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1 Introduction

Localization method in the computation of supersymmetric (SUSY) gauge theories ([1]

and references therein) gives exact results which are useful for confirming non-perturbative

dualities and correspondence among the partition functions and correlation functions. It

also reveals a relation to the integrable system such as Bethe/Gauge correspondence, which

was first observed in [2] and later developed in [3–6]. A kind of “mother” theory of non-

trivial dualities involving low dimensional SUSY theories is the six dimensional N = (2, 0)

superconformal field theory that arises as a low energy effective world-volume theory of

M5 branes. Namely we can make use of the fact that twisted1 compactification of the

1To keep supersymmetry in lower dimensions, it is often necessary to make a twist along the curved

compactification manifold. This twist should be distinguished from another twist which is used to obtain

topological theory from the resulting supersymmetric theory.
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six dimensional theory on a manifold Mn of dimension n gives a SUSY gauge theory in

(6−n) dimensions, which is a source of otherwise unexpected correspondence between the

field theory on Mn and the SUSY gauge theory. One of the most intriguing examples is

AGT(W) correspondence [7, 8], where twisted compactification on a punctured Riemann

surface Σg,n gives four dimensional N = 2 superconformal theories of class S and the

instanton partition function of the class S theory computes conformal blocks on Σg,n. The

theory of our interest in this paper is the compactification on a three manifold M3 denoted

as T [M3]. With an appropriate twisting we can keep N = 2 supersymmetry and the

theory T [M3] gives supersymmetric theory on complementary 3-manifold M̃3. In spite of

interesting proposal of so-called 3d-3d correspondence [9–12], the theory T [M3] for general

three manifold is only partly explored.

However, ifM3 is a Seifert manifold which is an S1 bundle over a Riemann surface Σ, we

have good chances for getting detailed information about T [M3], since S
1-compactification

of N = (2, 0) theory gives 5 dimensional super Yang-Mills theory which is relatively

tractable. For example, it is known that complex Chern-Simons theory (Chern-Simons

theory with a complexified gauge group GC) is obtained by a compactification of 6d theory

on the (squashed) lens space L(κ, 1)b [13–17]. The Chern-Simons theory with a compact

gauge group G is a renowned example of topological quantum field theory (TQFT) [18].

After the canonical quantization on M̃3 = Σ × S1 with the periodic time along S1 which

gives the trace, the partition function gives a two dimensional TQFT on Σ that counts the

dimensions of physical Hilbert space due to the vanishing TQFT Hamiltonian. If one intro-

duces the Wilson loop operators along the time direction, they create punctures on Σ and

the Hilbert space is mathematically identified with the space of conformal blocks of WZNW

model. Hence, the Verlinde algebra or the fusion ring of the current algebra [19–22] under-

lies the two dimensional TQFT from the Chern-Simons theory. Quite similarly complex

Chern-Simons theory is also 3 dimensional TQFT and the quantization on Σ×S1 gives a 2d

TQFT [23, 24]. Furthermore, in [25] by considering six dimensional N = (2, 0) supercon-

formal field theory on L(κ, 1)×Σ×S1, it is proposed that 2d TQFT obtained from complex

Chern-Simons theory or N = 2 Chern-Simons theory with an adjoint chiral multiplet on

Σ× S1 has a dual description in terms of the Coulomb branch limit of the superconformal

index on the lens space L(κ, 1). WhenGC = SL(N,C), the superconformal index of our con-

cern is associated with the class S theory of AN−1 type obtained by the compactification on

Σ. The family of these indices defines 2d TQFT [26, 27] and according to the general princi-

ples of 2d TQFT, the Coulomb branch limit of the lens space index can be evaluated by glu-

ing those associated with three punctured sphere2 Σ0,3. In this paper we check this proposal

by explicitly computing the genus g partition functions on the Chern-Simons theory side.

The powerful localization technique for N = 2 SUSY theory on Seifert manifold was

first worked out in [28] and further elaborated by [29–31]. When the manifold is Σ × S1,

we can make the partition function localized on discrete SUSY vacua (critical points of su-

perpotential) which coincide with the solutions (Bethe roots) to the Bethe ansatz equation

2The AN−1 type class S theory associated with Σ0,3 is called TN theory. Except for N = 2 it does not

allow Lagrangian description in general.
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of integrable lattice models called phase model and q-boson model [32–34]. By supersym-

metric localization the path integral of topologically twisted Chern-Simons-matter theory

reduces to infinite magnetic sum and multi-contour residue integrals called Jeffrey-Kirwan

(JK) residues [35]. One might hope that one can check the duality to the superconformal

index of the class S theory by summing up infinitely many JK residues in the localization

formula. Unfortunately, there is a crucial subtlety in evaluating the partition function

(topologically twisted index)3 on higher genus Riemann surfaces. When the genus is larger

than one and the gauge group is non-abelian, the projective condition of the JK residues

is violated due to the one-loop determinant of vector multiplet. Hence, JK residues are

ill-defined and naive residue operation does not reproduce lens space index. Therefore we

need an alternative method to evaluate the topological partition function on higher genus

surfaces. In this paper, we employ 2d TQFT viewpoint and quantum integrable structure

behind Chern-Simons-matter theory a.k.a Bethe/Gauge correspondence. Since the Chern-

Simons-matter theories are topologically twisted along Riemann surface, we expect that

the Chern-Simons-matter theories possess the structure of 2d TQFT. As we summarized

in appendix A, in 2d TQFT the partition function on higher genus Riemann surface is

reconstructed by genus zero correlation functions. Although JK residues for genus zero

case are well-defined, it is technically difficult to evaluate infinitely many JK residues in

practice, for example SU(3) theories.

If the magnetic sum is performed before the JK residue operation and integration

contours are deformed to enclose saddle points of effective twisted superpotential, the

topological partition function and correlation functions are given by finite summations

over solutions of the saddle point equations. But it is still hard to evaluate them, because

it is usually impossible to solve the saddle point equations explicitly. To overcome such a

difficulty, in this paper we use a combinatorial algorithm to evaluate correlation functions

without knowing explicit form of solutions. This algorithm features the Hall-Littlewood

polynomials Pλ(x, t) that arise naturally from the algebraic Bethe ansatz of the q-boson

model [36]. In U(N) theories, the saddle point equations agree with Bethe ansatz for N

particle sector of q-boson model, while the number of sites corresponds to the level κ of

the Chern-Simons theory. Thus, the Bethe/Gauge correspondence helps us to compute the

partition function of 2d TQFT on Chern-Simons theory side, whose algebraic structure

(the deformed Verlinde algebra) is related to the algebra of Hall-Littlewood polynomials

on the space of Bethe roots. We emphasize that it is U(N) Chern-Simons theories that

are related to the q-boson model, or the Hall-Littlewood polynomials. However, once the

topological partition function and correlation functions of U(N) = (U(1) × SU(N))/ZN

theories are given, those of SU(N) theories are obtained by decomposing U(N) theory to

U(1) part and SU(N) part. We show that the twisted indices of SU(N) theories reproduce

Coulomb branch limit of lens space index for SU(2) and SU(3) with lower levels, which

confirms the proposal in [25]. We also provide a result for level 2 U(4) theory, but there is

no corresponding computation on the superconformal index side at the moment.

3In this paper we call topologically twisted index of Chern-Simons-matter theory simply (topological)

partition function.
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1.1 Complex Chern-Simons theory and N = 2 Chern-Simons theory with

adjoint matter

Compactification of 6d theory on the (squashed) lens space

L(κ, 1)b := {(z, w) ∈ C
2; b2|z|2 + b−2|w|2 = 1}/Zκ, (1.1)

has been shown to give a complex Chern-Simons theory4 [14–17]. The orbifold action

in (1.1) is defined by (z, w) 7→ (e2πi/κz, e−2πi/κw). The action of complex Chern-Simons

theory is

S =
q

8π

∫

M3

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
+

q̄

8π

∫

M3

Tr

(
Ā ∧ dĀ+

2

3
Ā ∧ Ā ∧ Ā

)
, (1.2)

where A = A+iΦ is a complex gauge field and q = κ+iσ is the complex coupling constant.

For the invariance under the large gauge transformations the real part of the coupling κ

has to be integer. Under the complex gauge transformation both A and Φ transform as

a gauge field. But if the gauge transformation is restricted to be real, Φ transforms as

a matter in the adjoint representation. Or the pair (A,Φ) is regarded as coordinates on

the cotangent bundle of the space of connections for the compact gauge group U(N) or

SU(N). When we consider the compactification on L(κ, 1)b, the imaginary part of the

Chern-Simons coupling is related to the squashing parameter by σ = κ1−b2

1+b2
[14, 15].

In this paper we only consider the case b = 1,5 namely σ = 0. The action on Σ × S1

becomes

Sσ=0 =
κ

4π

∫

Σ×S1

Tr (A ∧D0A+ 2A0 ∧ (dA+A ∧A)− 2φ0 ∧ dAφ− φ ∧D0φ) , (1.3)

where we have made a decomposition A = A+A0dx0,Φ = φ+φ0dx0 and x0 is a coordinate

along S1. Since there are no time derivatives of A0 and φ0 we obtain

FA − φ ∧ φ = 0, dAφ = 0 (1.4)

as constraints for the Hilbert space of the canonical quantization of complex Chern-Simons

theory. In fact (1.4) is the flatness condition of the total curvature F := dA + A ∧ A
restricted on Σ. A crucial fact which connects the complex Chern-Simons theory and the

twist of N = 2 super Chern-Simons theory with an adjoint matter multiplet is the fact that

MH := {FA − φ ∧ φ = 0, dAφ = 0}/GC = {FA − φ ∧ φ = 0, dAφ = d†Aφ = 0}/G, (1.5)

which gives an equivalence of a holomorphic and a Hermitian description of the Hitchin

moduli space.6 In (1.5) GC is the group of complex gauge transformations, while G is that

of real gauge transformations. It is the relations in the second description of the Hitchin

4For G = U(N),SU(N) the complexified gauge group is GC = GL(N,C),SL(N,C). In this paper we

only consider these cases.
5When b = 1 we denote the lens space simply by L(κ, 1).
6Precisely speaking we have to impose some stability condition in the holomorphic description.
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moduli space that arise naturally as the equations of motion (topological gauge fixing con-

ditions) in the topological twist of N = 2 Chern-Simons theory with an adjoint matter

multiplet [23, 34]. In the second description we impose the additional condition d†Aφ = 0

in compensation for the reduced gauge symmetry G. An important role of this additional

condition is that this allows us to introduce SO(2) rotation acting on the space components

(φ1, φ2) of the one form φ [23]. In fact, the equation dAφ = 0 is invariant under the SO(2)

rotation only when it is combined with the condition d†Aφ = 0.

On the other hand the adjoint chiral multiplet φ = φ1+iφ2 in the N = 2 Chern-Simons

theory is originally a complex scalar field with U(1) flavor symmetry. But the R-symmetry

of the 3 dimensional N = 2 SUSY algebra is U(1)R and there is a freedom of U(1)R charge

assignment r for φ. Since the topological twist of 3d theory on Σ × S1 is a redefinition

of 2d local Lorentz symmetry SO(2)Σ on Σ as the diagonal part of U(1)R × SO(2)Σ, the

adjoint matter φ has spin r/2 after the topological twist. In particular the R-charge has

to be r = 2 for matching with the complex Chern-Simons theory where φ is a one form.

Thus the twisted N = 2 Chern-Simons theory with an adjoint matter φ with U(1)R charge

r = 2 gives another description of the 2d TQFT that comes from the complex Chern-

Simons theory. As remarked above, the complex Chern-Simons theory in the Hermitian

description has SO(2) symmetry which rotates the one form components of φ. In N = 2

Chern-Simons theory this symmetry is nothing but the U(1) flavor symmetry of the adjoint

chiral multiplet. As was proposed in [23], this U(1) symmetry can be used to regularize

the problem of divergence due to the fact that the Hilbert space of complex Chern-Simons

theory is infinite dimensional. Let us introduce the equivariant parameter t := e−m for the

U(1) rotation, where the parameter m can be regarded as the mass for the adjoint matter.7

The parameter t is physically regarded as a Wilson loop of a background gauge field of

U(1) flavor symmetry. Then the corresponding 2d TQFT computes

Z(Σg) = TrHe
−βH−mF =

∞∑

n=0

tn dimH(n), (1.6)

where F is the charge of flavor symmetry and H(n) is the charge n sector of the physical

Hilbert space. Since we have a smooth t → 0 limit, which is the decoupling limit of the

adjoint matter that gives the pure Chern-Simons theory, no negative powers of t appear.

