A.1 D = 2 N = 1 SUPERSPACE

SUPER-EUCLIDEAN ALGEBRA

The isometry group of two-dimensional Euclidean space R2 is the Euclidean
group E2 ≈ SO(2) n R2, which is the semidirect product of rotations and trans-
lations in the plane. It is generated by the two momenta P1, P2, and the angular
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momentum J ≡M21, which satisfy the algebra

[Pi, Pj ] = 0, [J, P1] = −iP2, [J, P2] = iP1. (2.178)

We want to describe the N = 1 superalgebra which has this algebra as a bosonic
subalgebra. To this end, recall that so(2) has two one-dimensional irreducible Weyl
spinor representations, D and D̄. The Dirac spinor representation DD = D ⊕ D̄ is
then two-dimensional and can be built as usual from a representation of the Clifford
algebra

{Γi,Γj} = 2δij . (2.179)

A representation of this algebra is provided by the Pauli σ-matrices

Γi = σi, i = 1, 2, (2.180)

where

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
. (2.181)

The generator of SO(2) in the Dirac spinor representation can now be written as
usual as

Σij = − i
4
[Γi,Γj ] =

1
2
εijσ

3, (2.182)

or
J ≡ Σ21 = −1

2
σ3, (2.183)

where εij is the totally antisymmetric symbol and

σ3 =
(

1 0
0 −1

)
, (2.184)

is the third Pauli matrix. We now introduce a two-component fermionic generator
Qα transforming under the Dirac representation of SO(2), namely

[J,Qα] = JβαQβ . (2.185)

Writing

Qα =
(
Q−
Q+

)
, (2.186)

and
P1 = P+ + P−, P2 = i(P+ − P−), (2.187)

we then have
[J, P±] = ±P±, [J,Q±] = ±1

2
Q±. (2.188)

56



CHAPTER 2 - SUPERSTRING THEORY & THE ADS/CFT CORRESPONDENCE

The graded Jacobi identity, or equivalently the Clebsch-Gordan decomposition of the
tensor product of the two Weyl spinor representations, determine

{Q±, Q±} = ∓2iP±, {Q±, Q∓} = 0, (2.189)

up to an overall normalization of the fermionic generators. These commutators/
anticommutators define the superalgebra s̃e2, the complexification of the super-
Euclidean algebra se2.

N = 1 SUPERSPACE REPRESENTATION

This algebra admits an elegant representation on the space of functions onN = 1
superspace, sC, which can be defined as the quotient

sC ≈ s̃E2/SO(2). (2.190)

This space can be parametrized by the usual complex coordinates, z and z̄, on C
together with two anticommuting coordinates θ, θ̄. By considering the left action of
s̃E2 on sC we find that the super-Euclidean group generators take the form

P+ = i∂z, P− = i∂z̄, J = z̄∂z̄ − z∂z +
1
2
θ̄∂θ̄ −

1
2
θ∂θ,

Q+ = i∂θ − iθ∂z, Q− = −i∂θ̄ − iθ̄∂z̄. (2.191)

By considering the right action of s̃E2 on sC we also find the covariant derivatives

∇+ = ∂z, ∇− = ∂z̄,

D+ = ∂θ + θ∂z, D− = −∂θ̄ + θ̄∂z̄, (2.192)

which satisfy
D2

+ = ∂z, D2
− = −∂z̄. (2.193)

SUPERCONFORMAL TRANSFORMATIONS

The superspace representation of the super-Euclidean algebra is particularly use-
ful because it allows us to define the notion of superconformal transformations as
super-analytic diffeomorphisms on sC in the same way that conformal transforma-
tions are defined as analytic diffeomorphisms on C. In particular, a diffeomorphism

z 7→ z′(z, z̄, θ, θ̄), θ 7→ θ′(z, z̄, θ, θ̄), (2.194)

is said to be a superconformal transformation if

D+ = (D+θ
′)D′+. (2.195)

57



2.A. APPENDIX

It follows that

z′ = f + θg
√
∂zf + g∂zg, θ′ = g + θ

√
∂zf + g∂zg, (2.196)

where f(z), g(z) are respectively commuting and anticommuting analytic functions.
We can now generalize the notion of conformal tensors to superconformal ten-

sors. Under a conformal transformation, a conformal tensor φ(z, z̄) of weight (h, h̄)
transforms as

φ′(z′, z̄′) = (∂zz′)−h(∂z̄ z̄′)−h̄φ(z, z̄). (2.197)

It is natural then to define a superconformal tensor φ(z, z̄, θ, θ̄) of weight (h, h̄) by
the transformation rule

φ′(z′, z̄′, θ′, θ̄′) = (D+θ
′)−2h(D−θ̄′)−2h̄φ(z, z̄, θ, θ̄) (2.198)

under superconformal transformations.

2.A.2 SUPERCONFORMAL ALGEBRA IN FOUR DIMENSIONS

The conformal group of Rp,q, p+ q = d > 2, is defined as the group of diffeomor-
phisms δxµ = ξµ that leave the flat metric η = diag (− . . .−︸ ︷︷ ︸

p

,+ . . .+︸ ︷︷ ︸
q

) invariant up to

a local factor, namely

∂µξν + ∂νξµ =
2
d
ηµν∂ρξ

ρ. (2.199)

The solutions to these equations are the conformal transformations:

Infinitesimal Finite
δxµ = aµ, xµ 7→ xµ + aµ, translations
δxµ = ωµνx

ν , ωµν = −ωνµ, xµ 7→ Λµνxν , Λµν ∈ SO(p, q) rotations
δxµ = λxµ, xµ 7→ λxµ, dilatations
δxµ = −bµx2 + 2xµb · x, xµ 7→ xµ−bµx2

1−2b·x+b2x2 , special conformal

On the space of functions on Rp,q the generators of these transformations admit
respectively the representation

Pµ = i∂µ, Lµν = −i(xµ∂ν − xν∂µ), D = ixµ∂µ, Kµ = −i(x2∂µ − 2xµx · ∂).
(2.200)

One can now deduce the conformal algebra

[Lµν , Lρσ] = −i(ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ),

[Lµν , Pρ] = −i(ηνρPµ − ηµρPν),

[Lµν ,Kρ] = −i(ηνρKµ − ηµρKν),

[D,Pµ] = −iPµ,
[D,Kµ] = iKµ,

[Pµ,Kν ] = 2i(Lµν + ηµνD), (2.201)
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with all other commutators vanishing. Regrouping the generators into an antisym-
metric tensor Jab, a, b = −1, 0, 1, . . . , d, µ = 0, . . . , d− 1, as

Jµν = Lµν , J−1µ =
1
2
(Pµ −Kµ), Jdµ =

1
2
(Pµ +Kµ), J−1d = D,

(2.202)
this algebra becomes

[Jab, Jcd] = −i(ηbcJad + ηadJbc − ηacJbd − ηbdJac), (2.203)

where η−1µ = η−1,d = ηdµ = 0 and ηdd = −η−1,−1 = 1. The conformal algebra of
Rp,q is therefore identified as the Lie algebra so(p+ 1, q + 1).

We can now extend this algebra by introducing fermionic generators transform-
ing under the Dirac spinor representation of so(p, q).12 To construct this supercon-
formal algebra we start by embedding the spinor representation of so(p, q) into the
spinor representation of so(p+1, q+1). Given a representation of the Clifford algebra

{γµ, γν} = 2ηµν , (2.204)

we construct a representation of the Clifford algebra

{Γa,Γb} = 2ηab, (2.205)

by defining

Γµ =
(
γµ 0
0 −γµ

)
, Γ−1 = −Γ−1 =

(
0 −1
1 0

)
, Γd = Γd =

(
0 1
1 0

)
.

(2.206)

For even d there is also a chirality matrix γ which leads to the chirality matrix

Γ =
(
γ 0
0 −γ

)
. (2.207)

The Lorentz generators in the spinor representation of so(p + 1, q + 1) take the
form

Σab = − i
4
[Γa,Γb]. (2.208)

Using the relation (2.202) of the generators of the conformal algebra to the so(p +
1, q+ 1) generators, we obtain the following matrix representation of the conformal
algebra:

Σµν =
( − i

4 [γµ, γν ] 0
0 − i

4 [γµ, γν ]

)
, D = − i

2

(
1 0
0 −1

)
,

Pµ = i

(
0 γµ
0 0

)
, Kµ = −i

(
0 0
γµ 0

)
. (2.209)

12Since the properties of the spinor representation depend crucially on the signature of the metric, our
results here strictly apply only to the physically relevant case p = 1.

59



2.A. APPENDIX

A Dirac spinor of so(p+ 1, q + 1) then takes the form

Vᾱ =
(

Qα
(C−1S̄T )α̃

)
≡

(
Qα
S̄α̃

)
, (2.210)

where Q and S are Dirac spinors of so(p, q) and C is the charge conjugation matrix.
It follows that C−1S̄T also transforms as a Dirac spinor under so(p, q). The N -
extended superconformal algebra is now obtained by introducing N such so(p +
1, q + 1) spinor generators, which must transform under the superconformal group
as

[Jab, V Iᾱ ] = (Σab)β̄ ᾱV Iβ̄ , I = 1, . . . ,N . (2.211)

Using the above form of the superconformal generators these commutation relations
translate to

[Jµν , QIα] = − i
4 [γµ, γν ]βαQIβ , [Jµν , S̄Iα̃] = − i

4 [γµ, γν ]β̃ α̃S̄Iβ̃ ,
[Pµ, QIα] = 0, [Pµ, S̄Iα̃] = i(γµ)βα̃QIβ ,
[Kµ, Q

I
α] = −i(γ)β̃αS̄Iβ̃ , [Kµ, S̄

I
α̃] = 0,

[D,QIα] = − i
2Q

I
α, [D, S̄Iα̃] = i

2 S̄
I
α̃.

(2.212)

It remains to determine the anticommutators of the fermionic generators. Since
this depends on the spacetime dimension d, we focus on d = 4 below. The Dirac
spinor of so(1, 3) is the direct sum of two complex conjugate Weyl spinors. We can
then take as independent irreducible generators the spinors QI+α, Q̄I+α, S̄I+α̃ and
SI+α̃, where the + subscript indicates that they are the non-trivial eigenvectors of the
chirality projection operator P+ = (1 + γ)/2. The Clebsch-Gordan decomposition
of the product of two Weyl spinors, together with the super-Jacobi identity then
determine

{QI+α, Q̄J+β} = δIJPµ(CP+γ
µ)αβ , {SI+α̃, S̄J+β̃} = δIJKµ(CP+γ

µ)α̃β̃ ,

{QI+α, QJ+β} = {SI+α̃, SJ+β̃} = {QI+α, S̄J+β̃} = 0,

{QI+α, SJ+β̃} = (a1δ
IJD + a2T

IJ)(CP+)αβ̃ + a3δ
IJJµν(CP+γ

µν)αβ̃ , (2.213)

and the automorphism - or R-symmetry - group is U(N ). For the N = 4 extended
superalgebra then the automorphism group is U(4) but the superconformal group
involves only the SU(4) part. The constants a1, a2, a3 and the matrix T IJ can be
determined by further use of the Jacobi identity involving the generators of the
automorphism group.

2.A.3 ADS GEOMETRY

(d+ 1)-dimensional anti de Sitter space, AdSd+1, is the homogeneous space

AdSd+1
∼= SO(d, 2)/SO(d, 1), (2.214)
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and can be represented as the hyperboloid

−Y 2
−1 − Y 2

0 +
d∑

i=1

Y 2
i = −l2d+1, (2.215)

embedded in R2,d, where ld+1 is the AdSd+1 radius of curvature. The flat metric

ds̄2 = −dY 2
−1 − dY 2

0 +
d∑

i=1

dY 2
i . (2.216)

on R2,d induces a Lorentzian metric on the hyperboloid which solves Einstein’s equa-
tions in d+ 1 dimensions with a negative cosmological constant

Λd+1 = −d(d− 1)
2l2d+1

. (2.217)

This can be easily deduced from the fact that the flat metric (2.216) solves the
vacuum Einstein equations in d+ 2 dimensions.

The hyperboloid (2.215) can be parametrized in various ways. In Table 2.2 we
give the three parameterizations that will be most relevant for our discussion. The
Poincaré coordinates cover only half of the hyperboloid, while the global coordinates
cover the entire space. For the AdSd slicing parametrization this question depends
on the coordinates chosen for the slice. In global coordinates the AdSd+1 metric is
conformal to (half of) the Einstein static universe

ds̄2 = dθ2 − dt2 + sin2 θdΩ2
d−1. (2.218)

The boundary is located at θ = π/2 and has the topology S1×Sd−1, since 0 ≤ t ≤ 2π.
However, a compact time coordinate leads to closed time-like curves. To avoid these,
one considers instead the universal cover of AdSd+1 with −∞ ≤ t ≤ ∞, whose
boundary has the topology R1 × Sd−1.

For the greater part of this thesis, however, we work instead with the hyperbolic
space

Hd+1
∼= SO(d+ 1, 1)/SO(d+ 1), (2.219)

which is obtained from (2.215) by analytically continuing Y0 → iY0 and whose
boundary is topologically the sphere Sd. The analogue of the Poincaré parametriza-
tion of AdS leads to the upper half plane metric

ds2 =
l2d+1

z2
0

(dz2
0 + dz2

i ), i = 1, . . . , d. (2.220)

In this coordinate system the conformal boundary corresponds to the one-point com-
pactification of the hyperplane z0 = 0, Sd ∼= Rd ∪{∞}. Since this is the most conve-
nient coordinate system for the calculation of correlation functions of the boundary
CFT, it is appropriate to discuss the isometries and the geodesics of Hd+1 in this
parametrization.
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Poincaré patch

Y−1 + Yd = ld+1
z0

ds2 = l2d+1

z20
(dz2

0 − dt2 + dz2
i )

Y−1 − Yd = ld+1
z0

(z2
0 − t2 + ziz

i)
Y0 = ld+1

z0
t z0 ≥ 0, t, zi ∈ R

Yi = ld+1
z0
zi, i = 1, . . . , d− 1

Global coordinates

Y−1 = ld+1 sec θ cos t ds2 = l2d+1
cos2 θ

(
dθ2 − dt2 + sin2 θdΩ2

d−1

)

Y0 = ld+1 sec θ sin t
Yi = ld+1 tan θni,

∑d
i=1 n

ini = 1 0 ≤ θ ≤ π/2

AdSd slicing of AdSd+1

Yd = ld+1 tanµ ds2(AdSd+1) = l2d+1
cos2 µ

[
dµ2 + 1

l2d
ds2(AdSd)

]

−π/2 ≤ µ ≤ π/2

Table 2.2: AdS coordinate systems.
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ISOMETRIES

If we let zµ = (z0, zi), with i = 1, . . . , d, then the Killing vectors of the upper half
plane metric (2.220) take the form

(0, ai) translations
(0, ωijzj), ωij = −ωji rotations
(λz0, λzi) dilatations
(2~c · ~zz0, 2~c · ~zzi − ci~z2) special conformal

and hence the isometry group of hyperbolic space is identified with the conformal
group SO(1, d + 1) in one dimension less. However, there are also the following
conformal Killing vectors

(α, 0), (~γ · ~z,−γi), (ε(z2
0 − ~z2), 2εz0zi), (2.221)

which together with the above Killing vectors make up the conformal isometry group
SO(1, d+ 2).

The upper half plane metric has in addition an important discrete isometry,
namely the inversion

zµ 7−→ zµ/z2, (2.222)

where z2 = z2
o + ~z2. In fact, special conformal transformations can be written as a

translation preceded and followed by an inversion. This discrete isometry imposes
very strong constraints on the form of the boundary CFT correlation functions.

GEODESICS

The geodesics of the upper half plane metric are semicircles of radius R, centered
at a point ~c on the boundary z0 = 0:

z2
0 + (~z2 − ~c2)2 = R2. (2.223)

They can be parametrized as
{
z0(τ) = Rsechτ,
zi(τ) = Rni tanh τ + ci, ~n2 = 1.

(2.224)

The geodesic distance between two points z and w is

d(z, w) = log

(
1 +

√
1− ξ2

ξ

)
, (2.225)

where ξ is the SO(1, d+ 1)-invariant length

ξ =
2z0w0

z2
0 + w2

0 + (~z − ~w)2
. (2.226)
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Finally, the geodesic through two given points z and w has parameters

R =
√

1− ξ

ξ

z0w0

|~z − ~w| , ~n =
~z − ~w

|~z − ~w| ,

2~c =
(

1 +
z2
0 − w2

0

(~z − ~w)2

)
~z +

(
1 +

w2
0 − z2

0

(~z − ~w)2

)
~w. (2.227)
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We have seen that the AdS/CFT correspondence relates string theory on AdS5 ×
S5 with N = 4 SU(N) super Yang-Mills theory ‘residing’ on the boundary of AdS5.
In particular, the supergravity approximation of string theory corresponds to the
large N , large ’t Hooft coupling limit of the gauge theory. Although this is the most
studied and best understood example of an AdS/CFT-type duality, a plethora of other
examples exists where, generically, string theory (M-theory) on an asymptotically lo-
cally AdSd+1 space times a compact manifold X9−d (X10−d) is related to a quantum
field theory on the boundary of the asymptotically locally AdS space. However, not
always does a well-defined supergravity approximation exist.

Moreover, even in the context of the original correspondence between AdS5×S5

and N = 4 SU(N) super Yang-Mills, one can break the conformal invariance of
the boundary theory either by a deformation by a relevant operator or by giving
a vacuum expectation value (vev) to a scalar operator. In either case, the non-
conformal theory will be dual to string theory on an asymptotically locally AdS5

space and not exactly AdS5.
Finally, in order to calculate correlation functions of the boundary quantum field

theory via the AdS/CFT prescription, we are forced to consider solutions of the
supergravity equations with arbitrary Dirichlet boundary conditions, since these play
the role of sources for the dual gauge-invariant operators. In particular, one should
consider arbitrary boundary metrics g(0)ij .

If we want to have a general method for calculating correlation functions in the
context of a generalized AdS/CFT duality, all the aforementioned reasons lead us to
consider supergravity in asymptotically locally AdS space of arbitrary dimension. We
therefore start in this chapter, which is an expanded version of the paper [1], with
a precise definition of what we mean by an asymptotically locally AdS space. The
method of holographic renormalization [29, 30, 31, 32] (for a review see [33]; for
related work see [34, 35] – a more complete list of references can be found in the
review) for calculating renormalized correlation functions of the boundary quantum
field theory is then presented. This formalism automatically incorporates the ‘kine-
matic’ constraints, i.e. the Ward identities and their anomalies, and identifies the
part of the geometry where the ‘dynamical’ information, i.e. the correlation func-
tions, is encoded. A key ingredient of this method is the asymptotic expansion of
all bulk fields in the radial distance from the boundary of AdS [36] (for relevant
math reviews see [37, 38]). As we have seen, this radial distance corresponds to the
energy scale of the dual field theory and hence, from the point of view of the dual
field theory we expand around a UV fixed point of the boundary field theory. Corre-
lation functions are encoded in specific coefficients in the asymptotic expansion of
the bulk fields and Ward identities and anomalies originate in certain relations that
these coefficients satisfy.

Subsequently we explain why it is much more efficient to replace the asymptotic
expansions of the bulk fields with covariant expansions in the eigenvalue of the di-
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latation operator. This allows us to develop an elegant ‘Hamiltonian’ version of the
method of holographic renormalization, where the radial coordinate plays the role
of time. Our Hamiltonian method builds on earlier Hamiltonian approaches to the
holographic renormalization group using the Hamilton-Jacobi equation [39, 40, 41]
or the Gauss-Codazzi equations [35]. In the new method the focus is shifted from
the on-shell supergravity action to the canonical momenta of the bulk fields. The
latter are associated with the (regularized) one-point functions of gauge-invariant
operators in the presence of sources [39]. This leads to a faster algorithm for deter-
mining the covariant counterterms and the correlation functions. Moreover, since
the method involves covariant expansions in the dilatation weight, the Ward identi-
ties are manifest throughout the analysis.

We conclude this chapter with some applications. First, we consider pure AdS
gravity and we obtain universal recursion relations for the asymptotic solutions and
the counterterms that are valid in all dimensions. Special attention is paid to the
case of AdS3, where the radial equations can be solved exactly. We then further
demonstrate the method by considering gravity coupled to two active scalar fields
in five dimensions with an arbitrary potential.

Throughout this chapter we work with Euclidean signature, but we give the
Lorentzian version of some important formulas in Appendix 3.A.3 since they will
be relevant for the last chapter of this thesis.

3.1 ASYMPTOTICALLY LOCALLY ADS SPACETIMES

As we discuss in Appendix 2.A.3, AdSd+1 is the maximally symmetric solution of
Einstein’s equations with negative cosmological constant, Λ = −d(d− 1)/2l2, where
l is the radius of AdSd+1 (we set l = 1 in this chapter; one can easily reinstate this
factor in all equations by dimensional analysis). Being maximally symmetric, its
Riemann and Ricci curvature tensors are given respectively by

Rµνρσ = (gµσgνρ − gµρgνσ) , Rµν = −dgµν . (3.1)

AdSd+1 has a conformal boundary with topology R×Sd−1, where R corresponds to
the time direction. A precise definition of what one means by ‘conformal boundary’
will be given below.

We will define asymptotically locally AdS (AlAdS) spacetimes as solutions of Ein-
stein’s equations with a negative cosmological constant whose Riemann tensor ap-
proaches (3.1) asymptotically, in a sense that we will specify shortly. We warn the
reader, however, that there is no consensus in the literature as to what is meant
by ‘asymptotically locally AdS’ or ‘asymptotically AdS’ spacetimes. Various authors,
by ‘asymptotically AdS’, refer to spacetimes that asymptotically become exactly AdS
spacetime (e.g. [42, 43]). Moreover, many authors use the term ‘asymptotically
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locally AdS’ for spacetimes that are, or asymptotically become, exactly quotients
of AdS by a discrete subgroup of its isometry group. We emphasize that all these
spaces are special cases of our definition. To add to the confusion, what we call
here ‘asymptotically locally AdS’ spaces, were referred to as ‘asymptotically AdS’ in
[33]. Given the lack of a ubiquitous name in the physics terminology, we resort to
the mathematics literature and call the manifolds we are interested in conformally
compact Einstein manifolds [33].

Let us first define conformally compact manifolds following [44] (see also [37,
38]). Let M be the interior of a compact (d + 1)-dimensional manifold M with
boundary ∂M. A (pseudo)Riemannian metric g on M is conformally compact if
there is a defining function z on M, that is a smooth, non-negative function on M
with z(∂M) = 0 and dz(∂M) 6= 0, such that the conformally related metric

g̃ = z2g (3.2)

extends smoothly to a non-degenerate metric on M. The boundary metric g(0) =
g̃|∂M is uniquely specified by the conformal compactification g̃. However, there are
many defining functions and hence many conformal compactifications of the metric
g. This means that the pair (M, g) determines only the conformal class [g(0)] of the
boundary metric, which is known as the conformal infinity of (M, g). A particular
conformal compactification g̃ then determines a representative g(0) of the conformal
class [g(0)].

Given a conformal compactification g̃, one easily sees that the Riemann tensor of
the bulk metric g takes asymptotically the form

Rµνρσ = |dz|2g̃ (gµσgνρ − gµρgνσ) +O(z−3), (3.3)

where |dz|2g̃ = g̃µν∂µz∂νz and hence the first term isO(z−4) as z → 0. Requiring that
g satisfies Einstein’s equations with a negative cosmological constant Λ = −d(d −
1)/2 determines

|dz|2g̃ = 1. (3.4)

Therefore, the Riemann curvature tensor of a conformally compact manifold that is
also Einstein approaches asymptotically that of exact AdS space (3.1). This is why
we refer to such manifolds as ‘asymptotically locally AdS’ spacetimes.

The most general asymptotics of such spacetimes was determined in [45] for
pure gravity and their analysis extends straightforwardly to include matter with soft
enough behavior at infinity, see for instance [30, 46, 32, 1]. Near the boundary, one
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can always choose coordinates in which the metric takes the form,1

ds2 = gµνdx
µdxν =

dz2

z2
+

1
z2
gij(z, x)dxidxj ,

g(z, x) = g(0) + zg(1) · · ·+ zdg(d) + h(d)z
d log z2 + · · · (3.5)

In these coordinates the conformal boundary is located at z = 0 and g(0) is a repre-
sentative of the conformal structure. The asymptotic analysis reveals that all coef-
ficients shown above except the traceless and divergenceless part of g(d) are locally
determined in terms of the boundary data g(0). The logarithmic term appears only
in even (boundary) dimensions (for pure gravity; if matter fields are included, then
a logarithmic term can appear in odd dimensions as well [30]) and is proportional
[30] to the metric variation of the integrated holographic conformal anomaly [29].
Since (3.5) is a conformally compact Einstein metric, its Riemann tensor takes the
form (3.1) up to a correction of order z. This continues to be true in the presence of
matter if the cosmological constant remains asymptotically the dominant term in the
stress-energy tensor. This is true for matter that corresponds to marginal or relevant
operators of the dual theory in the AdS/CFT duality.

Exact AdSd+1 space is conformally flat and this implies [47] that g(0) is con-
formally flat as well. The asymptotic expansion (3.5) then terminates at order z4

with
g(2)ij = − 1

d− 2
(Rij − 1

2(d− 1)
Rg(0)ij), g(4) =

1
4
(g(2))2, (3.6)

where Rij is the Ricci tensor of g(0) (d = 2 is a special case, see [47] for the ex-
pression of g(2)) and g(0) may be chosen to be the standard metric on R × Sd−1.
As we mentioned earlier, many authors refer to ‘asymptotically AdS’ spacetimes as
spacetimes whose metric becomes asymptotically exactly that of AdS. In our lan-
guage this means that they take the conformal representative g(0) to be exactly that
of AdS. With an appropriate choice of a defining function then, an ‘asymptotically
AdS’ metric differs from the metric of exact AdSd+1 at most at order O(zd) since
all lower order coefficients in the expansion (3.5) depend locally on the boundary
metric g(0). In particular, as for exact AdS, the logarithmic term vanishes for such
spacetimes.

AlAdS spacetimes have an arbitrary conformal structure [g(0)] and a general g(d),
the logarithmic term is in general non-vanishing, and there is no a priori restriction
on the topology of the conformal boundary. The mathematical structure of these
spacetimes (or their Euclidean counterparts) is under current investigation in the
mathematics community, see [38] and references therein. For instance, it is has
not yet been established how many, if any, global solutions exist given a conformal

1In most examples in the literature the odd coefficients g(2k+1) vanish (except when 2k + 1 = d,
the boundary dimension). In such cases, it is more convenient [29] to use instead of z a new radial
coordinate ρ = z2.
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structure, although given (sufficiently regular) g(0) and g(d), a unique solution exists
in a thickening ∂M× [0, ε) of the boundary ∂M. On the other hand, interesting
examples of such spacetimes exist, see [38] for a collection of examples.

There is an important difference between even and odd dimensions. When the
spacetime is odd dimensional, there is a conformally invariant quantity A[g(0)] one
can construct using the boundary conformal structure [g(0)], namely the integral of
the holographic conformal anomaly [29] (called renormalized volume in the math
literature [37]).2 The holographic conformal anomaly was found in [29] by consid-
ering the response of the renormalized on-shell supergravity action to Weyl transfor-
mations. As we saw in the example in the previous chapter, in order to render finite
the on-shell gravitational action (which diverges due to the infinite volume of the
AlAdS spacetime) one is forced to add a certain number of boundary covariant coun-
terterms and the latter induce an anomalous Weyl transformation. It was shown in
[29] that this anomaly precisely matches the conformal anomaly in the boundary
field theory.

In the last chapter we will argue that the covariant counterterms are also a direct
consequence of the requirement that the variational problem for the supergravity
action with arbitrary Dirichlet boundary conditions in a general AlAdS spacetime is
well-posed. Hence the conformal anomaly is shown to be a genuine property of the
variational problem for AdS gravity.

3.2 HOLOGRAPHIC RENORMALIZATION

We devote this section to an exposition of the original method of holographic
renormalization [29, 30, 31, 32] (see [33] for a review). The new Hamiltonian
version of the method will be then presented in the next section.

To illustrate the method we consider a single massive scalar field coupled to
gravity. More fields can be easily included, but the analysis becomes considerably
more elaborate. The general form of the bulk action is then3

S =
∫
dd+1x

√
g

(
− 1

2κ2
R+

1
2
gµν∂µϕ∂νϕ+ V (ϕ) + · · ·

)
, (3.7)

where κ2 = 8πGd+1 is proportional to Newton’s constantGd+1, and the dots indicate
potential contributions from additional fields such as gauge fields, fermions, and
antisymmetric tensors. Restricting to the gravity-scalar sector means that we only

2When certain matter fields are present one has additional conformal invariants in all dimensions
which can contribute to the matter conformal anomalies [23]. We have already seen an example of such
an anomaly earlier when we discussed the scalar field in AdS space.

3One should include a Gibbons-Hawking boundary term [48] to ensure that the variational problem
leads to the equations of motion (3.9). We assume here that such a term has been included and we
postpone a more careful treatment until the next section.
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study correlation functions of the stress-energy tensor and a scalar operator. The
potential has the form,

V (ϕ) =
Λ
κ2

+
1
2
m2ϕ2 + bϕ3 + · · · , (3.8)

where Λ is the cosmological constant, b is a constant and the mass m2 of the scalar
field is related to the dimension ∆ of the dual operator by m2 = (∆−d)∆. The bulk
field equations are given by

Gµν = κ2T̃µν(ϕ), ¤gϕ = ∂V/∂ϕ, (3.9)

where Gµν = Rµν − gµνR/2 is the Einstein tensor, the covariant Laplacian is given
by ¤gϕ = 1√

g∂µ(
√
ggµν∂νϕ) and T̃µν(ϕ) is the stress-energy tensor associated with

the scalar field ϕ (see (3.20) below).
The method of holographic renormalization now consists in the following steps:

Asymptotic solutions

In the first step one works out the most general asymptotic solutions with given
Dirichlet data

ds2 =
dz2

z2
+

1
z2
gij(z, x)dxidxj ,

ϕ(z, x) = z(d−∆)φ(z, x), (3.10)

where4

gij(z, x) = g(0)ij + z2g(2)ij + · · ·+ zd(g(d)ij + log z2h(d)ij) + · · · ,

φ(z, x) = φ(0) + z2φ(2) + · · ·+ z2∆−d(φ(2∆−d) + log z2ψ(2∆−d)) + · · · . (3.11)

In this expansion, g(0)ij and φ(0) are identified with the QFT sources that couple to
the dual operators, as discussed in the previous chapter.

Inserting these expansions in the bulk field equations (3.9) one obtains a set of
algebraic equations for the coefficients g(n) and φ(n). These equations determine
recursively all coefficients, except for φ(2∆−d) and the traceless transverse part of
g(d)ij , as local functionals of the sources g(0)ij and φ(0) [36, 29, 30]. The precise
form of the coefficients depends on the spacetime dimension d and on the scaling

4As we will see explicitly in the examples considered at the end of this chapter, depending on the
dimension d and the scaling dimension ∆ of the scalar operator, these expansions may contain odd
powers of the radial coordinate z as well. This does not affect our qualitative discussion here. See
footnote 14.
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dimension ∆ of the scalar operator. For example, if the scalar field is turned-off, one
finds for d > 2 [30]

g(2)ij [g(0)] =
1

d− 2

(
Rij [g(0)]−

1
2(d− 1)

R[g(0)]g(0)ij

)
, (3.12)

but in general g(2) and all other coefficients will be functions of both sources g(0)ij
and φ(0). As we will see below, the undetermined coefficients g(d)ij and φ(2∆−d),
which we call the response functions, correspond to the one-point functions of the
dual operators in the presence of sources. The parts of g(d)ij that are determined,
that is Dig(d)ij and Tr g(d), encode respectively the Ward identities (2.165) and
(2.168). The logarithmic terms appear only in special cases: h(d) only in even dimen-
sions and ψ(2∆−d) only when ∆−d/2 is an integer. Both of them are directly related
to the conformal anomalies discussed at the end of the previous chapter. Namely,
h(d) is the metric variation of the gravitational part of the conformal anomaly and
ψ(2∆−d) is the variation with respect to φ(0) of the matter part of the conformal
anomaly [30].

Divergences of the on-shell action

Having obtained the asymptotic solutions, one introduces a radial cut-off z ≥ ε

with ε > 0, and evaluates the supergravity action (3.7) on the regulating surface
z = ε. The resulting regulated action contains generically a number of power law
divergent terms as well as a logarithmically divergent term. Its general form is then

Sreg[g(0), φ(0); ε] =
1

2κ2

∫
ddx

√
g(0)

(a(0)

εd
+
a(1)

εd−1
+ · · ·+ a(d) log ε2 +O(ε0)

)
.

(3.13)
It turns out all coefficients a(n) depend locally only on g(0) and φ(0) but not on the
undetermined coefficients g(d) and φ(2∆−d). The coefficient a(d) of the logarithmic
divergence is the conformal anomaly of the dual CFT [29]. For illustrative purposes,
let us give the values of the coefficients in (3.13) for pure gravity in d = 4 [30]:

a(0) = −6, a(2) = 0, a(4) =
1
2

[
Tr (g−1

(0)g(2))2 − (Tr (g−1
(0)g(2)))2

]
, (3.14)

where g(2) is given in terms of g(0) in (3.12) and all odd coefficients vanish.

Counterterms and renormalized action

To obtain a well-defined on-shell action we should subtract the infinities and
then remove the regulator. However this does not mean that one should simply
subtract the divergent terms shown in (3.13) since this would generically break dif-
feomorphism covariance on the regulating surface and, as a result, the correlation
functions calculated with such a renormalization scheme would violate the Ward
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identities. To ensure that the Ward identities are satisfied we must remove the di-
vergences of (3.13) by adding covariant counterterms. To do this we first express the
divergent terms in (3.13) in terms of induced fields at the hypersurface z = ε. This
entails inverting the asymptotic series (3.11) in order to express the sources g(0) and
φ(0) in terms of the induced metric γij(ε, x) = gij(ε, x)/ε2 and the scalar field ϕ(ε, x)
on the regulating surface. Inserting then these inverted series in the divergent terms
(3.13), one obtains the divergences of the regulated action in covariant form. For
pure gravity in d = 4 one finds

Sreg = − 3
κ2

∫

z=ε

d4x
√
γ

[
1 +

1
12
R[γ]− 1

48

(
R[γ]klR[γ]kl − 1

3
R[γ]2

)
log ε2 + · · ·

]
.

(3.15)
Inverting the asymptotic expansions in order to write the regulated action in this
covariant form is one of the most laborious steps of the procedure. As we show in the
next section, however, it is completely redundant. We will see that it is possible to
replace the asymptotic expansions with covariant expansions in terms of the induced
fields on the regulating surface, which will lead immediately to the covariant form
of the regulated action, bypassing (3.13) and the tedious inversion of the asymptotic
expansions.

Once we have the regulated action in covariant form, we can define the covariant
counterterm action, Sct, as the negative of the divergent part of the regulated action.
The renormalized action is then obtained by

Sren = lim
ε→0

Ssub, Ssub = Sreg + Sct. (3.16)

One-point functions in the presence of sources

We can now differentiate the renormalized action to obtain the 1-point functions
in the presence of sources [30],

〈Tij(x)〉s ≡ 2√
g(0)(x)

δSren

δgij(0)(x)
= lim

ε→0

(
1

εd−2

2√
γ(ε, x)

δSsub

δγij(ε, x)

)

=
d

2κ2
g(d)ij +Xij [g(0), φ(0)], (3.17)

〈O(x)〉s ≡ 1√
g(0)(x)

δSren

δφ(0)(x)
= lim

ε→0

(
1
ε∆

1√
γ(ε, x)

δSsub

δϕ(ε, x)

)

= (d− 2∆)φ(2∆−d) + Y [g(0), φ(0)],

where X[g(0), φ(0)] and Y [g(0), φ(0)] are certain computable local functionals of the
sources. Their form depends on the dimension and the field content, however. In
the next section, we derive a general expression for the one-point functions valid
in any dimension and for arbitrary field content. The first equality in the above
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expressions for the one-point functions is a definition. In the second equality we
expressed the renormalized one-point function as a limit of the regulated one-point
function. The regulated one-point function can be computed in all generality (in a
given dimension and field content) and the limit can be taken explicitly. This is a
straightforward but rather tedious computation. The result is the one shown above.

This computation shows that the renormalized one-point functions are related to
the coefficients that the asymptotic analysis left undetermined. As discussed above
however, the near boundary analysis does determine the divergence and trace of
g(d)ij , and hence the divergence and trace of 〈Tij(x)〉s can be determined. This
yields the Ward identities (2.165) and (2.168), including the conformal anomaly.
However, since one cannot write in this formalism an explicit expression for the
one-point functions which is valid in general, one has to show that the trace and
divergence of g(d)ij lead to the Ward identities for every case individually. In the
next section, however, we will derive the Ward identities in full generality using the
Hamiltonian version of holographic renormalization.

Correlation functions

To obtain higher-point functions one further differentiates (3.17) with respect to
the sources. The expressions X[g(0), φ(0)] and Y [g(0), φ(0)] lead to contact terms. The
(non-local) n-point function is thus encoded in the dependence of g(d) and φ(2∆−d)
on the sources. Hence,

The theory is solved if we determine the response functions in terms of the sources.

To obtain such a relation we need a regular exact, as opposed to merely asymptotic,
solution of the bulk equations with boundary conditions specified by the (arbitrary)
sources. Such a solution effectively requires solving a set of coupled first order func-
tional differential equations for the response functions as functionals of the sources,
a problem which is rarely amenable to present techniques. One then proceeds by
linearizing the bulk equations around a background solution [31, 32]. As we will see
in the next chapter, the background solution specifies the vacuum of the dual QFT
(see also section 6.1 of [33]). Higher-point functions can be computed by solving
the bulk equations perturbatively around the particular background. We will discuss
extensively the calculation of correlation functions in the next chapter.

3.3 HAMILTONIAN HOLOGRAPHIC RENORMALIZATION

Having summarized the main steps involved in the original method of holo-
graphic renormalization, we now develop a new Hamiltonian version of the method
which involves an elegant and more efficient algorithm. See [34, 35, 39, 40, 41] for
related work.
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Let M be a conformally compact, Riemannian (d+1)-manifold, M its interior
and ∂M its boundary. We will consider the following action for the Riemannian
metric gµν on M

Sgr[g] = − 1
2κ2

[∫

M
dd+1x

√
gR+

∫

∂M
ddx

√
γ2K

]
, (3.18)

where κ2 = 8πGd+1, γ is the induced metric on ∂M and K is the trace of the
extrinsic curvature of the boundary. This is the standard Einstein-Hilbert action with
the Gibbons-Hawking boundary term which ensures that the variational problem is
well-defined.5 The overall sign is chosen so that the action is positive definite when
evaluated on a classical solution in the vicinity of (Euclidean) AdS.

