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Axionlike particle (ALP)–photon couplings are modeled in large ensembles of string vacua and random
matrix theories. In all cases, the effective coupling increases polynomially in the number of ALPs, of which
hundreds or thousands are expected in the string ensembles, many of which are ultralight. The expected
value of the couplings gaγγ ≃ 10−12 GeV−1 − 10−10 GeV−1 provide viable targets for future x-ray
telescopes and axion helioscopes, and in some cases are already in tension with existing data.
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I. INTRODUCTION

If string theory is the correct theory of quantum gravity,
one of its vacua must realize the photon of classical
electromagnetism. Uncharged spin zero particles must cou-
ple to the electromagnetic field strength, since all couplings
in string theory are determined byvacuumexpectationvalues
(VEVs) of scalar fields. This applies not only to the usual
parity even operatorFμνFμν, but also the parity odd operator,
requiring the existence of a coupling

L ⊃ −
1

4
gaγγaFμνF̃μν ð1Þ

in the effective Lagrangian, where F̃μν ¼ ϵμνρσFρσ . The
pseudoscalar a is an axionlike particle (ALP), which is
not necessarily the QCD axion, and it may be a nontrivial
linear combination of the hundreds or thousands of ALPs
expected from studies of string vacua.
Numerous ground-based experiments [1–4] and satellite

observations [5–11] place constraints on ALP-photon
interactions, probing widely different regimes for the axion
mass ma and coupling strength gaγγ . Existing limits are
already remarkable, within a few orders of magnitude of
grand unified theory (GUT) scale decay constants
faγγ ≡ g−1aγγ. However, the exclusions depend critically on
whether the ALP is assumed to be a sizable fraction of the
dark matter and also experimental limitations affecting the
accessible mass range. Since dark matter in string theory is
often multicomponent (e.g., [12,13]) and many ALPs are
expected to be ultralight, but not yet in any fixed mass

window, we will focus on analyses relevant for experiments
that do not require ALP dark matter and only set limits
below a fixed mass threshold.
For such experiments, the strongest bounds on the

coupling arise at low mass, ma ≤ 10−2 eV, where
results [1] from the axion helioscope CAST require
gaγγ ≤ 7 × 10−11 GeV−1. The CAST result already signifi-
cantly outperforms projected collider bounds forma ≃ GeV
scale ALPs, leading us to focus on the low mass range. For
even lower masses, ma ≤ 10−12 eV, observations from the
x-ray telescope Chandra require gaγγ ≤ 8 × 10−13 GeV−1

[10]. The future helioscope IAXO and satellite STROBE-X
are projected to probe gaγγ ≃ 2 × 10−12 GeV−1 for ma ≤
10−2 eV [3] and gaγγ ≃ 8 × 10−14 GeV−1 for ma ≤
10−12 eV [14], respectively.
The primary focus of this work is to understand the

dependence of gaγγ on the number N of ALPs in both
models of string vacua and random matrix effective field
theories. Though in the N ¼ 1 case (using mild assump-
tions described in the text) we have

SingleALP∶ gaγγ ¼
1ffiffiffi
3

p
Mp

; ð2Þ

independent of the details of the compactification geometry
(including the string scale), it is reasonable to imagine that
the introduction of additional ALPs will increase the
effective coupling to photons. Concretely, we study
whether the bulk of the gaγγ distribution at large N is in
a range probed by current or future experiments. This is of
interest because most vacua are expected to arise at the
largest values of N afforded by the given ensemble. We will
refer to the mean of the distribution at this value of N as the
expected value of gaγγ .
Our main result is that in all string ensembles and

random matrix theories that we study, gaγγ increases
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polynomially in N. We perform detailed studies of two
string geometry ensembles that we refer to as the tree
ensemble and the hypersurface ensemble, using the mass
threshold ma ≤ 10−12 eV so that our results can be com-
pared to numerous experiments. In the tree ensemble at the
expected value of N ¼ 2483, we find that the mean of the
projected gaγγ distribution is gaγγ ¼ 3.2 × 10−12 GeV−1. In
the hypersurface ensemble N ¼ 491 is expected, and we
find the expected value gaγγ ¼ 2.0 × 10−10 GeV−1. We also
study the F-theory geometry with the most flux vacua [15],
which is very constrained due to the existence of only a
single divisor that can support the Standard Model, given
our assumptions; it yields gaγγ ¼ 3.47 × 10−12 GeV−1. All
of these couplings are in range of future experiments, and in
some cases are already in tension with data; see the
discussion. Furthermore, by removing the mass threshold
the expected value of gaγγ does not change significantly,
implying that ALPs in string ensembles that we study will
not be seen in searches at LHC or future colliders. The
random matrix results suggest that gaγγ should increase
significantly with N, even if our vacuum does not arise in
one of the studied ensembles.
We emphasize at the outset that we are modeling ALP-

photon couplings using data from string theory. A complete
calculation, with engineered Standard Models and full
moduli stabilization, is computationally intractable given
current techniques, which can be formalized in the lan-
guage of computational complexity [16]. At small N,
however, more complete calculations can be performed,
including partial moduli stabilization; see, e.g., [17].
Instead, we model ALP-photon couplings by intelligently
sampling the Calabi-Yau moduli space and utilizing knowl-
edge of how realistic gauge sectors arise, without trying to
concretely engineer them or stabilize moduli. This allows
for the study of large ensembles at large N, but also
motivates further studies once techniques for the complete
calculations become available. The models that we use are
described thoroughly in the text and are accurately sum-
marized in the discussion.
This paper is organized as follows. In Sec. II we discuss

ALP-photon couplings from the perspective of string
theory. In Sec. III we introduce the ensembles of string
compactifications and random matrix effective theories. In
Sec. IV we present the gaγγ distributions computed in the
ensembles. We review constraints and projections of
existing and proposed experiments in Sec. V and discuss
our results in light of them in Sec. VI. Interesting future
directions are also discussed.

