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Preface

Organizing Conferences in different emerging areas of research is one of the important academic activities of an

university or a research institution, which provide a lucid opportunity to new generation of researchers as well as

the established researchers to exchange their views with a wide section of co-workers and peers in a lively envi-

ronment of interaction and then to prepare their future course of action. In this sense, the National Conference on

Current Issues in Cosmology, Astrophysics and High Energy Physics (CICAHEP), organized by the Depart-

ment of Physics, Dibrugarh University during November 2 – 5, 2015 was one of the finest national conferences

organized. It is heartening to note that the participants represented almost all regions of India, especially so, as

it was held in the remote far-east region of the country, which is not easily accessible. Eminent speakers were

drawn from leading institutions across India like, Tata Institute of Fundamental Research (TIFR), Mumbai; Inter-

University Centre for Astronomy and Astrophysics (IUCAA), Pune; Bhabha Atomic Research Centre (BARC),

Mumbai; Harish-Chandra Research Institute (HRI), Allahabad; Institute of Mathematical Sciences (IMSC), Chen-

nai; Saha Institute of Nuclear Physics (SINP), Kolkata; Aryabhatta Research Institute of Observational Sciences

(ARIES), Nainital; Indian Institute of Science Education and Research (IISER), Kolkata; Physical Research Lab-

oratory (PRL), Ahmedabad; Bose Institute, Kolkata; Indian Statistical Institute (ISI), Kolkata; Indian Institute of

Technology, Kharagpur; and Indian Institute of Technology, Guwahati. Moreover, the internationally acclaimed

theoretical astrophysicist and cosmologist Professor J. V. Narlikar graced this event as the keynote speaker. At this

moment, I take opportunity to thank Professor Narlikar for taking pains in travelling a very long distance from Pune

to Dibrugarh, inspite of his advanced age, and inspiring a new generation of researchers through his excellent talk.

With the active support of the Vice-Chancellor Professor Alak K. Buragohain this conference provided a lively

atmosphere for exchange of ideas and forging collaborations. I’m quite sure that all participants have benefited

and carried something positive from this conference to their respective destinations.

Publication of conference proceedings is an important task of the organizing committee for the event to be more

productive because, this will carry the presentations of participants to wider audience and then give cascading

effect for the growth of knowledge. However, in the process of publication of the proceedings of a conference, lots

of efforts and patience are required from the end organizer, in particular from the editor(s). I hope this proceedings

will be able to reach a wide class of researchers of the concerned areas and will be able to fulfill their partial

requirements. Finally, as the Chairperson of the National Organizing Committee (NOC) of this event I would like

to thank all members of the NOC, Local Organizing Committee, all participants and all other associated individuals

for making the event memorable and a very successful one.

June, 2016 B. S. Acharya

Chair, NOC, CICAHEP 2015 &

Professor, TIFR, Mumbai-400005.
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A note from the Convenor cum Editor

The main motivations for organizing this event (CICAHEP 2015) was to make an awareness among the budding

researchers of the North-Eastern part of our country about the importance and appeals of research works in the

fascinating and challenging research fields of Cosmology, Astrophysics and High Energy Physics as well as to

provide an effective platform for interactions with experts to those who are already in these fields of research from

this North-Eastern region. As Cosmology, Astrophysics and High Energy Physics are most inter-related and inter-

dependent branches of physics research in modern times of inter-disciplinary research, another motivation of this

conference is to provide an effective interaction platform for researchers in these areas. This was the first national

conference organized by the Dibrugarh University in such wide areas of emerging physics research and I feel that it

served my purpose partially for what it was organized as mentioned. There were 24 invited delegates and 70 other

participants in this conference from all over India. The keynote address of the conference was delivered by the

internationally acclaimed Cosmologists and Astrophysicist Professor Jayant Vishnu Narlikar, Emeritus Professor,

IUCAA, Pune on Some Conceptual Problems in Cosmology. In his address, Professor Narlikar highlighted many

prospective areas for future research in the Cosmology and related fields. Another 14 eminent scientists of national

and international repute had delivered plenary talks on various emerging issues in this conference. These scientists

include, Professor Naba K. Mondal, Project Director, India-based Neutrino Observatory and Senior Professor,

TIFR, Mumbai; Professor Narayan Banerjee, Indian Institute of Science Education and Research (IISER), Kolkata;

Professor Pankaj S. Joshi, TIFR, Mumbai; Dr. K. K. Yadav, Bhabha Atomic Research Centre (BARC), Mumbai;

Dr. Varsha R. Chitnis, TIFR, Mumbai; Dr. Bipul Bhuyan, IIT, Guwahati; Professor Kajari Mazumdar, TIFR,

Mumbai; Professor Raj Gandhi, Harish-Chandra Research Institute (HRI), Allahabad; Professor A. K. Ray, TIFR,

Mumbai; Professor K. P. Singh, TIFR, Mumbai; Professor Tarun Souradeep, IUCAA, Pune; Dr. Anil K. Pandey,

Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital; Professor Shrihari Gopalakrishna,

Institute of Mathematical Sciences (IMSC), Chennai; and Dr. Koushik Dutta, Saha Institute of Nuclear Physics

(SINP), Kolkata. A special lecture on Nobel Prize in Physics, 2015 was delivered by Professor N. N. Singh,

Manipur University, Imphal.

The number of contributory papers in the conference were 64. Among them, 41 were presented as contributory

talks and the rest were presented as the posters. In the cosmology section there were 22 papers (14 oral presen-

tations and 8 poster presentations), in the Astrophysics section there were 11 papers (8 oral presentations and 3

poster presentations) and in the High Energy Physics section there were 31 papers (19 oral presentations and 12

poster presentations).

Various sessions of this conference were chaired by most of plenary speakers and some other eminent scientists

of national and international repute or well-know personality in the fields. They include, Professor B. S. Acharya,

TIFR, Mumbai (who is also the Chairperson, CICAHEP, 2015); Professor Sayan Kar, IIT, Kharagpur; Prof. K.

Boruah, Gauhati University, Guwahati; and Dr. P. S. Joarder, Bose Institute, Kolkata.

Rapporteuring on various contributory papers in the conference were done by Professor N. N. Singh, Manipur

University, Imphal (on High Energy Physics Section); Professor Madhurjya P Bora, Gauhati University, Guwahati

(on Astronomy and Astrophysics Section), Dr. H. Nandan, Gurukula Kangri Vishwavidyalaya, Haridwar (on

Cosmology Section); Dr. U. Alam, Indian Statistical Institute (ISI), Kolkata (on Cosmology Section); and Dr. S.

Somorendro Singh, Delhi University, Delhi (on High Energy Physics Section).

However, for this proceedings we have received only 43 papers including the keynote address and 3 plenary papers

(∼ 54% of total presentations). Out of this, two contributory papers could not be included in the proceedings due

to extreme plagiarism in one paper and lack of physics value in another paper. Moreover, no rapporteur papers

ix



x

in the proceedings could be published due to some technical difficulties. So, this proceedings contains only 41

papers: 37 contributory and 4 invited papers. I hope that this proceedings will be helpful to those for whom it is

intended.

This conference was the outcome of the helps and painstaking efforts of many individuals, as well as the finan-

cial supports of different institutions and organizations, without which it would not have been possible for us to

successfully complete the same. At this moment I should show my gratitude to all of them. In this context, I

take this opportunity to extend my sincere gratitude to our Vice-Chancellor Professor Alak K. Buragohain for his

generous helps including a substantial financial contribution and for his kind opulence supports in different aspects

in organizing this event.

I am extremely grateful to Professor B. S. Acharya and Dr. Varsha R. Chitnis of Tata Institute of Fundamental

Research (TIFR), Mumbai for all sort of helps in organizing this event. In spite of his very busy schedule, Professor

Acharya, who is a leading High Energy Physicists of our country, had agreed to chair the National Organizing

Committee (NOC) of this conference and guided me to make the event a successful one. Dr. Chitnis, who is a well

known Gamma-Ray Astrophysicist of our country, took the initiative and did many paper works with Professor

Acharya to provide a good amount of financial sanction from TIFR to this conference. My many thanks are due

also to the TIFR authority for a financial sanction to organize the event.

Also I am very much thankful to Professor Ajit K. Kembhavi, Former Director, Inter-University Centre for Astron-

omy and Astrophysics (IUCAA), Pune for his kind financial support from IUCAA and his valuable advice to make

the event a successful one. At this moment, I would like to extend my sincere thanks to all members of the NOC

for their consent to be a part of the event as well as for other academic helps in this connection. In passing, I would

also like to thank Science and Engineering Research Broad (SERB), Government of India; Board of Research

in Nuclear Sciences (BRNS), Government of India; and Indian National Science Academy, New Delhi for their

financial supports to us.

The most cheerful beginning of the event was that Professor J. V. Narlikar had graced the event as the Keynote

Speaker at the cost of his invaluable time. I am deeply grateful to him for the same. In the same sense, I am

grateful to all other invited delegates who had agreed to help us at different capacities in the event in expense of

their indispensable moments. I am equally grateful to all other participants, for their contributions and their keen

interests in the conference.

It is also my duty to gratefully acknowledge the helps and supports of the Register of our University, Professor

M. K. Dutta; all my colleagues from our Department; a large pool of our student volunteers, especially Rakteem

Borthakur, Mriganka Boruah and Pranjal Rajkhowa; members of the Finance and Administrative Divisions of our

University; staffs members of our University Guest House and all other persons whose names I could not mention

here, in making the event a very successful one. Thank you all again.

June, 2016 Umananda Dev Goswami

Dibrugarh, India
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1. Introduction

Today the standard model for cosmology is one in which the universe was born with an enormous explosion in a

state of high energy, in which it had infinite density and temperature. In fact no physically meaningful description

is available for that initial state. Nevertheless most cosmologists like to work on the very early universe with huge

extrapolations of physics known and verified today and of the astronomical data observed today. Not surprisingly

such an approach leads to serious conceptual difficulties.

In this opening lecture I will highlight some of these issues. Given the limited time for this talk I will confine

myself to two basic problems: dark matter and dark energy.

2. Dark matter

What is the meaning of ’dark’ or ’unseen’ matter? In the old days there was the adage: ”Seeing in believing”.

This implied that only the evidence that you can see with your eyes can be trusted. The science of astronomy

evolved through the process of ’observing’ with naked eye, and later with telescope. Even when Galileo used his

new invention, the telescope for the first time, several viewers were uncomfortable with the findings made with its

help, as they showed many more aspects of the universe, than were visible to the naked eye. Thus doubts were

expressed about the reality of craters on the Moon, the spots on the Sun, and Jupiters satellites when seen by

Galileo’s telescope.

Galileo’s telescope, and others that followed his pioneering instruments monopolized viewing to the form of light

that our eyes are sensitive to. By the end of the nineteenth century, physicists were aware that light can come

in other forms too with wavelengths vastly different from those which give the visible light. Twentieth century

gradually brought those other forms of light to the service of astronomy and ’seeing’ now means using any of the

different forms of light for observing.

It is against this background that we now describe the difficulty associated with dark or unseen matter. It means the

matter that cannot be seen but whose existence can nevertheless be inferred by indirect observations. The historical

example of the discovery of planet Neptune, shows that the existence of the planet was inferred by noticing its

perturbing effect on the motion of planet Uranus. Thus the existence of the new planet could be deduced even

before it was seen in the conventional way. And the interaction that played a crucial role in the episode was the

gravitational interaction. In modern times, gravitational interaction plays a similar role in revealing the existence

of matter that could not otherwise be seen by using any form of light. It is this type of matter that is labelled dark

matter. How does it get detected?

An analogy from the field of economics is worth recalling in this context. Think of a country which has two

economic systems in force. The first is the official (visible) one based on declared incomes and expenses; one

which is on the records of the Internal Revenue Department. The second, parallel economy is run by the so-called

black money, based on incomes and expenditures not reported to the taxman.

Now, even though the black money is not declared or recorded, experts can make a shrewd estimate of its extent.

This is estimated by its visible impact on the country’s economy. The construction activity, election campaign

expenses, massive entertainment events, etc. are the dynamical effects of black money. Thus the economic activity

generated by it gives the clue to the amount of black money in circulation.

Dark matter in astronomy is like black money in economics. Although not directly observed, its gravitational

influence on the visible matter in its neighbourhood can give astronomers good estimates of its total amount.

Perhaps the most dramatic example of this type is the black hole. A black hole is a highly compact object whose

gravitational pull is so strong that not even light can leave its surface. A very massive star may shrink under its

3
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own gravity and become a black hole when its surface gravity has grown powerful enough to pull back its own

radiation. A black hole can therefore never be seen. Yet its gravitational influence will help to reveal its presence

in space. For example consider a star having a planet going round it. If the star shrinks and shrinks and becomes a

black hole, it will be invisible. Yet the planet will continue to feel its gravitational attraction and will keep orbiting

round it. So if we see a planet going round and round but no star that is visibly controlling its movement, then we

conclude that the planet is going round a black hole. By observing details of the planetary motion, theoreticians

can tell where the black hole is located and what is its mass.

2.1 Evidence for dark matter

We will now come to cosmological evidence for dark matter, mainly from two different types of systems: spiral

galaxies and clusters of galaxies.

2.1.1 Rotations of spiral galaxies

Our Milky Way belongs to the class of spiral galaxies. As the name implies, a spiral galaxy has two or more

arms winding outwards like the spring of a classical wind-up clock. The arms are the regions where stars are

concentrated. The gaps between arms are relatively less populated with stars, although they may carry gas and

dust. The typical picture of a spiral galaxy also indicates that there is no sharp boundary to the galaxy...it sort of

merges into darkness as one goes farther and farther from the more populated central region.

Astronomers believed (and justifiably so!) that the darkness engulfing the galaxy in the outward parts is indicative

of its gradual but definitive approach towards a boundary. Thus they assumed that beyond some specified perimeter,

there is no mass belonging to the galaxy. Certainly there are no shining stars, nor are there any indications of gas

or absorbing dust either beyond the assumed boundary. With the advent of radio astronomy, however, astronomers

discovered that there are small or large clouds of neutral hydrogen gas in circulation round the typical spiral galaxy.

These clouds are located far and near, extending well beyond the assumed boundary of the galaxy.

In the 1960s and 70s radio astronomers were able to measure speeds of such clouds and relate them to the galaxy

around which they might be moving. We may use here the analogy of the planets moving round the Sun in our own

planetary system. We know from measurements of speeds of these planets that the farther they are from the Sun

the slower they orbit. For example, Mercury, the nearest planet, has an orbiting speed around 48 kilometres per

second, whereas for the most distant planet Pluto (now designated as a dwarf planet) the speed is less than a mere

5 kilometres per second. Theoretically this result can be understood with the help of Newtons laws of motion and

gravitation. Applying the same laws, astronomers expected the clouds farther and farther away from the galaxy to

have smaller and smaller rotational speeds.

They were in for a surprise. The speeds did not seem to be dropping off; rather they stayed constant over a very

long range. The figure 1 below shows results for a typical spiral galaxy. As the rotation curve showed a constant

speed over a long distance, it came to be known as ’flat rotation curve’.

To resolve this mysterious behaviour, let us go back to the solar system example. There the speed drops off because

we know that the planets are moving under the attraction of the Sun and this attraction drops off as one moves away

from the centre of attraction. There is a definitive formula which tells us how the rotational speed of a planet should

drop off with distance from the Sun. The speeds of all planets from Mercury to Pluto check out OK on this formula.

Indeed this was the classic discovery of Johannes Kepler in the early seventeenth century for which Newtons law

of gravitation provided the mathematical explanation. But the same law applied to the neutral hydrogen clouds

attracted by the galaxy, does not seem to be working. Why not? Even the more sophisticated Einsteins theory of

gravity fares no better.

2.1.2 The need for dark matter

Whenever there is a conflict between a well established law and observations, two possible courses of action

suggest themselves:

1. Re-examining the observations in case something crucial is missed out...
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Figure 1. Flat rotation curve of a typical spiral galaxy.

2. Change the law for something deeper and more subtle.

What the majority of physicists and astrophysicists would like to follow is the first alternative. This involves

admitting that our observations of galaxies are incomplete and that there is invisible matter present which extends

well beyond the visible part of the galaxy. In terms of distances, we can argue for our own Milky Way like this.

The visible matter made of stars, dust and gas may extend over a disc of radius 15 kiloparsecs. However, the dark

matter is expected to be present well beyond this radius. It is because of this extra matter that the gravitational

influence of the galaxy extends much farther, and so the rotation speeds of neutral hydrogen clouds extend without

attenuation out to distances of 50 kiloparsecs or beyond.

What would the dark matter be made of ? Black holes? Since these are very efficient in holding back light, this

alternative suggests itself. We could have black holes formed from remnants of massive stars that stopped shining

after their nuclear fuel stocks were spent up. A second possibility could be planet-like objects that are not self-

luminous. Any object with mass not exceeding around the tenth of a solar mass cannot shine on its own because

its core temperature is not high enough to ignite a nuclear reactor. Such objects are called Brown Dwarfs and these

would not be seen by normal telescopes. These are examples of ’conventional’ types of dark matter. Given the

hypothesis that dark matter exists, these are the options one may think of in the first instance. Indeed, till early

1980s these were the main options before the cosmologists.

However, today cosmologists favour other more esoteric options, which are lumped together under a class called

Non-Baryonic Dark Matter (NBDM). These options are, by definition, made of particles that do not form parts of

atomic nuclei. Atomic nuclei contain neutrons and protons which are called baryons and almost all matter we see

in the universe consists of these as well as light particles like electrons and neutrinos. Thus masses of black holes

or brown dwarfs are mainly made up of baryons. As yet there have been no particles so far discovered by high

energy physicists that could be classified as NBDM. In the 1980s the possibility that neutrinos may have a fair

amount of mass (corresponding to an energy of up to about 30 electron volt) had raised the option that dark matter
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may be accounted for by neutrinos. However, those options have now fallen by the wayside. Although neutrinos

may have mass, it would still be far too small to explain the dark matter in galaxies. We will return to this issue

of what the dark matter is made of later, after we have described the second line of evidence for dark matter on an

even grander scale.

2.1.3 Clusters of galaxies

In Figure 2, we show a photograph of a typical cluster of galaxies. A typical cluster contains several hundred

galaxies and they all apparently move randomly within the cluster. These random motions are of the order of 250-

500 kilometres per second. These motions are over and above those arising from the expansion of the universe.

Thus a typical cluster takes part in the overall expansion process, and additionally has galaxies moving within it at

random speeds.

Figure 2. A typical cluster of galaxies.

If we assume a cluster is an isolated dynamical system of many bodies which have been moving under one-anothers

gravitational attraction for a long enough time to settle down to some steady state, then we can deduce a simple

result from Newtons laws of motion and gravitation. It is that the energy of motion, the so-called kinetic energy

of all moving galaxies is comparable in magnitude to their total gravitational potential energy. This is known as

the virial theorem. So if we estimate the two energies for clusters, we can verify if the virial theorem does apply

to them.

For most clusters it does not. The energy residing in motion of the visible galaxy is much higher than the energy

residing in gravitational attraction. The discrepancy is large enough to make one think. One possible conclusion

can be that the clusters have not yet had time to settle down and so the virial theorem does not apply to them. This

could happen if the cluster is expanding or contracting all round. The Armenian astrophysicist Viktor Ambartsum-

ian had concluded back in the early 1960s that the clusters are expanding, having been created in an explosion.

Based on his assessment of the data, Ambartsumian concluded that the clusters are examples of explosive creation

of matter.

The majority view, however, is different. The view is that the clusters have indeed settled down to an equilibrium

state and the reason we have a deficiency of gravitational energy is because we are not able to see all the matter
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present in the cluster. Suppose there is a lot of dark matter within the cluster which is not moving fast. Such matter

will not contribute much kinetic energy, but would give rise to large gravitational energy by virtue of its mass. This

is why we notice a deficiency of gravitational energy.

This argument has therefore suggested to the theoreticians that they can add as much dark mass as they need to

make up the energy deficiency. The amount of dark matter to be added this way far exceeds the visible matter.

Whereas in the case of rotation curves of spiral galaxies the ratio of dark to visible matter may be around 3 to 1 or

so, in the case of the clusters the ratio may go up to 10:1 or even more.

2.1.4 What is dark matter made of?

So, now we come back to the question posed earlier...what is such dark matter made of? Even though it is not seen,

we can argue for the options like black holes or brown dwarfs. However, there are problems with these options.

First one has to argue for a physical scenario that led to so much of matter being in this form. This may or may not

be a very difficult problem...with sufficient ingenuity, the theoretician may come up with a plausible scenario. But

cosmologists who adhere to the big bang model, object to this possibility.

The big bang theorists would be worried if so much dark matter existed in these relatively normal forms. For

these forms are all made of baryonic dark matter (BDM). If there were so much of BDM around, a difficulty arises

with the big bang scenario of how light nuclei, especially deuterium were made. In the process of primordial

nucleosynthesis first proposed by George Gamow, and later worked on by several other astrophysicists, one crucial

conclusion was that if the density of baryons exceeded a critical limit, practically no primordial deuterium would

be made. And it also became clear that if we begin to allow all or most of dark matter in clusters and galaxies to

be baryonic, that critical limit would certainly be exceeded. Thus no deuterium would be formed.

In fact, a difficulty of even greater magnitude awaited the big bang theorist when he resorted to the inflationary

scenario. It is believed that the phase transition leading to a break down of symmetry at the time of the end of

epoch of grand unification, the universe had an inflationary phase. The outcome was that the universe had a flat

geometry with a density

ρ = 3H2/8πG

which far exceeded the deuterium limit. Thus, if the inflation did happen, it would leave the universe with a density

very close to the critical density. If all this matter were normal baryonic matter, its density would be 25-30 times

higher than the limit tolerated by deuterium synthesis process. We shall use the density parameter Ω to denote the

ratio of the actual density to the flat density mentioned above.

So the conventional big bang theory runs into a serious problem. If it allows inflation, it runs foul of deuterium

production in the primordial nucleosynthesis. It also ends up with far more dark matter than the evidence from

galaxies and clusters suggests. This latter difficulty can be resolved by supposing that there exists dark matter not

only inside clusters but also in the space between them. However, the first problem was more serious. To find a

way out therefore, big bang cosmologists have supposed that the bulk of dark matter in or out of the clusters is

non-baryonic. The non-baryonic dark matter (NBDM) is an esoteric option which has to be adopted because there

is no other alternative for survival of the big bang nucleosynthesis scenario. An alternative name given to such a

NBDM particle is ”weakly interacting massive particle” or a WIMP!

Why do we call NBDM esoteric? Because there has, as yet, been no laboratory demonstration of it. Nor has it

been detected in any astronomical scenario. Rather, the theoretical possibilities for such matter come from the as

yet untested theories of very high energy particles. Man made accelerators do not reach these kinds of energies.

So what we are effectively asked to accept is that bulk of the matter in the universe is of this strange kind, far

exceeding the normal kind of matter that astronomers are familiar with.

3. Dark energy

We recall that in the early stages of cosmology, Einstein had introduced the cosmological force of repulsion in

his equations, to obtain the mathematical model of a static universe. Later when he discovered that observations



8 Jayant V. Narlikar

favoured an expanding universe and that his original equations did yield expanding models, he more or less aban-

doned this extra force.

Cosmologists have since had a love-hate relationship with the cosmological force. Whenever they feel that their

models are threatened by new observations they invoke the force, perhaps with reluctance, only to abandon it if

later it is discovered that the observations were not threatening after all. The intensity of this force is typified by

a constant often denoted by λ or Λ. Thus the force of repulsion between two masses separated by distance r is

simply λr. The constant in todays universe is very small and this indicates that the force of repulsion implied by

it is very small on the terrestrial, stellar or galactic scale. However, on the scale of the universe as a whole, it is

significant. A positive λ means the force is of repulsion and on a large scale it makes the universe accelerate. Is

the universe really accelerating?

Extensive work on this question was done by Allan Sandage in the 1960s and 1970s, and the results of his studies

of distant galaxies indicated that the universe is decelerating, that is, its rate of expansion is slowing down. At the

time, the Friedmann models without the λ-term indicated the same conclusion and so were in favour. The only

model that stood apart was the steady state model that implied that the universe is accelerating. Later this test fell

into disuse as it was realized that there were several imponderables, including observational errors that made any

definitive conclusion impossible. Indeed, summarizing the overall cosmological data in the 1986 Symposium on

cosmology at Beijing, Malcolm Longair concluded that the data did not require a nonzero cosmological constant.

However, the test was revived in the 1990s when it became possible to make dedicated studies of exploding stars,

called supernovae lying in distant galaxies. A particular class of supernovae, called Type Ia supernovae seemed

to have the property that they provided a standard candle for measuring galactic distances. Let us first try to

understand what this statement means.

The Type Ia supernova typically, represents a highly compact star blowing up as it loses its internal equilibrium.

The intensity of the star shoots up after the explosion and it reaches a peak in luminosity within a few days.

The important thing to note is that the supernova becomes very bright and may outshine the entire galaxy in which

it is housed, but for a few days. The peak luminosity therefore makes it easy to spot a supernova even if it is

located in a very distant galaxy. And, it seems that the maximum brightness attained by the star is more or less the

same from one Type Ia supernova to another. So we can use the method of measuring distances of astronomical

objects to estimate the distances of galaxies in which the supernovae are located. The fainter the supernova the

further away it is, as per the rule that farther candles look dimmer. The fact that the peak intensity for all Type Ia

supernovae is the same is called the ’standard candle hypothesis’.

A ’Supernova Cosmology Watch’ programme was set up to observe and record any such sudden eruptions in

galaxies with redshifts ranging up to around 1-1.5. These redshifts are higher than those of galaxies used by

Sandage in his earlier studies...those went up to around 0.5. Thus we are in principle able to sample a more remote

part of the universe with the help of supernovae.

The method is then to look at supernovae at different distances and see how their redshifts change with distance.

Redshifts are obtained by studying the spectra of galaxies, while distances are estimated by using the standard

candle of Type Ia supernovae. Broadly we expect that if the universe is decelerating the distances will increase

with redshift more slowly than if the universe were accelerating.

If the observers hoped to find a confirmation of the earlier results that the universe is decelerating, they were in for

disappointment. The distances as estimated from supernova standard candle seemed to increase faster with redshift

than allowed by any decelerating model. Rather the indications were that the universe seems to be accelerating!

At this stage it would have been fair on the part of observers to have acknowledged that the conclusion in favour

of an accelerating universe had been predicted by the much-maligned steady state universe. Even though in the

1990s, the steady state universe was no longer in serious contention, a note of this historical fact should have

been made. However, the result was simply announced as favouring the standard big bang model with a non-zero

cosmological constant.

That this was a volt-face on the part of the big bang establishment can be seen from the fact that as late as 1997, the

general belief was that there is no cosmological constant and that the universe is decelerating. While changing the

model so significantly from what had been previously in vogue, it should have been admitted that such a change

was being forced on the theory by observations. That the present approach has no predictive value is seen from the
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circumstance that todays observers ask the following question: What value of the cosmological constant will give

a good fit to what is observed?

Like good salesmen for inflationary hypothesis, the cosmologists announced this finding as confirming the infla-

tionary paradigm by arguing that the results bore support for the conclusion that the universe is flat, i.e., with Ω =

1. What was not emphasized was the result that the data gave the best fit for the value Ω = 1.3.

According to current wisdom, the density parameter Ω these days is made up of three components: (1) visible

(baryonic) matter, (2) cold dark matter (CDM) and (3) dark energy. Of these we have already elaborated upon

the first two. The third component is related to Λ the magnitude of the cosmological constant. After studying

the supernova results and also the fluctuations of the microwave background, cosmologists have come to the

conclusion that the contribution to Ω from these three components can be quantified quite precisely as follows: (1)

The contribution of baryonic matter is 4%, (2) the contribution of NBDM is 23% and (3) the contribution of dark

energy is 73%.

If these precise values are to be believed, then cosmologists are telling us that the most familiar form of matter and

energy that astronomers see, occupies only 4% of all matter-energy in the universe. The remaining 96% is made of

the esoteric dark matter while the lions share is taken up by dark energy, which is still more esoteric. The ironical

aspect of these conclusions is that the major components in the above distribution have not been found so far.

This situation will remind those who have read Hans Andersen stories, of the emperor who was offered new clothes

that only non-sinners could see! For those who have not read the story The emperor’s new clothes here is a synopsis

of the same.

4. The emperor’s new clothes

An emperor was fond of trying new dresses and spent a fortune on various fashion designs. One day a couple

of dressmakers from a far away land came to his court promising clothes made of such fine variety that only the

virtuous and the righteous could see them: those who lived a sinful life would not be able to see them. The emperor

was pleased by this offer and accorded them liberal funds and facilities to make a royal dress. Taking considerable

time over the process the tailors returned carrying their handiwork.

The king sent an emissary, a minister, to examine the dress. When the packet was opened, the minister could see

nothing in it. However, recalling the makers’ admonition that only the righteous and virtuous could see them he

felt that if he admitted to seeing nothing, he would be branded a sinner and dismissed from his job. So he reported

to the Emperor praising the dress in glowing terms. Thus the Emperor was all eager to try on the new clothes

himself and parade in them through the main street of his capital.

When he came to try them on, the Emperor too could see no dress; but as the tailors went through elaborate

motions of placing it on his body, commenting on how well it looked on His Majesty, he too felt that admitting

seeing nothing, would lead to his forsaking his kingdom as not being virtuous and righteous. So he got ready to

join the procession followed by his courtiers who were all praise for the new suit, since none wanted to be fired

from his job.

As the procession went through the town people gathered on the street to applaud. Although they saw their emperor

naked, they too dared not say so for fear of being branded sinners. Finally, it was left to a simple child, who had no

personal stake in the matter to come out with the fact when he asked his mother: ”Why is the Emperor not wearing

anything?” That was when everybody realized that the emperor and his court had been taken for a ride!

Modern cosmology, has brought us to a similar situation when we ask: just how much matter and energy are

present in our universe? And, how much of it we can see and how much we cannot see?

5. Concluding remarks

To end this account, we summarize it as follows. It is clear that the important observations of flat rotation curves

of galaxies opened up the pandoras box of dark matter. The evidence for dark matter is certainly there if one

continues to have faith in the laws of Newton and Einstein. However, how much dark matter is really warranted?

If one is not prejudiced by belief in inflation then one need not have Ω = 1. One can manage with much less matter.
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Can it all be baryonic as our experience of the rest of astronomy would have us believe? If you are not committed

to the notion of primordial nucleosynthesis, then the answer is ”yes”. But if one is firmly wedded to the view that

inflation did take place and that light nuclei were made in a primordial nucleosynthetic process, then one is driven

to postulating that a lot of dark matter is esoteric, non-baryonic.

Coming to dark energy, the major argument in favour of it rests on inflation and the observations of distant super-

novae. But there too the chain of reasoning may have glitches. Are we sure that the standard candle hypothesis

is valid? If there is significant variation in the peak intensity of light from Type Ia supernovae, then the distance

measurement on which the test rests is not so reliable. When we infer the distance of a supernova from its observed

faintness, we ignore the presence of any absorbing intergalactic dust. Our knowledge of intergalactic medium is

still very primitive, and by ignoring intergalactic dust in estimating distances, we may be committing the same

error that galactic astronomers committed more than a century ago when they were estimating stellar distances

without knowledge of interstellar dust. Intergalactic dust will make a supernova look dimmer than in the absence

of dust and so if we ignore the effect of dust absorption, we will be overestimating the distance of a supernova and

this error will grow further away the supernova is. So instead of the cosmological constant causing an accelerated

universe in which all distances get enhanced, it may be the absorption by dust that makes high redshift supernovae

look dimmer.

Even if we discount the dust alternative and stick with the accelerating universe, we find that data do not really fit

the simple model in which a constant Λ accelerates the universe. One needs a variable Λ thus making the hypothesis

messier. For, more recent evidence apparently points to acceleration over a limited period. Thus theoreticians are

getting lost in more and more complex models of dark energy, which have no predictive power.

Perhaps we should leave the last say with the Pythagoreans, the learned followers of the Greek mathematician

philosopher Pythagoras more than two millennia ago who hypothesized that the Earth goes round not the Sun,

but round a ’Central Fire’. When quizzed about why we don’t see the central fire, they further hypothesized that

another body, which they called Counter Earth lies between the central fire and us, So the skeptics began to ask:

Why don’t we see the Counter Earth? To this query their answer was that Greece was on the other side with respect

to the Counter Earth and so we cannot see it. However, this defence also collapsed as people could ’go to the other

side’ and see that there was no central fire and no counter earth.

Cosmology may eventually acquire its own unprejudiced interpreters of the universe.
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It is generally believed that the solution of Wheeler-DeWitt equation for any anisotropic cosmological model is

non-unitary and hence does not conserve probability. This remains a pathology in standard quantum cosmology.

We show that this behaviour is not actually pathological and can be removed by a proper ordering of operators.

1. Inroduction

As gravity does not have any universally accepted quantum theory, cosmology provides an arena where quantum

principles are applied to a gravitational system. When the universe was small, smaller than Planck length, classical

gravity would not work and a quantum picture is indeed required. This also provides a possibility that a quantum

picture might resolve the initial singularity. The relevant action for gravity is given as

A =

∫

M

d4x
√−g R+ 2

∫

∂M

d3x
√
hhabK

ab +

∫

M

d4x
√−g Lm, (1)

where hab is the induced metric over spatial hypersurface, ∂M is the boundary of the four dimensional manifold

M , Kab is the extrinsic curvature and Lm represents the matter Lagrangian. The units are so chosen that c =
16πG = ~ = 1.

In order to have a tractable problem, one often works in a minisuperspace, where a particular metric from amongst

all possible metrics is chosen using symmetry and thus the degrees of freedom is reduced to a finite number.

Einstein-Hilbert action is written in terms of the metric, and the metric for the space-section, hij and the matter

degrees of freedom are the relevant variables. Then the procedure is standard, the conjugate momenta are defined,

the Hamiltonian is formed, the coordinates and momenta are promoted to operators, using canonical quantization,

and the Schrodinger equation, in this case known as the Wheeler-DeWitt equation, is written with the relevant

constraint. Replace the momenta by the corresponding operators, e.g., if Πij is the momentum conjugate to the

dynamical variable hij , then

[hij ,Π
ij ] = ı.

Hamiltonian constraint in this case is given by → H = 0. Wheeler-DeWitt equation can now be written as

HΨ = 0.

1.1 Problems with quantum cosmology

There are many problems in quantum cosmology, such as problem of interpretation, problem of the identification

of a time parameter, and many others. One of these many others is that the anisotropic models are believed to be

nonunitary! This leads to a non-conservation of probability. The observed universe, however, is isotropic, so this

problem might have been ignored. But, this isotropy is not a theoretical requirement. So this nonunitary leads to an

inconsistency in the quantization scheme. The motivation of the present talk is to show that the alleged nonunitary

can actually be removed.

It is interesting to note that in the absence of a properly oriented scalar time parameter, this nonconservation of

probability is often obscure. The cosmic time t does not serve the purpose, as it is a coordinate and not a scalar

parameter. So we start with a choice of a time parameter.