The supergravity action will also include a contribution from matter fields whose
action takes the form

Sm =
∫

M
dd+1x

√
gLm, (3.19)

where Lm is a generic matter field Lagrangian density. The variation of this action
with respect to the bulk metric defines the stress tensor

δgSm ≡ 1
2

∫

M
dd+1x

√
gT̃µνδg

µν . (3.20)

The Euler-Lagrange equations of the total action S = Sgr + Sm are Einstein’s equa-
tions

Gµν = κ2T̃µν , (3.21)

together with the matter field equations, whose explicit form depends of course on
the field content.

3.3.1 ADM FORMALISM AND THE GAUSS-CODAZZI EQUATIONS

In order to formulate a Hamiltonian version of holographic renormalization we
will need the so-called ADM formalism (after R. Arnowitt, S. Deser and C.W. Misner)
for gravity as well as the Gauss-Codazzi equations. We will now briefly review these
standard results so that we can concentrate on the new method in the next subsec-
tion. The ADM formalism (see, for instance, [49] for a more extensive discussion) is
a Hamiltonian formulation of Einstein gravity in a pseudo-Riemannian manifold. It
relies on the existence of a global time function t which is used to foliate spacetime
into diffeomorphic hypersurfaces of constant t (Cauchy surfaces). The existence
of such a function requires the manifold to be ‘globally hyperbolic’ (see [49] for a
definition of global hyperbolicity), which is a condition on the global structure of
spacetime.

5We will show in the last chapter, however, that the variational problem is not completely well-defined
unless all covariant counterterms are included too.
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We will be interested, however, in the foliation of an AlAdS manifold in slices of
constant ‘radial distance from the boundary’. Close to the boundary, it is always pos-
sible to define a radial coordinate r that is ‘normal’ to a small patch of the boundary
and we can take constant values of this radial distance to define locally our hyper-
surface. For AlAdS manifolds there always exists a radial function normal to the
boundary which can be used to foliate the space in radial slices diffeomorphic to the
boundary, at least in a neighborhood of the boundary6 [36] (see also the review [38]
and references therein). The question of if and where this radial coordinate emanat-
ing from the boundary ceases to be well-defined depends on the global properties
of the manifold and does not affect the asymptotic analysis, which only requires the
radial foliation of the manifold in a thickening of the boundary. It is vital, however,
for the correct evaluation of correlation functions, which will be addressed in the
next chapter.

Let r be the radial coordinate emanating from the boundary of the Riemannian
manifold (M, g) in the way described above and consider the hypersurfaces Σr de-
fined by r(x) = constant. The unit normal to Σr, pointing in the direction of increas-
ing r, is given by nµ = 1

|dr|g g
µν ∂r

∂xν |Σ. The induced metric on the hypersurfaces can
now be expressed in a coordinate independent fashion as7 γ̂µν = gµν − nµnν . The
tensor γ̂µν ≡ gµργ̂ρν acts as a projection operator onto the tangent space TΣr of the
hypersurface Σr. Let us now define the radial flow vector field rµ(x) by the relation
rµ∂µr = 1. The components of rµ tangent and normal to Σr define respectively the
shift and and lapse functions

rµ‖ = γ̂µν r
ν ≡ Nµ, rµ⊥ = (r, n)gnµ ≡ Nnµ, (3.22)

where (·, ·)g denotes the inner product with respect to the metric gµν . We will
see later that these correspond to non-dynamical degrees of freedom which will
be ‘gauge-fixed’. Geometrically they measure how ‘normal’ the coordinate r is to the
hypersurfaces: the choice N = 1, Nµ = 0 makes r a Gaussian normal coordinate, in
which case nµ becomes tangent to geodesics normal to the hypersurfaces Σr. We can
now construct a basis of one-forms on Σr without having to introduce a particular
coordinate system on the hypersurfaces. Indeed, it can be easily checked that

dx̂µ ≡ dxµ − rµdr = dxµ − (Nµ +Nnµ)dr, (3.23)

is a basis for the cotangent space T ∗Σr. The metric on M is then decomposed as

ds2 = gµνdx
µdxν = (N2 +NµN

µ)dr2 + 2Nµdx̂µdr + γ̂µνdx̂
µdx̂ν . (3.24)

6If the boundary consists of multiple disconnected components, then a radial function exists in the
vicinity of each boundary. We assume, however, that the boundary is connected here.

7We use a hat to denote tensors that are purely transverse to the unit normal, i.e. quantities which
vanish when contracted with nµ.
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A quantity that will be of central importance in our analysis is the extrinsic cur-
vature of the hypersurfaces

K̂µν = γ̂ρµ∇ρnν =
1
2
£nγ̂µν , (3.25)

where £n denotes the Lie derivative with respect to the unit normal nµ. Thus, the
extrinsic curvature measures the radial evolution of the induced metric and hence
encapsulates all dynamical information of the geometry of the hypersurfaces. In
fact, the Riemann tensor of the (d+1)-dimensional manifold M can be expressed
entirely in terms of the intrinsic (i.e. Riemannian) and extrinsic curvatures of the
hypersurfaces Σr via the so-called Gauss-Codazzi equations

γ̂αµ γ̂
β
ν γ̂

γ
ρ γ̂

δ
σRαβγδ = R̂µνρσ + K̂µσK̂νρ − K̂µρK̂νσ,

γ̂ρνn
σRρσ = D̂µK̂

µ
ν − D̂νK̂

µ
µ ,

nρnσRµρνσ = −nρ∇ρK̂µν − K̂µρK̂
ρ
ν . (3.26)

Here D̂µ is the covariant derivative with respect to the induced metric γ̂µν on Σr
and is defined by [49]

D̂µT
ρ1...ρk

σ1...σl
≡ γ̂ρ1ν1 . . . γ̂

ρk
νk
γ̂τ1σ1

. . . γ̂τl
σl
γ̂λµ∇λT ν1...νk

τ1...τl
, (3.27)

for any tensor T ρ1...ρk
σ1...σl

. In particular D̂µγ̂ρσ = 0.
A little manipulation of the Gauss-Codazzi equations brings them in the following

form, which will be particularly useful for our purposes:

K̂2 − K̂µνK̂
µν = R̂+ 2Gµνnµnν ,

D̂µK̂
µ
ν − D̂νK̂

µ
µ = Gρσγ̂

ρ
νn

σ,

£nK̂µν + K̂K̂µν − 2K̂µ
ρK̂ρν = R̂µν − γ̂ρµγ̂

σ
νRρσ, (3.28)

where Gµν is the Einstein tensor of the bulk metric gµν . We emphasize that these
equations are purely geometrical. They simply relate the geometry of the manifold
M to the geometry of the hypersurfaces Σr. If one inserts Einstein’s equations (3.21)
in these equations however, they become, after gauge-fixing the shift and lapse func-
tions, completely equivalent to Einstein’s equations. The difference of course is that
they are dynamical equations for the induced metric γ̂µν on Σr instead of the metric
gµν , which is an advantage for the asymptotic analysis of AlAdS manifolds.

In order to provide a Hamiltonian description of the dynamics, we use the first
equation in (3.28) in order to express the supergravity action purely in terms of
quantities on Σr8

S = − 1
2κ2

∫

M
dd+1x

√
γ̂N(R̂+ K̂2 − K̂µνK̂

µν − 2κ2Lm). (3.29)

8Inserting the first equation in (3.28) in the Einstein-Hilbert action (3.18) one gets a boundary term
which cancels the Gibbons-Hawking term.
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Moreover, a small calculation shows that the extrinsic curvature (3.25) can be ex-
pressed as

K̂µν =
1

2N

(
˙̂γµν − D̂µNν − D̂νNµ

)
, (3.30)

and hence, the action is expressed in terms of the fields γ̂µν , Nµ and N , as well
as the matter fields collectively denoted by f , and their derivatives. The canonical
momenta conjugate to these fields are then given by

πµν ≡ δL

δ ˙̂γµν
= − 1

2κ2

√
γ̂

(
K̂γ̂µν − K̂µν

)
, πf ≡ δL

δḟ
, (3.31)

where the Lagrangian L is defined as usual by S =
∫
drL and the momenta conju-

gate to the lapse and shift functions vanish identically. This means that the corre-
sponding equations of motion in the canonical formalism become constraints. These
constraints are precisely the equations obtained by inserting Einstein’s equations
(3.21) in the first two equations in (3.28) and are known respectively as the Hamil-
ton and momentum constraints. The Hamilton equations for the induced metric γ̂µν
are (3.30) and the equation obtained by varying (3.29) with respect to the induced
metric. We will not need this last equation, since it is equivalent to the third equation
in (3.28) after inserting Einstein’s equations.

Consider now the regulated manifold Mro defined as the submanifold of M
bounded by the hypersurface Σro . The values of the induced fields γ̂µν and f on Σro

then become boundary conditions for the action (3.29). As is well-known from the
Hamilton-Jacobi formalism of classical mechanics, this means that the momenta on
the regulating surface can be obtained as the variations of the on-shell action with
respect to the boundary values of the induced fields, namely

πµν(ro, x) =
δSon−shell

δγ̂µν(ro, x)
, πf (ro, x) =

δSon−shell

δf(ro, x)
. (3.32)

It is not difficult to check by direct calculation that these identities hold (see (5.25)).
In fact, since ro is arbitrary, the same relations hold for any r, as long as this coordi-
nate is well-defined.

Finally, the regulated on-shell action can be evaluated by inserting Einstein’s
equations (3.21) in the first of the Gauss-Codazzi equations in (3.28). One finds

Son−shell = − 1
κ2

∫

Mro

dd+1x
√
γ̂N

[
R̂+ κ2

(
nµnν T̃µν − Lm

)]
. (3.33)

The derivative of the on-shell action with respect to ro, namely

Ṡon−shell = − 1
κ2

∫

Σro

ddx
√
γ̂N

[
R̂+ κ2

(
nµnν T̃µν − Lm

)]
, (3.34)

will play an important role in the formulation of the new Hamiltonian method.
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GAUGE-FIXING

Before we turn to the exposition of the method, let us fix the gauge freedom
associated with the shift and lapse functions by setting Nµ = 0 and N = 1. In this
gauge the bulk metric (3.24) takes the form9

ds2 = dr2 + γij(r, x)dxidxj , (3.35)

where i, j = 1, . . . , d are indices along the hypersurface Σr and we take xd+1 = r.
The extrinsic curvature (3.30) now becomes

Kij =
1
2
γ̇ij , (3.36)

where the dot denotes differentiation with respect to r. The non-vanishing compo-
nents of the Christoffel symbol of the metric gµν are

Γd+1
ij = −Kij , Γid+1j = Ki

j , Γijk[g] = Γijk[γ]. (3.37)

As we discussed above, the dynamical equations for the induced metric are ob-
tained by inserting Einstein’s equations (3.21) into the Gauss-Codazzi identities
(3.28). The resulting equations in this gauge take the form





K2 −KijK
ij = R+ 2κ2T̃d+1d+1,

DiK
i
j −DjK = κ2T̃jd+1,

K̇i
j +KKi

j = Rij − κ2
(
T̃ ij − 1

d−1 T̃
σ
σ δ

i
j

)
,

(3.38)

where K̇i
j stands for ∂r(γikKkj).

The radial derivative of the on-shell action (3.34) now becomes

Ṡon−shell = − 1
κ2

∫

Σr

ddx
√
γ

[
R+ κ2(T̃d+1d+1 − Lm)

]
. (3.39)

This allows us to write the regulated on-shell action, which will be denoted by Iro

from now on, in a very useful form. Namely, we can introduce a covariant variable
λ and write the action as10

Ir = − 1
κ2

∫
Σr
ddx

√
γ(K − λ), (3.40)

9All tensors are transverse and so we drop the hats form now on.
10We have explicitly included the Gibbons-Hawking boundary term so that λ corresponds to the on-

shell value of the bulk integral in the supergravity action. Moreover, since the regulator ro is arbitrary,
we can evaluate the action on an arbitrary hepresurface Σr . Its functional derivatives will then give the
momenta on Σr and not just on the regulating surface Σro .
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provided λ satisfies the equation

λ̇+Kλ− κ2
(
Lm + 1

d−1 T̃
σ
σ

)
= 0, (3.41)

which can be derived by taking the trace of the third equation in (3.38). Note that
since Σr is compact, (3.40) defines λ up to a total divergence. This ambiguity can be
utilized by making a judicious choice that will simplify the analysis below. Namely,
since the canonical momenta are given by

πij = − 1
2κ2

√
γ

(
Kγij −Kij

)
=

δIr
δγij

, πf =
δIr
δf

, (3.42)

it follows that

πijδγij +
∑
f πfδf = − 1

κ2 δ
[√
γ(K − λ)

]
, (3.43)

up to a total divergence. Therefore, the total divergence ambiguity in λ can be used
to ensure that (3.43) holds without the integral over Σr. This can always be achieved
by the following procedure.11 Take first any λ satisfying the definition (3.41). The
variation δ

[√
γ(K − λ)

]
will then generically produce terms with derivatives acting

on the variations of the induced fields δγij , δf . These derivatives can be moved to
the coefficients of the field variations by integration by parts. When all derivatives
acting on the field variations are removed, (3.42) guarantees that the coefficients of
the field variations are precisely the radial momenta. Now, the total derivative terms
which are produced by this procedure can be absorbed into λ. In writing (3.43), we
assume that such a procedure has been performed.

3.3.2 THE METHOD

We have now the necessary material in order to formulate a Hamiltonian method
of holographic renormalization. For concreteness, we will consider a massless12

abelian gauge field Aµ and a number of scalar fields ϕI with the action

Sm[g,A, ϕ] =
∫

M
dd+1x

√
g

(
1
4
U(ϕ)FµνFµν +

1
2
GIJ(ϕ)∂µϕI∂µϕJ + V (ϕ)

)
.

(3.44)

11This argument assumes that λ is local. As we will see below, the divergent part of λ which is deter-
mined by the asymptotic analysis is local. As it is expected though, the finite part of λ will be non-local
in the sources and hence, only the integrated version of (3.43) holds for this part. We will return to this
point below.

12The method is easily generalized to include massive gauge fields using the Stückelberg formalism.
See e.g. [32].
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The function U(ϕ), the metric GIJ(ϕ) on the scalar manifold and the potential V (ϕ)
are completely arbitrary, subject to the requirement that the action admits AdS space
as a critical point. The equations of motion following from this action are given in
gauge-fixed form in Appendix 3.A.2 (and in covariant form in 5.4) , but we will not
need them explicitly here.

Gauge-fixing the metric as in (3.35) and choosing the gauge Ar = 0 for the
vector field, the canonical momenta are given by

πij = − 1
2κ2

√
γ(Kγij −Kij), πi =

√
γU(ϕ)Ȧi, πI =

√
γGIJ (ϕ)ϕ̇I , (3.45)

where Ȧi ≡ γijȦj . Since the regulated on-shell action Ir is a functional of the
induced fields on the hypersurface Σr, so are the momenta which are related to the
on-shell action by (3.42). We have seen this before. In Section 2.3.2 of the previous
chapter, we found that requiring the scalar field ϕ to be regular in the interior ofAdS
forced the momentum ϕ̇ to be proportional to the scalar field itself (see (2.145). In
the present case, regularity of the solution in the interior is assumed implicitly since
it is necessary for the evaluation of the regulated on-shell action.13 Therefore, for
regular solutions, the on-shell momenta are functionals of the induced fields:

πij [γ,A, ϕ], πi[γ,A, ϕ], πI [γ,A, ϕ]. (3.46)

In the Hamiltonian version of holographic renormalization then, one uses the
equations of motion in order to determine the asymptotic form of the momenta as
functionals of the induced fields. Since both the momenta and the induced fields
transform covariantly under diffeomorphisms on the slice Σr, the method is man-
ifestly covariant at all stages, which ensures that the Ward identities are manifest
as well. This is in contrast with the original method of holographic renormalization
where one solves asymptotically for the bulk fields as functions of the sources, a
procedure that is not manifestly covariant with respect to diffeomorphisms on the
hypersurface Σr.

Asymptotic analysis

In the original method of holographic renormalization, the asymptotic analysis
starts by expanding the bulk fields in the radial distance z = e−r from the con-
formal boundary. However, we have now formulated the problem in a manifestly
covariant language and so we would like to have a covariant way of carrying out the
asymptotic analysis.

13To be more precise, one must impose some condition in the interior such that the on-shell action is
well-defined. It is not known in general if this requires the solution itself to be regular in the interior,
although this is assumed in most examples in the literature.
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To this end, we observe that the non-normalizable modes of the induced fields
behave asymptotically as

γij ∼ e2rg(0)ij(x), Ai ∼ A(0)i(x), ϕI ∼ e−(d−∆I)rφ(0)
I(x). (3.47)

These asymptotic relations can be written in covariant form as

γ̇ij ∼ 2γij , Ȧi = O(e−r), ϕ̇I ∼ −(d−∆I)ϕI . (3.48)

Moreover, the fact that the momenta are functionals of the induced fields means
that the radial derivative can be represented on the solution space by the functional
differential operator

∂r =
∫
ddx

(
2Kij [γ,A, ϕ]

δ

δγij
+ Ȧi[γ,A, ϕ]

δ

δAi
+ ϕ̇I [γ,A, ϕ]

δ

δϕI

)
.

(3.49)

It follows that the radial derivative is identified asymptotically with the dilatation
operator, δD, namely

∂r =
∫
ddx

(
2γij

δ

δγij
+

∑

I

(∆I − d)ϕI
δ

δϕI

)
+O(e−r) ≡ δD +O(e−r). (3.50)

Since we have identified the radial coordinate with the energy scale of the dual
field theory, this relation provides a holographic derivation of the Callan-Symanzik
equation (2.169).

This observation is exactly what we need in order to formulate the asymptotics
in a covariant manner. Namely, since the momenta and the on-shell action are func-
tionals of the induced fields, one expects that they admit asymptotic expansions in
eigenfunctions of the dilatation operator δD, namely14

πij =
√
γ

(
π(0)

i
j + π(2)

i
j + · · ·+ π(d)

i
j + π̃(d)

i
j log e−2r + · · · ) ,

πi =
√
γ

(
π(3)

i + π(4)
i + · · ·+ π(d)

i + π̃(d)
i log e−2r + · · · ) , (3.51)

πI =
√
γ(

∑

d−∆I≤s<∆I

π(s)I + π(∆I) + π̃(∆I)I log e−2r + · · · ),

λ = λ(0) + λ(2) + · · ·+ λ(d) + λ̃(d) log e−2r + · · · ,
14Provided the scaling dimensions of the scalar fields are rational numbers, such expansions always

exist. Note that the dilatation weight of the leading and logarithmic terms in these expansions is universal
- i.e. independent of the value of the scalar dimensions. The ‘step’ however of the expansions is not
universal and it depends crucially on the dimensions ∆I . We consider here the most common case,
but in general additional terms with odd or even fractional dilatation weight can appear in all these
expansions. We emphasize that the method applies with no difficulty to the general case where such
terms are present. An example where this is the case will be discussed in the next section.
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where all terms, except for π(d)
i
j , π(d)

i, πI (∆I) and λ(d), are assumed to transform
homogeneously under the dilatation operator (i.e. under constant Weyl transforma-
tions) according to their scaling dimension:

δDπ(n)
i
j = −nπ(n)

i
j , n < d, δDπ̃(d)

i
j = −dπ̃(d)

i
j ,

δDπ(n)
i = −nπ(n)

i, 3 ≤ n < d, δDπ̃(d)
i = −dπ̃(d)

i,

δDπI (s) = −sπI (s), d−∆I ≤ s < ∆I , δDπ̃I (∆I) = −∆I π̃I (∆I),

δDλ(n) = −nλ(n), 0 ≤ n < d, δDλ̃(d) = −dλ̃(d).

(3.52)

As is expected, these terms are related to the local coefficients in the asymptotic
expansions of the original method of holographic renormalization. We will work
out the precise relation for a particular example in the next section.

Requiring the tilded terms that multiply the logarithms to transform homoge-
neously under the dilatation operator and identifying the dilatation operator with
the radial derivative as above leads to the transformation law of π(d)

i
j , π(d)

i, πI (∆I)

and λ(d). Namely, we find

δDπ(d)
i
j = −dπ(d)

i
j − 2π̃(d)

i
j ,

δDπ(d)
i = −dπ(d)

i − 2π̃(d)
i,

δDπI (∆I) = −∆IπI (∆I) − 2π̃I (∆I), (3.53)

δDλ(d) = −dλ(d) − 2λ̃(d).

These transformations contain the expected homogeneous term, but they also con-
tain an inhomogeneous term, which indicates that these terms depend non-locally
on the induced fields. Indeed, we will soon identify these terms with the renormal-
ized one-point functions and on-shell action, which are non-local functionals of the
sources. As we will see below, the inhomogeneous terms, which are precisely the
coefficients of the logarithms in the above expansions, correspond to the conformal
anomalies.

Counterterms

There are now two possible ways to evaluate the local terms in the expansions
(3.51), both of which are useful, although, depending on the case at hand, one
might be more efficient than the other. We therefore discuss both here.

I. The first algorithm is very similar in spirit to the algorithm that determines the
coefficients in the asymptotic expansions of the original method of holographic
renormalization. The difference, however, is that the on-shell action is now
treated on the same footing as the momenta, which, combined with the fact
that all the expansions are covariant, leads to a much faster determination of
the counterterm action.
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The algorithm relies on the observation that by inserting the expansions (3.51)
in the expression (3.49) for the radial derivative, one obtains a covariant ex-
pansion for the radial derivative in the form

∂r = δD + δ(1) + · · ·+ log e−2r δ̃(d) + · · · , (3.54)

where δ(n) are covariant functional operators of successively higher dilatation
weight.

Now, the dynamical equations for the induced fields, namely equations (3.38)
together with the equations for the matter fields, are second order in the radial
derivative. Writing these equations in terms of the momenta, one of the radial
derivatives is absorbed in the momenta (see for example the third equation in
(3.38)). Similarly, the equation (3.41) for the on-shell action λ contains one
radial derivative. One then inserts the expansions (3.54) for the radial deriva-
tive and (3.51) for the momenta and the on-shell action into the equations of
motion. Matching terms of equal dilatation weight leads to a set of (coupled)
algebraic equations for the local coefficients. These equations are then solved
iteratively for the coefficients. As in the previous method of holographic renor-
malization, the non-local terms in the expansions are not determined by the
recursion relations, although the trace and divergence of π(d)

i
j is determined,

as was the trace and divergence of g(d)ij . However, the recursion relations now
determine directly the coefficients λ(n) as covariant functionals of the induced
fields, which as we will see, is equivalent to determining the counterterm ac-
tion in the covariant form (see e.g. (3.15)).

Although this algorithm is often the fastest for relatively simple examples, it is
not suited for proving general statements that are independent of the partic-
ular theory at hand, such as the Ward identities. Such general properties, are
very nicely revealed by the second algorithm that we will now describe.

II. The second algorithm relies heavily on the Hamilton-Jacobi relations (3.42)
for the momenta as derivatives of the regulated on-shell action. In particular,
at the first stage, one uses the identity (3.43) to express all local coefficients in
the expansion of λ in terms of the momenta. This is easily done by inserting the
expansions (3.51) and collecting terms of equal dilatation weight. Inserting
then these expressions for λ(n) into (3.40) and using the Hamilton constraint
(first equation in (3.38)), all local terms in the expansions of the momenta are
determined recursively from the Hamilton-Jacobi relations (3.42).

Either algorithm determines directly the covariant counterterm action, which is
given by

Ict =
1
κ2

∫

Σro

ddx
√
γ

(
d−1∑
n=0

(K(n) − λ(n)) + (K̃(d) − λ̃(d)) log e−2ro

)
. (3.55)
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Through the Hamilton-Jacobi relations (3.42), this leads to the covariant countert-
erms of the momenta, which are precisely the local terms in the expansions (3.51)
and have already been determined as part of the algorithm leading to the countert-
erm action. There is therefore no need to differentiate this local action to obtain the
momentum counterterms.

Renormalized action and one-point functions

The renormalized action is now defined as

Iren[g(0), A(0), φ(0)] = lim
ro→∞

(Iro + Ict) = − 1
κ2

∫

∂M
ddx

√
γ(K(d) − λ(d)). (3.56)

The AdS/CFT prescription identifies this with the generating functional of renormal-
ized connected correlation functions in the dual quantum field theory. In particular,
the first derivatives of the renormalized action with respect to the sources corre-
spond to the one-point functions of the dual operators. But the Hamilton-Jacobi
relations (3.42) identify the first derivatives of the renormalized action with the
non-local terms in the expansions of the momenta (3.51). Hence, we obtain the
very general result15

〈Tij〉ren = − 1
κ2

(
K(d)ij −K(d)γij

)
, 〈J i〉ren = π(d)

i, 〈OI〉ren = πI (∆I).

(3.57)
These expressions should be compared with the corresponding expressions (3.17)
that were obtained from the original method of holographic renormalization. In
(3.17) the one-point functions are expressed in terms of the non-local coefficients
g(d) and φ(2∆−d) of the asymptotic expansions, but also in terms of some local func-
tionals, Xij and Y , of the sources, which do not admit an obvious geometric inter-
pretation and whose particular form depends on the case under consideration. In
(3.57), however, we have determined the exact one-point functions completely in
terms of geometric quantities. Moreover, these expressions are valid for any dimen-
sion and for any field content. One of the advantages of this formulation is that we
can now prove in full generality that the holographic one-point functions satisfy the
Ward identities (2.163), (2.165) and (2.168).

Ward identities

The Ward identities (2.163) and (2.165) follow immediately from the equations
of motion for the induced fields. More precisely, they are a consequence of the

15Strictly speaking, the one-point functions are obtained after evaluating the limit ro →∞. However,
provided there is no risk of confusion, we will often use the quantities before and after the limit is taken
interchangeably.
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contsraint equations that follow by gauge-fixing part of the U(1) gauge freedom and
part of the bulk diffeomorphisms.

Let us consider first the first of the two equations (3.121) for the gauge field Ai.
It can be written compactly as

Di(πi/
√
γ) = 0, (3.58)

where πi =
√
γU(ϕ)F ri is the canonical momentum conjugate to Ai. Expanding

this momentum in eigenfunctions of the dilatation operator as above, we conclude
that this identity must hold for each term separately, since they all have different
dilatation weight. In particular,

Diπ(d)
i = 0, (3.59)

which leads, via the identification (3.57) to the Ward identity (2.163).
The Ward identity (2.165) follows in a similar way from the second equation in

(3.38), which takes the form

− 1
κ2
Di

(
Ki
j −Kδij

)
= −GIJ (ϕ)ϕ̇I∂jϕJ + U(ϕ)F riFij . (3.60)

Writing this in terms of the momenta (3.45) and inserting the expansions (3.51),
leads to

− 1
κ2
Di

(
K(d)

i
j −K(d)δ

i
j

)
= −πI (∆I)∂jϕ

I + π(d)
iFij , (3.61)

which, via (3.57), is equivalent to the Ward identity (2.165).
Finally, let us derive the trace Ward identity and the conformal anomaly. To

this end, consider an infinitesimal Weyl transformation of the renormalized action
(3.56):

δσIren =
2
κ2

∫

∂M

√
γ(K̃(d) − λ̃(d))δσ. (3.62)

But from the renormalized version of (3.42) we also have:

δσIren =
∫

∂M
ddx

√
γ

[
2π(d)

i
i + (∆I − d)π(∆I)Iϕ

I
]
δσ. (3.63)

Since δσ is arbitrary, we can equate the integrands to obtain

2π(d)
i
i + (∆I − d)π(∆I)Iϕ

I =
2
κ2

(K̃(d) − λ̃(d)). (3.64)

Note that this result, at least formally, follows also from the identity (3.43) once it
is restricted to constant Weyl transformations, despite the fact that in general only
the integrated form of (3.43) holds for the non-local term λ(d). The identifications
(3.57) then lead to the anomalous trace Ward identity (2.168), with the conformal
anomaly given by

A = − 2
κ2 (K̃(d) − λ̃(d)). (3.65)
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Therefore, as expected, the conformal anomaly is given by the coefficient of the log-
arithm in the covariant expansion (3.51) for λ. In particular, it is a local functional
of the sources, as required by the Wess-Zumino consistency condition.

3.4 EXAMPLES

In order to illustrate the formal discussion of our Hamiltonian method of holo-
graphic renormalization, we now consider two examples. We discuss first the special
but important case of pure AdS gravity in arbitrary dimension. We show in this case
explicitly that the two methods of holographic renormalization are equivalent by
deriving a one-to-one map between the coefficients of the asymptotic expansion of
the metric and the coefficients in the covariant expansion of the extrinsic curvature.
Moreover, the new method allows us to derive general recursion relations for the
extrinsic curvature coefficients, valid in any dimension. We conclude the section on
pure gravity with a few results for the spacial case of AdS3. As a second example,
we consider two scalar fields coupled to gravity in five dimensions with an arbitrary
potential.

3.4.1 ADS GRAVITY

For pure gravity with a negative cosmological constant Λ = d(1 − d)/2, the
equations of motion (3.38) reduce to

K2 −KijK
ij = R+ d(d− 1),

DiK
i
j −DjK = 0, (3.66)

K̇i
j +KKi

j = Rij + dδij ,

and the on-shell action is determined from the equation

λ̇+Kλ = d. (3.67)

The first step is to expand the extrinsic curvature, which is related to the mo-
mentum conjugate to the induced metric via (3.45), as well as the on-shell action λ
in eigenfunctions of the dilatation operator, which now takes the form

δD =
∫
ddx2γij

δ

δγij
. (3.68)

We then have the expansions (see (3.51)),

Ki
j [γ] = K(0)

i
j +K(2)

i
j + · · ·+K(d)

i
j + K̃(d)

i
j log e−2r + · · · ,

λ[γ] = λ(0) + λ(2) + · · ·+ λ(d) + λ̃(d) log e−2r + · · · . (3.69)
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EQUIVALENCE OF ASYMPTOTIC EXPANSIONS

Before we proceed with the algorithm to determine the local terms in these co-
variant expansions, let us demonstrate the equivalence of this covariant expansion in
eigenfunctions of the dilatation operator to the asymptotic expansion of the induced
metric in the standard holographic renormalization method.

Recall that in the original method of holographic renormalization, one expands
the induced metric in an asymptotic expansion in the radial coordinate z = exp(−r)
as

γij =
1
z2

(
g(0)ij + z2g(2)ij + · · ·+ zdg(d)ij + zd log z2h(d)ij + · · · ) . (3.70)

Differentiating this expansion with respect to r, gives

Kij = 1
2 γ̇ij =

1
z2
g(0)ij − z2g(4)ij + · · ·+ zd−2

(
(1− d/2)g(d)ij − h(d)ij

)

+zd−2 log z2(1− d/2)h(d)ij + · · · . (3.71)

However, each term in the covariant expansion of the extrinsic curvature is a func-
tional of the induced metric γij . Using the expansion (3.70) of the metric we can
then functionally expand the eigenfunctions of the dilatation operator as

K(0)ij [γ] = γij =
1
z2

(
g(0)ij + z2g(2)ij + · · ·+ zdg(d)ij + zd log z2h(d)ij + · · · ) ,

K(2)ij [γ] = K(2)ij [g(0)] + z2

∫
ddxg(2)kl

δK(2)ij

δg(0)kl
+ · · · ,

... (3.72)

K(d)ij [γ] = zd−2K(d)ij [g(0)] + · · · ,
K̃(d)ij [γ] = zd−2K̃(d)ij [g(0)] + · · · .

Inserting these expressions in the covariant expansion for Kij and comparing with
(3.71) we determine

K(0)ij [g(0)] = g(0)ij , (3.73)

K(2)ij [g(0)] = −g(2)ij [g(0)],
...

K(n)ij [g(0)] = −n
2
g(n)ij [g(0)] + lower,

...

K(d)ij [g(0)] = −d
2
g(d)ij [g(0)]− h(d)ij [g(0)] + lower,

K̃(d)ij [g(0)] = −d
2
h(d)ij [g(0)],
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where ‘lower’ stands for terms involving functional derivatives with respect to g(0)ij

of lower order coefficients g(k)ij [g(0)]. For d=4, for example,

K(4)ij [g(0)] = −2g(4)ij [g(0)]− h(4)ij [g(0)] +
∫
d4xg(2)kl

δg(2)ij [g(0)]
δg(0)kl

. (3.74)

We therefore conclude that there is a one-to-one correspondence between the terms
in the asymptotic expansion of the metric and the covariant expansion of the extrin-
sic curvature in eigenfunctions of the dilatation operator. In particular, the non-local
terms, K(d)ij and g(d)ij , are proportional to each other up to local terms, whereas
the coefficients of the logarithms, which are related to the conformal anomaly in
both formalisms, are just proportional to each other. The two methods are therefore
equivalent. Indeed, as we will see below, they lead precisely to the same covari-
ant counterterms. The new formulation, however, is more efficient and leads to a
general expression for the counterterm action in terms of the extrinsic curvature
coefficients, for arbitrary dimension. Furthermore, as we have seen, the one-point
function of the stress tensor in the presence of sources is also expressed simply in
terms of the non-local term in the expansion of the extrinsic curvature. In particular,
the asymptotic analysis for pure gravity is done once, for all d, resulting in generic
recursion relations for the extrinsic curvature coefficients.

In order to derive these dimension-independent results for pure gravity, we will
follow the second algorithm (II) above which makes use of the Hamilton-Jacobi re-
lations (3.42). In the present context, these lead to the following functional relation
between the extrinsic curvature and the on-shell action:

Kγij −Kij =
2√
γ

δ

δγij

∫

Σr

ddx
√
γ(K − λ). (3.75)

Inserting the covariant expansions for Ki
j and λ we can relate the coefficients of the

on-shell action to those of the extrinsic curvature as

K(2n)
i
j = λ(2n)δ

i
j −

2√
γ

∫
ddx

√
γγkj

δ

δγik

(
K(2n) − λ(2n)

)
, 0 ≤ n ≤ d

2
,

K̃(d)
i
j = λ̃(d)δ

i
j −

2√
γ

∫
ddx

√
γγkj

δ

δγik

(
K̃(d) − λ̃(d)

)
. (3.76)

Moreover, applying the identity (3.43) to dilatations (in which case it also applies to
the non-local term λ(d) as we have discussed), one obtains

(1 + δD)K(2n) = (d+ δD)λ(2n), 0 ≤ n ≤ d

2
, (1 + δD) K̃(d) = (d+ δD) λ̃(d).

(3.77)
Since we know how the coefficients transform under the dilatation operator, these
relations completely determine λ in terms of the trace of the extrinsic curvature.
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Namely we obtain the significant result

λ(2n) =
(2n− 1)
(2n− d)

K(2n), 0 ≤ n ≤ d

2
− 1, λ̃(d) =

d− 1
2

K(d), K̃(d) = 0.

(3.78)
The coefficients K(2n)

i
j are only determined for n < d/2. If one does the computa-

tion for general d then the corresponding expression has a first order pole at d = 2n.
A short computation using (3.76) shows that the residue of the pole is exactly K̃(d)

i
j ,

i.e. the coefficient of the logarithmic term in d dimensions,

K̃(d)
i
j = lim

n→d/2

(
(n− d

2
)K(2n)

i
j

)
. (3.79)

In practice one can also use this result in order to compute K(d−2)
i
j in d dimensions

from K̃(d−2)
i
j in d− 2 dimensions.

This result leads to a general closed form expression for the covariant countert-
erm action that renders the on-shell action finite:

Ict =
(1− d)
κ2

∫

Σro

ddx
√
γ




d
2−1∑
m=0

1
(2m− d)

K(2m) +
1
2
K(d) log e−2ro


 . (3.80)

Therefore, the problem is now reduced to determining the coefficients in the
covariant expansion of the extrinsic curvature. To determine these coefficients, we
substitute the expansion of the extrinsic curvature into the Hamilton constraint (first
equation in (3.66)). This leads to a recursive relation for the traces of the extrinsic
curvature coefficients, namely

K(2) =
R

2(d− 1)
, (3.81)

K(2n) =
1

2(d− 1)

n−1∑
m=1

(
K(2m)

i
jK(2n−2m)

j
i −K(2m)K(2n−2m)

)
, 2 ≤ n ≤ d

2
.

Using these expressions for the trace of the extrinsic curvature coefficients, to-
gether with the expressions (3.78) for λ(2n) in terms of these traces, in the functional
relation (3.76) one can now evaluate all local coefficients K(2n)

i
j recursively. Some

useful identities required for evaluating the functional derivatives in (3.76) are pre-
sented in Appendix 3.A.1). Note that the second equation in (3.66) implies that
these terms satisfy the relations

DiK(2n)
i
j −DjK(2n) = 0, 0 ≤ n ≤ d

2
, DiK̃(d)

i
j −DjK̃(d) = 0. (3.82)

In particular, the first of these equations for n = d/2 leads to the diffeomorphism
Ward identity as we discussed above. Moreover, observe that although K(d)

i
j is
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non-local in general, (3.81) ensures that its trace is local since it is expressed in
terms of the lower order coefficients, which are local. This is in agreement with the
requirement that the conformal anomaly be local in the sources.

Carrying out the above procedure is straightforward but, due to the functional
derivatives involved in evaluating the coefficients of the extrinsic curvature, it be-
comes of forbidding complexity as one goes up in dimension. The algorithm, how-
ever, could be implemented in a computer code which would in principle calculate
the counterterms and the holographic Weyl anomaly for any dimension.

For illustrative purposes we give here the results for up to four boundary dimen-
sions. As claimed, they are in perfect agreement with the results obtained by the
original method of holographic renormalization (see e.g. [30]).

d = 2 Ki
j [γ] = δij +K(2)

i
j + · · · ,

K[γ] = d+ P + · · · ,

Ict =
(d− 1)
κ2

∫
d2x

√
γ

(
1− 1

4
R log ε2

)
,

d = 4 Ki
j [γ] = δij + P ij +

1
2

(
1
2

(
P klPkl − P 2

)
δij

− 1
(d− 2)

(
2RikjlP kl − PRij + ¤P ij −DiDjP

))
log ε2 +K(4)

i
j + · · · ,

K[γ] = d+ P +
1

2(d− 1)
(
P klPkl − P 2

)
+ · · · , (3.83)

Ict =
(d− 1)
κ2

∫
d4x

√
γ

(
1 +

1
(d− 2)

P − 1
4(d− 1)

(
P klPkl − P 2

)
log ε2

)
.

Here, ε = e−ro and the tensor Pij is defined in (3.116) in Appendix 3.A.1.

THE SPECIAL CASE OF AdS3

For any three-dimensional Riemannian manifold the Weyl tensor (3.115) van-
ishes identically. This fact, combined with the vacuum Einstein equations with a
negative cosmological constant, implies that the Riemann tensor takes the form

Rµνρσ = (gµσgνρ − gµρgνσ) , (3.84)

which is precisely the curvature tensor (3.1) of AdS space.
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The Gauss-Codazzi equations (3.26) then imply that the extrinsic curvature sat-
isfies the equation

K̇i
j +Ki

kK
k
j − δij = 0, (3.85)

which, in contrast to the equations of motion (3.66), involves only the extrinsic
curvature and hence, it can be solved exactly.