II. ALP-PHOTON COUPLINGS
IN STRING THEORY

Low-energy effective field theories from string theory
regularly have a large number of ALPs, and under certain
assumptions related to control of the theory many of them

are very light, as we will soon discuss. The Lagrangians of
interest, focusing on the ALP sector, take the form

L ¼ −
1

4
FμνFμν −

1

2
δijð∂μϕiÞð∂μϕ

jÞ

−m2
i ðϕiÞ2 − 1

4
ciϕiF̃μνFμν: ð3Þ

Here Fμν is the electromagnetic field strength, with
F̃μν ¼ ϵμνγσFγσ , and ϕi are the ALPs, with masses mi.
From a low-energy perspective these parameters are gen-
erally unconstrained; however, we will find that UV
structure from string theory actually constrains the low-
energy physics, and introduces correlations and patterns,
that will result in interesting structure in both the ALP
masses and the ALP-photon couplings.
For concreteness, we will study the dependence of ALP-

photon couplings on the number of ALPs N in string
compactifications and random matrix models. In the latter
context, we consider compactifications of type IIB string
theory/F-theory on a suitable Kähler manifold B, which
yields a four-dimensional (4D) N ¼ 1 effective field
theory (EFT). To date, such compactifications encompass
the largest known portion of the N ¼ 1 landscape [15,18–
21]. Some of the most generic phenomena in this region,
such as large gauge sectors and numbers of ALPs, correlate
strongly with moving away from weakly coupled limits
[22]. The ability to make such statements away from weak
string coupling relies critically on the holomorphy implicit
in algebraic geometry.
The data of such an F-theory compactification, in

addition to the choice of B, are an elliptic fibration over
B that encodes the data of the gauge group; see [23] for
further details. The ALPs θi that we study arise from the
dimensional reduction of the Ramond-Ramond four-form
C4 and become the imaginary parts of complexified Kähler
moduli, written as

Ti ¼
Z
Di

�
1

2
J ∧ J þ iC4

�
≡ τi þ iθi: ð4Þ

Here theDi are a basis of divisors (4-cycles) inB, numbering
h1;1ðBÞ, and J is the Kähler form on B, which can bewritten
in terms of parameters ti as J ¼ tiωi, with ωi ∈ H1;1ðBÞ.
The τi parametrize thevolumes of the divisors inB. A typical
B has h1;1ðBÞ ∼Oð103Þ [19,24]; that is, in these ensembles,
thousands of ALPs are expected.
In addition to the many ALPs, EFTs arising from string

theory often contain many gauge sectors. Throughout we
will take N to be the number of ALPs. In the context of
F-theory, our focus will be on when this gauge sector,
indexed by α, is supported on a stack of seven-branes
wrapping a cycle Qα, or from a nontrivial Mordell-Weil
group element of the elliptic fibration Qα. The ALP-gauge
portion of the EFT takes the form
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L ¼ −M2
pKijð∂μθiÞð∂μθ

jÞ − VðθÞ
−
X
α

Qα
i ðτiGμν

α Gαμν þ θiG̃μν
α GαμνÞ: ð5Þ

Here Mp is the Planck mass, VðθÞ is the nonperturbative
ALP potential, and Kij is the metric on moduli space,
which at tree level is derived from the Kähler potential
K ¼ −2 logV, where V is the volume of B, which is
expressed as

V ¼
Z
B
J ∧ J ∧ J ¼ 1

6
κijktitjtk; ð6Þ

and κijk are the triple intersection numbers of B.
To justify our use of the tree-level Kähler potential, we

note that F-theory can be viewed as the dimensional
reduction of type IIB SUGRA in the presence of a spatially
varying axio-dilaton. The type IIB SUGRA action is unique
up to field redefinitions and higher-derivative corrections,
and so any physical correction to the 4D EFT must come
with additional powers of appropriate volumes of cycles.
At large enough volume we therefore expect that using
K ¼ −2 logV should be a good approximation to the
Kähler potential. It is not known how large is large enough
in this case, but since the volumes in compactifications with
many cycles tend to be very large [25], we believe this
approximation should be valid for our study.
The leading-order Kähler potential is independent of the

ALPs, so one can move to a canonically normalized frame
in which the ALP mass matrix is diagonal. Let F1μν ≡ Fμν

be the electromagnetic field strength, corresponding to a
homology class Q (subtleties associated with electroweak
symmetry breaking will be discussed momentarily). The
Lagrangian of interest then takes the form

L ¼ −
1

2
δijð∂μϕiÞð∂μϕ

jÞ − 1

4
FμνFμν

−
1

4
ciϕiF̃μνFμν −m2

i ðϕiÞ2: ð7Þ

In terms of geometric data, we can write [24]

jc⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q · K−1 ·Q

p
2MpQ · τ

; ð8Þ

where K−1 is the inverse Kähler metric on field space.
Equation (8) is independent of homogeneous scaling in the
Kähler cone J → λJ, and therefore only depends on the
angle in the Kähler cone.
It is interesting to note that ifN ¼ 1, then this coupling is

fixed to be c ¼ 1=ð ffiffiffi
3

p
MpÞ independent of the details of the

geometry [26]. This is important because in the case
of a single ALP it determines the photon coupling,
gaγγ ≃ 1=Mp, which is well below current and (projected)

future experimental bounds. We will investigate whether
large N effects lead to a significant enhancement of the
coupling. Note that if the masses of all the ϕi that appeared
nontrivially in ciϕi were the same, then jcj would simply
be the coupling of the canonically normalized field
φ≡ ciϕi=jcj to Fμν. In general this will not be the case;
however, in string compactifications with N large we
expect that some of the ALPs will be essentially massless,
which we will now review.
ALP masses depend critically on the fact that, in the

absence of sources, the θi enjoy a continuous shift
symmetry to all orders in perturbation theory, broken to
a discrete shift symmetry by nonperturbative effects.
In particular, the superpotential W is known to receive
corrections from stringy instantons and/or strong gauge
dynamics that generate masses for the ALPs [27]. Due to
the shift symmetry of the ALP and the holomorphy of the
superpotential, any nonperturbative contribution to the
superpotential takes the schematic form