The underlying algebra of this 2d TQFT is called equivariant Verlinde algebra in [23]. As we

will see in our computation based on Bethe/Gauge correspondence, the U(1) equivariant

parameter t corresponds to the parameter of the Hall-Littlewood polynomial8 Pλ(x, t)

where t → 0 limit gives the Schur function sλ(x).

1.2 Coulomb branch limit of superconformal index

Now let us see the other side of 6d theory on L(κ, 1)×Σ×S1. The superconformal index of

four dimensionalN = 2 theory is defined as the partition function on S3×S1, where we take

7In the Nekrasov partition function of five dimensional SUSY Yang-Mills theory with the adjoint hyper-

multiplet a similar equivariant parameter appears.
8See appendix B for a definition and basic properties of Pλ(x, t).
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the trace over S1 direction regarded as time coordinate. When the N = 2 superconformal

theory is of class S, the superconformal indices give a 2d TQFT on the punctured Riemann

surface Σg,n associated with the class S theory [26, 27]. This is regarded as a TQFT version

of AGT correspondence, where conformal blocks are replaced by topological correlation

functions. As a 2d TQFT the basic ingredients are the indices for the superconformal

theories coming from the genus zero surface with three punctures Σ0,3, which are identified

with the topological three point functions Cµνλ. The associativity condition for Cµνλ is

equivalent to the S-duality of the class S theories. One can also consider the index on the

lens space by introducing the orbifold action on S3 [37, 38]. In general the superconformal

index has three fugacities p, q and t [39, 40]. There is a special limit called Coulomb branch

limit which is defined by p, q, t → 0 while t := pq/t fixed [41]. According to the proposal

in [25] the U(1) equivariant parameter t is identified with the equivariant U(1) parameter

on the Chern-Simons side9 The significant feature of the Coulomb branch limit is that

the hypermultiplet does not contribute in the limit except the zero mode contributions.

The superconformal theory obtained by twisted compactifications on Σ0,3 of 6d N = (2, 0)

theory of type AN−1 is called TN theory. When N > 2 the theory does not allow the

Lagrangian description and there is no weak coupling region. In [25] the computation of the

superconformal indices for T3 theory has been made by invoking the Argyres-Seiberg duality

that allows a weak coupling region. Unfortunately this approach cannot be generalized to

TN theory for 3 < N . In this paper we compute the partition function of U(4) theory

which is expected to match with the superconformal indices of T4 theory.

1.3 Organization of the paper

This paper is organized as follows; in the next section we review localization formula for

N = 2 Chern-Simons matter theories in general. The final result involves an infinite mag-

netic sum of the multi-contour integrals which are called Jeffrey-Kirwan (JK) residues. In

section 3, we evaluate the integral of localization formula by the direct JK residue compu-

tation. For technical reason, the computation is possible for rank one case, namely SU(2)

theory. We find a complete agreement with the result in [24] based on the geometry of

SU(2) Hitchin system. Section 4 is the main part of the paper; we use Bethe/Gauge cor-

respondence to compute the structure constants of the equivariant U(N) Verlinde algebra.

The localization formula shows that the equivariant Verlinde algebra is realized by the al-

gebra of Hall-Littlewood polynomials Pλ(x, t) with the specialization by the Bethe roots of

the q-boson model, where N corresponds to the number of excitations. Namely we substi-

tute the solutions to the Bethe ansatz equation to the symmetric polynomial Pλ(x, t). After

the specialization there arise relations among Pλ(x, t) which are related by the affine Weyl

group of AN−1 acting on the partition λ [36]. We can understand these relations as a result

of the quotient by the ideal IN,κ determined by the space of Bethe roots. The characteriza-

tion of the space by an ideal of the polynomial algebra is one of the basic ideas in algebraic

geometry. In fact this is a generalization of what Gepner showed for the Verlinde algebra

9In the theory of the superconformal index there is a so-called Hall-Littlewood slice [41]. Though

the Hall-Littlewood polynomials are featured in the present paper, this has nothing to do with the

Hall-Littlewood slice.
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(fusion ring) [20], where the ideal is generated by derivatives of a potential W (x) [21, 22].

After taking the relation of U(N) and SU(N) theories into account, we can confirm the

agreement of our result with the superconformal indices of T2 and T3 theories. In section 5,

we discuss several aspects of the equivariant U(N) Verlinde algebra, such as the recurrence

relation among genus g partition functions and the level-rank duality. Finally backgrounds

of 2d TQFT and the Hall-Littlewood polynomials are collected in appendices.

2 Localization of topologically twisted Chern-Simons-matter theories

In this section we consider topologically twisted Chern-Simons-matter (CS-matter) theories

on Σg × S1. The R-symmetry of N = 2 supersymmetric theory in 3 dimensions is U(1)R
and the topological twist is made along Σg with local Lorentz symmetry U(1)spin.

10 Namely

we redefine the local Lorentz symmetry on Σg as the diagonal subgroup of U(1)R×U(1)spin.

The observables of the CS-matter theories are supersymmetric Wilson loopsWλ. Here λ ex-

presses a representation of the gauge group G and operators Oλ’s in the correlation function

are either supersymmetric Wilson loops or background flavor Wilson loops. Supersymmet-

ric localization can be applied to correlation functions of Wλ wrapping on S1 and located

at a point of Σg. When the rank of G is N , the path integral reduces to N -dimensional

contour integral (more precisely Jeffrey-Kirwan residue) by the localization formula [29–31];

〈
n∏

i=1

Oµi
〉g =

1

|W (G)|

∮

JK(η)

N∏

a=1

dxa
2πixa

∑

k∈Γ(G∨)

(
n∏

i=1

Oµi
(x, t)

)
e−S

(k)
cl

× Z(k)
vec(x, g)Z

(k)
chi (x, t, g, r)H(x, κ, t)g, (2.1)

where |W (G)| is the order of the Weyl group of G. The integration variables xa’s are saddle

point values of the Wilson loops associated to the a-th U(1) Cartan of G and the choice

of the contour JK(η) is determined by an N -dimensional vector η. The set of vectors

k ∈ Γ(G∨) represents an element of the magnetic lattice of G and the integrand comes

from several multiplets in this susy model: Z
(k)
vec is the one-loop determinant of the super

Yang-Mills fields with the magnetic charge k = (k1, · · · , kN ):

Z(k)
vec(x, g) = (−1)

∑
α>0 α(k)

∏

α 6=0

(1− xα)1−g , (2.2)

where
∑

α>0 and
∏

α 6=0 express summation over the positive root vectors and product

over the root vectors, respectively. xα stands for a paring of the Cartan part of Wilson

loop x and a root α. Z
(k)
chi (x, t, g, r) is the one-loop determinant of a chiral multiplet in a

representation R of the Lie algebra of G:

Z
(k)
chi (x, t, g, r) =

∏

ρ∈∆(R)

(
x

ρ
2 t

1
2

1− xρt

)ρ(k)+(1−g)(1−r)

, (2.3)

10Topological twist on general three manifold is more non-trivial, since the local Lorentz symmetry is

SU(2)spin.
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where ∆(R) expresses the set of weight vectors of the representationR and r is R-charge for

the lowest component scalar in the chiral multiplet. xρ stands for the paring of the Cartan

part of Wilson loop x and a weight ρ. The parameter t originates in the background flavor

Wilson loop. In general, one can introduce background U(1) flavor Wilson loops for the

Cartan part of the flavor symmetry. Later we consider the adjoint representation, which

has only U(1) flavor symmetry. The Q-closed action is a sum of the (mixed) Chern-Simons

terms in three dimensions. Here Q is a generator of supersymmetric transformation used

in the localization computation. Their saddle point values are written by xa and t

e−S
(k)
cl =




N∏

a,b=1

xκ
abkb

a


 tκ(rf)(g−1) · · · (2.4)

where κab := κTr(HaHb) and {Ha}Na=1 represents the Cartan part of the Lie algebra of G in

the Chevalley basis. κ and κ(rf) are respectively gauge CS level and mixed CS level between

flavor symmetry and R-symmetry ((rf)-mixed CS level). The symbol “· · · ” stands for other

mixed CS terms which are not included in the model we will treat in the following sections.

We will also choose κ(rf) =
N2(1−r)

2 for G = U(N) and κ(rf) =
(N2−1)(1−r)

2 for G = SU(N)

when we look at the relation with the Coulomb branch limit of lens space index. But it is

easy to recover genus g partition function with generic value of κ(rf), because the (rf)-mixed

CS term is independent of integration variables and magnetic charges. Finally H(x, κ, t)

is the Hessian of the effective twisted superpotential Weff(x) which comes from integration

over gaugino zero modes;

H(x, κ, t) := det
a,b

(
(2πi)2∂2Weff

∂log xa∂log xb

)
= det

a,b


κab +

∑

α∈∆(R)

ρaρb
1

2

(
1 + txρ

1− txρ

)
 , (2.5)

with

(2πi)2Weff(x, κ, t) =
1

2

N∑

a,b=1

κab(log xa)(log xb)− 2π2
∑

α>0

α

+
∑

ρ∈∆(R)

(
Li2(x

ρt) +
1

4
(ρ(log x) + log t)2

)
+ · · · . (2.6)

In (2.6), ellipse “· · · ” stands for the gauge flavor mixed CS-term which is taken as zero in

our calculation.

If the magnetic sum is performed before the evaluation of the integral and the contour

is deformed to enclose saddle point configurations of the effective twisted superpotential

– 8 –
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e2πi∂log xaWeff = 1, the correlation function is expressed as

〈
n∏

i=1

Oµi
〉g =

1

|W (G)|
∑

x∗∈Sol

∮

x=x∗

N∏

a=1

dxa
2πixa

(
n∏

i=1

Oµi
(x, t)

)

×
(

N∏

a=1

1

1− e2πi∂log xaWeff

)
e−S

(0)
cl Z(0)

vecZ
(0)
chiH

g (2.7)

=
∑

x∈Sol

(
n∏

i=1

Oµi

)
e−S

(0)
cl Z(0)

vecZ
(0)
chiH

g−1 . (2.8)

When the gauge group is non-Abelian, the summation
∑

x∗∈Sol
is taken over the roots of

the saddle point equation of the twisted superpotential e2πi∂log xaWeff = 1 except for xα = 1

for any root α. If the roots x with xα = 1 are included in the residue operation, we find

that the genus one partition function 〈1〉g=1 from the expressions (2.7) and (2.8) does not

reproduce the correct Witten index and also the higher genus partition functions 〈1〉g≥2 do

not agree with the results predicted from the Coulomb branch limit of lens space indices

in our models. Thus we have to remove the roots satisfying xα = 1 and Sol is given by

Sol :=
{
x = (x1, · · · , xN )

∣∣∣e2πi∂log xaWeff = 1, a = 1, · · · , N, xα 6= 1 for all the root α
}
/ ∼
(2.9)

Here “∼” means that we identify solutions which are equal up to the Weyl permutation.