To this end, let us write this equation in matrix notation as

K̇ = 1−K2. (3.86)

Assuming that the matrix on the right hand side is invertible, we can write

2(1−K2)−1 = (1−K)−1 + (1 +K)−1. (3.87)

Equation (3.86) can now be immediately integrated to give

K =
1− e−2rC(x)
1 + e−2rC(x) , (3.88)

where C(x) is an arbitrary matrix that depends only on the transverse coordinates.
Expanding this in e−2r we get

K = 1 + 2
∞∑
n=1

(−1)ne−2nrCn. (3.89)

However, the Cayley-Hamilton theorem

C2 − tr CC + det C1 = 0, (3.90)

implies that the extrinsic curvature can in fact be written in the form

K = a(r)1 + b(r)C, (3.91)

for some coefficients a and b that depend on C. Inserting this in (3.86) and solving
the resulting equations for a and b gives the extrinsic curvature in the closed form

K = (1 + e−2rtr C + e−4r det C)−1
[
(1 + e−2rtr C − e−4r det C)1− 2e−2rC] .

(3.92)
Recall now that the extrinsic curvature is related to the induced metric by

Ki
j =

1
2
γikγ̇kj =

1
2
∂r(ln γ)ij . (3.93)

We can therefore integrate (3.89) to obtain

γ = e2rB(x)(1 + e−2rC)2, (3.94)
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where B(x) is another integration function. This is then the most general AlAdS
metric in three dimensions! This is precisely what it was found in [47], where it was
shown that the Fefferman-Graham expansion terminates at quadratic order. Writing

γij = e2r
(
g(0)ij + e−2rg(2)ij + e−4rg(4)ij

)
, (3.95)

we identify g(0)ij = Bij , g(2)ij = 2(BC)ij and g(4)ij = (BC2)ij , or g(4)ij =
(g(2)g(0)

−1g(2))ij/4, in complete agreement with [47].
As expected, the metric involves two arbitrary matrices, which are functions of

the transverse coordinates. These can be interpreted respectively as the normaliz-
able and non-normalizable modes of the full non-linear equations. However, the
Hamilton and the momentum constraints (respectively the first and second equa-
tions in (3.66)) do relate these matrices in a non-local and non-linear way.

First, the Hamilton constraint together with the expression (3.92) for the extrin-
sic curvature allows us to evaluate the Ricci scalar of the induced metric in terms of
C, namely

R = 2(detK − 1) =
−4e−2rtr C

1 + e−2rtr C + e−4r det C . (3.96)

Taking the limit r →∞ gives the constraint

R[g(0)] = −4tr C, (3.97)

where R[g(0)] is the Ricci scalar of the boundary metric.
Moreover, a short calculation shows that the vector ξi ≡ DjK

j
i − DiK satisfies

the differential equation
ξ̇i +Kξi = 0, (3.98)

or, equivalently, ∂r(
√
γξi) = 0. The solution of this equation is

ξi =
−2e−2r

1 + e−2rtr C + e−4r det C
(
D

(0)
j Cji −D

(0)
i C

)
, (3.99)

where D(0)
j denotes the covariant derivative with respect to the boundary metric g(0)

and C = tr C. Hence, the momentum constraint in (3.66) is equivalent to

D
(0)
j Cji −D

(0)
i C = 0. (3.100)

These constraints impose a non-local relation between Cij and the boundary met-
ric and they are solved by identifying the tensor

T ij ≡ 4(Cij − Cδij), (3.101)

with the Liouville stress tensor (2.45). This non-local tensor then becomes the exact
one-point function of the stress tensor of the dual CFT in a curved background. Suc-
cessive derivatives with respect to the boundary metric then compute all correlation
functions of the CFT stress tensor.
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3.4.2 GRAVITY COUPLED TO SCALARS

Having carried out in detail the near boundary analysis for pure AdS gravity in
our formalism, we will now briefly describe how the analysis can be generalized to
include scalars. In this case the matter action takes the form16

Sm =
∫

M
dd+1x

√
g

(
1
2
gµν∂µϕ

I∂νϕ
I + V (ϕI)

)
. (3.102)

The the gravitational field equations (3.38) now become

K2 −KijK
ij = R+ κ2

(
ϕ̇I ϕ̇I − γij∂iϕ

I∂jϕ
I − 2V (ϕ)

)
,

DiK
i
j −DjK = κ2ϕ̇I∂jϕ

I ,

K̇i
j +KKi

j = Rij − κ2

(
∂iϕI∂jϕ

I +
2

d− 1
V (ϕ)δij

)
, (3.103)

while equation (3.41) for the on-shell action now reads

λ̇+Kλ+
2κ2

d− 1
V (ϕ) = 0. (3.104)

Moreover, we now have the equations of motion for the scalar fields, namely

ϕ̈I +Kϕ̇I + ¤ϕI − ∂

∂ϕI
V (ϕ) = 0. (3.105)

Again, the asymptotic analysis starts by expanding the canonical momenta and
λ in eigenfunctions of the dilatation operator

δD =
∫
ddx2γij

δ

δγij
+

∫
ddx(∆I − d)ϕI

δ

δϕI
, (3.106)

as in (3.51). Note however that, depending on the scaling dimension ∆I of the
scalar operators, the eigenvalues of the dilatation operator for the momenta of the
scalar fields may not be integers anymore.

We then proceed exactly as for the pure gravity case, using the identity (3.43) in
order to eliminate the coefficients λ(n) in favor of the coefficients of the momenta.
Namely, inserting the expansions (3.51) into

(1 + δD)K + κ2(∆I − d)ϕ̇IϕI = (d+ δD)λ, (3.107)

and matching terms of equal dilatation weight determines all local terms in the
expansion of λ in terms of the local terms in the expansions of the momenta.

At the next step, one uses the Hamilton contsraint (first equation in (3.103)) to
derive a recursion relation for the traces of the extrinsic curvature. This relation is

16We consider a flat metric GIJ (ϕ) = δIJ on the scalar manifold here.
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the analogue of (3.81) for pure gravity, but it will now involve the coefficients of
the scalar momenta as well. The precise form of such a recursion relation depends
crucially on the dimension d as well as the scaling dimensions ∆I of the scalar
operators.

Finally, inserting the coefficients λ(n) as well as the trace of the extrinsic cur-
vature coefficients into the Hamilton-Jacobi identities (3.42), all momenta can be
determined iteratively.

As an illustration, let us quote the results of this procedure for the case of two
scalar fields, ϕ and σ, both of scaling dimension ∆ = 3 in d = 4 and with a potential
that has a critical point at ϕ = σ = 0. The most general potential compatible with
these requirements is

V (ϕ, σ) =
∞∑
n=0

n∑
m=0

κn−2V (m,n−m)ϕ
mσn−m, (3.108)

where V(0,0) = Λ/κ2 is the cosmological constant, V(0,1) = V(1,0) = 0, i.e. there are
no linear couplings, V(1,1) = 0 and V(2,0) = V(0,2) = −3, i.e. the quadratic terms are
diagonal in ϕ and σ and both have mass m2 = ∆(∆− d) = −3. All other couplings
V(m,m−n) are arbitrary.

The iterative approach determines the following on-shell action:

Iro = − 1
κ2

∫

Σro

d4x
√
γ

{
d− 1
d− 2

P − 1
4

[
PijP

ij − P 2 − κ2ϕ(¤ + P )ϕ (3.109)

−κ2σ(¤ + P )σ
]
log e−2ro +K(4) − λ(4) + · · ·

}
−

∫

Σro

d4x
√
γW (ϕ, σ),

where the ‘superpotential’ W (ϕ, σ) is given by

W (ϕ, σ) =
1
κ2

(d− 1) +
1
2

(
ϕ2 + σ2

)

+
κ

d− 3
(
V (3,0)ϕ

3 + V (2,1)ϕ
2σ + V (1,2)ϕσ

2 + V (0,3)σ
3
)

+κ2

[(
1
2
V (4,0) −

1
4(d− 3)2

(9V (3,0)
2 + V (1,2)

2) +
d

16(d− 1)

)
ϕ4

+
(

1
2
V (3,1) −

1
(d− 3)2

(3V (3,0)V (2,1) + V (1,2)V (0,3))
)
ϕ3σ

+
(

1
2
V (2,2) −

1
2(d− 3)2

(3V (3,0)V (1,2) + 3V (0,3)V (2,1)

+2V (2,1)
2 + 2V (1,2)

2) +
d

8(d− 1)

)
ϕ2σ2+

(3.110)
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+
(

1
2
V (0,4) −

1
4(d− 3)2

(9V (0,3)
2 + V (2,1)

2) +
d

16(d− 1)

)
σ4

+
(

1
2
V (1,3) −

1
(d− 3)2

(3V (0,3)V (1,2) + V (2,1)V (3,0))
)
ϕσ3

]
log e−2ro

+W (4) + · · · . (3.111)

A direct computation shows that W satisfies the differential equation

V (ϕ) =
1
2

[(
∂W

∂ϕI

)2

− dκ2

d− 1
W 2

]
. (3.112)

We emphasize, however, that the above algorithm determines W without making
use of this equation, which arises as consequence of our formalism.17 In particular,
our algorithm determines the overall sign of W as well, in contrast to (3.112).

Equation (3.112) motivates the term ‘superpotential’ for W , by analogy to the
superpotential obtained from the gauged supergravity action and which obeys a
BPS equation similar to (3.112). We emphasize, however that (3.112) does not
arise from any BPS condition. However, (3.112) and the fact that the AdS critical
point of V is also a critical point of W guarantee the gravitational stability of the
AdS critical point [50, 51].

Given a potential V , one may view (3.112) as a differential equation that can
be solved to determine the ‘superpotential’. This is potentially interesting because,
as we will see in the next chapter, such a ‘superpotential’ W automatically provides
a non-trivial (but non necessarily supersymmetric) domain wall solution to the su-
pergravity equations, which, via the AdS/CFT dictionary, provides a holographic de-
scription of certain renormalization group flows of the dual quantum field theory. In
the next chapter we study extensively these interesting solutions and describe how
the Hamiltonian method of holographic renormalization can be used to efficiently
compute correlation functions of the dual quantum field theory.

3.A APPENDIX

3.A.1 CONVENTIONS AND USEFUL FORMULAS

RIEMANN TENSOR

We define the Riemann tensor as

Rµρνσ = ∂νΓµρσ + ΓµλνΓ
λ
ρσ − (ν ↔ σ). (3.113)

17(3.112) can indeed be derived in general in this formalism, i.e. for arbitrary dimension and scalar
fields [39].
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Then, for any vector vµ,
[∇µ,∇ν ]vρ = Rµν

ρ
σv

σ. (3.114)

This differs by an overall sign from the conventions used in [29, 30].

WEYL TENSOR

The Weyl tensor is defined for D > 2 by

Cµνρσ = Rµνρσ + gµσPνρ + gνρPµσ − gµρPνσ − gνσPµρ, (3.115)

where

Pµν =
1

D − 2

(
Rµν − 1

2(D − 1)
Rgµν

)
. (3.116)

Under a Weyl transformation the Weyl tensor transforms homogeneously

Cµνρσ[e2ωg] = e2ωCµνρσ[g]. (3.117)

A Riemannian manifold (M, g) of dimension D ≥ 4 is conformally flat if and only if
its Weyl tensor vanishes. However, the Weyl tensor vanishes identically for any three-
dimensional Riemannian manifold. Instead, for D = 3, a Riemannian manifold is
conformally flat if and only if the Weyl-Schouten tensor

Wµνρ ≡ ∇νPµρ −∇ρPµν , (3.118)

vanishes. The Weyl-Schouten tensor is invariant under Weyl transformations

Wµνρ[e2ωg] = Wµνρ[g]. (3.119)

METRIC VARIATIONS

δgΓµρσ =
1
2
gµν(∇ρδgσν +∇σδgρν −∇νδgρσ),

δgR
µ
νρσ = ∇ρδgΓµνσ −∇σδgΓµνρ, (3.120)

δgRµν = R(µ
ρδgρν) −Rµ

ρ
ν
σδgρσ +∇(µ∇ρδgρν) −

1
2
(¤δgµν + gρσ∇µ∇νδgρσ),

where the indices inside the parentheses are symmetrized with weight one.

3.A.2 GAUGE-FIXED MATTER FIELD EQUATIONS

Vector :

Di(U(ϕ)F ri) = 0,

∂r(U(ϕ)F rj) +KU(ϕ)F rj +Di(U(ϕ)F ij) = 0. (3.121)
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Scalar :

∂r(GIJ(ϕ)ϕ̇J) +KGIJ (ϕ)ϕ̇J +Di(GIJ (ϕ)∂iϕJ)

−1
2
∂GJK
∂ϕI

(ϕ̇J ϕ̇K + ∂iϕ
J∂iϕK)− ∂V

∂ϕI

−1
4
∂U

∂ϕI
(2F riF ri + FijF

ij) = 0.

(3.122)

Here, K is the trace of the extrinsic curvature of the radial slices Σr, F ri = Ȧi
and the gauge Ar = 0 has been used.

3.A.3 LORENTZIAN SIGNATURE

Thoughout this chapter we have used exclusively Euclidean signature for the
metric gµν on M and the induced metric γij on the hypersurfaces Σr. In this ap-
pendix we provide the Lorentzian version of some of the important formulas that
appear in the Hamiltonian version of holographic renormalization and which will
be needed in the last chapter.

The Lorentzian supergravity action differs by an overall sign from its Euclidean
version, namely

Sgr[g] =
1

2κ2

[∫

M
dd+1x

√
gR+

∫

∂M
ddx

√
γ2K

]
, (3.123)

and

Sm[g,A, ϕ] = −
∫

M
dd+1x

√
g

(
1
4
U(ϕ)FµνFµν +

1
2
GIJ (ϕ)∂µϕI∂µϕJ + V (ϕ)

)
.

(3.124)
The gauge-fixed canonical momenta are then given by

πij = − 1
2κ2

√−γ(Kij −Kγij), πi = −√−γU(ϕ)Ȧi, πI = −√−γGIJ(ϕ)ϕ̇I ,
(3.125)

while the regulated on-shell action is expressed as

∫

Mro

Lon−shell =
∫

Mro

dd+1x
√−g

(
Lm − 1

d− 1
T̃σσ

)
≡ − 1

κ2

∫

Σro

ddx
√−γλ,

(3.126)
where λ now satisfies the differential equation

λ̇+Kλ+ κ2

(
Lm − 1

d− 1
T̃σσ

)
= 0. (3.127)
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The regulated on-shell action (with the Gibbons-Hawking term included) is then
given by

Iro =
1
κ2

∫

Σro

ddx
√−γ(K − λ), (3.128)

and the momenta are again obtained by

πij =
δIro

δγij
, πi =

δIro

δAi
, πI =

δIro

δϕI
. (3.129)
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One of the great successes of the gauge/gravity duality is that it allows one to
compute correlation functions of a strongly coupled quantum field theory using clas-
sical supergravity. This statement was made concrete in the previous chapter, where
we saw that the gauge/gravity correspondence identifies the generating functional
of connected correlation functions of gauge-invariant operators with the on-shell su-
pergravity action, with the arbitrary Dirichlet data of the supergravity fields acting
as sources for the dual operators. We also saw that this identification is plundered
by the infinities that appear in the on-shell supergravity action and we described
how the method of holographic renormalization can be used to efficiently remove
these infinities and consistently ‘renormalize’ the supergravity action. Finally, we
discussed how the ‘kinematics’ of the correlation functions, such as Ward identities
and anomalies, can be derived holographically.

What has not been discussed in detail so far though is the actual holographic
computation of correlation functions. Contrary to the renormalization procedure
and the kinematics, the evaluation of correlation functions requires exact solutions of
the supergravity equations with arbitrary Dirichlet data instead of merely asymptotic
solutions. Indeed, as we discussed in the previous chapter, the asymptotic analysis,
either in the original or the covariant Hamiltonian formalism, does not determine
the ‘response’ functions of the bulk fields, which are identified with the one-point
functions of the dual operators in the presence of sources.

Solving the non-linear supergravity equations with arbitrary Dirichlet boundary
conditions is too difficult a problem to be tackled with the present techniques, how-
ever. Instead, one linearizes the supergravity equations around some background
and considers fluctuations around this background. The generating functional for
correlation functions can then be computed perturbatively in the sources. In par-
ticular, the leading order approximation corresponding to the linearized equations
is sufficient for the calculation of the two-point functions. Higher-point functions
require a higher order calculation, however.

Let us first recall the computation of two-point functions as developed in the
early period of the AdS/CFT correspondence [18, 24]. We will call this method the
‘old approach’. To regulate the theory one imposes a cut-off at large radius and
solves the linearized fluctuation equations with Dirichlet boundary conditions at the
cut-off. The second variation of the regulated action is then computed in momentum
space yielding an expression containing singular powers of the cut-off times integer
powers of the momentum p plus non-singular terms in the cut-off which are non-
analytic in p. The two-point function is then defined as the leading non-analytic
term. The polynomial terms in p which are dropped are contact δ-function terms
in the position space correlator, which are scheme dependent in field theory and
largely unphysical. The non-analytic term has an absorptive part in pwhich correctly
gives the two-point function for separated points in x-space. This method is quite
efficient, but it is not fully satisfactory since it is not correct in general to simply drop
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the divergent contact terms in correlation functions. Since the correlation functions
are related by Ward identities, one should make sure that contact terms are dropped
in a way consistent with the Ward identities.

In holographic renormalization one replaces the above computation by a two-
step procedure. Given a bulk action, the first step is to carry out the asymptotic anal-
ysis in order to construct a set of universal local covariant boundary counterterms
that render the on-shell action finite on an arbitrary solution of the bulk equations
of motion. This step was discussed in detail in the previous chapter using both the
original and the Hamiltonian formalisms for holographic renormalization. With the
general boundary counterterms at hand, one then solves the linearized supergravity
equations with arbitrary Dirichlet boundary conditions and a radial cut-off. Evaluat-
ing then the regulated on-shell action and adding the covariant counterterms leads
to the renormalized action. The two-point function is now obtained as the second
variation of the renormalized action.

It is conceptually satisfying that the procedure of renormalization can be car-
ried out in full generality without reference to a particular solution, i.e. that the
counterterms are associated with a bulk action and not a particular solution. How-
ever, the above algorithm for calculating correlation functions in holographic renor-
malization means that every time one wants to compute, for example, a two-point
function around some background field configuration, one must first carry out the
general asymptotic analysis in order to construct the covariant boundary countert-
erms that render the particular action finite on any solution. Most often this requires
a rather elaborate computation compared to solving the linearized equations which
is required for the two-point function. Moreover, there are rarely more than one
interesting exact solutions of a given action with a given field content, and so, in
order to compute correlation functions in different RG-flows one would need to first
complete the near-boundary analysis for each different action.

There is no reason, however, why the asymptotic analysis cannot be carried out
at the linearized level. In other words, instead of solving the full non-linear su-
pergravity equations asymptotically in order to determine the covariant boundary
counterterms and then linearize the counterterms around the given background,
one should be able to determine these linearized counterterms directly by solving
asymptotically the linearized bulk equations. If this is possible, it is clearly a much
more efficient route for computing correlation functions in holographic renormaliza-
tion since one need only analyze the linearized equations. In this chapter, which is
an expanded version of [2], we demonstrate that the Hamiltonian version of holo-
graphic renormalization indeed allows one to determine the linearized covariant
boundary counterterms directly by solving asymptotically the linearized bulk equa-
tions.

The backgrounds we will be interested in are domain wall solutions of the bulk
supergravity theory with a single active scalar field turned on. We consider first
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Poincaré domain walls, which preserve Poincaré invariance in the transverse space.
Such solutions correspond to either a deformation of the Lagrangian of the bound-
ary CFT by a relevant operator, or to a vacuum of the dual CFT where conformal
invariance is broken spontaneously by the vacuum expectation value of a scalar op-
erator. We discuss how to distinguish between these two cases by computing the
exact one-point functions for these backgrounds. Two-point functions are then cal-
culated and we show explicitly how they can be renormalized without the need for
a general near boundary analysis.

As a second class of interesting backgrounds, we study AdS-sliced domain walls
and in particular the Janus solution [52], which is a particular non-supersymmetric
but stable AdS domain wall [53]. The main difficulty in this example is that the
boundary has a corner. However, we show that there exists a suitable Fefferman-
Graham coordinate system which is well-defined everywhere in the neighborhood
of the boundary except on the corner. This allows us to calculate the vevs of the
background as well as some two-point functions. In particular, we show that the
Ward identities associated with the symmetries of the background are satisfied.

We discuss here only two-point functions. Higher-point functions have been dis-
cussed in the context of holographic renormalization in [33, 54]. The procedure
we describe for two-point functions here can be applied in such cases as well, sig-
nificantly simplifying the process of renormalization. An effort to reproduce known
results for higher-point functions using this procedure is presently under way.

4.1 POINCARÉ DOMAIN WALLS

In this section we will consider linear fluctuations around Poincaré domain wall
solutions of the supergravity equations of motion. These take the generic form

ds2B = dr2 + e2A(r)dxidxi, ϕ = φB(r). (4.1)

Inserting this ansatz into the equations of motion (3.103) and (3.105) we find that
A(r) and φB(r) satisfy

Ȧ2 − κ2

d(d− 1)

(
φ̇2
B − 2V (φB)

)
= 0,

Ä+ dȦ2 +
2κ2

d− 1
V (φB) = 0,

φ̈B + dȦφ̇B − V ′(φB) = 0. (4.2)

Moreover, (3.41) becomes

λ̇B + dȦλB +
2κ2

d− 1
V (φB) = 0, (4.3)
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which immediately implies

λB = Ȧ+ ξ(x)e−dA =
1
d
KB +

ξ(x)√
γB

, (4.4)

where ξ is an arbitrary integration function of the transverse coordinates. Therefore,

SBon−shell = −d− 1
dκ2

∫

Σr

ddx
√
γBKB +

1
κ2

∫

Σr

ddxξ(x). (4.5)

The last term corresponds to finite local counterterms. As expected, there is an
ambiguity in the on-shell value of the action corresponding to the renormalization
scheme dependence of the dual field theory.

It is well known that the second order flat domain wall equations are solved by
any solution of the first order flow equations

Ȧ = − κ2

d− 1
W (φB),

φ̇B = W ′(φB), (4.6)

provided the potential can be written in the form

V (φB) =
1
2

[
W ′2 − dκ2

d− 1
W 2

]
. (4.7)

The motivation for considering theories with such potentials stems from the fact
that they guarantee gravitational stability of the AdS critical point and of associ-
ated domain-wall spacetimes, provided the AdS critical point is also a critical point
of W [50, 51, 53]. This means, by the AdS/CFT duality, that the dual theory is
unitary. Notice that (4.7) is identical to equation (3.112) which was deduced as a
consequence of the Hamilton-Jacobi formulation of the asymptotic dynamics.

In general, the set of solutions of the second order equations (4.2) may include
solutions which cannot be obtained from the first order flow equations. In this
section we will restrict attention to solutions which can be derived from the flow
equations. For this class of solutions we have

SBon−shell =
∫

Σr

ddx
√
γBW (φB) +

1
κ2

∫

Σr

ddxξ(x). (4.8)

In principle it is always possible to write the potential in the form (4.7) if one
views (4.7) as a differential equation for W (φB). The resulting W however may not
have the original AdS spacetime as a critical point. Furthermore, in practice it is
considerably difficult to solve (4.7). However, for certain potentials it is possible to
find interesting solutions as we now demonstrate by the following example.
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A TOY DOMAIN WALL SOLUTION

It was observed in [1] that (4.7) can be transformed to the form of Abel’s equa-
tion [55]:

y′(ψ) =
(
v′

v
y ∓ 1

)
(y2 − 1), (4.9)

where ψ =
√

dκ2

d−1ϕ, y = coth(u), W = vcosh(u), and v is related to the potential by
2(d−1)
dκ2 V = −v2. The general solution to this equation is not known, but it can be

solved in special cases.
In [1] we solved (4.9) in arbitrary dimension for the potential

V (ψ) = −d(d− 1)
2κ2

cosh (2ψ/3) . (4.10)

This potential was later considered also in [56], where a black hole solution with
a non-trivial scalar field in four dimensions was found. The authors of [56] also
observed that, in four dimensions, this potential has a natural interpretation in the
conformal frame defined by

ψ̃/3 = tanh(ψ/3), g̃µν = cosh2(ψ/3)gµν , (4.11)

where again ψ̃ =
√

dκ2

d−1 ϕ̃. The bulk action then takes the form

S =
∫

M
d4x

√
g̃

[
− 1

2κ2
R̃+

1
2
g̃µν∂µϕ̃∂νϕ̃+

1
12
R̃ϕ̃2 + Ṽ (ϕ̃)

]
, (4.12)

where

Ṽ (ϕ̃) = −d(d− 1)
2κ2

(
1− (κ2/6)2ϕ̃4

)
. (4.13)

In this frame the scalar field is conformally coupled to gravity and the ϕ̃4 poten-
tial ensures that the scalar field equations are conformally invariant. This property
however is special to four dimensions.

Let us now review the solution of (4.9) obtained in [1]. Note that the two signs
in (4.9) are related by a sign flip in y or ψ and so we will only consider the negative
sign. Defining the new variables

s = 1/y, % = tanh(2ψ/3), (4.14)

(4.9) takes the form
2ds

1− s2
+

d%

1− %2

(%
s
− 3

)
= 0, (4.15)
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whose general solution is

s =
%

1 + (1− %2)(1 + 2% tanh γ + %2)−1/2
, (4.16)

where γ is an integration constant. It terms of the original variables, this means that
the ‘superpotential’ takes the form [1]

W (ψ) = −
(d− 1) cosh1/2

(
2
3ψ

) (
cosh

(
2
3ψ

)
+ cosh1/2(γ)sech1/2

(
4
3ψ + γ

))

κ2

√
1 + cosh(γ)sech

(
4
3ψ + γ

)
+ 2 cosh

(
2
3ψ

)
cosh1/2(γ)sech1/2

(
4
3ψ + γ

) .

(4.17)
The full domain wall solution can in fact be expressed in closed form in terms of

%. Namely,

ds2 =
(

3
d

)2




(
1 + % tanh γ +

√
1 + 2% tanh γ + %2

)

2%2
√

1− %2(1 + 2% tanh γ + %2)
d%2

+

[√
1− %2

2%2

(
1 + % tanh γ +

√
1 + 2% tanh γ + %2

)]3/d

dxidxi



 ,

φB =
3
2

√
d− 1
dκ2

tanh−1 %. (4.18)

Note that the solution simplifies considerably in four dimensions (i.e. d = 3), which
is precisely the case where the scalar field action is conformally invariant in the
conformal frame.

Expanding the potential (4.10) around the AdS critical point, we find that the
mass of the scalar field is

m2 = −2(d/3)2. (4.19)

This satisfies the Breitenlohner-Freedman bound [57] m2 ≥ −(d/2)2 for all dimen-
sions, which guarantees the stability of the above domain wall solution. The two
solutions of the equation m2 = ∆(∆ − d), relating the mass of the scalar field with
the dimension of the dual operator are

∆+ = 2d/3, ∆− = d/3. (4.20)

It was shown in [58] that while only the choice ∆ = ∆+ is possible for the dimension
of the dual operator when m2 > −(d/2)2 + 1, when −(d/2)2 < m2 < −(d/2)2 + 1
both ∆+ and ∆− are allowed dimensions for the dual operator, leading to two differ-
ent CFTs on the boundary. The corresponding generating functionals for connected
correlation functions are then the Legendre transform of each other. In the present
case, the above condition for both ∆± to be admissible as scaling dimensions of the
dual operator translates into the condition d < 6.
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As we will explain in the next section, the expansion

W (ψ) = −d− 1
κ2

(
1 +

1
6
ψ2 +

1
27

tanh(γ)ψ3 + · · ·
)

(4.21)

of the ‘superpotential’ around the AdS critical point then implies that for d > 6
this domain wall solution describes the renormalization group flow of the dual field
theory due to a deformation of the CFT Lagrangian by an operator of dimension
∆+ = 2d/3. For d < 6, however, further analysis, such as the computation of certain
two-point functions in this background, is necessary in order to determine whether
this domain wall describes a deformation of the CFT Lagrangian by an operator of
dimension ∆+ = 2d/3 or a vacuum expectation value of an operator of dimension
∆− = d/3. The case d = 6 is special as ∆− = 2 saturates the unitarity bound
∆ ≥ d/2− 1 and further analysis is required in this case too. Finally, the evaluation
of the two-point functions in this background is also likely to reveal the physical
significance of the parameter γ which does not enter in the vev of the stress tensor
or of the scalar operator, at least for d > 6. We will not evaluate these two-point
functions here, however.

4.1.1 DEFORMATIONS VS VEVS

The domain wall solutions we have described correspond via the AdS/CFT du-
ality to deformations of the boundary CFT by relevant operators, in which case the
conformal invariance of the boundary theory is explicitly broken, or to a vacuum
expectation value of a scalar operator which spontaneously breaks the conformal
symmetry. Marginal deformations are also similarly described.

Locally asymptotically AdS metrics satisfy the asymptotic condition γij(r, x) ∼
e2rg(0)ij(x) as r → ∞, which requires A(r) ∼ r. Moreover, a scalar field dual to
an operator of dimension ∆ behaves asymptotically as ϕ(r, x) ∼ e−(d−∆)rφ(0)(x).
These asymptotic conditions, together with the equations of motion, require that
the scalar potential takes the form

V (ϕ) = −d(d− 1)
2κ2

+
1
2
m2ϕ2 + · · · , (4.22)

where the mass is related to the dimension ∆ of the dual operator bym2 = ∆(∆−d).
Solving the equation of motion for the scalar field with such a potential leads to a
generic solution of the form

ϕ(r, x) = e−(d−∆)r
[
φ(0)(x) + · · · ] + e−∆r

[
φ(2∆−d)(x) + · · · ] . (4.23)

We will consider operators for which d − ∆ ≥ ∆, or ∆ ≥ d/2. Moreover, we are
interested in relevant or marginal operators and so ∆ ≤ d. In total then d/2 ≤ ∆ ≤
d. In this range the first term in the solution for ϕ is dominant asymptotically and
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corresponds to the source, while the second term is related to the one-point function
of the dual operator. In the special case ∆ = d/2, which saturates the BF bound, the
scalar field takes the form1

ϕ(r, x) = e−dr/2
[
−2r

(
φ(0)(x) + · · · ) + φ̃(0)(x) + · · ·

]
. (4.24)

Again, the first term is the source for the dual operator, while the second is related
to its expectation value.

Depending on the form of the ‘superpotential’ W (φB) the domain wall solution
can describe either a deformation of the dual CFT or a phase with spontaneously
broken conformal symmetry as we now explain. A similar analysis can be found in
[40]. Assuming the potential has a critical point at φB = 0, equation (4.7) together
with the flow equations (4.6) and the requirement that φB = 0 is also a critical point
of W , imply that W has an expansion around φB = 0 of two possible forms:

W+(φB) = −d− 1
κ2

− 1
2
(d−∆)φ2

B + · · ·

W−(φB) = −d− 1
κ2

− 1
2
∆φ2

B + · · · . (4.25)

Which of these cases is realized is purely a property of the background solution and
we need to examine each case separately. Moreover, the extremal values d/2 and d
of the scaling dimension ∆ require special attention. We will now compute the vev
for the stress energy tensor and dual scalar operator for all cases.

As we saw in the previous chapter, the part of the divergent part of the on-shell
action involving only the scalar field is a function U(ϕ), satisfying the equation for
the ‘superpotential’ W (4.7), and having an expansion around ϕ = 0

U(ϕ) = −d− 1
κ2

− 1
2
(d−∆)ϕ2 + · · · (4.26)

Let us consider first the case W+ is realized in the background. In this case
we can choose a scheme where the counterterm action is W+. To see this notice
that any two solutions of (4.7) with identical expansions around ϕ = 0 up to order
ϕ2 can only differ at order ϕd/(d−∆) ∼ e−dr. This is easily proved by looking for
the most general power series2 solution of (4.7) with this particular form up to
quadratic order in ϕ. One finds that all terms are uniquely determined up to order
d/(d − ∆) where the recursion relations break down. This is precisely where an
arbitrary integration constant appears and the two solutions could be potentially
different. However, this is irrelevant for the purpose of removing the divergences
of the on-shell action and so we can choose the renormalization scheme U(ϕ) =

1Note that the radial coordinate we use here is related to the Fefferman-Graham radial coordinate by
ρ = e−2r . The factor −2r = log ρ is chosen to match with the corresponding formulae in [31, 32].

2As usual one must include a logarithmic term at order d/(d−∆) in the general case.
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W+(ϕ), and set the integration function ξ to zero. This choice of counterterms
corresponds to a supersymmetric renormalization scheme since it ensures SBren = 0
[31]. It follows that the background vevs of both the operator dual to ϕ and the
stress tensor vanish identically and so this background describes a deformation of
the boundary CFT by a relevant operator.

Let us now consider the case W− is realized in the background. In this case we
cannot choose W− as the counterterm since it differs from U(ϕ) at the quadratic
order. In this case, however, φB ∼ e−∆r and so the on-shell action evaluated on
the background contains only the volume divergence since, by the hypothesis, 2∆ >

d. Hence, again, setting ξ = 0 corresponds to a supersymmetric renormalization
scheme with SBren = 0. Accordingly, the background expectation value of the stress
tensor vanishes, but not that of the scalar operator. In this case W ′

−(φB)−U ′(φB) =
−(2∆− d)φB + · · · , and hence,

〈O〉Bren = (d− 2∆)φB , (4.27)

which spontaneously breaks the conformal symmetry of the dual CFT. Here we used
the fact that the regularized one-point function (=canonical momentum) is related
to the superpotential via the first order equation (4.6). The renormalized one-point
function is obtained by subtracting the contribution U ′ of the counterterm.

It remains to examine the two extremal cases ∆ = d/2 and ∆ = d. When ∆ =
d/2 there is no distinction between W+ and W− as they are equal and φB ∼ e−dr/2,
i.e. it behaves asymptotically as the vev term in (4.24). However, the on-shell
action function U(ϕ) includes divergences coming from the source term in (4.24)
and therefore it cannot be identified with W (ϕ). It is straightforward to find the
covariant counterterms for this case using the Hamiltonian method of holographic
renormalization, but the singularity structure for the terms involving the scalar field
are not the standard ones, as we now explain. This can be traced back to the fact
that the source term for the scalar contains a logarithm, in contrast to the generic
case. A simple calculation using the asymptotic form of the solution shows that the
canonical momentum of the scalar field takes the form

π = ϕ̇ =
(

1
r
− d

2

)
ϕ+ · · · (4.28)

Hence, the on-shell action is

Son−shell = Sgr
on−shell +

∫

Σr

ddx
√
γ

1
2

(
1
r
− d

2

)
ϕ2 + · · · (4.29)

where Sgr
on−shell is the on-shell action for pure gravity. We have therefore shown that

U(ϕ) = −d− 1
κ2

+
1
2

(
1
r
− d

2

)
ϕ2 + · · · (4.30)
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which is the divergent part of the on-shell action and must be removed (of course
there is another part coming from pure gravity). The same counterterms (for d = 4)
were derived in [31, 32]. We now see that the scalar operator gets a vev since
W ′(φB)− U ′(φB) = − 1

rφB + · · · , i.e.

〈O〉Bren = 2φB . (4.31)

This also agrees with the results in [31, 32]. Again the difference between W (φB)
and U(φB) is subleading and the stress tensor gets no vev since Sren = 0.

Finally we consider the case ∆ = d, for which

ϕ(r, x) =
[
φ(0)(x) + · · · ] + e−dr

[
φ(d)(x) + · · · ] . (4.32)

The equations of motion require V ′(ϕ) = 0 and so the potential is just the cosmo-
logical constant V (ϕ) = −d(d−1)

2κ2 . It follows that the on-shell function U(ϕ) is also
a constant, i.e. the first term of W±. In this case, however, the general solution
to (4.7) can be easily obtained. There are two distinct solutions (cf. eq. (2.10) in
[53]),

W+ = −d− 1
κ2

, W− = −d− 1
κ2

cosh

(√
dκ2

d− 1
(φ− φo)

)
, (4.33)

in agreement with our general analysis. Notice that in this case the supergravity
action and hence the second order field equations are invariant under constant shifts
of the scalar field. Such a constant corresponds to the source term of the solution.
One may use this symmetry to set φ0 to zero in W−. Then, exactly as for the case
d/2 < ∆ < d, if W+ is realized in the background, then neither the scalar operator
nor the stress tensor acquire a vev, and if W− is realized, the scalar operator gets a
vev −dφB , while the vev of the stress-energy tensor vanishes.