ΔW ∼ e−2πQ̃iðτiþiθiÞ; ð9Þ

for rational Q̃i. Therefore, for a given θi, if the correspond-
ing τi is very large, then any nonperturbative contribution to
W involving θi will be negligible, and θi is expected to be
essentially massless (the same is not true of the τi, as they
do not enjoy a similar shift symmetry and can receive
masses via perturbative corrections to the Kähler potential
[28,29]). The central observation of [25] is that in com-
pactifications with large N, the region of moduli space
where the EFT is expected to be valid (known as the
stretched Kähler cone) is quite narrow. Restricting to the
stretched Kähler cone for the sake of control forces some of
the τi to be very large, which in turn forces some of the θi to
be extremely light. This is the key result that (in this
context) puts numerous ALPs in the sub-eV mass range
relevant for the experiments we will discuss. In this work
we make the technical assumption that the Standard Model
sector does not generate a large mass term for the ALP
(≳10−12 eV). This assumption is quite mild given the
scales of the potential generated by SUð2ÞL instantons,
as well as current expectations for the QCD axion mass
[30–32].
If the ALP masses are much lower than the typical

energies of an experiment, then they can be safely
neglected and the ALPs taken to be massless. We will
assume that the typical experiment energies are≳10−12 eV,
and so any ALP with a mass ≪ 10−12 eV can be treated
as massless. In this case we can define a single ALP
a≡ ciϕi=jcj that couples to Fμν, with strength gaγγ. Here
the sum includes only the ϕi that have negligible mass. The
relevant terms in Eq. (7) become
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L ⊃ −
1

2
ð∂μaÞð∂μaÞ −

1

4
FμνFμν −

1

4
gaγγaF̃μνFμν; ð10Þ

where

gaγγ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiX
i

c2i
r

; ð11Þ

in terms of the couplings ci in Eq. (7). Note that we can
always redefine our ALP a to make gaγγ non-negative, as
we do henceforth.
It is useful to express Eq. (11) in terms of the original

geometric quantities that appear in Eq. (5). To do so, we
determine the massless axions by finding the linear
combinations of axions that receive a non-negligible mass
term (see below for a discussion) in the canonically
normalized frame. Let the massive axions be specified
by a (generally nonfull rank) matrix Ma

i , such that θa ≡
Ma

i θ
i receives a non-negligible superpotential contribution

in Eq. (9). We can move to a canonically normalized frame
by writing K ¼ ST · f · f · S, where S is a matrix of the
orthonormal eigenvectors of K, and f is a diagonal matrix
of the square roots of the eigenvalues. The massless axions
(in the canonically normalized frame) are then specified by
the matrix

D ¼ KerðM · ST · f−1Þ; ð12Þ

i.e., the massless linear combination of canonically nor-
malized axions is encoded in the rows or columns.
We can express these axions in the geometric θ basis by

writing

QM ¼ D · f · S; ð13Þ

where the superscript refers to “massless,” and we may
therefore rewrite gaγγ in Eq. (11) as

gaγγ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QM · K−1 ·QM

p
2MpQ · τ

; ð14Þ

for a fixed gauge group specified by the homology class Q.
Finally, we comment briefly on the string scale

Ms ≃Mp=
ffiffiffiffi
V

p
. For reasons that we will discuss, obtaining

control over the string effective theory at large N requires
going to regions in Kähler moduli space where a nontrivial
number of four-cycle volumes is large. This correlates
strongly with a large overall volume V, which generally
gives rise to an intermediate string scale at large N in our
ensembles, Ms ≃ 1012–1015 GeV. However, since it is
divisor volumes that more readily appear in our gaγγ
calculations and the geometry does not necessarily have
the Swiss cheese property, we prefer to think of the
relationship between Ms and gaγγ as correlative, rather

than causal. It would be interesting to explore this further in
future work.
Our goal is to compute gaγγ in large ensembles of string

compactifications, as well as random matrix models, in
order to model the distribution of such couplings that one
expects from string theory and to understand the behavior
as the number of ALPs N grows large.

III. ENSEMBLES

Having reviewed the EFTs expected from string theory,
the specific contexts in which we will study them, and the
presence of ultralight ALPs, we now introduce the ensem-
bles in which we perform this study.

A. The tree ensemble

F-theory is a nonperturbative generalization of type IIB
string theory that allows for regions of strong string
coupling and has a more general gauge spectrum than
its IIB counterpart. In F-theory, the internal space B for
compactification determines a minimal (geometric) gauge
structure from non-Higgsable seven-branes, whose pres-
ence requires no tuning in complex structure moduli space.
In [19] a lower bound of the number of bases B suitable

for F-theory compactifications was determined to be 4=3 ×
2.96 × 10755 via the discovery of a construction algorithm
for an ensemble of B known as the tree ensemble. This
ensemble represents a large graph, where nodes are
geometries and edges are simple topological transitions
(known as blowups) that may take place between the
geometries. More specifically, each node contains a para-
metric family (the complex structure moduli space) of
geometries that have the same topological type, but for
some representatives of the family the space becomes
singular enough to allow for a topological transition.
This means that at leading order in the physics, the space
can be explored by movement along flat directions of the
scalar potential to reach the singular point, from which a
transition may be made to a different topological type
(node) of geometry and accordingly a different EFT.
Mathematically, this process may be done continuously
in moduli space, as theorems relating canonical singular-
ities and the Weil-Petersson metric ensure that the paths
through the graph are at finite distance in moduli space. See
[19,33–35] for further discussion.
The tree ensemble, while enormous in size, has certain

tractable aspects, due to detailed understanding of the
construction algorithm. In particular, the geometric gauge
group can be determined to high accuracy. Such a set
provides a rich ensemble in which to address questions
about distributions of effective field theories in string
theory. The tree ensemble is constructed by starting with
a weak Fano toric variety B and performing blowups of B
that satisfy sufficient conditions to remain at finite distance
in moduli space. Such blowups can be performed over toric
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points or curves, and each sequence of blowups of a
particular toric point or curve in X is called a tree. A
typical EFT from the tree ensemble has a minimal gauge
group of the form