If we work with a model with a fluid, the evolution of a fluid in the model comes to the rescue. The action with a

fluid can be written as

11
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A =

∫

M

d4x
√−g R+ 2

∫

∂M

d3x
√
hhabK

ab +

∫

M

d4x
√−g P, (2)

where P is the pressure due to the perfect fluid. We now take a break and consider the fluid. The velocity vector

of a perfect fluid can be written in terms of thermodynamic quantities as [1, 2]

uν =
1

h
(ǫ,ν + θS,ν),

where h, S, ǫ and θ are the velocity potentials having their own evolution equations. The first two of the quan-

tities are specific enthalpy and the specific entropy respectively while the other two do not have specific physical

significance. Two more potentials, connected with vorticity, are dropped as we shall not consider any example of

a metric with a vorticity. uµ is normalized as uνuν = 1. Only two are actually used, namely, ǫ and S, as ǫ and h

are related by uµǫ,µ = −h, while θ can be settled using the normalization of uµ.

1.2 Problem with anisotropic models

It is quite widely believed that anisotropic models are nonunitary [3]. An explicit example was given by Alvarenga

et al in the case of a Bianchi I model [4]:

ds2 = n2dt2 −
[

e(β0+β++
√
3β−)dx2 + e(β0+β+−

√
3β−)dy2 + e(β0−2β+)dz2

]

, (3)

the Wheeler-DeWitt equation

(

∂2

∂β2
0

− ∂2

∂β2
+

− ∂2

∂β2
−

)

φ = 24Eφe3(1−α)β0 , (4)

indeed yields a non-unitary evolution!

The reason for the alleged nonunitary is not really known, but normally the hyperbolicity in the Hamiltonian is

held as the culprit. But we shall see that this is not quite right. An improper operator ordering, rather, might hold

the key. For Bianchi V, it was shown that with an operator ordering, probability conservation holds good for large

“time” [5]. Naturally this is not enough, as nonunitarity is a mathematical property, and a model is either unitary

or not, there is hardly any scope for minimizing that! But the hint is obvious, an ordering of operators may do the

trick. With this clue, it was shown quite clearly that unitarity can in fact be restored in a Bianchi I model with a

clever operator ordering [6]. It was also shown by the same authors that with a suitable transformation of variables

at the classical level, the ordering may not at all be required. This takes care of the objection that why the chosen

ordering is sacred. More examples were later found in Bianchi V and IX [7] and Kantowski-Sachs models [8].

In the present talk, I shall take up the example of a Bianchi III metric, which, like the Kantowski-Sachs model, has

a varying spatial curvature, and is thus more general.

2. Bianchi III cosmology

The Bianchi type III model is given by the metric

ds2 = n2dt2 − e2
√
3β+dr2 − e−2

√
3(β++β−)

[

dθ2 + sinh2 (θ) dφ2
]

. (5)

Lapse function n, β+ and β− are functions of time t. Bianchi III metric in this form is similar to the Kantowski-

Sachs cosmology where the hyperbolic coefficient of dφ2 is replaced by a sinusoidal function. Given the action,

the Hamiltonian for the gravity sector can be written as

Hg =
n

24
e
√
3(β++2β−)

[

−p2β− + p2β+
+ 48e−2

√
3β−

]

, (6)

where pi’s are the momenta, canonically conjugate to βi’s. We effect the set of canonical transformations,
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T = −pS exp(−S)p−α−1
ǫ ,

pT = pα+1
ǫ exp(S),

ǫ′ = ǫ+ (α+ 1) pS

pǫ
,

p′ǫ = pǫ,

and write the Hamiltonian for the fluid sector as

Hf = neα
√
3(β++2β−)pT . (7)

The net (super) Hamiltonian is given by H = Hg + Hf . A variation with respect to n yields the Hamiltonian

constraint,

e
√
3(1−α)(β++2β−)

{

−p2β− + p2β+
+ 48e−2

√
3β−

}

+ 24pT = 0.

We now promote the dynamical variables to operators, pi 7→ −ı~∂βi
for i = 0,+,−, and pT 7→ −ı~∂T . This

mapping is equivalent to postulating the fundamental commutation relations

[βi, pj ] = ı~δijI.

With the Hamiltonian constraint H = 0, the Wheeler-DeWitt equation becomes

Hψ = 0.

Some points to note here are (i) the Poisson brackets {ǫ′, p′ǫ} = 1 and {T, pT } = 1 are satisfied and other Poisson

brackets → 0. This ensure the canonical structure with the new variables. Also note that dT
dt
> 0, meaning T has

the same sign as the cosmic time ! And, is a monotonically increasing function.

2.1 General perfect fluid: α 6= 1

In this case we propose following operator ordering

[−e
√

3

2
(1−α)(β++4β−) ∂

∂β+
e

√
3

2
(1−α)β+

∂

∂β+

+e
√
3(1−α)(β++β−) ∂

∂β−
e
√
3(1−α)β− ∂

∂β+

+48e−2
√
3β−e

√
3(1−α)(β++2β−)]Ψ

= 24ı
∂Ψ

∂T
,

and effect a transformation of variables as

χ+ ≡ e−
√

3

2
(1−α)β+ & χ− ≡ e−

√
3(1−α)β−

,

and use separability ansatz Ψ = φ(χ+, χ−)e
−ıET so that

Hgφ = − 1

χ2
−

∂2φ

∂χ2
+

+
1

χ2
+

∂2φ

∂χ2
−

+ 48χ
2α

1−α

− χ−2
+ φ = 24Eφ. (8)
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Unitarity restored:

Now it is easy to see that one can use Neumann’s theorem which states that

“A symmetric operator Â defined on domain D has equal deficiency index, if there exists a norm preserving anti-

unitary conjugation map C : D → D such that [Â, C] = 0, which, in turn, shows that Â admits self-adjoint

extension”.

Hg satisfies the conditions !! (Here C is the map which takes φ to φ∗). So, the Hamiltonian admits self-adjoint

extension i.e., a unitary evolution. The same analysis in fact holds for a Kantowski-Sachs model as well.

Rationale behind the operator ordering:

The kinetic term ∂2φ

∂χ2
±

multiplied with χ2
∓. Hence, the condition for Hg being symmetric is same as the condition

for a standard Laplacian to be symmetric, and we have the following condition

[

φ
∂φ∗

∂χ±
− φ∗

∂φ

∂χ±

]∞

0

= 0.

Once it is guaranteed to be a symmetric operator, the self-adjoint extension is obvious following Neumann’s

theorem. The particular operator ordering is a sufficient condition for making Hg symmetric, but, however, it is

not a necessary one.

2.2 A specific example: Stiff fluid (P = ρ)

For a stiff fluid the Wheeler-DeWitt equation with the above operator ordering takes the form

{

∂2

∂β2
−

− ∂2

∂β2
+

+ 48e−2
√
3β−

}

Ψ = 24ı
∂Ψ

∂T
.

With a separation of variables, Ψ = φ(β−)ψ(β+)e
−ıET , this equation gives,

{

∂2

∂β2
−

+ 3k2+ + 48e−2
√
3β−

}

φ = 24Eφ,

[

∂2

∂β2
+

+ 3k2+

]

ψ = 0.

With ||ψ|| ≡
∫∞
−∞ dβ+ψψ

∗, the solution is unitary; the norm for the β+ sector is time independent and finite (by

explicit construction of wavepacket). The equation for the β− sector can be recast in the standard self-adjoint form

(using the variable χ ≡ e−
√
3β−),

d

dχ

(

χ
dφ

dχ

)

+

(

16χ− 8E − k2+
χ

)

φ = 0,

with inner product given by 〈φ1|φ2〉 ≡
∫∞
0
dχ χ φ∗1(χ)φ2(χ). This Hamiltonian for β− sector is self-adjoint as

well, ensuring a unitary time evolution.

We have now sufficiently proved that the alleged onounitarity is actually an unwarranted threat in the standard

Wheeler-DeWitt quantization scheme of cosmological models. Now the question is that if one has to pay some

price for the self-adjoint extension of the Hamiltonian. One important finding is that the anisotropy, given by the

equation
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σ2 =
1

12

[

(
˙g11
g11

− ˙g22
g22

)2 + (
˙g22
g22

− ˙g33
g33

)2 + (
˙g33
g33

− ˙g11
g11

)2
]

,

is indeed a nonzero object [9]. However, the scale invariance is lost! But this is a more generic problem in the

self-adjoint extensions, and not specific to cosmology. It now remains to be seen what other symmetry might be

lost in this.

3. Summary

We can summarized our above discussions into following important points:

• The threat of nonconservation of probablity is not real!

• Anisotropic models with constant spatial curvature (Bianchi I, V, IX) as well as varying spatial curvature

(Bianchi III, KS), on proper operator ordering, show unitary evolution.

• In fact, thanks to Neumann’s theorem, as all the Bianchi models and KS, possess a symmetric Hamiltonian,

a self-adjoint extension is always possible.

• The unitarity is restored, not at the cost of anisotropy.
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Very High Energy gamma ray astronomy is passing through a very exciting phase at present. This, comparatively

new branch of astronomy has emerged as a major astronomical discipline during last decade, with the detection

of more than 170 objects belonging to diverse astronomical classes. In this talk, a brief review of the field will be

given. India has a long tradition of research in this area. At present 7-element High Altitude Gamma Ray (HAGAR)

telescope system is operational in Ladakh region of Himalayas. This telescope system, the first phase of 4-Institute

collaboration, Himalayan Gamma Ray Observatory (HiGRO), has been observing various astronomical sources

since 2008 and has successfully detected VHE gamma ray emission from extragalactic objects like Mrk 421, Mrk

501 as well as galactic sources including Crab nebula/pulsar. Details of HAGAR telescope system will be given

and some of the recent results as well as future plans will be discussed.

1. Introduction

Very High Energy or VHE gamma ray astronomy covering the energy range of few 10’s of GeV - few 10’s of TeV

is one of the youngest branches of astronomy. It has evolved into a mature branch of astronomy during last decade,

with the detection of more than 170 astronomical sources belonging to diverse classes. In the next section of this

paper, brief review of the field is given. This is followed by description of HAGAR telescope system operational

in Ladakh region of Himalayas for last few years and some of the recent resulted from HAGAR and future plans.

2. Physics motivation for VHE gamma ray astronomy

Gamma rays provide one of the best windows to study nonthermal universe. Cosmic rays with energies extending

upto 1020 eV, following powerlaw distribution, form one nonthermal component. Even after more than 100 years

since discovery, origin and acceleration of cosmic rays is unresolved mystery. Supernova remnants (SNRs) are

thought to be the sites for lower energy cosmic rays upto 1015 eV i.e. upto the knee region of cosmic ray spectrum.

Higher energy cosmic rays probably originate from Active Galactic Nuclei or AGNs. Acceleration of charged

particles to very high energies produces gamma rays through various processes. So study of VHE gamma ray

emission from these sources will shed some light on cosmic ray origin. This study will also give insight into

emission regions and emission processes in these objects.

There are some other research areas which can be explored through study of VHE gamma ray emission. It is

possible to study physics beyond standard model through searches for dark matter. WIMPs or weakly interacting

massive particles are popular candidates for dark matter. Annihilation of WIMPs is expected to produce detectable

signal in VHE gamma ray range. Likely candidate sites are galactic halo, galactic centre, dwarf galaxies or galaxy

clusters.

There is also possibility to check for Lorentz invariance through study of rapid time variations in VHE emission

from distant objects. Also it is possible to get indirect estimation of Extragalactic Background Light (EBL) through

study of VHE emission from AGNs. This has implications about star formation history of the Universe.

VHE gamma ray emission has been detected from 175 sources so far [1]. These include variety of galactic and

extragalactic objects. Amongst galactic sources prominent classes are supernova remnants (13 shell type SNRs and

10 with molecular clouds detected so far), pulsar wind nebulae or PWN (35), pulsars (2) and binaries (5). Amongst

extragalactic sources these are predominantly AGNs (61), radio galaxies (4), starburst galaxies (2), massive star

clusters (4) etc. Examples from some of the categories are discussed below.

16
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2.1 Supernova remnants

Massive stars end their life through supernova explosions. This explosion blows off outer layers of star forming

supernova remnant. Supernova remnants are thought to be the sites for acceleration of cosmic rays and possible

mechanism is diffusive shock acceleration. VHE gamma ray emission from supernova remnants extending beyond

few 10’s of TeV provide indication of possible cosmic ray acceleration. VHE emission is detected from 13 shell

type supernova remnants and 10 supernova remnants with molecular clouds. One example is supernova remnant

RXJ1713.7-3946 detected by HESS with spectrum extending upto 100 TeV with slope of -2, which is consistent

with shock acceleration scenario [2]. This is still not considered as conclusive evidence as these gamma rays could

originate from neutral pion decay from proton proton interaction or by Compton scattering of VHE electrons with

cosmic microwave background radiation. Present data is not able to distinguish between these two scenarios.

Multiwaveband morphological studies with better angular resolution and spatially resolved spectral measurements

are needed to settle this issue.

2.2 Pulsar wind nebulae (plerions)

In many cases supernova explosion results in rapidly rotating neutron star which is called pulsar. Quite often su-

pernova remnants show bright core within the shell, powered by pulsar wind consisting of electrons and positrons.

VHE gamma ray emission is detected from 35 PWN so far. One typical example is Crab nebula with nonthermal

emission extending over 21 decades of frequencies. Spectral energy distribution (SED) of Crab nebula in gamma

ray band is explained in terms of Synchrotron Self-Compton (SSC) model [3]. According to this model, relativistic

electrons emit Synchrotron photons which are Compton upscattered to gamma ray energies by same population

of electrons. Even though Crab nebula is a well studied object, there are several aspects which are not yet under-

stood. For example, there were rapid high energy gamma ray flares with rise time of few hours seen by AGILE

and Fermi-LAT, which are not yet fully understood [4].

2.3 Gamma ray pulsars

Pulsars are highly magnetized rapidly rotating neutrons stars where rotation axis is misaligned with magnetic field

axis. As neutron star spins, the beam of radiation sweeps through our line of sight and we see pulsations. Pulsa-

tions are seen in various wavebands. Emission mechanism for gamma rays was thought to be curvature radiation

produced when high energy charged particle moves along curved magnetic field, resulting in exponentially cutoff

powerlaw spectrum. Exact shape of the spectrum depends on the place from where gamma ray emission originated.

There are various models about the emission region like polar cap, outer gap and slot-gap etc.

VHE gamma ray pulsations were detected from Crab pulsar at a period of 33 ms initially by MAGIC telescope at

energies above 25 GeV and later by VERITAS at energies above 100 GeV, upto 400 GeV [5]. Earlier gamma ray

spectrum detected by Fermi-LAT was fitted with a exponential cutoff powerlaw consistent with curvature radiation.

However, detection of pulsations at energies above 100 GeV cannot be explained by curvature radiation. Entire

gamma ray spectrum is fitted with a broken power law and inverse Compton scattering is one likely mechanism.

Also possibility of two mechanisms one dominant at lower gamma ray energies below the spectral break and

second one dominant above the break is being discussed. Very recently MAGIC has detected pulsations from Crab

pulsar all the way upto 1.5 TeV [6], further strengthening these interpretations.

Only other pulsar detected at VHE energies is Vela pulsar. This was detected by second phase of HESS, 28 m

diameter telescope, i.e. the largest VHE gamma ray telescope in the world. Pulsations are seen clearly at a period

of 89 ms at energies above 30 GeV [7].

2.4 TeV binaries

TeV binaries are composed of a massive star and a compact object and emit variable, modulated VHE emission.

Five binaries are detected at VHE energies. One example is LSI+61◦ 303, where emission was found to show

modulation of 26.5 days which is orbital period of the system. Companion star is Be star with circumstellar disk

and nature of compact object, whether it is neutron star or black hole is not clear. VHE emission is mainly seen in

the orbital phases of 0.4–0.7 [8]. There are two types of models proposed to explain this emission. According to
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microquasar model, compact object is powered by mass accretion from companion star producing collimated jets.

These jets boost energy of stellar photons to VHE gamma rays. According to binary pulsar scenario, pulsar winds

are powered by rotation of neutron star and interaction of pulsar wind with companion star outflow produces VHE

gamma rays [9]. It is not yet clear which model is correct. Multiwaveband studies are expected to provide the clue.

2.5 Active Galactic Nuclei

AGNs are the distant galaxies with bright nuclei, powered by supermassive black hole at the centre accreting

matter from host galaxy. VHE gamma ray emission is detected from 61 Blazar classs AGNs including BL Lacs

and FSRQs. Blazars are characterised by variability in all wavebands on various time scales ranging from minutes

to years, with wide flux variations. These objects have jets pointed towards us, so we see Doppler boosted emission

from jets. SEDs of these objects are characterised by two broad peaks or humps and depending on location of these

peaks, Blazars are classified as Low-frequency peaked Blazars (LBL), Intermediate-frequency peaked Blazars

(IBL) and High-frequency peaked Blazars (HBL). Most of the Blazars detected at VHE energies are HBL type.

HBLs show first peak in SED at X-ray energies and second one at TeV energies. First peak is generally attributed

to Synchrotron emission from energetic electrons, whereas origin of second peak is not clear. According to various

proposed theories this emission could be originating from leptonic beam or hadronic beam in jets. One popular

leptonic model is SSC model which readily explains good correlation seen between X-ray and gamma ray flares

from several TeV Blazars. However, sometimes orphan TeV flares are also seen from some Blazars which not

accompanied by corresponding increase at X-ray energies. These are inconsistent with SSC model and explained

using other leptonic models like external Compton (EC) or hadronic models or lepto-hadronic models. EC model

is similar to SSC but here photons for Compton upscattering come from elsewhere, from outside the jet, possibly

from accretion disk, torus or BLR. This model is used quite often to explain gamma ray emission from LBLs and

FSRQs. Amongst hadronic models there are proton synchrotron, proton induced cascades due to interaction of

protons with ambient matter or photon fields. There is a particular interest in hadronic models from the point of

view of explaining cosmic ray origin.

One important characteristic of Blazars is their time variability. This variability is seen in all wavebands including

gamma ray band. One example is spectacular flare detected by HESS experiment from PKS2155-304, where flux

increased as high as 15 Crab units with rise time of 173 s [10]. Another interesting flare was detected from Mkn

501 by MAGIC experiment lasting for about half an hour showing significant lag between photons of different

energies in TeV band. Time delay of about 4 minutes was seen between lowest and highest energies in this case

[11]. Using these kind of time lags, it is possible to constrain quantum gravity models. Using this particular flare,

lower limits on quantum gravity parameter were derived. Another important information obtained from variability

time scale is the size of the emission region.

One more important aspect of these studies is estimation of Extragalactic Background Light or EBL. EBL is

isotropic diffuse radiation of UV, optical and IR photons. It is sum of starlight emitted by galaxies through the his-

tory of the Universe. EBL shows two humped spectral energy distribution. First hump in UV-optical corresponds

to starlight and second hump corresponds to UV/optical light absorbed by dust and re-radiated in the infrared.

Direct measurements of EBL are extremely difficult due to strong foreground contamination by galactic and zo-

diacal light. Various theoretical models are available, but these are poorly constrained. VHE gamma rays from

distant AGNs interact with EBL photons producing electron positron pair resulting in distortion and attenuation

of intrinsic spectrum. Attenuation depends on energy as well as distance of the source, generating gamma ray

horizon. Distortion caused in VHE spectrum of Blazars by EBL can be used for estimation of EBL itself. One

such attempt of evaluation of EBL was done using data from two Blazars at redshifts of 0.186 and 0.165 obtained

from HESS experiment [12]. Upper limit on EBL derived from these measurements indicated that Universe is

transparent than expected. This work was later extended using sample from seven Blazars and EBL was estimated

over the wavelength range of 0.3-10 µm [13]. As more data becomes available these estimates will get revised

further.
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3. HAGAR Telescope System

3.1 Atmospheric Cherenkov Technique

Gamma rays from astronomical sources can not penetrate Earth’s atmosphere and hence are detected using satellite

based detectors. At energies above 100 GeV, due to rapidly falling flux from astronomical sources, it is not

possible to use satellite based detectors very efficiently because of requirement for very large detector areas. On

the other hand, VHE gamma rays are detected far more efficiently using ground based atmospheric Cherenkov

technique. Gamma rays are detected indirectly in this technique. Gamma ray interacts at the top of the atmosphere,

through various processes generates shower of charged particles in the atmosphere, these charged particles then

cause atmosphere to emit bluish Cherenkov light (see Fig.1). This light is detected using telescope consisting of

mirror/reflector and one or more photomultiplier tubes or PMTs at focus. This light comes as a flash lasting for a

few ns and is spread over a circular region with radius of about 100 m at observation level. There are two variants

of atmospheric Cherenkov technique, angular imaging and wavefront sampling. In imaging technique, there is a

large reflector with cluster of PMTs at the focus. Images of air showers are recorded in this technique. On the other

hand, in wavefront sampling technique, there is a distributed array of small size telescopes sampling Cherenkov

light across the Cherenkov pool. In this technique, arrival time of Cherenkov shower front and Cherenkov photon

density are recorded at various locations in Cherenkov pool. Arrival time information gives the direction of shower

axis and Cherenkov photon density is a measure of primary energy. HAGAR telescope system is based on this

technique.

Figure 1. Left panel : Atmospheric Cherenkov technique, Right panel: Variation of Cherenkov photon density with core

distance for simulated showers initiated by 100 GeV gamma rays for various altitudes (diamond : sea level, plus sign : 1 km,

asterisk : 2.2 kms and triangle : 4.5 kms altitude)

3.2 HiGRO collaboration experiments

Tata Institute of Fundamental Research (TIFR) entered the field of VHE gamma ray astronomy in 1969. Initial

activities were at Ooty and were shifted to Pachmarhi in Madhya Pradesh in 1980s. Bhabha Atomic Research

Centre (BARC) also started activities in this field in 1980s. Recently TIFR was operating Pachmarhi Array of

Cherenkov Telescopes and BARC has been operating TACTIC at Mt. Abu. Both these experiments are at an

altitude of about 1 km and have low energy thresholds in the neighbourhood of about 1 TeV. There is a strong

physics motivation for lowering energy thresholds of atmospheric Cherenkov telescopes. For example, detection

of distant AGNs or GRBs and detection of pulsed component in pulsars is possible only with instruments with

thresholds around 100 GeV or less. There are two ways of reducing energy threshold. First alternative is to

use large mirrors, which is expensive. Second cost effective alternative is to install telescope at high altitude

location. As one goes to high altitude location, Cherenkov photon density in the cone increases. Also atmospheric

attenuation of Cherenkov photons is lower at high altitude locations. Because of these two factors, there is a

significant increase in Cherenkov photon density near shower core at high altitude location. This is seen clearly

from Fig.1 (right panel), where variation of Cherenkov photon density from simulated showers initiated by 100

GeV gamma rays is plotted as a function of distance from shower axis (or core distance) for four different altitudes
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from sea level to 4.5 kms altitude. Cherenkov photon density near shower core is factor of 4-5 higher at 4.5

kms altitude than that at sea level. As a result, there is a significant reduction in energy threshold of atmospheric

Cherenkov telescope installed at high altitude location.

Himalayan Gamma Ray Observatory (HiGRO) collaboration was formed with the motivation of setting up atmo-

spheric Cherenkov telescopes at high altitude location in Himalayas. This is a collaboration between four institutes

: TIFR, IIA (Indian Institute of Astrophysics), BARC and SINP (Saha Institute of Nuclear Physics). There is also

some participation from Dibrugarh University in this collaboration. HiGRO experiments are located at a place

called Hanle in Ladakh region of Himalayas. This is the place where IIA has set up Indian Astronomical Ob-

servatory (IAO). Altitude of the base camp of IAO is 4.3 kms. Ladakh is a high altitude cold desert with hardly

any rainfall and very little snowfall with clear sky almost throughout the year. Hanle is easily accessible by road

from Leh throughout the year at a distance of about 250 kms. HAGAR is the first phase of HiGRO and MACE,

described in the paper [14], is the second phase.

3.3 HAGAR : instrument details

HAGAR or High Altitude Gamma Ray Telescope system is an array of seven telescopes deployed in the form

of a hexagon (see Fig.2). Spacing between the telescopes is 50 m. Each telescope consists of seven para-axially

mounted parabolic mirrors, each of diameter 0.9 m. At the focus of each mirror UV sensitive PMT from Photonis

with make XP2268B is mounted. Field of view of HAGAR is 3 deg FWHM. Pulses from PMTs are brought to the

control room through coaxial cables.

Figure 2. Top left : Layout for HAGAR, Top right : One of the telescopes from HAGAR, Bottom : HAGAR array of 7

telescopes

Installation of HAGAR began at Hanle in 2005 and was completed in 2008. Fig.2 shows the photograph of entire
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array with closer view of one of the telescopes. Tracking system of HAGAR is based on alt-azimuth design.

Maximum zenith angle coverage is upto 85 deg. Steady state pointing accuracy of servo is ±10 arc-sec. Maximum

slew rate is 30 deg/minute. Average pointing accuracy of a mirror is estimated to be 12.5 arc-minutes [15].

High voltages of individual PMTs of HAGAR are controlled using CAEN controller. In control room pulses

from individual PMTs are added to form seven telescope pulses. Data acquisition system is CAMAC based and

interrupt driven. Trigger is generated when at least 4 telescope pulses out of 7 cross the discriminator threshold in

coincidence window of 60 ns. Data recorded for each event includes relative arrival time of shower front at each

mirror accurate to 0.25 ns as given by TDCs, pulse height or charge at each telescope recorded using 12 bit ADC

and absolute arrival time of event accurate to µs as given by Real Time Clock (RTC) module synchronised with

GPS. In addition to this telescope pulse profiles are also recorded in 1 ns bins using waveform digitizer. Further

details for HAGAR are given in [16].

3.4 Performance parameters for HAGAR

Extensive simulations were carried out to understand performance of HAGAR. Since atmospheric Cherenkov

experiments cannot be directly calibrated, their performance can be understood only through simulations. These

simulations consist of two parts. First part is the simulation of extensive air showers initiated by gamma rays

and various species of cosmic rays. CORSIKA package is used for this purpose [17]. Packages GHEISHA and

VENUS were used respectively for simulating low and high energy hadronic interactions whereas EGS4 was used

for electron-photon interactions. US standard atmospheric profile was used. Showers initiated by gamma rays,

protons, alpha particles and electrons were simulated. Impact parameter range was varied over 0-300 m, viewcone

range of 0-4 deg was used for cosmic ray showers. HAGAR geometry and geomagnetic field at Hanle was taken

into consideration. Mirror reflectivity was set to 80% and quantum efficiency curve for PMT was used. Typically

few million showers were generated for each species. This sample was then passed through detector simulation

program which takes into account various parameters specific to HAGAR system like PMT and cable response,

trigger criteria etc. Further details of these simulations are given in [18].

Cosmic ray trigger rate estimated from these simulations is 13 Hz which agrees with the observed trigger rate.

Energy threshold given as the peak of the differential rate curve is estimated to be about 208 GeV for 4 fold trigger

condition. Expected gamma ray rate from Crab like sources is 6.3 counts per minute. Sensitivity corresponds to

detection at the level of 1.2 σ/
√
hour for Crab like sources. In other words, Crab nebula can be detected at a

significance level of 5 sigma in 17 hours.

3.5 HAGAR observations and results

Regular observational runs with HAGAR commenced in September 2008. During last seven years more than 4000

hours of data were collected in the form of observational and various calibration runs. Observations of astronomical

sources are typically carried out in ON-OFF pairs of duration about an hour each. Several galactic and extragalactic

sources were observed in last seven years. Amongst galactic sources, the longest coverage is for Crab nebula/pulsar

(about 320 hours) followed by Geminga pulsar (about 200 hours), whereas amongst extragalactic sources, longest

coverage is for Mkn 421 (about 260 hours) followed by Mkn 501 (about 185 hours) and 1ES2344+514 (about 145

hours).

In data analysis, initially selection cuts based on data quality, stability of rates etc. are applied to data constituting

ON-OFF pair. Then for each event, arrival direction of shower is determined. For this purpose, relative arrival

times of shower front at various telescopes are fitted with a plane front. Normal to this front gives direction of

shower axis. Then space angle, i.e angle between shower axis direction and pointing direction of the telescope is

calculated. Space angle distributions generated for ON-OFF pairs are then compared and normalized and gamma

ray signal is estimated as excess events in signal region. Some of the prominent results from HAGAR are given

below.
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3.5.1 Crab nebula

Crab nebula is a very well studied object discussed earlier. It is a bright and steady source considered as a standard

candle. With HAGAR we had very long coverage for this source. After applying data quality cuts, 103 hours of

data were left which were analysed further. Seasonwise count rates from Crab nebula for six years data are shown

in Fig.3. Flux is estimated to be (2.01±0.11) × 10−10 ph/cm2/s for the threshold of 234 GeV, which is consistent

with the measurements from other experiments like Whipple and MAGIC (see Fig.3) [19].

Figure 3. Left : Seasonal light curve of Crab nebula from HAGAR spanning six years of data. Different panels correspond to

different trigger conditions, at least 4, 5, 6 and 7 telescopes triggering, from top to bottom. Right : Flux measurements from

HAGAR as a function of energy shown by red triangles. Dotted and dashed lines correspond to spectral measurements from

MAGIC and Whipple respectively.

3.5.2 Crab and other pulsars

Search for pulsations was carried out in Crab data collected by HAGAR. Data stretch of about 140 hours was used

for this purpose. Using absolute arrival time of each event recorded with µs accuracy and using known ephemeris

of pulsar with period of 33 ms, phase was calculated for each event and phasogram was generated which is shown

in Fig.4. Excess is seen clearly at phases marked P1 and P2. These are the phases at which excess is seen by

Fermi-LAT and other experiments. This type of excess is not seen in the background data validating the result.

Significance of this excess is estimated. So there is indication of pulsations from Crab at significance level of

3.6σ [20]. Attempts are being made to improve the significance by adding more data and also by refining the

cuts applied in analysis. Some more pulsars including Geminga, PSR J0357+3206, PSR J0633+0632 and PSR

J2055+2539 were observed with HAGAR. There is no statistically significant detection of pulsations from any of

these pulsars and upper limits on pulsed flux are estimated.

3.5.3 Mkn 421

Amongst extragalactic sources, we had longest coverage for Mkn 421. This is a nearby Blazar (z=0.031) of HBL

type. VHE gamma ray emission was discovered by Whipple from this source in 1992. This was the first blazar

to be detected at VHE gamma ray energies. It is known to show frequent flaring behaviour. One large flare from

this source appeared in February 2010, which was seen by VERITAS, HESS and HAGAR. Results from HAGAR

data collected during February-April 2010 are shown in Fig.5. This figure shows seasonwise count rates from

HAGAR for estimated energy threshold of 250 GeV. In February, from 8 hours of data, source was detected at the

significance level of 12.7σ. Mean count rate was 13.4 counts per minute and rate decreased in subsequent seasons.

Fig.6 shows lightcurve from HAGAR along with the X-ray light curve from ASM onboard RXTE. Similar pattern

is seen in both the cases. HAGAR detected maximum flux on the night of 17th February and flux level was about

6-7 crab units. Average flux in February was 3 crab units and it decreased to one crab unit in March and April.

Fig.6 shows multiwaveband data for February 2010 flare. These data were obtained from following instruments,
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Figure 4. Phasogram of Crab pulsar from HAGAR. Excess is seen at phases marked by P1 and P2.

Figure 5. Light curve of Mkn 421 from HAGAR during February-April 2010 (top panel) and corresponding X-ray light curve

from ASM onboard RXTE.

radio data from OVRO, optical data from SPOL, X-ray data from Swift and RXTE, high energy gamma ray data

from Fermi-LAT and VHE data from HAGAR. Multiwaveband light curves for February 2010 are shown with

panels arranged in the order of increasing energy from top to bottom. Flare peaking around 16-17th February is

seen in most of the wavebands.

Evolution of Mkn 421 SED was studied during this flaring episode. For this purpose, multiwaveband light curve

was divided into four states, pre-flare (13-15 February), moderate flare (16 February), TeV flare (17 February)

and post flare (18-19 February) state. SEDs were generated for these four states and fitted with Synchrotron Self

Compton model. One zone SSC model developed by Krawczynski et al. [21] was used for this purpose. SED

during TeV flare state is shown in Fig.6 along with the one zone SSC fit. For all the states one zone SSC model

seems to fit data well. Model parameters for all four states are listed in Table 1. We tried to explain this flaring

episode in terms of passing shock and details are given in [22].

Work on longterm data of Mkn 421 covering seven years (2009-2015) is underway. Lightcurve from HAGAR data

is shown in Fig.7. Multiwaveband light curves and SEDs are being studied [23].
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Figure 6. Left panel : Multiwaveband light curve of Mkn 421 during February 2010, Right panel : Multiwaveband SED of

Mkn 421 during flare detected by HAGAR on 17th February 2010.

Table 1. Parameters for single zone SSC fit to Mkn 421 SEDs.

State Magnetic Doppler log Emin log Emax log Ebreak p1 p2 Ue η =

field factor (eV) (eV) (eV) [10−3] Ue/UB

(G) δ (erg/cc)

State1 0.026 19.5 9.6 12.1 11.3 2.4 4.3 0.9 33.46

State2 0.029 22.0 8.0 12.1 11.4 2.2 3.9 1.4 41.83

State3 0.029 21.0 9.4 12.1 11.45 2.2 4.1 1.0 29.88

State4 0.028 21.0 9.1 12.1 11.45 2.3 4.1 8.5 27.24

3.5.4 Mkn 501

Another Blazar observed extensively with HAGAR is Mkn 501. This is again nearby Blazar (z=0.034) of HBL

type, discovered by Wipple in 1996. It is a highly variable source. Data collected by HAGAR in years 2010 and

2011 are analysed. Source was detected 5σ significance level during April-May 2011 with flux level of 1.5 crab

units. Multiwaveband light curve is generated and SEDs are fitted with SSC model. These SEDs could not be

fitted with one zone SSC model. So additional zone was introduced and two zone SSC model was found to give

satisfactory fit as shown in Fig.8. According to this model, there are two emission zones, inner and outer one.

Radius of inner zone corresponds to variability time scale of 7 hours and outer zone to 48 hours. Further details

are given in [24].

3.5.5 Other Blazars

We have observed some more blazars using HAGAR including 1ES1426+428, 1ES1218+304 and 3C454.3. First

two Blazars are detected by MAGIC experiment, but at much lower flux level compared to Mkn 421 and Mkn

501. HAGAR sensitivity being inferior to VERITAS and MAGIC, these Blazars were not detected with HAGAR

with good statistical significance. 3C454.3 is not detected by any VHE experiment probably because of its high

redshift (z=0.859). It was observed by HAGAR during detection of flare by Fermi-LAT in year 2009. There is no

statistically significant detection of gamma ray signal from HAGAR data and upper limits on flux were estimated

for all these source. Details of these results are given in [25].
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Figure 7. Lightcurve of Mkn 421 from HAGAR during 2009-2015.

Figure 8. Multiwaveband SED of Mkn 501 fitted with two zone SSC model.

4. Future prospects

After successful installation and operation of HAGAR at Hanle, HiGRO collaboration is entering more ambitious

second phase of experiments, i.e. MACE telescope. Installation of MACE is at advanced stage at Hanle and first

light is expected by 2017 [14]. Also there are plans of participation in next generation observatory, Cherenkov

Telescope Array, an international collaboration involving 1200 scientists/engineers from 31 countries [26, 27].
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AstroSat launched on September 28, 2015 is India’s first Space Observatory. It is designed to observe the universe

simultaneously in multi-wave bands spanning a very broad range of wavelengths in the visible, ultraviolet, and X-

rays. All the scientific instruments on-board were made operational in a sequential manner starting on October 1st,

2015. The performance parameters of the various scientific instruments and some results from the first observations

carried out after their commissioning are presented here.