So finally we can summarize all possibilities for flat domain wall backgrounds in
the following table:

∆ W 〈O〉Bren 〈T ij 〉Bren
d/2 < ∆ ≤ d + 0 0

− (d− 2∆)φB 0

d/2 ± 2φB 0

4.1.2 LINEARIZED EQUATIONS

Now let us consider fluctuations around the backgrounds we have described so
far. We will only keep terms up to linear order in fluctuations, which suffices for the
calculation of the two-point functions. The metric fluctuations take the form

γij = γBij (r) + hij(r, x) = e2A(r)δij + hij(r, x), (4.34)
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and the scalar field is
ϕ = φB(r) + φ(r, x). (4.35)

The extrinsic curvature then becomes

Ki
j = Ȧδij +

1
2
Ṡij , (4.36)

where Sij ≡ γikB hkj . S
i
j can be decomposed into irreducible components as

Sij = eij + ∂iεj + ∂jε
i +

d

d− 1

(
1
d
δij −

∂i∂j
¤B

)
f +

∂i∂j
¤B

S, (4.37)

where ∂ie
i
j = eii = ∂iε

i = 0 and indices are raised with the inverse background
metric e−2Aδij . Conversely, each of the irreducible components can be expressed
uniquely in terms of Sij as

eij = Πi
k
l
jS

k
l , εi = πli

∂k
¤B

Skl , f = πlkS
k
l , S = δlkS

k
l , (4.38)

where we have introduced the projection operators

Πi
k
l
j =

1
2

(
πikπ

l
j + πilπkj − 2

d− 1
πijπ

l
k

)
, (4.39)

and

πij = δij −
∂i∂j
¤B

. (4.40)

With this nomenclature we can now go on and derive the equations of motion for
the linear fluctuations. The result is3

(
∂2
r + dȦ∂r + e−2A¤

)
eij = 0,

(
∂2
r + [dȦ+ 2W∂2

φ logW ]∂r + e−2A¤
)
ω = 0,

ḟ = −2κ2φ̇Bφ,

Ṡ =
1

(d− 1)Ȧ

[
−e−2A¤f + 2κ2

(
φ̇Bφ̇− V ′(φB)φ

)]
, (4.41)

where
ω ≡ W

W ′φ+
1

2κ2
f, (4.42)

and we have used the diffeomorphism invariance in the transverse space to set εi ≡
0. The last two equations give immediately the momenta dual to f and S and
hence the corresponding one-point functions with linear sources. Moreover, since

3Note ¤B = e−2A¤ = e−2Aδij∂i∂j .
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the canonical momenta are functionals of the bulk fields [1], to linear order in the
fluctuations we must have

ėij = E(A, φB)eij , ω̇ = Ω(A,φB)ω. (4.43)

The first two equations then become first order equations for E and Ω:

Ė + E2 + dȦE − e−2Ap2 = 0,

Ω̇ + Ω2 + [dȦ+ 2W∂2
φ logW ]Ω− e−2Ap2 = 0, (4.44)

where we have performed a Fourier transform in the transverse space. Given the
solutions for E and Ω we can immediately write down all momenta, namely

ėij = Eeij ,

ḟ = −2κ2φ̇Bφ,

φ̇ = (W ′′ + Ω)φ+
1

2κ2

W ′

W
Ωf,

Ṡ = − 1
κ2

[(
W ′

W

)2

Ω− e−2A

W
¤

]
f − 2

W ′

W

(
Ω +

dκ2

d− 1
W

)
φ. (4.45)

To completely determine the one-point functions with linear sources we first need to
obtain exact solutions for E and Ω and secondly, to determine the covariant coun-
terterms for the momenta, but only to linear order in the fluctuations. Since e−2A

and W (φB) are already covariant functions of the background fields, it suffices to
find covariant expansions for E and Ω in the background fields. These can be orga-
nized according to the dilatation operator for the background

δD = ∂A + (∆− d)φB∂φB
. (4.46)

More generally, the radial derivative is expanded in functional derivatives w.r.t. the
background fields as

∂r = Ȧ∂A + φ̇B∂φB
= − κ2

d− 1
W (φB)∂A +W ′(φB)∂φB

∼ δD + · · · (4.47)

Inserting the following expansions4 for E and Ω in the first order equations (4.44),

E = E(1) + · · ·+ Ẽ(d) log(e−2r) + E(d) + · · · ,
Ω = Ω(0) + · · ·+ Ω̃(2∆−d) log(e−2r) + Ω(2∆−d) + · · · , (4.48)

one determines all covariant counterterms which render all momenta finite to linear
order in the sources. This procedure is substantially simpler than the general holo-
graphic renormalization required to determine the full non-linear counterterms and
is a significant improvement over previous methods.

4These expansions are strictly correct for d/2 < ∆ ≤ d, but we will deal with the special case ∆ = d/2

in the examples below.
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A final simplification can be made for the case of backgrounds corresponding to
deformations of the dual CFT. As we saw in the previous section, the ‘superpotential’
W of the background can be included in the counterterm action, corresponding to a
supersymmetric renormalization scheme. After this counterterm is added to the on-
shell action (we still have to determine the counterterms for E and Ω), the momenta
take the simpler form

ėij = Eeij ,

ḟ = 0,

φ̇ = Ωφ+
1

2κ2

W ′

W
Ωf,

Ṡ = − 1
κ2

[(
W ′

W

)2

Ω− e−2A

W
¤

]
f − 2

W ′

W
Ωφ. (4.49)

4.1.3 EXAMPLES

We will treat the two examples that have been the main testing ground for holo-
graphic computation of correlation functions, namely the GPPZ flow [59] and the
Coulomb branch flow [60, 61]. The computation of certain two-point functions for
the CB flow was first discussed in [60] and for the GPPZ flow in [62]. Two-point
functions for both flows were systematically studied in [63, 31], see also [64, 65, 66]
for earlier work. Since the results are known, the emphasis here will be in method
rather than the correlators themselves. For a discussion of the physical properties of
the correlators and comparison with the dual field theories we refer to [31].

GPPZ FLOW

The GPPZ flow describes a deformation by a supersymmetric mass term ofN = 4
SYM. The bulk theory is that of a scalar field dual to an operator of dimension ∆ = 3
coupled to gravity in five dimensions. The background ‘superpotential’ is

W (φB) = − 3
2κ2

[
1 + cosh

(√
2
3
κφB

)]
= − 3

κ2
− 1

2
φ2
B + · · · (4.50)

which is of the form W+ and corresponds to a deformation of the boundary CFT by
a relevant operator. The background solution takes the form

φB =
1
κ

√
3
2

log
(

1 +
√

1− u

1−√1− u

)
, e2A =

u

1− u
, 1− u = e−2r. (4.51)

It is also useful to note the relations

W = − 3
κ2

1
u
, W ′ = −

√
6
κ

√
1− u

u
, W ′′ =

2κ2

3
W + 1. (4.52)
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Changing variable from r to u in (4.44) we obtain

2(1− u)E′(u) + E2 +
4
u
E − 1− u

u
p2 = 0,

2(1− u)Ω′(u) + Ω2 +
(

4
u
− 2

)
Ω− 1− u

u
p2 = 0. (4.53)

The solutions which are regular at u = 0 are

E(u) =
1
4
p2(1− u)

F
(
1− ip

2 , 1 + ip
2 ; 3;u

)

F
(− ip

2 ,
ip
2 ; 2;u

) , (4.54)

and

Ω(u) =
1
4
p2(1− u)

F
(

3−α
2 , 3+α

2 ; 3;u
)

F
(

1−α
2 , 1+α

2 ; 2;u
) , (4.55)

where α =
√

1− p2.
Next we need to find covariant counterterms for E and Ω. Inserting

∂r = δD +
κ2

6
φ2
B

(
∂A − 2

3
φB∂φB

)
+ · · · (4.56)

and the expansions (4.48) in (4.44) one very easily determines

E =
p2

2
e−2A +

p2

4
e−2A

(
p2

2
e−2A +

κ2

3
φ2
B

)
log e−2r + E(4) + · · · ,

Ω = −p
2

2
e−2A log e−2r + Ω(2) + · · · . (4.57)

Expanding the exact solution in 1 − u and removing the covariant terms we have
just determined allows for the evaluation of E(4) and Ω(2), which are precisely the
terms required to calculate the renormalized one-point functions. Putting everything
together we find the following two-point functions:

〈O(p)O(−p)〉 = −1
2
p2J̄ , 〈T ii (p)O(−p)〉 =

√
6

2κ
p2J̄ ,

〈T ii (p)T ii (−p)〉 = − 3
κ2
p2(J̄ + 1), pjpi〈T ij 〉 = 0,

〈Tij(p)Tkl(−p)〉TT =
2
κ2

Πijkl[
1
16
p2(p2 + 4)K̄ +

p2

8
]. (4.58)

where

J̄ = 2ψ(1)− ψ(
3
2

+
1
2

√
1− p2)− ψ(

3
2
− 1

2

√
1− p2),

K̄ = ψ(1) + ψ(3)− ψ(2 +
ip

2
)− ψ(2− ip

2
). (4.59)
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COULOMB BRANCH FLOW

The Coulomb branch flow is a solution of five dimensional AdS gravity coupled to
a scalar field of massm2 = −4, which therefore saturates the BF bound. The solution
describes the case where an operator of dimension 2 gets a vev. The superpotential
is

W (φB) = − 2
κ2

[
e−κφB/

√
3 +

1
2
e2κφB/

√
3

]
. (4.60)

The solution can be parametrized by v ≡ e
√

3κφB as

v̇ = 2v2/3(1− v), e−2A = v−2/3(1− v), W = − 1
κ2
v−1/3(v + 2). (4.61)

The boundary is located at v = 1. In terms of v the first order equations (4.44)
become

2(1− v)E′(v) + v−2/3E2 +
4
3

(
1 +

2
v

)
E − p2v−4/3(1− v) = 0, (4.62)

and

2(1− v)Ω′(v) + v−2/3Ω2 +
[
4
3

(
1 +

2
v

)
− 12
v + 2

]
Ω− p2v−4/3(1− v) = 0. (4.63)

The solution for E which is regular at v = 0 is

E(v) = 2a(1− v)v−1/3

[
1 +

av

2(a+ 1)
F (a+ 1, a+ 1; 2a+ 3; v)

F (a, a; 2a+ 2; v)

]
, (4.64)

where a = − 1
2 + 1

2

√
1 + p2. We will not give here explicitly the exact solution for

Ω since it is rather complicated. To obtain such a closed form solution one must
transform the above equation for Ω into a soluble form and then obtain Ω implicitly
through the solution of the transformed equation. After obtaining covariant coun-
terterms for E and Ω by the method we described above, we can write these in the
desired form, namely

E =
p2

2
e−2A +

p4

8
e−4A log e−2r +

p2

2
e−4A

[
−1

3
+
p2

2
(ψ(a+ 1)− ψ(1))

]
+ · · · ,

(4.65)

Ω =
1
r

+
1
r2

(
− 4

3p2
+ ψ(a+ 1)− ψ(1)

)
+ · · · . (4.66)

Inserting these expansions into the expressions for the momenta, after taking into
account the effect of the counterterm

U(ϕ) = − 3
κ2

+
1
2

(
1
r
− d

2

)
ϕ2 = W (ϕ) +

1
2r
ϕ2 + · · · , (4.67)
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we obtain the two-point functions

〈O(p)O(−p)〉 =
(

4ψ(1)− 4ψ(1 + a) +
16
3p2

)
, 〈T ii (p)T jj (−p)〉 = 0,

pipj〈Tij(p)O(−p)〉 = − 2√
3κ
p2,= 〈O〉Bp2, 〈T ii (p)O(−p)〉 = − 4√

3κ
= 2〈O〉B ,

〈Tij(p)Tkl(−p)〉TT = Πijkl
p2

2κ2

[
1
3
− p2

2
(ψ(a+ 1)− ψ(1))

]
. (4.68)

4.2 ADS-SLICED DOMAIN WALLS

AdS-sliced domain walls have also been studied in the literature [67, 68, 69, 52,
53]. In this case the background is of the form

ds2B = dr2 + e2A(r)gij(x)dxidxi, ϕ = φB(r), (4.69)

where gij(x) is the metric of Euclidean AdSd with radius l and we have set the
radius of the bulk AdSd+1 equal to 15. Inserting this ansatz into the bulk equations
of motion leads to the following equations for A(r) and φB(r)

Ȧ2 − κ2

d(d− 1)

(
φ̇2
B − 2V (φB)

)
+

1
l2
e−2A = 0,

Ä+ dȦ2 +
2κ2

d− 1
V (φB) +

d− 1
l2

e−2A = 0,

φ̈B + dȦφ̇B − V ′(φB) = 0. (4.70)

Note that as l → ∞ these reduce to the equations for flat domain walls, as they
should. From now on we set l2 = 1.

4.2.1 JANUS SOLUTION

A particularly interesting AdS-sliced domain wall solution is the dilaton domain
wall solution of type IIB supergravity of [52]6. This is a non-supersymmetric regular
solution. When reduced to five dimensions, it solves the field equations of AdS
gravity coupled to a massless scalar with a constant potential. Similar solutions
exist in all dimensions [53]. These solutions are of particular interest because they
enjoy non-perturbative stability for a broad class of deformations [53]. This strongly
suggests that they should have a well-defined QFT dual.

5In [53] a different convention was used: the radius of bulk AdSd+1 and of the AdSd-slice were set
equal to each other.

6Additional dilatonic deformations have been presented in [70].
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Setting V = −d(d−1)
2κ2 , the equation for the scalar field can be trivially integrated

to give
φ̇B = ce−dA, (4.71)

where c is an arbitrary constant of integration. The remaining equations imply,

Ȧ2 = 1− e−2A + be−2dA (4.72)

where b = c2κ2

d(d−1) . The geometry is non-singular provided the parameter b is within
the range,

0 ≤ b < b0 ≡ 1
d

(
d− 1
d

)d−1

. (4.73)

One can obtain an implicit solution of (4.72) as

r =
∫ A

A0

dA√
1− e−2A + be−2dA

(4.74)

where A0 is the smallest zero of P (u) ≡ bud − u+ 1, where u ≡ e−2A. This defines
half of the geometry, i.e. the region with 0 ≤ r < ∞. The other half is obtained by
extending A(r) to negative values of r as an even function, A(−r) = A(r).

We can obtain an explicit expression for the bulk metric by changing variables
from r to u. Using

Ȧ2 = 1− u+ bud, (4.75)

we obtain7

ds2B =
du2

4u2(1− u+ bud)
+

1
u
gij(x)dxidxi. (4.76)

Note that if b = 0 this is precisely the metric for AdSd+1 in the AdSd-slicing param-
eterization. The range of the u-coordinate depends on the value of the parameter b,
namely 0 ≤ u ≤ uo, where uo ≥ 1 with equality iff b = 0. We give the explicit form
of uo as a function of b in Appendix 4.A.1. In this parameterization the two halves
of the space, i.e. r > 0 and r < 0, are not distinguished since u is an even function
of r. In particular, the regions at r → ±∞ are mapped to u = 0.

We discuss in Appendix 4.A.1 the conformal compactification of the solution.
The conformal boundary consists of two half-spheres with angular excess joined
along their equator [52, 53]. We will refer to the joining equator as ‘corner’. In
order to calculate correlation functions of the dual field theory we need to write the
Janus metric in the Fefferman-Graham (FG) form. Provided the boundary metric is
smooth, this is always possible in a neighborhood of the boundary but the FG radial
coordinate may in general not be valid far away from the boundary. In the present
case, the boundary metric is smooth except for the presence of corners. We therefore

7An equivalent form of this metric with A instead of u as a variable was found by C. Núñez (unpub-
lished notes, July 2003).
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except to be able to find a FG coordinates that are well defined in the neighborhood
of the boundary except perhaps at the corner.

In Appendix 4.A.2 we construct the FG metric to all orders in b for the Janus
geometry and determine the range of validity of the radial coordinate. We find that
the FG coordinates are well-defined everywhere in a neighborhood of the boundary
except on the corner where the two half-spheres of the boundary meet. In particular,
the FG metric takes the form

ds2B =
1
z2
o

[
dz2
o + (1 + bc3(x) +O(b2))dz2

d + (1 + bc4(x) +O(b2))dz2
a

]
, (4.77)

where x ≡ zd/zo and za, a = 1, · · · , d− 1 are the standard transverse coordinates in
the upper half plane parameterization of the AdSd slice. The location of the corner
is at zd = 0. The functions c3(x) and c4(x) as well as the form of the FG metric to all
orders in b are given in Appendix 4.A.2. As discussed there this coordinate system
covers the region |x| > xo = b/

√
2 + O(b2), so zd = 0 only when zo = 0. In other

words, this coordinate system does not cover a (radially extended) neighborhood of
zd = 0.

In this coordinate system the background scalar takes the form

φB(x) = φo + cc5(x) +O(c3), (4.78)

where again c5(x) is given in the appendix. It is significant to point out here that on
the boundary, i.e. zo = 0, the value of the scalar field is a step function in zd, namely

φB(zd) = φo + sgn(zd)c, (4.79)

which implies that the coupling of the dual operator is different on the two sides of
the corner, or ‘wall’, at zd = 0. These results are sufficient for calculating correlation
functions, which we do in the next section.

4.2.2 VEVS

Now that we have determined the appropriate FG coordinate system we can
carry out the algorithm we described in Chapter 3 and evaluate the vevs of the stress
tensor and the scalar operator dual to the dilaton, as well as, all two-point functions
using perturbation theory in c. The first step is to define the radial coordinate8 r =
− log zo which is used as the ‘time’ coordinate in the Hamiltonian formalism. Due to
the fact that the background depends also on the transverse space coordinates, a full
asymptotic analysis is required to determine the covariant counterterms. We will not
give these here but they are easily determined following the procedure described in

8This radial coordinate is different from the original radial coordinate in (4.74) but we hope this
causes no confusion.
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the previous chapter. Evaluating these counterterms on the background using the
following expressions for the non-vanishing components of the Christoffel symbol
and Ricci tensor:

Γddd = b
2e
rc′3(x) +O(b2), Γabd = b

2e
rc′4(x)δ

a
b +O(b2),

Rdd = − (d−1)b
2 e2rc′′4(x) +O(b2), Rad = Rab = O(b2),

R = − (d−1)b
2 c′′4(x) +O(b2),

(4.80)

and adding them to the canonical momenta obtained directly by differentiating the
background fields w.r.t. r one obtains the following expressions for the vevs of the
scalar operator and the stress tensor:

〈O〉B = c
zd

|zd|d+1
, 〈T ij 〉B = 0. (4.81)

Although the calculation has been done to leading order in c, it is not difficult to
show that these results are in fact exact. The reason is that the coordinate transfor-
mation (4.110) ensures that for every power of b there is a factor of z2(d−1)

o which
means that higher order in b terms are subleading and do not survive when the regu-
lator is removed. This can also be seen from the exact expressions for the Fefferman-
Graham metric and scalar background given in Appendix 4.A.2, which can be used
to obtain the exact canonical momenta. Namely,

Kd
Bd =

(
1 +

bud

1− u

)1/2

, Ka
Bb =

(
u+

√
(1− u)(1− u+ bud)

)
δab , (4.82)

and
φ̇B(x) = sgn(x)cud/2

√
1− u. (4.83)

One immediately sees that the vevs given above are in fact exact, as claimed.
The form of the vacuum expectation values is the one required by the symmetries

of the problem. As shown in [71], the one-point functions for a conformal field
theory on a flat space with a boundary at zd = 0 (which breaks the conformal group
from O(1, d+ 1) to O(1, d)) are precisely of the form (4.81). In the present case we
consider the theory on both sides of the wall zd = 0. The McAvity-Osborn result
applies separately to the two regions, zd > 0 and zd < 0, and it gives

〈O〉B =
c1
|zd|d , zd > 0, 〈O〉B =

c2
|zd|d , zd < 0. (4.84)

In the present case c1 = −c2 = c.
These considerations suggest [52] that the dual field theory for d = 4 is N = 4

SYM possibly coupled to non-supersymmetric conformal matter localized at zd = 0
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and with gYM being different on the two sides of the wall (similar suggestions can be
formulated in all dimensions). This is consistent with the symmetries of the model:
the presence of the defect breaks the symmetries to O(1, 4) (i.e. the (Euclidean)
conformal group in three dimensions). It would be interesting to investigate whether
there is a classical solution of N = 4 SYM coupled to such defect that can reproduce
(4.81), but we will not pursue this here.9

4.2.3 TWO-POINT FUNCTIONS

Since the leading correction to the AdSd+1 metric is order c2, while the leading
corrections to the (off diagonal) two-point functions are order c, we can take the
background to be exactly AdS and consider linear fluctuations driven by a source T̃ ij
which is of order c. Decomposing the metric fluctuations as was done for flat domain
walls above we derive the following equations for the irreducible components:

−¤ge
i
j = 2κ2Πi

k
l
j T̃

k
l ,

ε̇j = 2κ2
πkj
¤ T̃kd+1,

ḟ = −2κ2 ∂
k

¤ T̃kd+1,

Ṡ =
1

d− 1

(
2κ2T̃d+1d+1 − e−2r¤f

)
,

−¤gφ =
1
2
φ̇BṠ − e−2r

(
Sij∂i∂

jφB + ∂iS
i
j∂
jφB − 1

2
∂jS∂

jφB

)
. (4.85)

Only the first and the last equations need further analysis as the rest give immedi-
ately the momenta as functions of the linear sources. The responses for both the
transverse traceless metric fluctuation and the scalar field fluctuation can be ob-
tained using the massless scalar bulk-to-bulk propagator

G(ξ) =
cd
2dd

ξdF

(
d,
d+ 1

2
;
d

2
+ 1; ξ2

)
(4.86)

which satisfies
−¤gG(ξ) = δ(z, w) =

1√
g
δ(z − w). (4.87)

Here cd = Γ(d)/(Γ(d/2)πd/2) and ξ = 2zowo/(z2
o + w2

o + (~z − ~w)2). As zo → 0

G(ξ) ∼ zdo
d
Kd(w, ~z) (4.88)

9A precise proposal for the dual theory was made in [72]: they consider N = 4 SYM theory on
two half-spaces separated by a planar interface that contains no matter and with a different coupling
constant coupled to specific operator closely related to the N = 4 Lagrangian density. The field theory
computations in [72] exactly agree (to the extend that they can be compared) with the holographic
computations described in this and next subsection.
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where

Kd(w, ~z) = cd

(
wo

w2
o + (~w − ~z)2

)d
(4.89)

is the well-known bulk-to-boundary propagator. To complete the calculation then
we need the source T̃µν which is

T̃µν = ∂µϕ∂νϕ− 1
2
gµνg

ρσ∂ρϕ∂σϕ

= ∂µφB∂νφ+ ∂νφB∂µφ− gAdSµν φ̇B

(
φ̇+

e−2r

zd
∂zd

φ

)
+O(b). (4.90)

Here we have used the fact that the background scalar is a function of x = zd/zo
which implies zd∂zd

φB = φ̇B . With a little more algebra the source can be cast in
the form

T̃d+1d+1 = φ̇B

(
φ̇− e−2r

zd
∂zd

φ

)
+O(b),

T̃jd+1 = φ̇B

(
∂jφ− 1

zd
δjdφ̇

)
+O(b),

T̃ij = φ̇B

[
1
zd

(δid∂jφ+ δjd∂iφ− δij∂zd
φ)− e−2rφ̇δij

]
+O(b). (4.91)

Using these sources and the above bulk-to-bulk propagator we can now evaluate
the canonical momenta which give the one-point functions with linear sources. It
is not difficult to show that no counterterms contribute to the order c terms of the
momenta. It turns out to be easier to obtain the two-point functions from the canon-
ical momentum of the graviton by differentiating w.r.t. the scalar source rather than
from the scalar momentum and so we only consider the graviton momentum here.
Of course both calculations should give identical results and we show this explic-
itly in Appendix 4.A.3, where we calculate the two-point functions from the scalar
momentum.

To obtain the canonical momentum of the transverse traceless component of the
graviton we note that the inhomogeneous solution to its equation of motion is

eij = 2κ2

∫
dd+1w

√
g(w)G(ξ)Πi

k
l
j T̃

k
l (w), (4.92)

so that asymptotically

ėij ∼ −2κ2e−dr
∫
dd+1w

√
g(w)Kd(w,~z)Πi

k
l
j T̃

k
l (w). (4.93)

Substituting the above expressions for the source into the canonical momenta and
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differentiating w.r.t. the scalar source we arrive at the two-point functions

Πi
k
l
j〈T kl (~z)O(~w)〉 = −2(d+ 1)cΠi

d
d
jI(~z, ~w), (4.94)

πlj
∂k
¤ 〈T kl (~z)O(~w)〉 =

πkj
¤

(
〈O(~z)〉B∂kδ(d)(~z − ~w)

)
, (4.95)

πlk〈T kl (~z)O(~w)〉 = −∂
k

¤
(
〈O(~z)〉B∂kδ(d)(~z − ~w)

)
, (4.96)

〈T ii (~z)O(~w)〉 = 0, (4.97)

where the projection operators are acting on ~z and

I(~z, ~w) = c2d

∫
ddxdxox

2d+1
o

xd
(x2
o + x2

d)(d+3)/2

1
[x2
o + (~x− ~z)2]d

1
[x2
o + (~x− ~w)2]d

.

(4.98)
The last three correlators can be easily seen as a consequence of the Ward identities
(2.165) and (2.168), which is a non-trivial consistency check of our calculation. In
fact, since the vevs are exact, these two-point functions must also be exact in c,
although our calculation of the two-point functions was done only to leading order
in c.

The computation of the remaining of the two-point functions 〈Tij(x)Tkl(y)〉 and
〈O(x)O(y)〉 requires an analysis to order c2. This computation is rather complex
since the background metric receives a correction at this order. This means that we
need to linearize the bulk field equations around the corrected solution (4.118). The
latter, however, is inhomogeneous and this complicates the analysis. Nevertheless,
the conformal invariance of the boundary theory completely determines the two-
point function of the scalar operator, while the two-point function of the stress tensor
is determined up to a scalar function (except for d = 2 where it is fully determined)
[71]. It would be interesting to check that the holographic calculation reproduces
these two-point functions as well.

4.2.4 JANUS TWO-POINT FUNCTIONS VS BOUNDARY CFT

Let us now take a closer look at the structure of the Janus two-point functions.
We would like to show that the two-point functions are of the form required by
conformal invariance for a CFT on a space with a wall at zd = 0.10 The subgroup
of the conformal group O(1, d + 1) that leaves zd = 0 invariant is O(1, d). This is
precisely the isometry group of the Janus metric. McAvity and Osborn [71] have

10We are grateful to the authors of [72] for pointing us to the work of McAvity and Osborn and for
prompting us to check that our calculation is consistent with their results.
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given explicitly the form of this two-point function in such a CFT. It is given by

〈T ij (~z)O(~w)〉 = −sgn(zd)c
2d−1d2Γ

(
d
2

)

(d− 1)πd/2

( v

~s2

)d (
XiXj − 1

d
δij

)
, (4.99)

where11

v2 =
ξ

ξ + 1
, ξ =

~s2

4zdwd
, ~s = ~z − ~w, (4.100)

and

Xi = zd
v

ξ
∂iξ = v

(
2zd
~s2

si − ni

)
, (4.101)

with ni = δid. The normalization of the two-point function is fixed by the nor-
malization of the vev of the scalar operator [71]. It is clear from (4.84) that this
normalization has opposite signs for zd > 0 and zd < 0, which is the origin of the
sgn(zd) factor. This expression applies for zdwd > 0, i.e. both points on the same
side of the wall, but not for zdwd < 0. The holographic expression (4.153) applies
to both cases, however. Under conformal transformations that leave the hyperplane
zd = 0 invariant we have

~s2 → ~s2

Ω(~z)Ω(~w)
, zd → zd

Ω(~z)
, wd → wd

Ω(~w)
. (4.102)

It follows that ξ is a conformal invariant while Xi transforms as a vector. In particu-
lar, under inversion ~z → ~z/~z2, ~w → ~w/~w2,

Xi → Iij(~z)Xj , (4.103)

where Iij(~z) = δij − 2 zizj

~z2 . It is easy then to see that the two-point function given
above transforms correctly under inversion, namely

〈T ij (~z′)O( ~w′)〉 = ~z2d ~w2dIik(~z)I
l
j(~z)〈T kl (~z)O(~w)〉. (4.104)

One can show in general, using the fact that the background has the correct isome-
tries, that the holographic two-point functions transform as they should. Since the
results of [71] follow from the same symmetries, this argument shows that our re-
sults are consistent with that of [71]. It is, however, a rather non-trivial exercise
to explicitly demonstrate that the correlator is of the form given in [71], mainly
because of the integral representation of the transverse-traceless part of the corre-
lator. The integral that appears in the transverse traceless part of the holographic
two-point function is not easy to evaluate in general, and evaluating the projection
operator acting on it is not straightforward either. This makes a direct comparison

11We use ξ here to conform with the notation of [71]. This should not be confused with the argument
of the bulk-to-bulk propagator used earlier.
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of the two results rather non-trivial. Instead, we will expand both results in a short
distance expansion and compare them term by term. We do this for the first three
orders in the expansion and we find complete agreement.

To facilitate the comparison we first expand the above result of McAvity and
Osborn. Of course, this expansion is valid only when zdwd > 0, which is also the
condition for the validity of the McAvity-Osborn expression. After some algebra we
get

〈T ij (~z)O(~w)〉 = −c2
d−1d2Γ

(
d
2

)

(d− 1)πd/2
2wd

|2wd|d+1

1
(~s2)d/2

{
sisj
~s2

− 1
d
δij

− 1
2wd

(
nisj + njs

i − ~n · ~sδij + (d− 2)~n · ~ss
isj
~s2

)
(4.105)

+
1

(2wd)2

[
1
2

(
d(d− 2)(~n · ~s)2 − (d+ 2)~s2

) sisj
~s2

+ ~s2ninj

+2d(~n · ~s)n(isj) −
1
2

(
(d+ 2)(~n · ~s)2 − ~s2) δij

]
+O(s3)

}
.

The holographic result can be easily evaluated to this order too. First, using

δ(d)(~s) = − Γ
(
d
2

)

2(d− 2)πd/2
¤ 1

(~s2)
d−2
2

, (4.106)

we find that the longitudinal part of the holographic two-point function reproduces
precisely the first two orders of the short distance expansion of the McAvity and
Osborn result. The transverse traceless part is then evaluated by acting with the
projection operator on

I(~z, ~w) =
Γ

(
d
2 − 1

)
d2

8(d+ 1)πd/2
wd

|wd|d+3

1

(~s2)
d−2
2

(1 +O(s)) , (4.107)

and it reproduces exactly the third order term. Some details of this calculation are
presented in Appendix 4.A.4. Therefore, at least to this order in the short distance
expansion, we have shown that the holographic two-point function is exactly what
one expects for a CFT with a wall at zd = 0.

4.A APPENDIX

4.A.1 CONFORMAL COMPACTIFICATION OF THE JANUS SOLUTION

In order to determine the conformal compactification of the Janus geometry we
introduce a new radial coordinate

z = Ȧ = ±
√

1− u+ bud. (4.108)
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This coordinate has the range −1 ≤ z ≤ 1 for any value of b and the u = 0 region is
mapped to z = ±1. u can be determined as a function of z by solving the algebraic
equation

u− bud = 1− z2 (4.109)

as a power series in b. The relevant solution is the smallest real positive root which
is given for arbitrary d and to all orders in b by

u(z; b, d) = (1− z2)
∞∑
n=0

Γ(nd+ 1)
Γ(n+ 1)Γ(n(d− 1) + 2)

bn(1− z2)n(d−1)

= (d−1)F(d−2)

[(
1
d
,
2
d
, · · · , d− 1

d

)
,

(
2

d− 1
,

3
d− 1

, · · · , d− 2
d− 1

,
d

d− 1

)
,

dd

(d− 1)d−1
b(1− z2)d−1

]
, (4.110)

where pFq is the generalized hypergeometric function. Note that the bound of the u
coordinate mentioned above is just uo = u(0; b, d). It is not possible to express u(z)
in terms of elementary functions except for the cases d = 2 and d = 3. We have
respectively,

u(z; b, 2) =
1
2b

(
1−

√
1− 4b(1− z2)

)
,

u(z; b, 3) =
2√
3b

sin
[
1
3

arcsin
(

3
2

√
3b(1− z2)

)]
. (4.111)

If we now write the (Euclidean) AdSd-slice metric in global coordinates and set
z = sin θ, the metric (4.76) becomes

ds2B =
1

u(sin θ) cos2 λ
× (4.112)

[
dλ2 + cos2 λ

(
1 + (2d− 1)b(cos2 θ)d−1 +O(b2)

)
dθ2 + dτ2 + sin2 λdΩ2

d−2

]
,

where 0 ≤ λ ≤ π/2 and −π/2 ≤ θ ≤ π/2. A few comments are in order here. First,
the transformation (4.110) implies that every power of b in the coefficient of dθ2

comes with a factor of (cos2 θ)d−1 and hence the metric inside the square brackets
is non-singular for any θ. Second, note that the (λ, θ) part of the metric can be
transformed into the standard metric on S2 by introducing the angular coordinate

µ =
∫ sin θ

0

dz√
u(z) (1− bdu(z)d−1)

= θ +
(
d− 1

2

)
b sin θF

(
1
2
,
3
2
− d;

3
2
; sin2 θ

)
+O(b2). (4.113)

This is precisely the angular coordinate introduced in [52, 53] and it takes values in
[−µo, µo], where µo ≥ π/2 is given in equation (B.8) of [53]. Because of the excess
angle the compact metric has a corner at λ = π/2, as is discussed in [53].
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4.A.2 FEFFERMAN-GRAHAM COORDINATES FOR JANUS METRIC

To construct the Fefferman-Graham metric we start with (4.76) and the coordi-
nate transformation (4.110) and write the AdSd-slice metric in the upper-half plane
coordinates. Then

ds2B =
dz2

(1− z2)2
[
1 + 2(d− 1)b(1− z2)d−1 +O(b2)

]

+
1

1− z2

[
1− b(1− z2)d−1 +O(b2)

] 1
z̃2
o

(dz̃2
o + dz2

a), (4.114)

where a = 1, · · · , d− 1. For b = 0 the coordinate transformation

z =
zd√
z2
o + z2

d

, z̃o =
√
z2
o + z2

d, (4.115)

brings this metric into the upper half plane metric with radial coordinate zo. To
determine the Fefferman-Graham form of the Janus metric we need to obtain ap-
propriate b-dependent corrections to this transformation. We can determine these
as a Taylor series in b by introducing two arbitrary functions at each order in b and
solving the differential equations that result by requiring that the transformed met-
ric is of the Fefferman-Graham form. The unique transformation which ensures that
the metric remains asymptotically AdS independent of b is to linear order in b

z =
zd√
z2
o + z2

d

+ bf1(x) +O(b2), z̃o =
√
z2
o + z2

d + bzof2(x) +O(b2), (4.116)

where x ≡ zd/zo and

f1(x) =
x

2(1 + x2)3/2

[(
1− 1

2d

)
1
x2d

F

(
d, d; d+ 1;− 1

x2

)

+
1

2(d+ 1)x2(d+1)
F

(
d+ 1, d; d+ 2;− 1

x2

)
+

1
(1 + x2)d−1

]
,

f2(x) =
1

2
√

1 + x2

[
1 + 2dx2

2dx2d
F

(
d, d; d+ 1;− 1

x2

)

+
1

2(d+ 1)x2d
F

(
d+ 1, d; d+ 2;− 1

x2

)
− 1

(1 + x2)d−1

]
. (4.117)

The metric then takes the from

ds2B =
1
z2
o

[
dz2
o + (1 + bc3(x) +O(b2))dz2

d + (1 + bc4(x) +O(b2))dz2
a

]
, (4.118)
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where

c3(x) =
(2d− 1)
2dx2d

F (d, d; d+ 1;− 1
x2

) +
1

2(d+ 1)x2(d+1)
F (d+ 1, d; d+ 2;− 1

x2
)

− 1
x2(1 + x2)d−1

,

c4(x) = − 1
2dx2d

F (d, d; d+ 1;− 1
x2

). (4.119)

Note that the derivatives of these functions have a much simpler form:

c′3(x) =
1

x3(1 + x2)d

[
−1− (2d− 1)x2 + 2

1 + (d+ 2)x2

(1 + x2)2

]
,

c′4(x) =
1

x(1 + x2)d
. (4.120)

The metric in (4.118) is manifestly invariant under translations and rotations of
the za coordinates and scale transformations (the x coordinate is invariant under
scale transformations). The original metric (4.76) however was invariant under
the larger group O(1, d) associated with the AdS slice metric. We now show that
the metric (4.118) is also invariant under a discrete inversion isometry to order b
which enhances the isometry group to the full O(1, d). Actually, we will see that the
inversion symmetry can be used to obtain the Fefferman-Graham form of the metric
to all orders in b.

Let us write the AdS slice metric in (4.76) in the upper half plane coordinates so
that

ds2B =
du2

4u2(1− u+ bud)
+

1
uz̃2
o

(dz̃2
o + dzadza). (4.121)

This form is invariant under the discrete isometry

z̃o → z̃o
z̃2
o + z2

a

, za → za
z̃2
o + z2

a

. (4.122)

We now bring this metric into the Fefferman-Graham form by means of a coordinate
transformation12

z = s(x; b), z̃o = zot(x; b), (4.123)

where x = zd/zo. We point out that this is precisely the form of the coordinate
transformation (4.116), but we now treat the b-dependence non-perturbatively. This
allows us to express the above discrete isometry in terms of the Fefferman-Graham
coordinates zµ = (zo, za, zd). We find

zµ → zµ

z2
ot(x; b)2 + z2

a

. (4.124)

12Note that u = u(z; b) is given in eq. (4.110).
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Now, the Fefferman-Graham metric (4.118) takes the form

ds2B =
1
z2
o

[
dz2
o + λ(x; b)dz2

d + µ(x; b)dz2
a

]
. (4.125)

The requirement that this is invariant under inversion uniquely determines the func-
tions λ(x; b) and µ(x; b) in terms of t(x; b). Namely we find the exact FG metric

ds2B =
1
z2
o

[
dz2
o +

∂xt

x(t− x∂xt)
dz2
d +

1
t(t− x∂xt)

dz2
a

]
.

(4.126)

Requiring further that this is equal to the Janus metric above uniquely fixes the
transformation functions s(x; b) and t(x; b). In particular we obtain the system of
coupled equations

u = 1− x
∂xt

t
, (∂xs)2 =

1
x2
u2(1− u)(1− bdud−1)2, (4.127)

where u = u(s(x)) is given by (4.110).
In order to solve these equations we use (4.108) to trade s(x) for u(x) in the

second equation, which gives
∫ u(x) du′

u′
√

(1− u′)(1− u′ + bu′d)
= − log x2. (4.128)

The sign and the integration constant are chosen so that u(x) ∼ 1/x2 as x → ∞,
independent of b. Unfortunately it seems rather difficult to do this integral explicitly
for arbitrary dimension d. Instead, one can expand the integrand in b and integrate
term by term. This gives

u(x) =
1

1 + x2
+

b

2d
x2

(1 + x2)d+2
F (d, 2; d+ 1;

1
1 + x2

) +O(b2). (4.129)

The transformation functions s(x; b) and t(x; b) are now determined from

s(x) = 1− u(x) + bu(x)d

t(x) = exp

[
1
2

∫ 1

u(x)

du′

u′

(
1− u′

1− u′ + bu′d

)1/2
]
. (4.130)

Inserting the above expansion for u(x) we reproduce (after some manipulation of
the hypergeometric functions) precisely the coordinate transformation (4.116).

Moreover, inserting (4.129) in

φB(x) = φo + c

∫ x

0

dx′

|x′|u(x
′)d/2

√
1− u(x′), (4.131)
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gives

φB(x) = φo + cc5(x) +O(c3), (4.132)

where φo is a constant and

c5(x) =
x√

1 + x2
F

(
1
2
, 1− d

2
;
3
2
;

x2

1 + x2

)
. (4.133)

Again, this has a simple derivative:

c′5(x) =
1

(1 + x2)(d+1)/2
. (4.134)

Notice that as zo → 0 with all other coordinates fixed (i.e. as we approach the
conformal boundary) c5(x) = sgn(zd) while higher order terms do not contribute.
So at the boundary

φB(zd) = φo + sgn(zd)c. (4.135)

This implies that the coupling of the dual operator is different on the two sides of
the wall.

Finally, let us examine the range of validity of the coordinate transformation
(4.123). The Jacobian of the transformation is equal to J = t∂xs. Now J = 0
implies ∂xs = 0 since t(x) is positive definite, as can be seen from (4.130). It follows
that the coordinate transformation breaks down at u = 1. Note that the zero of
(1 − bdud−1) occurs at u = 1/(bd)1/(d−1) > 1, where the inequality follows from
(4.73). We conclude that the Fefferman-Graham coordinates are valid in the range
0 < u < 1 although, in general 0 ≤ u ≤ uo with uo ≥ 1. Recall that in general the
Fefferman-Graham coordinate system is only guaranteed to exist in a neighborhood
of the boundary, and here we see an explicit illustration of this.