G ≥ E10
8 × F18

4 × U9 × FH2

4 ×GH3

2 × AH4

1 ; ð15Þ

where U is a B-dependent gauge group and Hi are
computable B-dependent integers that are almost always
nonzero. Other gauge groups can be tuned, but the group
given in Eq. (15) is required by the geometry (though some
of the gauge factors could be broken by the introduction of
G4 flux).
In addition, an overwhelming fraction of EFTs from the

tree ensemble has a large number of ALPs. The expected
number of ALPs is N ¼ 2483. This value is determined by
a bubble cosmology model on the tree ensemble, where the
vacuum transitions are modeled by the topological tran-
sitions between the geometries [35] (drawing from a flat
distribution gives similar results, with the preferred value
of N ¼ 2015).
From the expected gauge structure of the tree ensemble

discussed in the previous section it is clear that there are in
principle many ways to realize the Standard Model in the
tree ensemble. In addition to the minimal gauge structure
given in Eq. (15) one can tune additional gauge groups, and
additional Uð1Þ factors could be realized by sections in the
elliptic fibration.
For understanding the couplings of the ultralight ALPs to

the photon, the relevant gauge sector is SUð2ÞL ×Uð1ÞY .
Since pure Abelian factors have not been studied in the tree
ensemble, we will consider two cases of gauge sectors.
First, one could try to realize SUð2ÞL × Uð1ÞY by embed-
ding it in a larger non-Abelian gauge group, for instance a
GUT, in which case we will model the coupling gaγγ
directly as the coupling of the ALP to the larger group,
assuming it breaks to the Standard Model in one of the
canonical ways. The second case is realizing SUð2ÞL
directly from the geometrically determined SUð2Þ gauge
symmetry on the seven-brane, in which case we will
compute the contribution to gaγγ from SUð2ÞL. The cases
are summarized as follows:
(1) G ¼ SUð2ÞL arises directly on a seven-brane.
(2) G is a geometric gauge group on a seven-brane such

that G → SUð2ÞL ×Uð1ÞY × G0, but G0 ⊅ SUð3Þ;
i.e., QCD comes from a different seven-brane.

(3) G is a gauge group on seven-brane such that
G → SUð2ÞL ×Uð1ÞY × SUð3Þ; this includes some
common GUT scenarios.

In the last option the ALP linear combination that couples
to SUð2ÞL is the QCD axion, while in the first two options
this is not necessarily the case. Since all three possibilities
lead to similar results, the forthcoming plots of ALP-
photon couplings take into account all three.

In case 1, where we compute the contribution to gaγγ
from SUð2ÞL, which we denote gaWW , the coupling to the
physical photon is computed as

gaγγ ¼ gaWW sin2 θw þ gaYY cos2 θw; ð16Þ
where θw is the Weinberg angle (sin2 θw ≃ 0.23), and gaYY
is the coupling to Uð1ÞY . In only this case it is possible that
gaYY ≠ gaWW . However, as modeling the hypercharge in
our ensembles is nontrivial, we simply assume that the
hypercharge contribution to gaγγ does not lead to significant
cancellation. This would require gaWW and gaYY to be of
similar order of magnitude and opposite sign. As long as
this is not the case, which we find plausible, jgaWW j gives
an approximate lower bound to jgaγγj.

B. Calabi-Yau hypersurfaces in toric varieties

In addition to the tree ensemble, we consider Calabi-Yau
hypersurfaces in toric varieties [36,37]. Such a hyper-
surface combinatorially corresponds to a triangulated
reflexive 4D polytope. Systematically orientifolding a large
number of Calabi-Yau threefolds is beyond the scope of this
work, and so we use the geometric data obtained from the
Calabi-Yau itself as a model for the appropriate N ¼ 1

data, namely in constructing K−1. For the hypersurfaces
case, we assume that the gauge group (see the listed options
in Sec. III A) is supported on the restriction of a divisor Q
that is a linear combination of toric divisors to the hyper-
surfaces. There is, a priori, an infinite number of choices
for such a linear combination, but physical considerations
will render this set finite and computable, as we will discuss
in Sec. IV.

C. Random matrix EFTs

For the sake of comparison to our string results, we will
also compute ALP-photon couplings in certain random
matrix (RM) effective field theories. We emphasize,
though, that we do not currently have a reason to believe
that the random matrix ensembles that we study accurately
represent actual string data [38]. Instead, we simply wish to
compare and also to demonstrate that they can give rise to
growing ALP-photon couplings as a function of N. This
lends some further credence to the idea that gaγγ should
increase with N.
For our random matrix theory (RMT) analysis we will

consider the simplified Lagrangian of massless ALPs and
gauge fields,

L ¼ −
M2

p

2
Kijð∂μθiÞð∂μθ

jÞ − 1

4
FμνFμν −

1

4
Qiθ

iF̃μνFμν;

ð17Þ
where Fμν is the electromagnetic field strength. In a
canonically normalized frame the ALP-photon coupling
is simply
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gaγγ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q · K−1 ·Q

p
: ð18Þ

A natural model for K (K−1) is to draw it from an (inverse)-
Wishart distribution, as we generally observe that the
entries of K (K−1) shrink (grow) as a function of N.
Taking K to be a Wishart matrix, we have K ¼ A†A, with
the entries of A drawn from a normal distribution Ωð0; σÞ
centered around zero with standard deviation (SD) σ. This
in turn makes K−1 an inverse-Wishart matrix, which in
practice is easier to generate directly than to invert K. We
take Q to be a unit vector and study two cases: the first
being the (unnormalized) entries of Q drawn randomly
from the distribution above, and the second takingQ to be a
unit vector pointing in a basis direction Q ¼ êi.

IV. DISTRIBUTIONS OF ALP-PHOTON
COUPLINGS IN THE ENSEMBLES

We wish to understand the distribution of gaγγ in the
generic case, i.e., when N is large. Computing gaγγ for the
largest N regime of our ensembles in a large number of
examples is computationally prohibitive, and so in order to
explore the large N regime we will study gaγγ for moder-
ately large N, and then extrapolate to the largest N, where
the bulk of the geometries are believed to occur (this has in
fact been demonstrated explicitly in a cosmological model
on the tree ensemble, and there is strong evidence for this in
the case of hypersurfaces [39]). We will find that in fact the
relevant statistical quantities in the distributions of gaγγ
obey nice scaling properties.

A. The EFT computation

1. Constructing the ensembles

To construct the ensemble of geometries to study we will
randomly draw geometries from the various ensembles. For
the tree ensemble, we construct 1000 geometries for one
through ten trees each, corresponding to h1;1ðBÞ ranging
from 55 to 235, differing by jumps of Δh1;1ðBÞ ¼ 20. For a
fixed number of trees we randomly draw a tree configu-
ration from the ensemble and blow up a randomly drawn
toric point with that sequence of blowups. The configura-
tion of blowups fixes the topological properties of B.
For the case of hypersurfaces, we randomly draw

reflexive 4D polytopes from the Kreuzer-Skarke ensemble
[37] and compute the pushing triangulation of each poly-
tope to calculate the relevant topological data for the
corresponding Calabi-Yau hypersurface. We select 1000
geometries for h1;1ðBÞ ¼ 10, 20, 30, 40, 50, 80, 120, 160.
For h1;1 ¼ 200 there are only 706 polytopes; we utilized all
of them.
Having calculated the relevant topological data, in order

to write down the effective field theory for the ALPs and
gauge sectors, we need to specify the VEVs of the τi. This
is done by choosing a point in the Kähler cone.