1. Introduction

It has become increasingly clear over the past few decades that understanding the nature of cosmic objects and their

emission processes in different wavelength regions requires observing them simultaneously in as many wave-bands

as possible. This has, hitherto, been possible in only a very few space missions for various technical reasons as the

requirements and environments vary. Multi-wave band observations are extremely important for understanding the

physics of regions with strong gravity, e.g., accretion disks and columns around White Dwarfs as in Cataclysmic

Variables, Neutron Star Binaries and galactic binaries with a few solar mass Black Holes as well as supermassive

black-holes in extragalactic sources like active galactic nuclei (AGN). Such observations are also very important

to unravel the physics of highly accelerated streams of particles in astronomical jets as seen in Blazars and mini-

quasars. Strong Magnetic fields that are responsible for Cyclotron lines seen around accreting neutron stars, and

physics of very hot coronal plasmas in active stars, supernova remnants and clusters of galaxies are other areas of

research requiring simultaneous multi-wave observations.

AstroSat, weighing 1513 Kg, was launched from the Satish Dhawan Space Centre in Shriharikota (SHAR) by an

augmented Polar Satellite Launch Vehicle (PSLV) on 28th September 2015 at 10 AM (IST) into a circular orbit

650 kms above Earth with an inclination of 6 degrees north. There are five principal instruments for observations

onboard AstroSat. Four of these are co-aligned to within a few arc mins to look at the same source in the sky and

observe it simultaneously in the wave-bands of visible, near ultra-violet (NUV), far ultra-violet (FUV), soft X-rays

and hard X-rays. In addition there is Charge Particle Monitor (CPM) to monitor the charged particle background

and is used for the safety of certain instruments and to screen the X-ray events. Fig.1 shows the complete Astrosat.

The pointing towards a cosmic source is controlled by gyros and star sensors, while ensuring the safety of all the

instruments. Three X-ray instruments together give an unprecedented large X-ray bandwidth, with hard X-ray

sensitivity that is better than the previous NASA mission known as Rossi X-ray Timing Explorer (RXTE). The

imaging capability in the NUV and FUV is better than in the older UV mission of NASA known as GALEX. The

near Equatorial launch of the satellite ensures low background hard X-ray detectors. The main characteristics of

the five instruments are briefly described below, followed by the first light results. For a more detailed description

of all the instruments, the reader is referred to [1] and references therein. At the time of this presentation, only the

X-ray instruments had been switched on, therefore the first light results from only the X-ray payloads are given

here. Subsequently the UVIT was switched on and is working perfectly.

2. X-ray Instruments

2.1 Soft X-ray imaging Telescope (SXT)

SXT, based on the principle of grazing incidence, consists of a set of nested coaxial and con-focal shells of conical

mirrors approximating paraboloidal and hyperboloidal shapes in Wolter I geometry. X-rays are incident on a

conical mirror representing a paraboloidal (1α) surface. The reflected X-rays are further reflected by a second

conical mirror representing a hyperboloid (α) surface which focuses the X-rays onto a charge coupled device

(CCD). The conical surfaces made of aluminium foils have a smooth gold surface replicated on them giving a

smoothness in the range of 7 −10 Angstroms (FWHM). The focal length of the telescope is 2 meters and the on-

axis point spread function (PSF) in the focal plane has a FWHM of ∼ 20. The CCD (CCD-22 with 600×600 pixels

27
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Figure 1. A 3D view of the fully assembled AstroSat showing the main instruments.

used in Swift XRT and XMM-Newton MOS) at the focus is housed in a Focal Plane Camera Assembly (FPCA).

The FPCA built in collaboration with the University of Leicester, U.K., provides protection from energetic protons

via a shield surrounding the CCD inside the FPCA. The CCD is cooled to 1910K (-820C) by a thermo-electric

cooler (TEC) and a radiator plate assembly. A very thin optical blocking filter is similar to the XMM-Newton thin

filter is kept above the CCD. The CCD is illuminated permanently by four individual Fe55 radioactive calibration

sources shining on the four corners (outside the field of view) of the CCD, and used for in-flight calibration at two

principal line energies of ∼ 5.9 keV and 6.5 keV. There is a provision for reading the CCD using six data modes:

”Photon Counting” (PC) mode, ”Photon Counting Window” (PCW) mode, ”Fast Windowed Photon Counting”

(FW) mode, ”Bias Map” (BM) mode, ”Calibration” (Cal) mode and ”House Keeping” (HK) mode. In the PC

mode, data from the entire CCD will be collected but only those events that are above a specified threshold energy

only will be transmitted. The PCW mode is similar to the PC mode, but the data are collected from one of the

predefined smaller square windows on the CCD chosen by the user and uploaded by a tele-command. The readout

time in the PC and PCW modes is ∼ 2.4 s. In the FW mode, a fixed window of 150×150 pixels centred on the

CCD will be used. The readout time of this mode will be approximately 278 ms. The Cal mode will be used to

check the calibration of SXT using data from four corner windows of the CCD, with a small central window on

the source. In the BM mode, the entire CCD frame will be sent without any threshold. The energy bandwidth of

the SXT is 0.3 − 8 keV. The effective area of the telescope, after taking into account the efficiency of the filter and

the CCD, is ∼ 128 cm2 at 1.5 keV, and ∼ 22 cm2 at 6 keV. The field of view (fov) of the SXT is ∼ 40 arcmin

(dia). The spectral resolution is ∼ 5-6% at 1.5 keV, and ∼ 2.5% at 6 keV. The SXT can detect sources as faint as

∼ 10−13 ergs cm−2 s−1 at 5σ in an exposure of ∼ 20000 s. SXT will be instrumental in doing X-ray spectroscopy

and measuring the low energy absorption. With a psf of 2 arcmin, SXT is less susceptible to pile-up effects in the

CCD and provides capability to observe bright sources in soft X-rays.

2.2 Large Area Xenon Proportional Counters (LAXPCs)

LAXPCs are 3 identical proportional counters each with its own independent front-end electronics, HV supply,

and signal processing electronics. Each unit consists of 60 anode cells of size 3×3×100 cm3 arranged in 5 layers

providing a 15 cm deep X-ray detection volume filled with a mixture of 90% Xenon + 10% Methane at a pressure

of 1520 torr. A Veto layer surrounds the main X-ray detection volume on 3 sides to reject events due to charged

particles and interaction of high energy photons in the detector thus reducing the background. The alternate anode

cells of each layer are linked together and operated in mutual anti-coincidence, and so are the outputs from different

layers, to further reduce the non-cosmic X-ray background. An aluminised Mylar film of 50 microns thickness

serves to seal the gas inside and act as the entrance window for X-rays into the detector. A gas purifier system will
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recycle the gas regularly in each LAXPC. The Mylar window is supported against the gas pressure by a honeycomb

shaped collimator made of aluminium cells in a square geometry. The fov of the LAXPC is 1o×1o defined by a

multilayer collimator of tin, copper and aluminium placed in a collimator housing and aligned with the openings

in the aluminium collimator below. A 1 mm thick tin sheet coated with copper surrounds each LAXPC unit and

shields from high energy X-rays entering the detector from the sidewalls. In normal mode of operation, LAXPC

has two modes running simultaneously: (a) Broad Band Counting (BBC) that records the event rates in various

energy bands in a selectable time bin (8 ms to 1024 ms; default value 64 ms), and (b) Event Mode Data that records

the arrival time of each event with an accuracy of 10 micro sec, its energy and identity. The energy bandwidth

for each LAXPC is 3 − 80 keV, and the total effective are is 8000 cm2 in the energy band of 5 − 20 keV. The

energy resolution is 12% at 22 keV. It has the best time resolution of all the instruments. LAXPC has no spatial

resolution except when it is scanning mode where it can reach a resolution of 1−5 arcmin. With its large area and

low background it is expected to detect a 0.1 mCrab source in ∼ 1000 s at 3σ level.

2.3 Cadmium-Zinc-Telluride Imager (CZTI)

CZTI with a detection area of 976 cm2 consists of 64 modules of CZT each of area 15.25 cm2, arranged in four

identical and independent quadrants. A passive collimator (fov = 4.6o×4.6o FWHM for energies ¡ 100 keV) helps

in allowing nearly parallel X-rays to enter the detector. A Coded Aperture Mask (CAM) made of 0.5 mm thick

Tantalum plate is of the same size as the detector is positioned above the collimator. CAM has a pre-determined

pattern of open and closed squares/rectangles matching the size of the detector pixels. The patterns are based

on 255-element pseudo-noise Hadamard Set Uniformly Redundant Arrays. Seven types of patterns, with some

repeats, were placed in the form of a 4×4 matrix to generate the CAM for one quadrant. This same pattern is

placed on other quadrants, rotated by 90o, 180o and 270o respectively. At energies > 100 keV the collimator slats

and the coded mask become progressively transparent. For Gamma Ray Bursts, the instrument behaves like an

all-sky open detector. The CZT detectors are operated at temperature of ∼ 0oC by passive cooling provided by

a radiator plate. A Cesium Iodide (Tl) based scintillator detector (20 mm thickness) located just under the CZT

detector modules and viewed by a photomultiplier tube is used for Veto ing background events. A radioactive

(Am241) calibration source module is mounted in a gap between the base of the collimator slats and the detector

plane in each quadrant and illuminates the CZT detector with alpha-tagged 60 keV photons for calibration of

the energy response. Each individual pixel is connected to a pre-amplifier, which is embedded in an Application

Specific Integrated Circuit (ASIC). The X-ray detector has a detection efficiency of 95% within 10 −120 keV and

an energy resolution (∼ 8% at 100 keV). The processing electronics carries out reading, analysing, storing and/or

transferring of detector data to the satellite via data formatter, and responding to tele-commands, just like all the

other X-ray instruments. The CZTI can operate in 16 modes. It has the capability to measure polarisation in the

100 − 300 keV region.

2.4 Scanning Sky Monitor (SSM)

SSM operating in 2.5 −10 keV bandwidth consists of three identical units of position sensitive gas-filled propor-

tional counters with a coded-mask and associated electronics mounted on a rotating platform to scan the sky. Each

unit scans the sky in one dimension over a fov of ∼ 22o×100o. The effective area of SSM is 53 cm2 at 5 keV (11

cm2 at 2.5 keV). An aluminised Mylar window, 50 µm thick seals the gas and is supported by a collimator and

coded mask. Six different coded mask patterns with 50% transparency, provide position resolution of ∼ 1 mm at

6 keV with corresponding angular resolution ∼12 arc min on the sky in the coding direction (2.5o In a direction

perpendicular to the coding direction). The energy resolution is ∼ 25% at 6 keV, and the 3σ detection sensitivity

is ∼ 28 mCrab for 10 minutes integration. The time resolution is 1 ms.

3. Ultra-Violet Imaging Telescopes (UVIT)

The twin telescopes of UVIT image the sky simultaneously in three broad wavebands: FUV (130-180 nm), NUV

(200-300 nm), and VIS (320-550 nm). The optics configuration is Ritchey-Chretian (R−C 2), with a hyperbolic

primary (f/4.5) mirror with effective diameter of 375 mm and focal length of 4.750 m. The fov is ∼ 28 arc min (dia),

and the spatial resolution (FWHM) is < 1.8 arc sec for the FUV and NUV channels, and ∼ 2.2 arc sec for the VIS
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Figure 2. The map of SAA as measured by the CPM. Courtesy: the SSM team.

channel. Several filters are mounted in filter-wheels in front of detectors for selecting narrower wavelength bands.

In the FUV and NUV channels, gratings are also provided for low-resolution (∼ 100) slit-less spectroscopy. The

detectors used in the focal planes are intensified CMOS type with an aperture of ∼ 40 mm (dia). The UV detectors

are used in photon counting mode and the visible detector in integration mode. The entire array of 512×512 pixels

covering the entire fov or a part of it in a ”window” mode can be read at rates up to 600 frames s−1, depending on

the area of the window. The effective areas as a function of the wavelengths have been estimated for all the filter

and telescope combinations and varies from 8 − 50 cm2 depending on the combination used, The time resolution

is 1.7 ms. The detection sensitivity is 20 mag in FUV in a 200 sec observation at 5σ level.

Figure 3. The first light image of the Crab with the CZTI (right). Courtesy: the CZTI team.

4. First light results from X-ray instruments

The first scientific instrument to be switched on was the CPM, and it resulted in the scan of the South Atlantic

Anomaly giving a map of the high energy protons (Fig.2). The CZTI was switched on next and obtained an image

of the Crab in hard X-rays, shown in Fig.3. This was followed by the operationalisation of the SSM (Fig.4), and
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Figure 4. X-ray light curve of a black-hole X-ray binary GRS1915+105 seen with the SSM. Courtesy: the SSM team.

Figure 5. X-ray light curves, as seen with all the 3 units of LAXPC, from a High Mass X-ray Binary (4U0115+63) with a

pulsating neutron star (high magnetic field) companion. Courtesy: the LAXPC team.

the three units of LAXPC (Fig.5). The SSM observation of GRS1915+105 shows that the comparison with an

earlier observation with RXTE, is excellent. The LAXPC observation showed that all the 3 units are working

equally well and are similar in their performance as per the design. LAXPC units also detected the 3.6 s pulsations

from 4U0115+63. The camera door of the SXT was opened on October 26, 2015 and an X-ray images of a

blazar (PKS2155-304) was recorded (Fig.6). The image and the number of counts recorded established that SXT

has a point spread function of ∼ 2 arc min (FWHM) and can reach the designed detection sensitivity. Detailed

analysis of these and other similar observations and the characterisation of all the instruments will be completed

during the Performance Verification phase of the satellite ending on March 31, 2016. This will be followed by 6

months of guaranteed time observations by the instrument teams, after which the satellite will be open to public

for observations, based on the peer review process.
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It is well known fact that gravitational field can alter the space-time structure and gravitational redshift is its one

example. Electromagnetic field can also alter the space-time similar to gravitational field. So electromagnetic field

can give rise to an additional effect on gravitational redshift. There are many objects in nature, like neutron stars,

magnetars etc which have high amount of rotation and magnetic field. In the present paper we will derive the

expression of gravitational redshift from rotating body having intense magnetic field by using the action function

of the electromagnetic fields.

1. Introduction

General relativity is not only relativistic theory of gravitation proposed by Einstein, but it is the simplest theory that

is consistent with experimental data. Gravitational redshift of light is one of the predictions of general relativity

and also provides evidence for the validity of the principle of equivalence. Any relativistic theory of gravitation

consistent with the principle of equivalence will predict a redshift.

Gravitational redshift has been reported by most of the authors without consideration of rotation of a body. Ne-

glecting the rotation, the geometry of space time can be described using the well-known spherically symmetric

Schwarzschild’s geometry and information on the ratio M
r

of a compact object can be obtained from the gravi-

tational redshift, where M and r are mass and radius respectively. Thus the redshifted angular frequency ω′ and

the original angular frequency ω of a photon in Schwarzschild geometry are related by the relation (page 268, of

Landau and Lifshitz [1]):

ω
′

=
ω

√
gtt

=
ω

√

1− rg
r

, (1)

where rg = 2GM/c2 is the Schwarzschild radius.

Adams in 1925 has claimed first about the confirmation of the predicted gravitational redshift from the measure-

ment of the apparent radial velocity of Sirius B [2]. Pound and Rebka in 1959 were the first to experimentally

verify the gravitational redshift from nuclear - resonance [3]. Pound and Snider in 1965 had performed an im-

proved version of the experiment of Pound and Rebka, to measure the effect of gravity, making use of Mossbauer

- Effect [4]. Snider in 1972 has measured the redshift of the solar potassium absorption line at 7699 Å by using an

atomic - beam resonance - scattering technique [5]. Krisher et al. in 1993 had measured the gravitational redshift

of Sun [6]. Nunez and Nowakowski in 2010 had obtained an expression for gravitational redshift factor of rotating

body by using small perturbations to the Schwarzschild’s geometry [7]. Payandeh and Fathi in 2013 had obtained

the gravitational redshift for a static spherically symmetric electrically charged object in Isotropic Reissner – Nord-

strom Geometry [8]. Dubey and Sen in 2014 had obtained the expression for gravitational redshift from rotating

body in Kerr Geometry. They also showed the rotation and the latitude dependence of gravitational redshift from a

rotating body (such as pulsars) [9]. The expression of Gravitational Redshift Factor ℜ from rotating body in Kerr

geometry was given as (Equation (69), Dubey and Sen [9])

ℜ(φ, θ) =
√

gtt + gφφ(
dφ

cdt
)2 + 2gtφ(

dφ

cdt
). (2)

Dubey and Sen in 2015 had obtained the expression for gravitational redshift from charged rotating body in Kerr

- Newman Geometry. They showed that gravitational redshift increases as the electrostatic and magnetostatic

charges increase, for a fixed value of latitude at which light ray has been emitted. Gravitational redshift increases

from pole to equatorial region (maximum at equator), for a given set of values for electrostatic and magnetostatic

charge [10].

With this background in the present paper we will derive the expression of gravitational redshift from rotating body

having intense magnetic field by using the action function of the electromagnetic fields.
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2. Geometry of rotatating body

When rotation is taken into consideration, the covariant form of metric tensor for Kerr family (Kerr (1963) [11],

Newman et al. (1965) [12]) in terms of Boyer-Lindquist coordinates with signature (+,-,-,-) is expressed as

ds2 = gttc
2dt2 + grrdr

2 + gθθdθ
2 + gφφdφ

2 + 2gtφcdtdφ, (3)

where gijs are non-zero components of Kerr family. If we consider the three parameters: mass M , rotation

parameter a and electric charge Q and/or magnetic charge P , then it is easy to include charge in the non-zero

components of gij of Kerr metric, simply by replacing rgr with rgr − Q2 − P 2. Non-zero components of gij of

Kerr-Newman metric are given as follows (page 261-262 of Carroll (2004) [13]):

gtt = 1− rgr −Q2 − P 2

ρ2
, (4)

grr = −ρ2

∆
, (5)

gθθ = −ρ2, (6)

gφφ = −[r2 + a2 +
(rgr −Q2 − P 2)a2sin2θ

ρ2
]sin2θ, (7)

gtφ =
asin2θ(rgr −Q2 − P 2)

ρ2
(8)

with

ρ2 = r2 + a2cos2θ (9)

and

∆ = r2 + a2 − rgr +Q2 + P 2, (10)

where rotation parameter of the source a = J
Mc

.

If we replace rgr −Q2 − P 2 by rgr −Q2 and further if we put rotation parameter of the source a equal to zero,

then it reduces to Reissner - Nordstrom metric. Also if we replace rgr −Q2 − P 2 by rgr then the Kerr-Newman

metric reduces to Kerr metric and further if we put rotation parameter of the source a equal to zero then it reduces

to Schwarzschild metric.

3. The action function of the electromagnetic fields

The action function S for the whole system, consisting of an electromagnetic field as well as the particles located

in it, must consist of three parts given (page 71, of Landau and Lifshitz [1]) as

S = Sf + Sm + Smf , (11)

where Sm is that part of the action which depends only on the properties of the particles, that is, just the action of

free particles. The quantity Smf is that part of the action which depends on the interaction between the particles

and the field. The quantity Sf is that part of the action which depends only on the properties of the field itself, that

is, Sf is the action for a field in the absence of charges. Thus Sm, Smf and Sf has the form as

Sm = −
∑

mc

∫

ds, (12)

Smf = −
∑ e

c

∫

Akdx
k, (13)

Sf = − 1

16πc

∫

FikF
ikdΓ. (14)
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Using equations (12), (13) and (14), the action equation (11) for field and particle can be written as

S = −
∑

mc

∫

ds−
∑

∫

e

c
Akdx

k − 1

16πc

∫

FikF
ikdΓ, (15)

where dΓ = cdt dx dy dz, is four dimensional volume element. The potential Ak is the potential at that point of

space time at which the corresponding particle is located. The potential Ak and electromagnetic field tensor Fik,

refer to actual field, that is, the external field plus the field produced by particles themselves; Ak and Fik depends

on the positions and velocities of the charges.If we consider charges e to be distributed continuously in space. Then

we can introduce the charge density ρ such that ρdV is the charge contained in the volume dV. We can also replace

the sum over the charges by an integral over the whole volume.

We can define the current four-vector as

ji = ρ
dxi

dt
. (16)

The space component of this vector form of the current density vector can be written as

j = ρv, (17)

where v is the velocity of the charge at given point. The time component of the current four-vector is cρ. Thus ji

can be written as

ji = (cρ, j). (18)

Now using equation (16), we can rewrite the second term of the action (as given by equation (15)) as

−
∑

∫

e

c
Akdx

k = −1

c

∫

ρ
dxi

dt
AidV dt = − 1

c2

∫

Aij
idΓ. (19)

On substituting the value of Aij
i(= A0j

0 − A.J = cρΦ− A.J), the above equation (19) can be written as

− 1

c2

∫

Aij
idΓ = − 1

c2

∫

(Φcρ)dV cdt+
1

c2

∫

A.J dV cdt. (20)

The energy stored in the magnetic field in S.I. system is given (page 94 of Scheck [14] and page 213-214 of Jackson

[15]) as
1

2c

∫

A.J dV =
1

2µ0

∫

H2dV. (21)

In Gaussian system the above equation (21) of magnetic energy can be written as

1

2c

∫

A.J dV =
1

8π

∫

H2dV. (22)

From above equation (22), we can write,

1

c2

∫

A.J dV =
1

4π c

∫

H2dV. (23)

Using equation (23), we can write equation (20) as

−
∑

∫

e

c
Akdx

k = − 1

c2

∫

(Φcρ)dV cdt+
1

c2

∫

A.J dV cdt = −1

c

∫

ΦρdΓ +
1

4πc

∫

H2dΓ. (24)

The above equation (24) is the second term of the action equation (as given by equation (15)). We have (page 73,

of Landau and Lifshitz [1]),

FikF
ik = 2(H2 − E2) = invariant. (25)

Now using the above equation (25), we can write the third term of the action (as given by equation (15)) as

− 1

16π c

∫

FikF
ikdΓ = − 1

16π c

∫

2 (H2 − E2)dΓ. (26)
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Using equations (24) and (25), the action equation (as given by equation (15)) can be rewritten as

S = −
∑

mc

∫

ds− 1

c

∫

Φ ρ dΓ +
1

4π c

∫

H2 dΓ− 1

8π c

∫

(H2 − E2) dΓ. (27)

After Simplification above equation (27) can we written as

S = −
∑

mc

∫

ds− 1

c

∫

Φ ρ dΓ +
1

8π c

∫

(H2 + E2) dΓ. (28)

4. Gravitational redshift

Apsel in 1978 - 1979 had discussed, that the motion of a particle in a combination of gravitational, electrostatic

and magnetostatic fields can be determined from a variation principle of the form δ
∫

dτ = 0. The field and motion

equations are actually identical to Maxwell - Einstein theory. The theory predicted that even in a field free region

of space, electro and magneto static potentials can alter the phase of wave function and the life time of charged

particle [16, 17]. The space time is a Riemannian space with metric gij , it is natural to assume that law of motion

for a particle in a combination of gravitational and electromagnetic fields ([16, 17]) as

δ

∫

dτ = 0, (29)

where

dτ =

√

gijdxidxj + eAidx
i

mc2

c
. (30)

The above equation (30) can be rewritten as

cdτ = ds =
√

gijdxidxj +
eAidx

i

mc2
. (31)

In case of rotating body, we can use the value of ds2 = gijdx
idxj for Kerr geometry as given by equation (3).

From the analogy given by Apsel in equations (29-31) and using the equation of action (as given by equation (28)),

we can write the modified action equation as

S̃ = −
∑

mc

∫

√

gttc2dt2 + grrdr2 + gθθdθ2 + gφφdφ2 + 2gtφcdtdφ−
1

c

∫

Φ ρ dΓ+
1

8π c

∫

(H2+E2) dΓ.

(32)

Finally, if we consider a rotating star having intense magnetic field (such as pulsars), then we can take an approxi-

mation Φ = 0 and E = 0. Now earlier obtained equation of action (32) can be rewritten as

S̃ = −
∑

mc

∫

√

gttc2dt2 + grrdr2 + gθθdθ2 + gφφdφ2 + 2gtφcdtdφ+
1

8πc

∫

H2dΓ. (33)

From the above equation (33), we can write new form of ds̃ = c dτ̃ as

ds̃ =
√

gttc2dt2 + grrdr2 + gθθdθ2 + gφφdφ2 + 2gtφcdtdφ+
H2dV cdt

8πmc2
. (34)

For a sphere, the photon is emitted at a location on its surface where dr = dθ = 0, when the sphere rotates. Now

above equation (34) can be written as

c dτ̃ = cdt

[

√

gtt + gφφ(
dφ

cdt
)2 + 2gtφ(

dφ

cdt
) +

H2dV

8πmc2

]

(35)

which can be rewritten as

dτ̃

dt
=

√

gtt + gφφ(
dφ

cdt
)2 + 2gtφ(

dφ

cdt
) +

H2

8π̺mc2
, (36)
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where, ̺m = m/dV is the scalar mass density. τ̃ and t are proper time and world time respectively. The quantity
dφ
cdt

is termed as angular velocity of frame dragging (as discussed in details [9, 10]). In General relativity, redshift

Z and redshift factor ℜ are defined as [9, 10]

dτ̃

dt
=

ωob

ωem

= ℜ =
1

Z + 1
=

λem

λob

, (37)

where ω and λ denote frequency and wavelength respectively. Emitter’s and observer’s frame of reference are

indicated by subscripts em and ob. A redshift Z of zero corresponds to an un-shifted line, whereas Z < 0 indicates

blue-shifted emission and Z > 0 red-shifted emission. A redshift factor ℜ of unity corresponds to an un-shifted

line, whereas ℜ < 1 indicates red-shifted emission and ℜ > 1 blue-shifted emission.

From equation (36) and (37), we can write redshift factor ℜ as

ℜ =

√

gtt + gφφ(
dφ

cdt
)2 + 2gtφ(

dφ

cdt
) +

H2

8π̺mc2
. (38)

The above expression (38) is the expression of gravitational redshift from rotating body having intense magnetic

field. The first term of the expression is due to mass and rotation effect, which is gravitational redshift from rotating

body and given as

ℜmass+rotation =

√

gtt + gφφ(
dφ

cdt
)2 + 2gtφ(

dφ

cdt
). (39)

The second term is due to the presence of intense magnetic field in the rotating body, which is an additional

magnetic redshift and given as

ℜmag(H, ̺m) =
H2

8π̺mc2
. (40)

For a typical neutron star the value of magnetic field is H ∼ 1012 Gauss and density is ̺m ∼ 1015 − 1016 gm
c3

(page 293 of Straumann [18]). From equation (40), we can obtain an additional magnetic redshift by using the

values of scalar mass density (̺m) and magnetic field (H).

5. Conclusions

In the present work the expression of gravitational redshift from rotating body having intense magnetic field has

been derived by using the action function of the electromagnetic fields. The first term of the derived expression is

due to mass and rotation effect, which is gravitational redshift from rotating body. While the second term is due to

the presence of intense magnetic field in the rotating body, which is an additional magnetic redshift. If we ignore

the electric field E and magnetic field H contribution then we can obtain the corresponding expression for redshift

factor ℜ in Kerr Geometry [9].
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We discuss exact solutions of Einstein’s field equations describing the charged Schwarzschild black hole in two

different dark energy backgrounds. These are regarded as embedded solutions that the charged Schwarzschild

black hole is embedded into the dark energy spaces producing charged Schwarzschild-dark energy black holes,

as Reissner-Nordstrom-dark energy black holes. Here we consider the dark energy solutions having the equation

of state parameter w = −1/2. It is found that the space-time geometry of solution is non-vacuum Petrov type

D in the classification of space-times. We study the strong energy conditions for the energy-momentum tensors

of the Reissner-Nordstrom-dark energy solution, which can be able to explain the different between the repulsive

gravitational field for dark energy as well as the attractive gravitational field for normal matter like electromagnetic

field. It is also shown that the metric tensor for the Reissner-Nordstrom-dark energy solution can be expressed in

two different Kerr-Schild ansatze establishing the fact that the embedded dark energy solution is an exact solution

of Einstein’s field equations.

1. Introduction

The standard general relativistic interpretation of dark energy is based on the cosmological constant [1], which

has the simplest model for a fluid with the equation of state parameter w = p/ρ = −1, ρ = −p = Λ/K
with K = 8πG/c4 [2]. It turns out the cosmological constant to be the de Sitter solution with cosmological

constant Λ representing a relativistic dark energy with the non-perfect fluid energy-momentum tensor Tab =
2 ρ ℓ(a nb) + 2 pm(am̄b), whose trace is T = 2(ρ − p) [3], different from the one, T (pf) = ρ − 3p of the perfect

fluid energy-momentum tensor T
(pf)
ab

= (ρ∗ + p)ua ub − p gab. This suggests that a relativistic dark energy must

have a line-element describing a space-time geometry having gravitational field in the form of energy-momentum

tensor possessing a negative pressure with a minus sign in the equation of state parameter. It is also true that

a vacuum space-time with Tab = 0 cannot have negative pressure to determine the equation of state parameter

value with minus sign. Hence, the cosmological constant in vacuum Einstein’s field equations cannot describe

the negative pressure to possess a minus sign in the equation of state parameter. The criteria of minus sign in

the equation of state is to indicate the matter distribution in the space-time to be a dark energy, otherwise the

plus sign in the equation of state is for the normal matter. According to the properties of de Sitter solution as

relativistic dark energy, there is another relativistic dark energy solution admitting an energy-momentum tensor

with the equation of state parameter w = p/ρ = −1/2, ρ = 4m/Kr, p = −2m/Kr, where m is a non-zero

constant considered to be the mass of dark energy [4]. It is also to emphasize that the equation of state parameter

w = −1/2 for the dark energy belongs to the range −1 < w < 0 focussed for the best fit with cosmological

observations [5] and references there in. Here we shall refer this solution simply as dark energy solution without

giving any extra prefix. It is also to note that the energy-momentum tensor with negative pressure for the de Sitter

dark energy model violates the strong energy condition, showing the repulsive gravitational field of the matter,

whereas the energy-momentum tensor of a normal matter field with positive pressure satisfies the strong energy

condition, showing the attractive gravitational field of the matter.

In general relativity the Schwarzschild solution is regarded as a black hole in an asymptotically flat space. Its

generalization is the Reissner-Nordstrom black hole. The Reissner-Nordstrom-de Sitter solution is the charged

extension of the Schwarzschild-de Sitter solution which is interpreted as a black hole in an asymptotically de Sitter

space with the cosmological constant Λ [6]. The Reissner-Nordstrom-de Sitter solution is also considered as an

embedded black hole that the Reissner-Nordstrom solution is embedded into the de Sitter space to produce the

Reissner-Nordstrom-de Sitter black hole [7]. Here we are looking for an exact solution to describe the Reissner-

Nordstrom black hole in the dark energy with the parameter w = p/ρ = −1/2 as Reissner-Nordstrom-dark energy

black hole. The embedded dark energy solution will be the generalization of Schwarzschild-dark energy black hole

[8] .

Here we consider the dark energy solution possessing a non-perfect fluid energy-momentum tensor having an
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equation of state parameter ω = p/ρ = −1/2 with negative pressure derived in [4]. For deriving the Reissner-

Nordstrom-dark energy solution we adopt the mass function expressed in a power series expansion of the radial

coordinate [9] as

M̂(u, r) =

+∞
∑

n=−∞

qn(u) r
n, (1)

where qn(u) are arbitrary functions of retarded time coordinate u = t − r. The mass function M̂(u, r) has a

powerful role in generating new exact solutions of Einstein’s field equations [10]. Wang and Wu [9] have utilized

the mass function in deriving non-rotating embedded Vaidya solution into other spaces by choosing the function

qn(u) corresponding to the index number n. Further utilizations of the mass function M̂(u, r) have been extended

in rotating system and found the role of the number n in generating rotating embedded solutions of the field

equations [10]. Here we shall consider the cases of the index number n as n = 0,−1, 2. That the value n = 0
corresponds to the Schwarzschild solution, n = −1 for the charge term and n = 2 for the dark energy solution

possessing the equation of state parameter ω = −1/2 [4]. These values of n will conveniently combine in order to

obtain embedded charged Schwarzschild-dark energy black hole or Reissner-Nordstrom-dark energy black hole.

The resulting solution will be an extension of the non-charged Schwarzschild-dark energy black hole discussed

in [8], which is again a further extension of the work of [4] with the dark energy when n = 2. Here we recall

conveniently that the Reissner-Nordstrom-de Sitter black hole is the combination of two solutions corresponding to

the index number n = 0,−1 (Reissner-Nordstrom) and n = 3 (de Sitter), different from the Reissner-Nordstrom-

dark energy solution (to be discussed here) with n = 0,−1, 2 in the power series expansion of mass function

M̂(u, r).

2. Reissner-Nordstrom black hole in dark energy

In this section we shall show the derivation of an embedded Reissner-Nordstrom-dark energy solution to Einstein’s

field equations. This solution will describe charged Schwarzschild black hole in asymptotically dark energy back-

ground as the Reissner-Nordstrom-de Sitter black hole is regarded as a black hole in asymptotically de Sitter space

[12]. For deriving an embedded Reissner-Nordstrom-dark energy solution, we choose the Wang-Wu function

qn(u) in the expansion series of the mass function M̂(u, r) as

qn(u) =















M, when n = 0
−e2/2, when n = −1
m, when n = 2
0, when n 6= 0,−1, 2,

(2)

where M and e are constants. Then, the mass function takes the form

M̂(u, r) =

+∞
∑

n=−∞

qn(u) r
n =M + r2m− e2

2r
. (3)

Then using this mass function in general canonical metric in Eddington-Finkestein coordinate system (u, r, θ, φ),

ds2 =
{

1− 2M̂(u, r)

r

}

du2 + 2du dr − r2dΩ2,

with dΩ2 = dθ2 + sin2θ dφ2, we find a line element

ds2 =
[

1− r−2
{

2r(M +mr2)− e2
}]

du2 + 2du dr − r2dΩ2, (4)

where m is a constant regarded as the mass of the dark energy; and M and e denote the mass and the charge of

Reissner-Nordstrom black hole. The line-element will reduce to that of Schwarzschild black hole whenm = e = 0
with singularity at r = 2M , and also it will be that of dark energy when M = e = 0 having singularity at

r = (2m)−1 [4]. The line-element (4) will have a singularity when guu = 0, which has three roots r = ri,
i = 1, 2, 3. The Reissner-Nordstrom solution has two roots r = r± for guu = 0 when m = 0. It is noted that the

mass m should not be considered here to be zero for the existence of the dark energy.
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The null tetrad components for metric line element are obtained as follows

ℓa = δ1
a
,

na =
1

2

[

1− 1

r2

{

2r(M +mr2)− e2
}]

δ1
a
+ δ2

a
,

ma = − r√
2

{

δ3
a
+ i sin θ δ4

a

}

(5)

with the normalization conditions ℓan
a = 1 = −mam̄

a and other inner products being zero. The above sta-

tionary space-time (4) possesses an energy-momentum tensor describing the interaction of dark energy with the

electromagnetic field as the source of gravitational field:

Tab = 2 ρ ℓ(a nb) + 2 pm(am̄b), (6)

where the quantities are found as

ρ =
4

Kr
m+

e2

Kr4
,

p = − 2

Kr
m+

e2

Kr4
. (7)

These ρ and p are the density and pressure respectively for dark energy interacting with the electromagnetic field.