Since the theory is topologically twisted and does not depend on the metric on Riemann

surfaces, we expect the correlation functions satisfy the axiom of 2d TQFT or equivalently

the set of observables Oλ’s gives a finite dimensional commutative Frobenius algebra. In

appendix A we summarize properties of 2d TQFT used in this paper. Especially, the def-

initions of the structure constant Cλ
µν , the metric ηµν and the handle operator (H · C) νµ

are given by (A.2), (A.3) and (A.9), respectively. Note that we assume that the reduction

of the Chern-Simons-matter theory to 2 dimensions gives 2d TQFT and compute the par-

tition functions and correlation functions in higher genus from genus zero two point and

three point functions, for which we employ the localization formula. It is an interesting

problem to check that the predictions based on 2d TQFT agree with the result of the direct

computations of the localization formula.11

3 Direct (residue) computations in SU(2) case

Let us apply the localization formula in the last section to SU(2) CS-matter theory with an

adjoint chiral multiplet. Since SU(2) is rank one, the residue evaluation and the saddle point

are relatively simple. Unfortunately the direct computation in this section gets technically

involved for higher rank gauge group. We can evaluate the genus g partition function by

two methods: one is gluing the genus zero three point functions and the other is the direct

residue evaluation of the higher genus partiton function in the summed form (2.7). Each

11A 2d TQFT which reproduces the localization computation of twisted CS-matter theory with an adjoint

matter of R charge r = 2 is constructed in [24] based on the moduli space of the Higgs bundle.
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method has its advantages and disadvantages. In the first method we make use of the

properties of 2d TQFT and once we obtain the genus zero three point functions it is rather

easy to compute the partition functions for any higher genus. However, the computation

becomes quite involved for higher level κ, since the dimensions of the Frobenius algebra

A increase with κ. On the other hand, in the second method we do not have to rely on

2d TQFT structure and there is no complication with higher κ mentioned above. But the

higher genus computations are difficult in this case. Thus we can obtain the result for

arbitrary level κ but only for lower genera.

The saddle point equation of the twisted superpotential is given in the SU(2) model

exp

(
2πi

∂Weff

∂ log x

)
= x2κ+4

(
1− tx−2

1− tx2

)2

= 1. (3.1)

First, we shall directly evaluate the residue in the resumed form (2.7). We can write down

the genus g partition function of this SU(2)κ theory with R-charge r = 2

〈
n∏

i=1

Oµi
〉g =

∑

x∗∈Sol

∮

x=x∗

dx

2πi

(
n∏

i=1

Oµi
(x, t)

)
ωg(x, t, κ) , (3.2)

where

ωg(x, t, κ) :=
1

2x

(
1− x2κ+4

(
1− tx−2

1− tx2

)2
)−1

×
[
(1− t)

∏

d=±1

(1− x2d)(1− tx2d)

]1−g

H(x, κ, t)g ,

(3.3)

with

H(x, κ, t) = 2κ+ 2
1 + tx2

1− tx2
+ 2

1 + tx−2

1− tx−2
. (3.4)

The roots of the effective twisted superpotential except xα = 1 are collected into the set

“Sol”

Sol =
{
x
∣∣∣x2κ+4 − 2tx2κ+2 + t2x2κ − t2x4 + 2tx2 − 1 = 0, x2 6= 1

}
. (3.5)

Then we find that |Sol|/|W (SU(2))| = κ + 1 reproduces the correct Witten index for the

SU(2) theory. The higher genus partition function is given by

ZSU(2)κ
g =

∑

x∗∈Sol

∮

x=x∗

ωg(x, t, κ) . (3.6)

Let us evaluate these higher genus partition functions. When g ≥ 2, the poles of ωg(x, t, κ)

are located at {±1,±t1/2,±t−1/2} ∪ Sol on the Riemann sphere C ∪ {∞} ∋ x and we have

ZSU(2)κ
g =

∑

x∗∈Sol

∮

x=x∗

dx

2πi
ωg(x, t, κ) = −

∑

x∗=±t
1
2 ,±t−

1
2 ,±1

∮

x=x∗

dx

2πi
ωg(x, t, κ), (g ≥ 2) .

(3.7)
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For example, we can show the partition functions with g = 2, 3 explicitly

Z
SU(2)κ
g=2 =

1

6(t−1)6(t+1)3

[
κ3

(
1− t2

)3
+6κ2

(
t2−1

)2 (
t2+1

)
−κ(11t6−36t5 (3.8)

−9t4+9t2+36t−11)+6
(
−16tκ+3+ t6−6t5+15t4−4t3+15t2−6t+1

)]
,

and

Z
SU(2)κ
g=3 =

1

180(t−1)12(t+1)6

[
κ6

(
t2−1

)6−12κ5(t−1)5(t+1)7 (3.9)

+10κ4(t−1)4
(
7t2−2t+7

)
(t+1)6−240κ3

(
t2−1

)3(
t6−t5−4t4−10t3−4t2−t+1

)

+κ2
(
t2−1

)2
(31680tκ+4+469t8−2280t7+44t6−6360t5+7614t4

−6360t3+44t2−2280t+469)−36κ
(
t2−1

)
(4160tκ+4+3200tκ+5+4160tκ+6+13t10

−114t9+361t8+296t7+2986t6+1556t5+2986t4+296t3+361t2−114t+13)

+180(960tκ+4+1536tκ+5+2944tκ+6+1536tκ+7+960tκ+8+64t2κ+6+t12−12t11

+66t10−220t9−465t8−2328t7−2084t6−2328t5−465t4−220t3+66t2−12t+1)
]
.

Eqs. (3.8) and (3.9) are consistent with the results in [24], which were obtained from the

geometry of the moduli space of SU(2) Hitchin system.

Next we calculate partition functions based on 2d TQFT structure, namely by gluing

genus zero three point functions obtained by evaluating the Jeffrey-Kirwan residues. As

we remarked at the beginning of the section, the computations are made with level by

level, since the underlying Frobenius algebra A depends on the level. The localization

formula (2.1) for the SU(2)κ model with r = 2 tells us that genus zero three point function is

〈OµOνOλ〉g=0 =
1− t

2

∮

JK(η)

dx

2πix
Oµ(x, t)Oν(x, t)Oλ(x, t) · (1− x2)(1− x−2)

×
∑

k∈Z

x2κk
(

x

1− t x2

)2k−1( x−1

1− t x−2

)−2k−1

. (3.10)

When we choose a vector η < 0, the Jeffrey-Kirwan residue operation is evaluated at the

poles x = ±t
1
2 , 0. On the other hand, when we choose a vector η > 0, the residue is

evaluated at x = ±t−
1
2 ,∞. Since there are no poles except for x = ±t

1
2 , 0,±t−

1
2 ,∞ in

the genus zero case (3.10), the genus zero correlation functions evaluated at positive and

negative η cause the same result up to an overall sign. In the next section we will compute

U(2) case. The comparison of the following results with those in the next section gives

a supporting evidence for the relation of SU(N) and U(N) partition functions derived in

the next section (see (4.3)). In fact the (mutually distinct) roots yi of the characteristic

polynomial of the handle operator (H · C) are related by
(κ
2

)
y
SU(2)
i = (1− t) · yU(2)

i (3.11)

for κ = 2, 3, 4. Note that the dimensions of the Frobenius algebra A are different for SU(2)

and U(2) and the multiplicity of each root yi is also different. The multiplicity of U(N)

theory is κ/N times that of SU(N) theory.
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Level κ = 2. First we study κ = 2 case. The field configuration of a supersymmetric

Wilson loop Wλ = Trλx in a representation λ is symmetric under the exchange x ↔ x−1

at the saddle points and the Wilson loop algebra consists of functions of x+ x−1. We can

also include the background Wilson loop t for the U(1) flavor symmetry in the correlation

function. Thus an element of the Wilson loop algebra takes value in C[[t]][x, x−1]S2 . The

equivalence relation I for this theory can be constructed by the saddle point equation (3.1)
(
x+

1

x

)(
x2 +

1

x2
− 2t

)
= 0 . (3.12)

Here we have removed (x2 − 1) to produce the ideal I correctly and the algebra of the

Wilson loops is given by

A = C[[t]][x, x−1]S2/〈(x+ x−1)(x2 + x−2 − 2t)〉 . (3.13)

We can take a basis of (3.13) as {1, x + x−1, x2 + x−2}. Then the number of generators

is equal to the genus one partition function (Witten index) Zg=1 = 3 for κ = 2. Products

among {1, x+ x−1, x2 + x−2} lead to structure constants;

C1
µν =




1 0 0

0 2 0

0 0 4t


 , C2

µν =




0 1 0

1 0 2t

0 2t 0


 , C3

µν =




0 0 1

0 1 0

1 0 2(t− 1)


 . (3.14)

From (3.10) with insertion of operators {1, x+ x−1, x2 + x−2}, we obtain the metric

ηµν =




1− t4 0 −t5+3t4+2t3−2t2− t−1

0 (1− t)3(t+1)2 0

−t5+3t4+2t3−2t2− t−1 0 2
(
1+2t+ t2−4t3− t4+2t5− t6

)


 .

(3.15)

From (3.14) and (3.15), we can compute the characteristic polynomial det(yI −H · C) =

(y − y1)
2(y − y2) with

y1 =
4

(1− t)3(t+ 1)
, y2 =

2

(1− t)(t+ 1)3
, (3.16)

and the partition function with genus g is given by

Zg = 2yg−1
1 + yg−1

2 . (3.17)

For example, we shall show partition functions in lower genera

Zg=0 = 1− t4 , Zg=1 = 3 , Zg=2 =
2(5 + 6t+ 5t2)

(1− t2)3
, (3.18)

Zg=3 =
4
(
9t4 + 28t3 + 54t2 + 28t+ 9

)

(1− t2)6
, (3.19)

Zg=4 =
8
(
17t6 + 90t5 + 255t4 + 300t3 + 255t2 + 90t+ 17

)

(1− t2)9
. (3.20)

This result reproduces12 table 1 in [25] and eqs. (3.8) (3.9).

In a similar manner, we can evaluate the genus g partition functions for the SU(2)

models with κ = 3, 4. We summarize our results in these models: the algebra of Wilson

loops A, structure constants Cλ
µν in a basis {1, xl + x−l}l=1,...,κ, the metric ηµν and the

characteristic polynomial of the handle operator.

12It seems there are a few typos in the table.

– 12 –



J
H
E
P
0
2
(
2
0
1
9
)
0
9
7

Level κ = 3.

• The algebra of Wilson loops

A = C[[t]][x, x−1]S2/〈(1− t)2 + (1− 2t)(x2 + x−2) + x4 + x−4〉 . (3.21)

• The structure constants Cλ
µν in a basis {1, x+ x−1, x2 + x−2, x3 + x−3}

C
1
µν =











1 0 0 0

0 2 0 −(t−1)2

0 0 −t2+2t+1 0

0 −(t−1)2 0 −2t3+5t2+1











, C
2
µν =











0 1 0 0

1 0 1 0

0 1 0 −t2+4t−1

0 0 −t2+4t−1 0











,

C
3
µν =











0 0 1 0

0 1 0 2t

1 0 2t−1 0

0 2t 0 (t−1)(3t+1)











, C
4
µν =











0 0 0 1

0 0 1 0

0 1 0 2(t−1)

1 0 2(t−1) 0











. (3.22)

• The metric

ηµν =















(1− t)
(

t2+t+1
)

0 (1− t)
(

t3− t2−2t−1
)

0

0 (1− t)
(

t3+t2+1
)

0 (1− t)
(

t4− t3−4t2− t−1
)

(1− t)
(

t3− t2−2t−1
)

0 (1− t)
(

t4−2t3− t2+3t+2
)

0

0 (1− t)
(

t4− t3−4t2− t−1
)

0 (1− t)
(

t5−2t4−2t3+8t2+5t+2
)















.

(3.23)

• The characteristic polynomial

det(yI −H · C) = (y − y+)
2(y − y−)

2 , (3.24)

with

y± =
4t3 + 9t2 + 9t+ 5±

(
3t2 + 5t+ 1

)√
4t+ 5

(1− t2)3
. (3.25)

Level κ = 4.