2. The Kähler cone

In a complete calculation, the VEVs of the τi are
determined by moduli stabilization. We make the
assumption that the τi are stabilized in a regime of non-
perturbative control. In particular, we require the volumes
of all curves to be greater than or equal to unity. This region
is known as the stretched Kähler cone, and as observed in
[25], is very narrow at large h1;1ðBÞ. As in [24], where the
tree ensemble was explored in the context of axion
reheating, we evaluate the τi at the apex of the stretched
Kähler cone, defined by minimizing the sum of the toric
curves. Since the cone is narrow, and the couplings in
Eq. (8) are invariant under scaling out in the cone via
J → λJ, we expect this point to be a good representative of
the physics. In addition, as one scales out J → λJ the cycle
volumes increase, and so more ALPs will become light,
which would enhance the couplings of the gauge groups to
the ultralight ALPs, and so performing this analysis should
provide a lower bound on the size of the couplings in the
stretched Kähler cone.

3. ALP masses and gauge couplings

With the EFT data in hand, we proceed to compute gaγγ .
Since we are interested in the effects of the ultralight ALPs
we only need to determine which ALPs will have masses
much less than any relevant experimental energy, which we
take to be 10−12 eV. Recall that for any ALP θi, any term in
the potential is accompanied by an exponentially sup-
pressed prefactor expð−2πτiÞ, and therefore the θi who
have τi ≫ 1will have very small masses. In the fullN ¼ 1
SUGRA potential such terms are accompanied by prefac-
tors involving inverse powers of V, the constant term W0

arising from the Gukov-Vafa-Witten (GVW) flux super-
potential [40], and the various two- and four-cycle volumes,
and such prefactors are generally ≪ Oð1Þ in the stretched
Kähler cone (see [25]). In general, linear combinations of
divisors can contribute to the superpotential, so to give an
upper bound for the ALP mass one should consider a
generating set of divisors such that all effective divisors can
be expressed as non-negative integer linear combinations of
that set. For a toric variety the toric divisors generate the
cone of effective divisors, known as the effective cone.1 We
can therefore give an upper bound on the mass scale
generated for an ALP θi of the form

m2
i ≲ 1

f2min

e−2πτ
i=Ci ; ð19Þ

where fmin is the smallest ALP decay constant (square root
of the smallest eigenvalue of K), the τi are the volumes of

1In the hypersurface case we work under the assumption that
the effective cone of the ambient space provides a good
approximation to the effective cone of the hypersurface.
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the generators of the effective cone, and Ci are geometry
dependent constants that range from 1 to 30 and are often
dual Coxeter numbers. The inverse factor of f2min provides
the weakest upper bound of the canonical normalization
effects. In practice, many θi have their corresponding
τi ≫ 1, and so we can treat such ALPs as massless.
Concretely, this means that we compute the upper bounds
on the masses using (19) and the values of fmin and τi in a
geometry, and call the ALP θi massless if the associated
bound is below a fixed mass threshold. For instance,
in the tree ensemble the fraction of axions with masses
≤10−12 eV grows from 0.37 at N ¼ 55 to 0.46 at N ¼ 195,
at which it becomes approximately constant.
Keeping only these nearly massless ALPs, i.e., those

with a mass upper bound below 10−12 eV, we canonically
normalize the ALPs and gauge fields. Not every gauge
group is a viable candidate for the SM as mentioned in
Sec. III A. In particular, the gauge coupling in the UV must
be large enough to produce the correct low-energy gauge
couplings. For a gauge group supported on a cycle given by
Qi, we have the relation

1

gUV2

≃Qiτ
i; ð20Þ

and so any cycle with Qiτ
i very large gives rise to very

weak gauge couplings that are not consistent with well-
studied models and the observed gauge couplings. For
instance, the SUSY GUT value is αUV ≃ 0.03, which
corresponds to Qiτ

i ¼ 2.7. Leaving some room for model
building, we demand that αUV is not more than 1 order of
magnitude smaller than the SUSY GUT value, and there-
fore we impose the cutoff Qiτ

i ≤ 25. In particular, in the
hypersurface ensemble we study SM candidates on linear
combinations Qi of toric divisors whose volume satisfies
Qiτ

i ≤ 25, while in the tree ensemble we study SM
candidates on toric divisors with non-Higgsable clusters
with volume ≤ 25.
For each gauge group satisfying this condition, we then

compute the coupling of the corresponding ultralight ALP.
We present the results in the next section.

4. ALP decays to other sectors

A generic ALP in our setup couples to a large number of
gauge sectors (other than the visible sector) via terms of the
form ci;αϕiG̃μν

α Gαμν for fixed α (note that this coupling is
written for canonically normalized fields). An experimental
concern arises if the ALP decays too quickly to another
sector; for instance, in helioscope experiments the ALPs
may in principle decay into a dark sector before it travels
from the sun to Earth. The decay rate of an ALP of massmi
to a pair of dark gluons in one of these sectors is given by

Γϕi→gg ¼ dimðGÞ c
2
i;αm

3
i

64π
: ð21Þ

The coupling may be written

ci;α≈ ð16.6GeV−1Þ×dimðGÞ−1=2
�
1 eV
mi

�
3=2

�
8 min
Γ−1
ϕi→gg

�
1=2

:

ð22Þ

Therefore, the coupling has to be Oð10Þ GeV−1 for an
eVALP produced in the Sun to decay before it reaches the
Earth. In all of our ensembles, the couplings of ALPs to any
of the gauge sectors are orders of magnitude less than
10−1 GeV−1, and therefore premature decays of ALPs will
not be a concern. The ALPs will not decay before reaching
the Earth.