Here K denotes the universal constant K = 8πG/c4. The equation (7) indicates that the contribution of the

gravitational field to Tab is measured by dark energy mass m and the electric charge e of Reissner-Nordstrom

solution. The energy-momentum tensor (6) is calculated from Einstein’s field equations Rab − (1/2)Rgab =
−KTab of gravitational field for the space-time metric (4) as shown in the reference [4].

As in general relativity the physical properties of a space-time geometry are determined by the nature of the matter

distribution in the space, it is convenient to express the energy-momentum tensor (6) in such a way that one must

be able to understand it easily in order to study the physical properties of the embedded solution. Thus, the

total energy-momentum tensor (EMT) for the solution (4) may, without loss of generality, be decomposed in the

following form as:

Tab = T
(e)
ab

+ T
(DE)
ab

, (8)

where the EMTs for the electromagnetic field T
(e)
ab

and the dark energy T
(DE)
ab

are respectively given as:

T
(e)
ab

= 2 ρ(e)ℓ(a nb) + 2 p(e)m(am̄b)

T
(DE)
ab

= 2ρ(DE) ℓ(a nb) + 2p(DE)m(am̄b),

where the coefficients are as

ρ(e) = p(e) =
1

Kr4
e2, (9)

ρ(DE) =
4

Kr
m, p(DE) = − 2

Kr
m. (10)

Thus, the equation of state parameters for the dark energy and the electromagnetic field are found as

ω(DE) =
p(DE)

ρ(DE)
= −1

2
(11)

ω(e) =
p(e)

ρ(e)
= 1. (12)

These two equations show that the equation of state parameter for dark energy has a minus sign in (11), whereas

the electromagnetic field (normal matter) has a plus sign (12) indicating the difference between dark energy and

the normal matter.

The energy-momentum tensor (8) satisfies the energy conservation law [3] expressed in Newman-Penrose (NP)

formalism [13]

T ab

;b = T
(e)ab

;b + T
(DE)ab

;b = 0. (13)
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Here T ab itself satisfies the conservation law. On the other hand, we also find that both T (e)ab and T (DE)ab are

separately satisfied the same (vide [8]). The above equation (13) shows the fact that the metric of the line element

(4) describing embedded Reissner-Nordstrom-dark energy is a solution of Einstein’s field equations. We find the

trace of the energy momentum tensor Tab (6) as

T = 2(ρ− p) =
12

Kr
m. (14)

Here we observe that ρ − p must be always greater than zero for the existence of the dark energy in embedded

Reissner-Nordstrom-dark energy solution (4) with m 6= 0, (if ρ = p implies that m will vanish). It is found that

the charge e does not appear in (14) showing the fact that the trace of the energy-momentum tensor for electro-

magnetic field always vanishes. The decomposition of energy-momentum tensor (8) indicates the interaction of

electromagnetic field T
(e)
ab

with the dark energy T
(DE)
ab

in the Reissner-Nordstrom-dark energy space-time (4).

It is also convenient to write the energy-momentum tensor (6) in terms of time-like ua (uaua = 1) and space-like

va (vava = −1) vector fields as

Tab = (ρ+ p)(uaub − vavb)− pgab (15)

where ua = (1/
√
2)(ℓa + na) and va = (1/

√
2)(ℓa − na). This is certainly different from the energy-momentum

tensor of the perfect fluid T
(pf)
ab

= (ρ + p)ua ub − p gab with the trace T (pf) = ρ − 3p. We observe from the

energy densities and the pressures given in (9) and (10) that the energy-momentum tensors for dark energy and

electromagnetic field obey the weak energy and the dominant energy conditions given in [8]. However, T
(DE)
ab

violates the strong energy condition

p(DE) ≥ 0, ρ(DE) + p(DE) ≥ 0 (16)

due to the negative pressure (10), and implies that the gravitational force of the dark energy is repulsive which may

cause the acceleration of the model, like the cosmological constant leads to the acceleration of the expansion of

the Universe. But, the energy-momentum tensor for electromagnetic field T
(e)
ab

possessing the positive pressure (9)

obeys the strong energy condition leading the attractive gravitational field

p(e) ≥ 0, ρ(e) + p(e) ≥ 0. (17)

Here we establish the different between the repulsive gravitational field for dark energy as well as the attractive

gravitational field for normal matter like electromagnetic field.

The non-vanishing tetrad components of Weyl tensorCa

bcd
of the embedded Reissner-Nordstrom-dark energy black

hole (4) is found as

ψ2 =
1

r4

{

− rM + e2
}

. (18)

The Weyl scalar ψ2 indicates that the space-time of the embedded solution (4) is Petrov typeD in the classification

of space-times. The mass m of the dark energy does not appear in (18) which shows the intrinsic property of the

conformally flatness of the dark energy, even embedded into the Reissner-Nordstrom black hole.

The Reissner-Nordstrom-dark energy metric can be expressed in Kerr-Schild ansatz on the dark energy background

g
(RNDE)
ab

= g
(DE)
ab

+ 2Q(r)ℓaℓb (19)

whereQ(r) = −Mr−1+e2r−2/2. Here, g
(DE)
ab

is the dark energy metric and ℓa is geodesic, shear free, expanding

and zero twist null vector for both g
(DE)
ab

as well as g
(RNDE)
ab

. The above Kerr-Schild form can also be recast on the

Reissner-Nordstrom background as

g
(RNDE)
ab

= g
(RN)
ab

+ 2Q̂(r)ℓaℓb (20)

where Q̂(r) = −mr. These two Kerr-Schild forms (19) and (20) show the fact that the Reissner-Nordstrom-

dark energy space-time (4) with the mass m of the dark energy is a solution of Einstein’s field equations. It is to

emphasize the fact that the two metrics g
(RN)
ab

for Reissner-Nordstrom solution and g
(DE)
ab

for dark energy cannot

be added in order to obtain g
(RNDE)
ab

as g
(RNDE)
ab

6= 1
2

{

g
(RN)
ab

+ g
(DE)
ab

}

. It is the fact that in general relativity two

physically known solutions cannot be added to derive a new embedded solution.
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3. Conclusion

In this paper we proposed an exact solution of Einstein’s field equations describing the Reissner-Nordstrom black

hole embedded into the dark energy space having negative pressure as Reissner-Nordstrom-dark energy black hole.

This embedded solution is the straightforward generalization of Schwarzschild-dark energy solution [8]. Here we

have followed the method of generating embedded solutions of Wang and Wu [9] by considering the power index

n as n = 0,−1 and 2 in the derivation of the solution. Then we calculate all the NP quantities for the line

element and find that the embedded space-time possesses an energy-momentum tensor of the electromagnetic field

interacting with the dark energy having negative pressure. We have shown the difference between the dark energy

and the normal matter (like electromagnetic field) that dark energy has the equation of state parameter with minus

sign, whereas the normal matter has the parameter with plus sign. The energy-momentum tensor of the dark energy

distribution in the embedded space-time (4) violates the strong energy condition leading to a repulsive gravitational

force, whereas that of the electromagnetic field satisfies the strong energy condition producing attractive gravitation

field. The metric tensor of Reissner-Nordstrom-dark energy solution is able to express in Kerr-Schild ansatze on

different backgrounds (19) and (20) establishing the fact that the Reissner-Nordstrom-dark energy space-time (4)

with the mass m of the dark energy is a solution of Einstein’s field equations.

The decomposition (8) of energy-momentum tensor (6) indicates the interaction of electromagnetic field with the

dark energy. This is one of the remarkable properties of the Reissner-Nordstrom-dark energy that two different

matters of distinct physical properties are present in one energy-momentum tensor (6) as the source of gravitational

field. It is also seen that the trace of Tab is T = 2(ρ−p) = 2(ρ(DE)−p(DE)) which is different from that of perfect

fluid T (pf) = ρ− 3p. The energy-momentum tensor for the dark energy with negative pressure violates the strong

energy condition while that for the electromagnetic field with positive pressure obeys the condition showing the

difference between the dark energy and the normal matter (electromagnetic field). In fact the embedded solution

(4) possessing a non-perfect fluid energy-momentum tensor may be an example of space-times which are enable

to explain how the dark energy is different from the normal matter.
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We construct the quantum mechanical model of an experiment by Colella, Overhauser and Werner (COW), where

gravitationally induced quantum-mechanical phase shift in the interference between coherently split and separated

neutron de Broglie waves are studied to demonstrated the validity of WEP, assuming that the underlying space

time has a granular structure, described by a canonical noncommutative algebra of coordinates xµ. The time-

space sector of the algebra is shown to add a mass-dependent contribution to the gravitational acceleration felt

by neutron de Broglie waves measured the experiment. This makes time-space noncommutativity a potential

candidate which can cause a false-positive signature of the violation of WEP even if the ratio of the inertial mass

mi and gravitational mass mg is a universal constant. We therefore argue that the COW-type experiments can be

used as a probe for the evidence of NC structure of space-time.

1. Introduction

At the Planck scale the space-time is thought to have a granular structure that can be described by a noncommuta-

tive (NC) geometry with space-time coordinates xµ satisfying the algebra

[xµ, xν ] = iΘµν , (1)

where Θµν is a constant anti-symmetric tensor. This idea of such NC space-time has gained interest in the recent

past when it was commonly realized that the low energy effective theory of D-brane in the background of NS-NS

B field lives on noncommutative manifold [1, 2]. Further, in the brane world scenario [3], our space-time may be

the world volume of a D-brane, and thus can be described by noncommutative geometry (1). From the physical

perspective as well, it has long been suggested that in the Gedanken experiment of localizing events in a space-

time with Planck scale resolution, a sharp localization induces an uncertainty in the space-time coordinates which

can be naturally described by the noncommutative geometry (1) [4]. Although effects of such a NC structure of

space-time may only appear near the string/Planckian scale, we hope that some low energy relics of such effects

may exist and their phenomenology can be explored at the level of quantum mechanics (QM) [5, 6, 7, 8, 9, 10].

2. The WEP and its experimental background

The structure of space-time may be best revealed through gravitational interaction. In fact, the central idea of

Einstein’s general theory of relativity (GTR) is based on the interpretation of gravity as a property of space-time,

i.e. its curvature. This interpretation relies upon the Weak Equivalence Principle (WEP) which has its experimental

foundation in the universality of free fall (UFF) that demands the following: That the ratio mi

mg
= α between the

inertial mass mi and gravitational mass mg , both appearing in the classical equation of motion

ẍ =
mg

mi

g =
g

α
= g′ (2)

of a freely falling “point like” particle immersed in the nearly homogeneous local gravitational field g = GME

RE
2

caused by Earth’s mass ME is a universally constant. Here we have ignored the nominal height from ground

level h with respect to the Earth’s radius RE . The effect of the Earth’s gravitational field g is the gravitational

acceleration of the particle ẍ = g′ = g
α

which, if α indeed is a universal constant and does not vary from one

particle species to another, is same for all kind of material particles.

As it happens, most theoretical attempts to connect GTR to standard model allow for violation of the WEP [11].

Naturally, the WEP has a long and persistent history of various kinds of experimental tests. Motivation for this

stems from desire to gain insight into some alternative/modified version of GTR. In experimental tests of WEP with

46
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macroscopic objects we look for species-dependent value of the gravitational acceleration g′ caused by change in

the value of α for different particle species. In the Eötvös-type experiments possible violations are parametrised

by the Eötvös factor, defined as

η (A,B) =
δg′ (A,B)

g′average (A,B)
= 2

ẍ (A)− ẍ (B)

ẍ (A) + ẍ (B)
(3)

for two macroscopic test masses made of materials A and B. Currently the lowest bound is reached for the ele-

ments Beryllium and Titanium, using rotating torsion balances [12], η (Be,Ti) < 2.1 × 10−13. Future tests like

“MICRO-Satellite à traı̂née Compensée pour l’Observation du Principe d’Equivalence” (MICROSCOPE) [13], to

be launched in 2016 aim at a lower bound of 10−15. In the atomic/subatomic regime using improvements on the

earlier Eötvös-type experiments, Dicke et al in 1961 concluded that neutrons and protons in nuclei experience the

same gravitational acceleration g′ within about 2×10−9g′ [14] by comparing acceleration of PbC1 (neutron-proton

ratio R = 1.45) and of Cu (R = 1.19). That a free neutron experiences the same g′ it experiences within a nucleus

was experimentally confirmed [15] in 1965 by measuring g′ from the difference of fall of two well-collimated

beams of high and low velocity neutrons while traversing a long evacuated horizontal flight path. A comparison

of neutron scattering lengths, with measurement techniques both dependent1 and independent2 of gravity, also

leads to a verification of the WEP [16] in 1976. However, these results, though obtained for free neutrons be-

having as matter waves, are still a consequence of their classical parabolic path under gravity as required by the

correspondence principle and hence no quantum features are involved.

The scenario changed during 1974 to 1979, when Colella, Overhauser and Werner (COW), in a series of experi-

ments [17] demonstrated the validity of WEP using gravitationally induced quantum-mechanical phase shift in the

interference between coherently split and separated neutron de Broglie waves at the 2 MW University of Michigan

Reactor, the validity of equivalence principle in the so called “quantum limit” was claimed to have been examined.

The verification was complimented in 1983 by repeating the experiment in an accelerated interferometer where

gravitational effects are compensated [18]. This established that the Schrödinger equation in an accelerated frame

predicts a phase shift which agrees with observation as assumed earlier by COW [19] for the validity of strong

equivalence principle in the quantum limit. Since then, the WEP in the quantum domain has been verified, time

and again, with ever increasing accuracy.

3. COW test and the NC space-time structure

Given the roll of WEP in attributing gravity as a property of the space-time, one may think of the COW experiments

a test of the space-time property at the quantum level. Therefore, it will not be surprising if some trace of the

granularity of the space-time structure that is believed to exist at the Plank scale resolution, manifest itself, even

in the low energy regime where quantum mechanical tests of WEP are currently being performed. In this paper

we therefore construct the quantum mechanical theory describing the COW experiment with the assumption that

the underlying space-time that we live in has a NC structure described by the relation (1). Our motivation is to

investigate if some manifestation of this NC geometry shows up in the observable results. Specifically, we work

out the gravity-induced phase-shift which shows a leading order NC contribution. We shall argue that this NC term

will lead to an apparent violation of WEP in COW-type test data. We also put forward a suggestion to trace this

apparent violation of the WEP to its’ NC origin if such COW-type experiments can be performed with different

atomic/subatomic particles. That can serve as evidence of the NC structure of space-time.

4. Modeling the COW experiment in NC space-time

We start by discussing how to introduce the NC space-time structure in the system. Since in QM space and time

could not be treated on an equal footing, we impose the geometry (1) at a field theoretic level and eventually

reduce the theory to quantum mechanics3. This allows us to examine the effect of the whole sector of space-time

1Slow neutrons reflected from liquid mirrors after having fallen a hight.
2By transmission measurements on liquid prob.
3This is a reasonable starting point since single particle quantum mechanics can be viewed as the one-particle sector of quantum field theory

in the very weakly coupled limit where the field equations are essentially obeyed by the Schrödinger wave function [6].
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noncommutativity in an effective noncommutative quantum mechanical (NCQM) theory. Owing to the extreme

smallness of the NC parameters the current/near future experiments can only hope to detect the first order NC

effects. Since it has been demonstrated in various formulations of NC gravity [20] that the leading NC correction

in the gravity sector is second order we can safely assume the Newtonian gravitational field g remains unaltered

for all practical purpose.

The NC Schrödinger field theory describing cold neutron beams in Earth’s gravitational field (along the x-axis) in

a vertical xy (i = 1, 2) plane is

Ŝ =

∫

d2xdt ψ̂† ⋆

[

i~∂0 +
~
2

2mi

∂i∂i −mggx̂

]

⋆ ψ̂. (4)

Since there is no direct way to relate the physical observables to the NC operators in (4), we consider the NC fields

ψ̂ as functions in the deformed phase space where ordinary product is replaced by the star product [1, 6] which,

for two fields φ̂(x) and ψ̂(x), is given by

φ̂(x) ⋆ ψ̂(x) =
(

φ̂ ⋆ ψ̂
)

(x) = e
i
2
θαβ∂α∂

′

β φ̂(x)ψ̂(x
′

)
∣

∣

x
′=x

. (5)

Due to the linear form of the gravitational potential in action (4), expanding the star product and expressing

everything in terms of commutative variables only gives corrections to first order in the NC parameters and all the

higher order terms vanish. This leads to an equivalent commutative description of the original NC model in terms

of the non-canonical action

Ŝ =

∫

d2xdtψ†

[

i~
(

1−
η

2~
mgg

)

∂t +
~
2

2mi

∂i
2 −mggx−

i

2
mggθ∂y

]

ψ, (6)

where NC effect is manifest by the presence of NC parameter Θ10 = η among time and spatial directions. The

term with spatial NC parameter Θ12 = θ and first derivative ∂y can be absorbed in the ∂y
2 and is therefore

inconsequential. We use a physically irrelevant rescaling4 of the fields ψ 7→ ψ̃ =
√

(

1− η
2~mgg

)

ψ to recast

this non-canonical form of action with a conventionally normalized kinetic term such that the fields evolves in a

canonical manner. This leads to

Ŝ =

∫

d2xdt ψ̃†

[

i~∂t +
~
2

2mi

(

1− η
2~mgg

)∂i
2 −

mggx
(

1−
ηmgg

2~

)

]

ψ̃. (7)

Comparing with the standard Schrödinger action we can immediately read off the observed inertial mass as m̃i =
2mi

(

1− η
2~mgg

)

. Assuming the NC effect to be very small the interaction can be written in terms of this observed

inertial mass m̃i as

mggx
(

1−
ηmgg

2~

) = m̃ig
′x

(

1 +
ηm̃ig

′

~

)

, (8)

where we have used equation (2) to replace mgg with mig
′ 5. The final form of the canonical action reads

Ŝ =

∫

d2xdt ψ̃†

[

i~∂t +
~
2

2m̃i

∂i
2 − m̃ig

′x

(

1 +
ηm̃ig

′

~

)]

ψ̃ (9)

leading to the equation of motion

i~∂tψ̃ = −

[

~
2

2m̃i

∂i
2 + m̃ig

′x

(

1 +
ηm̃ig

′

~

)]

ψ̃ (10)

that can be considered at the level of quantum mechanics with ψ̃ interpreted as the Schrödinger wave function.

4Since the experimental setup is confined to a small region of space-time where the local gravitational field g is essentially constant, this

rescaling amounts to multiplying the field variable by a constant.
5Note that replacing mgg with mig

′ follows from the definition of gravitational acceleration g
′ for an individual particle, as in (2), and not

from the assumption of WEP. WEP is required when we assume that such accelerations for two separate particle species are identical for same

gravitational field g.
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Equation (10) describes the NCQM of a freely falling neutron in earth’s gravity in terms of commutative variables.

Thus equation (10) will serve as the desired theoretical model of the COW test constructed in a NC space-time.

Note that since we have successfully expressed the equation (10) in terms of the commutative variables completely,

bringing out the NC effect explicitly as an additional term in the process, so the principles of ordinary quantum

mechanics readily apply to the equation. In the next section we use this equation in context of the COW experiment

to calculate the quantum mechanical phase-shift induced by gravity.

5. Analysis of the model: NC effect in the COW phase-shift

We can readily derive the Ehrenfest relations

d

dt
< x > =

< p >

m̃i

, (11)

d2

dt2
< x > = g′

(

1 +
ηm̃ig

′

~

)

= g̃′ (12)

for the average velocity and acceleration of the neutrons. Thus, though representing an NC system, this Schrödinger

equation (10) behaves similar to that in ordinary/commutative space. However, the two crucial differences with

the commutative result are

1. the appearance of observed inertial mass of the neutron m̃i in the average momentum (11)

and

2. the observed gravitational acceleration g̃′ in (12) experienced by a quantum mechanically behaving system,

namely the neutron, is now mass-dependent due to the NC structure of space-time.

Note that contrary to the common expectation that Ehrenfest theorem will lead to results mimicking classical

behaviour i.e. a quantum mechanical wave packet will move, on an average, along a classical particle trajectory

subject to the applied potential [21], here we have a observable quantum mechanical effect that is not washed out

by the averaging process and shows up as a deviation from the classical trajectory. That this effect is of NCQM

origin is established by the explicit appearance of the ratio η
~

.

In a COW-type experimental setting the gravitational potential is much smaller than the total energy of the neutrons

and we can calculate the gravity induced phase-shift from (10) by the semi-classical prescription of matter-wave

interferometry [22, 23]

∆ϕgrav = −
1

~
m̃ig̃

′ (l1 sinφ)∆t, (13)

where φ is the tilt angle between the plane containing the coherently splitted neutron beams and the horizontal

plane, giving rise to an effective height l1 sinφ of one of the neutron beam paths with respect to the other. Since

the effective potential is time-independent here we can use the paraxial approximation to compute

∆t = l2/
d

dt
< x > =

l2m̃iλ0
h

, (14)

where λ0 = h/ < p > is the laboratory neutron de Broglie wavelength corresponding to the average neutron

momentum < p > in (11). Combining (13) and (14) we find

∆ϕgrav = −
A sinφ

2π~2
λ0m̃i

2g̃′, (15)

whereA = l1l2 is the area enclosed by the interfering beams. This phase difference depends on the mass-dependent

g̃′.

Comparing this theoretical prediction (15) with the experimentally measured gravity induced phase-shift one can

obtain the quantum mechanically observed gravitational acceleration g̃′ (n) felt by a neutron. We intend to stress

the quantum mechanical nature of the observation because phase-shift is a quantum phenomena and it is only in the
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quantum regime that any NC effect will be picked up. This data, when confronted with local classical gravitational

acceleration g′ measured with macroscopic bodies where no NC effect is possible, will exhibit a discrepancy given

by

δg

gav
=
g̃′ (n)− g′

gav
=
g′ (n)− g′

gav
+
ηm̃i (g

′ (n))
2

~gav
. (16)

Here g′ (n) = g
α(n) is the acceleration the neutron would feel due to Earth’s gravitational field g if our space-time

followed the ordinary Hisenberg algebra instead of the NC algebra (1). The first term signifies the violation of

the WEP, if any, caused by the non-universality of α, i.e. α (n) 6= α (macroscopic) and the second term arise as

an effect of the NC structure of space-time showing an apparent violation even if α in equation (2) is a universal

constant. This sets a limitation on the accuracy to which WEP can be verified at the quantum limit by COW

experiments on ultra-cold neutrons.

6. Conclusion

In principle the apparent violation due to NC effect should be identifiable if the COW-type experiments can be

performed with different atomic/subatomic particle species. With the first term vanishing/negligible in equation

(16), the discrepancy for different species will vary linearly with their masses and the slope ηg′

~
will give the

absolute value of the NC parameter. Such a linear variation of discrepancy with particle mass, if indeed observed,

will serve to establish the granular structure of the space-time we live in. Of course this holds only if any true

violation due to non-universality of α occurs beyond the accuracy level where the NC effect starts affecting the

data. In the best case scenario the COW-type experiments and its other variants such as atom-interferometer based

on fountain of laser-cooled atoms [24], may open a low-energy “window” to reveal the noncommutative structure

of space-time.

7. Acknowledgement

The author would like to thank Patrick Das Gupta for enlightening comments and also the financial support of DST

SERB under Grant No. SR/FTP/PS-208/2012.

References

[1] N. Seiberg, E. Witten, [JHEP 09 (1999) 032]; A.A. Bichlet al, [hep-th/0102103]

[2] See for example, R.J. Szabo, Phys. Rept. 378 (2003) 207 and the referances therein.

[3] I. Antoniadis, N. Arkani-Hamed, S Dimopoulos, G. Dvali, Phys. Lett. B 436 257-263,1998.

[4] S. Doplicher, K. Fredenhagen and J. E. Roberts, Phys. Lett. B 331 39 (1994); S. Doplicher, K. Fredenhagen

and J. E. Roberts, Commun. Math. Phys. 172, 187 (1995); D.V. Ahluwalia, Phys. Lett. B 339 301-303, 1994.

[5] M. Chaichian, M.M. Sheikh-Jabbari, and A. Tureanu, Phys. Rev. Lett. 86, 2716 (2001).

[6] B. Chakraborty, S. Gangopadhyay, A. Saha, Phys. Rev. D 70 107707 (2004).

[7] A. Saha, S. Gangopadhyay, Phys. Lett.B 681 96 (2009).

[8] A. Saha, S. Gangopadhyay, S. Saha, Phys. Rev.D 83 (2011) 025004.

[9] O. Bertolami, J. G. Rosa, C. M. L. de Aragao, P. Castorina, D. Zappala, Phys. Rev. D 72 (2005) 025010.

[10] A. Saha, Eur. Phys. J.C 51 199 (2007).

[11] T. D. Lee and C. N. Yang, Phys. Rev. 98 1501 (1955); Y. Fujii, Nature (London), Phys. Sci. 234, 5 (1971); P.

Fayet, Phys. Lett. B 171 261 (1986); T. R. Taylor and G. Veneziano, Phys. Lett. B 213 450 (1988); T. Damour

and A. M. Polyakov, Nucl. Phys. B 423 532 (1994); S. Dimopoulos and G. F. Giudice, Phys. Lett. B 379 105

(1996); T. Damour, Class. Quantum Grav. 13 A33 (1996).

[12] S. Schlamminger et al, Phys. Rev. Lett. 100 041101 (2008).

[13] http://microscope.onera.fr/

[14] R. H. Dicke, Sci. Am. 205, 84 (1961); R. H. Dicke, in Relativity, Groups and Topology, edited by C. DeWitt

and B. DeWitt (Gordon and Breach Science Publishers, Inc., New York, 1964).

[15] J. W. T. Dabbs, J. A. Harvey, D. Paya, and H. Horstmann, Phys. Rev. 139 B756 (1965).



COW test of the weak equivalence principle: A low-energy window...... 51

[16] L. Koester, Phys. Rev. D 14 907 (1976).

[17] A. W. Overhauser and B.Colella, Phys. Rev. Lett. 33, 1237 (1974); R.Collelaet al, Phys. Rev. Lett. 34, 1472

(1975); S. A. Werner et al, Phys. Rev. Lett. 42 1103 (1979).

[18] U. Bonse and T. Wroblewski, Phys. Rev. Lett. 51 1401, (1983).

[19] J.-L. Staudenmann and S. A. Werner, R. Colella and A.W. Overhouser, Phys. Rev. A 21 1419 (1983).

[20] P. Mukherjee, A. Saha, Phys. Rev. D 74 (2006) 027702 and the references therein.

[21] J.J. Sakurai, Modern Quantum Mechanics, Addison Wesley, 2000.

[22] Paul R. Berman, Atom Interferometry, Academic Press, 1997.

[23] A. D. Cronin, J. Schmiedmayer and D. E. Pritchard, Rev. Mod. Phys. 81 1051 (2009).

[24] A. Peters, K. Y. Chung and S. Chu, Nature 400 849 (1999).



PS1 :: National Conference on CICAHEP, Dibrugarh (2015), 01, 52 – 57

Dynamics of higher dimensional FRW cosmology in R
p exp(λR) gravity

S. K. Banik, D. K. Banik and K. Bhuyan
Department of Physics, Dibrugarh University, Dibrugarh-786004, Assam, India

Presenter: S. K. Banik (sebikabanik063@gmail.com); COS.7, Oral, CICAHEP15.76

We study the cosmological dynamics for Rp exp(λR) gravity theory in the Metric formalism, using dynamical

systems approach. Considering higher dimensional FRW geometries in case of a perfect fluid which exerts same

pressure in the normal and extra dimensions, we find the exact solutions, and study their behavior and stability for

both in vacuum and matter cases. It is found that stable solutions exist corresponding to accelerated expansion at

late times which can describe the inflationary era of the universe. We also study the evolution of the scale factors

both in the normal and extra dimensions for different values of anisotropy parameter and the number of extra

dimensions for such a scenario.

1. Introduction

f(R) gravity theories have a long history. They can lead to a period of accelerated expansion of the early universe.

More recently they are used in cosmology as an alternative to dark energy for explaining the observed late-time

accelerated expansion of the universe. In these theories, the Hilbert-Einstein action of General Relativity (GR) is

generalized by replacing the Ricci scalar R with a non-linear function f(R) [1]. One of the conditions for viability

of f(R) is f ′(R) > 0, f ′′(R) > 0. Many viable forms of f(R) gravity theories are intensively studied in [1, 2].

In earlier epochs, our universe was much smaller and the energy of the universe was typically high enough so that

the present four dimensional spacetime could have been preceded by a higher dimensional one. The dynamics

of the universe with the extra dimensions will be different as compared to the normal four dimensional one and

hence such models could have been a promising mechanism to explain the late time accelerated expansion of the

universe. In the recent years many important solutions of Einstein’s equations dealing with higher dimensional

model have been obtained [3, 4]. However, the dynamics of higher dimensional models with f(R) gravity have

not been much explored using dynamical system analysis (DSA).

The main aim of this paper is to investigate the phase-space analysis of higher dimensional FRW geometries, in a

universe governed by exponential gravity of the form f(R) = Rp exp(λR), where the parameter λ is an arbitrary

real number; considering the matter content as a perfect fluid. The major focus is on the late-time stable solutions.

The kinematical quantities such as deceleration parameter, scale factor, shear scalar and matter energy density

have also been studied. We examine how the dynamics of the universe evolves with different values of anisotropy

parameter as well as the number of extra dimensions.

2. Field Equations

Here we consider the line element for (1 + 3 +D)-dimensional spacetime metric as [4]

ds2 = −dt2 +A2(t)δijdx
idxj +B2(t)δIJdX

IdXJ , (1)

where i, j = 1, 2, 3 denote three normal spatial dimensions and I, J = 4, 5, ..., (D + 3) represent D extra spatial

dimensions. n = D + 3 represents total spatial dimensions. A(t) and B(t) denote the scale factors in normal

dimensions and extra dimensions respectively.

The universe is assumed to be filled with distribution of matter described by energy momentum tensor of a perfect

fluid:

Tµν = (ρ+ P )uµuν − Pgµν , (2)

where ρ is the energy density and P is the pressure and uµ is the (1 + 3 + D)-dimensional velocity vector. The

Friedmann’s Field equation in (1 + 3 +D) dimensions using the metric (1) can be written as

(n− 1)

2n
Θ2 − σ2 +Θ

ḟ ′

f ′
−

1

2f
(Rf ′ − f)−

ρ

f ′
= 0 (3)
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where,

Θ = n
ȧ

a
= 3

Ȧ

A
+D

Ḃ

B
, σ2 =

3D

2n

(

Ȧ

A
−

Ḃ

B

)2

, (4)

R = 6
Ä

A
+ 2D

B̈

B
+ 6

Ȧ2

A2
+ 6D

ȦḂ

AB
+D(D − 1)

Ḃ2

B2
= 2Θ̇ +

n+ 1

n
Θ2 + 2σ2 (5)

where, Θ, σ and R represent the volume expansion scalar, the shear scalar [5] and the Ricci scalar respectively.

H = ȧ
a

is the Hubble parameter and a is the average scale factor. The dot denotes derivative with respect to time.

We may obtain the solutions for the scale factors directly from the Einstein equations as [4, 6]

A(t) = a(t) exp(Σ1W (t)), B(t) = a(t) exp(Σ2W (t)) (6)

where, W (t) is defined as

W (t) =

∫

dt

a(t)n
(7)

and the constants Σ1 and Σ2 satisfy the relation

3Σ1 +DΣ2 = 0. (8)

3. Dynamical System Approach

For the implementation of DSA, let us introduce the set of expansion normalized dimensionless variables as:

Σ =
2n

n− 1

σ2

Θ2
, x =

2n

n− 1

ḟ ′

f ′Θ
, y =

n

n− 1

R

Θ2
, z =

n

n− 1

f

f ′Θ2
, Ω =

2n

n− 1

ρ

f ′Θ2
. (9)

Using the constraint equation 1−Σ+ x− y+ z−Ω = 0, we can investigate the reduced dynamical system in the

variables (Σ, y, z,Ω).

The Friedmann equation (3) for f(R) = Rp exp(λR) can be written as

dΣ

dτ
= (n− 1)Σ [−2y + z − Ω] ,

dy

dτ
=

(n− 1)

2
y

[

2(n+ 1)

n− 1
+ 2Σ− 2y +

(−1 + Σ + y − z +Ω)yz

y2 − pz2

]

,

dz

dτ
=

(n− 1)

2
z

[

3n+ 1

n− 1
+ Σ− 3y + z − Ω+

(−1 + Σ + y − z +Ω)y2

y2 − pz2

]

,

dΩ

dτ
=

(n− 1)

2
Ω

[

1 + n(1− 2w)

n− 1
+ Σ− 3y + z − Ω

]

(10)

where, the new time variable τ is defined as τ = ln a.

4. Results

4.1 The vacuum case

For the vacuum case, Ω = 0 (ρ = 0) equation (10) becomes

dΣ

dτ
= (n− 1)Σ [−2y + z] ,

dy

dτ
=

(n− 1)

2
y

[

2(n+ 1)

n− 1
+ 2Σ− 2y +

(−1 + Σ + y − z)yz

y2 − pz2

]

,

dz

dτ
=

(n− 1)

2
z

[

3n+ 1

n− 1
+ Σ− 3y + z +

(−1 + Σ + y − z)y2

y2 − pz2

]

. (11)
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In order to find the fixed points we need to set equation (11) equal to zero. For obtaining the basic observable

quantities, like deceleration parameter, scale factor and shear for a fixed point we use the formalism based on [7].

The first-order differential equations for Θ and σ in terms of the dynamical variables can be written as

Θ̇ = −

(

n+ 1

n− 1
+ Σi − yi

)

(n− 1)Θ2

2n
= −(1 + qi)

Θ2

n
, (12)

σ̇

σ
= −

(n− 1)

2n

(

n+ 1

n− 1
+ Σi + yi − zi

)

Θ, (13)

where qi = n−1
2 (1 + Σi − yi) represents the deceleration parameter and i denotes the evaluation at an specific

fixed point.

The fixed points Av, Dv, Ev and Lv are found to represent power-law solution, while for the points Bv and Cv ,

we have Θ̇ = 0, which implies such points correspond to de Sitter solutions. Only the points on Lv (except for

the point at Σ = 0) have nonzero shear. The fixed points in vacuum case and their solutions i.e., deceleration

parameter, scale factor and shear along with their stability are listed in Table 1. The fixed points Bv and Cv (when

n = 2p− 1) are non-hyperbolic with 2D stable manifold. Center manifold theorem is used for these two points, to

find their stabilities, since only these two points have the probability to being a solution.

Table 1. Fixed points and their solutions for deceleration parameter, scale factor and shear associated with fixed points in

vacuum case. We use the notation y∗ =
p(2np−3n+2p−1)
(n−1)(p−1)(2p−1)

, z∗ =
(2np−3n+2p−1)

(n−1)(p−1)(2p−1)
and σ∗ = σ0a

−
1
2

(

n+1+Σ∗(n−1)
)

0 t−1.