• The algebra of Wilson loops

A = C[[t]][x, x−1]S2/〈(1− t)2
(
x+ x−1

)
+ (1− 2t)

(
x3 + x−3

)
+ x5 + x−5〉 . (3.26)

• The structure constants Cλ
µν in a basis {1, x+ x−1, x2 + x−2, x3 + x−3, x4 + x−4}

C
1

µν
=













1 0 0 0 0

0 2 0 0 0

0 0 2 0 −2(t−1)2

0 0 0 −2(t−2)t 0

0 0 −2(t−1)2 0 −4t3+10t2−4t+2













, C
2

µν
=













0 1 0 0 0

1 0 1 0 −(t−1)2

0 1 0 (2− t)t 0

0 0 (2− t)t 0 −2(t−2)t2

0 −(t−1)2 0 −2(t−2)t2 0













,

C
3

µν
=













0 0 1 0 0

0 1 0 1 0

1 0 0 0 −t2+4t−1

0 1 0 −t2+4t−2 0

0 0 −t2+4t−1 0 −2(t−3)(t−1)t













, C
4

µν
=













0 0 0 1 0

0 0 1 0 2t

0 1 0 2t−1 0

1 0 2t−1 0 (t−1)(3t+1)

0 2t 0 (t−1)(3t+1) 0













,

C
5

µν
=













0 0 0 0 1

0 0 0 1 0

0 0 1 0 2(t−1)

0 1 0 2(t−1) 0

1 0 2(t−1) 0 (t−1)(3t−1)













, (3.27)
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• The metric

ηµν =















1− t3 0 t3+t2− t−1 0 −t4+t3− t2+t

0 −t3+t2− t+1 0 −t4+2t3−1 0

t3+t2− t−1 0 −t4− t3− t2+t+2 0 −t5+3t4+2t3−2t2− t−1

0 −t4+2t3−1 0 −t5+3t4− t3−3t2+2 0

−t4+t3− t2+t 0 −t5+3t4+2t3−2t2− t−1 0 −t6+3t5−10t3+3t2+3t+2















,

(3.28)

• The characteristic polynomial

det(yI −H · C) = (y − y1)
2(y − y2)

2(y − y3) ,

with y1 =
4

1− t2
, y2 =

4(t+ 3)

(1− t)3
, y3 =

t+ 3

(1− t)(t+ 1)3
. (3.29)

4 Equivariant U(N) Verlinde algebra via Bethe ansatz

When the rank N of the gauge group G is greater than one, the evaluation of the residue

integral becomes difficult. It is desirable to have alternative method to compute the cor-

relation functions and it is here that the Bethe/Gauge correspondence saves the day. In

this section, we will evaluate partition functions of U(N)κ Chern-Simons theory with an

adjoint chiral multiplet with r = 2 for N = 2, 3 and 4 with lower κ. As we explain in

appendix A, the partition function of 2d TQFT is characterized by the structure constant

Cλ
µν and the metric ηµν . The Bethe/Gauge correspondence allows us to obtain these quan-

tities from the algebra of Hall-Littlewood polynomials with the specialization on the set

of explicit solutions (Bethe roots) to the Bethe ansatz equation. A crucial fact is that

in this approach we do not have to solve the Bethe ansatz equation explicitly. What we

need is the generating relations among Hall-Littlewood polynomials with the specializa-

tion, which mathematically define an ideal of the algebra of Hall-Littlewood polynomials.

More precisely speaking the realization by the Hall-Littlewood polynomials is obtained,

when the adjoint matter φ has the R-charge r = 0, while the equivariant Verlinde algebra

is related to the case r = 2 [23]. However, we can control the dependence of the Frobenius

algebra structure on the R-charge of φ, since in the localization formula the R-charge r

only appears in the power of the difference product ∆(x, t) which can be expanded by

the Hall-Littlewood polynomials. It turns out that the structure constants of the algebra

are universal in the sense that they are independent of r and the r dependence appears

in the metric (topological two point function). Note that the three point functions also

depend on r, since it is obtained by contracting the structure constants with the metric.

Unfortunately it is difficult to compute the partition function of the SU(N) theory with

N > 2 directly. But we can compare our results with those obtained by other methods,

after computing the genus g partition function, by using the relation of the U(N) and

SU(N) partition functions, which we explain shortly below.

Let us propose the relation between U(N) and SU(N) partition functions on Σg × S1.

We decompose the Cartan part of U(N) Wilson loop (x1, · · · , xN ) to central U(1) Wilson

loop y and the Cartan part of SU(N) Wilson loop (x̃1, · · · , x̃N−1) as

x1 = yx̃1, x2 = yx̃−1
1 x̃2, · · · , xN−1 = yx̃−1

N−2x̃N−1, xN = yx̃−1
N−1 . (4.1)
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Since the one-loop determinants and H do not depend on y, the center U(1) CS term only

depends on y. The integration of y leads to an SU(N) condition for the magnetic charge.

There is also a relation between Hessians of U(N)κ and SU(N)κ CS-matter theories:

det
ab

(
(2πi)2∂2W

U(N)
eff

∂ log xa∂ log xb

)
=

κ

N
det
ab

(
(2πi)2∂2W

SU(N)
eff

∂ log x̃a∂ log x̃b

)
, (4.2)

and we connect SU(N) partition functions with U(N) partition functions. Then we obtain

the following relation between SU(N) and U(N) partition functions

ZU(N)κ
g =

( κ

N

)g
(1− t)(g−1)(1−r)ZSU(N)κ

g . (4.3)

By applying the resumed expression (2.8) to the U(N)κ Chern-Simons theory with an

adjoint chiral multiplet with integer R-charge r, the genus g correlation functions are given

as a sum over the saddle points of the twisted superpotential Weff ;

〈
l∏

i=1

Oµi
(x, t)〉rg =

∑

x∈Sol

l∏

i=1

Oµi
(x, t)




N∏

a 6=b

(1− xax
−1
b )

N∏

a,b=1

(1− txax
−1
b )r−1H−1(x, t)




1−g

,

(4.4)

where Sol is given as the set of the roots of the following saddle point equation

exp

(
2πi

∂Weff

∂ log xa

)
= xκa

N∏

b=1
b 6=a

xa − txb
txa − xb

= 1, a = 1, · · · , N. (4.5)

As pointed out in [33], (4.5) coincides with the Bethe ansatz equation of the q-boson

model with periodic boundary condition. The q-boson model is a one-dimensional quantum

integrable lattice model which is regarded as a non-linear deformation of the harmonic

oscillator. Especially U(1) flavor Wilson loop t corresponds to the q-deformation parameter

q by t = q2. Parameters N and κ correspond to the particle number and the number of

lattice sites. Although the Bethe ansatz equation (4.5) cannot be solved explicitly, we will

show that three point functions for r = 2 are explicitly calculable. We summarize important

properties of the q-boson model studied in [36] to evaluate the partition functions. Let us

introduce PN,κ and P̃N,κ as collections of non-negative integers (λ1, λ2, · · · , λN )

PN,κ := {λ = (λ1, λ2, · · · , λN )|κ ≥ λ1 ≥ λ2 ≥ · · ·λN ≥ 1}, (4.6)

P̃N,κ := {λ = (λ1, λ2, · · · , λN )|κ > λ1 ≥ λ2 ≥ · · ·λN ≥ 0}. (4.7)

A bijection ˜ : PN,κ → P̃N,κ which sends λ → λ̃ is defined by deleting all integers equal

to κ and supplementing as many zeros as the number of deleted κ’s. Another bijection
∗ : PN,κ → PN,κ called ∗-involution is defined as some kind of an inverse operation of

the bijection ,̃ namely, λ∗ for λ = (λ1, · · · , λN ) is defined by the inverse image of (κ −
λN , · · · , κ − λ1) ∈ P̃N,κ by .̃ From proposition 7.7 in [36], a basis of the algebra of the

Wilson loops can be taken as a set of Hall-Littlewood polynomials {Pλ(x, t)}λ∈PN,κ
, which
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means the number of roots of (4.5) equals to the order of the set PN,κ. Especially, this

means the genus one partition function is given by the number of elements of PN,κ;

Z
U(N)κ
g=1 =

(N + κ− 1)!

N !(κ− 1)!
, (4.8)

and the genus one partition function of the SU(N)κ theory is written down by using the

relation (4.3)

Z
SU(N)κ
g=1 =

(N + κ− 1)!

(N − 1)!κ!
. (4.9)

This result (4.9) correctly reproduces Witten index of N = 2 SU(N)κ CS-matter theory.

Note that we have Z
SU(N)κ
g=1 = Z

U(κ)N
g=1 , where the correspondence of the states is given by

the transpose of the Young diagrams.

The structure constants Cλ
µν(t) in this basis are defined by the expansion of products

of Hall-Littlewood polynomials

Pµ(x, t)Pν(x, t) ≡
∑

λ∈PN,κ

Cλ
µν(t)Pλ(x, t), µ, ν ∈ PN,κ and x ∈ Sol. (4.10)

We use “≡” to emphasize equality up to the Bethe ansatz equation (4.5). An impor-

tant property of Cλ
µν(t) is that there exists Sµν(t) which simultaneously diagonalizes the

structure constants

Cλ
µν(t) =

∑

σ∈PN,κ

Sµσ(t)Sνσ(t)S
−1
σλ (t)

S∅σ(t)
. (4.11)

Here ∅ := (κ, · · · , κ). Note that (4.11) is independent of R-charge. Then the associativity

condition (A.6) immediately follows from (4.11). It is also shown in [36] that

∑

x∈Sol

Pλ(x, t)Pµ(x, t)Pν(x, t)

〈ψN (x)|ψN (x)〉 =
Cλ∗

µν (t)

bλ(t)
, λ, µ, ν ∈ PN,κ . (4.12)

Here |ψN (x)〉 and 〈ψN (x)| are respectively on-shell Bethe vector of N particles and dual

Bethe vector in the q-boson model. 〈ψN (x)|ψN (x)〉 is the inner product of these two vectors

and bλ(t) is defined by

bλ(t) :=
∏

i≥1

mi(λ)∏

j=1

(1− tj), mi(λ) := #{l|λl = i} . (4.13)

We can relate genus zero three point functions with r = 0 to the metric or genus zero

two point functions with r = 2 as follows. The correlation functions (4.4) with r = 0 agree

with the correlation functions of the U(N)/U(N) gauged WZW-matter model with level κ

on genus g Riemann surface introduced in [33]. Then, it was shown in [33] that the genus

zero correlation functions with r = 0 are expressed as

〈
∏

i

Oµi
〉r=0
g=0 =

∑

x∈Sol

∏
iOµi

(x, t)

〈ψN (x)|ψN (x)〉 . (4.14)
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From (4.12) and (4.14), the genus zero three point functions of {Pλ(x, t)}λ∈PN,κ
are given by

〈Pλ(x, t)Pµ(x, t)Pν(x, t)〉r=0
g=0 =

Cλ∗

µν (t)

bλ(t)
, λ, µ, ν ∈ PN,κ. (4.15)

Now, we are ready to express the genus zero two point functions of {Pλ(x, t)}λ∈PN,κ
for

r = 2 as a linear combination of genus zero three point functions for r = 0. From (4.4), we

have the following relation

〈Pµ(x, t)Pν(x, t)〉r=2
g=0 = (1− t)2N 〈Pµ(x, t)Pν(x, t)∆(x, t)2〉r=0

g=0 , (4.16)

where we defined

∆(x, t) :=
N∏

a,b=1
a 6=b

(1− txax
−1
b ). (4.17)

∆(x, t)2 is also written as

∆(x, t)2 =

(
N∏

c=1

x2(1−N)
c

)
N∏

a 6=b

(xb − txa)
2 . (4.18)

Since the factor
∏N

c=1 x
2(1−N)
c on the right hand side of (4.18) is always rewritten as a

symmetric monomial by using the relation
∏N

a=1 x
κ
a ≡ 1 which follows from (B.12) with

λ = (κ, · · · , κ), we find that (4.18) is equal to a symmetric polynomial of x up to the Bethe

ansatz equation and can be expanded by {Pλ(x, t)}λ∈PN,κ
as

∆(x, t)2 ≡
∑

λ∈PN,κ

gλ(t)Pλ(x, t) . (4.19)

Thus the genus zero two point functions for r = 2 are written by the structure constant

Cλ
µν(t) as

ηµν := 〈PµPν〉r=2
g=0 ≡ (1− t)2N

∑

λ∈PN,κ

gλ(t)〈PλPµPν〉r=0
g=0

= (1− t)2N
∑

λ∈PN,κ

gλ(t)C
λ∗

µν (t)

bλ(t)
. (4.20)

On the right hand side of (4.20), the dependence of R-charge only comes from (1 − t)2N

and gλ(t). In appendix C we discuss properties of the metric and the coupling in the case of

general R-charge. In particular we will show that we have 2d TQFT for any integral charge

r. In the following subsections, we will evaluate genus g partition functions of U(2) with

level κ = 2, 3, 4, U(3) with level κ = 2, 3 and U(4) with level κ = 2 from (4.10) and (4.20).