B. Results

1. Results for the tree ensemble

In Fig. 1 we show the normalized distributions of
log10ðgaγγ × GeVÞ for our smallest N ¼ 55 and largest
N ¼ 235. Clearly the distribution shifts to the right as
N grows.
In order to extrapolate to even larger values of N, which

is often argued to be the location of the most vacua in the
string landscape, we will determine quantitative properties
of the N dependence of the distribution. In particular, we
find that both the mean and the SD of log10ðgaγγ × GeVÞ
have well-behaved N scaling, as shown in Fig. 2, and are
therefore suitable to use for such an extrapolation.
We fit a power law to the mean of log10ðgaγγ × GeVÞ as a

function of N. Expressed in terms of gaγγ, we find

FIG. 1. The normalized distributions of log10ðgaγγ × GeVÞ for
our smallest N ¼ 55 and largest N ¼ 235, as well as the
extrapolated distribution for the preferred value of N ¼ 2483
in the tree ensemble. There is a clear shift of the distribution
towards larger values as N grows. Current (solid) and projected
(dashed) exclusion lines are presented for various experiments.
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meanðgaγγÞ ¼ 2.73 × 10−18 × N1.77 GeV−1; ð23Þ

which gives the dependence of the coupling on the number
of ALPs. We note here that “mean” indicates that we have
fit the mean of log10ðgaγγ × GeVÞ, as opposed to gaγγ itself.
Given the excellent fit, it is reasonable to extrapolate the
mean of the distribution of log10ðgaγγ × GeVÞ to the
preferred value of N in the tree ensemble, at N ¼ 2483.
At this value the predicted mean of log10ðgaγγ × GeVÞ is
−11.50, which is much larger than the mean at small-to-
moderate N. In order to estimate the distribution itself at
N ¼ 2483 we assume that the distribution is modeled by a
Gaussian, with the mean and standard deviation obtained
by extrapolating the curves in Fig. 2 to N ¼ 2483. The
expected distribution is shown in Fig. 1, along with its
smaller-N counterparts, for the sake of comparison.
For the tree ensemble at large N, the distribution sits

right on the edge of experimental sensitivity, depending
slightly on the assumptions and experiment. We will
present a thorough analysis of our results relative to
experimental results and prospects in the discussion, since
it will be useful to also compare results across ensembles.
We would like to understand the origin of this result. It is

clear from our analysis so far, and from Fig. 1, that as N
increases so does the mean of log10ðgaγγ × GeVÞ. Recall

from Eq. (8) that gaγγ is proportional to the norm of a vector
Qi, computed with K−1. Since we are imposing Q · τ ≲ 25
so that the cycle in question can support realistic SM gauge
couplings, the denominator of Eq. (14) is essentially a
constant, ranging from 1 to 25, compared to the
large hierarchies that may arise in the numerator. In
Fig. 3, we show a plot of meanðlog10ðgaγγ × GeVÞÞ versus
meanðlog10ðλmaxðK−1ÞÞÞ, where λmaxðK−1Þ is the largest
eigenvalue of K−1. Figure 3 shows a clear correlation,
which can be explained as follows: if the largest eigenvalue
of K−1 grows with N, and if Qi has nontrivial overlap with
the corresponding eigenvector that does not shrink too
quickly with N, then we will find N-dependent growth of
gaγγ with N. This is indeed the case. In Fig. 4 we show the
N dependence of meanðlog10ðλmaxðK−1ÞÞÞ with N. Clearly
λmaxðK−1Þ grows rapidly with N. In addition, we find that
the alignment of the Qi with the corresponding eigenvector
v̂max shrinks slowly as a function of N: at N ¼ 55 we find
meanðlog10ðv̂max · Q̂ÞÞ ¼ −1.72, while at N ¼ 235 we find
meanðlog10ðv̂max · Q̂ÞÞ ¼ −2.59. Therefore, the growth of
λmaxðK−1Þ dominates over the decreasing v̂max · Q̂, explain-
ing the observed correlation.

(a)

(b)

FIG. 2. Top: The mean of log10ðgaγγ × GeVÞ in the tree
ensemble as a function of N, with a best-fit curve. Bottom:
The SD of log10ðgaγγ × GeVÞ in the tree ensemble as a function of
N, with a best-fit curve.

FIG. 3. A plot ofmeanðlog10ðgaγγ × GeVÞÞ versusmeanðlog10 ×
ðλmaxðK−1ÞÞÞ. The slope of the line is ∼0.38.

FIG. 4. A plot of meanðlog10ðλmaxðK−1ÞÞÞ versus N, with a
best-fit line to demonstrate the correlation.
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From a random matrix perspective, constructing a RMT
ensemble whose largest eigenvalue reproduces the scaling
in Fig. 4 seems reasonable, as one could choose a Wishart
ensemble whose distribution of entries reproduced such
a scaling. However, given that Q̂ tend to point along the
standard basis ê directions in the natural geometric basis, it
is clear that the corresponding eigenvector v̂max does not
obey standard eigenvector delocalization, as we would
expect the entries of v̂max to be roughly 1=

ffiffiffiffi
N

p
.

2. Results for hypersurfaces

We perform the same analysis for hypersurfaces and find
quite similar results. In particular, we find that the mean of
log10ðgaγγ × GeVÞ increases as a function of N, even more
rapidly than in the tree ensemble, and such an increase can
be correlated with the maximal eigenvalue of K−1.
In Fig. 5 we show the distributions for our smallest and

largest N that we analyze in the hypersurface case, which
are N ¼ 10 and N ¼ 200, respectively. In the same figure
we also show the projected distribution for the largest N in
the hypersurface ensemble, which is N ¼ 491. There is a
striking feature in N dependence of the distribution in the
hypersurface case as compared to the tree ensemble: while
the standard deviation of the distribution of log10ðgaγγÞ
decreased as a function of N for the tree ensemble, in the
case of hypersurfaces it actually increases, leading to the
largest spread for large N. This could be due to the
rich intersection structure of Calabi-Yau threefolds as
compared to toric threefolds, whose intersection numbers
are relatively tame. We fit a power law to the mean of
log10ðgaγγ × GeVÞ as a function ofN. Expressed in terms of
gaγγ , we find

meanðgaγγÞ ¼ 8.52 × 10−22 × N4.22 GeV−1: ð24Þ

For the hypersurface at large N ¼ 491, the mean of the
projected distribution is at log10ðgaγγ × GeVÞ ¼ −9.71, and
so a significant portion of the distribution is already in
tension with data; see the discussion below.