Points Fixed points Deceleration Scale factor Shear Existence Stability

/Line (Σ, y, z) parameter (q) (a) (σ)

Av (0, 0, 0) n−1
2 a0t

2
n+1 0 always Non-hyperbolic with

2D unstable manifold

Bv

(

0, n+1
n−1 , 0

)

-1 a0e
1
n
Θ0t 0 always Non-hyperbolic with

2D stable manifold

Cv

(

0, n+1
n−1 ,

2
n−1

)

-1 a0e
1
n
Θ0t 0 always Non-hyperbolic with

2D stable manifold

for n = 2p− 1

Stable for
8(n+1)(2p−n−1)

(n+1)2−4p > 0

for n 6= 2p− 1

Dv

(

0, 0,− 3n+1
n−1

)

n−1
2 a0t

2
n+1 0 p 6= 0 Saddle with

2D stable manifold

Ev

(

0, y∗, z∗

)

n−4p2+4p−1
2(p−1)(2p−1) a0t

2(p−1)(2p−1)
n−2p+1 0 p 6= 1, 1

2 ; Stable for

n 6= 2p− 1 2np−3n+2p−1
(p−1) > 0,
n−2p+1

(p−1)(2p−1) > 0

Lv (Σ, 0, 0) n−1
2 (Σ + 1) a0t

2
n+1+Σ(n+1) σ∗ Σ ≥ 0 Non-hyperbolic with

2D unstable manifold

4.2 The matter case

For matter case the equations of the system in terms of the four variables Σ, y, z and Ω are given by equation (10).

In order to find the fixed points we need to set equation (10) equal to zero as done in vacuum case. These fixed

points are listed in Table 2. We can find scale factor, shear and energy density for a fixed point in the matter case,

using the first-order differential equations of Θ, σ and ρ which are given by
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Table 2. Fixed points and their solutions for deceleration parameter, scale factor and shear associated with fixed points in

matter case. We use the notation y∗ =
p(2np−3n+2p−1)
(n−1)(p−1)(2p−1)

, z∗ =
(2np−3n+2p−1)

(n−1)(p−1)(2p−1)
, σ∗ = σ0a

−
1
2

(

n+1+Σ∗(n−1)
)

0 t−1, ρ∗1 =

ρ0t
−

2n
n+1

(1+w)
and ρ∗2 = ρ0e

−(1+w)Θ0t.

Points Fixed points Deceleration Scale factor Shear Energy Existence

/Line (Σ, y, z) parameter (q) (a) (σ) density (ρ)

Am (0, 0, 0, 0) n−1
2 a0t

2
n+1 0 0 always

Bm

(

0, n+1
n−1 , 0, 0

)

-1 a0e
1
n
Θ0t 0 0 always

Cm

(

0, n+1
n−1 ,

2
n−1 , 0

)

-1 a0e
1
n
Θ0t 0 0 always

Dm

(

0, 0,− 3n+1
n−1 , 0

)

n−1
2 a0t

2
n+1 0 0 p 6= 0

Em

(

0,y∗, z∗, 0
)

n−4p2+4p−1
2(p−1)(2p−1) a0t

2(p−1)(2p−1)
n−2p+1 0 0 p 6= 1, 1

2 ;

n 6= 2p− 1

Fm

(

0, 0, 0, 1+n(1−2w)
n−1

)

n−1
2 a0t

2
n+1 0 ρ∗1 always

Gm

(

0, n+1
n−10,−

2(1+n+nw)
n−1

)

-1 a0e
1
n
Θ0t 0 ρ∗2 always

Lm (Σ, 0, 0, 0) n−1
2 (Σ + 1) a0t

2
n+1+Σ∗(n+1) σ∗ 0 Σ ≥ 0

Θ̇ = −

(

n+ 1

n− 1
+ Σi − yi

)

(n− 1)Θ2

2n
= −(1 + qi)

Θ2

n
, (14)

σ̇

σ
= −

(n− 1)

2n

(

n+ 1

n− 1
+ Σi + yi − zi +Ωi

)

Θ. (15)

ρ̇ = −(1 + w)ρΘ (16)

where, w = P
ρ

is the equation of state parameter.

The fixed points Am, Dm, Em, Fm and Lm are found to represent power-law solution, while for the points Bm, Cm

and Gm, we have Θ̇ = 0, which implies such points correspond to de Sitter solutions. Only the line of fixed points

Lm is anisotropic. The fixed points Am, Bm, Cm, Dm, Em and the line of fixed points Lm correspond to vacuum

solutions (ρ = 0). Therefore we find the energy density for the remaining two fixed points Fm and Gm.

4.3 Evolution of the scale factors both in normal and extra dimensions

In order to investigate how the dynamics of the universe evolves we plot the solution of scale factors A(t) and

B(t) with respect to time for the anisotropic fixed point taking different values of anisotropy parameter Σ1 and

the number of extra dimensions D in Fig. 1 and Fig. 2. Fig. 1 shows that the expansion in scale factor A(t)
in the normal dimension varies too fast if we increase the value of anisotropy parameter Σ1, which implies that

shear helps in expansion. For the same Σ1, the rate of expansion of scale factor A(t) is reduced if the number

of extra dimension D is increased. It indicates that increase in number of extra dimensions reduces the effect of

shear and hence reduces expansion. In Fig. 2, the scale factor B(t) in extra dimension flips its behavior from

contracting to expanding phase if we decrease Σ1, but it becomes constant asymptotically. These results are found

to be consistent with the results in [4].

5. Conclusions

In vacuum case, we have found that stable de Sitter solutions are present corresponding to isotropic fixed points Bv

and Cv , which can describe the accelerated of the present universe and also the inflationary era of earlier universe.

Also Ev describes accelerated expansion when 4p2
−n−4p+1
n−2p+1 > 0 and n > 2p − 1. The solutions associated with

the isotropic fixed points Av, Dv, Ev and line of anisotropic fixed points Lv correspond to decelerated expansion

allowing structure formation, but they are not stable. These points are required to be unstable in order to obtain a

cosmology evolving towards a dark energy era.
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Figure 1. Evolution of scale factor A(t) for different values of Σ1 and D.
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Figure 2. Evolution of scale factor B(t) for different values of Σ1 and D.

In matter case, the solutions related with the isotropic fixed points Bm, Cm and Gm represent de-Sitter expansions

describing accelerated expansion. Em represents power law solution, but it describes accelerated expansion for
4p2

−n−4p+1
n−2p+1 > 0 and n > 2p− 1. Thus, this cosmological model could describe both the inflationary era and the

recent acceleration of the universe. The solutions related with the isotropic fixed points Am, Dm, Em and the line

of anisotropic fixed points Lm corresponds to decelerated expansion of the universe.

Our study for the evolution of scale factors with different number of extra spatial dimensions D and different

values of anisotropy parameter Σ1 shows that shear helps in expansion in the normal spacetime, while increase

in the number of extra dimension reduces the effect of shear. The scale factor B(t) in extra dimension flips its

behavior from contracting to expanding phase if we decrease Σ1 but it becomes constant asymptotically.
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We perform a detailed analysis of the dynamics of homogeneous and anisotropic Bianchi I geometries in f(R)
gravity theory, formulated within the Palatini formalism, using dynamical systems approach. We find the exact

solutions and study the behavior and stability of these solutions. The model based on this theory can produce a

sequence of radiation-dominated, matter-dominated and de-Sitter periods. Solutions corresponding to radiation-

dominated and matter-dominated are found to be unstable. Stable solutions exist corresponding to accelerated

expansion at late times. We also found an anisotropic fixed point which shows the behaviour of shear in this

scenario.

1. Introduction

There exist a huge observational evidence which confirmed that our universe is undergoing the late time accelerated

expansion era. In order to explain this, different approaches have been adopted. One of such approach is the use of

modified gravity models, where gravitational part of Einstein’s General Relativity (GR) is changed to explain this

acceleration of the present universe. f(R) gravity models [1–4] are one of the simplest models among the various

modified gravity models, in which the Lagrangian density in the Hilbert-Einstein action is written in terms of a

nonlinear function of Ricci scalar R, which provides extra curvature terms in the field equations.

Depending on the variational principle applied to the action in order to get the field equations, we can have three

versions of f(R) gravities. The first one is the usual f(R) gravity in metric formalism [1], in which the action is

varied with respect to the metric only, while the connections are the Christoffel symbols, described in terms of the

metric. The second one is the f(R) gravity in Palatini formalism [1,5–7], in which the metric and the connections

are considered as independent variables and the action is varied with respect to both the variables, with the as-

sumption that the matter action does not depend on the connection. There exists one more most general formalism

known as metric-affine f(R) gravity [1] in which we use the Palatini formalism but abandon the assumption that

the matter action is independent of the affine connection.

For the best representation of the present universe, we use the Friedmann-Robertson-Walker (FRW) model [8–10]

which is homogeneous and isotropic. However, it is believed that the early universe could have been inhomo-

geneous and anisotropic. Bianchi type models help us to understand the anisotropy present in the universe. In

a recent paper [11] the cosmological dynamics of homogeneous and anisotropic Bianchi I geometries in case of

f(R) = exp(λR) gravity is analysed using the metric formalism.

It is difficult to find exact cosmological solutions in the study of Higher Order Theories of Gravity (HOTG) due

to the high degree of non-linearity exhibited by these theories. In the study of cosmology, the use of dynamical

systems approach (DSA) [12–14] has the advantage of giving a relatively simple method to find the solutions.

The main objective of this paper is to deal with the Bianchi I cosmological models based on the theories of

the type f(R) = R − β/Rn using DSA in Palatini formalism. Here we have performed a detailed analysis of

the cosmological behaviour by determining all the equilibrium points and then by studying their stability and

cosmological evolution.

2. f(R) theories in Palatini formalism:

Let us consider the action for f(R) theory of gravity [5] as follows

A =

∫

d4x
√−g

[

1

2κ
f(R) + Lm + Lr

]

(1)
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where, f(R) is a function of the Ricci scalar R, Lm and Lr represent the Lagrangians of the matter and radiation

respectively, g is the determinant of metric tensor gµν , κ = 8πG and G is the gravitational constant. Here we

consider Palatini variation of the action, which treats the metric and the affine connection as two independent

variables. Varying the action (1) with respect to the metric gµν , the field equation is obtained as [5]

f ′(Rµν)−
1

2
f(R)gµν = κTµν (2)

where, prime denotes the derivatives with respect to R. The energy momentum tensor Tµν is given by

Tµν = − 2√−g

δ(Lm + Lr)

δgµν
. (3)

Varying the action (1) with respect to the connection Γµν , the field equation is obtained as

∇(
√−gf ′(R)gµν) = 0. (4)

3. f(R) gravity in Bianchi I metric

The line element of the Bianchi I metric which is homogeneous and anisotropic is given by [11]

ds2 = −dt2 +A2(t)dr2 +B2(t)[dθ2 + θ2dφ2] (5)

where, A(t) and B(t) are expansion scale factors. 0 ≤ r ≤ ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π are the comoving

coordinates and t is the cosmological time. For this metric, the generalised Friedmann field equation is

2

3
f ′

[

θ +
3

2

ḟ ′

f ′

]2

− 2f ′σ2 − f = κ(ρm + ρr) (6)

where, we have used the following parameters [11]

θ = 3H =
Ȧ

A
+ 2

Ḃ

B
, σ2 =

1

3

[

Ȧ

A
− Ḃ

B

]2

(7)

where, θ and σ2 are the volume expansion scalar and the shear scalar respectively. The Hubble parameter H is

defined as H = ȧ
a

, where a is the scale factor and the dot represents the derivative with respect to time. ρm and

ρr are the energy densities of matter and radiation, respectively, which satisfy the conservation equations, given

by [5]

ρ̇m + θρm = 0, ρ̇r +
4

3
θρr = 0. (8)

For local rotational symmetry (LRS), the trace free Gauss-Codazzi equation [15] for f(R) gravity is given by

σ̇ = −
[

θ +
f ′′Ṙ

f ′

]

σ. (9)

Taking trace of the equation (2) and considering that the trace of the radiative fluid vanishes, we obtain

f ′R− 2f = −κρm. (10)

Using equations (6) - (10), we obtain

Ṙ = κ
θρm

f ′′R− f ′
= −θ

f ′R− 2f

f ′′R− f ′
. (11)

Using Eqs. (6) and (11) it can be shown that

θ2 =
6κ(ρm + ρr) + 3(f ′R− f)− 6f ′σ2

2f ′ξ
(12)

where,

ξ =

[

1− 3

2

f ′′(f ′R− 2f)

f ′(f ′′R− 2f ′)

]2

. (13)
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4. Dynamical Systems Approach

Let us introduce the following dimensionless variables:

x =
3

2

(f ′R− f)

f ′ξθ2
, Σ =

3σ2

ξθ2
, Ωr =

3κρr
f ′ξθ2

, Ωm =
3κρm
f ′ξθ2

. (14)

The constraint equation can be written as

1 = x+Σ+ Ωr +Ωm. (15)

Differentiating equation (12) and using equations (6) - (13), we find

2
θ̇

θ2
= 3H = −1 + x− 1

3
Ωr − Σ− f ′′Ṙ

f ′θ
Σ− f ′′Ṙ

f ′θ
− ξ̇

ξθ
+

3

2

f ′′RṘ

f ′ξθ3
. (16)

Using the variables in equation (14) together with equations (15) and (16), the evolution equations can now be

written as follows:
dx

dN
= x [3− 3x+ 3Σ + 3C(R)(1− x) + 3D(R)Σ] , (17)

dΣ

dN
= Σ [−3− 3x+ 3Σ− 3C(R) + 3D(R)(Σ− 1)] , (18)

dΩr

dN
= Ωr [−1− 3x+ 3Σ− 3C(R) + 3D(R)Σ] (19)

where, N ≡ ln a and the variables C(R) and D(R) can be written as

C(R) =
Rḟ ′

θ(f ′R− f)
, D(R) =

f ′′Ṙ

θf ′
. (20)

The effective equation of state (EOS) weff and the deceleration parameter q are related to the volume expansion

scalar θ by

θ̇

θ2
= −1

2
(1 + weff ), θ̇ = (1 + q)

θ2

3
. (21)

Now using equation (14) in equation (21), gives

weff = −x+Σ+
1

3
Ωr +

f ′′Ṙ

f ′θ
Σ+

f ′′Ṙ

f ′θ
+

ξ̇

ξθ
− 3

2

f ′′RṘ

f ′ξθ3
, (22)

q = −1 +
3

2

[

− 1 + x− Σ− 1

3
Ωr −

f ′′Ṙ

f ′θ
Σ− f ′′Ṙ

f ′θ
− ξ̇

ξθ
+

3

2

f ′′RṘ

f ′ξθ3

]

. (23)

Using equations (22) and (23), we can find weff and q at any fixed point.

5. Cosmological dynamics for f(R) = R− β/Rn

In this case C(R), D(R) and R can be expressed as

C(R) = n
R(1+n) − (n+ 2)β

R(1+n) + n(n+ 2)β
, (24)

D(R) = − [R(1+n) − (n+ 2)β][n(n+ 2)β]

[R(1+n) + n(n+ 2)β][R(1+n) + nβ]
, (25)

R(1+n) = β
3x+ n(x− Σ− Ωr + 1)− Σ− Ωr + 1

2x
. (26)

The fixed points of a system are determined by setting equations (17) - (19) equal to zero. For this type of f(R)
the fixed points are given by
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Table 1. Fixed points and solutions for equation of states, deceleration parameter, scale factor, shear and eigenvalues associated

with the fixed points of f(R) = R− β/Rn.

Points Ωm EOS Deceleration Scale Shear Eigenvalues

(weff ) parameter (q) factor (a) (σ) [λ1, λ2, λ3,]

Pr1 0 1
3 1 a0|t|

1

2 0 [4 + 3n, 1,−2]

Pr2 0 − 2
3 − 1

n
− 1

2 − 3
2n a0|t|

2n

n−3 0
[

1, 1,
(

1 + 3
n

)]

Pm 1 0 1
2 a0|t|

2

3 0 [3(1 + n),−1,−3]

Pd 0 -1 -1 a0e
1

3
θ0t 0 [−3,−4,−6]

Ps1 0 1 2 a0|t|
1

3 σ0a
−3
0 |t| 23 [3(2 + n), 3, 2)]

Ps2 0 −1− 2
n

−1− 3
n

a0|t|−
n

3 σ0a
3

n

0 |t| 23
[

− 3
n
, 3
n
,
(

− 1− 3
n

)]

Table 2. Fixed points and their stability for f(R) = R− β/Rn.

Range Pr1 Pr2 Pm Pd Ps1 Ps2

saddle with saddle with saddle with

n < −3 2D stable unstable stable − 2D unstable 2D unstable

manifold manifold manifold

non- non-

saddle with hyperbolic saddle with hyperbolic

n = −3 2D stable with 2D stable − 2D unstable with 2D

manifold unstable manifold unstable

manifold manifold

saddle with saddle with saddle with

−3 < n < −2 2D stable 2D unstable stable − 2D unstable unstable

manifold manifold manifold

non-

saddle with saddle with hyperbolic

n = −2 2D stable 2D unstable stable − with 2D unstable

manifold manifold unstable

manifold

saddle with saddle with

−2 < n < − 4
3 2D stable 2D unstable stable stable unstable unstable

manifold manifold

non− saddle with

n = − 4
3 hyperbolic 2D unstable stable stable unstable unstable

saddle manifold

saddle with saddle with

− 4
3 < n < −1 2D unstable 2D unstable stable stable unstable unstable

manifold manifold

saddle with saddle with saddle with

−1 < n < 0 2D unstable 2D unstable 2D unstable stable unstable unstable

manifold manifold manifold

saddle with saddle with

n > 0 unstable unstable 2D stable stable unstable stable

manifold manifold
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1. Pr : (x,Σ,Ωr) = (0, 0, 1)

In this case the numerator and the denominator of equation (26) tend to zero. Therefore we split the analysis

into following parts [5]:

A. Pr1 : β/Rn ≪ 1

B. Pr2 : β/Rn ≫ 1

2. Pm : (x,Σ,Ωr) = (0, 0, 0)

3. Pm : (x,Σ,Ωr) = (1, 0, 0)

4. Pm : (x,Σ,Ωr) = (0, 1, 0)

In this case also the numerator and the denominator of equation (26) tend to zero; therefore we again split

the analysis into following parts:

A. Ps1 : β/Rn ≪ 1

B. Ps2 : β/Rn ≫ 1

A summary of these fixed points and their associated solutions[13] are listed in Table 1. In order to find the stability

of the fixed points we have to linearized the system of equations (17) - (19). The stability of the fixed points in this

case are listed in Table 2.

6. Conclusion

In this paper, we have investigated the dynamics of the cosmological models based on the theories of the type

f(R) = R − β/Rn using DSA in Palatini formalism in case of homogeneous and anisotropic Bianchi I metric.

For this model, we have found the exact solutions and study their behaviour and stability in terms of the values of

the parameter n. It has been found that isotropic fixed point Pd associated with de-sitter expansion is stable for

n > −2, which corresponds to accelerated expansion of the universe. The points Pr1, Pr2 describing the radiation

dominated era are found to be unstable for all values of n, while the point Pm describing the matter dominated era

is also found to be unstable but for n > −1. The anisotropic fixed point Ps1 is unstable for any values of n and the

another anisotropic fixed point Ps2 is unstable for n < 0, and shear evolves inversely with time corresponding to

these two anisotropic fixed points.
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In this paper, by invoking the laws of irreversible thermodynamics the accelerated expansion of the universe is

explained. It is shown that the entropy of the universe, at any particular instant of time, plays a significant role

in the accelerated expansion of the universe. Considering the universe to be filled with a classical mono-atomic,

homogeneous and isotropic gas under classical non-equilibrium situations, two generalized forces causing the

expansion of the universe are arrived at. One of the two forces, the trivial force, has affinity to volume expansion

and the non-trivial force has affinity to spatial expansion. The acceleration of the expansion of the universe is due

to the spatial expansion caused by the non-trivial force and which in turn might account for the presence of the dark

energy. It is shown in this paper that the non-trivial generalized force and the dark energy, providing the negative

pressure for spatial expansion, can be explained with irreversible thermodynamics.

1. Introduction

Since the experimental validation of the accelerated expansion of the universe and the associated dimming of

the Type Ia supernovae [1], there has been a plethora of theoretical constructions to explain the dynamics of the

universe, each one with increasing number of complexities. There are candidates that explain this by assuming the

existence of exotic matter with negative pressure, etc. [2, 3, 4, 5, 6].

The homogeneous and isotropic cosmological models based on FLRW metric, having proved to be remarkably

successful. But with the introduction of data from WMAP and distant supernova together with the the data from

supernovae and galaxy distributions and cosmic microwave background anisotropies lead to introduction of cos-

mological constant Λ or vacuum energy ΩΛ [7, 8]. Along these there are other approaches like that of dark energy

models which attempt to provide a dynamical explanation of the cosmological constant requiring fine-tuning [6].

Together with modifications on cosmological scales of the general theory of relativity, like that of f(R) gravity the-

ory which is plagued with instabilities in the metric formalism [9]. There are also in-homogeneous cosmological

models based on spherically symmetric but in-homogeneous LTB metric [10].

The relation between the pressure P , volume V and the internal energy of an ideal gas is related as PV = 2
3U .

The relation like this, in general, leads to the study of thermodynamics systems of the form PV = ωU , where ω is

a constant and can be positive or negative. The accelerating expansion of the universe and the associated dimming

of the Type Ia Supernovae is explained by assuming the existence of substances that exert negative pressure, with

ω < − 1
3 [3, 11]. The cold dark matter candidates of cosmological models are described phenomenologically by

PV = ωU , where for ω = −1 corresponds to positive cosmological constant and ω < −1 corresponds to phantom

dark energy characterised by null chemical potential [5].

In this article I’ll deal only for ω = 2
3 which implies a universe filled with monoatomic ideal gas [4]. The normal

statistical thermodynamic equations for energy density, entropy density and chemical potential of the universe

remains the same as that of an monoatomic ideal gas [3, 4].

2. Entropy and the accelerated expansion of the universe

In nature reversible process are fictive. Rather all the process are irreversible in nature. This comes from the second

law of thermodynamics. Which states that the entropy of any isolated system always increases for any process, or

mathematically we have dS ≥ 0 where S is the entropy of the system [12, 15]. Now the universe being an isolated

system the entropy of the universes always increases. The Sauckur-Tetrode equation for entropy of a gas obtained

∗Best poster presentation in the Cosmology section.
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by following the Boltzmann statistic is given as

S =
5Nk

2
+Nk ln

[

V (2πmkT )2/3

Nh3

]

, (1)

where k = 1.381× 10−23J/K is the Boltzmann constant, V is the volume, T is the temperature, N is the number

of particles, m is the mass of the particles and h = 6.626× 10−34m2Kgs−1 [15]. A simple rearrangement of the

above equation will yield the volume V of the gas as a function of entropy S given as

V = exp

[

S

Nk
−

5

2
− ln

(2πmkT )
3

2

Nh3

]

. (2)

Now, since at a given instant at some point of the universe some sort of irreversible process is always going on.

As from the second law of thermodynamics it follows that for every single irreversible process the entropy of the

universe increases. Due to which the entropy of the universe is a monotonic increasing function of time. The rate

of change of entropy S′ as S′ = lim∆t→0
∆S
∆t = dS

dt . Since entropy is a non-decreasing function of time hence

S′ ≥ 0. On similar grounds we have the second derivative of entropy with respect to time defined as S′′ = d2S
dt2 .

From thermodynamics we have the second time derivative of entropy defined as the rate of entropy production

and is negative as for any system to attain thermodynamic equilibrium has its entropy maximal. The rate of the

expansion of the universe is calculated by differentiating equation (2) with respect to time:

V ′ =
d

dt
exp

[

S

Nk
−

5

2
− ln

(2πmkT )
3

2

Nh3

]

. (3)

Differentiating again gives the acceleration of expansion of the universe and is given as

V ′′ =

[

(

S

Nk

)′

−

(

ln
(2πmkT )

3

2

Nh3

)′]2

exp

[

S

Nk
−

5

2
− ln

(2πmkT )
3

2

Nh3

]

+

[

(

S

Nk

)′′

−

(

ln
(2πmkT )

3

2

Nh3

)′′]

exp

[

S

Nk
−

5

2
− ln

(2πmkT )
3

2

Nh3

]

. (4)

On analyzing equation (4) we find that the term, exp[ S
Nk − 5

2 − ln (2πmkT )
3

2

Nh3 ] and the squared term, [( S
Nk )

′−

(ln (2πmkT )
3

2

Nh3 )′]2 are always positive as the exponential of any term is always ≥ 0 and the square of any number

is also positive. But the term [( S
Nk )

′′ − (ln (2πmkT )
3

2

Nh3 )′′] is negative. Assuming that the term (ln (2πmkT )
3

2

Nh3 )′′ is

negligible compared to ( S
Nk )

′′ we have the the second term to be negative as the rate of decrease of entropy is

negative.

Although we must have certain contributions due to the (ln (2πmkT )
3

2

Nh3 )′′ as the universe was definitely hotter at

the beginning than now and thus T ′ must exist and must be negative and T ′′ too is negative as the universe cooled

rapidly at the beginning than now. Though we know the behavior of T but we don’t know the behavior of N,h, k
and m. As these might be different at different time of the universe.

3. Generalized force governing the dynamics of universe

In practice, we can consider the universe to be composite thermodynamic system, with identical and non-identical

subsystems separated by permeable diathermal wall and non-rigid boundaries. In addition to this I’ll consider

non-equilibrium situations, where physical quantities like mass, temperature, pressure, etc. are a subject to change

in both time and space and the flow of matter and the dynamic change of the various physical parameters of the

subsystems are governed by the gradient of the parameters and their time dependence. In this non-equilibrium

universe we have spatially homogeneous states, dividing the system into small cells.

To any irreversible thermodynamic process, one can in principle, associate two important types of parameters: one
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to describe the ’force’ that drives the process and the other to describe the ’response’ to the force [12, 14]. Again,

from irreversible thermodynamics if the extensive parameters of two subsystems of a system are unconstrained

then an equilibrium is reached when the affinity vanishes [12, 14, 15]

The universe itself works similar to a composite irreversible thermodynamic system. As in one part of the universe

or the other we have some sort of irreversible process happening due to which the entropy of the universe is always

increasing.

The processes in the universe being irreversible in nature we can, in principle, safely apply the laws of non-

equilibrium thermodynamics. In non-equilibrium thermodynamics if an extensive parameter of two subsystems

are unconstrained, an equilibrium is obtained when the affinity vanishes [12, 13, 14].

For a universe that is expanding at an accelerated rate we have the volume to be an extensive parameter that is

unconstrained. Hence for an equilibrium to be reached we must have the affinity associated with volume to be

zero. The affinity associated with the volume is mathematically defined as Av = (∂S
0

∂V )V 0
which must be zero for

a system to be in an equilibrium state [12]. But if Av is non zero we have irreversible process taking place which

takes the system, here the universe, to a state of equilibrium. A state of equilibrium is also defined as the state

at which the entropy of the system, here the universe, is maximum. Thus we can say that the a generalized force

that drives the universe can be written as Av . Or that Av is the force that causes the accelerated expansion of the

universe.The response to the generalized force is defined as the rate of change of the extensive parameter Jv = dV
dt

[12, 13, 14].

3.1 Volume element of the expanding universe

The FLRW metric gives the volume element as [16]

d3V = R3(t)
1

√
1− ar2

r2dr sin θdθdφ. (5)

The above metric can be written as

dV = dV (k(t, r, θ, φ), τ) = k(t)τ, (6)

where τ = r2dr sin θdθdφ is the normal volume element and k(t, r, θ, φ) = R3(t) 1√
1−ar2

. Where k is the

expansion factor and in general can be a function of both time and space. Signifying that the expansion can vary

both spatially and temporally different . Thus from equation (6) can be written as dV = (∂V∂τ )kdτ + (∂V∂k )τdk.

3.2 Affinities of expansion

The rate of production of entropy is given as

dS

dt
=

∂S

∂V

dV

dt
. (7)

Substituting dV
dt = ∂V

∂τ k
dτ
dt + ∂V

∂k τ
dk
dt in the above equation, we get

dS

dt
=

∂S

∂V

[

∂V

∂τ k

dτ

dt
+

∂V

∂k τ

dk

dt

]

. (8)

Solving further and using the mathematical definition of flux, we have equation (8) to be given as

dS

dt
=

(

∂S

∂τ

)

k

Jτ +

(

∂S

∂k

)

τ

Jk. (9)

Thus from equation (7) and equation (9) we have the affinity due to volume expansion to be given as (∂S∂τ )k = Ak

and the affinity due to spatial expansion to be given as (∂S∂k )τ = Ak

Where the affinity due to volume expansion (∂S∂τ )k = Ak is the generalized force responsible for the increase in
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the mean free path of the constituents due to the actual displacement of the constituents comprising the universe.

The response to the affinity Jτ = dτ
dt is the response to the affinity which the flux in the universe due to the actual

movement of the particles.

The affinity due to spatial expansion (∂S∂k )τ = Ak is the generalized force responsible for the increase of the space

between the constituents of the universe by stretching the fabric of the space itself. The response to the affinity

Jk = dk
dt is the flux due to the expansion of the fabric of space itself.

4. Negative pressure and dark energy

From the first law of thermodynamics, we have for a quasi-static process δW = δQ− dU where, δW is the work

done, δQ is the heat exchanged, dU is the change in the internal energy of the system. We have δW = −pdV . In

the above expression if we substitute dV with dV = (∂V∂τ )kdτ + (∂V∂k )τdk we find,

δW = −p

[(

∂V

∂τ

)

k

]

dτ − p

[(

∂V

∂k

)

τ

dk

]

. (10)

From equation (10) we have the first component −p[(∂V∂τ )k]dτ as the normal work done while the second compo-

nent −p[(∂V∂k )τ ]dk is of some interest as it represents the work done to expand the fabric of the space. Or in other

words it is the work done to expand the space between any two particles in an ensemble.

A comparison of the equation (10) with δW = −pdV we have −p[(∂V∂τ )k] is the generalized pressure due to the

motion of the constituents while −p[(∂V∂k )τ ] is the generalized pressure due to the expansion of the space.

The work done to expand the space is stored in the fabric of the space. A similar analogy can be derived from

the shearing of an iron rod. When one applies a force to expand an iron rod the work done by the force is stored

between the molecules of the solid in the form of inter-molecular forces. a similar kind of process happens for the

fabric of space. To expand the space fabric one has to do some work which is stored in the fabric of space just like

in the case of the of iron rod.

5. Conclusion

The exponential factors present in equation (4) might refer to an inflationary process as the accelerated rate of

expansion of the universe is proportional to an exponential factor [2]. But this doesn’t refer to an inflationary

process because the equation (1) is applicable only after the first elementary particles were formed i.e during

the quark epoch. Referring to an era where the universe was filled with the quark gluon plasma as these are

fermions and bosons and temperatures was high enough to safely assume them to be a gas of fermions and bosons

i.e. the quarks and gluons couldn’t have founded any bounded structures. Thus we can safely apply the Sackur-

Tetrode equation of entropy for fermions and bosons respectively. Thus the total entropy will then be Stotal =
Sfermions+Sbosons, where Stotal is the total entropy of the universe and Sfermions is the entropy due to fermionic

particles and Sbosons is the entropy due to bosonic particles. The form Stotal = Sfermions+Sbosons can be written

as entropy is a extensive parameter. The Sackur-Tetrode equation for entropy thus is valid from the Quark epoch

to all way through to the current state of the universe.

From the equation (4) one can predict that the active regions of the universe i.e. regions where the rate of change

of entropy dS
dt is very high those regions will have higher red shits compared to the regions where the dS

dt is lower.

Though the Hubble’s law is not compromised rather along with that if the (dSdt ) is higher for a star system the faster

will the system recede from us. Thus system like quasars and active galaxies have higher red shifts than the ones

which have low dS
dt .

Considering the universe as a thermodynamic system under non-equilibrium conditions we see that there are two

generalized forces that causes the expansion of the universe. One is a trivial force is the affinity due to volume

expansion while the other, the non-trivial one is the affinity due to spatial expansion. This, affinity due to spatial

expansion, is also a reason for the accelerated expansion of the universe if not the only.

Initial total energy released during the big bang was either converted into matter or was used to expand the space-
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time or for other various process. And this accounts for the missing energy or the dark energy as it is also charac-

terized by a negative generalized pressure −p[(∂V∂k )τ ].

References

[1] A. G. Riess et al., Astron. J. 116, 1009 (1998); S. Perlmutter et al., Astrophys. J. 517, 565 (1999); P. Astier

et al., Astron. Astrophys. 447, 31 (2006); A. G. Riess et al., Astro. J. 659, 98 (2007).

[2] A. H. Guth, Phys. Rev. D 23, 347 (1981).

[3] J. A. S. Lima and S. H. Pereira Phys. Rev. D 78, 083504 (2008).

[4] S. H. Pereira, arXiv:1002.4584v2.

[5] S. H. Pereira and J. A. S. Lima, Phys. Lett. B 669, 266 (2008).

[6] E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006); N. Straumann, Mod. Phys.

Lett. A 21, 1083 (2006).

[7] D. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003).

[8] A. G. Riess et al., Astrophys. J. 607, 665 (2004); P. Astier et al., Astron. Astrophys. 447, 31 (2006).

[9] A. D. Dolgov and M. Kawasaki, Phys. Lett. B 573, 1 (2003).

[10] Kari Enqvist, arXiv:astro-ph/0709.2044v1.

[11] T. Padmanabhan, Phys. Rept. 380, 235 (2003); P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003);

J. A. S. Lima, Braz. J. Phys. 34, 194 (2004).

[12] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, J. Wiley, (1985).

[13] H. C. Ottinger, Beyond Equilibrium Thermodynamics, J. Wiley,(2005).

[14] I. Prigogine, Introduction to Thermodynamics of Irreversible Process, J. Wiley, (1967).

[15] R. K. Pathria and P. D. Beale, Statistical Mechanics, Elsevier, (2011); P. B. Pal, An Introductory Course of

Statistical Mechanics, Narosa Publishing House, (2011).

[16] S. Weinberg, Cosmology, Oxford University Press,(2008); P. Sharan, Spacetime, Geometry and Gravitation,

Hindustan Book Agency,(2009); S. Weinberg, Gravitation and Cosmology, J. Wiley (2014).



PS1 :: National Conference on CICAHEP, Dibrugarh (2015), 01, 68 – 72

Thermodynamic origin of the arrow of time in f(R) gravity

M. M. Verma and B. K. Yadav
Department of Physics, University of Lucknow, Lucknow-226007, Uttar Pradesh, India

Presenter: M. M. Verma (sunilmmv@yahoo.com); COS.5, Oral, CICAHEP15.107.1

In this work, we determine a connection between the Ricci scalar R and the entropy of the universe in the f(R)
gravity models using metric formalism. Since the cosmological arrow of time is associated with entropy produc-

tion, we show that this connection naturally leads to a time ordering of different phases of the universe. Further,

using this approach we explain the dynamics of the universe and also investigate the arrow of time.

1. Introduction

Present universe is in the phase of accelerated expansion [1]. There are many observational evidences, which

indicate the presence of hitherto unknown dark energy such as Supernovae Ia, Large-scale structure, Cosmic

Microwave Background anisotropies, etc. [1, 2, 3, 4]. By all reckoning, the explanation of present accelerated

expansion of the universe is a major challenge in cosmology. There are many approaches to explain its dynamics.