4.1 U(2) cases

First we rewrite the insertion factor ∆(x, t)2 in terms of Hall-Littlewood polynomials which

holds for general κ ≥ 2. When N = 2, the insertion factor is

∆(x, t)2 = e2(x)
−2

(
(1 + t)2e2(x)− t(e1(x))

2
)2

, (4.21)
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where e1(x), e2(x) are the elementary symmetric polynomials defined by

e1(x) := x1 + x2, e2(x) := x1x2. (4.22)

Using the relation eN (x)κ ≡ 1 which comes from the Bethe ansatz equation, we may

evaluate

∆(x, t)2 ≡ e2(x)
κ−2

(
(1 + t)2e2(x)− t(e1(x))

2
)2

. (4.23)

The relation of the elementary symmetric polynomials and the Schur function is eℓ(x) =

s(1ℓ)(x). Hence we have

∆(x, t)2 ≡ sκ−2
(1,1)

(
(1 + t)2s(1,1) − t(s(1))

2
)2

. (4.24)

From now on we do not write x dependence explicitly. From the composition rule of two

SU(2) representations or two spins, we see

s2(1) = s(2) + s(1,1), s2(2) = s(4) + s(3,1) + s(2,2), (4.25)

which gives

∆(x, t)2 ≡ sκ−2
(1,1)

(
t2s(4) − (2t+ t2 + 2t3)s(3,1) + (1 + 2t+ 4t2 + 2t3 + t4)s(2,2)

)

= t2s(κ+2,κ−2) − (2t+ t2 + 2t3)s(κ+1,κ−1) + (1 + 2t+ 4t2 + 2t3 + t4)s(κ,κ). (4.26)

We want to emphasize that this is a universal formula valid for any level κ. When N = 2

the relation of the Schur functions and Hall-Littlewood polynomials is13

s(κ+2,κ−2) = P(κ+2,κ−2) + tP(κ+1,κ−1) + t2P(κ,κ),

s(κ+1,κ−1) = P(κ+1,κ−1) + tP(κ,κ), (4.27)

s(κ,κ) = P(κ,κ).

Hence, we arrive at

∆(x, t)2 ≡ t2P(κ+2,κ−2) − (2t+ t2 + t3)P(κ+1,κ−1) + (1 + 2t+ 2t2 + t3)P(κ,κ). (4.28)

The next task is to express the right hand side in terms of the Hall-Littlewood poly-

nomials in the fundamental domain P2,κ. Here the ideal IN,κ in the ring of the symmetric

polynomials ΛN = R[x1, · · ·xN ]SN depends on the level κ and we have to consider case by

case with level κ. As discussed by Korff in [36] we can obtain any weight ω =
∑N

i=1 ωiǫi in

the glN weight lattice Z[ǫ1, · · · ǫN ] from an appropriate element in PN,κ (hence the name

“fundamental domain”) by the action of the affine Weyl group S̃N,κ with level κ, which

includes the translation of length κ in addition to the usual permutations. We can obtain

the necessary relations among the Hall-Littlewood polynomials involved in the process of

the action of S̃N,κ.

13This is not true for N > 2, since there appears the partition of length greater than two. We have

truncated the transition matrix in Macdonald’s book [42] by the partitions up to length two.
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When κ = 2 we have

∆(x, t)2 ≡ t2P(4,0) − (2t+ t2 + t3)P(3,1) + (1 + 2t+ 2t2 + t3)P(2,2). (4.29)

The first two terms are outside P2,2, while the last term is already in P2,2. We note

λ·σ0 = (4, 0) for λ = (2, 2) and λ·τ = (3, 1) for λ = (1, 1). The definition of the actions of σ0
and τ is given in appendix B. Using (B.8) and (B.11) with the relation of Rλ and Pλ, we see

P(4,0) ≡ t(1 + t)P(2,2) + (t− 1)P(3,1), P(3,1) ≡ (1 + t)P(1,1). (4.30)

Substituting them, we finally obtain

∆(x, t)2 ≡ (1 + t)2
(
(1 + t2)P(2,2) − 2tP(1,1)

)
. (4.31)

For κ = 3 we have

∆(x, t)2 ≡ t2P(5,1) − (2t+ t2 + t3)P(4,2) + (1 + 2t+ 2t2 + t3)P(3,3). (4.32)

As before the first two terms are outside P2,3, while the last term is already in P2,3. From

λ = (2, 1), we can obtain λ · τ = (4, 2) and λ · σ1 · τ = (5, 1), which implies

P(4,2) ≡ P(2,1), P(5,1) ≡ tP(2,1). (4.33)

Substituting them, we finally obtain

∆(x, t)2 ≡ (1 + t)(1 + t+ t2)P(3,3) − t(2 + t)P(2,1). (4.34)

For κ = 4 we have

P(6,2) ≡ (1 + t)P(2,2), P(5,3) ≡ P(3,1), (4.35)

which lead us to

∆(x, t)2 ≡ t2(1 + t)P(2,2) − (2t+ t2 + t3)P(3,1) + (1 + t)(1 + t+ t2)P(4,4). (4.36)

When κ ≥ 5 we see a phenomenon of “stabilization” in the semi-classical limit κ → ∞.

Namely by acting τ we observe

P(κ+2,κ−2) ≡ P(κ−2,2), P(κ+1,κ−1) ≡ P(κ−1,1) . (4.37)

Thus we obtain a general formula for κ ≥ 5;

∆(x, t)2 ≡ t2P(κ−2,2) − (2t+ t2 + t3)P(κ−1,1) + (1 + t)(1 + t+ t2)P(κ,κ). (4.38)

By using the formula of ∆(x, t)2, we can write down genus zero partition functions in

the U(2)κ models

Zg=0 = C∅∅∅(t) = (1− t)4
g∅(t)

b∅(t)
=

{
(1− t)(1− t4) (κ = 2)

(1− t)(1− t3) (κ > 2)
. (4.39)
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Level κ = 2. We explain how to calculate Cλ
µν for κ = 2 in detail . We fix the order of

elements of P2,2 to use matrix notation as follows

P2,2 = {(2, 2), (2, 1), (1, 1)} . (4.40)

When κ = 2 for general N the ∗-involution of an element of λ ∈ P2,N is same as itself;

λ∗ = λ. Since P(2,2)(x, t) ≡ 1 for x ∈ Sol, we have relations

P(2,2)P(2,2) ≡ P(2,2), (4.41)

P(2,2)P(2,1) ≡ P(2,1), (4.42)

P(2,2)P(1,1) ≡ P(1,1). (4.43)

When x = (x1, x2) is a set of generic variables which does not satisfy the Bethe ansatz

equation, products of Hall-Littlewood polynomials are expanded as

P(2,1)P(2,1) = P(4,2) + (1 + t)P(3,3), (4.44)

P(2,1)P(1,1) = P(3,2), (4.45)

P(1,1)P(1,1) = P(2,2). (4.46)

From an identity (B.8) for (4, 2) = (2, 2) · τ and (3, 2) = (2, 1) · τ , polynomials

P(4,2), P(3,3), P(3,2) can be expressed as combinations of {Pλ}λ∈P2,2 . Then we have

P(2,1)P(2,1) ≡ (1 + t)P(2,2) + (1 + t)P(1,1), (4.47)

P(2,1)P(1,1) ≡ P(2,1). (4.48)

The structure constants Cλ
µν(t)’s for N = 2, κ = 2 in the matrix notation are given by

C(2,2)
µν =




1 0 0

0 1 + t 0

0 0 1


 , C(2,1)

µν =




0 1 0

1 0 1

0 1 0


 , C(1,1)

µν =




0 0 1

0 1 + t 0

1 0 0


 . (4.49)

From (4.31) and (4.49), the metric is given by

ηµν =




(1− t)2(1 + t)(1 + t2) 0 −2t(1− t)2(1 + t)

0 (1− t)2(1− t2)2 0

−2t(1− t)2(1 + t) 0 (1− t)2(1 + t)(1 + t2)


 . (4.50)

The characteristic polynomial of the handle operator is defined as det (yI −H · C) = (y −
y1)

2(y − y2) with y1 and y2

y1 =
4

(1− t)4(1 + t)
, y2 =

2

(1− t)2(1 + t)3
. (4.51)

So we can write down the genus g partition function in this model

ZU(2)κ=2
g =

(
2

(1− t)2(1 + t)3

)g−1

+ 2

(
4

(1− t)4(1 + t)

)g−1

. (4.52)
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Level κ = 3. Next we evaluate the model with level κ = 3, namely, U(2)κ=3 Chern-

Simons theory with an adjoint chiral multiplet for r = 2. In this case, P2,3 consists of six

partitions

P2,3 = {(3, 3), (3, 2), (3, 1), (2, 2), (2, 1), (1, 1)} . (4.53)

and the ∗-involution acts on these six elements

(3, 3)∗ = (3, 3), (3, 2)∗ = (3, 1), (3, 1)∗ = (3, 2), (4.54)

(2, 2)∗ = (1, 1), (2, 1)∗ = (2, 1), (1, 1)∗ = (2, 2). (4.55)

By using the relations (B.8)–(B.12) in appendix B, the structure constants are calculated

in similar manner as κ = 2 case. For example,

P(3,1)P(2,1) = P(5,2) + (1 + t)P(4,3) ≡ (1 + t)P(2,2) + P(3,1) . (4.56)

By using relations (5, 2) = λ · τ for λ = (2, 2) and (4, 3) = λ · τ for λ = (3, 1), we have

relations

P(5,2) ≡ (1 + t)P(2,2), P(4,3) ≡ P(3,1) . (4.57)

Then structure constants in matrix notation are given by

C(3,3)
µν =




1 0 0 0 0 0

0 0 1 + t 0 0 0

0 1 + t 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 + t 0

0 0 0 1 0 0




, C(3,2)
µν =




0 1 0 0 0 0

1 0 0 0 1 0

0 0 1 1 0 0

0 0 1 0 0 0

0 1 0 0 0 1

0 0 0 0 1 0




, (4.58)

C(3,1)
µν =




0 0 1 0 0 0

0 1 0 0 0 1

1 0 0 0 1 0

0 0 0 0 1 0

0 0 1 1 0 0

0 1 0 0 0 0




, C(2,2)
µν =




0 0 0 1 0 0

0 1 + t 0 0 0 0

0 0 0 0 1 + t 0

1 0 0 0 0 0

0 0 1 + t 0 0 0

0 0 0 0 0 1




, (4.59)

C(2,1)
µν =




0 0 0 0 1 0

0 0 1 1 0 0

0 1 0 0 0 1

0 1 0 0 0 0

1 0 0 0 1 0

0 0 1 0 0 0




, C(1,1)
µν =




0 0 0 0 0 1

0 0 0 0 t+ 1 0

0 0 t+ 1 0 0 0

0 0 0 1 0 0

0 t+ 1 0 0 0 0

1 0 0 0 0 0




. (4.60)

Now we introduce the characteristic polynomial

det (yI −H · C) = (y − y+)
3(y − y−)

3 , (4.61)

where

y± =
3
(
4t3 + 9t2 + 9t+ 5± (3t2 + 5t+ 1)

√
4t+ 5

)

2(1− t)(1− t2)3
. (4.62)

The partition function with genus g can be described by using y±

ZU(2)κ=3
g = 3yg−1

+ + 3yg−1
− . (4.63)
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Level κ = 4. We fix the order of elements P2,4 as

P2,4 = {(4, 4), (4, 3), (4, 2), (4, 1), (3, 3), (3, 2), (3, 1), (2, 2), (2, 1), (1, 1)} . (4.64)

By computing the structure constants and the metric, we obtain the characteristic poly-

nomial of the handle operator

det (yI −H · C) = (y − y1)
4(y − y2)

4(y − y3)
2 , (4.65)

where

y1 =
8

(1− t)2(1 + t)
, y2 =

8(t+ 3)

(1− t)4
, y3 =

2(t+ 3)

(1− t)2(1 + t)3
. (4.66)

The partiton function with genus g is represented as

ZU(2)κ=4
g = 4(yg−1

1 + yg−1
2 ) + 2yg−1

3 . (4.67)

We have computed the genus g partition functions in SU(2) and U(2) models with κ = 2, 3, 4

and find these partitions functions actually satisfy the relation (4.3)

ZSU(2)κ
g =

(
2

κ

)g

(1− t)g−1ZU(2)κ
g . (4.68)

This result means the U(2) partition functions reproduce the Coulomb branch limit of the

lens space index on S1 × L(κ, 1) for A1 class S theories [25].