3. Results for RMT

As described in Sec. III C we model K−1 as an inverse
Wishart matrix (or K as a Wishart matrix) drawn from
Ωð0; σÞ, for some σ, andQ a unit vector either pointing in a
basis direction or with entries drawn from Ωð0; σÞ. We find
that the different models for Q produce essentially the
same behavior, so we will focus on the case that
Q ¼ ð1; 0;…; 0Þ. In the simplified model the coupling
of ALP to the photon is given by Eq. (18).
In Fig. 7 we show log10ðgaγγ × GeVÞ computed in the

RMT models versus meanðlog10ðλmaxðK−1ÞÞÞ, to demon-
strate the similar behavior to the string ensembles studied
above. Implicitly in the plot meanðlog10ðλmaxðK−1ÞÞÞ is
increasing with N, and each data point is at a different N,
ranging from 0 to 1500. Comparing the growth of
meanðlog10ðgaγγ × GeVÞÞ with respect to both N and the
maximum eigenvalue of K−1, we note that the inverse
Wishart ensembles with σ ¼ 1=N2 and σ ¼ 1=N are the
closest fits to the actual string data, though both differ from
it nontrivially.
This lends further credence to the central idea of this

work: gaγγ should grow significantly with N. In particular,
if some other string ensemble has a different ALP-photon
coupling scaling compared to the ones that we have
studied, these EFT considerations suggest that the coupling
should nevertheless increase polynomially in N, as shown
in Fig. 6. We therefore believe that the central result likely
extends to other string ensembles.

FIG. 5. The normalized distributions of log10ðgaγγ × GeVÞ for
the hypersurfaces. Shown are the calculated distributions for
N ¼ 10 and N ¼ 200, as well as the extrapolated distribution
for the largest hypersurfaces at N ¼ 491. There is a clear shift of
the distribution towards larger values as N grows. Current (solid)
and projected (dashed) exclusion lines are presented for various
experiments.

FIG. 6. The mean of log10ðgaγγ × GeVÞ in the inverse Wishart
model for σ ¼ 1; 1=

ffiffiffiffi
N

p
; 1=N; 1=N2; 1=N3 as a function of N,

with a best-fit line of the form mean(gaγγ) ∝ Nx. The models with
σ ¼ 1=N2 and σ ¼ 1=N are the best for the string data.
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4. Remarks on other ensembles

While the tree ensemble of F-theory bases and the
Kreuzer-Skarke (KS) ensemble of Calabi-Yau (CY) hyper-
surfaces are the largest-to-date explicit ensembles of string
geometries, there are other important examples that we now
discuss.
The first is that of the skeleton ensemble [21], which

generalizes the tree ensemble beyond the simple sufficient
criteria to remain at finite distance in moduli space.
Actually, in this case the construction of the geometries
B is a less-restrictive version of the tree ensemble, and so
we expect the results to exhibit similar scaling. However,
the largest number N of ALPs found in this ensemble is
16103, which is a great deal larger than the maximal N
found in the tree ensemble. While this result should be
taken with a grain of salt, since we do not perform the

computation for reasons of complexity, it is interesting to
check what the distribution of gaγγ would be if we were able
to extrapolate outside of the tree ensemble to such an
boundary point of the skeleton ensemble. We extrapolate
using the fit of the related tree ensemble in Fig. 8.
Another important example is the geometry Bmax, which

is the F-theory base thought to house the largest number of
flux vacua [15]. In this geometry the number of ALPs
is 98, and the non-Higgsable gauge group is E9

8 × F8
4×

ðG2 × SUð2ÞÞ16. At the apex of the stretched Kähler cone
there is only a single cycle with volume τ that supports a
gauge group and satisfies τ ≤ 25. This cycle supports an E8

group that could provide a GUT after flux breaking. For
this gauge group we find gaγγ ¼ 3.47 × 10−12 GeV−1.
This coupling is also projected to be probed at future
experiments.

V. CURRENT AND FUTURE EXPERIMENTS

Even though they are not relevant for our analysis, for the
sake of thoroughness we will begin by discussing experi-
ments that assume that ALPs contribute nontrivially to the
dark matter and/or are sensitive only to ALPs in some finite
mass region. Currently, the best limits on the existence of
light (ma ≲ 1 eV) axionlike particles comes from resonant-
cavity haloscope experiments. The bounds are restricted to
narrow mass windows centered around ma ≃ 2.5 ×
10−6 eV for ADMX [41] and ma ≃ 2.5 × 10−5 eV for
HAYSTAC [42]. Both experiments place an impressive
limit on the coupling of gaγγ ≲ 10−15 GeV−1. However, the
effectiveness of these searches is highly contingent on the
assumption that the ALP in question comprises the totality
of the local dark matter halo, as the signal scales linearly
with the local halo density of ALPs. String theory generally
provides a wealth of potential dark matter candidates, and
even if an ALP were to represent the bulk of the local dark
matter density, it would be a remarkable coincidence if this
particle was to also couple to photons in an appreciable
manner.
Considering the above shortcoming, we are thus led to

consider experiments which are both broadband in sensi-
tivity and independent of assumptions about the ALP
contribution to local dark matter. The so-called “light-
shining-through-walls” (LSW) experiments achieve both,
with the DESY-based ALPS [43] and the CERN-based
OSQAR [44] achieving a limit of gaγγ ≲ 6 × 10−8 GeV−1

for ALPs with vanishing masses up to a threshold of
ma ≃ 10−4 eV. The proposed ALPS-II experiment [45]
hopes to achieve a sensitivity to couplings of order gaγγ ≲
2 × 10−11 GeV−1 in the very near future. Such a limit will
be competitive with the current bound set by the CERN
helioscope CAST, which constrains the coupling to gaγγ ≲
7 × 10−11 GeV−1 for ALPs with vanishing masses up to a
threshold ofma ≃ 10−2 eV. This is the current best limit for
ALPs in the broad mass range of interest to this paper.

FIG. 7. log10ðgaγγ × GeVÞ, computed in the RMT models,
versus meanðlog10ðλmaxðK−1ÞÞÞ, with varying σ. Note that for
all models both log10ðgaγγ × GeVÞ and meanðlog10ðλmaxðK−1ÞÞÞ
increase as a function of N.