The simplest candidate for dark energy is the cosmological constant [5]. However, there are two main problems

associated with cosmological constant, viz., (i) the fine tuning problem and (ii) the coincidence problem. Besides

cosmological constant, there exist two basic approaches to explain dark energy. The first approach is based on

modified matter models. In this approach Tµν in the Einstein equations includes an exotic matter component like

quintessence, k-essence, Phantom etc. [6, 7, 8, 9]. The second approach is through modified gravity models wherin

the late-time accelerated cosmic expansion is realized without using the explicit dark energy matter component in

the universe. In these models, we have a spectrum of f(R) gravity [10], scalar-tensor theories, Gauss-Bonnet

dark energy model etc. [11, 12, 13]. Further, in f(R) models, one modifies the laws of gravity by replacing

Lagrangian density i.e. scalar curvature R of the Hilbert’s action by an arbitrary function of R. At present, there

is no specific functional form of R which may satisfy all the conditions of cosmological viability. To achieve this

we use the stability conditions of respective eras and determine the corresponding forms of f(R). By solving the

field equations for different forms of f(R) for the corresponding eras, the scale factor of expansion is determined.

From here we find the scalar curvature R and compare them in different eras. This can lead to the determination

of a time-ordering of various epochs, dominated by radiation, matter and dark energy, respectively, throughout the

evolution of the universe.

2. Field equations, phase space dynamics and fixed points with radiation

The field equations of f(R) gravity are

F (R)Rµν − 1

2
f(R)gµν ,

− ∇µ∇νF (R) + gµν�F (R) = κ2Tµν , (1)

where F (R) ≡ ∂f
∂R

and Tµν is the matter energy-momentum tensor. From these field equations we obtain the

following equations:

3FH2 = κ2(ρm + ρr) +
(FR− f)

2
− 3HḞ , (2)

−2FḢ = κ2(ρm +
4

3
ρr) + F̈ −HḞ , (3)

where ρm and ρr are energy densities of matter and radiation respectively. The effective equation of state is

defined by weff = −1− 2
3

Ḣ
H2 = − 1

3 (2x3 − 1). There are four variables (dimensionless) defined as x1 ≡ − Ḟ
FH

,

x2 ≡ − f
6FH2 , x3 ≡ R

6H2 and x4 ≡ κ2ρr

3FH2
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Next, we consider the radiation with other components of universe. In this case we have eight fixed points. Stability

about the fixed points (x1, x2, x3, x4) is determined in the same way as in absence of radiation. Here we have 4×4
matrix of perturbations about each fixed point and four eigenvalues.

(1) Point P1 corresponds to de-Sitter point. Here weff = −1 and eigenvalues corresponding to this point are

−4, −3, −3

2
±

√

25− 16
m

2
. (4)

In the presence of radiation, we have an eigenvalue −4 in addition to those in the absence of radiation. Since

this eigenvalue is negative, therefore the condition of stability is the same in both cases. P1 is stable when

0 < m (q = −2) < 1. This point may be taken as an acceleration point. The condition of stability for this

point is same as in the case of without radiation because here we have only an extra eigenvalue −4, which is

negative.

(2) Point P2 is denoted by φ-matter-dominated (φ MDE) epoch. The eigenvalues corresponding to this point

are given by

−2, −1,
1

2

[

7 +
1

m
− m′

m2
q(1 + q)∓

√

(

7 +
1

m
− m′

m2
q(1 + q)

)2

− 4

(

12 +
3

m
− m′

m2
q(3 + 4q)

)



 . (5)

P2 is either saddle or stable point. In this case P2 can not be a matter point because Ωm = 2 and weff = 1
3 .

(3) Point P3 is known as kinetic point. The eigenvalues for the 4× 4 matrix of perturbations about this point are

1, 2,
1

2

[

9 +
1

m
− m′

m2
q(1 + q) ∓

√

(

9− 1

m
+

m′

m2
q(1 + q)

)2

− 4

(

20− 5

m
− m′

m2
q(5 + 4q)

)



 . (6)

. If m is constant, the eigenvalues corresponding to this point are 2, 5, 4− 1
m

. In this case P3 is unstable for

m < 0 and m > 1
4 and a saddle otherwise.

(4) Point P4 has eigenvalues

−5, −4, −3, 4(1 +
1

m
). (7)

It is stable for −1 < m < 0 and saddle otherwise. This point can not be use as a radiation or a matter

dominated point.

(5) Point P5 can be regarded as a standard matter point in the limit m → 0. Eigenvalues for point P5 are given

by

−1, 3(1 +m′),

−3m±
√

m(256m3 + 160m2 − 31m− 16)

4m(m+ 1)
, (8)

where m′ is derivative of m w.r.t. q. For a cosmologically viable trajectory, we want a saddle matter point.

The condition for a saddle matter epoch is given by m(q ≤ −1) > 0,m′(q ≤ −1) > −1,
m(q = −1) = 0.
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(6) Point P6 can also be an acceleration dominated point. The eigenvalues corresponding to this point are given

by

−2(−1 + 2m+ 5m2)

m(1 + 2m)
, −4 +

1

m
,

2− 3m− 8m2

m(1 + 2m)
, −2(m2 − 1)(1 +m′)

m(1 + 2m)
(9)

Stability of this point depends on both m and m′. Condition of acceleration (weff < − 1
3 ) depends on the

value of m.

(7) Point P7 corresponds to a standard radiation point. The eigenvalues of P7 for constant m are 4, 4, 1,−1.

Thus, P7 is a saddle point.

(8) Point P8 also is a radiation point. In this case dark energy is non-zero, therefore P8 is acceptable as a

radiation point. The eigenvalues of P8 are given by

1, 4(1 +m′),
m− 1±

√
81m2 + 30m− 15

2(m+ 1)
. (10)

Point P8 is a saddle point in the limit m → 0. The acceptable radiation dominated point P8 lies at point

(0,−1) in the (m, q) plane.

3. Dynamics of radiation dominated phase

For radiation dominated era, phase space analysis shows that we can find a radiation point in the limit m → 0 at

point P8. This point lies on the line m = −q − 1 in the (m, q) plane. Hence, the necessary condition for this

point to exist as an exact standard radiation point is given by m (r = −1) ≈ 0. From definition of q and the

above condition, the form of f(R) for radiation dominated era is given by f(R) = αR where α is an integration

constant. Standard radiation point is obtained by substitution of m ≈ 0 in the radiation point of m(q) curve. In

this condition, the effective equation of state is weff = 1
3 . The Hubble parameter H(t) is given by H = 1

(2t−c1)

where c1 is an integration constant. The scale factor a(t) for this era is given by

a(t) = c2(2t− c1)
1

2 , (11)

where c2 is another integration constant.

Figure 1. Plot for variation of Hubble parameter H(t) with cosmic time t in radiation dominated phase.The red, green and

blue curves correspond to c1 = 0, c1 = 1, c1 = 2 respectively.

In radiation dominated phase we examine that the scale factor a(t) ∝ t
1

2 , which is same as in the case of standard

model. Fig. (1) shows variation of Hubble parameter H(t) with time t in radiation phase. The Ricci scalar R for

radiation dominated era is given by R = 0.
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4. Dynamics of matter dominated era

In phase space analysis of dynamical system, there is a point P5 which represents a standard matter era in the

limit m → 0. In matter dominated phase of the Universe m (q = −1) ≈ 0. Using the definition of q or m, the

form of f(R) is given by f(R) = βR, where β is a integration constant. Thus, in matter dominated phase the

form of f(R) is similar as in the case of radiation dominated phase. In matter dominated phase, we neglect the

energy density of radiation i.e. ρr = 0. For f(R) = βR, F = β and therefore Ḟ = 0. The Hubble parameter is

given as H(t) = 1
( 3

2
t−c3)

, where c3 is an integration constant. Scale factor in this phase is given by the expression

a(t) = c4
(

3
2 t− c3

)
2

3 . The Ricci scalar in matter-dominated phase is given by R = 3
( 3

2
t−c3)2

. The variation of

Hubble parameter H(t), scale factor a(t) and Ricci scalar R. Hubble parameterH(t), scale factor a(t) and Ricci

scalar R in this phase can also be calculated by the same procedure as we followed in the radiation era. Expressions

for these parameters are same in both approaches. For m ≈ 0, the effective equation of state is given by

weff = 0. (12)

These expressions of scale factor a(t), Hubble parameter H(t) and Ricci scalar R in matter dominated phase are

similar to the expressions of standard (ΛCDM) model.

5. Arrow of time

We rewrite the action in the form:

A =

∫ √
−g

(

1

2κ2
FR− U

)

d4x+Am, (13)

where U = FR−f
2κ2 . It is possible to derive an action in the Einstein frame under the conformal transformation

g̃µν = Ω2gµν , where Ω2 is the conformal factor and a tilde represents quantities in the Einstein frame. Relation

between Ricci scalars in two frames is R = Ω2(R̃ + 6�̃ω − 6g̃µν∂µω∂νω), where ω ≡ lnΩ, ∂µω ≡ ∂ω
∂x̃µ , �̃ω ≡

1√
−g̃

∂µ(
√
−g̃g̃µν∂νω). Now the action (13) is transformed as

A =

∫

d4x
√

−g̃

[

1

2κ2
FΩ−2(R̃+ 6�̃ω − 6g̃µν∂µω∂νω)− Ω−4U

]

+Am. (14)

We obtain the linear action in R̃ for the choice Ω2 = F. Let us consider a new scalar field φ defined by κφ ≡
√

3
2 .

Now using these relations we get the action in Einstein frame is

A =

∫

d4x
√

−g̃

[

1

2κ2
R̃− 1

2
g̃µν∂µφ∂νφ− V (φ)

]

+Am, (15)

where

V (φ) =
U

F 2
=

FR− f

2κ2F 2
. (16)

On varying the action (15) w.r.t. φ we get

d2φ

dt̃2
+ 3H̃

dφ

dt̃
+ V,φ = 0. (17)

The energy density and pressure of a homogeneous scalar field are respectively,

ρ =
1

2
φ̇2 + V (φ), p =

1

2
φ̇2 − V (φ) (18)

and the scalar field equation of motion is given by equation (17).

Tolman described a cyclic universe with progressively larger cycles, assuming the presence of a viscous fluid with
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pressure p = p0 − 3ζH , where p0 is the equilibrium pressure and ζ is the coefficient of bulk viscosity. It is clear

from this equation that p < p0 during expansion (H > 0) whereas p > p0 during contraction. This asymmetry

during the expanding and contracting phases results in the growth of both energy and entropy. This increase in

entropy makes the amplitude of successive expansion cycles larger leading to a arrow of time.

The term 3H̃ dφ
dt

in (17) behaves like friction and damps the motion of the scalar field when the universe (H > 0).

In a contracting universe 3H̃ dφ
dt

behaves like anti-friction and accelerates the motion of the scalar field. A scalar

field with the potential V = m2φ2 gives p ≃ −ρ when (H > 0) and p ≃ ρ when (H < 0). These results are

similar to that of the Tolman.

6. Conclusion

We conclude that the nature of the fixed points with radiation remains unaltered as that without radiation (except

that with radiation we have the emergence of an extra eigenvalue for each point). The forms of f(R) for dif-

ferent phases have been determined by using the conditions of phase space analysis for a cosmologically viable

model. The Hubble parameter H(t), Ricci scalar R have been determined for radiation-, matter- and acceleration-

dominated phases of the universe, with a view that their time-ordering may explain an arrow of time throughout the

cosmic evolution in a future study. These parameters are found to be consistent with Λ cold dark matter (ΛCDM)

model. The time ordering in various phases defines an arrow of time and may be further investigated as an emergent

phenomenon.
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In this paper, we discuss the laws of thermodynamics for interacting tachyonic scalar field. The components of the

tachyonic scalar field in the universe are taken to exist in the state of non-equilibrium initially, but due to interaction

they undergo a transition towards the equilibrium state. We show that the zeroth law of thermodynamics demands

interaction among the components of cosmic field. The second law of thermodynamics is governing dynamics in

transfer of energy among the three components of the proposed field with local violation of conservation of energy

for individual components.

1. Introduction

The accelerated expansion of the universe is revealed by a large number of cosmological observations [1] and can

be understood by introduction of repulsive gravity, although the other alternatives [2] may also explain such expan-

sion. The repulsive gravity demands some different types of entities which have negative pressure. Considering its

repulsive character such type of entity is called dark energy.

A class of scalar fields is one of the promising candidates of dark energy. Among themselves tachyonic scalar field

appearing in the context of string theory [3] is logically more appealing than its counterpart quintessence due to its

relativistic Lagrangian as analogue of particles. Cosmological relevance of this field has been studied by several

authors during last few decades [4]. Action and Lagrangian of the cosmological tachyonic scalar field is given by

A =

∫

d4x
√−g

(

R

16πG
− V (φ)

√

1− ∂iφ∂iφ

)

(1)

with Lagrangian L = −V (φ)
√

1− ∂iφ∂iφ and the equation of motion of the field is found by varying the action

as
φ̈

φ̇
+

(1− φ̇2)V ′(φ)

φ̇V (φ)
+ 3H(1− φ̇2) = 0. (2)

The stress energy tensor for this Lagrangian is

T ik =
∂L

∂(∂iφ)
∂kφ− gikL. (3)

This gives energy density and pressure respectively for spatially homogeneous field as

ρ =
V (φ)

√

1− φ̇2

, P = −V (φ)

√

1− φ̇2. (4)

2. Components of field

We assume that radiation with equation of state wr = 1/3 also exists as one inherent component of same tachyonic

scalar field. Due to some physical mechanism not known in detail at present to us, the cosmic tachyonic scalar

field may be decomposed into several components with the assumption that the field is spatially homogeneous. we

can write the expressions for energy density and pressure as

P = − V (φ)
√

1− φ̇2

+
φ̇2V (φ)
√

1− φ̇2

+ 0, (5)
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ρ =
V (φ)

√

1− φ̇2

+
3φ̇2V (φ)
√

1− φ̇2

− 3φ̇2V (φ)
√

1− φ̇2

. (6)

From (5) and (6) it is seen that when we include radiation in tachyonic scalar field then one new exotic component

also appears (say, exotic matter since its energy density is negative) with zero pressure. Thus, the tachyonic scalar

field resolves into three components say a, b and c. The pressure and energy density of a is given as

Pa = − V (φ)
√

1− φ̇2

, ρa =
V (φ)

√

1− φ̇2

⇒ wa = −1 = wλ.

This is nothing but the ‘true’ cosmological constant because of its equation of state being wλ = −1. The second

component with

Pb =
φ̇2V (φ)
√

1− φ̇2

, ρb =
3φ̇2V (φ)
√

1− φ̇2

⇒ wb = 1/3

can be identified as radiation with wr = 1/3. The last component is characterised by

Pc = 0, ρc = −3φ̇2V (φ)
√

1− φ̇2

⇒ wc = 0.

This component mimics dust matter but has negative energy density. The exotic matter may include the Dirac

fermions as well as the Majorana fermions whence the negative energy states turn into the positive energy states

[5, 6]. In our earlier work [7] we allowed a small time dependent perturbation in the equation of state (EoS) of

the cosmological constant with w̄λ = −1 + ε (t). Thus, with the perturbed EoS, the true cosmological constant

becomes a shifted cosmological parameter. This has a bearing upon the EoS of radiation and exotic matter, both.

Therefore, these two entities turn into shifted radiation and shifted exotic matter respectively. With fixed energy

density of field components, the expressions for the energy density and pressure of each component are given as

below. For the shifted cosmological constant one has

ρ̄λ =
V (φ)

√

1− φ̇2

, p̄λ =
−V (φ)
√

1− φ̇2

+
εV (φ)

√

1− φ̇2

(7)

and w̄λ = −1 + ε (t). For shifted radiation, we have

ρ̄r =
3φ̇2V (φ)
√

1− φ̇2

, p̄r =
(1 + 3ε)φ̇2V (φ)

√

1− φ̇2

. (8)

In presence of perturbation the zero pressure of exotic matter turns into negative non-zero pressure due to shifted

exotic matter which would also accelerate the universe like dark energy. Thus, the energy density and pressure for

shifted exotic matter are now, respectively, given as

ρ̄m =
−3φ̇2V (φ)
√

1− φ̇2

, p̄m = pφ − p̄λ − p̄r =
−ε(1 + 3φ̇2)V (φ)

√

1− φ̇2

(9)

with w̄m = ε (1+3φ̇2)

3φ̇2
.

3. Thermodynamical laws for interacting components

Why must the components of cosmic field interact? This is one of the most interesting questions about interac-

tion. Interaction might be justified by thermodynamical considerations [8]. As shown by obvious observations, the

cosmic field must include at least three components representing matter, dark energy and radiation (many other

components are also possible) and behave as an ensemble of three interacting thermodynamic systems. We apply
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the Zeroth law of the thermodynamics to these three systems called as shifted cosmological parameter (SCP),

shifted radiation (SR) and shifted exotic matter (SEM) each. If SCP is in equilibrium with SR and SR is in equi-

librium with SEM then SEM should be also in equilibrium with SCP. The zeroth law demands interaction among

cosmic field components whenever equilibrium gets perturbed for any reasons. If equilibrium is disturbed and the

components are in non-equilibrium (thermal, mechanical or else), then to re-attain the equilibrium the components

must interact mutually. If the components are in equilibrium then due to interaction, perturbation in equilibrium

state reacts trying to restore its state or achieve a new one (Le Châtelier-Braun principle) [9, 10]. If all components

of tachyonic scalar field are in non-equilibrium, then, to achieve an equilibrium state they must fall into mutual

interaction. This motivation provides one justification to study the interaction of these components. Here, we

assuming that even though the total energy of the perturbed field (spatially homogeneous) is kept conserved (First

law of thermodynamics) yet during interaction it can get reasonably violated for individual components. We con-

sider the three components of cosmic tachyonic scalar field the components are shifted cosmological parameter

(SCP), shifted radiation (SR) and shifted exotic matter (SEM). The individual equations of energy conservation

for SCP, SR and SEM are respectively given as

˙̄ρλ + 3H(1 + w̄λ)ρ̄λ = −Q1, (10)

˙̄ρr + 3H(1 + w̄r)ρ̄r = Q2, (11)

˙̄ρm + 3H(1 + w̄m)ρ̄m = Q1 −Q2, (12)

where Q1 and Q2 are the interaction strengths and H is Hubble parameter. Second Law of Thermodynamics

is the governing dynamics of interaction and sign of Q1 and Q2 shows the direction of flow of energy density

during interaction among components. The positivity of the quantity Q1 − Q2 implies that Q1 should be large

and positive. For if Q1 had been large and negative, then the second law of thermodynamics would have been

violated and the SCP (as the dark energy candidate) would have dominated much earlier withholding the structure

formation against the present observations. Also, Q2 should be positive and small since if it is negative and large

then conservation of energy of tachyonic field is violated.

4. Interaction among the components

The interacting dark energy models have been recently proposed by several authors [11]. We study the interaction

of these three components assuming that even though the total energy of the perturbed field (spatially homoge-

neous) is kept conserved , yet during interaction it can get reasonably violated for individual components.

In the above expressions (10), (11) and (12) the following broad conditions must govern the dynamics:

Condition (I) | Q1 |>| Q2 |. This corresponds to the following cases:

(i) If Q1 > 0, Q2 > 0 then the right hand side of (10) is negative while (11) and (12) are positive, respectively.

This means that there is energy transfer from shifted cosmological parameter to shifted radiation and shifted

exotic matter, respectively. Thermodynamics allows this kind of transfer of energy.

(ii) Q1 < 0, Q2 < 0 implies that there is an energy transfer to shifted cosmological parameter from shifted

radiation and shifted exotic matter.

Condition (II) | Q2 |>| Q1 |:

(i) Q2 > 0, Q1 > 0 would make the right hand side of (11) as positive and (10) and (12) as negative. This shows

that there is an energy transfer to shifted radiation from shifted cosmological parameter and shifted exotic

matter. Thermodynamics again does not allow this kind interaction.

(ii) Q1 < 0, Q2 < 0 makes way for the energy transfer from shifted radiation to shifted exotic matter and shifted

cosmological parameter.

Condition (III) If Q2 = Q1 = Q, then we have the following possibility:
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(i) Q > 0 leads to an energy transfer to shifted radiation from shifted cosmological parameter, while the shifted

exotic matter remains free from interaction with its energy density held conserved. This type of interaction

holds compatibility with the laws of thermodynamics.

(ii) If Q < 0, energy would flow from shifted radiation to shifted cosmological parameter, whereas the shifted

exotic matter does not get involved in interaction mechanism. Thus, the conservation of energy for shifted

exotic matter holds good.

(iii) As an alternative, Q = 0 would pull the components of tachyonic scalar field out of mutual interaction like

the standard ΛCDM model.

The second case of condition (I) and condition (II) violates the laws of thermodynamics, therefore, we are not inter-

ested in these types of interactions. The interaction of type condition (III) has been discussed for two components

of tachyonic scalar field in our earlier work [12]. Due to the lack of information regarding the exact nature of dark

matter and dark energy (as the cosmological constant or else) we present the form of interaction term heuristically

as function of time rate of change in energy densities as

Q1 = α ˙̄ρλ, Q2 = β ˙̄ρr, (13)

where α, β are proportionality constant. While several authors have proposed different forms of Q [11].

From (10), (11) and (12), for the specific dynamical form of interaction strengths (13) one can found the functional

form of energy density with redshift z as

ρ̄λ = ρ̄0λx
3ε/1+α, (14)

where a0

a = 1 + z = x

ρ̄r = ρ̄0rx
4+3ε/1−β (15)

and

ρ̄m = ρ̄0mxη +

(

3εαρ̄0λ
3ε− η − ηα

)

[x3ε/1+α − xη]−
(

βρ̄0r(4 + 3ε)

4 + 3ε− η + ηβ

)

[x4+3ε/1−β − xη], (16)

where η assuming constant (with φ̇2 ≈ constant) is defined as

η =
3φ̇2(1 + ε) + ε

φ̇2
. (17)

Thus, the cosmic expansion history of the universe is given by Hubble parameter with interaction as

H2 =
κ2

3
[ρ̄λ + ρ̄r + ρ̄m], (18)

where κ2 = 8πG.

5. Conclusion

Having the motivation for the relativistic (tachyonic) scalar field, in contrast to quintessence, the single tachyonic

scalar field which splits due to some unknown mechanism into three components (cosmological constant, radiation

and dust matter). Due to consideration of radiation in this field the dust matter appears with negative energy. A

small perturbation allowed in EoS of cosmological constant changes its status from a true cosmological constant to

a shifted cosmological parameter (SCP). Similarly, status of radiation and dust matter changes to shifted radiation

(SR) and shifted exotic matter (SEM). Thermodynamics laws (Zeroth, First and Second) might be responsible for

interaction among components of single cosmic field. We consider the components of the field as thermodynamic

systems and they interact to achieve a thermodynamical equilibrium. Particularly Zeroth Law invite interaction

among components to maintain thermodynamical equilibrium or get new one, First Law demands the total energy

of field stays conserved but the field components mutually interact with interaction strength parameter Q resulting

in local violation of energy conservation and Second Law decide the direction of flow of energy during interaction.

We conclude that the entire evolution of the universe arises from this process of interaction.
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Doublet universe can be formed by merging of source universe and sink universe within our visibility boundary

range. The singularity points of the source-sink pair domain are nothing but act as black hole from which gravita-

tional wave can travel within the visible boundary but nobody knows how far the energy of this traveling wave ends

its dissipation. The similar effect can be seen in case of pond ripple after getting impacted by stone (or primordial

atom) in two specific domains. Therefore, this paper reveals about the study of the pond ripple wave dynamics for

understanding the possibility of doublet universe or the evidence of multiverse. Here, Buckingham pi theorem was

used along with potential flow concept to model the impact between stone and pond surface. Further, a comparison

was done with oscillating universe theory. The commercial softwares such as origin lab, Matlab was used to model

the doublet universe.

1. Introduction:

According to potential flow theory [1], doublet flow formed when the separation distance between two source flow

or two sink flow or source and sink flow tends to zero. As universe is the power set of all the properties which

is happening at nature and the properties which are present in nature is the subset of that power set. Therefore

doublet flow as an evidence one can find in nature when two stone thrown at same angle at zero separation distance

on a liquid surface or pond surface due to which ripple generates. Similar things can also be possible in the

universe when two quantized particle such as graviton [2] at zero separation distance fall on space time curvature

which generates ripples which is termed as gravitational wave. This makes the importance of coining the term

Doublet Universe over here. However, doublet flow or source flow or sink flow can be seen in case of pond ripples

which are transverse wave that generates due to impact between stone and liquid surface. Since doublet universe

means the association of two universes by capture theory [3]. Therefore here it makes the evidence to get the

understanding regarding multiverse theory [4] as well as oscillating universe theory [5]. Though multiverse theory

[6] is accepted by many cosmologists but the argument regarding the observational point beyond the horizon such

as extrapolation upto 10100 times horizon distance or even more is very much alive [7]. However, oscillating

universe theory depicts that universe exists between big bang and big crunch which is a cyclic event. Therefore to

understand this two theory pond ripple wave generation with potential flow theory is the best idea that is available

in nature. To understand the generation of ripple Buckingham pi theorem can be used that is a scheme for non

dimensionalization and a key theorem of dimensional analysis which is the formalization of Rayleighs method of

dimensional analysis [8, 9].

2. Model for strength of ripple wave generator

To establish a relation for finding the strength of ripple wave generator, Buckingham pi theorem [10] was used

along with following assumptions to study an experimental situation (Fig. 1): (a) Temperature was taken as

uniform and steady. Therefore, there will be no temperature term associated with pi terms. (b) Number of collisions

of stone with medium particles was taken as 1 with respect to experiment facility. (c) Angle of impact of stone for

experiment purpose was taken as 900 or (3.14/2) or 1.57 i.e. a constant pi term.

In Fig. 1, motion of stone from impact point for stone at specific height to impact point on liquid surface was

studied by using Buckingham pi theorem. Therefore from Fig. 1, it can be written as

f(ξ, θ, δ, τ, ηc,m, v, F,E, a, g, A) = 0 (1)

78
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Figure 1. Schematic diagram of experimental setup and generated ripple wave propagation.

Where, ξ is the strength of ripple wave generator in cm2/s, θ is the angle of impact of stone into liquid surface.

Here it was taken as 1.57 for experiment, δ is the distance between impact point of stone and impact point on

liquid surface in m., τ is the time required for stone to reach into the liquid surface in s., ηc is the total number of

collisions in medium from impact point of stone into liquid surface impact point. Here it was assumed as 1, m is

the mass of stone in kg., v is the velocity of stone in m/s., F is the impact force of stone in Newton, E is net energy

(K.E. + P.E.) of stone for motion between impact point of stone to impact point of liquid surface in kW., a is the

acceleration of stone in m/s2., g is the acceleration due to gravity, which is 9.81 m/s2 and A is the surface area of

stone in m2. Therefore, the governing equation for strength of ripple wave generator from the equation (1) is

ξ =
1.57

Ag

δ8

τ7
m2

FE
φ

(

τ3av

δ2

)

(2)

Experimental data show that the non dimensional term in equation (2) is approximately equal to 1 i.e.φ ( τ
3av
δ2

) ≈ 1.

3. Results and Discussion

To determine the strength of ripple wave generator an experiment was conducted to calculate the preliminary

variables such as velocity of stone, acceleration of stone, impact force of stone, net energy of stone and ripple

wave propagation velocity for understanding the ripple wave dynamics for different masses with respect to different

heights such as 0.825 m, 0.725 m, 0.625 m and 0.525 m. Time of fall of stone from impact point to liquid surface

was calculated by using stopwatch. The detailed information of the experiment are tabulated in Table 1 below. The

Table 1. Experimental details

Sl. No. Equipments Detailed information

1 Marbles (or stone) Five marbles of different sizes: 0.023 m, 0.0205 m, 0.018 m,

0.0155 m, 0.015 m. Mass: 0.016 kg, 0.014 kg, 0.008 kg,

0.006 kg and 0.004 kg. Shape: Spherical

2 Vernier Calliper Parco Company, 0 - 12.5 cm range.

3 Screw Gauge Ajit Company, Range: 0 - 90 mm.

4 Buckets Diameter of top most liquid surface in bucket - 0.2431 m, 0.2816 m

5 Tape Libra Company, (0 - 1.5 m) range.

variation of impact force and net energy of stone with δ was studied to understand the mass variability, time of fall

variability, velocity variability and acceleration of stone variability on impact of force and net energy results.
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Figure 2. Impact force of stone of different masses on liquid surface variation with δ.

From Fig. 2, it can be noticed that impact force for higher mass stones such as 0.016 kg and 0.014 kg varies in

the range of 0.1284 N - 7.6 N. But for lower mass stones it varies in the range 0.00724 N - 0.14 N. Also, it was

seen that impact force of stone is more for low δ because at this distance stone has to suffer less collision or less

resistance with media particles or medium.

Figure 3. Required net energy for ripple generation of stone of different masses on liquid surface variation with δ.

From Fig. 3, it is seen that net energy varies - 0.00762 kW - 1.915 kW for higher mass stones whereas it varies -

0.00723 kW - 0.03944 kW for lower mass stones such as 0.008 kg, 0.006 kg and 0.004 kg. However, typically for

lower mass stones motion due to gravity dominates kinetic motion which results negative net energy. To understand

the behavior of ripple wave with bucket area variability, preliminary factor such as velocity of propagation of ripple

wave (vp) was studied. Propagation time was calculated by subtracting the time of fall for typical stone on the liquid

surface from total time i.e. time of fall of stone plus required propagation time to standstill the liquid surface from

undulation.

From Fig. 4 (a) and Fig. 4 (b) it can be observed that ripple wave propagation approximate velocity is more for
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Figure 4. (a) Ripple wave propagation velocity variation with δ for bucket diameter 0.2431 m. (b) Ripple wave propagation

velocity variation with δ for bucket diameter 0.2816 m.

lower mass stones compared to higher mass stones such as 0.016 kg and 0.014 kg. It is because during the impact

with liquid surface higher mass stones lose net energy more compared to lower mass stones due to skin friction

drag and shear resistance. This loss of energy is due to greater surface area. Therefore a simulation was done

by using this results and universe size [11] which results if a particle dropped from - 2.02E27 m height on the

space time curvature of the universe the propagation time it will take 8.574E28 second with propagation velocity

2.36E26 m/s. Now, equation (2) was recalled for strength of ripple wave generator calculation with the help of

experimental data and then it was plotted as given below.

Figure 5. Variation of strength of ripple wave generator for different masses with δ.

From Fig. 5, it can be seen that strength of ripple wave generator fluctuates with height which is due to motion due

to gravity and surface area of stone. However, in case of lower mass stones strength of ripple wave generator act

as sink because of motion due to gravity dominates kinetic motion of stone in this case. The higher mass stones

show almost similar variation of strength of ripple wave with height whereas lower mass stones show not much

variation or fluctuation with height.

Fig. 6 was plotted using strength of the ripple wave generator and streamline function and velocity potential

function [1]. The range of either side of the bucket was taken as (- 2, 2) cm in x and y direction.
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Figure 6. Matlab plot of streamlines and velocity potential lines of sink flow doublet universe of strength - 0.3 cm2/s.

4. Conclusions

From above results and discussion it can be concluded that motion due to gravity dominates kinetic motion for

lower mass stones that results negative net energy and sink flow. Above studies suggests that doublet universe

can be possible for two merged source flow or two merged sink flow and merging of source- sink flow. Typically

the study does not support oscillating universe theory fully because universe can also be possible due to two

source/sink flow. So, the study partially supports oscillating universe theory as well as multiverse theory. Further

studies can be done on this experiment for the possible evidence of parallel universe theory by varying the impact

angle of stone and using LAB View analysis software for wave properties estimation.
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We study the motion of massive as well as massless test particles in the background of a class of multiple charge

black holes in gauged supergravity theories in D = 4. We have analysed the horizon structure along with the nature

of the effective potentials for the case of four equal charges. The structure of circular orbits for incoming test

particles is analysed specifically. The periods for one complete revolution and cone of avoidance for massless test

particles are also investigated in greater detail.

1. Introduction

Over the last century, the Einstein’s theory of gravitation i.e. General Relativity (GR) [1, 2, 3] has been extremely

successful to understand various observational facts like gravitational redshift, the precession of Mercury’s orbit,

the bending of light etc. Though GR has enjoyed the great success, but it is still not a complete theory to under-

stand the physics at sufficiently smaller length scale e.g. near the spacetime singularity which arises in case of

gravitational collapse [3]. In the vicinity of the spacetime singularity, the quantum effects should be taken care

of seriously and recently string theory has become a promising candidate for the same purpose which comprises

gravity in the frame work of quantum theory [4, 5, 6]. In the continuing pursuit of the search for a viable quantum

theory of gravity, the gauged supergravity [7, 8, 9] theories have also captured considerable attention in recent

times. In such models of gravity, the maximally supersymmetric gauged supergravity is realized as truncation of

string theory or D = 11 dimensional M theory compactified on a sphere where the gauge group is the isometry

group of the sphere.

In the present work, we consider four dimensional charged black holes in N = 81, gauged supergravity upto four

charges. The construction of these black holes have been explicitly performed in Ref. [10] and according to [11],

such charged black hole congurations are termed as R-charged black holes. In gaugedN = 8 supergravity models,

the bosonic part of the complete Lagrangian has a negative cosmological constant Λ proportional to the square of

the gauge coupling constant g [12] and the black hole solutions are asymptotically AdS.

In the next section, the horizon structure of R-charged black holes [10] with multiple charges is discussed briefly.

In section 3, using the effective potential techniques, the motion of test particles and the structure of corresponding

orbits are discussed. In section 4, the circular orbits are discussed for incoming massive as well as massless test

particles. Finally, the results are summerised in the last section.

2. The spacetime with multiple charges

We consider the following spacetime metric of four electric charge black hole solution in D = 4, N = 8 gauged

supergravity:

ds2 = −H
−1/2fdt2 +H

1/2(f−1dr2 + r2dΩ2
2,k) , (1)

where

Hα = 1 +
µ sinh2 βα

kr
, f = k −

µ

r
+ 2g2r2H (2)

with H = H1H2H3H4. Here g is the gauge coupling constant and µ is the non-extremal parameter like mass term

in pure Schwarzschild black hole, k can take three values i.e. 1, 0 and −1. The βα(α = 1......4) in eqs. (1) and

1N is the number of supermultiplates
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(2) parametrizes the four electric charges. Here, we only consider the case of four equal charges i.e. n = 4 with

k = 1. The lapse function f vanishes at the zeros of the following equation:

(kr)
n
(kr − µ) + 2g2r3(kr + p)n = 0. (3)

The real and positive zeroes of equation (3) are known as the horizons for the corresponding spacetime. Hence

if a spacetime represents a black hole, f should vanish at some positive value of r. In presence of one and two

equal charges one will always get a horizon for various values of β and g. In presence of three equal charges the

constraint on parameters for the presence of horizon is given by,

2g2µ2sinh6β < k3. (4)

In case of four equal charges present, the condition for the existence of at least one horizon is given by,

A+B −
k6

256
< 0, (5)

where A = sinh6 βg4
(

sinh2 β + 1
)3
µ4 and B = 1

32 g
2k3µ2

(

sinh8 β + 2 sinh6 β −
7sinh4 β

2 −
9sinh2 β

2 − 27
16

)

.