4.2 U(3) cases

Let us calculate partition functions for κ = 2, 3. When N = 3, the insertion factor ∆(x, t)

reduces to

P(2,2,2)∆(x, t) = (−t3)P(4,2) + t2(1 + t)P(4,1,1) + t2(1 + t)P(3,3)

− t(1 + t)P(3,2,1) + (1 + t)(1 + t+ t2)P(2,2,2) . (4.69)

It is amusing that t4, t5 and t6 terms become implicit by the use of t dependent Hall-

Littlewood polynomials. At this stage we may use the ideal relations that depend on the

level κ. When κ = 2, the relevant relations from (B.8)–(B.12) are

P(2,2,2) ≡ 1 ,

P(4,1,1) ≡ P(1,1,2) ≡ tP(1,2,1) ≡ t2P(2,1,1) ,

P(3,2,1) ≡ (1 + t)P(2,1,1) , (4.70)

P(3,3) ≡ t2P(2,1,1) ,

P(4,2) ≡ t(1 + t)(1 + t+ t2)P(2,2) − (1− t2)P(2,1,1) .

which allow us to write

∆(t) ≡ (1− t)(1 + t)2(1 + t2)(1 + t+ t2)P(2,2,2) − t(1 + t)3(1− t)P(2,1,1). (4.71)
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On the other hand when κ = 3 we can use relations

(1 + t)P(4,1,1) ≡ (1 + t)(1 + t+ t2)P(1,1,1) ,

(1 + t)P(3,3) ≡ (1 + t)(1 + t+ t2)P(3,3,3) , (4.72)

P(4,2,0) ≡ tP(3,2,1) ,

which lead to

∆(t) ≡ (1 + t)(1 + t+ t2)P(2,2,2) − t(1 + t+ t3)P(3,2,1)

+t2(1 + t+ t2)P(3,3,3) + t2(1 + 2t)(1 + t+ t2)P(1,1,1). (4.73)

Next we shall consider the structure constants and evaluate partition functions for κ = 2, 3.

Level κ = 2. P3,2 consists of following four partitions:

P3,2 = {(2, 2, 2), (2, 2, 1), (2, 1, 1), (1, 1, 1)} . (4.74)

The structure constants for κ = 2 are shown explicitly

C(2,2,2)
µν =




1 0 0 0

0 1 + t+ t2 0 0

0 0 1 + t+ t2 0

0 0 0 1


 , C(2,2,1)

µν =




0 1 0 0

1 0 1 + t 0

0 1 + t 0 1

0 0 1 0


 , (4.75)

C(2,1,1)
µν =




0 0 1 0

0 1 + t 0 1

1 0 1 + t 0

0 1 0 0


 , C(1,1,1)

µν =




0 0 0 1

0 0 1 + t+ t2 0

0 1 + t+ t2 0 0

1 0 0 0


 . (4.76)

Then characteristic polynomial is defined as

det (yI −H · C) = (y − y+)
2(y − y−)

2 , (4.77)

y± =
1

(1− t)9(1 + t)3(1 + t+ t2)5

(
(5t2 + 6t+ 5)(t6 + t5 + 4t4 + 4t3 + 4t2 + t+ 1)

± (1 + t)(t6 + 5t5 + 6t4 + 8t3 + 6t2 + 5t+ 1)
√
5t2 + 6t+ 5

)
. (4.78)

We have the genus g partition function for the U(3)κ=2 CS-matter theory

ZU(3)κ=2
g = 2(yg−1

+ + yg−1
− ) . (4.79)

We will show several examples in lower genera

Z
U(3)κ=2

g=0 =(1− t)2(1− t2)3(1+ t+4t2+4t3+4t4+ t5+ t6) , (4.80)

Z
U(3)κ=2

g=1 =4 , (4.81)

Z
U(3)κ=2

g=2 =
4
(
5t2+6t+5

)(
t6+ t5+4t4+4t3+4t2+ t+1

)

(1− t)(1− t2)3 (1− t3)5
, (4.82)

Z
U(3)κ=2

g=3 =
8
(
5t2+6t+5

)

(1− t)2(1− t2)6 (1− t3)10
(3t14+14t13+60t12+152t11+309t10 (4.83)

+490t9+660t8+720t7+660t6+490t5+309t4+152t3+60t2+14t+3) .
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Level κ = 3. P3,3 consists of following ten partitions

P3,3= {(3,3,3),(3,3,2),(3,3,1),(3,2,2),(3,2,1),(3,1,1),(2,2,2),(2,2,1),(2,1,1),(1,1,1)} .
(4.84)

By computing the structure constants and the metric, we obtain the characteristic poly-

nomial

det(yI−H ·C)= (y−y1)
6(y−y2)

3(y−y3) , (4.85)

y1=
9

(1− t)4(1− t2)3 (1− t3)
, y2=

9(t+2)2

(1− t)9(t+1)3
, y3=

(t+2)2

(1− t)3 (t2+ t+1)5
. (4.86)

In this model, the partition function is given by

Zg = 6yg−1
1 + 3yg−1

2 + yg−1
3 , (4.87)

and we show several examples in lower genera

Z
U(3)κ=3

g=0 =(1− t)3
(
t8+2t7+6t6+6t5+3t4+3t3+3t2+2t+1

)
, (4.88)

Z
U(3)κ=3

g=1 =10 , (4.89)

Z
U(3)κ=3

g=2 =
1

(1− t)(1− t2)3 (1− t3)5
(81t12+244t11+1054t10+2746t9+6071t8 (4.90)

+9503t7+11909t6+11138t5+8513t4+4808t3+2176t2+640t+166) .

By using the relation (4.3) we can obtain SU(3)κ=2,3 partition functions from the re-

sults (4.79) and (4.87),

ZSU(3)κ
g =

(
3

κ

)g

(1− t)g−1ZU(3)κ
g . (4.91)

We made use of the mathematica notebook file attached to the arXiv version of [25] to

compute SU(3)κ=2,3 partition functions from the Coulomb branch limit of indices on S1 ×
L(κ, 1) associated with T3 theory. We have found that our results in the SU(3)κ=2,3 models

agree completely with [25].

4.3 U(4) case

Level κ = 2. P4,2 consists of following five partitions

P4,2 = {(2, 2, 2, 2), (2, 2, 2, 1), (2, 2, 1, 1), (2, 1, 1, 1), (1, 1, 1, 1)} . (4.92)

By computing the structure constants and the metric, we can write down the characteristic

polynomial of the handle operator;

det (yI −H · C) = (y − y1)
2(y − y2)

2(y − y3) , (4.93)

with

y1 =
4(3t2 + 2t+ 3)

(1− t)16(1 + t)6(1 + t+ t2)5
,

y2 =
4

(1− t)10(1 + t)4(1 + t2)3(1 + t+ t2)5
, (4.94)

y3 =
3t2 + 2t+ 3

(1− t)8(1 + t)10(1 + t2)7
.
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Thus the U(4) partition function is given by using y1, y2, and y3

ZU(4)κ=2
g = 2(yg−1

1 + yg−1
2 ) + yg−1

3 . (4.95)

We can also evaluate the SU(4) counterpart from this result Z
U(4)κ=2
g

ZSU(4)κ=2
g = 2g(1− t)g−1

(
2yg−1

1 + 2yg−1
2 + yg−1

3

)
. (4.96)

We expect that SU(4)κ=2 partition functions constructed from this U(4) theory reproduce

the Coulomb branch limit of indices on S1 × L(2, 1) associated with T4 theory [25].

5 Discussions on intriguing aspects of the algebra

5.1 Recurrence formula in genus

Recall the genus g partition functions can be constructed by using the handle operator Zg =

Tr
{
(H · C)g−1

}
=

∑
µ∈PN,κ

{
(H · C)g−1

}
µ
µ in (A.12). One can evaluate the partition

function Zg by computing eigenvalues yi of the matrix (H ·C) as (A.13). These eigenvalues

are calculated as roots of a characteristec equation in (A.14)

det [yI − (H · C)] =
∏

i

(y − yi)
mi = 0 (mi ∈ Z>0) . (5.1)

We can also derive the recurrence equation of the partition function Zg as follows; first

we consider the matrix M = (H · C) and look for the minimal polynomial f(M) :=∏
i(M − yiI)

m̃i (m̃i ∈ Z>0) which can be evaluated by using roots of the characteristic

equation det[yI − M ] = 0. In our models (U(2)κ=2,3,4, U(3)κ=2,3, U(4)κ=2), it turns out

the minimal polynomials are factorized to first order polynomials, namely m̃i = 1, which

means the matrix M = (H · C) is diagonalizable, or there are no Jordan blocks of size

greater than one. In such cases the Frobenius algebra is called semi-simple.

f(M) =
∏

i

(M − yiI) = MK + b1M
K−1 + b2M

K−2 + · · ·+ bK−1M + bKI ,

K =

{
2 for U(2)κ=2,3, U(3)κ=2,

3 for U(2)κ=4, U(3)κ=3, U(4)κ=2 .
(5.2)

By applying this polynomial equation f(M = (H · C)) = O to the partition function in

our models, we can obtain the recurrence formula

Zg+K + b1Zg+K−1 + b2Zg+K−2 + · · ·+ bK−1Zg+1 + bKZg = 0 (g = 0, 1, 2, · · · ) .

Now we make a comment here: the partiton function can be evaluated by solving the

characteristic equation (A.14) associated with the matrix (H · C). In applying this proce-

dure to the partiton functions, the main difficulty to be encountered lies in the evaluation

of solutions of the algebraic equation. In such situation that we cannot derive the explicit

roots of the algebraic equations, the recursion equation should be very useful. So we will

explain another derivation of the recursion equation.
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We introduce a generating funtion Zg≥2(s) :=
∑

g≥2 s
g−1Zg of the genus g partiton

functions Zg (g ≥ 2) and rewrite this function

Zg≥2(s) = Tr
[
s (H · C) · {I − s(H · C)}−1

]

= −s
d

ds
Tr log [I − s(H · C)] = −

s
d

ds
F (s)

F (s)
. (5.3)

with

F (s) := det [I − s(H · C)] = 1 +
l∑

m=1

Amsm , (5.4)

l =
1

N !
κ(κ+ 1) · · · (κ+N − 1) for U(N)κ , (5.5)

where the set of coefficients Am’s in F (s) can be expressed by using minors of the matrix

(H · C)

(H · C) :=




a1,1 a1,2 · · · a1,l
a2,1 a2,2 · · · a2,l
...

...
...

al,1 al,2 · · · al,l



, (5.6)

Am = (−1)m
∑

j1<j2<···<jm

det




aj1j1 aj1j2 · · · aj1jm
aj2j1 aj2j2 · · · aj2jm
...

...
...

ajmj1 ajmj2 · · · ajmjm



. (5.7)

Then we can obtain the partition functions recursively by using (5.3);

Z2 = −A1 ,

Zm+1 = −mAm −
m−1∑

k=1

AkZm+1−k (m = 2, 3, · · · , l) , (5.8)

Zm+1 = −
l∑

k=1

AkZm+1−k (m = l + 1, l + 2, l + 3, · · · ) .