Recall that the Fefferman-Graham coordinate system [45] is obtained as follows
(see Section 3 of [33] for a review). One considers Gaussian normal coordinates
centered at the boundary and the radial coordinate is identified with the affine pa-
rameter of the geodesics emanating perpendicularly from the boundary. Clearly the
region of validity of this coordinate system depends on the behavior of the radial
geodesics. We therefore need to analyze such geodesics, and we will do this in the
(u, z̃o, za) coordinate system which is well-defined everywhere.

One easily shows that there are geodesics with za constant. The geodesic equa-
tions for the remaining coordinates lead to the following two equations

d log z̃o
dτ

= a1u,

ü−
(

1
u

+
−1 + bdud−1

2(1− u+ bud)

)
u̇2 + 2a2

1u
2(1− u+ bud) = 0, (4.136)
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where a1 is an integration constant. If a1 6= 0 the second equation can be integrated
once to get

u̇ = ±2a1u
√

(a2 − u)(1− u+ bud), (4.137)

for some constant 0 < a2 ≤ uo. If a1 = 0 one gets instead

u̇ = ±a3u
√

1− u+ bud, (4.138)

where a3 is again a constant. Now, depending on the values of the parameters a1

and a2, we can identify three qualitatively different types of geodesics as shown in
fig.4.1.

Consider now the radial geodesics defined by żd = ża = 0 in the Fefferman-
Graham coordinates, where the dot stands for the derivative w.r.t. the affine pa-
rameter τ = log zo. Since zd = constant along these geodesics we will take τ =
log(zo/|zd|) = − log |x| for later convenience. The transformation (4.123) immedi-
ately gives

d log z̃o
dτ

= u, (4.139)

while (4.128) implies

u̇ = 2u
√

(1− u)(1− u+ bud). (4.140)

The Fefferman-Graham radial geodesics therefore correspond to radial geodesics
with a1 = a2 = 1. In particular, they are geodesics of type (i) if b > 0 but they are
type (ii) if b = 0. This is an important qualitative difference between the FG coordi-
nates for the Janus geometry and pure AdS. This is in fact why the FG coordinates
cover the whole of AdS but only part of the Janus geometry.

It is now clear why the FG coordinate system for b > 0 breaks down at u =
1. Namely, the radial FG coordinate corresponds to geodesics which do not reach
beyond u = 1. If one continues to affine parameter values greater than τ∗, where
u(τ∗) = 1, the geodesics bounce back and they cannot be used to define a coordinate
system since they doubly cover the region u < 1 as is shown in fig.4.2. Therefore the
FG coordinates are well-defined for affine parameter values τ < τ∗. This means that
|x| = e−τ must be bounded below. Another way to see this is to observe that (4.128)
implies that x2 is a monotonically decreasing function of u. Hence the upper bound
u < 1 on u implies a lower bound on x2. Setting u = 1 in (4.129) and solving for
x to leading order in b we find13 |x| > xo = b/

√
2 + O(b2). Therefore x = 0 is not

part of the manifold and hence the metric (4.118) (and (4.126)) is non-singular in
the region it is well-defined. (To cover the entire spacetime one would have to use
another coordinate patch that covers the deep interior region 1 ≤ u ≤ uo, but this is
irrelevant for our holographic computations.) Notice that the bound on x translates

13One must be careful since the hypergeometric function F (d, 2; d + 1; 1
1+x2 ) is singular at x2 = 0.

See eq. 15.3.12 in [73].
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Figure 4.1: The qualitatively different radial geodesics of the Janus geometry: (i) a2 < uo

with a1 > 0 (solid arrow) or a1 < 0 (broken arrow), (ii) a2 = uo with a1 > 0 (solid arrow)
or a1 < 0 (broken arrow) and (iii) a1 = 0. These qualitative features are insensitive to the
value of b.
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|z d|
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u=1
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τ

τ τ∗=τ = −οο

Figure 4.2: A radial geodesic in the Fefferman-Graham coordinates (left) is not defined
beyond u = 1 due to the failure of the coordinate system at this point. In the coordinate
system which extends beyond u = 1 this geodesic bounces back at u = 1. Only the branch
before the bounce corresponds to the geodesic on the left.

into |zd| > xozo and so only at the boundary zo → 0 does zd cover the entire real
line. More crucially, the bound zo < |zd|/xo means that the radial coordinate, zo, is
well-defined everywhere except at zd = 0, which precisely corresponds to the corner
where the two-halves of the boundary meet. This can also be seen directly from the
properties of type (i) geodesics. Since z̃o → |zd| as τ → −∞ with zd constant along
the geodesics, we have

z̃o(τ) = |zd| exp
∫ τ

−∞
dτ ′u(τ ′). (4.141)

So for b > 0 the FG geodesics hit again the boundary u = 0 at z̃o = |zd|α, where
α = exp

∫ 1

0
du√

(1−u)(1−u+bud)
. At zd = 0 these geodesics become degenerate and they

stay along z̃o = 0. Since the entire z̃o = 0 subspace is mapped to (zo, zd) = (0, 0) in
the FG coordinates, the FG geodesics do not leave the origin once zd = 0. Hence,
the FG radial coordinate is not defined at zd = 0.

Finally let us discuss the possibility to use the geodesics of type (ii) in order
to define FG coordinates. This is also a natural choice as these geodesics are the
obvious generalization of the pure AdS case. Following radial type (ii) geodesics for
the Janus geometry, the exact FG metric is

ds2 =
dz2
o

z2
o

+
uo(uo − u)

uz2
d

dz2
d +

dz2
a

uz̃2
o

, (4.142)
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where

log

(
z
2/
√
uo

o

z2
d

)
=

∫ u du

u
√

(uo − u)(1− u+ bud)
, (4.143)

and

z̃2
o = z2uo

d exp
∫ u

0

du√
(uo − u)(1− u+ bud)

. (4.144)

Asymptotically, i.e. as zo → 0,

ds2 ∼ 1
z2
o

[
dz2
o + (z̃2

d)
1√
u0
−1(dz̃2

d + dz2
a)

]
, (4.145)

where z̃d = zu0
d . So when uo = 1, i.e. the pure AdS case, we get the standard

result but for the Janus solution these geodesics lead to a non-flat representative of
the conformally flat conformal structure. One can perform the additional change
of variables given in (8)-(9) of [74] to change the representative to the flat metric.
Notice however that the conformal factor is singular at zd = 0 so the corresponding
coordinate transformation is singular there. We thus arrive again at the conclusion
that the FG coordinates are not well-defined at the corner.

We have therefore determined the exact form of the Fefferman-Graham metric
for the Janus geometry and we have shown that is well-defined everywhere except
on the defect where the two half-boundaries are joined and it is non-singular where
it is defined. Moreover, we have shown that the FG metric possesses an inversion
isometry which enhances the isometry group to the full O(1, d) isometry group of
the original Janus metric. This is reflected in the fact that the holographic calcula-
tion gives a zero vev for the stress tensor, which is consistent with a boundary QFT
invariant under conformal transformations leaving the plane zd = 0 invariant.

4.A.3 TWO-POINT FUNCTIONS FOR JANUS FROM SCALAR MOMEN-
TUM

Here we give some details of the calculation of the two-point functions for the
Janus background based on the scalar equation of motion (4.85). The non-trivial
part of the calculation consists in casting the source in a form which significantly
reduces the amount of work required. To this end we again use the fact that φB(x)
is a function of x = zd/zo only and it satisfies

φ̈B + dφ̇B + e−2r¤φB = O(b), (4.146)

to write

∂jφB(x) = δjd
1
zd
φ̇B , ∂i∂jφB = −(d+ 1)δidδjd

φ̇B
z2
o + z2

d

+O(b). (4.147)
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Decomposing Sij into irreducible components then (4.85) becomes

−¤gφ = −czo∂i
[

1

(1 + x2)
d+1
2

eid

]
+

cx

(1 + x2)
d+1
2

{
− z2

o

2(d− 1)
¤f

+
(d+ 1)
1 + x2

[
2∂zd

εd +
d

d− 1

(
1
d
− ∂2

zd

¤

)
f +

∂2
zd

¤ S

]

−z
2
o

zd

[
¤εd − ∂zd

f +
1
2
∂zd

S

]}
+O(b). (4.148)

Quite remarkably, this can be cast in the form

−¤gφ = −czo∂i
[

1

(1 + x2)
d+1
2

eid

]
−¤gJ̃φ +O(b), (4.149)

where

J̃φ =
czdo

(z2
o + z2

d)
d+1
2

[
α+ εd +

1
2
∂zd

¤ S +
1

2(d− 1)

(
zd − d

∂zd

¤

)
f

]
, (4.150)

and α is a constant. Hence, the inhomogeneous solution is

φ = J̃φ − c

∫
dd+1w

√
g(w)G(ξ)∂i

[
zo

(1 + x2)
d+1
2

eid

]
, (4.151)

where eid is given by the zero-order solution

eij(z) =
∫
ddyKd(z, ~y)e(0)ij(~y). (4.152)

This expression for φ immediately gives the canonical momentum from which we
obtain the two-point function by differentiating w.r.t. S(0)

i
j .

14 The result is

〈T ij (~z)O(~w)〉 = −2(d+ 1)cΠi
d
d
jI(~z, ~w) (4.153)

− cd

|wd|d+1

[
2π(i

d

∂j)

¤ + δij
∂d
¤ +

1
d− 1

(
wd − d

∂d
¤

)
πij −

1
d
wdδ

i
j

]

w

δ(d)(~z − ~w).

It is a straightforward exercise to verify that this is equivalent to the two-point func-
tions given above, as calculated from the graviton momentum.

14Note that

〈Tij(x)O(x′)〉 =

0
B@ −1q

g(0)(x
′)

δ

δφ(0)(x
′)

1
CA

0
B@ −2q

g(0)(x)

δ

δg(0)
ij(x)

1
CA W

=
−1q

g(0)(x
′)

δ

δφ(0)(x
′)
〈Tij(x)〉 =

−2q
g(0)(x)

δ

δg(0)
ij(x)

〈O(x′)〉+ δ(d)(x, x′)g(0)ij(x)〈O(x′)〉,

and so if one starts the computation from the scalar one-point functions, one should remember to include
the contact term given above to obtain the full expression.
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4.A.4 SHORT DISTANCE EXPANSION OF THE HOLOGRAPHIC TWO-
POINT FUNCTION 〈T i

j (~z)O(~w)〉
For the convenience of the reader we will give here the essential steps required

to evaluate the short distance expansion of the transverse traceless part of the holo-
graphic two-point function 〈T ij (~z)O(~w)〉, namely Πi

d
d
jI(~z, ~w), where I(~z, ~w) is given

in (4.98).15

First, after a shift and rescaling of the integration variables, I(~z, ~w) can be written
as

I(~z, ~w) =
c2d

(~s2)d/2−1

∫ ∞

0

dxox
2d+1
o × (4.154)

∫
ddx

wd + |~s|xd
[x2
o~s

2 + (wd + |~s|xd)2]
d+3
2

1

[x2
o + ~x2]d

1

[x2
o + (~x− ŝ)2]d

,

where ŝ = ~s/~s2. This form is suitable for a short distance expansion in |~s|. Each term
in the expansion can be explicitly evaluated using the standard Feynman parameters
technique. The result to leading order is given in (4.107).

To evaluate the projection operator on this expression we use the fact that

1
(~s2)α

= − 1
2(α− 1)(d− 2α)

¤ 1
(~s2)α−1

, (4.155)

for any power α 6= d/2 in order to cancel the 1/¤ factors in the projection operator.
It is then straightforward to evaluate the derivatives in the numerator of the projec-
tion operator to obtain the short distance expansion of the transverse traceless part.
The result is given in section 4.2.4.

15Incidentally, this integral transforms under inversion as I(~z′, ~w′) = ~z2d ~w2dI(~z, ~w) and hence it must
be of the form f(v)/(~s2)d for some function f(v), where v is defined in (4.100). However, we have not
succeeded in determining this function so far.
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In this chapter we consider black hole solutions of the supergravity equations.
Black hole spacetimes have a horizon and are characterized by a number of asymp-
totic charges, such as mass, electric and magnetic charges. The AdS/CFT duality
implies that the field theory living on the conformal boundary of such spacetimes is
a field theory at non-zero temperature [19, 75]. The thermodynamics of the black
hole is then mapped to the thermodynamics of the strongly coupled thermal field
theory.

Moreover, we have seen that in the saddle point approximation the string par-
tition function involves a sum over all AlAdS manifolds with the same conformal
boundary (see the recent review [76] for an extensive discussion and concrete exam-
ples of bulk manifolds with a given boundary). Via the AdS/CFT dictionary, different
bulk manifolds with the same conformal boundary correspond to different vacua of
the field theory residing on the common boundary. Which vacuum dominates the
path integral is then dictated by the value of the on-shell Euclidean action.

When applied to spacetimes with a non-zero temperature (i.e. with periodic Eu-
clidean time), this observation leads to the possibility of thermal phase transitions
between different vacua. For example, it was argued in [19] that the Hawking-Page
transition [77] between thermal AdSd+1 at low temperature and the Schwarzchild-
AdSd+1 black hole at high temperature, both of which have a boundary with topol-
ogy S1 × Sd−1, implies a confining/deconfining phase transition for the boundary
strongly coupled field theory. Although the field theory lives on a finite volume
space, namely S1 × Sd−1, such a phase transition is possible in the N →∞ limit.

While the AdS/CFT conjecture has been the driving force behind the recent in-
terest in asymptotically AdS spacetimes, such spaces have been long studied on
their own merit. In particular, an important aspect of asymptotically AdS space-
times that has attracted considerable attention over the years is the definition of
conserved charges associated with the asymptotic symmetries of such spacetimes
[78, 42, 43, 79, 80], see also [81] and references therein.

Even though most of the literature studies ‘asymptotically AdS spacetimes’ in the
restricted sense, that is spacetimes which asymptotically become exactly AdS with
the standard conformal boundary R× Sd−1, it has proved difficult to define asymp-
totic charges for such spacetimes. The main obstruction in defining such conserved
charges is the fact that the infinite volume of these spacetimes causes various ‘nat-
ural candidates’ for conserved quantities, such as Komar integrals, to diverge [82].
One is then forced to introduce some regularization procedure, which is inherently
ambiguous.

Various approaches have been suggested to circumvent this difficulty. Some of
them exploit the special properties of AdS to construct conserved quantities which
are manifestly finite, e.g. [42, 43], while others embed the asymptotically AdS
spacetime into a spacetime with the same asymptotics (most often exact AdS) and
then define manifestly finite conserved quantities relative to the ambient spacetime,
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e.g. [83, 84]. Although the philosophy and the precise definition of the conserved
charges varies among these methods, they all implement some form of ‘background
subtraction’. However, not all asymptotically locally AdS spacetimes can be embed-
ded in a suitable ambient spacetime and, therefore, it is desirable that one has a
background independent definition of the conserved charges of any AlAdS space.

It is known that holographic renormalization does provide such a background
independent definition of the conserved charges for any AlAdS space. As we will re-
view below, the renormalized one-point function of the stress tensor of the dual field
theory, which is identified with the non-local term π(d)

ij in the covariant expansion
of the canonical momentum conjugate to the induced metric γij (see (3.57)), leads
to a well-defined and general expression for the conserved charges associated with
the asymptotic symmetries of an AlAdS space.

Nevertheless, there has long existed a debate about the connection between the
holographic charges and the various alternative definitions of conserved charges
and, in particular, regarding the question of whether the holographic charges of
AlAdS black holes satisfy the first law of black hole mechanics [85]. One of the
aims of this chapter, which is a mildly revised version of the paper [3], is to clarify
the concept of the holographic charges (see also[86]) and, in particular, to prove in
general that all AlAdS black holes satisfy the first law of black hole mechanics and
the charges entering this law are the holographic charges.

We start in this chapter by formulating the variational problem with Dirichlet
boundary conditions for AdS gravity. As we have discussed in Chapter 3, the bulk
metric induces only a conformal structure - and not a metric - on the boundary and
so, the Dirichlet problem for AdS gravity requires that a conformal structure is kept
fixed on the boundary and not a metric. Any other choice of Dirichlet boundary con-
ditions breaks part of the bulk diffeomorphisms, namely the ones that induce a Weyl
transformation at the boundary. We then show that the variational problem for such
Dirichlet boundary conditions is well-posed provided the conformal anomaly A is
zero and a set of new covariant boundary terms (in addition to the Gibbons-Hawking
term) is added to the action. These new boundary terms are precisely the boundary
counterterms introduced in [29, 34] in order to achieve finiteness of the on-shell ac-
tion and of the holographic stress energy tensor as we discussed in Chapter 3. If the
conformal anomaly is non-zero, however, one has to choose a specific representative
of the boundary conformal structure to make the variational problem well-posed,
thus breaking part of the bulk diffeomorphisms. In this case the boundary countert-
erms guarantee that the on-shell action has a well-defined transformation under the
broken diffeomorphisms, the transformation rule being determined by the confor-
mal anomaly. In other words, we need to pick a reference representative in this case,
but the change from one representative to another is essentially determined by the
conformal class of the boundary metric via the conformal anomaly.

We then use Noether’s theorem to derive the conserved charges for AlAdS space-
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times that possess asymptotic symmetries and we show that they are precisely the
holographic charges (see also [86] where the same conclusion was drawn by differ-
ent methods.) The holographic charges were originally derived [34, 30, 74] using
the Brown-York prescription [87] supplemented by appropriate boundary countert-
erms [29]. Finally, we show that the covariant phase space method of Wald et al
[88, 89, 90] also reproduces the holographic charges.

These results allow us then to prove that the holographic charges for general sta-
tionary, axisymmetric, charged AlAdS black holes in any dimension satisfy the first
law of black hole mechanics, provided the variations that enter in the first law respect
the boundary conditions. These variations need not respect any of the symmetries
of the solution however. This resolves a puzzle in the literature where it seemed that
only the charges relative to exact AdS satisfy the first law [18]. The key observation
is that in some cases, such as the Kerr-AdS black holes in Boyer-Lindquist coordi-
nates, the conformal representative on the boundary depends on the parameters of
the black hole, in this case the mass and the rotational parameters. Since these
parameters correspond essentially to the conserved charges of the solution, varying
these charges will generically change the representative of the conformal structure.
While this poses no problem in the absence of a conformal anomaly, when there is a
conformal anomaly it leads to the violation of the allowed boundary conditions. In
this case, to preserve the boundary conditions one must undo the change in the con-
formal representative by a compensating bulk diffeomorphism. It is then found that
the combined variations resulting from the variation of the black hole parameters
and the compensating diffeomorphism do satisfy the first law.

We finally illustrate this mechanism in the context of the four-dimensional Kerr-
Newman-AdS and the five-dimensional Kerr-AdS black holes. Several technical re-
sults are collected in the appendices. In particular, in Appendix 5.A.4 we comment
on the connection between the ‘conformal mass’ of Ashtekar and Magnon [42] and
the holographic mass.

In this chapter we work with Lorentzian signature. The relevant formulas for
holographic renormalization in Lorentzian signature can be found in Appendix 3.A.3.

5.1 COUNTERTERMS AND THE VARIATIONAL PROBLEM

FOR ADS GRAVITY

5.1.1 THE THEORY

We will consider in this section the variational problem for AdS gravity coupled
to scalars and a Maxwell field. Other matter fields, like forms and non-abelian gauge
fields, can be easily incorporated in the analysis, but for simplicity we do not include
them. Moreover, to keep the analysis general we do not include any Chern-Simons
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terms since their particular form depends on the spacetime dimension. Within this
framework we consider the most general Lagrangian consistent with the fact that the
field equations admit a solution that is asymptotically locally AdS. The Lagrangian
D-form (D=d+ 1) is given by

L =
(

1
2κ2

R− V (ϕ)
)
∗ 1− 1

2
GIJ(ϕ)dϕI ∧ ∗dϕJ − 1

2
U(ϕ)F ∧ ∗F, (5.1)

where we use mostly plus signature and F = dA and V (ϕ), U(ϕ) and GIJ(ϕ) are
only constrained by the requirement that the field equations admit AlAdS solutions.
The exact conditions follow from the asymptotic analysis discussed in the next sub-
section, but we will not need the detailed form of the conditions here.

The variation of the Lagrangian with respect to arbitrary field variations takes
the form

δL = Eδψ + dΘ(ψ, δψ), (5.2)

where we use ψ = (gµν , Aµ, ϕI) to denote collectively all fields and E is the equa-
tions of motion D-form. More specifically, we have

δL = Eµν (1)δgµν + Eµ(2)δAµ + E(3)
I δϕI + dΘ(ψ, δψ), (5.3)

where

E(1)
µν = − 1

2κ2

(
Rµν − 1

2
Rgµν − κ2T̃µν

)
∗ 1,

E(2)
ν = ∇µ(U(ϕ)Fµν) ∗ 1, (5.4)

E(3)
I =

(
∇µ(GIJ(ϕ)∂µϕJ)− 1

2
∂GJK
∂ϕI

∂µϕ
J∂µϕK − ∂V

∂ϕI
− 1

4
∂U

∂ϕI
FµνF

µν

)
∗ 1,

and the matter stress tensor is given by

T̃µν = GIJ (ϕ)∂µϕI∂νϕJ + U(ϕ)FµρFνρ − gµνLm, (5.5)

with Lm denoting the matter part of the Lagrangian. Moreover,

Θ(ψ, δψ) = − ∗ v(ψ, δψ), (5.6)

where

vµ = − 1
2κ2

(gµρ∇σδgρσ − gρσ∇µδgρσ) +GIJ (ϕ)δϕI∇µϕJ + U(ϕ)FµνδAν . (5.7)

5.1.2 GAUGE INVARIANCE OF THE RENORMALIZED ACTION

In this section we first determine the most general bulk diffeomorphisms and
U(1) gauge transformations which preserve the gauge-fixed metric (3.35) as well
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as the gauge condition Ar = 0 for the Maxwell field. We note that this gauge
need only be preserved up to terms of next-to-normalizable mode order, i.e. up
to order e−(d−1)r. Such transformations leave invariant the functional form of the
boundary conditions, of the asymptotic solutions, and of the counterterm action on
the regulated boundary Σro . Subsequently, we derive the maximal subset of gauge-
preserving transformations that leave the renormalized action invariant, where only
the functional form of the boundary conditions is imposed, namely we require that

γij(r, x) ∼ e2rg(0)ij(x), Ai(x, r) ∼ A(0)i(x), ϕI(r, x) ∼ φI(0)(x)e
−(d−∆I)r,

(5.8)
but no conditions are imposed on g(0)ij , A(0)i, φ

I
(0). Notice that the transformations

below do act on these coefficients.
In the gauge (3.35), the Lie derivative, Lξ, of the bulk fields w.r.t. a bulk vector

field ξµ is given by

Lξgrr = ξ̇r,

Lξgri = γij(ξ̇j + ∂jξr),

Lξgij = Lξγij + 2Kijξ
r ∼ Lξγij + 2γijξr, (5.9)

LξAr = Aj ξ̇
j ,

LξAi = LξAi + ξrȦi ∼ LξAi, (5.10)

LξϕI = Lξϕ
I + ξrϕ̇I ∼ Lξϕ

I + (∆I − d)ξrϕI , (5.11)

where Lξ is the Lie derivative w.r.t. the transverse components ξi of the bulk vector
field ξ. This bulk diffeomorphism, combined with a U(1) gauge transformation,
preserves the gauge fixing (up to the desired order; see (5.22) below) provided
Lξgrr = Lξgri = O(e−dr) and LξAr+ α̇ = O(e−(d+2)r). Integrating these conditions
gives:

ξr = δσ(x) +O(e−dr),

ξi = ξio(x) + ∂jδσ(x)
∫ ∞

r

dr′γji(r′, x) +O(e−(d+2)r),

α = αo(x) + ∂iδσ(x)
∫ ∞

r

dr′Ai(r′, x) +O(e−(d+2)r), (5.12)

where δσ(x) and αo(x) are arbitrary functions of the transverse coordinates and
ξio(x) is an arbitrary transverse vector field. For ξo = 0, this bulk diffeomorphism
is precisely the ‘Penrose-Brown-Henneaux (PBH) transformation’ [44, 91] which in-
duces a Weyl transformation on the conformal boundary [92, 30, 74]. Here, we will
call a ‘PBH transformation’ the combined bulk diffeomorphism with ξo = 0 and the
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gauge transformation with αo = 0, which is required in order to preserve the gauge
of the Maxwell field.

Next we determine which subset of (5.12) leaves invariant the renormalized
action

Iren =
∫

Mro

L +
1
κ2

∫

Σro

ddx
√−γK + Ict, (5.13)

where

L =
(

1
2κ2

R[g] + Lm

)
∗ 1, (5.14)

and Ict is given by (3.55). Since L is covariant under diffeomorphisms and gauge
invariant, we have

δξL = LξL = diξL, δαL = 0, (5.15)

where we have used the identity Lξ = iξd + diξ for the Lie derivative on forms.
Hence,

δξ,αIren =
∫

Σro

ddx
√−γξr

(
1

2κ2
R[g] + Lm

)
+

1
κ2
δξ

∫

Σro

ddx
√−γK + δξ,αIct.

(5.16)
Now, in the gauge we are using, the Ricci scalar of the bulk metric can be expressed
as

R[g] = R+K2 −KijK
ij − 2√−γ ∂r(

√−γK), (5.17)

Moreover, for the diffeomorphisms given by (5.12) a short computation gives

δξ

∫

Σro

ddx
√−γK =

∫

Σro

ddxξr∂r(
√−γK), (5.18)

and hence

δξ,αIren =
1

2κ2

∫

Σro

ddx
√−γξr (

R+K2 −KijK
ij + 2κ2Lm

)
+ δξ,αIct. (5.19)

The last term takes the form

δξ,αIct =
∫

Σro

ddx
(
π̂ijctδξγij + π̂ct Iδξϕ

I + π̂ict(δξAi + ∂iα)
)
, (5.20)

where we put hats on the counterterm momenta to emphasize that they should be
viewed as predetermined local functionals of the induced fields as opposed to the
asymptotic behavior of the radial derivative of the on-shell induced fields. Inserting
now the transformation (5.12) and using the second equation in (3.38) and the first
equation in (3.121), which the counterterms satisfy by construction, we are left with

δξ,αIren =
∫

Σro

ddxξr
{

1
2κ2

√−γ (
R+K2 −KijK

ij + 2κ2Lm

)

+
(
π̂ijct2Kij + π̂ct Iϕ̇

I + π̂ictȦi

) }
. (5.21)
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Using the form of the boundary conditions (5.8) one finds that the leading order
divergent term cancels and the terms inside the curly brackets are of order e(d−1)r.
We therefore conclude that a transformation (5.12) that leaves the renormalized
action invariant must have

ξr = O(e−dr), ξ̇i = −∂iξr +O(e−(d+2)r) = O(e−(d+2)r). (5.22)

This leaves us with ξi = ξio(x) and α = αo(x), up to sufficiently high order in e−r as
r →∞.

In fact, as is well known, the PBH transformation, i.e. the part of the transforma-
tion (5.12) that is driven by δσ(x), induces a Weyl transformation on the boundary
and even the on-shell renormalized action is not invariant under such transforma-
tions unless the anomaly vanishes. To see this let us first rewrite the Hamilton
constraint (first equation in (3.38)) as

1
2κ2

√−γ (
R+K2 −KijK

ij + 2κ2Lm

)
= πij2Kij + πI ϕ̇

I + πiȦi. (5.23)

Then, using the trace Ward identity (2.168), (5.21) becomes on-shell

δξ,αI
on−shell
ren =

∫

Σro

ddx
√−γξrA. (5.24)

5.1.3 VARIATIONAL PROBLEM

We investigate in this section under which conditions the variational problem is
well-posed, i.e. under which conditions the boundary terms in the variation of the
action cancel so that δI = 0 (under generic variation) implies the field equations
and vice versa.

Let nµ be the outward unit normal to the hypersurfaces Σr. Using (5.7) and the
definition of the radial momenta (3.125) one easily finds that the pullback of Θ onto
Σr is given by1

Θ = −nµvµ ∗Σ 1

=
(
− 1
κ2
δ(
√−γK) + πijδγij + πiδAi + πIδϕ

I

)
dµ, (5.25)

where
√−γdµ ≡ ∗Σ1, and ∗Σ denotes the Hodge dual w.r.t. Σr. We thus arrive at

the well-known fact [48] that the Gibbons-Hawking term is sufficient to render the
variational problem well-defined when all induced fields at the boundary are kept
fixed, i.e.

δγij = 0, δAi = 0, δϕI = 0, on Σro . (5.26)

1Up to an exact term d(∗y), where yµ = 1
2κ2 nρgµσδgρσ vanishes for variations that preserve the

gauge fixing.
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These boundary conditions are perfectly acceptable for the regulated manifold with
boundary Σro at finite ro, since the bulk fields uniquely induce fields on Σro . How-
ever, as Σro → ∂M this is no longer the case. The induced fields generically diverge
(or vanish) in this limit and the bulk fields only determine the conformal class of the
boundary fields. It is therefore not possible to impose the above boundary condi-
tions on the conformal boundary. At most, one can demand that the boundary fields
are kept fixed up to a Weyl transformation, namely

δγij = 2γijδσ, δAi = 0, δϕI = (∆I − d)ϕIδσ, on ∂M. (5.27)

To implement these weaker boundary conditions we insert the expansions (3.51)
into (5.25) and use (3.43) to get

Θ =
{
− 1
κ2
δ(
√−γK)− (πijctδγij + πictδAi + πctIδϕ

I)

+
√−γ(π(d)

ijδγij + π(d)
iδAi + π(∆I)Iδϕ

I) + · · ·
}
dµ

=
{
δ

(
− 1
κ2

√−γ[K − (K − λ)ct]
)

+
√−γ(π(d)

ijδγij + π(d)
iδAi + π(∆I)Iδϕ

I) + · · ·
}
dµ. (5.28)

Hence,
∫

Σro

Θ = δ

(
− 1
κ2

∫

Σro

ddx
√−γK−Ict

)
(5.29)

+
∫

Σro

ddx
√−γ [

π(d)
ijδγij + π(d)

iδAi + π(∆I)Iδϕ
I + · · · ] ,

where the dots denote terms of higher dilatation weight which do not survive after
the regulator is removed and Ict is local in the boundary fields. Finally we insert the
boundary conditions (5.27) and use the diffeomorphism and trace Ward identities
(2.165) and (2.168) to arrive at

∫

Σro

Θ = δ

(
− 1
κ2

∫

Σro

ddx
√−γK−Ict

)
+

∫

Σro

ddx
√−γAδσ. (5.30)

It follows that
δIon−shell

ren =
∫

Σro

ddx
√−γAδσ. (5.31)

Notice that A is uniquely determined from boundary data. Furthermore, its integral
is conformally invariant. It follows that A is a conformal density of weight d modulo
total derivatives.

There are three cases to discuss now.
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1. The unintegrated anomaly vanishes identically:

A ≡ 0. (5.32)

This is the case, for instance, for pure AAdS gravity in even dimensions. Our
analysis shows that the variational problem in this case is well-posed, provided
we augment the Gibbons-Hawking term by the usual counterterms.

2. The integrated anomaly vanishes for a particular conformal class [g(0)],

A[g(0)] ≡
∫

∂M
ddx

√−g(0)A[g(0)] = 0. (5.33)

This is the case, for instance, for pure AAdS gravity in odd dimensions with the
conformal class represented by the standard metric on the boundary R×Sd−1.
When (5.33) holds the anomaly density does not necessarily vanish and so the
variational problem with the boundary conditions (5.27) is not well-defined in
general since the variation of the action generically contains a non-vanishing
boundary term. Nevertheless, the vanishing of the integrated anomaly guar-
antees that there exists a representative g(0) of the conformal class [g(0)] for
which the anomaly density, A, is zero. For instance, for pure AAdS gravity
in odd dimensions such a representative is the standard metric on R × Sd−1.
Hence one can pick a suitable defining function which induces this particular
representative. In practice this means that we want to perform a PBH trans-
formation such that the resulting radial coordinate acts as a defining function
which induces the desired representative. We then consider the variational
problem around this gauge that corresponds to the privileged representative of
the conformal structure at the boundary for which the anomaly density van-
ishes. However, this ensures only that the first order variation of the action
will contain no boundary terms. To make the variational problem well-defined
to all orders one is forced to break the bulk diffeomorphisms which induce a
Weyl transformation on the boundary and consider variations of the bulk fields
which preserve a particular representative of the conformal class. In other
words, in this case, in order to make the variational problem well-defined to
all orders we must impose the boundary conditions,

δg(0)ij = 0, δA(0)i = 0, δφ(0) = 0, (5.34)

where g(0)ij(x) is the chosen representative of the conformal structure and
A(0)i(x) and φ(0)(x) are the leading terms in the asymptotic expansion of the
bulk gauge and scalar fields, respectively,

Ai(r, x) = A(0)i(x)(1 +O(e−r)), ϕ(r, x) = φ(0)(x)e−(d−∆I)r(1 +O(e−r)).
(5.35)
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As we have seen, however, this is only possible if one breaks certain bulk
diffeomorphisms.

3. The integrated anomaly is non-zero. In this case, to ensure that the variational
problem is well defined already at leading order, we have to pick a represen-
tative and allow only variations that preserve the corresponding gauge.

To summarize, we have seen that bulk covariance in AlAdS spaces requires that
we formulate the variational problem with the boundary conditions (5.27) instead of
the stronger (5.26). The counterterms are essential in making the variational prob-
lem well-defined with such boundary conditions and are exactly on the same footing
with the Gibbons-Hawking term. However, when the unintegrated anomaly does not
vanish identically, the variational problem can only be well-defined (to all orders)
with the boundary conditions (5.34), which can only be imposed if certain bulk dif-
feomorphisms are broken. The counterterms in this case guarantee that the on-shell
action has a well-defined transformation under the broken diffeomorphisms. The
transformation is given precisely by the anomaly.

5.2 THE HOLOGRAPHIC CHARGES ARE NOETHER CHARGES

5.2.1 CONSERVED CHARGES ASSOCIATED WITH ASYMPTOTIC SYM-
METRIES

We have seen in section 5.1.2 that the renormalized action is invariant under
bulk diffeomorphisms and U(1) gauge transformations that asymptotically take the
form (5.12) provided ξr = O(e−dr). Moreover, requiring that such transformations
preserve the boundary conditions (5.27) constrains ξi to be an asymptotic conformal
Killing vector, i.e. to asymptotically approach a boundary conformal Killing vector
(see Appendix 5.A.1 for the precise definition). When the anomaly does not vanish,
however, we impose the boundary conditions (5.34) which are only preserved if ξi

is a boundary Killing vector (as opposed to asymptotic conformal Killing vector).
We now apply Noether’s theorem to extract the conserved currents and charges

associated with these asymptotic symmetries. To this end we first consider the fol-
lowing field variations:

δ1ψ = f1(r, x)Lξψ, δ2ψ = f2(r, x)δαψ, (5.36)

where f1(r, x), f2(r, x) are arbitrary functions onMwhich reduce to functions f̄1(x)
and f̄2(x) respectively on ∂M, ξi is an asymptotic conformal Killing vector of the
induced fields on Σr and α is a gauge parameter which asymptotically tends to a
constant. These, transformations are not a symmetry of the renormalized action
unless f1 and f2 are constants, but they preserve the boundary conditions (5.27) for

147



5.2. THE HOLOGRAPHIC CHARGES ARE NOETHER CHARGES

arbitrary f1, f2. Varying the renormalized action, whose general variation is given
by

δIren =
∫

Mro

Eδψ +
∫

Σro

ddx
√−γ (

π(d)
ijδγij + π(d)

iδAi + π(∆I)Iδϕ
I
)
, (5.37)

with respect to such field variations we will now derive the conserved Noether
charges.

Electric charge

Let us first consider the transformation δ2ψ and derive the corresponding con-
served current. Since δαL = 0, we have from (5.2)

Eδαψ = −dΘ(ψ, δαψ). (5.38)

Hence,

δ2Iren = −
∫

Mro

f2dΘ(ψ, δαψ) +
∫

Σro

ddx
√−γf2π(d)

i∂iα, (5.39)

But α is asymptotically constant and so the boundary term vanishes. Hence, on-
shell the bulk integral on the RHS must vanish for arbitrary f2, which leads to the
conservation law for the U(1) current

Jα ≡ Θ(ψ, δαψ). (5.40)

Since on-shell Jα is closed, it is locally exact. In fact one easily finds

Jα = dQα, (5.41)

where Qα = −α ∗ F and Fµν = U(ϕ)Fµν . Then, given a Cauchy surface C, the
conserved Noether charge is given by2

Q =
∫

C

Jα = −
∫

∂M∩C
∗F , (5.42)

where we have assumed without loss of generality that α → 1 on ∂M. One can
check that this charge is conserved, i.e. independent of the Cauchy surface C, which
follows immediately from the field equation

d ∗ F = 0. (5.43)

Charges associated with boundary conformal isometries

2 Throughout this chapter we use the convention about the (relative) orientation εrti2···id
≡

εti2···id
= +1. The minus sign in the definition of the electric charge is included to compensate for

this choice of orientation, which is opposite from the conventional one.
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The same argument can be applied to derive the conserved currents and Noether
charges associated with asymptotic conformal isometries of the induced fields. Again
from (5.2) we have

ELξψ = d (iξL−Θ(ψ,Lξψ)) . (5.44)

Hence, defining the current

J[ξ] ≡ Θ(ψ,Lξψ)− iξL, (5.45)

we get

δ1Iren = −
∫

Mro

f1dJ[ξ] +
∫

Σro

ddx
√−γf1

(
π(d)

ijLξγij + π(d)LξAi + π(∆I)ILξϕ
I
)
.

(5.46)
Since ξi is an asymptotically conformal Killing vector, it follows that

δ1Iren = −
∫

Mro

f1dJ[ξ] +
∫

Σro

ddx
√−γf1

(
2π(d)

i
i + (∆I − d)π(∆I)Iϕ

I
) 1
d
Diξ

i.

(5.47)
Now, evaluating the LHS using (5.31) and the RHS using the trace Ward identity
(2.168), we deduce that on-shell the bulk integral vanishes, which leads to the con-
servation law

dJ[ξ] = 0. (5.48)

Hence, J[ξ] is locally exact, J[ξ] = dQ[ξ], and it is easily shown that

Q[ξ] = − 1
κ2
∗Ξ[ξ], (5.49)

where the 2-form Ξ is given by

Ξµν = ∇[µξν] + κ2U(ϕ)FµνAρξρ. (5.50)

However, J[ξ] is not the full Noether current in this case as there is an extra contri-
bution with support on Σro . To derive the correct form of the current we use (5.28)
to rewrite (5.46) as

δ1Iren =
∫

Mro

df1 ∧ J[ξ]−
∫

Σro

f1J[ξ]

+
∫

Σro

ddx
√−γf1

(
π(d)

ijLξγij + π(d)LξAi + π(∆I)ILξϕ
I
)

(5.51)

=
∫

Mro

df1 ∧ J[ξ] +
∫

Σro

f1iξL +
∫

Σro

ddxf1δξ

(
1
κ2

√−γ[K − (K − λ)ct]
)
.