FIG. 8. The normalized predicted distribution of log10ðgaγγ ×
GeVÞ for the largest known value of N ¼ 16103 in the skeleton
ensemble, contrasted with that predicted for the largest N ¼ 2483
in the tree ensemble. Current (solid) and projected (dashed)
exclusion lines are presented for various experiments.
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Both of the techniques mentioned above should see
improvements in future years. The International Axion
Observatory (IAXO), a next-generation helioscope, should
reach gaγγ ¼ 2 × 10−12 GeV−1 [3], with a prototype taking
data within the next few years, while next-generation
superconducting radiofrequency cavities hope to reach a
similar limit on the same timescale [4].
Finally, we remark on the ability of astrophysical

observations to constrain ALP couplings to photons.
Oscillations in the spectrum of observed x-ray and
gamma-ray photons from extragalactic sources may be
induced by photon-ALP conversion in the presence of large
galactic magnetic fields. This technique can be applied for
very low ALP masses (ma ≲ 10−9 eV), with the best limits
coming from x-ray astronomy for ma ≲ 10−12 eV. The
most stringent current limits of gaγγ ≲ 8 × 10−13 GeV−1

come from observations of a number of point sources by
the Chandra satellite [10]. In the next decade, both the
European Space Agency (ATHENA) [11] and NASA
(STROBE-X) [14] have proposed missions to improve
these limits by an additional order of magnitude.

VI. DISCUSSION

In this paper we studied distributions of ALP-photon
couplings in ensembles of string compactifications and
random matrix theories. Since hundreds or thousands
of axionlike particles typically arise in string compactifi-
cations, we studied the scaling of the effective gaγγ
distribution with N and its extrapolation to the expected
value of N in a given ensemble.
Before stating the main results, we review the setup.

The details of string geometry, which in our cases are
Calabi-Yau manifolds in IIB compactifications or Kähler
threefold bases of F-theory compactifications, determine
the coupling of a linear combination of ALPs to gauge
sectors arising on a four-manifold parametrized by an
integral vector Q. Specifically, the string data that enter
the calculation are the choice of manifold from the
ensemble, taken to be at the apex of the stretched
Kähler cone, the computation of the Kähler metric Kij

on ALP kinetic terms that plays a crucial physical role in
canonically normalized couplings, and choices of Q that in
principle allow for the Standard Model gauge couplings.
ALP masses are generated by instanton corrections to the
superpotential, and we utilize a natural geometric pro-
cedure that gives an upper bound on the ALP mass. The
effective ALP-photon couplings that we study include only
the contributions from individual ALPs whose mass upper
bound is below an experimentally relevant threshold
10−12 eV. This conservative choice allows our calculations
to also apply to experiments that are sensitive to ALPs
below masses of 10−6 eV (e.g., [4]) and 10−2 eV (e.g.,
helioscopes). Further details are, of course, provided in the
main text.

Our main results in each ensemble are that the mean
value of the gaγγ distribution (gaγγ) scales polynomially in
N, and its extrapolation to large N, where most vacua are
argued to occur, is near the sensitivity of current or
proposed experiments. We take each point in turn.
In both string ensembles we studied, the scaling gaγγ was

significantly stronger than the
ffiffiffiffi
N

p
scaling that one might

naively expect from Eq. (11). This is due to at least two
effects. First, the number of ALPs contributing to the
effective gaγγ depends not only onN, but also the fraction of
ALPs with masses below the chosen threshold; the latter
itself increases with N [25]. Second, due to canonical
normalization, gaγγ depends critically on the largest eigen-
value of K−1, which grows significantly with N; see Figs. 3
and 4. Specifically, the two string ensembles that we
studied were called the tree ensemble and the hypersurface
ensemble, and they exhibited gaγγ ∝ N1.77 and gaγγ ∝ N4.22,
respectively. We note that gaγγ can also be fit accurately to a
weak exponential, but in the absence of any reason to expect
exponential growth, we opt for themore conservative choice.
In both string ensembles that we studied we found that

gaγγ , extrapolated to the expected large value of N in each
ensemble, is within range of current and/or proposed
experiments. Specifically, with contributing ALPs having
ma ≤ 10−12 eV,

tree∶ gaγγ ¼ 3.2 × 10−12 GeV−1 at N ¼ 2483;

hyper:∶ gaγγ ¼ 2.0 × 10−10 GeV−1 at N ¼ 491: ð25Þ

We also computed gaγγ in the F-theory geometry with the
most flux vacua, where the requirement τ ≤ 25 within the
stretched Kähler cone allows the SM to exist only on a
single divisor, which carries geometric gauge group E8. In
that example, gaγγ ¼ 3.47 × 10−12 GeV−1.
These results should be compared to the strongest

current and projected constraints from experiments con-
sistent with the assumptions of our analysis: that the ALPs
do not have to (but could) comprise the dark matter, and
that the masses are below a threshold rather than in a fixed
window. For experiments satisfying these assumptions, the
strongest current constraints are

CAST∶ gaγγ ≤ 7.0× 10−11 GeV−1 for ma ≤ 10−2 eV;

Chandra∶ gaγγ ≤ 8.0× 10−13 GeV−1 for ma ≤ 10−12 eV;

ð26Þ

and the strongest projected sensitivities in proposed experi-
ments are

IAXO∶ gaγγ ≤ 2× 10−12 GeV−1 for ma ≤ 10−2 eV;

STROBE-X∶ gaγγ ≤ 8× 10−14 GeV−1 for ma ≤ 10−12 eV:

ð27Þ
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We note the proximity of the computed gaγγ in models of
ALP-photon couplings in string compactifications to the
experimental sensitivities.
Our study provides the first concrete evidence that

ultralight ALPs in string compactifications could very well
have detectable interactions with photons at large N.
Given this strong claim, we would like to clearly

emphasize three potential caveats. First, this is a large N
effect, and though there are compelling arguments that
most vacua exist at large N, it could be that our vacuum is
realized in the small N regime. Second, the quoted gaγγ
values are the mean of a projected distribution, and the
photon associated with our vacuum could be realized in the
tail. Third, the precise details of the distribution could be
modified in more precise studies that attempt to explicitly
realize Standard Model sectors and stabilize moduli, rather
than modeling them, as we have. Each of these caveats is
deserving of careful study.

Nevertheless, this result, taken together with the ubiquity
of ALPs in string compactifications and the necessity of the
photon in the correct theory of quantum gravity, provides
excellent motivation for future work.
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