We show several examples in lower genera,

Zg=2 = −A1 , Zg=3 = −2A2 +A2
1 ,

Zg=4 = −3A3 + 3A1A2 −A3
1 , (5.9)

Zg=5 = −4A4 + 2A2
2 + 4A3A1 − 4A2

1A2 +A4
1 .

5.2 Fate of level-rank duality

One of the most significant properties of the Verlinde algebra is the level-rank duality [43–

47]. Unfortunately it seems that this duality cannot survive after the t-deformation of the
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algebra. We have obtained the explicit forms of genus g partition function Zg by solving

the characteristic equation for the handle operator for several models. We observe the

level-rank duality at t = 0 is realized as the agreement of the genus g partition functions

between SU(N)κ and U(κ)N as follows;

ZSU(2)3
g = ZU(3)2

g = 2 ·
{
(5 +

√
5)g−1 + (5−

√
5)g−1

}
, ZU(2)3

g =

(
3

2

)g

· ZU(3)2
g , (5.10)

ZSU(2)4
g = ZU(4)2

g = 3g−1 + 2 · 4g−1 + 2 · 12g−1, ZU(2)4
g = 2g · ZU(4)2

g . (5.11)

Note that if we compare U(N)κ and U(κ)N , we need the additional correction factor

(κ/N)g, since their Witten indices (the dimensions of the Hilbert space on genus one

curve) are different. If we compare (3.25) and (3.29) with (4.78) and (4.94) respectively,

we see the t-dependence of the roots of the characteristic polynomial of the handle operator

is completely different and there seems to be no simple relations.

5.3 Selection rules in U(N)κ theory

There is the freedom of the R-charge r of the adjoint matter in our model (U(N)κ theory).

As can be seen from the general formula (4.4), the dependence of the R-charge r only comes

from the difference product ∆(x, t) defined by (4.17) and hence the coefficients {gλ(t)} in

the expansion (4.19) play an important role in analyzing the r-dependence of the model.

In order to investigate properties of the coefficients {gλ(t)}, we will work out selection rules

of these coefficients.

First we decompose the set of partitions PN,κ into κ subsets P(n)
N,κ (n = 0, 1, 2, · · · , κ−1)

according to the number of boxes |λ| :=
N∑

i=1

λi of a partition λ;

PN,κ = {λ = (λ1, λ2, · · · , λN ) |κ ≥ λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 1} =
κ−1⋃

n=0

P(n)
N,κ ,

P(n)
N,κ := {λ ∈ PN,κ | |λ| ≡ n mod κ} (n = 0, 1, 2, · · · , κ− 1) . (5.12)

The Hall-Littlewood polynomials are symmetric homogeneous polynomials of Bethe roots

xa and their degrees are given by |λ|. We shall take a phase transformation on Bethe roots

xa → eiθxa, θ ∈ R (a = 1, 2, . . . , N). Then the degree |λ| of the polynomial can be read

from the phase induced from this transformation: Pλ(e
iθx, t) = eiθ|λ|Pλ(x, t). For example,

P(1,1,··· ,1) = x1x2 · · ·xN is a homogeneous polynomial with degree N .

Next we introduce a new polynomial J(x, t) defined by

J(x, t) := {P(1,1,··· ,1)}κM
N∏

a,b=1

(1− txax
−1
b ) (κM − (N − 1) > 0 , M ∈ Z) (5.13)

in order to study properties of ∆(x, t). The difference product ∆(x, t) is invariant under

the transformation xa → eiθxa, but J(x, t) is a polynomial with degree κMN . Let us

expand {J(x, t)}r (r = 0, 1, 2, 3 · · · ) in terms of the Hall-Littlewood polynomials Pµ(x, t);

{J(x, t)}r =
∑

|µ|=κMNr

a(r)µ Pµ(x, t) . (5.14)

– 27 –



J
H
E
P
0
2
(
2
0
1
9
)
0
9
7

Because {J(x, t)}r is a homogeneous polynomial with degree (κMNr), the partitions that

appear on the right hand side should satisfy |µ| = κMNr, namely, µ 6∈ PN,κ in general. But

one can rewrite the expansion by using a set of relations summarized in appendix B and

restrict the sum of partitions to λ ∈ PN,κ, {J(x, t)}r ≡ (1 − t)rN
∑

λ∈PN,κ
g
(r)
λ Pλ(x, t). In

this reduction, one has to use a set of operations τ , σi, σ0 acting on λ [36] (See also appendix

B). In addition, there is an identity P(κ,κ,··· ,κ) = 1 due to the set of Bethe equations (4.5).

The number of boxes |λ| of partitions is important information in our discussion of selection

rules. While the number of boxes |λ| may change under these operations, we can see these

changes δ|λ| are multiples of κ (δ|λ| = ±κ for τ -operation, δ|λ| = ±κN when one uses the

identity P(κ,κ,··· ,κ) = 1, but δ|λ| = 0 for σi,σ0-operations). Hence it is natural to define

the number of boxes |λ| modulo κ. Since the degree of {J(x, t)}r is a multiple of κ, in the

decomposition of {J(x, t)}r there appear only polynomials Pλ(x, t) with |λ| ≡ 0 mod κ,

namely λ ∈ P(0)
N,κ;

{J(x, t)}r ≡ (1− t)rN
∑

λ∈P
(0)
N,κ

g
(r)
λ Pλ(x, t) . (5.15)

This gives a selection rule of the coefficients {g(r)λ } of the theory with the R-charge r. We

obtain an important result that nonvanishing expansion coefficients g
(r)
λ 6= 0 should appear

only in λ ∈ P(0)
N,κ;

B(r)
N,κ := {λ ∈ PN,κ ; g

(r)
λ 6= 0} → B(r)

N,κ ⊂ P(0)
N,κ . (5.16)

It is possible that the size of the set B(r)
N,κ depends on the R-charge r and it is desirable to

find a criterion for the equality in (5.16).

Next let us study why the U(1) phase symmetry eiθxa reduces to the discrete one Zκ.

We have done the reduction by using the set of Bethe equations (4.5). When one performs

the U(1) transformation, the phases eiκθ appear on the left hand sides in these equations

and the set of equations is not invariant in general. However, if the parameter θ satisfies

the condition θ = 2π
κ m (m ∈ Z), these Bethe equations are invariant. It is the reason why

the U(1) symmerty reduces to Zκ.

As an application of this Zκ charge, we can obtain selection rules for the couplings in

U(N)κ theory. The fusion couplings Cλ
µν are defined as the structure constants of Hall-

Littlewood polynomials (4.10). In the case of r = 0, the three point functions C
(r=0)
µνλ

in (C.5) are given by using metric η
(r=0)
µν in (C.1). By using conservation of Zκ charge

associated with partitions, we can write down the following selection rules

(|µ|+ |ν| 6≡ |λ| mod κ) → Cλ
µν = 0 ,

(|µ|+ |ν| 6≡ 0 mod κ) → η(r=0)
µν = 0 ,

(|µ|+ |ν|+ |λ| 6≡ 0 mod κ) → C
(r=0)
µνλ = 0 ,

|λ∗| ≡ −|λ| mod κ.

Next let us investigate the case of general R-charge r. In this case, three point functions

C
(r)
µνρ’s in (C.8) and metric η

(r)
µν in (C.9) are defined by using g

(r)
λ (t) in (C.7) and Cρ

µν . By
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using conservation of Zκ charge, we can write the following selection rules

(λ 6≡ 0 mod κ) → g
(r)
λ = 0 ,

(|µ|+ |ν|+ |λ| 6≡ 0 mod κ) → C
(r)
µνλ = 0 ,

(|µ|+ |ν| 6≡ 0 mod κ) → η(r)µν = 0 ,

(|µ|+ |ν| 6≡ 0 mod κ) → ηµν(r) = 0 .

We arrange the couplings Cν
λµ into matrices Cλ whose components are given as

(Cλ)µ
ν = Cν

λµ. In the case |λ| 6≡ 0 mod κ, trace part Hλ of the matrix Cλ vanishes,

Hλ := Tr Cλ =
∑

µ∈PN,κ
Cµ
λµ = 0 and Hλ =

∑
ρ η

λρ
(r) Tr Cρ = 0 by using ηλρ(r) = 0 for

|λ|+ |ρ| 6≡ 0 mod κ.

Now we shall investigate properties of partition functions by using conservation of Zκ

charge. The genus g partition functions Zg are constructed by using the handle operator

(H ·C)µ
ν =

∑
λ∈PN,κ

Hλ(t)Cν
λµ and they are combined into a generating function Zg≥2(s);

Zg =
∑

µ,ν∈P
(0)
N,κ

Hµ(t)
{
(H · C)g−2

}
µ
νHν(t) (g = 2, 3, 4, · · · ) ,

Zg≥2(s) =
∑

g≥2

sg−1Zg =
∑

µ,ν∈P
(0)
N,κ

sHµ(t)
[
{I − s(H · C)}−1

]
µ
νHν(t) . (5.17)

When we use the fact Hλ(t) = 0 for λ 6∈ P(0)
N,κ, we find that only (H ·C)µ

ν with µ, ν ∈ P(0)
N,κ

can contribute to the partition functions Zg. So we introduce a minor ̂(H · C)µ
ν := (H ·C)µ

ν

(µ, ν ∈ P(0)
N,κ) and denote their eigenvalues as {ŷi}. (We also write the multiplicity of each

eigenvalue ŷi as m̂i ∈ Z>0). The generating function Zg≥2(s) in (5.17) is a function of the

variable s and the pole structure is determined by {ŷi}. On the other hand, we have another

expression of the partition function Zg = Tr
{
(H · C)g−1

}
=

∑
µ∈PN,κ

{
(H · C)g−1

}
µ
µ.

These partition functions are expressed by using eigenvalues of the handle operator and

are combined into the generating function

Zg≥2(s) =
∑

g≥2

sg−1Zg =
∑

i

misyi
1− syi

. (5.18)

Because our models are topological field theories, two results from (5.17) and (5.18) should

agree. By comparing the structure of poles in these equations we find the set of eigenvalues

{ŷi} of ̂(H · C) and {yi} of (H ·C) should match. When one uses this fact, one can obtain

the set of eigenvalues {yi} of (H · C) by analysing the minor ̂(H · C) and its eigenvalues

{ŷi}. But the multiplicities of eigenvalues are not equal in general. It means that the

essential properties of partition functions are determined by structure of the sector with

vanishing Zκ charge.

Acknowledgments

The work of H.K. is supported by Grants-in-Aid for Scientific Research (# 15H05738,

# 18K03274) from JSPS. The work of Y.Y. is supported by JSPS Grant-in-Aid (S),

– 29 –



J
H
E
P
0
2
(
2
0
1
9
)
0
9
7

No. 16H06335 and also by World Premier International Research Center Initiative (WPI),

MEXT Japan.

A 2d TQFT and Frobenius algebra

We consider 2d TQFT obtained from supersymmetric field theory by topological twist.

Let Q be one of the generators of supersymmetry, which becomes a nilpotent scalar charge

after twisting. In the U(N) or SU(N) theories discussed in this paper, the equivalence

classes of Q-closed operators form a finite dimensional commutative Frobenius algebra A
which is realized as a quotient of the Weyl invariant Laurent polynomial ring

A = R[x1, · · · , xN , x−1
1 , · · · , x−1

N ]W (G)/I, (A.1)

where I is the ideal generated by the saddle point equation and the coefficient ring R is

generated by flavor Wilson loops. In N = 2 Chern-Simons theories with a single adjoint

matter the flavor symmetry is U(1) and R = Z[[t]] can be identified with the ring of formal

power series in the U(1) equivariant parameter t. Precisely speaking, all the rational

functions of t in this paper should be expanded as a formal power series around t = 0. The

ideal I is generated by the saddle point equation from which the factor xα − 1 is removed.