Since ξ is tangent to Σro , the second term vanishes. To put the last term in the
desired form, we define the d-form

B ≡ − 1
κ2

[K − (K − λ)ct] ∗Σ 1 (5.52)
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on Σr which is covariant w.r.t. diffeomorphisms within Σr. Using the identity Lξ =
d̄iξ + iξd̄ on forms, d̄ being the exterior derivative on Σr, we obtain

δ1Iren =
∫

Mro

df1 ∧ J[ξ]−
∫

Σro

f1δξB

=
∫

Mro

df1 ∧ J[ξ]−
∫

Σro

f1d̄iξB

=
∫

Mro

df1 ∧ J[ξ] +
∫

Σro

d̄f1 ∧ iξB

=
∫

Mro

df1 ∧ J[ξ] +
∫

Mro

ρ(Σro) ∧ df1 ∧ iξB, (5.53)

where ρ(Σr) is a one-form with delta function support on Σr, known as the Poincaré
dual of Σr in M. Therefore, the full Noether current is

J̃[ξ] ≡ J[ξ]− ρ(Σro
) ∧ iξB. (5.54)

Given a Cauchy surface C, we now define the Noether charge

Q[ξ] ≡
∫

C

J̃[ξ] =
∫

∂M∩C
(Q[ξ]− iξB) . (5.55)

If C and C ′ are two Cauchy surfaces whose intersection with ∂M bounds a domain
∆ ⊂ ∂M, then Stokes’ theorem and the conservation law (5.48) imply

QC [ξ]−QC′ [ξ] =
∫

∆⊂∂M
(J[ξ]− diξB)

=
∫

∂M
ddx

√−γ (
π(d)

ijLξγij + π(d)LξAi + π(∆I)ILξϕ
I
)

=
∫

∂M
ddx

√−γ (
π(d)

i
i + (∆I − d)π(∆I)Iϕ

I
) 1
d
Diξ

i

=
∫

∂M
ddx

√−γA1
d
Diξ

i. (5.56)

Therefore, if the anomaly vanishes, this charge is conserved for any asymptotic con-
formal Killing vector. However, if the anomaly is non-zero, it is only conserved for
symmetries associated with boundary Killing vectors.

5.2.2 HOLOGRAPHIC CHARGES

Let us now derive an alternative form of the conserved charges by considering
instead of (5.36) the following variations:

δ′1ψ = Lεξψ, δ′2ψ = δαψ, (5.57)
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where ξi is again an asymptotic conformal Killing vector but now α and ε reduce
to arbitrary functions on Σro . In contrast to (5.36), these field variations are a
symmetry of the action, but they violate the boundary conditions (5.27).

Since these are symmetries of the renormalized action we have

0 = δ′2Iren =
∫

Mro

Eδ′2ψ +
∫

Σro

ddx
√−γπ(d)

i∂iα

=
∫

Mro

Eδ′2ψ −
∫

Σro

ddx
√−γα∂iπ(d)

i. (5.58)

But now α is arbitrary and so we conclude that on-shell we must have

∂iπ(d)
i = 0, (5.59)

which also follows immediately from the first equation in (3.121). Hence the quan-
tity

Q ≡ −
∫

∂M∩C
dσiπ(d)

i, (5.60)

defines a conserved charge, namely the holographic electric charge.
Similarly,

0 = δ′1Iren

=
∫

Mro

Eδ′1ψ +
∫

Σro

ddx
√−γ (

π(d)
ijLεξγij + π(d)

iLεξAi + π(∆I)ILεξϕ
I
)

=
∫

Mro

Eδ′1ψ +
∫

Σro

ddx
√−γε (π(d)

ijLξγij + π(d)
iLξAi + π(∆I)ILξϕ

I
)

+
∫

Σro

ddx
√−γ (

2π(d)
i
j + π(d)

iAj
)
ξjDiε. (5.61)

Therefore, after integration by parts in the last term and using the fact that ε is
arbitrary, we conclude that on-shell we must have

Di

[
(2π(d)

i
j + π(d)

iAj)ξj
]

= π(d)
ijLξγij + π(d)

iLξAi + π(∆I)ILξϕ
I

=
(
2π(d)

i
i + (∆I − d)π(∆I)Iϕ

I
) 1
d
Diξ

i

= A1
d
Diξ

i, (5.62)

where we have used the trace Ward identity (2.168) in the last step. Hence the
quantity

Q[ξ] ≡
∫

∂M∩C
dσi

(
2π(d)

i
j + π(d)

iAj
)
ξj , (5.63)

defines a holographic conserved charge associated with every asymptotic confor-
mal Killing vector, if the anomaly vanishes, or every boundary Killing vector, if the
anomaly does not vanish.
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From the above analysis we have obtained two apparently different expressions
for the conserved charges associated with every asymptotic symmetry. However, we
show in the following lemma that the two expressions for the conserved charges are
equivalent.

Lemma 5.2.1 Let ψ denote an AlAdS solution of the bulk equations of motion pos-
sessing an asymptotic timelike Killing vector k and possibly a set of N − 1 asymptotic
spacelike Killing vectors mα with closed orbits, forming a maximal set of commuting
asymptotic isometries. In adapted coordinates such that k = ∂t and mα = ∂φα the
background ψ is independent of the coordinates xa = {t, φα}. Then,
i) ∫

∂M∩C
dσiπ(d)

i =
∫

∂M∩C
∗F . (5.64)

ii) If in addition the background metric and gauge field take asymptotically the form

ds̄2 ≡ γijdx
idxj = τabdx

adxb + σijdx̃
idx̃j , A ≡ Aidx

i = Aadx
a, (5.65)

where τab, σij and Aa depend only on the rest of the transverse coordinates x̃i as well
as the radial coordinate r, then, for any asymptotic conformal Killing vector ξ,

∫

∂M∩C
dσi

(
2π(d)

i
j + π(d)

iAj
)
ξj = −

∫

∂M∩C
(Q[ξ]− iξB) . (5.66)

A proof of this lemma can be found in Appendix 5.A.2. However, a few comments
are in order regarding the condition (5.65) we have assumed in order to prove the
second part of the lemma. Firstly, as can be seen from the explicit proof, it is only
required in order to show equivalence of the charges for true asymptotic conformal
isometries, i.e. with non-zero conformal factor. Otherwise, this condition is not used
in the proof. Secondly, in certain special cases the fact that the background takes the
form (5.65) turns out to be a consequence of the existence of the set of commuting
isometries and the field equations.

More specifically, the condition that the background takes the form (5.65) is
closely related to the integrability of the D −N -dimensional submanifolds orthogo-
nal to k andmα. In particular, it was shown in [49], Theorem 7.7.1, using Frobenius’
theorem, that for pure gravity in four dimensions, the 2-planes orthogonal to a time-
like isometry k and a rotation m are integrable, and hence the metric takes the form
(5.65). This result can be easily extended to include a Maxwell field as well as
scalar fields in four dimensions [93, 94]. More recently, this result was generalized
for pure gravity in D dimensions and D − 2 orthogonal (non-orthogonal) commut-
ing isometries in [95] ([96]). It appears that these results cannot be generalized
in a straightforward way to include gauge fields for D > 4, or for less than D − 2
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commuting isometries in D dimensions. Obviously the restriction to D− 2 commut-
ing isometries is too strong for our purposes since even AdSD only has [(D + 1)/2]
commuting isometries, which is less than D − 2 for D > 5.

Despite the fact that we lack a general proof of (5.65) as a consequence of the
presence of the commuting isometries and the field equations, this condition is sat-
isfied by a very wide range of AlAdS spacetimes, including Taub-Nut-AdS and Taub-
Bolt-AdS [97, 98]. It would be very interesting to determine what are the most
general conditions so that (5.65) holds.

COMMENT ON SCHEME-DEPENDENCE

An important consequence of the above lemma is that the electric charge, as
well as, the conserved holographic charges associated with an asymptotic conformal
Killing vector ξ which is tangent to ∂M∩ C are scheme-independent since they can
be expressed entirely in terms of scheme-independent bulk quantities. By following
the argument in the proof of this lemma in Appendix 5.A.2 one can easily see that
indeed any local finite counterterm does not affect the value of such charges. The
only charges which are scheme-dependent, therefore, are those associated with an
asymptotic conformal Killing vector ξ such that

∫

∂M∩C
iξB 6= 0. (5.67)

Within the maximal set of commuting asymptotic isometries, the only such charge
is the mass, which involves the asymptotic timelike Killing vector k = ∂t. As we will
see below, the only other thermodynamic quantity which is scheme-dependent is the
on-shell action, whose scheme-dependence precisely counteracts that of the mass to
ensure that the first law is scheme-independent.

The same conclusions follow also from the identification of the holographic
charges with the Wald Hamiltonians which we now discuss.

5.2.3 WALD HAMILTONIANS

We now give a third derivation of the conserved charges as ‘Hamiltonians’ on
the covariant phase space [99, 100, 90]. Some results relevant to this section are
collected in Appendix 5.A.3.

Let ξ be an asymptotic conformal Killing vector and α an asymptotically constant
gauge transformation, namely

Lξψ = Lξ̂ψ + δα̂ψ +O(e−s+r), δαψ = O(e−s
+r), (5.68)

where α̂, ξ̂ and s+ are given in Appendix 5.A.1. The ‘Hamiltonians’ which generate
these symmetries in phase space must satisfy Hamilton’s equations, which in the
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covariant phase space formalism take the form

δHξ = ΩC(ψ, δψ,Lξψ), δHα = ΩC(ψ, δψ, δαψ), (5.69)

where the pre-symplectic form ΩC is defined in (5.205). The Hamiltonians exist
if these equations can be integrated in configuration space to give Hξ and Hα. As
is discussed in Appendix 5.A.3, the symplectic form is independent of the Cauchy
surface used to define it if the anomaly vanishes or if the variations are associated
with boundary Killing vectors. It follows that the corresponding Hamiltonians are
conserved, provided the ‘integration’ constant is also independent of the Cauchy
surface. We further discuss this issue below.

Let us first consider Hα which can be obtained very easily. Using the result for
the symplectic form in (5.198) we have

δHα =
∫

∂M∩C
δQα, (5.70)

and hence, up to a constant,

Hα =
∫

∂M∩C
Qα = −

∫

∂M∩C
∗F , (5.71)

taking α→ 1 asymptotically. Therefore, once again, we have derived the conserved
electric charge.

Consider next Hξ. From (5.197) we have

δHξ =
∫

∂M∩C
(δQ[ξ]− iξΘ) . (5.72)

This equation has a non-trivial integrability condition. Applying a second variation
and using the commutativity of two variations, δ1δ2 − δ2δ1 = 0, we obtain the inte-
grability condition [90]

∫

∂M∩C
iξω(ψ, δψ1, δψ2) = 0. (5.73)

Since ξ is tangent to Σr, from (5.208) follows that this is equivalent to
∫

∂M∩C
dd−1xξt

{
δ2(
√−γA)δ1σ − 1 ↔ 2

}
= 0. (5.74)

Therefore, if the anomaly vanishes, a Hamiltonian associated to any asymptotic CKV
ξ exists. However, if there is an anomaly and ξt 6= 0, then a Hamiltonian for ξ exists
only if the stronger boundary condition (5.34) is used - i.e. a particular represen-
tative of the conformal class is kept fixed - in agreement with the analysis of the
variational problem.

154



CHAPTER 5 - THE FIRST LAW FOR ALADS BLACK HOLES

The same conclusion can be drawn by trying to integrate (5.72) directly. This is
possible provided we can find a d-form B such that

∫

∂M∩C
iξΘ = δ

∫

∂M∩C
iξB. (5.75)

Once such a form is found, then Hξ exists and it is given by

Hξ =
∫

∂M∩C
(Q[ξ]− iξB). (5.76)

However, since ξ is tangent to Σr, we can use (5.28), the boundary conditions (5.27)
and the trace Ward identity (2.168) to obtain

∫

Σro∩C
iξΘ =

1
κ2
δ

∫

Σro∩C
dσiξ

i[K − (K − λ)ct]−
∫

Σro∩C
dσiξ

iAδσ. (5.77)

Therefore, if ξt 6= 0, then such a form exists for the boundary conditions (5.27)
provided the anomaly vanishes, in complete agreement with the conclusion from
the integrability condition. Moreover, (5.77) shows that when such a B exists it
coincides with B in (5.52) and hence, the corresponding Hamiltonian is precisely
the Noether charge (5.55).

Notice that the Wald Hamiltonians are only defined up to quantities in the kernel
of the variations. In particular, when integrating (5.75) to obtain (5.76), one can
add to Hξ an integral of a local density constructed only from boundary data and
the asymptotic conformal Killing vector ξ. This ‘integration constant’ is constrained
by the fact that the Hamiltonians should be conserved. In particular, if Hξ is a Wald
Hamiltonian, so is

H ′
ξ = Hξ +

∫

∂M∩C
dσiH

i
jξ
j , (5.78)

provided Hi
j is constructed locally from boundary data, has dilatation weight d, and

it is covariantly conserved.
In fact such ambiguity is present in AAdS2k+1 spacetimes and has caused some

confusion in the literature. AAdS2k+1 spacetimes are special in that the boundary
is conformally flat, and even-dimensional conformally flat spacetimes admit local
covariantly conserved stress energy tensors. This is true in all even dimensions, as
we discuss in Appendix 5.A.4. The best known case is the four dimensional one: the
tensor

Hi
j ≡

1
4

(
−RikRkj +

2
3
RRij +

1
2
Rkl R

l
kδ
i
j −

1
4
R2δij

)
(5.79)

is covariantly conserved provided the metric is conformally flat. This tensor is well-
known from studies of quantum field theories in curved backgrounds, see [101]
(where it is called 3Hµν). It has been called ‘accidentally conserved’ in [101] be-
cause it is not the limit of a local tensor that is conserved in non-conformally flat
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spacetimes and cannot be derived by varying a local term. The same tensor is the
holographic stress energy tensor of3 AdS5 [30]!

This tensor also appeared recently in comparisons between the ‘conformal mass’
of [102] and the holographic mass, see [102, 81] and Appendix 5.A.4. It follows that
the conserved charges according to both definitions are Wald Hamiltonians. It also
follows from this discussion that the conformal mass is the mass of the spacetime
relative to the AdS background. Furthermore, we conclude that the definition of [42]
does not extend to general AlAdS spacetimes since Hij is not covariantly conserved
when the boundary metric is not conformally flat and we already know that the
holographic charges are conserved for general AlAdS (and as shown in this section
are also Wald Hamiltonians).

5.3 THE FIRST LAW OF BLACK HOLE MECHANICS

The above detailed description of the conserved charges allows us to study the
thermodynamics of AlAdS black hole spacetimes quite generically. In particular, we
will consider a black hole solution of (5.1) possessing a timelike Killing vector k
and possibly a set of spacelike isometries with closed orbit forming a maximal set of
commuting isometries as in lemma 5.2.1, but here we require that these isometries
be exact and not just asymptotic. The form (5.65) of the metric then implies that
these bulk isometries correspond to boundary isometries and not merely asymptotic
boundary conformal isometries. Moreover, we will assume that the event horizon,
N , of the black hole is a non-degenerate bifurcate Killing horizon of a timelike
(outside the horizon) Killing vector χ such that the surface gravity, κ̂, of the horizon
is given by

κ̂2 = −1
2
∇µχν∇µχν |N . (5.80)

The inverse temperature, β, then is

β = T−1 =
2π
κ̂
. (5.81)

Let us begin with a lemma which is central to our analysis.

Lemma 5.3.1 Let ξ be a bulk Killing vector, I the renormalized on-shell Euclidean
action and H = N ∩C the intersection of the horizon with the Cauchy surface. Let also
t be the adapted coordinate to the timelike isometry k so that k = ∂t.

i) If ξt = 1, then4

βQ[ξ]− I = −β
∫

H
Q[ξ]. (5.82)

3More precisely, (5.79) is the holographic stress energy tensor associated to a bulk solution that is
conformally flat, see (3.20) of [30]; all such solutions are locally isometric to AdS5.

4Note that the integrals over H should be done with an inward-pointing unit vector.
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ii) If ξt = 0, then

Q[ξ] = −
∫

H
Q[ξ]. (5.83)

Proof:
By Stokes’ theorem

∫

∂M∩C
Q[ξ] =

∫

C

dQ[ξ] +
∫

H
Q[ξ]

=
∫

C

(Θ(ψ,Lξψ)− iξL) +
∫

H
Q[ξ]

= −
∫

C

iξL +
∫

H
Q[ξ]. (5.84)

Now, (3.41) and the fact that the background is stationary allow us to write

∫

C

iξL = −
∫

Σro∩C
dσiξ

iλ, (5.85)

where the minus sign arises due to our choice of orientation (see footnote 2). Hence,

∫

Σro∩C
(Q[ξ]− iξB) =

∫

H
Q[ξ]−

∫

C

iξL− 1
κ2

∫

Σro∩C
dσiξ

i
(
K(d) + λct

)

=
∫

H
Q[ξ]− 1

κ2

∫

Σro

dσiξ
i
(
K(d) − λ(d)

)
. (5.86)

For ξt = 0 the last term vanishes. If however ξt = 1, then we can use the fact that
the background is stationary to obtain

β

κ2

∫

∂M∩C
dσiξ

i
(
K(d) − λ(d)

)
= − 1

κ2

∫

∂M
ddx

√
γE

(
K(d) − λ(d)

) ≡ I, (5.87)

where γEij is the Euclidean metric. This completes the proof.

¤

Since the right hand sides of (5.82) and (5.83) are manifestly scheme-independent,
this lemma implies that the left hand sides of these expressions, under the corre-
sponding conditions, are scheme-independent too. As we will see in the next sec-
tion, this implies that all charges associated with bulk Killing vectors, except for the
mass, are scheme-independent. Moreover, the scheme-dependence of the mass is
now seen to exactly cancel that of the on-shell action, as it was advertised earlier.
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5.3.1 BLACK HOLE THERMODYNAMICS

This lemma, besides relating the conserved charges to local integrals over the
horizon, leads immediately to the quantum statistical relation [48]

I = βG (T,Ωi,Φ) , (5.88)

where
G (T,Ωi,Φi) ≡M − TS − ΩiJi − ΦQ, (5.89)

is the Gibbs free energy. (5.88) follows trivially from lemma 5.3.1 provided

Q[χ] +
∫

H
Q[χ] = M − TS − ΩiJi − ΦQ, (5.90)

where χ is the null generator of the horizon, normalized such that χt = 1. To show
that this is the case we need a precise definition of the thermodynamic variables
appearing in the Gibbs free energy.

Electric charge

Using Stokes’ theorem, the electric charge (5.42) is also given by

Q ≡ −
∫

∂M∩C
∗F = −

∫

H
∗F . (5.91)

Electric potential

We define the electric potential, Φ, conjugate to the charge Q, by

Φ ≡ −Aµχµ|H. (5.92)

This is well-defined, for Aµχµ is constant on H. To see this consider a vector field t
tangent to the horizon. Then,

t · ∂(Aµχµ) = tρ(χµFρµ + LχAρ) = tρχµFρµ. (5.93)

But since t is tangent to H, t|H ∝ χ and hence

t · ∂(Aµχµ)|H = 0. (5.94)

Mass

In order to define the mass we have to supply an asymptotic timelike Killing
vector. In contrast to asymptotically flat spacetimes, in AlAdS spacetimes there is an
additional subtlety in that there can be a non-zero angular velocity, Ω∞i , at spatial
infinity. This is the case, for example, for the Kerr-AdS black holes in Boyer-Lindquist
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coordinates as we will see below. In such a rotating frame, there are many timelike
Killing vectors obtained by appropriate linear combinations of ∂t and ∂φi . Using
a general timelike Killing vector will result in a conserved quantity that is linear
combination of the true mass and the angular momenta. To resolve this issue we
first go to a non-rotating frame by the coordinate transformation

t′ = t, φ′i = φi − Ω∞i t. (5.95)

In this frame there is no such ambiguity and one can define the mass, as usual, using
the Killing vector ∂t′ . In terms of the original coordinates we have

∂t′ =
∂t

∂t′
∂t +

∂φi
∂t′

∂φi = ∂t + Ω∞i ∂φi . (5.96)

Therefore, the mass is defined as

M ≡ Q[∂t + Ω∞i ∂φi ]. (5.97)

Angular velocities

Let χ = ∂t+ΩHi ∂φi be the null generator of the horizon. This defines the angular
velocities, ΩHi , of the horizon. We define the angular velocities, Ωi, by

Ωi ≡ ΩHi − Ω∞i . (5.98)

Angular momenta

We define the angular momenta, Ji, by

Ji ≡ −Q[∂φi ] =
∫

H
Q[∂φi ], (5.99)

where the second equality follows from lemma 5.3.1.

Entropy

Finally, using Wald’s definition of the entropy [88] (see also [103]) we get

−β
∫

H
Q[χ] = S + βΦQ. (5.100)

With these definitions it is now straightforward to see that (5.90), and hence
(5.88) hold.
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5.3.2 FIRST LAW

To derive the first law we consider variations that satisfy our boundary condi-
tions. Namely, if the anomaly vanishes, then the boundary conditions (5.27) should
be satisfied, otherwise (5.34) should hold, i.e. a representative of the conformal
class should be kept fixed. We will discuss the significance of this in the next sec-
tion. In other words, we only vary the normalizable mode of the solutions, as one
might have anticipated on physical grounds.5

We now show, following Wald et al. [88, 89], that these variations satisfy the
first law. From equation (5.197) we have

d (δQ[χ]− iχΘ) = ω(ψ, δψ,Lχψ). (5.101)

Hence,
∫

C

d (δQ[χ]− iχΘ) =
∫

∂M∩C
(δQ[χ]− iχΘ)−

∫

H
(δQ[χ]− iχΘ)

=
∫

C

ω(ψ, δψ,Lχψ) = 0, (5.102)

since χ is a Killing vector. However, χ is tangent to H and so we arrive at
∫

∂M∩C
(δQ[χ]− iχΘ) =

∫

H
δQ[χ]. (5.103)

Consider first the left hand side. Writing χ = ∂t + Ω∞i ∂φi + Ωi∂φi and using the fact
that ∂φi is tangent to ∂M we get
∫

∂M∩C
(δQ[χ]− iχΘ) =

∫

∂M∩C
(δQ[∂t + Ω∞i ∂φi ]− itΘ) + Ωi

∫

∂M∩C
δQ[∂φi ]

= δ

∫

∂M∩C
(Q[∂t + Ω∞i ∂φi ]− itB) + Ωiδ

∫

∂M∩C
Q[∂φi ]

= −(δM − ΩiδJi). (5.104)

In order to evaluate the right hand side of (5.103) we need to match the horizons
of the perturbed and unperturbed solutions [88], the unit surface gravity genera-
tors, χ̃ ≡ 1

κ̂χ, of the horizons and the electric potentials. From (5.100) then we
immediately get

−
∫

H
δQ[χ] = TδS + ΦδQ. (5.105)

Therefore, (5.103) is a statement of the first law, namely

δM = TδS + ΩiδJi + ΦδQ. (5.106)
5 Note that the non-normalizable mode determines the conformal class at the boundary. The non-

normalizable mode together with a defining function specify a representative of the conformal class.

160



CHAPTER 5 - THE FIRST LAW FOR ALADS BLACK HOLES

However, we emphasize that the variations in this expression must satisfy the
appropriate boundary conditions that make the variational problem well-defined.
Namely, if the anomaly vanishes, then the boundary conditions (5.27) should be
satisfied, but if there is a non-zero anomaly, then (5.34) must be satisfied instead,
i.e. the representative of the conformal class should be kept fixed. We will discuss
the significance of this in the next section.

5.3.3 DEPENDENCE ON THE REPRESENTATIVE OF THE CONFORMAL

CLASS

Let us now discuss how the thermodynamic variables defined above depend on
the representative of the conformal class at the boundary.

To this end we recall that a Weyl transformation on the boundary is induced by
a PBH transformation, i.e. a combined bulk diffeomorphism and a compensating
gauge transformation, given by (5.12) after setting ξo = 0 and αo = 0. However, in
order to be able to compare the mass and angular momenta for the two representa-
tives of the conformal class we require that the two representatives have the same
maximal set of commuting isometries, i.e. we restrict to Weyl factors δσ which are
independent of the coordinates t, φα adapted to the asymptotic isometries.

It is now straightforward to see that all intensive thermodynamic variables, namely
the temperature T , the angular velocities Ωi and the electric potential Φ are invari-
ant under such diffeomorphisms. The same holds for the entropy S, the angular mo-
menta Ji, and the electric charge Q, since, as we saw above, they can be expressed
as local integrals over the horizon. Therefore, the only quantities which could po-
tentially transform non-trivially are the mass M and the on-shell Euclidean action I.
However, their transformations are not independent since they are constrained by
the quantum statistical relation (5.88), namely

δσI = βδσM. (5.107)

This is a significant result which cannot be seen easily otherwise. We know that

δσI = −
∫

∂M
ddx

√
γEAδσ, (5.108)

while

δσM = −2
∫

∂M∩C
dσi{(2π̃(d)

i
j + π̃(d)

iAj)k̃jδσ + · · · }, (5.109)

where k̃ = ∂t+Ω∞i ∂φi and the dots stand for terms involving derivatives of the Weyl
factor δσ. One can check this explicitly in certain examples by directly evaluating
the transformation of the renormalized stress tensor under a PBH transformation
[30, 74].
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As a final point let us consider how (5.106) would be modified if there is a non-
vanishing anomaly and we allow for variations which keep fixed only the conformal
class and not a particular representative. In this case, (5.77) implies that

−
∫

∂M∩C
(δQ[χ]− iχΘ) = −TδσI + δM − ΩiδJi, (5.110)

and the first law should be modified to

δM = TδσI + TδS + ΩiδJi + ΦδQ

= δσM + TδS + ΩiδJi + ΦδQ, (5.111)

where δσ is the Weyl factor by which the representative of the conformal class is
changed due to the variation δ and the second equality follows from (5.107).

We can now state precisely how the first law works in the presence of a non-
vanishing anomaly. A generic variation δ will not keep the conformal representative
fixed and it will induce a Weyl transformation δσ. We should then undo this Weyl
transformation by a PBH transformation with Weyl factor −δσ. Then, (5.111) en-
sures that the combined variation, which does keep the conformal representative
fixed, satisfies the usual first law. The general Kerr-AdS black hole in five dimen-
sions provides a clear illustration of this.

5.4 EXAMPLES

In this section we will demonstrate our analysis by two examples, the Kerr-
Newman-AdS black hole in four dimensions [104, 105] and the general Kerr-AdS
black hole in five dimensions [106]. The second example provides a clear illustra-
tion of the role of the conformal anomaly in the thermodynamics.

Before focusing on the specific examples however we discuss the steps and sub-
tleties involved in the computation. Recall that the defining feature of the countert-
erm method is that the on-shell action of AdS gravity can be rendered finite on any
solution by adding to the action a set of local covariant boundary counterterms. One
should not forget, however, that the precise form of the counterterms depends on
the regularization/renormalization scheme. The counterterms used in the literature
were derived using as regulator a cut-off in the Fefferman-Graham radial coordinate
z [29], or equivalently in the radial coordinate r we use here. The cut-off hyper-
surface r = ro is in general different from the hypersurfaces r̃ = const., where r̃
is another radial coordinate that might appear naturally in the bulk metric. So, to
evaluate correctly the counterterm contribution to the on-shell action, one should
transform asymptotically the solution to Fefferman-Graham coordinates and then
evaluate the counterterm action (or equivalently transform the hypersurface r = ro
and the counterterm action in the new coordinates). Of course, it is always possible
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to work with a different regulator but then the counterterm action should be worked
out from scratch.

Let us discuss now the evaluation of the conserved charges. Given that the
asymptotics and counterterms are universal, one can work out in full generality
the explicit form of the renormalized stress energy tensor in terms of the metric co-
efficients g(m) that appear in the asymptotic expansion of the solutions of a given
action. This is done for pure gravity in [30] and for gravity coupled to certain matter
in [32]. To evaluate the holographic stress tensor on a specific solution one could
thus simply read off the metric coefficients from the asymptotic expansion of the
metric and plug them in the general formula. This is the simplest way to proceed if
the explicit expression for the holographic stress energy tensor is known. If this is
not the case, it is simpler to just compute from the asymptotics of the given solution
the contribution of the bulk and counterterm actions to the holographic stress en-
ergy tensor and add them up to produce a finite answer. To evaluate the conserved
charges we finally integrate the holographic stress energy tensor contracted with the
appropriate asymptotic conformal Killing vector over the appropriate domain. The
only remaining subtlety is the choice of a timelike Killing vector to be used in the
definition of mass when the boundary metric is in a rotating frame. In this case
we choose the Killing vector that corresponds to the standard timelike Killing vector
∂/∂t is the corresponding non-rotating frame.

Below we describe our calculation for the four dimensional Kerr-Newman-AdS
black hole in considerable detail, mainly in order to emphasize the role of the
Fefferman-Graham coordinate system in the asymptotic analysis, which is not fully
appreciated in the literature. We then turn to the five dimensional Kerr-AdS black
hole, emphasizing the role of the anomaly and its relation to the Casimir energy.
Previous work on the thermodynamics of these black holes includes [43, 107, 106,
108, 109, 110, 111, 85, 83, 84, 112].

5.4.1 D=4 KERR-NEWMAN-ADS BLACK HOLE

The metric of the Kerr-Newman-AdS black hole in Boyer-Lindquist coordinates
reads [104, 105, 110]

ds2 = −∆r

ρ2

(
dt− a sin2 θ

Ξ
dφ

)2

+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 +

∆θ sin2 θ

ρ2

(
adt− r2 + a2

Ξ
dφ

)2

,

(5.112)
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where

ρ2 = r2 + a2 cos2 θ,

∆r = (r2 + a2)
(

1 +
r2

l2

)
− 2mr + q2,

∆θ = 1− a2

l2
cos2 θ, Ξ = 1− a2

l2
. (5.113)

The gauge potential in this coordinate system is given by

A = −2qr
ρ2

(
dt− a sin2 θ

Ξ
dφ

)
. (5.114)

This metric and gauge field solve the Einstein-Maxwell equations which follow from
the action (omitting the boundary terms)

ILorentzian =
1

2κ2

∫

M
d4x

√−g
(
R− 2Λ− 1

4
F 2

)
. (5.115)

The event horizon is located at r = r+, where r+ is the largest root of ∆r = 0,
and its area is

A =
4π(r2+ + a2)

Ξ
. (5.116)

The analytic continuation of the Lorentzian metric (5.112) by t = −iτ , a = iα

develops a conical singularity unless we periodically identify τ ∼ τ + β and φ ∼
φ+ iβΩH , where

β =
4π(r2+ + a2)

r+

(
1 + a2

l2 +
3r2+
l2 − a2+q2

r2+

) , (5.117)

is the inverse temperature and the angular velocity of the horizon, ΩH , is given by

ΩH =
aΞ

r2+ + a2
. (5.118)

However, in this coordinate system there is a non-zero angular velocity at infinity,
namely

Ω∞ = − a

l2
. (5.119)

Following our prescription (5.98), we define the angular velocity relevant for the
thermodynamics as the difference (see also [110, 85])

Ω = ΩH − Ω∞ =
a(1 + r+/l

2)
r2+ + a2

. (5.120)

Finally, if χ = ∂t + ΩH∂φ is the null generator of the Killing horizon, the electric
potential is given by

Φ ≡ −Aµχµ|r+ =
2qr+
r2+ + a2

. (5.121)
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Next we determine the electric charge, angular momentum and mass, as well as
the Euclidean on-shell action of the Kerr-Newman-AdS solution. Our general anal-
ysis of the charges in section 5.2 showed that the counterterms do not contribute
to the value of the electric charge or the angular momentum (lemma 5.2.1). How-
ever, the counterterms are essential for evaluating the mass and the on-shell action.
Starting with the electric charge we easily find

Q ≡ − 1
2κ2

∫

∂M∩C
∗dA =

4πq
κ2Ξ

. (5.122)

The angular momentum can be evaluated equally easily as

J ≡
∫

∂M∩C
Q[∂φ] =

8πma
κ2Ξ2

. (5.123)

Before we can calculate the mass and the on-shell Euclidean action, we must first
carry out the asymptotic analysis and determine the counterterms. Expanding the
metric (5.112) for large r we get

ds2 = −r
2

l2

[
1 +

(
1 +

a2

l2
sin2 θ

)
l2

r2
− 2ml2

r3
+O

(
1
r4

)](
dt− a sin2 θ

Ξ
dφ

)2

+
l2

r2

[
1−

(
1 +

a2

l2
sin2 θ

)
l2

r2
+

2ml2

r3
+O

(
1
r4

)]
dr2

+
r2

∆θ

(
1 +

a2

r2
cos2 θ

)
dθ2 (5.124)

+
r2∆θ sin2 θ

Ξ2

[
dφ2 +

a2

r2

(
(1 + sin2 θ)dφ2 − 2Ξ

a
dφdt

)
+O

(
1
r4

)]
.

This metric is not of the standard form since the coefficient of the radial line ele-
ment depends on the angle θ. Indeed the standard counterterms are derived using
a Fefferman-Graham coordinate system of the form (3.35) [29, 30, 33, 1]. These
counterterms, defined on hypersurfaces of constant Fefferman-Graham radial coordi-
nate, are not necessarily the correct counterterms on the hypersurfaces of constant
Boyer-Lindquist radial coordinate, as is widely assumed in the literature. Of course,
it is in principle possible to choose a gauge which asymptotes to the Boyer-Lindquist
form of the Kerr-AdS metric and carry out the asymptotic analysis from scratch using
a regulator of constant Boyer-Lindquist radial coordinate and rederive the appropri-
ate counterterms for such a regulator. However, it is much more efficient to bring the
metric (5.124) into the Fefferman-Graham form and use the standard counterterms.

To this end we introduce new coordinates

r̄ = r +
1
r
f(θ) +O

(
1
r3

)
,

θ̄ = θ +
1
r4
h(θ) +O

(
1
r6

)
, (5.125)
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or

r = r̄

[
1− 1

r̄2
f(θ̄) +O

(
1
r̄4

)]
,

θ = θ̄ − 1
r̄4
h(θ̄) +O

(
1
r̄6

)
. (5.126)

Requiring that the coefficient of the new radial line element has no angular depen-
dence and that there is no mixed term dr̄dθ̄ in the metric uniquely fixes the functions
f(θ̄) and h(θ̄) to be

f(θ̄) = −a
2

4
cos2 θ̄,

h(θ̄) =
1
8
l2a2∆θ̄ sin θ̄ cos θ̄. (5.127)

In the new coordinate system the asymptotic form of the metric (5.112) becomes

ds2 =
l2

r̄2

[
1−

(
1 +

a2

l2

)
l2

r̄2
+

2ml2

r̄3
+O

(
1
r̄4

)]
dr̄2

+
r̄2

∆θ̄

[
1 +

3
2
a2

r̄2
cos2 θ̄ +O

(
1
r̄4

)]
dθ̄2 (5.128)

− r̄
2

l2

[
1 +

(
1 +

a2

l2
− a2

2l2
cos2 θ̄

)
l2

r̄2
− 2ml2

r̄3
+O

(
1
r̄4

)]
×

(
dt− a sin2 θ̄

Ξ
dφ

)2

+
r̄2∆θ̄ sin2 θ̄

Ξ2

[
dφ2 +

a2

r̄2

(
(2− 1

2
cos2 θ̄)dφ2 − 2Ξ

a
dφdt

)
+O

(
1
r̄4

)]
,

which is almost of the desired form. For later convenience let us write explicitly the
components of the induced metric:

γθ̄θ̄ =
r̄2

∆θ̄

[
1 +

3
2
a2

r̄2
cos2 θ̄ +O

(
1
r̄4

)]
,

γtt = − r̄
2

l2

[
1 +

(
1 +

a2

l2
− a2

2l2
cos2 θ̄

)
l2

r̄2
− 2ml2

r̄3
+O

(
1
r̄4

)]
,

γtφ =
r̄2a sin2 θ̄

l2Ξ

[
1 +

(
1 +

1
2

cos2 θ̄
)
a2

r̄2
− 2ml2

r̄3
+O

(
1
r̄4

)]
, (5.129)

γφφ =
r̄2 sin2 θ̄

Ξ

[
1 +

(
1 +

1
2

cos2 θ̄
)
a2

r̄2
+

2ma2 sin2 θ̄

r̄3Ξ
+O

(
1
r̄4

)]
.

We can now introduce a cut-off at r̄ = r̄o and proceed with the asymptotic anal-
ysis in the standard fashion. Note that the regulating surface r̄ = r̄o becomes angle-
dependent in the Boyer-Lindquist coordinates, namely

ro(θ) = r̄o

[
1 +

a2

4r̄2o
cos2 θ +O

(
1
r̄4o

)]
. (5.130)
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This is precisely the reason why the counterterms on a regulating surface defined
by ro = constant are not necessarily the same as the counterterms on a regulating
surface defined by r̄o = constant.

Finally, to bring the metric in the form (3.35) we define the canonical radial
coordinate

dr∗ = l

[
1− 1

2

(
1 +

a2

l2

)
l2

r̄2
+
ml2

r̄3
+O

(
1
r̄4

)]
dr̄

r̄
. (5.131)

Counterterms6

Following the standard algorithm for the asymptotic analysis we find that the
counterterm action for the Maxwell-AdS gravity system in four dimensions is

Ict =
1
κ2

∫

Σr̄o

d3x
√
γE

(
2
l

+
l

2
R

)
. (5.132)

On-shell Euclidean action

We are now ready to evaluate the renormalized on-shell Euclidean action

Iren = − 1
2κ2

∫

Mr̄o

d4x
√
gE

(
R[gE ] +

6
l2
− 1

4
F 2

)
− 1
κ2

∫

Σr̄o

d3x
√
γE

(
K − 2

l
− l

2
R

)
.

(5.133)
Since the background is stationary, the bulk integral gives

β

2κ2

∫ 2π

0

dφ

∫ π

0

dθ

∫ ro(θ)

r+

dr
√
gE

(
6
l2

+
1
4
F 2

)
=

4πβ
κ2l2Ξ

[
r̄o

(
r̄2o +

5
4
a2

)
− r+(r2+ + a2)− q2l2r+

r2+ + a2
+O

(
1
r̄o

)]
. (5.134)

Moreover, the boundary term is

− 1
κ2

∫

Σr̄o

d3x
√
γE

(
K − 2

l
− l

2
R

)
= − 4πβ

κ2l2Ξ

[
r̄o(r̄2o +

5
4
a2)−ml2 +O

(
1
r̄o

)]
.