3. Nature of effective potential and classification of orbits

To understand the possible orbit structure of the test particles in the background of given spacetime geometry, one

has to look for the nature of effective potential. The effective potential for massive test particles in the background

of the R-charged black holes is given as,

Veff =
f

2H
1

2

( L2

r2H
1

2

+ 1
)

. (6)

For r → r
H

(the horizon radius), Veff = 0 and for r → ∞, Veff → k
2 + ng2

4k2

(

n
2 − 1

)

µ2 sinh2(β) +
(

ng2µ2 sinh2(β)
)

r
2k + g2r2, whereas for r → ∞, Veff → k

2 (when g = 0).

Figure 1. Effective potential for unit mass black hole (i. e. µ = 1) in the presence of four equal charges with L = 10, β=1,

k = 1, g = 0.02 for massive test particles (left panel) and for massless test particles (right panel).

The following orbits are allowed depending on the values of the energy of the incoming massive test particle:

(I) E = Ec: (i) Here Veff = Ec
2 and ṙ = 0 leading to a stable circular orbit at point C. (ii) A terminating bound

orbit if test particle starts from the point B.

(II) E = E1: (i) A bounded planetary orbit between points A and P . (ii) A terminating bound orbit for the test

particle starting from the point D.

(III) E = E2: The possible orbits are unstable circular orbit at point F . The particle starts from point F and then

it can go either to point G or to the singularity after crossing the horizon.

(IV) E = E3: There exists terminating bound orbit for particle crossing point J . Hence there are no fly-by orbits

possible for massive test particles. The effective potential for null geodesics (shown in the right panel of Fig.(1))

have no local minima. Hence the stable circular orbits are not present in this case.
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4. Analysis of Circular Orbits

4.1 For Timelike Geodesics

The orbit equation can be obtained by using first integrals of the geodesic equations as,

(

dr

dφ

)2

=
1

L2
Pn(r), (7)

Pn(r) =

(

E2Hn
− fHn/2

−
L2f

r2

)

r4, (8)

where f = 1 − µ
r + 2g2r2Hn, H = 1 + p

r and p = µsinh2β. The physically acceptable regions having positive

values of Pn(r) or equivalently E2 ≥ Veff for positive and real values of r, represents the allowed region of

motion for test particles. Hence the number of positive real zeros of Pn(r) uniquely determine the type of particles

orbit in the background of these charged black holes. In case of circular orbits, r = rC = constant, where rC is

the distance of the circular orbit from the singularity and hence ṙ = 0. First integrals of the geodesic equations are

used to calculate the time periods for circular orbits,

dt =
EH(rC)

Lf(rC)
r2C dφ . (9)

The circular orbit condition V ′

eff = 0 (where ′ denotes differentiation w.r.t. r) can be used to express L in terms

of rC as,

L2 =
X

Y
, (10)

where X = µnp
2kr3

C

− 1
r2
C

[

np
2 + µ

(

1 + p
krC

)]

− 2g2H(rC)
(

−np
2k + 2p

k + 2rC
)

,

Y = H−1(rC)
(

− 2k
r3
C

+ 3µ
r4
C

+ np
r4
c
H(rC) −

µnp
kr5

c
H(rC)

)

+ 4g2

rCH(rC)

(

1−H(rC) +
p

krC

)

,

p = µ sinh2(β), H = 1 + p
krC

and H = Hn. As radial velocity ṙ vanishes for circular orbit, it provides another

condition for this orbit as E2 = Veff (rC). Substituting this in equation (9) with ∆t ≡ Tt and ∆φ = 2π for one

period then we obtain,

Tt =

[

µrC
2f(rC)

(

1

r2C
+

H1/2(rC)

L2(rC)

)]1/2 (
krC

krC + p

)

Tt,sch , (11)

where Tt,sch = 2π
√

2r3
C

µ . Similarly time period in proper time can also be obtained by integrating the first integral

of the geodesic equation for φ as,

Tτ =

[

µrC
2f(rC)

(

1

r2C
+

H1/2(rC)

L2(rC)

)(

2rC
µ

− 3

)]1/2 (
krC

krC + p

)

2πr2C

= rC

[

µrC
2f(rC)

(

1

r2C
+

H1/2(rC)

L2(rC)

)]1/2

Tτ,sch . (12)

The numerical values of the above time periods for a definite set of parameters are compared in the Table 1.

One can then easily notice the effect of charges on the time periods and also on the radius of circular orbits, which

significantly differ from the corresponding values of the Schwarzschild black hole 2 in GR.

2for Schwarzschild black holes rC = 3, Tt = 2.5375 and Tτ = 31.18π, for µ = 1, k = 1.



86 Rashmi Uniyal, Anindya Biswas, H. Nandan and K. D. Purohit

Table 1. Comparative view of the time periods for different number of charges for µ = 1, k = 1, g = 0.02 and β = 1.

n rC Tt Tτ

0 3.7871 0.8640 41.6π
1 4.3042 1.0887 44.42π
2 4.8169 1.4322 51.20π
3 5.3145 1.9965 58.26π
4 5.7911 2.4851 65.43π

4.2 For Null Geodesics

Using the constraint for null geodesics (i.e. uµu
µ=0), the corresponding orbit equation reads as,

(

dr

dφ

)2

=
1

L2
Pn

null(r), (13)

here Pn
null(r) =

(

E2Hn − L2f/r2
)

r4 (f and H are similar as in the previous section). The circular orbit

condition (i.e. V ′

eff (r) = 0) for null geodesics reduces to,

2r2 − (2p+ 3µ)r + µp = 0, (14)

where Veff = f L2/2r2H with n = 4, k = 1, p = µ sinh2 β. Solution of equation (14) describes the radius of

unstable circular orbit and is given as,

rc =
1

4

[

2p+ 3µ±

√

(2p+ 3µ)
2
− 8µp

]

, (15)

where p = µ sinh2 β and equation (14) has a real solution for (2p+ 3µ)
2
≥ 8µp. The larger root of equation (14)

locates the position of unstable circular orbit, which again has the minimum value for the condition (2p+ 3µ)
2
=

8µp as,

(rc)min =
1

4
(2p+ 3µ) . (16)

It is clear from equation (15) that radius of unstable circular orbit does not depend on the coupling constant g. In

the absence of charges (i.e. p→ 0), equation (15) and equation (16) reduces to the Schwarzschild case. Hence due

to the presence of charges, the radius of unstable circular orbits increases.

The Time Period: The time period for unstable circular orbits can be calculated in terms of proper time as well as

coordinate time. The expression for time period in proper time can be obtained by integrating the first integral of

the geodesic equation for φ as,

Tτ =
2πr

C

2

L
Hn/2(r

C
). (17)

Time period in coordinate time can be obtained as,

Tt = 2πr
C

(

Hn(r
C
)

f(r
C
)

)1/2

. (18)

Cone of Avoidance: The cone of avoidance can be defined at any point [14, 15, 16] and the light rays included

in the cone must necessarily cross the horizon and get trapped. If ψ denotes the half-angle of the cone directed

towards the black hole at large distances, then

cotψ = +
1

R

dr̃

dφ
, (19)

where

dr̃ =
(r + p)

rf1/2
dr (20)
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Table 2. Comparison of the time periods for unstable circular orbits of massless test particles with different number of charges

(i.e. n) for µ = 1, k = 1, g = 0.02 and β = 1.

n r
C

Tt Tτ

0 1.5000 5.1822π 6.2366π
1 1.6477 7.0904π 7.3617π
2 1.8694 9.4472π 12.153π
3 2.1906 12.188π 19.982π
4 2.6174 15.179π 31.979π

and the radial function R = (r + p) for n = 4. Equation (20) describes the element of proper length along the

generator of the cone. Hence,

cotψ =
1

rf1/2
dr

dφ
. (21)

Now using the equation (13), one can obtain,

tanψ =

[

L2fr2

E2(r + p)4 − L2fr2

]1/2

. (22)

From equation (22), it follows that,

ψ =
π

2
for r = rc,

ψ = 0 for r = rH ,

ψ ≈

√

1 + 6p2 + 2g2(4rp+ r2)
(

E2

L2 − 2g2
)

(6p2 + 4rp+ r2)
for r >> 1, (23)

where rc denotes the radius of circular orbit and rH denotes the radius of event horizon.

5. Summary and Conclusions

In the work presented here, we have investigated the geodesic motion of massive as well as massless test particles

around a particular class of R-charged black holes in N = 8, D = 4 gauged supergravity theory. Some of the

important results of this work are summarised below:

(i) One horizon is always present for single and two charges, hence spacetime always represents a Black Hole in

these two cases. As the number of charges increases more than two, it is possible to have multiple or no horizons

in view of the behavior of lapse function of the spacetime.

(ii) Radius of the corresponding circular orbits for massive as well as massless test particles increases with the

enhancement in the number of charges.

(iii) The radius of unstable circular orbit for a massless test particle is independent of the gauge coupling constant.

(iv) Cone of avoidance for a massless test particle depends on both the charge and gauge coupling constant at large

distances.
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The galaxies in the Universe are not distributed randomly, rather they are embedded in cosmic web like structure.

This cosmic web constitute galaxy clusters, filaments and voids, which are called large scale structure (LSS) in the

universe. They grow by continuous accretion and mergers, which pumps up the energy of the particles present in

the medium and fills the Intracluster Medium (ICM) with energetic cosmic rays. But, connection of evolution of

cosmic ray (CR) fraction with the Cluster formation phases are not studied well. In order to study the evolution

of cosmic ray fraction, we performed 10 sets of cosmological N-Body + Hydrodynamical simulations of cosmic

structure formation using ENZO 2.2. We observed a very strong link between merging phases with the CR flux

produced in the ICM. We also observed multiple flashing moments during the full (i.e. few Gyr) evolution period

of Clusters. In this work, we also report a good correlation of Mass with the CR fraction while the clusters are

relaxed, but a huge deviation is noticed during the mergers. Our finding has a far reaching effect, as, this will help

us in understating the origin of cosmic rays and also can be used as a probe to determine the dynamical condition

of the cluster by observing the fractional energy distribution in the ICM.

1. Introduction

Galaxy Clusters are formed through a process called hierarchical clustering, in which the larger structures are

formed through the continuous merging of smaller structures. Galaxy Clusters are on the top of this hierarchy has

gone through a cascade of dynamical events. Many studies had confirmed that the galaxy clusters formed out by

the merger of smaller structures like stars, galaxies, groups of galaxies and the assertion of warm hot materials

from the filaments [1]. So all the possible dynamical events in this universe like, star formation, supernova activity,

AGN activity, galaxy formation, galaxy-galaxy group even galaxy cluster mergers and filamentary accretion etc.

will result in the energetics of Galaxy Clusters [2, 3]. All these processes modify the energy balance of intracluster

medium (ICM) through shock waves [4, 5, 6, 7]. The large-scale shocks fill the intracluster medium with energetic

particles, or cosmic rays (CRs). Mpc scale (Giant Radio Structures) radio sources observed in the cluster centre or

on the outskirts are the indirect evidence of the presence of non-thermal i.e. CR particles and magnetic fields (for

review: [8]). These observations suggest the presence of relativistic electrons, protons, ions and magnetic field

in the Cluster medium. But, connection of evolution of CR flux with the Cluster formation phases is not studied

well. In this paper, we study the evolution of CRs in the Galaxy Clusters during different stages of its formation.

In order to study the evolution of CR fraction, we performed 10 sets of cosmological N-Body + Hydrodynamical

simulations of cosmic structure formation using ENZO 2.2.

2. Simulation of large scale structure formation

The large scale structure formation simulations were performed with the Adaptive Mesh Refinement (AMR), grid-

based hybrid (N-body plus hydro-dynamical) code Enzo v. 2.2 [9]. The code uses adaptive refinement in space and

time and introduces non-adaptive refinement in mass by multiple child grid insertions. A flat ΛCDM background

cosmology with the parameters of the LCDM model, derived from WMAP (5-years data) combined with the

distance measurements from the Type Ia supernovae (SN) and the Baryon Acoustic Oscillations (BAO) is used

(see [10]). The simulations have been initialized at redshift z = 60 using the [11] transfer function, and evolved

up to z = 0. An ideal equation of state was used for the gas, with γ = 5/3.

Hear our focus is on the production of CRs through Diffusive Shock Acceleration (DSA), which is a strong function

of shock strength, shock detection has been done carefully. The shock compression can induce radiative cooling

[12, 13]. Thus, the radiative cooling is implemented in this simulation from [14] for a fully ionized gas with a

metallicity of 0.5 solar mass. We also implemented the a star formation feedback in the simulation.

89
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Since the shocks are the vital component for our study, we have implemented a refinement criteria based on shocks.

Where ever the Mack number of the shocks goes above 1.1, the cell is refined. With the introduction of 2 nested

child grid and 4 levels of AMR at the central 32 Mpc3 volume we achieved a resolution of 31.25 kpc at the highest

level. The required physical parameters have been derived from the simulation using a powerful tool called ‘yt’

[15].

3. Robustness of our simulation

The relations between the mass, temperature and the virial radius of a virialized cluster is well defined. And these

relations are Mvir = r3vir and Tvir = Mvir/rvir or rvir ∝ M
1/3
vir ∝ T 1/2 (e.g., [16]). We have plotted these

parameters and fitted scalling laws (see Fig.1) to check the robustness of our simulations. The virialized clusters

parameters in our simulation obey exactly the expected theoretical relations between temperature mass and radius.

Figure 1: Panel 1: Total mass is plotted against the temperature. Panel 2: Virial radius is plotted against the

temperature.

4. Cosmic ray production and evolution

In a simple model the CR acceleration in galaxy clusters can be assumed of injection of thermally energized particle

at the shocks. A fraction of the shock kinetic energy will be transferred to the CRs. If the acceleration efficiency

of the shocks is considered to be η(Ms), the CR energy flux at the shock can be quantified by

fCR = η(Ms)× fkin. (1)

Where, fkin is the kinetic energy flux and given by fkin = 1

2
ρv3 for a density ρ and velocity dispersion v of the

medium. The Mach number of the shock can be expressed as M = v
cs

. So the kinetic energy flux can be written

as a function of shock mach number M. The CR flux then becomes a strong function of mach number only and

can be expressed as

fCR = η(M)×
1

2
ρ(Mcs)

3. (2)

Where CR acceleration fraction i.e. η(M) can be obtained numerically from diffusive shock acceleration (DSA)

simulations [17]:

η(M) =















1.025δ0, if M ≤ 1.5

4
∑

n=0

an
(M − 1)n

M4
, if M > 1.5

(3)
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where a0, a1, ... are the fitted polynomial coefficients. Here δ0 is the gas thermalization efficiency at shocks

without CRs, which was calculated from the Rankine-Hugoniot jump condition:

δ0(M) =
2

γ(γ − 1)M2R

[

2γM2 − (γ − 1)

(γ + 1)
−Rγ

]

,

R ≡
ρ2
ρ1

=
γ + 1

γ − 1 + 2/M2
.

(4)

In the actual scenario, not only the thermally accelerated particles but there are also pre-existing energetic particles

due to historical energetic events in the system.

5. Results

Figure 2: Slice plot of mach number of area of 10

Mpc h−1.

In the simulated clusters, the shock Mach numbers seen to be

varying in the range 1 - 4 in the core region. And in some

region from R500 to R200 it goes up to 7. Outside the virial

radius (i.e. R200) it goes beyond 10 (see Fig.2).

In our simulations we found that the most cosmic ray acceler-

ation is happening for the Mach number ranging 2 - 5 (mostly

peaking at ∼ 3) during the evolution of the cluster (see Fig.3),

is consistent with the other such studies [18]. But, during

mergers, the peak shifts towards higher mach numbers. This

is due to the fact that the merger shocks, when moves towards

the outskirts, Mach number and the occupying volume both

increases. In this context, we have made a plot to see the cor-

relation between total volume occupied by shocks in the range

of Mach numbers above 2 at different stages of its evolution

(see the Fig.3, Panel 2). This plot clearly shows that there are

phases when shocked volume goes more than 10% (even upto

20%) of the total virial volume of the cluster, with a sharp con-

trast to the usual shocked volume of about a percent only in the

relaxed condition. Another important observation is, at the low redshift, the shocked volume rapidly goes down by

more than an order which may result in fall of total energy flux from the system. A crucial observation can also be

made from this plot about the contribution for CR acceleration from the high mach number. In a relaxed system,

Mach number beyond 10 is hardly existing, where as during mergers, strong shocks increases by more than 103

folds than that of a relaxed system and total volume occupying by such a strong shock becomes significant with

almost about 1% of the total volume.

We also found that during the mergers, CR flux goes up by many times (Fig.4). There is a good correlation of

merging phases and CR flux, this will definitely help us in explaining the merging galaxy clusters at different

states.

6. Discussions and conclusions

• Large scale structure formation shocks are the most efficient particle acceleration agent, and responsible for

production of the CR particle from the galaxy clusters.

• Mach number for internal shocks are in the range 1 - 4. While mach number for outer shocks can go beyond

10.

• The most CR acceleration is happening for the Mach number ranging 2 - 5 (mostly peaking at ∼ 3)

• Main contribution in CR production is coming from the volume filling factor of shocks.

• We see a good correlation of merging phases and CR flux, this will definitely help us in explaining the

merging galaxy clusters at different states.
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Figure 3: Panel 1: CR flux vs the Mach number ( Log[fCR] Vs Log[M]). The most CR flux can be observed

corresponding to mach number about 3. Panel 2: This shows a plot of fractional volume within a cluster that is

shocked with Mach number more than 2 (red) and mach number > 10 (blue). The same parameter for a cluster

that hasn’t been undergone merger for a quite a long time has been plotted in green and black respectively.

Figure 4: First 3 panels in clockwise direction shows the mass, energy, and CR flux evolution with look back time

and 4th one shows the evolution of CR flux with mass for a forming galaxy cluster.
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In textbooks and review articles on modern cosmology [1, 2, 3, 4, 5, 6] one almost invariably comes across a

section devoted to the subject of observed homogeneity and near-flatness of the universe, where it is argued that

to explain these observations inflation is almost a must. In fact that was the prime motive of Guth [7] to propose

inflation in the first place. We show that the arguments offered therein are not proper. The horizon problem, which

leads to the causality arguments, arises only in the world models where homogeneity and isotropy (cosmological

principle) is presumed to begin with. We do not know whether the horizon problem would still arise in non-

homogeneous world models. Therefore as long as we are investigating consequences of the cosmological models

based on Robertson-Walker line element, there is no homogeneity issue.

We also show that the flatness problem, as it is posed, is not even falsifiable. The usual argument used in literature

is that the present density of the universe is very close (within an order of magnitude) to the critical density value.

From this one infers that the universe must be flat since otherwise in past at 10−35 second (near the epoch of

inflation) there will be extremely low departures of density from the critical density value (i.e., differing from

unity by a fraction of order ∼ 10−53), requiring a sort of fine tuning. Actually we show that even if the present

value of the density parameter (in terms of the critical density value) were very different, still at 10−35 second it

would in any case differ from unity by a fraction of order ∼ 10−53. For instance, even if had an almost empty

universe, with say, ρo ∼ 10−56 gm/cc or so (with density parameter Ωo ∼ 10−28, having a mass equivalent to

that of Earth alone to fill the whole universe), we still get the same numbers for the density parameter at the epoch

of inflation. So such a fine-tuning does not discriminate between various world models and a use of fine tuning

argument amounts to a priori rejection of all models with k 6= 0, because inflation or no inflation, the density

parameter in all Friedmann-Robertson-Walker (FRW) world models gets arbitrarily close to unity as we approach

the epoch of the big bang. That way, without even bothering to measure the actual density, we could use any

sufficiently early epoch and use “extreme fine-tuning” arguments to rule out all non-flat models. Thus without

casting any whatsoever aspersions on the inflationary theories, we point out that one cannot use these type of

arguments, viz. homogeneity and flatness, in support of inflation.

1. Horizon and homogeneity problem

Horizon in the cosmological context implies a maximum distance yonder which we as observers have not yet seen

the universe due to a finite speed of light as well as a finite age of the universe. In other words these are the farthest

regions of the universe (redshift z → ∞) from which the light signals have just reached us. However when we

look at the universe we find that distant regions in opposite directions seen by us have similar cosmic microwave

background radiation (CMBR) temperatures. The object horizon problem in standard cosmological big bang model

is that these different regions of the universe have not ever communicated with each other, but nevertheless they

seem to have the same temperature, as shown by the CMBR which shows almost a uniform temperature (2.73◦ K)

across the sky, irrespective of the direction. How can this be possible, considering that any exchange of information

(say, through photons or any other means) can occur, at most, at the speed of light. How can such two causally

disconnected regions have one and same temperature, unless one makes a somewhat “contrived” presumption that

the universe was homogeneous and isotropic to begin with when it came into existence [1]?

One can illustrate the object horizon problem using a simple, though somewhat naive, argument in the following

way. According to the big bang model the universe has only a finite age, say to. Then light (or information) from

regions at a cosmological distance cto from us would have reached us just now, and could not have crossed over

to similar distant regions on the other side of us. Then how two far-off regions on two opposite sides of us have

managed to achieve the homogeneity so that we see them having same properties. Though the argument does

contain an element of truth, but it could not be always true and its naive nature can be seen from the simplest of

FRW models, namely empty universe of Milne (ρ = 0, qo = 0), where even the most distant (z → ∞) observable
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Figure 1. An observer at O (us) receiving signal from distant objects at A and B at time to, which is the time since big bang.

Signal from A having just reached O could not have yet reached B and vice versa.

point in the infinite extent of the universe is within horizon for each and every point of the universe, let it be in any

region in any direction from us in this infinite universe model. For instance, in this world-model B will receive

signals from us (at O) and from A in same amount of time. In fact all regions in this universe at any time receive

past signals from all other regions even though the universe is infinite. Thus horizon problem does not arise in

this particular world-model. However, in more realistic cases of general relativistic cosmological models, say with

finite density, almost invariably one comes across horizon problems.

From the observed CMBR, the universe appears to be very close to isotropic. At the same time Copernican prin-

ciple states that earth does not have any eminent or privileged position in the universe and therefore an observer’s

choice of origin should have no bearing on the appearance of the distant universe. From this we infer that the cos-

mos should appear isotropic from any vantage point in the universe, which directly implies homogeneity. For this

one uses Weyl’s postulate of an infinite set of equivalent fundamental observers spread around the universe, who

agree on a “global” time parameter, orthogonal to 3-d space-like hyper surfaces, and measured using some local

observable like density, temperature, pressure etc. as a parameter [1, 3, 8]. Thus we are led to the cosmological

principle that the universe on a sufficiently large scale should appear homogeneous and isotropic to all fundamental

observers, and then one gets for such observers a metric for the universe known as Robertson-Walker metric.

Is there any other evidence in support of the cosmological principle? Optically the universe shows structures up to

the scale of super clusters of galaxies and even beyond up hundreds of mega parsecs, but the conventional wisdom

is that when observed on still larger scales the universe would appear homogeneous and isotropic. It is generally

thought that radio galaxies and quasars, the most distant discrete objects (at distances of gig parsecs and farther)

seen in the universe, should trace the distribution of matter in the universe at that large scale and should therefore

appear isotropically distributed from any observing position in the universe.

But there is a caveat. In the 3CRR survey, the most reliable and most intensively studied complete sample of

strong steep-spectrum radio sources, large anisotropies in the sky distributions of powerful extended quasars as

well as some other sub-classes of radio galaxies are found [9]. If we include all the observed asymmetries in the

sky distributions of quasars and radio galaxies in the 3CRR sample, the probability of their occurrence by a chance

combination reduces to ∼ 2×10−5. Such large anisotropies present in the sky distribution of some of the strongest

and most distant discrete sources imply inhomogeneities in the universe at very large scales (covering a fraction of

the universe).

Also using a large sample of radio sources from the NRAO VLA Sky Survey, which contains 1.8 million sources, a

dipole anisotropy is seen [10] which is about 4 times larger than the CMBR dipole, presumably of a kinetic origin

due to the solar motion with respect to the otherwise isotropic CMBR. These unexpected findings have recently

been corroborated by two independent groups [11, 12]. The large difference in the inferred motion (as much as

a factor of ∼ 4) cannot be easily explained. A genuine discrepancy in the dipoles inferred with respect to two

different cosmic reference frames would imply a large (∼ 103 km/sec) relative motion between these frames, not

in accordance with the cosmological principle.

If we ignore these and some other similar threats to the cosmological principle and trust the assumption of homo-

geneity and isotropy for the whole universe for all times, then the line element can be expressed in the Robertson-

Walker metric form [2, 3, 4, 8],

ds2 = c2dt2 −R2(t)

[

dr2

(1− k r2)
1/2

+ r2(dθ2 + sin2 θ dφ2)

]

, (1)
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where the only time dependent function is the scale factor R(t). The constant k is the curvature index that can take

one of the three possible values +1, 0 or −1 and (r, θ, φ) are the time-independent comoving coordinates.

Using Einstein’s field equations, one can express the curvature index k and the present values of the cosmic scale

factor Ro in terms of the Hubble constant Ho, the matter energy density Ωm and the vacuum energy (dark energy)

density ΩΛ as [2, 3, 4],

k c2

H2
oR

2
o

= Ωo − 1, (2)

where Ωo = Ωm +ΩΛ. The space is flat (k = 0) if Ωo = 1.

In general it is not possible to express the comoving distance r in terms of the cosmological redshift z of the

source in a close-form analytical expression and one may have to evaluate it numerically. For example, in the

Ωm +ΩΛ = 1,ΩΛ 6= 0 world-models, r is given by [2],

r =
c

HoRo

∫ 1+z

1

dz

(ΩΛ +Ωmz3)
1/2

. (3)

For a given ΩΛ, one can evaluate r from equation (3) by a numerical integration.

However for ΩΛ = 0 cosmologies, where the deceleration parameter qo = Ωm/2, it is possible to express the

comoving (coordinate) distance r as an analytical function of redshift [13],

r =
c

HoRo

z

(1 + z)

[

1 + z +
√
1 + 2qoz

]

[

1 + qoz +
√
1 + 2qoz

] , (4)

which for the empty Milne universe (qo = 0) of negative curvature (k = −1) yields,

r =
c

2HoRo

[

1 + z − 1

1 + z

]

, (5)

while for the Einstein - de Sitter world-model (qo = 1/2) with zero curvature (k = 0) we get,

r =
2c

HoRo

[

1− 1√
1 + z

]

. (6)

From equation (5) we see that in the Milne universe, corresponding to redshift z → ∞, the comoving coordinate

r → ∞ too, thus there is no finite horizon limit in this case and the whole universe is visible to any observer at

any time, consistent with our discussion above. On the other hand from equation (6) we notice in the flat universe

redshift z → ∞ yields for r a finite value. However in this world model the range of coordinate r goes up to

infinity. Thus there is a certain finite object horizon roh = 2c/(HoRo) beyond which we are unable to see because

there is only a finite amount of time since the big bang singularity (corresponding to z → ∞), and thus only a

finite distance that photons could have travelled within the age of the universe. It turns out that all non-trivial (that

is with finite density) FRW world-models starting with a big bang necessarily have a object horizon [3].

Appearance of object horizon in a world model is generally interpreted as that different parts of the universe in that

model did not get sufficient time to interact with each other and thus may have yet no causal relations and therefore

could not have achieved uniformity everywhere. Therefore inflation is invoked in which an exponential expansion

of space takes place at time t ∼ 10−35 sec by a factor of ∼ 1028 or larger and the space-points now far apart (and

thus apparently not in touch with each other so they appear to be causally unrelated) were actually much nearer

before t ∼ 10−35 sec or so and could have had time to interact with each other before inflation.

A most crucial point that somehow seems to have been missed (or ignored) in these deliberations is that the question

of horizon problem arises only when we to begin with assume that the Universe was “always” homogeneous and

isotropic, because only then we can make use of Robertson-Walker element where we separate the time co-ordinate

from the 3-d space which may or may not be flat and has the time-dependence only through a single scale parameter

R(t). It is only there that horizon makes an appearance which in turn has given rise to the oft-discussed question

of the uniformity and homogeneity of the space. However, as long as we make use of the Robertson-Walker metric

we are taking for guarantee that the universe was ever homogeneous and isotropic, and that a single parameter R(t)
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can describe the past and determine the future of the universe. There is no doubt about the presence of a horizon,

which follows from the Robertson-Walker line element. However that in itself does not imply a nonexistence or

lack of homogeneity as horizon itself exists only in models where to begin with homogeneity is presumed. All we

find from calculations is that in a universe which is which is isotropic and homogeneous on a large enough scale

and where one can assign a single common parameter to all fundamental observers to use as time, the light signals

in a finite amount of time are not able to cover the whole available range of space coordinate r in the universe.

In fact some of the world models even in an infinite time all r may not get covered by light signals emitted from

a point (“event horizon”). Cause and effect seem to reverse their roles. It is not that because horizon exists so

uniformity is not possible, ironically it is where a uniformity is present to begin with that we seem to end up with a

horizon problem. In these models we assume not only a single parameter t, but all other parameters describing the

universe having common values of scale factor R(t), density ρ(t), Hubble parameter Ho, deceleration parameter qo
etc. to be the same everywhere, at any given time t (even beyond object or event horizons wherever we encounter

such horizons)). It is yet to be seen whether such horizons would still arise in models where one does not begin

with the cosmological principle and one has to deal with a genuine non-uniformity problem.

Actually if we follow the standard arguments in the literature then inflation in one sense makes the application of

cosmological principle worse than ever. Though it may alleviate the problem of object horizon, yet it gives rise

to much more acute event horizon problems. After all even just before inflation began, there were object horizons

which because of a rapid expansion of the universe due to inflation will become even more “remote” from each

other ending up in growth of large number of event horizons, with all such regions of the universe never able to

interact with each other. Thus such a universe will comprise huge number of large patches still isolated from each

others. Then how can one still apply the cosmological principle to such a disjointed universe which would conflict

with our starting assumption (Weyl’s postulate!), where we cannot even get a single parameter to act as cosmic

time, orthogonal to 3-d space-like hyper surfaces, which is purely based on the condition of universal homogeneity

and isotropicity. We cannot then even use Robertson-Walker line element to describe the geometry and then all our

conclusions about the cosmological models would have to be abandoned and we will then be back to square one.

Once again, the only saviour here is that, inflation or no inflation, these horizons are encountered only in the models

where we have already assumed cosmological principle. However, if we do want to really examine the question

of homogeneity or its absence then we need to abandon the standard model based on the Robertson-Walker metric

and then with some new model, where possibility of anisotropy or inhomogeneity is assumed to begin with, one

has to examine if in such models also we come across horizons and if so, then we may have a genuine problem to

explain.

2. Flatness problem

In the so-called flatness problem, the current density of the universe is observed to be very close to the critical

value, needed for a zero curvature (k = 0). Since the density departs rapidly from the critical value with time,

the early universe must have had a density even closer to the critical density, so much so that if we extrapolate the

density parameter to the epoch of inflation (t ∼ 10−35 sec) we find it to be within unity within an extremely small

fraction of order ∼ 10−53. This leads to the question how the initial density came to be so closely fine-tuned to the

critical value. Cosmic inflation was proposed to resolve this issue along with the horizon problem [7]. However,

as we will show, the flatness problem, as it is posed, is not falsifiable.

A general form of equation (2) valid at any epoch is,

H2R2(Ω− 1) = kc2. (7)

Making use of equation (2) we get,

H2R2(Ω− 1) = H2
oR

2
o(Ωo − 1), (8)

which for the epoch of inflation (t ∼ 10−35 sec) can be simplified [1] to,

(Ω− 1) ≈ 10−53(Ωo − 1). (9)

The usual argument prevalent in literature is that the present density of the universe is very close (within an order
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of magnitude) to the critical density value, i.e., 0.1 < Ωo < 1. From this one infers that the universe must be

flat since otherwise in past at 10−35 second (near the epoch of inflation) there will be extremely low departures

of density from the critical density value (i.e., differing from unity by a fraction of order ∼ 10−53), requiring a

sort of fine tuning. However this argument could be applicable to almost any present value of the observed density

of the Universe. What is implied here is that even in a hypothetical almost empty universe where the density of

universe is say, ρo ∼ 10−56 gm/cc) or so (with density parameter Ωo ∼ 10−28, having only a mass equivalent

to that of Earth alone to fill the whole universe), from equation (9) the density parameter at the epoch of inflation

would differ from unity by the same fraction, of order ∼ 10−53. Thus without casting any whatsoever doubts on

the inflationary theories, we merely point out that one cannot use these type of arguments to support inflation.

Is there really any substance in this type of arguments as even a mass equal to that of earth alone spread over the

universe will lead to the same low departures from unity of 10−53? In fact even the presence of a mere single

observer would imply the same departures from unity of 10−53. So a use of fine tuning argument amounts to a

priori rejection of all models with k 6= 0, because inflation or no inflation, the density parameter in all Friedmann-

Robertson-Walker (FRW) world models gets arbitrarily close to unity as we approach the epoch of the big bang.

That is the property of all these FRW models. That way, irrespective of the actual density, we could use any

sufficiently early epoch and use the “extreme fine-tuning” arguments to reject all non-flat models. But that is

not what one could call a falsifiable theory. Thus without casting any whatsoever aspersions on the inflationary

theories, we point out that one cannot use these type of arguments to support inflation.

In fact flatness and homogeneity problems seem to contradict each other. If we say that the universe is flat (k = 0)

then we are assuming that the density is exactly equal to the critical value and does not depart from it to even by

a smallest fraction. Or in words, each and every particle is essential and is thus accounted for and even a single

particle is not extra or less in the whole cosmos, as excess of even a single particle more than that needed for the

critical density will ultimately turn the universe from a flat to a curved one. Which means this much information

we have about the whole universe. Then how can we say that we may have no information about some other parts

of the universe due to the so-called horizon problem? While on one hand we guarantee that in k = 0 world models

(flat space), each and every particle in the universe is accounted for (as otherwise even a single extra or missing

particle more than the critical density would cause the universe to deviate from the flat universe (a runaway case!),

but on the other hand we are saying that we (one part of the universe) have no communication or information about

distant parts of the universe and know nothing about them i.e., about the density, temperature, pressure etc. there,

so that uniformity or homogeneity could not have been enforced since the “birth” of the universe. Are we not

contradicting ourselves?

By opting for a flat universe, the least probable out of three possible curvature values, we seem to be following the

example of Copernicus epicycles on philosophical grounds. Further, the argument of flatness perhaps has a catch.

Inflation might make the universe flatter (by bringing density parameter closer to unity) but it can make it flat (by

making the density parameter exactly equal to unity). What we mean is that if we think that inflation has brought

about only a near-flatness then we are essentially assuming that k 6= 0, because otherwise if k = 0, then inflation

does not have a role to play here as it cannot flatten it further. And if k 6= 0 then inflation cannot make it k = 0,

even though it might bring the density parameter closer to unity. In fact by assuming a flat model we are assuming

the ultimate finest-ever tuning imaginable where even the least amount of perturbation on this unstable equilibrium

model (in the form of an excess or deficiency of the smallest amount of matter from the critical density - a single

particle or atom extra or missing!) can ultimately take the universe away from the flat-space model to a curved

one.
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Within the framework of Eddington-inspired Born-Infeld (EiBI) gravity, we show that it is possible to construct

a wide class of exact Lorentzian wormholes without violating the weak or null energy condition. The wormholes

exist in a certain region of the parameter space spanned by the Eddington-Born-Infeld theory parameter and the

parameters related to mass and energy density. Below the critical value of a parameter defined in our work, we have

wormholes. Above the critical value, an event horizon is formed around the wormhole throat resulting in a regular

black hole geometry. The traversability constraints on the wormholes, which restrict the tidal acceleration at the

throat to values below one Earth gravity (g), lead to lower limits on the theory parameter and the throat radius. As

a special case of our solution, we retrieve the wormhole supported by an electric field for a charge-to-mass ratio

greater than the critical value 1.144.