If we choose a basis {Oµ}µ∈L of the algebra A of dimension |L|, the product of Q-closed

operators is expanded in this basis

OµOν =
∑

λ∈L

Cλ
µνOλ . (A.2)

Here we emphasize that the structure constants Cλ
µν ∈ R do not depend on R-charges,

flavor-flavor, gauge-R-symmetry CS levels, because the saddle point equations, and hence

the ideal I, are independent of these parameters. The Frobenius algebra A is equipped

with a non degenerate bilinear form called metric η : A⊗A → R, which is defined by the

genus zero two point function.14 In terms of the basis {Oµ}, the metric is written as

ηµν = η(Oµ,Oν) := 〈OµOν〉g=0 . (A.3)

We also define ηµν as the inverse matrix of ηµν which corresponds to a sphere with two

right oriented holes. Then the bilinear form ηµν and the structure constants Cλ
µν satisfy

the following relation;

Cλ
µν =

∑

ρ∈L

Cµνρη
ρλ, (A.4)

where Cλµν is the genus zero three point function;

Cλµν := 〈OλOµOν〉g=0. (A.5)

By definition, Cλµν is totally symmetric under the permutations of λ, µ, ν and is as-

sociated to a sphere with three left oriented holes as figure 1. Note that ηµν = C∅µν with

14The precise form of R depends on theories.
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(a)

Cλµν =

λ

µ

ν

(b)

ηµν =

µ

ν

(c)

= ηµν

µ

ν

Figure 1. (a): Cλµν corresponds to a sphere with three left oriented holes. (b): ηµν corresponds to

a sphere with two left oriented holes. (c): ηµν corresponds to a sphere with two right oriented holes.

Cλ
µν =

µ

ν

λ =

µ

ν

λ

=
∑

ρ∈L

Cµνρη
ρλ

Figure 2. The contraction of indices corresponds to gluing holes on Riemann surfaces.

O∅ := 1. The specialization Oλ → 1 in the correlation function corresponds to closing a

hole with the left orientation and the correlator reduces to the sphere partition function

with two left oriented holes as figure 1. The contraction of upper and lower indices corre-

sponds to gluing a left hole and a right hole. For example, see figure 2. The three point

functions have to satisfy the associativity condition

∑

λ∈L

Cλ
µνC

σ
λρ =

∑

λ∈L

Cλ
νρC

σ
µλ . (A.6)

The associativity corresponds to figure 3. The associativity condition is equivalent to the

existence of Sµν such that

Cλ
µν =

∑

σ∈L

SµσSνσS
−1
σλ

S∅σ
. (A.7)

To write down the genus g partition function in a compact form, we introduce Hλ and

the handle operator (H · C);

Hλ :=
∑

µ,ν∈L

ηµνCλ
µν , (A.8)

(H · C) µ
ν =

∑

ρ∈L

HρCµ
νρ . (A.9)

As shown in figure 4, Hλ corresponds to a genus one surface with a hole with right orien-

tation and (H ·C) µ
ν corresponds to a genus one surface with two holes with left and right
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=σ

σ

µ µ

ν

ν

ρρ

∑

λ

Cλ
µνC

σ
λρ =

∑

λ

Cλ
νρC

σ
µλ

Figure 3. Associativity of the structure constant.

ν µ(H · C) µ
ν =

Figure 4. Handle creating operator.

orientation. Then the partition function Zg := 〈1〉g for a closed Riemann surface with

genus g is expressed

Zg =
∑

ν∈L

{(H · C)g} ν
∅ ην ∅ , (A.10)

where we define (H · C)g as a product of matrices

{(H · C)g} ν
µ :=

∑

µ1,···µg−1∈L

(H · C) µ1
µ (H · C) µ2

µ1
· · · (H · C)

µg−1
µg−2 (H · C) ν

µg−1
. (A.11)

Since (A.10) is rewritten as

Zg = Tr(H · C)g−1 =
∑

µ∈L

{(H · C)g−1} µ
µ , (A.12)

Zg is expressed in terms of the roots yi of the characteristic polynomial of the matrix H ·C;

Zg =
∑

i

miy
g−1
i , (A.13)

with

det (yI −H · C) =
∏

i

(y − yi)
mi . (A.14)

Here I stands for the unit matrix of size |L| and the integer mi is the multiplicity of yi.

Finally since all the higher genus correlation functions are obtained by gluing the genus

zero two point function ηµν = C∅µν and structure constants Cλ
µν , any correlation function

is expressed in terms of ηµν and Sµν ;

〈Oλ1Oλ2 · · · Oλn
〉g =

∑

σ∈L


 ∑

µ,ν∈L

ηµνSµσSνσ

S2
∅σ




g−1
n∏

i=1

Sλiσ

S∅σ
. (A.15)
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B Hall-Littlewood polynomial

The Hall-Littlewood polynomial Pλ(x, t) is an important family of symmetric polynomials,

which is regarded as a deformation of the Schur polynomial sλ(x). Let λ be a partition

λ = (λ1 ≥ λ2 ≥ · · · ≥ λN ) of length (at most) N . We introduce the following polynomial

with N variables x = (x1, x2, · · · , xN );

Rλ(x, t) =
∑

ω∈SN

(
xλ1

ω(1) · · ·x
λN

ω(N)

N∏

a<b

xω(a) − txω(b)

xω(a) − xω(b)

)
, (B.1)

where SN is the symmetric group of N objects and t is an indeterminate (parameter).

Then we can define the Hall-Littlewood polynomial by

Pλ(x, t) =
1

vλ(t)
Rλ(x, t), vλ(t) :=

∞∏

i=0

mi(λ)∏

j=1

1− t

1− tj
. (B.2)

Then Pλ(x, t) gives a Z[t]-basis of the ring of the symmetric polynomials

Z[t][x1, x2, · · ·xN ]SN . Note that Pλ(x, t) provides interpolation between the Schur polyno-

mial sλ(x) and the symmetric monomial mλ(x)

Pλ(x, 0) = sλ(x), Pλ(x, 1) = mλ(x). (B.3)

When one changes bases from the Hall-Littlewood polynomials Pλ(x, t) to the Schur poly-

nomials sλ(x), its efffect is realised as a matrix Kλµ;

sλ(x) =
∑

|µ|=|λ|

Kλµ(t)Pµ(x, t) . (B.4)

This matrix has triangular form with respect to the dominance semi-ordering of partitions.

Kλµ(t) is called the Kostka polynomial (Kλµ(1) = Kλµ are the Kostka numbers) and

is ubiquitous in representation theories and combinatorics. One of the most important

properties of Kλµ(t) is that all the coefficients are non-negative integer, which gives us an

interpretation of dimensions of appropriate modules.

In our method of computing the structure constants of U(N) equivariant Verlinde

algebra with level κ, after substituting a root of the Bethe ansatz equation to x, we have to

reduce the Hall-Littlewood polynomials Pλ(x, t) for any partition λ of length N to a linear

combination of Pµ(x, t), where µ runs only in PN,κ. We make use of the relations derived

in [36] for this purpose. Mathematically these relations generate an ideal IN,κ in the ring of

Hall-Littlewood polynomials. This means that we identify the equivariant Verlinde algebra

with a quotient of the ring of Hall-Littlewood polynomials by IN,κ. This algorithm does

work, since any λ regarded as a weight vector of gl(N), can be transformed into PN,κ by

the affine Weyl group S̃N,κ with level κ. In this sense PN,κ is a fundamental domain for

S̃N,κ. The group S̃N,κ is generated by σi (1 ≤ i ≤ N − 1), σ0 and τ . The (right) action on

a weight λ is defined by

λ · σi := (λ1, λ2, · · · , λi+1, λi, · · · , λN ) , (B.5)

λ · σ0 := (λN + κ, λ2, · · · , λ1 − κ) , (B.6)

λ · τ := (λN + κ, λ1, λ2, · · · , λN−1) . (B.7)
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If we substitute a Bethe root x = (x1, · · · , xN ), we have the following identities;15

Rλ(x,t)≡Rλ·τ (x,t), (B.8)

Rλ·σi
(x,t)≡ tRλ(x,t), λi−λi+1=1, (B.9)

Rλ·σi
(x,t)≡ tRλ(x,t)+(t−1)R(λ1,··· ,λi−1,λi+1,λi+1,λi+2,··· ,λN )(x,t), λi−λi+1=2, (B.10)

Rλ·σ0(x,t)≡ tRλ(x,t)−R(λ1+1,λ2,··· ,λN−1,λN−1)(x,t)

+ tR(λN−1+κ,λ2,··· ,λN−1,λ1+1−κ)(x,t), (B.11)

and

Pλ(x, t) ≡ Pλ̃(x, t), λ ∈ PN,κ, (B.12)

where λ̃ is obtained by deleting all the rows of size κ.

C Couplings C
(r)
µνρ

for generic R-charge r

In this appendix, we summarize properties of the three point function C
(r)
µνρ defined by

Hall-Littlewood polynomials in the case of generic R-charge r.

First we put r = 0 for simplicity and study metrics η
(r=0)
µν . The structure constants

Cλ
µν are defined from the product of Hall-Littlewood polynomials in (4.10), which are

independent of R-charge r. The metric in this case r = 0 is obtained in the paper [36]

η(r=0)
µν :=

δµν∗

bµ(t)
, (C.1)

where bµ(t) is defined by (4.13). The structure constants Cλ
µν satisfy the following basic

properties:

1. Symmetric property

Cλ
µν = Cλ

νµ , η(r=0)
µν = η(r=0)

νµ . (C.2)

2. Existence of the unit operator “1” corresponding to ∅ = (κ, · · · , κ)

Cν
∅µ = δµ

ν . (C.3)

3. Associativity relation
∑

α,β

Cα
µ1µ2

η
(r=0)
αβ Cβ

µ3λ
=

∑

α,β

Cα
µ1µ3

η
(r=0)
αβ Cβ

µ2λ
. (C.4)

We can also define couplings C
(r=0)
µνρ with three subscripts by

C(r=0)
µνρ :=

∑

λ

Cλ
µνη

(r=0)
λρ . (C.5)

Then they are totally symmetric under the exchange of indices;

C(r=0)
µ1µ2µ3

= C(r=0)
µ2µ1µ3

, C(r=0)
µ1µ2µ3

= C(r=0)
µ1µ3µ2

, (C.6)

15We use ≡ to emphasize the equality on the space of Bethe roots.
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which can be derived from the existence of the unit operator and the associativity relation

above.

Next we shall consider couplings C
(r)
µνρ for integral R-charge r. In order to define them

(see the formula (4.4)), we need the expansion of the product
∏

a,b(1 − txax
−1
b )r by the

Hall-Littlewood polynomials;

N∏

a,b=1

(1− txax
−1
b )r ≡ (1− t)rN

∑

λ∈PN,κ

g
(r)
λ (t)Pλ(x, t) . (C.7)

Then the couplings C
(r)
µνρ and metrics η

(r)
µν are related to the structure constants of the

Hall-Littlewood polynomials as follows;

C(r)
µνρ(t) := (1− t)rN

∑

λ,α,β

g
(r)
λ (t)Cα

µνη
(r=0)
αβ Cβ

ρλ =
∑

λ

Cλ
µνη

(r)
λρ , (C.8)

η(r)µν := C
(r)
∅µν , C

(r=0)
λµν := Cλµν . (C.9)

Note that the R-charge dependence appears only through (1−t)rNg
(r)
λ (t) which determines

the metric η
(r)
λρ . We can prove the fusion couplings C

(r)
µνρ are invariant under the exchange

of the subscripts

C(r)
µ1µ2µ3

= C(r)
µ2µ1µ3

, C(r)
µ1µ2µ3

= C(r)
µ1µ3µ2

, (C.10)

where the first relation is proved by using the symmetry of Cα
µ1µ2

and the definition of

C
(r)
µ1µ2µ3 . The second relation can be shown by using the associativity relation. As a result

of this symmetry, the metric η
(r)
µν = C

(r)
∅µν is symmetric η

(r)
µν = η

(r)
νµ as it should be. We can

also show the associativity of the couplings C
(r)
µνρ

∑

α,β

Cα
µ1µ2

η
(r)
αβC

β
µ3λ

=
∑

α,β

Cα
µ1µ3

η
(r)
αβC

β
µ2λ

. (C.11)
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