(5.135)
Hence,

Iren =
4πβ
κ2l2Ξ

[
ml2 − r+(r2+ + a2)− q2l2r+

r2+ + a2

]
. (5.136)

Renormalized stress tensor and conserved charges

6We give the counterterms for the Euclidean action which we want to evaluate. The counterterms for
the Lorentzian action are easily obtained by analytic continuation.
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We need now to evaluate the renormalized stress tensor

T (3)
i
j = − l

κ2

(
K(3)

i
j −K(3)δ

i
j

)
. (5.137)

This can be done either by first writing the renormalized stress tensor in terms of
the coefficients in the Fefferman-Graham expansion of the metric [30, 32, 1] and
then reading off the coefficients from (5.129), or by first evaluating the extrinsic
curvature using

Kij =
1
2
dr̄

dr∗

d

dr̄
γij , (5.138)

and then subtracting the appropriate counterterms, namely

T (3)
i
j = − l

κ2

(
Ki
j −Kδij +

2
l
δij − lRij +

1
2
lRδij

)
+O

(
1
r̄4o

)
. (5.139)

In any case we find (in agreement with [110])

T (3)
t
t = −2m

κ2

l3

r̄3o
+O

(
1
r̄4o

)
,

T (3)
θ̄
θ̄ = T (3)

φ
φ =

m

κ2

l3

r̄3o
+O

(
1
r̄4o

)
,

T (3)
t
φ =

3m
κ2

a sin2 θ̄

lΞ
l3

r̄3o
+O

(
1
r̄4o

)
,

T (3)
φ
t = O

(
1
r̄4o

)
. (5.140)

For this solution one can easily show that the gauge field momentum does not
contribute to the holographic charge (5.63) and so, for any boundary conformal
Killing vector, ξ, we have

Q[ξ] = −
∫ 2π

0

dφ

∫ π

0

dθ̄
√−γT (3)

t
jξ
j . (5.141)

As a check, we evaluate

Q[−∂φ] =
8πma
κ2Ξ2

, (5.142)

in complete agreement with (5.123).
To obtain the mass now we first need to identify the correct timelike Killing

vector. This can be done unambiguously as follows. From the asymptotic form of
the metric in Boyer-Lindquist coordinates we see that the corresponding boundary
metric is not the standard metric on R × S2 even for m = q = 0, since there is a
non-zero angular velocity Ω∞ = − a

l2 . However, as it is discussed e.g. in [85], this
boundary metric is conformal to the standard boundary metric of AdS4. To see this
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we perform a coordinate transformation from the coordinates (t, θ̄, φ) to (t′, θ̄′, φ′),
given by

t′ = t, φ′ = φ+
a

l2
t, Ξ tan2 θ̄′ = tan2 θ̄. (5.143)

The resulting boundary metric in the new coordinates is the standard metric on
R× S2 up to the conformal factor cos2 θ̄/ cos2 θ̄′. It follows that the correct timelike
Killing vector that defines the mass is

∂t′ =
∂t

∂t′
∂t +

∂φ

∂t′
∂φ = ∂t − a

l2
∂φ, (5.144)

in agreement with (5.96). Hence,

M ≡ Q[∂t − a

l2
∂φ] =

8πm
κ2Ξ2

. (5.145)

This is precisely the mass obtained in [85] by integrating the first law.7 Finally,
defining the entropy by

S =
2π
κ2
A, (5.146)

it can now be easily seen that the quantum statistical relation (5.88) as well as the
first law (5.106) are satisfied.

5.4.2 D=5 KERR-ADS BLACK HOLE

As a second example we consider the general five dimensional Kerr-AdS solution
[106], which illustrates the role of the conformal anomaly.

In Boyer-Lindquist coordinates the metric is8

ds2 = −∆r

ρ2

(
dt− a sin2 θ

Ξa
dφ− b cos2 θ

Ξb
dψ

)2

+
∆θ sin2 θ

ρ2

(
adt− r2 + a2

Ξa
dφ

)2

+
∆θ cos2 θ

ρ2

(
bdt− r2 + b2

Ξb
dψ

)2

+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 (5.147)

+
(1 + r2l−2)

r2ρ2

(
abdt− b(r2 + a2) sin2 θ

Ξa
dφ− a(r2 + b2) cos2 θ

Ξb
dψ

)2

,

7Note that our timelike Killing vector is different from the Killing vector, ∂t + a
l2

∂φ, which the authors
of [85] claim makes the conformal mass [42, 102, 108] equal to the mass obtained from the first law.

8Note that 0 ≤ θ ≤ π/2 in five dimensions, while 0 ≤ θ ≤ π in four dimensions.
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where

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ,

∆r =
1
r2

(r2 + a2)(r2 + b2)
(

1 +
r2

l2

)
− 2m,

∆θ = 1− a2

l2
cos2 θ − b2

l2
sin2 θ,

Ξa = 1− a2

l2
, Ξb = 1− b2

l2
. (5.148)

The event horizon is located at r = r+, where r+ is the largest root of ∆r = 0,
and its area is

A =
2π2(r2+ + a2)(r2+ + b2)

r+ΞaΞb
. (5.149)

The inverse temperature is given by

β = 2π
[
r+

(
1 +

r2+
l2

)(
1

r2+ + a2
+

1
r2+ + b2

)
− 1
r+

]−1

. (5.150)

The angular velocities relative to a non-rotating frame at infinity are

Ωa =
a(1 + r2+l

−2)
r2+ + a2

, Ωb =
b(1 + r2+l

−2)
r2+ + b2

, (5.151)

and the corresponding angular momenta are easily evaluated

Ja =
∫

∂M∩C
Q[∂φ] =

4π2ma

κ2Ξ2
aΞb

, (5.152)

Jb =
∫

∂M∩C
Q[∂ψ] =

4π2mb

κ2ΞaΞ2
b

. (5.153)

As for the four-dimensional Kerr-Newman-AdS black hole, in order to bring the
metric into the standard asymptotic form, we need to introduce the new coordinates

r = r̄

{
1 +

1
4
∆̂θ̄

l2

r̄2
+

1
16

∆̂θ̄(1 + Ξ̂a + Ξ̂b − 2∆̂θ̄)
l4

r̄4
+O

(
1
r̄6

)}
, (5.154)

θ = θ̄ +
1
16

(1− ∆̂θ̄)∆̂
′̄
θ

l4

r̄4
− 1

32
(1− ∆̂θ̄)∆̂

′̄
θ(1 + Ξ̂a + Ξ̂b + 3∆̂θ̄)

l6

r̄6
+O

(
1
r̄8

)
,

where, to simplify the notation, we have defined

∆̂θ = 1−∆θ, Ξ̂a = 1− Ξa, Ξ̂b = 1− Ξb. (5.155)
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In the new coordinate system the induced metric, up to terms of order 1/r̄6 inside
the braces, takes the form

γθ̄θ̄ = r̄2

∆θ̄

{
1 + 3∆̂θ̄

2
l2

r̄2 + 1
4

[
(1− 3∆̂θ̄

2 )(Ξ̂a + Ξ̂b − 3∆̂θ̄

2 ) + Ξ̂aΞ̂b
]
l4

r̄4

}
,

γtt = − r̄2

l2

{
1 + (1 + Ξ̂a + Ξ̂b − ∆̂θ̄

2 ) l
2

r̄2 +
[

∆̂θ̄

8 (1 + Ξ̂a + Ξ̂b − 3∆̂θ̄

2 )− 2m
l2

]
l4

r̄4

}
,

γtφ = r̄2

l2
a sin2 θ̄

Ξa

{
1 + (Ξ̂a + ∆̂θ̄

2 ) l
2

r̄2 + 1
4

[
(Ξ̂b − ∆̂θ̄

2 )(Ξa − ∆̂θ̄

2 ) + Ξ̂aΞ̂b − 8m
l2

]
l4

r̄4

}
,

γtψ = r̄2

l2
b cos2 θ̄

Ξb

{
1 + (Ξ̂b + ∆̂θ̄

2 ) l
2

r̄2 + 1
4

[
(Ξ̂a − ∆̂θ̄

2 )(Ξb − ∆̂θ̄

2 ) + Ξ̂aΞ̂b − 8m
l2

]
l4

r̄4

}
,

γφφ = r̄2 sin2 θ̄
Ξa

{
1 + (Ξ̂a + ∆̂θ̄

2 ) l
2

r̄2 + 1
4

[
(Ξ̂b − ∆̂θ̄

2 )(Ξa − ∆̂θ̄

2 ) + Ξ̂aΞ̂b + 8m
l2

a2 sin2 θ̄
l2Ξa

]
l4

r̄4

}
,

γψψ = r̄2 cos2 θ̄
Ξb

{
1 + (Ξ̂b + ∆̂θ̄

2 ) l
2

r̄2 + 1
4

[
(Ξ̂a − ∆̂θ̄

2 )(Ξb − ∆̂θ̄

2 ) + Ξ̂aΞ̂b + 8m
l2

b2 cos2 θ̄
l2Ξb

]
l4

r̄4

}
,

γφψ = r̄2
{

2m
l2

a cos2 θ̄
lΞa

b sin2 θ̄
lΞb

l4

r̄4

}
,

while the canonical radial coordinate r∗ is given by

dr∗ = l

{
1− 1

2
(1 + Ξ̂a + Ξ̂b)

l2

r̄2
(5.156)

+
[
m

l2
+

1
8
(1 + Ξ̂a + Ξ̂b)2 +

1
4
(1 + Ξ̂2

a + Ξ̂2
b)

]
l4

r̄4

}
dr̄

r̄
.

On-shell Euclidean action

The renormalized Euclidean action in five dimensions is given by

Iren = − 1
2κ2

∫

Mr̄o

d5x
√
gE

(
R[gE ] +

12
l2

)
(5.157)

− 1
κ2

∫

Σr̄o

d4x
√
γE

(
K − 3

l
− l

4
R+

l3

16
(RijRij − 1

3
R2) log e−2r̄o

)
.

Evaluating this expression we obtain

I = βMCasimir +
2π2β

κ2l2ΞaΞb

[
ml2 − (r2+ + a2)(r2+ + b2)

]
, (5.158)

where

MCasimir ≡ 3π2l2

4κ2

(
1 +

(Ξa − Ξb)2

9ΞaΞb

)
. (5.159)
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This expression for the on-shell Euclidean action is precisely the expression obtained
in [111] and it differs from that of [85] by the term involving the Casimir energy.
Moreover, (5.159) is equal the Casimir energy of the field theory on the rotating
Einstein universe [111].

Evaluating the holographic mass we find

M ≡ Q[∂t − a

l2
∂φ − b

l2
∂ψ] = MCasimir +

2π2m(2Ξa + 2Ξb − ΞaΞb)
κ2Ξ2

aΞ2
b

, (5.160)

which again agrees with the mass obtained in [85] except for the Casimir energy
part. However, except for the Casimir energy, this mass is not the same as the one
given in [111]. The discrepancy arises presumably because [111] do not use the
correct non-rotating timelike Killing vector to evaluate the mass.

With the expressions for the mass and on-shell action we have obtained, one
can easily see that the quantum statistical relation (5.88) is satisfied, despite the
presence of the Casimir energy. However, to show that our expressions do satisfy the
first law, we need to examine the effect of an arbitrary variation of the parameters
a, b and m on the representative of the conformal class at the boundary.

The boundary metric is

ds̄2 = −dt2 +
2a sin2 θ̄

Ξa
dtdφ+

2b cos2 θ̄
Ξb

dtdψ +
l2

∆θ̄

dθ̄2 +
l2 sin2 θ̄

Ξa
dφ2 +

l2 cos2 θ̄
Ξb

dψ2.

(5.161)
Under a variation of the angular parameters a, b, this metric is not kept fixed as is
required by the variational problem. The conformal class however is kept fixed (up
to a diffeomorphism). To see this first consider the variation of (5.161) w.r.t. a and
b, and then perform the compensating infinitesimal diffeomorphism

t = t′, tan2 θ̄ =
(

1 +
δΞa
Ξa

− δΞb
Ξb

)
tan2 θ̄′, φ = φ′ − δa

l2
t′, ψ = ψ′ − δb

l2
t′.

(5.162)
The result of the combined transformation is

ds̄2 →
(

1− δΞa
Ξa

sin2 θ̄ − δΞb
Ξb

cos2 θ̄
)
ds̄2. (5.163)

The variation of the on-shell action due to this Weyl factor is

δσI = −
∫

∂M
ddx

√
γEAδσ =

π2βl2

12κ2
δ

(
Ξa
Ξb

+
Ξb
Ξa

)
= βδMCasimir = βδσM, (5.164)

where the last equality follows from (5.107). Therefore, as expected, only the
Casimir energy part of the mass transforms non trivially under a Weyl transforma-
tion.
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Summarizing, we have shown that under a generic variation of the parameters
a, b and m

δM = δMCasimir + TδS + ΩaδJa + ΩbδJb, (5.165)

in complete agreement with (5.111). The first law then is satisfied once we ac-
company such a generic variation with a compensating PBH transformation which
undoes the Weyl transformation of the representative of the conformal class.9

5.A APPENDIX

5.A.1 ASYMPTOTIC CONFORMAL KILLING VECTORS AND ASYMPTOTIC

BULK KILLING VECTORS

We discuss in this appendix the connection between asymptotic bulk isometries
and boundary conformal isometries. In this discussion we will need a well-known
property of the linearized supergravity equations of motion, namely that for each
bulk field they admit two linearly independent solutions, the normalizable and the
non-normalizable modes, which near the boundary behave as e−s+r and e−s−r re-
spectively. The exponents s+, s− are related to the scaling dimension of the dual
operators and the spacetime dimension. Specifically, we have

s+ = d− 2, s− = −2, for γij ,

s+ = d− 2, s− = 0, for Ai,

s+ = ∆I , s− = d−∆I , for ϕI , (5.166)

with ∆I ≥ d−∆I .

Asymptotic conformal Killing vectors

Definition: We define an asymptotic conformal Killing vector (CKV) to be a bulk
vector field ξ which is asymptotically equal to a boundary conformal Killing vector.
The precise asymptotic conditions are

(i) ξr = O(e−dr), (ii) ξi(x, r) = ζi(x)(1 +O(e−(d+2)r)), (5.167)

where ζi(x) is a conformal Killing vector of g(0).
The asymptotic conformal Killing vectors are in one-to-one correspondence with

asymptotic bulk Killing vectors, for if ξ is an asymptotic CKV as defined above, then
there exist ξ̂, α̂, given in (5.172) below, such that ξ − ξ̂ is an asymptotic bulk Killing

9Of course we should also perform a compensating diffeomorphism (5.162), but this does not affect
the first law since all thermodynamic variables are invariant under such a diffeomorphism.
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vector, up to a gauge transformation required to preserve the gauge fixing of the
vector field, namely

Lξ−ξ̂ψ = δα̂ψ +O(e−s+r), (5.168)

or equivalently

Lξψ = Lξ̂ψ + δα̂ψ +O(e−s+r). (5.169)

To prove this we note that both Lξψ and Lξ̂ψ + δα̂ψ satisfy the linearized equa-
tions of motion. As noted above, a basis for solutions of the linearized equations of
motion are the normalizable and non-normalizable solution. Since in (5.169) we
require equality up to normalizable mode, a sufficient condition for proving (5.169)
is that the leading asymptotics between the left and right hand side agree. To show
this we note that condition (i) and (5.9)-(5.11) imply that in the gauge (3.35)

Lξψ = Lξψ +O(e−s+r). (5.170)

Furthermore, condition (ii) is equivalent to

Lξψ =
1
d
Diξ

iδDψ(1 +O(e−r)). (5.171)

It follows that the leading asymptotics agree with a PBH transformation with param-
eters,

ξ̂r = δσ(x),

ξ̂i = ∂jδσ(x)
∫ ∞

r

dr′γji(r′, x),

α̂ = ∂iδσ(x)
∫ ∞

r

dr′Ai(r′, x), (5.172)

where

δσ =
1
d
Diξ

i, (5.173)

which proves our assertion.
Notice that the asymptotic fall-off of ξi in (ii) follows from the fact that in order

for a vector field to preserve the gauge (3.35) we need

ξ̇i = −∂iξr ⇒ ξ̇i = O(e−(d+2)r). (5.174)

5.A.2 PROOF OF LEMMA 5.2.1

In this appendix we give a proof of lemma 5.2.1.
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ELECTRIC CHARGE

To prove (5.64) we start with the identity
∫

Σr∩C
∗F =

∫

Σr∩C
dσi

1√−γ π
i, (5.175)

where πi = −√−γU(ϕ)F ri is the gauge field momentum. The second equation in
(3.121) can now be written as

π̇i = −∂j(
√−γU(ϕ)F ij). (5.176)

The momentum πi and the radial derivative ∂r can be expanded in eigenfunctions
of the dilatation operator as in (3.51) and (3.54) respectively. Moreover, by Taylor
expanding U(ϕ) one obtains such an expansion for the RHS of (5.176) too, which
takes the form

U(ϕ)F ij =
{
U(0) +

∂U

∂ϕI
ϕI +

1
2!

∂2U

∂ϕI∂ϕJ
ϕIϕJ + · · ·

}
F ij ≡ ϕ(4)

ij + ϕ(5)
ij + · · · .

(5.177)
Matching terms of the same dilatation weight on both sides of (5.176) then we
obtain

π(3)
i = 0,

√−γπ(4)
i = − 1

d− 4
∂j(
√−γϕ(4)

ij),

√−γπ(5)
i = − 1

d− 5
∂j

[√−γϕ(5)
ij − 1

d− 4
δ(1)

(√−γϕ(4)
ij

)]
,

...
√−γπ̃(d)

i =
1
2
∂j

(√−γϕ(d)
ij + · · · ) . (5.178)

Therefore, all local terms in the momentum expansion are total derivatives while
the non-local term π(d)

i is left undetermined by this iterative argument. Hence,
∫

Σro∩C
∗F =

∫

Σro∩C
dσi

1√−γ π
i =

∫

Σro∩C
dσiπ(d)

i + · · · . (5.179)

Taking the limit Σro → ∂M then completes the proof of (5.64).

CHARGES ASSOCIATED WITH ASYMPTOTIC CONFORMAL ISOMETRIES

Applying a similar argument we now prove (5.66). Let, ξ be an asymptotic
conformal Killing vector as defined in Appendix 5.A.1, i.e.

Lξψ = Lξ̂ψ + δα̂ψ +O(e−s+r), (5.180)
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where ξ̂ and α̂, given in (5.172), generate a PBH transformation with conformal
factor δσ = 1

dDiξ
i. Then, using (5.49), (5.52) and the fact that in the gauge (3.35)

one has

Ξri = ∇[rξi] + κ2U(ϕ)F riAjξj

= ξ̇i + Γirjξ
j − κ2

√−γ π
iAjξ

j

=
(
Ki
j −

κ2

√−γ π
iAj

)
ξj +O

(
e−(d+2)r

)
, (5.181)

we can write
∫

Σro∩C
(Q[ξ]− iξB) =

1
κ2

∫

Σro∩C
dσi

(
Ki
j −

κ2

√−γ π
iAj

)
ξj

− 1
κ2

∫

Σro∩C
dσiξ

i
(
K(d) + λct

)
(5.182)

= −
∫

Σro∩C
dσi

[(
2π(d)

i
j + π(d)

iAj
)
ξj +O

(
e−(d+2)r

)]

+
1
κ2

∫

Σro∩C
dσi

(
Ki
j −

κ2

√−γ π
iAj − λδij

)

ct

ξj .

Taking the limit Σro → ∂M we see that (5.66) is equivalent to

∫

∂M∩C
dσi

(
Ki
j −

κ2

√−γ π
iAj − λδij

)

ct

ξj = 0, (5.183)

which we now prove.
From Section 5.2.1 we know that on-shell

dQ[ξ] + iξL = Θ(ψ,Lξψ), (5.184)

which, using (5.6) and (5.49), can be written as

∇µΞµν = κ2ξν
(
−Lm +

1
d− 1

T̃ σσ

)
− κ2vν(ψ,Lξψ). (5.185)

In the gauge (3.35) we can use (3.127) to get

∂r
[√−γ(Ξri − ξiλ)

]
= ∂j(

√−γΞij)− κ2√−γvi(ψ,Lξψ) +O (
e−2r

)
, (5.186)

or, using (5.181),

∂r
{[√−γ (

Ki
j − λδij

)− κ2πiAj
]
ξj

}
= ∂j(

√−γΞij)−κ2√−γvi(ψ,Lξψ)+O (
e−2r

)
.

(5.187)
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To prove (5.183) we only need the time component of this equation. In par-
ticular, if vt(ψ,Lξψ) = O(e−(d+2)r), then we can expand both sides of (5.187) in
eigenfunctions of the dilatation operator using (3.51), as was done for (5.176) in
the previous section, and apply the same iterative argument to show that (5.183)
holds. Therefore, the proof of (5.66) is complete once we show that vt(ψ,Lξψ) =
O(e−(d+2)r). As we now explain, this follows from (5.65).

From the explicit form of vt, given in (5.7), we see that

vt(ψ,Lξψ) = vt(ψ,Lξ̂ψ + δα̂ψ +O(e−s+r)) = vt(ψ,Lξ̂ψ + δα̂ψ) +O
(
e−(d+2)r

)
.

(5.188)
Moreover,

vt(ψ,Lξ̂ψ + δα̂ψ) = − 1
2κ2

(γtiγjk − γtkγij)Dk

(
D(iξ̂j) + 2Kijδσ

)

+U(ϕ)F tj
(
Lξ̂Aj + Ȧjδσ + ∂jα̂

)

+GIJ (ϕ)∂tϕI
(
ξ̂i∂iϕ

J + ϕ̇Jδσ
)

(5.189)

= − 1
2κ2

(γtiγjk − γtkγij)
(
DkD(iξ̂j) + 2KijDkδσ

)

+U(ϕ)F tj
(
Lξ̂Aj + ∂jα̂

)
+GIJ(ϕ)∂tϕI ξ̂i∂iϕJ

− 1
κ2

{
DjKt

j −DtK − κ2U(ϕ)F tjȦj

− κ2GIJ (ϕ)∂tϕI ϕ̇J
}
δσ.

The last term inside the braces vanishes by the second equation in (3.38). From
(5.65) and (5.172) now follows that α̂ = 0 and ξ̂i has no components along the
isometry directions. Making repeated use of (5.65) it is then straightforward to
show that vt(ψ,Lξ̂ψ + δα̂ψ) = 0, which completes the proof.

5.A.3 SYMPLECTIC FORM ON COVARIANT PHASE SPACE

In this appendix we give the explicit form of the symplectic current on the covari-
ant phase space as given by [99, 100] (see also [90]) and we show that the corre-
sponding pre-symplectic form is well-defined with the boundary conditions (5.27),
if there is no anomaly, or (5.34) when the anomaly is non-vanishing.

Symplectic current

The symplectic current D − 1-form is defined by [100, 90]

ω(ψ, δ1ψ, δ2ψ) = δ2Θ(ψ, δ1ψ)− δ1Θ(ψ, δ2ψ). (5.190)
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The explicit form of this for the Lagrangian (5.1) can be derived directly from (5.7).
Writing

ω(ψ, δ1ψ, δ2ψ) = − ∗ w(ψ, δ1ψ, δ2ψ), (5.191)

with wµ = wµgr + wµvec + wµsc, we find

wµgr =
1

2κ2

(
gµρgνκgσλ − 1

2
gµνgρκgσλ − 1

2
gµκgνλgσρ − 1

2
gµρgνσgκλ

+
1
2
gµνgρσgκλ

)
(δ2gκλ∇νδ1gρσ − δ1gκλ∇νδ2gρσ) , (5.192)

wµvec = U(ϕ)
(

1
2
gρσFµν − gµσF ρν − gνσFµρ

)
(δ2gρσδ1Aν − δ1gρσδ2Aν)

+
∂U(ϕ)
∂ϕI

Fµν
(
δ1Aνδ2ϕ

I − δ2Aνδ1ϕ
I
)

+U(ϕ)(gµρgνσ − gµσgνρ)(δ1Aν∇ρδ2Aσ − δ2Aν∇ρδ1Aσ), (5.193)

wµsc = GIJ (ϕ)∇ρϕJ
(

1
2
gµρgνσ − gµσgνρ

)
(δ2gνσδ1ϕI − δ1gνσδ2ϕ

I)

+
(
∂GIJ(ϕ)
∂ϕK

− ∂GKJ(ϕ)
∂ϕI

)
∇µϕJδ1ϕIδ2ϕK

+GIJ(ϕ)(δ1ϕI∇µδ2ϕJ − δ2ϕ
I∇µδ1ϕJ). (5.194)

For the reader’s convenience we now compile a list of the most important prop-
erties of the symplectic current that we will need, along with the relevant proofs.
Further details can be found in [100, 90].

I. If ψ satisfies the equations of motion and δ1ψ, δ2ψ satisfy the linearized equa-
tions of motion, then ω is closed

dω = 0. (5.195)

Proof: Taking the second variation of (5.2) and using the fact that the func-
tional derivatives of the Lagrangian commute we get

δ2δ1L = δ2Eδ1ψ + dδ2Θ(ψ, δ1ψ) = δ1Eδ2ψ + dδ1Θ(ψ, δ2ψ) = δ1δ2L ⇒
dω(ψ, δ1ψ, δ2ψ) = δ1Eδ2ψ − δ2Eδ1ψ. (5.196)

This completes the proof since δ1E = δ2E = 0, by the hypothesis.
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II. For an arbitrary fixed vector field ξ on M and an arbitrary gauge transforma-
tion α, on-shell we have

ω(ψ, δψ,Lξψ) = d (δQ[ξ]− iξΘ) , (5.197)

ω(ψ, δψ, δαψ) = dδQα. (5.198)

Proof: The variation of the diffeomorphism current with respect to an arbitrary
variation δψ of the fields (not necessarily satisfying the linearized equations of
motion) is given by

δJ[ξ] = δΘ(ψ,Lξψ)− iξδL

= δΘ(ψ,Lξψ)− iξdΘ(ψ, δψ)

= δΘ(ψ,Lξψ)− LξΘ(ψ, δψ) + d(iξΘ(ψ, δψ)), (5.199)

where the equations of motion, E = 0, have been used together with the
identity Lξ = iξd+diξ on forms. Since Θ is covariant with respect to bulk dif-
feomorphisms we have LξΘ(ψ, δψ) = δ′Θ(ψ, δψ), where δ′ψ = Lξψ. Hence,

δΘ(ψ,Lξψ)− LξΘ(ψ, δψ) = ω(ψ, δψ,Lξψ), (5.200)

and so
ω(ψ, δψ,Lξψ) = δJ[ξ]− d(iξΘ). (5.201)

Specializing this to solutions, δψ, of the linearized equations of motion com-
pletes the proof of (5.197).

Moreover,
ω(ψ, δψ, δαψ) = δΘ(ψ, δαψ)− δαΘ(ψ, δψ). (5.202)

Gauge invariance implies that the second term on the RHS vanishes and hence,
on-shell, we obtain (5.198).

(5.203)

III. The pullback of the symplectic current on Σr takes the form

ω(ψ, δ1ψ, δ2ψ) =
{
δ2(
√−γπ(d)

ij)δ1γij + δ2(
√−γπ(d)

i)δ1Ai
+δ2(

√−γπ(∆I)I)δ1ϕI − 1 ↔ 2
}
dµ. (5.204)

Proof: This follows immediately from the form of the pullback (5.25) of Θ on
Σr together with the commutativity of the field variations, δ2δ1 − δ1δ2 = 0.

Pre-symplectic form
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Having established the relevant properties of the symplectic current we now in-
troduce the corresponding pre-symplectic 2-form on the field configuration space.
Such a form induces a symplectic form on the solution submanifold of the configu-
ration space [100]. Given a Cauchy surface C, the pre-symplectic form relative to C
is defined by [100, 90]

ΩC(ψ, δ1ψ, δ2ψ) =
∫

C

ω(ψ, δ1ψ, δ2ψ). (5.205)

In order for this to be well-defined obviously the integral on the RHS of (5.205)
must converge for all solutions ψ of the field equations and any solutions δ1ψ, δ2ψ
of the linearized equations of motion that satisfy the boundary conditions (5.27) -
or (5.34) in the case of non-vanishing anomaly. These boundary conditions should
also ensure that ΩC is independent of the Cauchy surface C.

To address these questions we note that the most general solution of the lin-
earized equations of motion satisfying the boundary conditions (5.27) takes the
form

δψ = Lξ̂ψ + δα̂ψ + δ̂ψ, (5.206)

where ξ̂, α̂, given by (5.172), generate a PBH transformation and δ̂ψ = O(e−s
+r)

is an arbitrary normalizable solution. Since, as can be seen from (5.192), (5.193)
and (5.194), the pullback of ω(ψ, δψ, δ̂ψ) onto C is O(e−2r), the only contribution
to the pre-symplectic form which could be divergent is the integral of ω(ψ,Lξ̂1ψ +
δα̂1ψ,Lξ̂2ψ+δα̂2ψ). However, if the background, ψ, satisfies the conditions of lemma
5.2.1 and the Weyl factors δσ1 and δσ2 are independent of the coordinates adapted
to the isometries, then the pullback of ω(ψ,Lξ̂1ψ + δα̂1ψ,Lξ̂2ψ + δα̂2ψ) onto the
Cauchy surface C vanishes. Hence, the defining integral (5.205) of ΩC is conver-
gent.

Next, let C and C ′ be two Cauchy surfaces bounding a region ∆ ⊂ ∂M of the
boundary. Using Stokes’ theorem and the fact that ω is closed on-shell (property I),
we get

∫

C

ω(ψ, δ1ψ, δ2ψ)−
∫

C′
ω(ψ, δ1ψ, δ2ψ) =

∫

∆⊂∂M
ω(ψ, δ1ψ, δ2ψ). (5.207)

Property III together with the boundary conditions (5.27) and the trace Ward iden-
tity (2.168) now give

ω(ψ, δ1ψ, δ2ψ) =
{
δ2(
√−γA)δ1σ − 1 ↔ 2

}
dµ. (5.208)

Therefore, ΩC is independent of the Cauchy surface provided we use the boundary
conditions (5.27) when the anomaly vanishes, and the boundary conditions (5.34)
when there is a non-zero anomaly. This is in perfect agreement with our discussion
of the variational problem.
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5.A.4 ELECTRIC PART OF THE WEYL TENSOR AND THE ASHTEKAR-
MAGNON MASS

In this appendix we briefly discuss the connection between the ‘conformal mass’
of [42] and our analysis. This issue is also discussed in the recent work of [81].

The authors of [42, 102] give a definition of the conserved charges for AAdS
spacetimes in terms of the electric part of the Weyl tensor, which, in the gauge
(3.35), and for arbitrary matter fields, takes the form

Eij = KKi
j −Ki

kK
k
j −Rij +

κ2

d− 1

[
(d− 2)T̃ ij −

(
(d− 2)

1
d
T̃σσ + T̃d+1d+1

)
δij

]
.

(5.209)
This tensor is traceless due to the Hamilton constraint in (3.38)

Eii = K2 −KijK
ij −R− 2κ2T̃d+1d+1 = 0. (5.210)

To make contact with their discussion let us specialize to pure gravity in five
dimensions (the inclusion of matter in the discussion is completely straightforward).
Expanding this tensor in eigenfunctions of the dilatation operator we immediately
see that the term of weight 4 is given by

E(4)
i
j = 2

(
K(4)

i
j −K(4)δ

i
j

)
+ 3K(4)δ

i
j +K(2)K(2)

i
j −K(2)

i
kK(2)

k
j . (5.211)

Using now the expressions [29, 30, 1]

K(2)
i
j =

1
2

(
Rij −

1
6
Rδij

)
, K(4) =

1
24

(
RijRij − 1

3
R2

)
, (5.212)

we obtain

E(4)
i
j = −2κ2T (4)

i
j +

1
4

(
−RikRkj +

2
3
RRij +

1
2
Rkl R

l
kδ
i
j −

1
4
R2δij

)
, (5.213)

where
T (4)

i
j ≡ − 1

κ2
(K(4)

i
j −K(4)δ

i
j) (5.214)

is the renormalized stress tensor. Therefore, in agreement with Ashtekar and Das
[42] and Hollands, Ishibashi and Marolf [81], the difference between the holo-
graphic conserved charges, defined using T (4)

i
j , and the Ashtekar-Magnon charges,

defined using E(4)
i
j , is the tensor

Hi
j ≡

1
4

(
−RikRkj +

2
3
RRij +

1
2
Rkl R

l
kδ
i
j −

1
4
R2δij

)
. (5.215)

As discussed in the main text, this tensor is covariantly conserved and is equal to the
holographic stress energy tensor of AdS5 [30].
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There is a similar local tensor that is covariantly conserved when the metric is
conformally flat in all even dimensions: it is the holographic stress energy tensor
of AdS2k+1. As it was shown in [47], and reviewed in section 2, see (3.6), the
Fefferman-Graham expansion of AdS(2k+1) terminates at order z4 and all terms are
locally related to g(0). It follows that the holographic stress energy tensor, which
in general contains the non-local (w.r.t. g(0) ) term g(d), is local in this case. The
explicit expression for d = 6 is given in (3.21) of [30].
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[99] C. Crnković and E. Witten, in Thee Hundred Years of Gravitation, edited by
S. W. Hawking and W. Israel (Cambridge U.P., Cambridge, 1987).

[100] J. Lee and R. M. Wald, “Local Symmetries And Constraints,” J. Math. Phys.
31, 725 (1990).

[101] N.D. Birrell and P.C.W. Davies, “Quantum fields in curved space”, Cambridge
Monographs on Mathematical Physics, chapter 6.

190



BIBLIOGRAPHY

[102] A. Ashtekar and S. Das, “Asymptotically anti-de Sitter space-times: Conserved
quantities,” Class. Quant. Grav. 17 (2000) L17 [arXiv:hep-th/9911230].

[103] T. Jacobson, G. Kang and R. C. Myers, “On black hole entropy,” Phys. Rev. D
49, 6587 (1994) [arXiv:gr-qc/9312023].

[104] B. Carter, “Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s
equations,” Commun. Math. Phys.10 (1968) 280.

[105] J. F. Plebanski and M. Demianski, “Rotating, charged, and uniformly acceler-
ating mass in general relativity,” Ann. Phys. 98 (1976) 98-127.

[106] S. W. Hawking, C. J. Hunter and M. M. Taylor-Robinson, “Rotation and
the AdS/CFT correspondence,” Phys. Rev. D 59 (1999) 064005 [arXiv:hep-
th/9811056].

[107] V. A. Kostelecky and M. J. Perry, “Solitonic Black Holes in Gauged N=2 Su-
pergravity,” Phys. Lett. B 371 (1996) 191 [arXiv:hep-th/9512222].

[108] S. Das and R. B. Mann, “Conserved quantities in Kerr-anti-de Sitter space-
times in various dimensions,” JHEP 0008 (2000) 033 [arXiv:hep-th/0008028].

[109] S. Silva, “Black hole entropy and thermodynamics from symmetries,” Class.
Quant. Grav. 19 (2002) 3947 [arXiv:hep-th/0204179].

[110] M. M. Caldarelli, G. Cognola and D. Klemm, “Thermodynamics of Kerr-
Newman-AdS black holes and conformal field theories,” Class. Quant. Grav.
17 (2000) 399 [arXiv:hep-th/9908022].

[111] A. M. Awad and C. V. Johnson, “Higher dimensional Kerr-AdS black holes and
the AdS/CFT correspondence,” Phys. Rev. D 63 (2001) 124023 [arXiv:hep-
th/0008211].

[112] R. Olea, “Mass, angular momentum and thermodynamics in four-dimensional
Kerr-AdS black holes,” [arXiv:hep-th/0504233]; P. Mora, R. Olea, R. Troncoso
and J. Zanelli, “Vacuum energy in odd-dimensional AdS gravity,” [arXiv:hep-
th/0412046].

191



BIBLIOGRAPHY

192



SAMENVATTING

Het ultieme doel van de moderne theoretische fysica is het unificeren van al-
le bekende fysische wetten in een overkoepelende theorie. Zo’n theorie moet alle
fysische fenomenen op alle afstandsschalen beschrijven en uitleggen, van de Plan-
ckschaal (1.6× 10−35m) tot de schaal van het universum (7.4× 1026m).

Wat wordt er verstaan onder het begrip ‘theorie’? In de fysica wordt met het be-
grip ‘theorie’ een wiskundig model bedoeld, dat alle bekende systematische observa-
ties binnen het domein van geldigheid van het specifieke model - die voortkomen uit
experimenten, beschrijft en ook de mogelijke observaties die in de toekomst zouden
kunnen worden gemaakt binnen dit domein beschrijft. Een theorie verschilt daar-
om van een complete catalogus met observaties, omdat een theorie het resultaat
kan voorspellen van experimenten die nog niet uitgevoerd zijn. Een karakteristiek
voorbeeld is de theorie van de Newtoniaanse zwaartekracht die was voorgesteld
als uitleg van de observaties van de beweging van de planeten van Tycho Brahe en
Johannes Kepler. Diezelfde theorie was later de basis voor de calculaties die leid-
den tot bijvoorbeeld het zenden van satellieten naar de ruimte. Dit feit bewijst dat
met behulp van deze theorie het mogelijk is om voorspellingen te doen. Een ander
voorbeeld is James Clerk Maxwells theorie van het electromagnetisme, die het re-
sultaat was van de poging om de toen bekende electromagnetische fenomenen te
beschrijven en uit te leggen. De wiskundige structuur van de theorie voorspelde het
bestaan van de electromagnetische golven. Tegelijkertijd speelde deze theorie een
belankrijke rol bij de ontdekking van de speciale relativiteitstheorie.

Elke fysische theorie heeft een beperkt regime van geldigheid, dat voorname-
lijk wordt bepaald door de oorspronkelijke observaties die leiden tot de specifieke
theorie. We weten bijvoorbeeld dat de mechanica van Newton niet geldt op micro-
scopisch niveau, zoals op het atomair niveau (0.5×10−10m), terwijl de Newtoniaan-
se zwaartekracht de verschillende fysische fenomenen niet kan beschrijven in een
sterk zwaartekrachtsveld of op hogere niveaus dan het niveau van het zonnestelsel
(5.9× 1012m). De moderne theoretische fysica bestaat daarom uit een collectie van
fysische theorieën die gelden op verschillende niveaus of, meer in het algemeen,
onder speciale omstandigheiden. Het unificeren van alle beperkte theorieën in een
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theorie met een groter domein van geldigheid is de belangrijkste uitdaging voor de
natuurwetenschap.

DE PIJLERS VAN DE MODERNE NATUURKUNDE

Een belangrijke ontwikkeling in de theoretische fysica was de ontdekking van de
relativiteitstheorie en de quantummechanica in het begin van de twintigste eeuw.
De speciale relativiteitstheorie leidde tot een fundamentele herziening van het den-
ken over tijd, plaats en massa, die essentiële constituenten zijn van elke fysische
theorie. Tien jaar later veranderde de algemene relativiteitstheorie het beeld van de
‘ruimtetijd’ nog meer en gaf die ons tegelijkertijd een geometrische zwaartekrachts-
theorie die de theorie van Newton generaliseerde. De algemene relativiteitstheorie
is tot op heden het enige complete wiskundige model voor het beschrijven en het
begrijpen van alle zwaartekrachtsfenomenen op macroscopisch niveau. Het feit dat
alle observaties tot nu toe precies overeenkomen met de voorspellingen van de al-
gemene relativiteitstheorie en het feit dat de theorie een mooie en simpele structuur
heeft, leidden tot de conclusie dat welke vorm de uiteindelijke theorie dan ook mag
hebben, de algemene relativiteitstheorie in ieder geval een onderdeel zal zijn van de
overkoepelende theorie.

In dezelfde periode droeg de quantummechanica bij aan het begrip van de struc-
tuur van materie op atomair niveau. Om succesvol de fysische fenomenen te kunnen
beschrijven op atomair niveau is het nodig om afstand te nemen van de klassieke
dynamica, die inhoudt dat verschillende deeltjes in bepaalde banen in de ruimte
bewegen. Experimentele observaties stelden een statistische beschrijving van de
werking van de microkosmos voor, die bijvoorbeeld toelaat dat een deeltje tussen
twee punten allerlei trajecten kan volgen die een verschillende waarschijnlijkheid
hebben. De klassieke beschrijving van de beweging van een deeltje, die vereist dat
de plaats van een deeltje in de ruimte als functie van de tijd bepaald is, is vervangen
door de ‘golffunctie’, die de waarschijnlijkheid van het deeltje bepaalt, dat zich op
elk punt in de ruimte en op elk moment in de tijd kan bevinden. In tegenstelling
tot wat men zou verwachten van het statistische karakter van de quantummecha-
nica, bleek dat haar voorspelbaarheid ongekend was en werden er daarom nieuwe
fenomenen ontdekt. Bovendien leerde de quantummechanica ons dat voor de hand
liggende vragen over de werking van de natuur op het niveau van ons dagelijks le-
ven, zoals de vraag wat de plaats is van een deeltje als functie van de tijd, niet altijd
de juiste vragen zijn voor het bestuderen van de microkosmos. Net als de algemene
relativiteitstheorie is ook de quantummechanica één van de meest succesvolle fysi-
sche theorieën die we tot op heden kennen en daarom is te verwachten dat ze een
belangrijke rol zal spelen in de ontwikkeling van een overkoepelende theorie.
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DE ZOEKTOCHT NAAR EEN OVERKOEPELENDE THEORIE

De originele vorm van de quantummechanica beschrijft de eigenschappen van
materie op atomair niveau in snelheden die veel kleiner zijn dan de snelheid van het
licht of, volgens de speciale relativiteitstheorie, in energieën die veel kleiner zijn dan
de massa van atomische deeltjes. Deze restrictie van de energie is het gevolg van
het feit dat de originele vorm van de quantummechanica niet overeenkomt met de
speciale relativiteitstheorie, die de beweging in grote snelheden, vergelijkbaar met
de snelheid van het licht, beschrijft.

Jarenlange pogingen om de quantummechanica en de speciale relativiteitstheo-
rie te unificeren leidden in het midden van de twintigste eeuw tot de formulering
van de zogenaamde ‘quantumveldentheorie’. Deze unificatie vereist dat men afstand
neemt van het idee van het gëisoleerde deeltje, dat ons bekend is uit de klassieke
mechanica en dat tot op zekere hoogte in de non-relativistische formulering van de
quantummechanica bleef. Volgens de quantumveldentheorie zijn juist de verschil-
lende velden die zich uitstrekken over de gehele ruimtetijd de enige fundamentele
objecten in de natuur, zoals bijvoorbeeld het bekende electromagnetische veld van
Maxwell. De verschillende deeltjes corresponderen met de locale storingen van deze
velden, die zich verbreiden en interageren in de ruimtetijd. Tijdens de interacties
kunnen nieuwe deeltjes worden geproduceerd uit het vacuüm en andere deeltjes
kunnen verdwijnen: fenomenen die niet kunnen worden beschreven door vroege-
re theorieën, die de verschillende deeltjes immers behandelden als fundamentele
objecten die voor altijd bestaan.

De eerste complete quantumveldentheorie was de zogenaamde ‘quantumelec-
trodynamica’ (QED), die de samensmelting is van drie fundamentele theorieën, na-
melijk van de quantummechanica, van de speciale relativiteitstheorie en van Max-
wells theorie van het electromagnetisme. Deze theorie beschrijft erg nauwkeurig
alle eigenschappen van de quantumstoringen van het electromagnetische veld en
van het ‘electronveld’ - die bekend staan als respectievelijk ‘fotonen’ en ‘electronen’
- en beschrijft ook hun onderlinge interacties. De ontdekking van de quantume-
lectrodynamica was ook belangrijk omdat het de eerste complete quantumtheorie
was van één van de vier bekende fundamentele natuurkrachten: het electromagne-
tisme, de zwakke en de sterke nucleaire interacties en de zwaartekracht. Het was
daarom te verwachten dat de quantumelectrodynamica het prototype zou worden in
de systematische zoektocht naar een quantumtheorie voor de andere fundamentele
krachten.

Dit gebeurde aan het eind van de jaren ’60 en in het begin van de jaren ’70,
toen na vele jaren van experimenteren met cosmische stralen en deeltjesversnellers,
maar ook na intensieve theoretische pogingen, de juiste quantumtheorieën voor de
beschrijving van de zwakke en de sterke interacties ontdekt werden. Bovendien
realiseerde men zich dat het bestaan van electromagnetisme vereist is voor een
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quantumtheorie van de zwakke interactie. De electromagnetische en de zwakke
interacties zijn daarom verschillende facetten van één fundamentele kracht, van de
zogenaamde ‘electrozwakke interactie’. De quantumtheorie die de electrozwakke
interactie beschrijft was het eerste voorbeeld van een nieuw type van een quantum-
veldentheorie, die bekend staat als ‘ niet-abelse ijktheorie’. Het besef dat zo’n quan-
tumveldentheorie wiskundig gezien acceptabel is - namelijk ‘renormaliseerbaar’ is
- leidde erg snel tot de ontdekking van de juiste quantumbeschrijving van de ster-
ke nucleaire interactie, van de ‘quantum chromodynamica’ (QCD), die, net als de
electrozwakke theorie, een niet-abelse ijktheorie is. Deze groep van quantumvel-
dentheorieën staat bekend als het ‘standaardmodel van de deeltjesfysica’ en is een
complete en erg nauwkeurige beschrijving van alle bekende deeltjes en van alle fun-
damentele krachten, behalve van de zwaartekracht.

Hoewel het standaardmodel van de deeltjesfysica een belangrijke stap in de zoek-
tocht naar een overkoepelende theorie is, impliceert het feit dat het geen zwaarte-
kracht bevat dat het geen finale of complete theorie kan zijn. In tegenstelling tot
de speciale relativiteitstheorie, die gëincorporeerd is in elke quantumveldentheorie,
is de unificatie van de algemene relativiteitstheorie met de quantummechanica één
van de moeilijkste en langdurigste problemen van de theoretische fysica. Het is niet
moeilijk om te begrijpen waarom de formulering van een quantumzwaartekrachts-
theorie zulke moeilijkheden laat zien, aangezien de algemene relativiteitstheorie
en de quantumveldentheorie fenomenen beschrijven op twee totaal verschillende
afstandsschalen. We weten erg goed dat de rol van de quantummechanica verwaar-
loosbaar is op de afstandsschaal in ons dagelijks leven en natuurlijk op macrosco-
pisch niveau, zoals op het niveau van de omvang van het universum. Tegelijkertijd
is de zwaartekracht erg zwak vergeleken met de andere drie fundamentele krachten
op subatomair niveau. Een quantumzwaartekrachtstheorie moet daarom fenome-
nen met een zo groot mogelijk bereik over de afstandsschalen beschrijven en deze
theorie zal dus dichtbij een overkoepelende theorie komen.

Aangezien de algemene relativiteitstheorie en de quantumveldentheorie perfect
overeenkomen met de experimentele observaties in hun domein van geldigheid,
moet elke quantumzwaartekrachtstheorie deze theorieën in de corresponderende li-
miet reproduceren. Om het echte karakter van een quantumzwaartekrachtstheorie,
dat niet kan worden beschreven door de algemene relativiteitstheorie of de quan-
tumveldentheorie, te isoleren, moet men zich dus concentreren op de afstandsscha-
len waarop de zwaartekracht en de quantummechanische fenomenen tegelijkertijd
voorkomen. Dit gebeurt op niveaus die veel kleiner zijn dan het atomair niveau,
namelijk op de Planckschaal, waarop de consequenties van de quantummechanica
belangrijk blijven, maar waarop tegelijkertijd ook de zwaartekracht vergelijkbaar is
met de andere fundamentele krachten. Het is erg onwaarschijnlijk dat we ooit in
staat zullen zijn om fenomenen met behulp van experimenten direct te bestuderen
op zulke kleine afstandsschalen, oftewel op zulke hoge energieën, omdat het prak-
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tisch onmogelijk is om de nodige apparatuur daarvoor te construeren op Aarde. We
weten echter dat deze condities bestonden in de periode direct na het ontstaan van
het universum, oftewel na de Oerknal, toen de omvang van het universum vergelijk-
baar was met de Planckschaal. Dit feit laat de mogelijkheid open voor het bestaan
van direct bewijs van quantumzwaartekracht op cosmologische schaal.

Vanuit technisch perspectief is het grootste probleem voor de formulering van
een quantumzwaartekrachtstheorie, die gebaseerd is op de algemene relativiteits-
theorie, dat het op dezelfde manier ‘quantiseren’ van het zwaartekrachtsveld als het
quantiseren van de andere fundamentele krachten leidt tot wiskundige inconsisten-
ties. Met name het feit dat de quanta van het zwaartekrachtsveld, de ‘gravitonen’,
in de standaard veldentheorie interageren op één punt in de ruimtetijd, leidt tot de
verschijning van verschillende oneindigheden die onacceptabel zijn. Dit probleem
kan alleen voorkomen worden als de gravitonen interageren vanaf een minimale
afstand in plaats van op één punt. De zoektocht naar een fundamentele theorie die
dit idee realiseert leidde tot de ontdekking van de ‘snaartheorie’.

DE SNAARTHEORIE

In de snaartheorie zijn de fundamentele vrijheidsgraden ééndimensionale uitge-
strekte objecten, oftewel ‘snaren’, die bewegen in de ruimtetijd en over een twee-
dimensionaal oppervlak opspannen. De mogelijke snaarinteracties worden erg be-
perkt door de geometrie en de topologie van deze oppervlakken: ze corresponderen
met de verschillende wijzen van knippen en vastlijmen van een tweedimensionaal
oppervlak. Daarom hebben de interacties tussen de gravitonen - die bepaalde tril-
lingstoestanden van de snaar zijn - een puur geometrische oorsprong. Het feit dat
de snaren uitgestrekte objecten zijn betekent dus dat de gravitonen niet op één
punt interageren en daarom bevat de theorie geen wiskundige problemen die de
directe quantisatie van de algemene relativiteitstheorie onmogelijk maken. Tegelij-
kertijd impliceert de consistente quantisatie van de snaren dat de snaartheorie de
algemene relativiteitstheorie exact reproduceert op erg lage energieën, oftewel op
afstandsschalen die groter zijn dan de Planckschaal. Dit gedrag komt overeen met
wat men zou verwachten van een quantumzwaartekrachtstheorie. Dit is inderdaad
één van de belangrijkste redenen die ons laten geloven dat de snaartheorie tot op
heden de meest geschikte kandidaat is voor een quantumzwaartekrachtstheorie.

De snaartheorie is niet alleen een consistente quantumzwaartekrachtstheorie,
maar ook een prototype voor de gewenste overkoepelende theorie. Naast het feit
dat de verschillende trillingstoestanden van de snaren resulteren in een heleboel
deeltjes - inclusief de gravitonen - vereisen alle vijf mogelijke snaartheorieën dat de
ruimtetijd tien dimensies heeft in tegenstelling tot de vier dimensies die het waar-
neembare universum heeft. Dit aanwijsbare nadeel kan omgezet worden in een
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voordeel voor de snaartheorie als we aannemen dat zes van de tien dimensies mi-
croscopisch - of ‘opgerold’ - zijn en daarom alleen waarneembaar zijn op de kleine
afstandsschalen. Elk van de vele manieren waarop de extra zes dimensies kunnen
worden opgerold correspondeert met een andere set van deeltjes en interacties in de
vier macroscopische dimensies. De snaartheorie is in staat om via dit mechanisme
alle fundamentele krachten en elementaire deeltjes in de waarneembare wereld te
beschrijven. De vraag tot op welke hoogte de snaartheorie het standaardmodel in
vier dimensies kan reproduceren is tegenwoordig een actief onderzoeksgebied.

DE ADS/CFT - CORRESPONDENTIE

We hebben gezien dat de snaartheorie werd ontwikkeld als een generalisatie
van de quantumveldentheorie in de poging om een consistente quantumzwaarte-
krachtstheorie te vinden. De recente ontdekking van de zogenaamde ‘AdS/CFT -
correspondentie’ (Anti-de Sitter/Conformal Field Theory) relateert echter op een
hele andere manier de snaartheorie met de quantumveldentheorie. Met name im-
pliceert de AdS/CFT-correspondentie dat een bepaalde snaartheorie in tien dimen-
sies gelijk is aan een gewone quantumveldentheorie zonder zwaartekracht in vier
dimensies. Deze correspondentie - die ons in staat stelt om via de snaartheorie een
quantumveldentheorie te bestuderen en vice versa - is het onderwerp van dit proef-
schrift.
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O ap¸teroc skopìc thc sÔgqronhc jewrhtik c fusik c eÐnai h enopoÐhsh ìlwn twn
gnwst¸n fusik¸n nìmwn se mia �jewrÐa twn p�ntwn�   �jewrÐa megaloenopoÐhshc�.
Mia tètoia jewrÐa ja prèpei na perigr�fei kai na ermhneÔei ìla ta fusik� fainìmena se
ìlec tic klÐmakec megèjouc, apì th mikroskopik  klÐmaka tou Planck (1.6× 10−35m)
mèqri th makroskopik  klÐmaka tou sÔmpantoc (7.4× 1026m).

Ti ennoeÐ ìmwc kaneÐc me ton ìro �jewrÐa�? Sto q¸ro thc fusik c, o ìroc �jewrÐa�
anafèretai se èna majhmatikì montèlo to opoÐo perigr�fei ìlec tic gnwstèc su-
sthmatikèc parathr seic sto q¸ro isqÔoc tou sugkekrimènou montèlou ìpwc autèc
prokÔptoun mèsw peiram�twn, �lla kai ìlec tic dunatèc parathr seic pou ja mpo-
roÔsan na gÐnoun sto mèllon ston q¸ro autìn. Mia jewrÐa diafèrei epomènwc apì
ènan ekten  kat�logo parathr sewn sto ìti h jewrÐa mporeÐ na problèyei to apotè-
lesma peiram�twn ta opoÐa den èqoun pragmatopoihjeÐ. Qarakthristikì par�deigma
eÐnai h jewrÐa thc Neut¸neiac barÔthtac h opoÐa prot�jhke wc ermhneÐa twn para-
thr sewn tou Tycho Brahe kai tou Johannes Kepler gia thn kÐnhsh twn planht¸n.
H Ðdia jewrÐa ìmwc apotèlese polÔ argìtera thn b�sh upologism¸n pou od ghsan
gia par�deigma sthn apostol  dorufìrwn sto di�sthma, apodeiknÔontac me autìn
ton trìpo thn probleptik  thc ikanìthta. ExÐsou qarakthristik  eÐnai h perÐptwsh
thc jewrÐac tou James Clerk Maxwell gia ton hlektromagnhtismì h opoÐa diamorf¸-
jhke sta tèlh tou dèkatou ènatou ai¸na gia na exhghjoÔn ta mèqri tìte gnwst�
hlektromagnhtik� fainìmena. H majhmatik  dom  thc jewrÐac ìmwc od ghse sthn
prìbleyh twn hlektromagnhtik¸n kum�twn en¸ par�llhla èpaixe kajoristikì rìlo
sthn anak�luyh thc eidik c jewrÐac thc sqetikìthtac.

K�je fusik  jewrÐa wstìso èqei èna periorismèno pedÐo efarmog c to opoÐo upa-
goreÔetai se meg�lo bajmì apì tic arqikèc parathr seic pou sunèbalan sthn dia-
mìrfwsh thc sugkekrimènhc jewrÐac. GnwrÐzoume gia par�deigma ìti h mhqanik 
tou NeÔtwna den isqÔei se mikroskopikèc klÐmakec megèjouc ìpwc aut  tou atìmou
(0.5×10−10m), en¸ h Neut¸neia barÔthta den mporeÐ na perigr�yei ta di�fora fusik�
fainìmena sthn parousÐa isquroÔ barutikoÔ pedÐou   se klÐmakec megalÔterec aut c
tou hliakoÔ mac sust matoc (5.9 × 1012m). 'Etsi, h sÔgqronh jewrhtik  fusik 
diajètei mia sullog  apì fusikèc jewrÐec oi opoÐec isqÔoun se diaforetikèc klÐmakec
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megèjouc   pio genik� k�tw apì sugkekrimènec sunj kec. H enopoÐhsh ìlwn aut¸n
twn periorismènwn jewri¸n se mia kai mình jewrÐa me megalÔtero pedÐo efarmog c
eÐnai h kuriìterh prìklhsh gia thn epist mh thc fusik c.

Oi pul¸nec thc sÔgqronhc fusik c

Shmantikìtath prìodoc ston q¸ro thc jewrhtik c fusik c shmei¸jhke stic arqèc
tou eikostoÔ ai¸na me thn anak�luyh thc jewrÐac thc sqetikìthtac kai thc kbanto-
mhqanik c. H eidik  jewrÐa thc sqetikìthtac od ghse se mia rizik  anaje¸rhsh twn
ennoi¸n tou qrìnou, tou q¸rou kai thc m�zac, oi opoÐec apoteloÔn jemeli¸dh stoi-
qeÐa k�je fusik c jewrÐac. LÐga qrìnia argìtera, h genik  jewrÐa thc sqetikìthtac
�llaxe peraitèrw thn eikìna tou qwroqrìnou, en¸ tautìqrona pareÐqe mia gewmetrik 
jewrÐa barÔthtac, genikeÔontac th jewrÐa tou NeÔtwna. H genik  jewrÐa thc sqe-
tikìthtac apoteleÐ mèqri s mera to mìno oloklhrwmèno majhmatikì plaÐsio gia thn
perigraf  kai thn katanìhsh ìlwn twn barutik¸n fainomènwn se makroskopikèc klÐ-
makec. To gegonìc ìti ìlec oi parathr seic mèqri t¸ra sumfwnoÔn me tic problèyeic
thc genik c jewrÐac thc sqetikìthtac me exairetik  akrÐbeia, kaj¸c kai h idiaÐtera
apl  kai ìmorfh majhmatik  dom  thc, odhgoÔn sthn pepoÐjhsh ìti opoiand pote
morf  ki an èqei mia pijan  telik  jewrÐa megaloenopoÐhshc, ja perièqei th genik 
jewrÐa thc sqetikìthtac wc eidik  perÐptwsh.

Par�llhla, h an�ptuxh thc kbantomhqanik c eÐqe wc apotèlesma thn katanìh-
sh thc dom c thc Ôlhc se atomik  klÐmaka. Gia na perigr�yei kaneÐc me epituqÐa ta
fusik� fainìmena sto atomikì epÐpedo  tan aparaÐthto na aposurjeÐ h eikìna thc
klassik c dunamik c sÔmfwna me thn opoÐa ta di�fora swmatÐdia kinoÔntai se ka-
jorismènec troqièc mèsa sto qrìno. Oi peiramatikèc parathr seic upagìreuan mia
statistik  perigraf  thc sumperifor�c tou mikrìkosmou, epitrèpontac gia par�deig-
ma se èna swmatÐdio na akoloujeÐ ìlec tic dunatèc diadromèc metaxÔ duo shmeÐwn, me
diaforetikèc ìmwc pijanìthtec. H klassik  perigraf  thc kÐnhshc enìc swmatidÐou,
pou apaiteÐ ton kajorismì thc jèshc tou swmatidÐou ston q¸ro wc sun�rthsh tou
qrìnou, antikatast�jhke me thn �kumatosun�rthsh�, h opoÐa kajorÐzei thn pijanìth-
ta to swmatÐdio na brÐsketai se k�poio shmeÐo tou q¸rou se k�je qronik  stigm .
Se antÐjesh me ìti ja anèmene kaneÐc apì ton statistikì thc qarakt ra, h proble-
ptik  ikanìthta thc kbantomhqanik c  tan prwtofan c kai od ghse sthn anak�luyh
miac plhj¸rac nèwn fainomènwn, en¸ mac dÐdaxe ìti oi profaneÐc erwt seic gia th
sumperifor� thc fÔshc sthn klÐmaka thc kajhmerin c mac zw c, ìpwc to poia eÐnai h
jèsh enìc s¸matoc wc sun�rthsh tou qrìnou, den eÐnai aparaÐthta oi �swstèc� erw-
t seic gia th melèth twn fainomènwn sthn atomik  klÐmaka. 'Opwc h genik  jewrÐa
thc sqetikìthtac, ètsi kai h kbantomhqanik  èqei apodeiqjeÐ mia apì tic plèon epitu-
qeÐc jewrÐec fusik c pou gnwrÐzoume mèqri s mera kai epomènwc anamènetai na èqei
kajoristikì rìlo sthn diamìrfwsh miac enopoihmènhc jewrÐac.
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H anaz thsh miac jewrÐac megaloenopoÐhshc

H arqik  morf  thc kbantomhqanik c perigr�fei tic idiìthtec thc Ôlhc sthn klÐ-
maka tou atìmou kai se taqÔthtec polÔ mikrìterec aut c tou fwtìc   isodÔnama se
sqetik� qamhlèc enèrgeiec. O periorismìc autìc sthn enèrgeia ofeÐletai sto gego-
nìc ìti h arqik  morf  thc kbantomhqanik c den eÐnai sumbat  me thn eidik  jewrÐa
thc sqetikìthtac pou dièpei thn kÐnhsh se meg�lec taqÔthtec, sugkrÐsimec me thn
taqÔthta tou fwtìc.

Mia makroqrìnia prosp�jeia enopoÐhshc thc kbantomhqanik c me thn eidik  jewrÐa
thc sqetikìthtac od ghse sth diamìrfwsh thc legìmenhc �kbantik c jewrÐac pedÐwn�
sta mèsa tou eikostoÔ ai¸na. H enopoÐhsh aut  apaiteÐ thn egkat�leiyh thc ènnoiac
tou memonwmènou swmatidÐou ìpwc aut  mac eÐnai gnwst  apì thn klassik  mhqanik 
kai h opoÐa parèmeine se meg�lo bajmì kai sthn mh-sqetikistik  morf  thc kbanto-
mhqanik c. AntÐjeta, sÔmfwna me thn kbantik  jewrÐa pedÐwn, ta mìna jemeli¸dh
antikeÐmena sth fÔsh eÐnai di�fora pedÐa, ìpwc gia par�deigma to gnwstì apì thn
jewrÐa tou Maxwell hlektromagnhtikì pedÐo, ta opoÐa ekteÐnontai se ìlo ton qwro-
qrìno. Ta di�fora swmatÐdia antistoiqoÔn apl¸c se topikèc diataraqèc twn pedÐwn
aut¸n oi opoÐec taxideÔoun kai allhlepidroÔn mèsa ston qwroqrìno sÔmfwna me touc
kanìnec thc kbantomhqanik c kai thc eidik c jewrÐac thc sqetikìthtac. Kat� th di�r-
keia aut¸n twn allhlepidr�sewn, nèa swmatÐdia mporoÔn na paraqjoÔn apì to kenì
kai �lla swmatÐdia na exafanistoÔn, fainìmena pou eÐnai adÔnato na perigrafoÔn sto
plaÐsio twn progenèsterwn jewri¸n oi opoÐec antimet¸pizan ta di�fora swmatÐdia wc
jemeli¸dh antikeÐmena pou up�rqoun gia p�nta.

H pr¸th oloklhrwmènh kbantik  jewrÐa pedÐou  tan h legìmenh �kbantik  hle-
ktrodunamik � (QED) h opoÐa apoteleÐ to sugkerasmì tri¸n jemeliwd¸n jewri¸n:
thc kbantomhqanik c, thc eidik c jewrÐac thc sqetikìthtac kai thc jewrÐac hlektro-
magnhtismoÔ tou Maxwell. H jewrÐa aut  perigr�fei me exairetik  akrÐbeia ìlec tic
idiìthtec twn kbantik¸n diataraq¸n tou hlektromagnhtikoÔ pedÐou kai tou �pedÐou
hlektronÐwn�, gnwst¸n antÐstoiqa wc �fwtìnia� kai �hlektrìnia�, kaj¸c kai tic me-
taxÔ touc allhlepidr�seic. H anak�luyh ìmwc thc kbantik c hlektrodunamik c eÐqe
idiaÐterh shmasÐa gia ton epiprìsjeto lìgo ìti  tan h pr¸th oloklhrwmènh kbantik 
jewrÐa miac apì tic tèsseric gnwstèc jemeli¸deic dun�meic thc fÔshc, tou hlektro-
magnhtismoÔ, thc asjenoÔc kai thc isqur c allhlepÐdrashc kai thc barÔthtac. 'Htan
anamenìmeno epomènwc na apotelèsei to prìtupo sth susthmatik  anaz thsh miac
kbantik c jewrÐac gia tic upìloipec jemeli¸deic dun�meic.

H prosdokÐa aut  epiteÔqjhke sta tèlh thc dekaetÐac tou '60 kai stic arqèc thc
dekaetÐac tou '70, ìtan met� apì qrìnia peiram�twn me kosmikèc aktÐnec kai epitaqun-
tèc swmatidÐwn, all� kai met� apì entonìtath jewrhtik  prosp�jeia, anakalÔfjhkan
oi swstèc kbantikèc jewrÐec gia thn perigraf  thc asjenoÔc kai thc isqur c purhni-
k c allhlepÐdrashc. Diapist¸jhke m�lista ìti mia kbantik  jewrÐa gia thn asjen 
allhlepÐdrash apaiteÐ thn Ôparxh tou hlektromagnhtismoÔ! H hlektromagnhtik  kai
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h asjen c allhlepidr�seic eÐnai epomènwc diaforetikèc ekf�nseic mÐac jemeli¸douc
dÔnamhc, thc legomènhc �hlektroasjenoÔc allhlepÐdrashc�. H kbantik  jewrÐa pedÐ-
wn pou perigr�fei thn hlektroasjen  allhlepÐdrash  tan to pr¸to par�deigma enìc
nèou tÔpou kbantik c jewrÐac pedÐou, gnwst c wc �mh-abelian  jewrÐa bajmÐdac�. H
diapÐstwsh ìti autìc o tÔpoc jewrÐac apoteleÐ mia majhmatik� apodekt  - sugkekri-
mèna �epanakanonikopoi simh� - kbantik  jewrÐa pedÐou, od ghse polÔ gr gora sthn
anak�luyh thc swst c kbantik c perigraf c kai thc isqur c purhnik c allhlepÐdra-
shc, th legìmenh �kbantik  qrwmodunamik � (QCD), h opoÐa, ìpwc h hlektroasjen c
jewrÐa, eÐnai mia mh-abelian  jewrÐa bajmÐdac. To sÔnolo aut¸n twn kbantik¸n jew-
ri¸n pedÐou eÐnai gnwstì wc to �kajierwmèno montèlo thc fusik c swmatidÐwn� kai
apoteleÐ mia pl rh kai exairetik c akrÐbeiac perigraf  ìlwn twn gnwst¸n swmatidÐwn
kai ìlwn twn jemeliwd¸n dun�mewn - ektìc apì th barÔthta.

Parìlo pou to kajierwmèno montèlo thc fusik c swmatidÐwn eÐnai èna shmantikì-
tato b ma sthn anaz thsh mÐac enopoihmènhc jewrÐac, to gegonìc ìti den perilamb�nei
thn barÔthta odhgeÐ anapìfeukta sto sumpèrasma ìti den mporeÐ na eÐnai mia telik 
  oloklhrwmènh jewrÐa. Se antÐjesh me thn eidik  jewrÐa thc sqetikìthtac pou eÐnai
enswmatwmènh se k�je kbantik  jewrÐa pedÐou, o sugkerasmìc thc genik c jewrÐac
thc sqetikìthtac me thn kbantomhqanik  èqei apodeiqjeÐ èna apì ta plèon dusepÐ-
luta kai makroqrìnia probl mata thc jewrhtik c fusik c. Den eÐnai dÔskolo na
katano sei kaneÐc giatÐ h diamìrfwsh miac kbantik c jewrÐac barÔthtac parousi�zei
tètoia duskolÐa, afoÔ h genik  jewrÐa thc sqetikìthtac kai h kbantik  jewrÐa pedÐwn
perigr�foun fainìmena se duo teleÐwc diaforetikèc klÐmakec megèjouc. GnwrÐzoume
polÔ kal� ìti o rìloc thc kbantomhqanik c eÐnai amelhtèoc stic klÐmakec megèjouc
thc kajhmerin c mac zw c kai fusik� se upergalaktikèc klÐmakec ìpwc aut  thc di�-
stashc tou sÔmpantoc. Tautìqrona, h barutik  dÔnamh eÐnai exairetik� asjen c se
sqèsh me tic �llec treic jemeli¸deic dun�meic se upoatomikèc klÐmakec. Mia kbantik 
jewrÐa barÔthtac epomènwc ja prèpei na perigr�fei fainìmena se mia polÔ meg�lh
èktash klim�kwn megèjouc kai aparaÐthta ja brÐsketai polÔ kont� se mia jewrÐa
megaloenopoÐhshc.

AfoÔ h genik  jewrÐa thc sqetikìthtac kai h kbantik  jewrÐa pedÐwn brÐskontai se
pl rh sumfwnÐa me tic peiramatikèc parathr seic sto pedÐo isqÔc touc, opoiad pote
kbantik  jewrÐa barÔthtac ja prèpei na anapar�gei tic jewrÐec autèc sto an�logo
ìrio. O mìnoc trìpoc epomènwc gia na apomon¸soume ta gn sia qarakthristik�
miac kbantik c jewrÐac barÔthtac, ta opoÐa den mporoÔn na perigrafoÔn apì thn
genik  jewrÐa thc sqetikìthtac   thn kbantik  jewrÐa pedÐwn, eÐnai na esti�soume
to endiafèron mac stic klÐmakec megèjouc ìpou ta barutik� kai ta kbantomhqanik�
fainìmena emfanÐzontai tautìqrona. Autì sumbaÐnei se klÐmakec polÔ mikrìterec apì
thn atomik  klÐmaka kai sugkekrimèna sthn klÐmaka tou Planck, ìpou oi sunèpeiec
thc kbantomhqanik c paramènoun shmantikèc, all� tautìqrona h barutik  èlxh gÐnetai
sugkrÐsimh me tic upìloipec jemeli¸deic dun�meic. Peiramatik� eÐnai polÔ apÐjano na
mporèsoume potè na exet�soume �mesa fainìmena se tìso mikrèc klÐmakec megèjouc  
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isodÔnama se tìso uyhlèc enèrgeiec, afoÔ eÐnai praktik� adÔnato na kataskeuasteÐ
o aparaÐthtoc exoplismìc p�nw sth Gh. GnwrÐzoume ìmwc ìti oi sunj kec autèc
up rqan tic pr¸tec stigmèc met� thn gènnhsh tou sÔmpantoc kat� th �meg�lh èkrhxh�,
ìtan to mègejoc tou sÔmpantoc  tan sugkrÐsimo me thn klÐmaka tou Planck! To
gegonìc autì af nei anoiqtì to endeqìmeno na up�rqoun �mesec endeÐxeic kbantik c
barÔthtac se kosmologikèc klÐmakec.

Apì teqnik  �poyh, h basik  duskolÐa sth diamìrfwsh miac kbantik c jewrÐac
barÔthtac basismènhc sthn genik  jewrÐa thc sqetikìthtac eÐnai to ìti h diadikasÐa
�kb�ntwshc� tou barutikoÔ pedÐou me trìpo an�logo autoÔ pou èqei qrhsimopoihjeÐ
gia thn kb�ntwsh twn upìloipwn jemeliwd¸n dun�mewn odhgeÐ se majhmatik� adiè-
xoda. Sugkekrimèna, to gegonìc ìti ta kb�nta tou barutikoÔ pedÐou,   �barutìnia�,
allhlepidroÔn sÔmfwna me thn kajierwmènh jewrÐa pedÐwn se èna shmeÐo ston qwro-
qrìno èqei wc apotèlesma thn emf�nish di�forwn majhmatik¸n ekfr�sewn twn opoÐwn
h arijmhtik  tim  teÐnei sto �peiro me mh apodektì trìpo. To prìblhma autì mporeÐ
na apofeuqjeÐ mìno an ta barutìnia eÐnai anagkasmèna na allhlepidroÔn apì k�poia
el�qisth apìstash antÐ se èna shmeÐo. H anaz thsh miac jemeli¸douc jewrÐac pou
ulopoieÐ thn idèa aut  od ghse sthn an�ptuxh thc �jewrÐac qord¸n�.

H jewrÐa qord¸n

Sth jewrÐa qord¸n oi jemeli¸deic �bajmoÐ eleujerÐac� eÐnai antikeÐmena me mÐa
ektetamènh di�stash, oi legìmenec �qordèc�, oi opoÐec kinoÔntai mèsa sto qwroqrìno
kalÔptontac ètsi mia disdi�stath epif�neia. Oi dunatèc allhlepidr�seic twn qord¸n
eÐnai polÔ periorismènec kai upagoreÔontai apì thn gewmetrÐa kai thn topologÐa au-
t¸n twn epifanei¸n: antistoiqoÔn apl� stouc diaforetikoÔc trìpouc pou mporeÐ na
kopeÐ kai na enwjeÐ mia disdi�stath epif�neia. Sunep¸c, oi allhlepidr�seic meta-
xÔ twn barutonÐwn, ta opoÐa emfanÐzontai wc sugkekrimènoi trìpoi tal�ntwshc twn
qord¸n, èqoun kajar� gewmetrik  proèleush. To gegonìc ìmwc ìti oi qordèc eÐnai
ektetamèna antikeÐmena èqei wc apotèlesma ta barutìnia na mhn allhlepidroÔn se èna
sugkekrimèno shmeÐo, kai epomènwc h jewrÐa apofeÔgei me autìn ton trìpo tic �peirec
ekfr�seic pou kajistoÔn adÔnath thn apeujeÐac kb�ntwsh thc genik c jewrÐac thc
sqetikìthtac. Par�llhla, h sunep c kb�ntwsh twn qord¸n sunep�getai ìti h jew-
rÐa qord¸n anapar�gei akrib¸c thn genik  jewrÐa thc sqetikìthtac se polÔ qamhlèc
enèrgeiec   se klÐmakec megèjouc polÔ megalÔterec thc klÐmakac tou Planck. Aut 
h sumperifor� eÐnai sÔmfwnh me ì,ti anamènei kaneÐc apì mia jewrÐa kbantik c barÔ-
thtac. Pragmatik�, autìc eÐnai ènac apì touc basikoÔc lìgouc pou mac k�noun na
pisteÔoume ìti h jewrÐa qord¸n eÐnai h plèon kat�llhlh upoy fia jewrÐa kbantik c
barÔthtac pou diajètoume s mera.

H jewrÐa qord¸n ìmwc den eÐnai mìno mia sunep c kbantik  jewrÐa barÔthtac,
all� kai èna prìtupo gia thn polupìjhth jewrÐa megaloenopoÐhshc. Ektìc apì to
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gegonìc ìti oi di�foroi trìpoi tal�ntwshc twn qord¸n antistoiqoÔn se mia plhj¸ra
swmatidÐwn metaxÔ twn opoÐwn eÐnai fusik� kai ta barutìnia, ìlec oi pènte dunatèc
jewrÐec qord¸n apaitoÔn ìti o qwroqrìnoc èqei dèka diast�seic se antÐjesh me tic
tèsseric diast�seic tou oratoÔ sÔmpantoc. Autì to fainomenikì meionèkthma mpo-
reÐ na metatrapeÐ se pragmatikì pleonèkthma thc jewrÐac qord¸n an upojèsoume
ìti oi èxi apì tic dèka diast�seic eÐnai mikroskopikèc -   �sumpageÐc� - se sqèsh me
tic upìloipec tèsseric kai sunep¸c eÐnai parathr simec mìno se polÔ mikrèc klÐma-
kec megèjouc. Kajènac apì touc polu�rijmouc trìpouc na sumpagopoi sei kaneÐc
tic èxi autèc epiplèon diast�seic antistoiqeÐ se èna diaforetikì sÔnolo swmatidÐwn
kai allhlepidr�sewn metaxÔ touc stic tèsseric makroskopikèc diast�seic. H jew-
rÐa qord¸n diajètei mèsw autoÔ tou mhqanismoÔ th dunatìthta na perigr�yei ìlec
tic jemeli¸deic dun�meic kai ìla ta stoiqei¸dh swmatÐdia sto parathr simo sÔmpan.
To kat� pìso mporeÐ h jewrÐa qord¸n na anapar�gei to kajierwmèno montèlo stic
tèsseric diast�seic apoteleÐ s mera antikeÐmeno entatik c èreunac.

H antistoiqÐa AdS/CFT

H jewrÐa qord¸n anaptÔqjhke ìpwc eÐdame parap�nw wc mia genÐkeush thc kban-
tik c jewrÐac pedÐwn sth prosp�jeia aneÔreshc miac sunepoÔc kbantik c jewrÐac
barÔthtac. H prìsfath anak�luyh thc legìmenhc �antistoiqÐac AdS/CFT� ìmwc
sunèdese me ènan teleÐwc diaforetikì trìpo thn jewrÐa qord¸n me thn kbantik  jew-
rÐa pedÐwn. Sugkekrimèna, h antistoiqÐa AdS/CFT axi¸nei ìti mia orismènh jewrÐa
qord¸n stic dèka diast�seic eÐnai isodÔnamh me mia kbantik  jewrÐa pedÐwn qwrÐc ba-
rÔthta stic tèsseric diast�seic. H antistoiqÐa -   �düikìthta� - aut , h opoÐa mac dÐnei
th dunatìthta na melet soume orismènec kbantikèc jewrÐec pedÐwn mèsw thc jewrÐac
qord¸n kai antÐstrofa, eÐnai to antikeÐmeno aut c thc diatrib c.
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