1. Introduction

It is well known that the violation of energy conditions and hence the requirement of exotic matter are generic

features of a wormhole in general relativity (GR) [1, 2]. However, this may not be true in modified or alternative

gravity theories. A simple study on Raychaudhuri equation for a bundle of light rays passing through a wormhole,

point out that, in general, the violation of the null convergence condition is a generic feature of a wormhole, not

the violations of the energy conditions. In GR, the violation of null convergence condition is translated to the

violation of null energy condition via Einstein field equation. This, in turn, leads to the violations of all other

energy conditions (weak, strong, dominant, etc.). But, because of the modified field equations in some modified or

alternative theories of gravity, a violation of null convergence condition may not lead to a violation of the energy

conditions. Therefore, in such theories, we may have wormhole supported by non-exotic matter.

In this article, we review one such wormhole solution supported by non-exotic matter and obtained in [3] in the

context of Eddington-inspired Born-Infeld gravity (EiBI) [4]. Born-Infeld type of gravitational action was first sug-

gested by Deser and Gibbons [5], inspired by the earlier work of Eddington [6] and the nonlinear electrodynamics

of Born and Infeld [7]. They considered metric formulation of the action. However, we shall focus on the Palatini

formulation of the action with the matter coupling considered by Banados and Ferreira [4]. Banados and Ferreira’s

formulation of Born-Infeld gravity is commonly cited as Eddington-inspired Born-Infeld gravity (EiBI). Various

aspects of EiBI gravity such as spherically symmetric solutions, cosmology, and astrophysical aspects, have been

studied by many authors in the recent past [8, 9, 10, 11, 12]. Many authors have attempted to obtain wormhole

solution in this theory. The matter supporting the wormhole solution obtained in [8] in three dimensional EiBI

gravity, satisfies the energy condition for a negative cosmological constant. However, the energy conditions are

violated for non-negative cosmological constant. The anisotropic fluid supporting the wormhole solution obtained

in [9] in four dimension, has negative energy density and hence violates the energy conditions. The author in [10]

obtained a wormhole solution supported by Maxwell electric field. However, we retrieve this wormhole solution

as a special case of the general wormhole solution obtained in [3].

2. Wormholes, Raychaudhuri equations and energy conditions

The spacetime representing a static, spherically symmetric wormhole geometry is generically written as [1]

ds2 = −e2Φ(r)dt2 +
dr2

1− b(r)
r

+ r2(dθ2 + sin2 θdφ2), (1)

where Φ(r) and b(r) are, respectively, the redshift function and the wormhole shape function. The wormhole throat

is at r = r0 such that b(r0) = r0. One of the necessary conditions to construct a traversable wormhole is that Φ(r)

100
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must be finite everywhere (no horizon condition). The spatial shape of the wormhole is visualized by embedding

the t =constant, θ = π/2 spatial section of the wormhole spacetime in background cylindrical coordinates (z, r,

φ) system using an embedding function z(r). Therefore, the line element on the embedding surface can be written

as

ds22 = dz(r)2 + dr2 + r2dφ2 =

[

1 +

(

dz

dr

)2
]

dr2 + r2dφ2.

Matching this with the t = constant, θ = π/2 section of the metric in (1), one obtains the embedding equation

dz
dr = ±

√

b/r
1−b/r . The embedding diagram is obtained by taking the surface of revolution of the curve z = z(r) by

varying φ from 0 to 2π. The embedding diagram of a wormhole for a typical shape function b(r) is shown in Fig.

1. The inverse embedding function r = r(z) has a minimum at the throat. This is known as the minimality of the

Figure 1. Embedding diagram of a wormhole.

wormhole throat. This leads to the well-known flare-out condition at the throat

d

dz

(

dr

dz

)

=
b− b′r

2b2
> 0. (2)

The minimality of the throat can be reinterpreted as divergent null rays passing through the throat. This requires

the violation of the null convergence condition, from the Raychaudhuri equation. The Raychaudhuri equation for

a bundle of light rays is given by

dθ̂

dλ
+

1

2
θ̂2 + σ̂2 − ω̂2 +Rαβ û

αûβ = 0,

where σ̂2 = σ̂αβ σ̂
αβ , ω̂2 = ω̂αβω̂

αβand ûα is the four velocity of the light ray. There are also evolution

equation for the shear (σ̂αβ) and rotation (ω̂αβ) tensors [13]. For a radial null ray passing through the wormhole

(see Fig. 1) in the equatorial plane (θ = π/2), ût = e−2Φ(r) and ûr = ±e−Φ(r)

√

1− b(r)
r . Note that the

family is ingoing at one side and outgoing at the other side of the throat. Therefore, the expansion for this family

becomes θ̂ = ∇αû
α = ± 2

r e
−Φ

√

1− b(r)
r , where upper and lower signs are for outgoing and ingoing null rays,
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respectively. Note that the null expansion vanishes at the throat, i.e., θ̂(r0) = 0. In the neighbourhood of the throat,

the null expansion is positive at one side and negative at the other side of the throat. Along the radial null rays,

null expansion goes from negative to zero at the throat and then becomes positive at the other side. Therefore,

in the neighbourhood of the throat, dθ̂
dλ is positive along this family. It can be shown that the rotation tensor

ω̂αβ = (∂β ûα − ∂αûβ) identically vanishes for this family. Also, σ̂2 ≥ 0 since σ̂αβ is spatial [13]. Therefore,

in order to satisfy the Raychaudhuri equation for the family of radial null rays passing through the wormhole, we

must have Rαβ û
αûβ < 0. Note that, for a timelike velocity uα, Rαβu

αuβ ≥ 0 is known as timelike convergence

condition. Therefore, irrespective of the gravitational theory, the null convergence condition must be violated

at the wormhole throat.

In general relativity, after using the Einstein field equation Gαβ = 8πTαβ , one can show that the violation of null

convergence condition, i.e.,Rαβ û
αûβ < 0 implies violation of null energy condition, i.e., Tαβ û

αûβ < 0 which, in

turn, implies the violation of other energy conditions. The matter violating energy conditions are termed as exotic

matter. Therefore, exotic matter is needed to support a wormhole in general relativity. It should be noted that the

null convergence condition and null energy condition are same in general relativity. However, in some alternative

or modified theory of gravity, these two conditions are different in general. This is because of the modified field

equation in these theories. Therefore, in such theories, we may have violation of the null convergence condition

without violating the energy condition, i.e., we may have wormholes without exotic matter. Therefore, in general,

the violation of the null convergence condition is a generic feature of a wormhole, not the violation of the

energy conditions. In the subsequent sections, we show that such a wormhole solution, without exotic matter, is

possible in Eddington-inspired Born-Infeld (EiBI) gravity.

3. Eddington-inspired Born-Infeld (EiBI) gravity

The action in EiBI gravity is given by [4]

SBI [g,Γ,Ψ] =
c4

8πGκ

∫

d4x

[

√

− |gµν + κRµν(Γ)| − λ
√−g

]

+ SM (g,Ψ),

where c is the speed of light, G is Newton’s gravitational constant, λ = 1 + κΛ, Rµν(Γ) is the symmetric part of

the Ricci tensor built with the connection Γ and SM (g,Ψ) is the action for the matter field. Λ is the cosmological

constant. Variations of this action with respect to the metric tensor gµν and the connection Γ yield, respectively

[4, 10, 11], √−qqµν = λ
√−ggµν − κ̄

√−gTµν , ∇Γ
α

(√−qqµν
)

= 0, (3)

where κ̄ = 8πGκ
c4 , ∇Γ denotes the covariant derivative defined by the connection Γ and qµν is the inverse of the

auxiliary metric qµν defined by qµν = gµν + κRµν(Γ). To obtain these equations, it is assumed that both the

connection Γ and the Ricci tensor Rµν(Γ) are symmetric, i.e., Γµ
νρ = Γµ

ρν and Rµν(Γ) = Rνµ(Γ). Equation (3)

gives the metric compatibility equation which yields

Γµ
νρ =

1

2
qµσ (qνσ,ρ + qρσ,ν − qνρ,σ) .

Therefore, the connection Γµ
νρ is the Levi-Civita connection of the auxiliary metric qµν .

4. Wormhole solution in EiBI gravity

To obtain wormhole solution, we consider following metric ansatze for the physical and auxiliary metric:

ds2g = −ψ2(r)f(r)dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θdφ2), (4)

ds2q = −G2(r)F (r)dt2 +
dr2

F (r)
+H2(r)(dθ2 + sin2 θdφ2). (5)

For the matter part, we consider an anisotropic fluid having an energy-momentum tensor of the form,

Tµ
ν = diag(−ρ, pr, pθ, pθ) = diag(−ρ,−ρ, αρ, αρ).
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It has been shown that the above Tµν can be obtained from non-linear electrodynamics having action of the form

[14],

SM =
1

8π

∫

d4x
√−g

(

−1

2
FµνF

µν

)

1+α

2α

. (6)

For α = 1, it reduces to the Maxwell electrodynamics action. The energy conservation equation can be integrated

to obtain ρ = C0

r2(α+1) , where C0 is an integration constant. To satisfy the energy conditions, we must have C0 > 0
and 0 ≤ α ≤ 1. The full solution for the physical metric is given by [3]

ψ(r) =

[

1∓ r
2(α+1)
0

r2(α+1)

]− 1
2

, (7)

f(r) =
1∓ r

2(α+1)
0

r2(α+1)

1± α
r
2(α+1)
0

r2(α+1)



1− r
(2α+1)
0

3|κ|r2α − 2

r

√

1∓ r
2(α+1)
0

r2(α+1)

(

M̄ +
(α+ 1)r

2(α+1)
0

3|κ| I(r)

)



 , (8)

I(r) =

∫

dr

r2α
√

1∓ r
2(α+1)
0

r2(α+1)

=















2
3 log

[

(

r
r0

)
3
2

+

√

(

r
r0

)3

∓ 1

]

: α = 1
2

r1−2α

1−2α 2F1

[

1
2 ,

2α−1
2α+2 ,

4α+1
2α+2 ;±

(

r0
r

)2α+2
]

: α 6= 1
2 ,

(9)

where r0 = (|κ|C0)
1

2(α+1) and M̄ = GM
c2 , M being related to the mass. Here, upper and lower signs are for κ < 0

and κ > 0, respectively. For radial null rays

∣

∣

∣
θ̂
∣

∣

∣
=

2

r

√

1∓ r
2(α+1)
0

r2(α+1)
, Rαβ û

αûβ = ∓2(α+ 1)
r
2(α+1)
0

r2(α+2)
. (10)

We have seen that θ̂ = 0 and Rαβ û
αûβ < 0 at the wormhole throat. Therefore, from the above expression, it

is clear that we must have κ < 0 to have wormhole solution and r = r0 represents the wormhole throat. The

traversability and no-horizon conditions demand e2Φ(r) = ψ2(r)f(r) to be non-zero, positive, and finite, in the

range r0 ≤ r < ∞. But, for κ < 0, ψ2f diverges as r → r0. However, this divergence can be removed by taking

the following relation between κ, M and r0 [3]:

M̄ = − (α+ 1)r
2(α+1)
0

3|κ| I(r0) =

{

0 : α = 1
2

(α+1)r30
3(2α−1)|κ| 2F1

[

1
2 ,

2α−1
2α+2 ,

4α+1
2α+2 ; 1

]

: α 6= 1
2 .

(11)

It is clear that, we must have α ≥ 1
2 to satisfy the above condition for non-negative mass M . It has been shown

in [3] that the invariant scalars such as Ricci scalar and the Kretschmann scalar are finite at the throat. But, they

diverge at the throat if the above condition is not satisfied. At the throat, we have

1− b(r)

r

∣

∣

∣

r0
= f(r)

∣

∣

r0
= 0, e2φ(r)

∣

∣

r0
= ψ2(r)f(r)

∣

∣

r0
=

1

α+ 1
(1− x)

b− b′r

2b2

∣

∣

∣

r0
=

f ′

2(1− f)2
∣

∣

r0
=

1

r0
(1− x), x =

r20
|κ|

Therefore, to satisfy the flare-out condition as well as ψ2f > 0 at the throat, we must have x < 1, i.e., r0 < |κ|1/2.

Since, for x < 1, f = 0 and f ′ > 0 at the throat, f does not have any zeroes at r > r0. But, for x > 1, it has

zero (giving an event horizon) at r = rh > r0. Therefore, for x > 1, an event horizon is formed around the throat,

thereby giving a regular black hole solution. The critical value xc = 1 distinguishes the wormhole and black hole

solutions. For α = 1, we retrieve the electrically charged solution discussed in [10]. The energy density ρ = 1
8π

Q2

r4

gives C0 = Q2

8π , where Q is the charge. In this case, we obtain the critical charge-to-mass ratio
(

Q
M

)

c
≈ 1.144

from equation (11) and xc = 1. Therefore, we have wormhole for Q
M >

(

Q
M

)

c
and black hole for Q

M <
(

Q
M

)

c
,

where we have taken G = 1 and c = 1. This is similar to the Reissner-Nordström metric where we have naked

singularity for Q
M > 1 and black hole for Q

M < 1. For a traversable wormhole, the tidal acceleration between two
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parts of a traveller’s body travelling through the wormhole must be within a tolerable limit. For the radial tidal

acceleration to be below one Earth gravity g, the Eddington-Born-Infeld theory parameter κ and the wormhole

throat must be greater than the minimum values r0min =
√

c2

3g ≃ 8.64RE and |κ|min ≃ 3.0× 1015m2 [3], where

RE ≃ 6400 km is the Earth radius. However, for the solar constraint |κ| . 1.8× 1014m2 obtained by Casanellas

et al. [15], the minimum radial acceleration is given by 17g.

5. Conclusion

We have seen that, in general, the violation of the null convergence condition is a generic feature of a wormhole

not the violations of the energy conditions. In GR, a violation of null convergence condition leads to a violation of

the energy conditions, thereby requiring exotic matter to support a wormhole. But, this is not true in EiBI gravity,

in general. In this gravity theory, we have obtained an exact wormhole solution supported by non-exotic matter.

We have chosen a special relation between the mass M , wormhole throat radius r0 and the theory parameter κ

to remove the singularity appearing at the throat. We have also obtained the critical value xc =
(

r20
|κ|

)

c
= 1 that

distinguishes between wormhole and black hole. As a special case, we retrieve the wormhole solution supported

by electric field. For this special solution, we obtain the critical charge-to-mass ratio
(

Q
M

)

c
≈ 1.144. We have

wormhole for Q
M >

(

Q
M

)

c
and black hole for Q

M <
(

Q
M

)

c
.
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All astronomical bodies of the observable Universe are seen to be orbiting under the influence of gravitation.

Notwithstanding the existence of CMB, extrapolation of the expansion of the Universe back in time indicates that

astronomical bodies had been in orbital motion at all times. A table with values of orbital velocity (v) of a cosmic

body orbiting at various times around the center of the Universe and the distance (d) between the center of the

cosmic body and that of the Universe at such times shows that the velocity of the cosmic body orbiting the center

of the primordial Universe = C/(Radius of the primordial Universe) = K/C, where K (Constant) = v2d and C a

dimensional constant whose numerical value, regardless of the units of measurement, is 1. All orbital time periods

of the astronomical body till date are aggregated. The total time of travel of that body till date or the age of the

Universe = 7.55274627K/V 3, where V is the present orbital velocity of the body.

1. Introduction

The Sun, planets, satellites and most other visible astronomical bodies in our Galaxy are moving in orbital paths.

In the observable Universe, the Galaxies too are moving [1]. With millions of glaring stars at millions of miles

away, it is difficult to analyze the exact nature of their movements. Solar system orbits around the center of our

Galaxy and takes about 225 − 250 million years to complete one orbit [2]. Our Galaxy is also moving with a

velocity measurable with respect to the CMB rest frame [3]. Observation of galaxies moving away from us does

not necessarily mean that they are moving in straight lines. So it is likely that under the influence of gravitation,

our Galaxy too orbits around an astronomical body of the Universe.

Extrapolation of the expansion of the Universe backwards in time using general relativity yields an infinite density

and temperature at a finite time in the past [4]. Known laws of physics are valid till that point (hereafter referred to

as the point of origin) and gravitation is believed to have been as strong as the other fundamental forces. The Big

Bang model of cosmology predicted existence of background radiation and the discovery of CMB led to the present

theories on Galactic evolution. Greatest emphasis has been laid on this prediction but the contribution of the huge

energy released from Gamma Ray Bursts (GRB) towards the formation of CMB can not be ruled out either. The

GRBs had occurred in galaxies that are one to eight billions of light years away and by studying all of the GRBs

detected so far, it is possible to determine whether the GRBs throughout the Universe had happened for a specific

period at regular intervals. Returning to our initial enquiry of the precise orbital motions of the visible satellites,

planets, stars and galaxies, the extrapolation of the expansion back in time ostensibly leads to an inference that

today’s astronomical bodies had been in orbital motion from the point of origin to date. My submission here is

based on this inference that from the point of origin, all astronomical bodies around the center of the Universe

had expanded while moving in outwardly spiral paths while the astronomical body at the center of the Universe

drifted in one direction as shown in Fig. 1. The extrapolation of the expansion back in time further shows that all

astronomical bodies converge at the point of origin at the same time. So, all astronomical bodies must have moved

out from the point of origin at the same time.

We have some universal relationships for orbital motions and we shall keep our calculations simple by adopting a

view that the orbital paths of the astronomical bodies are circular. By Keplers 3rd law [5]:

D3 = kT 2 (1)

Other proven expressions used in planetary motion are:

T = 2πD/V, (2)

g = V 2/D, (3)

where D is the distance between the center of the Moon and that of the Earth, T the orbital time period of the
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Figure 1. S6 expands while drifting from the point of origin to position A, and S5 expands while orbiting around S6.

Moon, V its orbital velocity, g its gravitational acceleration and k a constant. When the expansion of the Universe

is extrapolated back in time, these relationships must be valid till the point of origin. We shall use these well-tested

relationships applicable universally to all orbiting bodies to deduce a few equations for determination of the age of

the Universe and its radius at primordial state.

2. The Laws of Creation

Combining equations (1) and (2), we find,

V 2D = K, (4)

T = 2πK/V 3. (5)

Where K = 4π2k, a constant. Similarly combining equations (3) and (4), we may write,

gD2 = K. (6)

As shown in Fig. 1, S5 is an astronomical body orbiting directly around the astronomical body called S6 situated

at the center of the Universe. S6 moves up from position G to A during expansion of the Universe. S5 spirals

outward and moves up with S6. Let d be the distance between the center of S5 and that of S6 and v the orbital

velocity of S5. By equation (4), v2d = K6 = a constant. In Table 1, magnitudes of d and v at various points of

assent of S6 are listed.

Table 1. Magnitudes of d, V and v
2
d at various points of assent of S6.

Position of S6 Magnitude of d Magnitude of v Magnitude of v2d (= K6)
A 100 1 100

B 25 2 100

C 4 5 100

D 1 10 100

E 0.25 20 100

F 0.04 50 100

G 0.01 100 100

At point G which can be said to be the point of origin, magnitude of v = 1/(magnitude of d) = magnitude ofv2d (=
K6) and S6 is in its minutest form. At that point, S5 orbits on the surface of S6 and hence d = the radius R6 of

S6. If VG be the orbital velocity of S5 at G, then

VG = K6/C, (7)

C/R6 = K6/C. (8)

Where C is a dimensional constant whose numerical value, regardless of the units of measurement, is 1 and

K6 = V 2

G
R6. If the unit of R6 is km and that of time is second, the unit of C is km2/sec and the value of C = 1
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km2/sec. So, during the expansion of the Universe from the point of origin, (VG =) V 2

G
R6/C is the initial orbital

velocity of S5. Since the magnitude of C = 1, V 2

G
R6 (= K6) is the magnitude of the initial orbital velocity of S5.

Therefore, if V be the orbital velocity of an astronomical body at a given time and D the distance between the

center of the astronomical body and that of its orbital path at that time, V 2D of the astronomical body can be said

to be the magnitude of its initial orbital velocity.

Referring to Fig. 1, the aggregate of all orbital time periods of S5 till date should be the present age of the Universe.

Let in the present T1 orbital time, S5 has an orbital velocity V1, in the previous T2 orbital time it had an orbital

velocity 2V1, in T3 orbital time it had an orbital velocity 3V1 and so on. By equation (5),

T1 = 2πK6/(V1.1)
3

T2 = 2πK6/(V1.2)
3

T3 = 2πK6/(V1.3)
3

And so on. Or,

∞∑

Z=1

TZ = (2πK6/V
3

1
)×

∞∑

n=1

(1/n3).

Or, total of all orbital times = t = (2πK6/V
3

1
) × N, where N = Apery’s constant, the approximate value of

which is 1.202056903 and π = 3.141592653. Or, the present age of the Universe is

t = 7.55274627K6/V
3

1
. (9)

3. Results and Discussion

To have an indicative estimation of the radius and surface gravity of the primordial Universe, lets assume that the

astronomical body at the center of our galaxy is directly orbiting around the center of the Universe. Its estimated

velocity is 552 km/sec and the estimated age of the Universe is 13.8 billion years = 4.3549488 × 1017 seconds.

By Equation (9),

K6 = tV 3

1
/7.55274627 = (4.3549488× 1017 × 5523)/7.55274627 km3/sec2 = 9.698295031× 1024 km3/sec2.

As defined, C = 1 km2/sec. By Equation (8), R6 or the radius of the primordial Universe = 1/(9.698295031 ×

1024) km = 10−7fm.

By Equation (6), surface gravity of the primordial Universe × R2

6
= K6. R6 = 10−7 fm = 10−25 km,

K6 = 9.698295031 × 1024 km3/sec2. Surface gravity of the primordial Universe = K6/R
2

6
= (9.698295031 ×

1024)/(10−25)2 km/sec2 = 9.698295031× 1074 km/sec2

4. Conclusion

The theoretical basis of this paper that the astronomical bodies around the center of the Universe had been in

orbital motion at all times seems to be more reasonable than the present theories which depict a somewhat chaotic

process of galactic evolution with the role of all important gravitation which had been very strong at the initial

stages, kept in abeyance for a long period of evolutionary time. GRBs are presently not visible in our Galaxy and

nearby Galaxies because the last spate of GRB throughout the Universe seemed to have happened more than one

billion years back.

As indicated, the radius of the primordial Universe is much smaller than the classical electron or Lorentz radius

of 2.8 fm. Its surface gravity of 9.7 × 1077 meter/sec2 is enormous when we compare the same with the Earth’s

present surface gravity of 9.8 meter/sec2. The indicative initial orbital velocity of the astronomical body at the

center of our Galaxy is K6/C = 9.7 × 1024 km/sec. V 2D (= K) of the solar planets is 1.3 × 1011 km3/sec2.

Therefore, the initial orbital velocity of each planet is 1.3 × 1011 km/sec, much larger than the velocity of light.

So, the orbital velocity of the Earth has decreased from the initial 130 billion km/sec to the present 30 km/sec.
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Newton theorized that a force of a particle reaches out to another particle to cause attraction. Schematic of forces

shows that a force of a particle reaches out to a force of another particle to cause attraction. These forces are spent

to keep the particles bonded. For a spherical body, unspent forces of particles on its surface alone act to attract

adjacent bodies, and in no way, the whole attracting force is issued from its center. Therefore, unlimited increase in

mass of the larger lead ball in Cavendish experiment does not cause proportional increase in the force of attraction.

gD2
= K (constant) drawn from equations of planetary motion shows that g of a free-falling body increases as

the body travels from a distance (D) towards the center of Earth. It indicates existence of a unique formation at the

center of Earth for creation of gravity. Hence, determination of G from a two-body interaction and its application

in F = Gm1m2/r
2 to find the mass of a celestial body is an incorrect procedure as attraction of a body on Earth

and gravity of a celestial body are two different phenomena in respect of the nature of their sources.

1. Introduction

Inverse square law distance dependence is well established in celestial mechanics, but is yet to be comprehensively

proved in laboratories for two adjacent masses, particularly at submillimeter ranges. Report of inverse square

law violation (ISLV) at distances of 4.5 cm – 29.9 cm was made by Daniel Long [1, 2] but was not supported

by subsequent tests [3, 4, 5]. With several theories supporting the existence of other interfering forces that are

weak and insensitive to present experimental setups, full-proof ISLV tests are yet to be accomplished and enquiries

on ISLV continue to exist [6]. Besides whether unlimited increase in the mass of the larger test object causes

proportional increase in the force of attraction is yet to be verified. Finally, the similarity between the source of

attraction of an object towards another on Earth and that of a celestial body towards another is unverified though the

equation F = Gm1m2/r
2 is used for both. Taking note of the unproven points, this paper analyzes the interaction

between the particles in spherical objects from the schematic of their forces and draws inferences that contradict

some of the theorems on spherical bodies and gravity in ’Principia’ [7] and the equation of gravitation as well.

Newton’s view of a spherical body consisting of numerous particles exerting equal forces in all directions [7] is

accepted. Newton theorized that a force of a particle acts on another particle by covering the distance between

them. In Fig. 1, the schematic of interacting forces of gravity shows that when a force of a particle meets a force

of another particle around the mid-point of the distance between them, attraction between the particles takes place.

It is something like a person extending his arms to pull the extended arms of two other persons standing on his two

sides.

2. Definitive actions of forces in two-particle interaction

Pair of forces in Fig. 1 (a) act independently of each other in diametrically opposite directions like stretched arms

of a person ready to pull two adjacent ones. In Fig. 1 (b), line XY joining the centers of particles X and Y, which

lie adjacent to each other, is the shortest distance between them. Force XA of particle X and force YB of particle

Y meet each other first as they act along XY. Upon conjunction of the forces, each particle exerts a single pull to

the other, resulting in the convergence of the particles along XY by equal, tiny distances.

The convergence of the particles causes forces XC and XG of particle X to intersect with forces YD and YH of

particle Y respectively. Assuming the magnitude of each of the forces of the particles to be F , the horizontal

components of the forces XC, XG, YD and YH are F cos (CXY), F cos (GXY), F cos (DYX) and F cos (HYX)

respectively, where ∠CXY = ∠GXY = ∠DYX = ∠HYX. The resultant of F cos (CXY) and F cos (GXY) acting

simultaneously, is 2F cos (CXY). Since ∠CXY is less than 60o, 2F cos (CXY) is greater than F . Similarly, 2F cos

(DYX) being the resultant of F cos (DYX) and F cos (HYX) to pull particle X, too is greater than F . So, particles
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Figure 1. (a) Vertical cross-section of particles X and Y. (b) Intersection of forces of X and Y results in their convergence along

the line XY. (c) Intersecting forces of X and Y transformed into binding forces.

X and Y converge by equal distances which are greater than those covered earlier by them due to the forces XA and

YB. The convergence results in intersection of forces XE and XI of particle X with forces YF and YJ of particle Y

respectively. As shown in Fig. 1 (c), the process continues till the resultant of a pair of horizontal components of

forces (called binding forces hereafter) of each particle is so small that it fails to pull the other particle towards it.

For example, when the angle between the horizontal component of a force and XY is more than 60o, the cosine of

that angle is less than 1

2
and the magnitude of the resultant of the two horizontal components acting simultaneously

is less than F . So, when the resultant force is less than F , it is unable to pull the other particle further.

3. Schematic of many-particle interactions

In a three-particle interaction as shown in Fig. 2 (a), the particle in the middle is attracted by the other two with

equal and opposite forces that nullify each other while its forces acting upon the two bring them closer to it. In

case of interaction between two balls having say, seven particles each as in Fig. 2 (b), the resultant of the binding

forces of the particles closest to each other acts along the line joining the centers of the balls as they converge along

that line, providing a wrong impression that the forces emanate from their centers.

Figure 2. (a) Particle Y creates binding forces with particles X and Z and hence spends most of its forces of attraction. (b)

For two interacting balls, particles closest to each other interact. (c) All forces of the particles under the surface of the ball are

transformed into binding forces whereas unspent forces on the surface attract adjacent bodies.

With more particles interacting from all directions to form a larger cluster, the number of forces of the interacting

particles diminishes due to their conversion into binding forces. As shown in Fig. 2 (c), the particles under the

surface of a tiny ball spend all of their forces to create binding forces whereas those on the surface have unspent

forces which act as forces of the ball to attract another ball adjacent to it.

4. Results and Discussion

The finding in Section 3 contradicts explanatory note to theorem 35, proposition 75, book I of ’Principia’ [7],

which says that the attraction of every particle of a sphere is the same as if the whole attracting force is issued from

one single corpuscle placed in the centre of the sphere.

Like the forces of the particles under the surface of a ball, all forces of the particles under the surface of the Earth

are transformed into binding forces. The particles on the surface of the Earth have unspent forces of attraction,

which are feeble. These particles just under a persons feet and those of his feet, which are in contact, undergo a

negligibly small mutual attraction between them. Hence the forces of the mass of the Earth can not be said to be
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its gravitational forces that extend beyond its Moon to attract celestial bodies. This inference contradicts theorem

7, proposition 7, book III of ’Principia’ [7], which expresses that the Earth’s gravitational force is proportional to

its mass.

Experiments conducted in mine shafts and bore holes reportedly yielded values of G which are significantly higher

than those in laboratory tests [8, 9] and it is necessary that the source of Earth’s gravity is examined.

Kepler’s 3rd law [10] for circular motion of an artificial satellite around the Earth is represented by: (1) D3
= kT 2;

other equations used in orbital motion are: (2) T = 2πD/V and (3) g = V 2/D, where D is the distance between

the center of the satellite and that of the Earth, T the orbital time period of the satellite, V its orbital velocity and

k a constant. The equations give:

gD2
= K, (1)

where K (constant) = 4π2k.

The values of gD2 for an object of any mass at rest on the Earth, for an artificial satellite and for the Earth’s Moon

are same. This also means that ’g’ of a free falling body is zero at an infinite point above the Earth’s surface but

constantly increases as the body travels from the infinite point towards the center of the Earth. Hence, the value

of G in mine shaft/borehole can be found to be higher than that on Earth. The deduction contradicts theorem 9,

proposition 9, book III of ’Principia’ [7], which states that ’g’ of a body decreases as it goes down from the Earth’s

surface to its center. The Earth comprises of solid, liquid and air particles, all having mass and forces of attraction.

There is no sensible reason why ’g’ of a freefalling body, which increases during its passage through air, would

abruptly change property by decreasing below the surface of the solid part of the Earth. The relationship g ∝ 1/d2

(equation (1)) shows that the gravity of the Earth is independent of its mass. It further indicates that a unique

particle or formation of particles in the innermost core of the Earth exists, creating attraction towards all particles

in and around the Earth.

It is also essential to examine how unlimited increase in the mass of a ball affects its magnitude of attraction

towards a smaller ball.

In Fig. (3), vertical cross-section of lead balls P, Q and R having centers on the same line is drawn. R is the largest

and P is the smallest of the balls that have identical, uniform densities. The cross-sections of Q and R touch each

other at point M that lies on the line joining the centers of P, Q and R. BF ‖ CG ‖ MX where X is the center of P

is drawn.

Figure 3. Particles on the surface of Q and R attract only those on the surface of the adjacent hemisphere of P.

Let’s assume that in the absence of R, the forces of attraction of the particles in arc BMC intersect with those in

arc FG resulting in mutual attraction between the cross-sections of Q and P. Arc AMD = arc BMC and AE ‖ DH ‖
MX are drawn so that in the absence of Q, the forces of attraction of the particles in arc AMD intersect with those

in arc EH resulting in mutual attraction between the cross-sections of R and P. As drawn, arc AMD = arc BMC.

Or, the number of the particles of lead in arc AMD = the number of the particles of lead in arc BMC. The particles

in arc EH of P and those in arc AMD of R are mutually attracted while the particles in arc FG of P and those in arc

BMC of Q are mutually attracted.

But arc EH > arc FG. Or, the number of the particles of lead in arc EH > the number of the particles of lead in

arc FG. Therefore, the number of the particles in the cross-section of P that attract the particles in arc AMD of R

> the number of the particles in the cross-section of P that attract the particles in arc BMC of Q. Or, magnitude of

the resultant force of P towards R > magnitude of the resultant force of P towards Q.

So, the mutual attraction between two lead balls increases if the mass of the larger lead ball is increased but

becomes constant once the particles on the surface of the larger lead ball manage to attract all particles on the
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surface of the nearer hemisphere of the smaller lead ball. This inference contradicts corollary 1 to theorem 29,

proposition 69, book I of ’Principia’ [7], which states that the force of gravity of a spherical body is directly

proportional to its mass.

5. Conclusion

Theoretic observations in this paper do not support some of the theorems on spherical bodies and gravity in ’Prin-

cipia’ [7], particularly those related to force-mass proportionality. The findings further indicate that attraction

between the bodies on the Earth and the gravity of the celestial bodies are two different phenomena in respect of

the nature of their sources. Hence, determination of G from a two-body interaction on Earth and its application in

F = Gm1m2/r
2 to find the mass of a celestial body is an incorrect procedure. Besides, if g = GM/D2 drawn

from Newton’s law of universal gravitation is compared with g = K/D2 of the equation (1), GM is seen to be

equal to K which is an Earth-specific constant and is true even if hypothetically, a body under the surface of the

Earth orbits around the Earth’s center or for a body stationed under the Earths surface.
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We report the plausibility of using quantum mechanical transitions, induced by the combined effect of Gravitational

Wave (GW) and noncommutative (NC) structure of space, among the states of a 2-dimensional harmonic oscillator,

to probe the spatial NC geometry. The phonon modes excited by the passing GW within the resonant bar-detector

are formally identical to forced harmonic oscillator and they represent a length variation of roughly the same order

of magnitude as the characteristic length-scale of spatial noncommutativity estimated from the phenomenological

upper bound of the NC parameter. This motivates our present work. We employ various GW forms that are

typically expected from possible astronomical sources. We find that the transition probabilities are quite sensitive

to the nature of polarization of the GW. We also elaborate on the particular type of sources of GW, radiation from

which can induce transitions that can be used as effective probe of the spatial noncommutative structure.

1. Introduction

The tantalizing news of the first direct detection of Gravitational Waves (GWs) [1] has opened a new window not

only for astronomical observations but also for directly looking into the structure of space-time at a length-scale

never probed before. GWs are small ripples in the fabric of space-time. The present day operational GW detectors

are ground-based interferometers (LIGO, VIRGO, GEO, TAMA etc.) [2]. However, the search of GWs began

with resonant-mass detectors, pioneered by Weber in the 60’s [3]. In the decades that followed, the sensitivity of

resonant-mass detectors have improved considerably [4]. Also, the study of resonant-bar detectors is fundamental

since it focuses on how GW interacts with elastic matter causing vibrations with amplitudes many order smaller

than the size of a nucleus. In a bar detector it is possible to detect these tiny vibrations corresponding to just a few

tens of phonons [5], and variations ∆L of the bar-length L ∼ 1 m, with ∆L
L ∼ 10−19.

Interestingly, it has long been suggested in various Gedenken experiments that a sharp localization of events in

space would induce an uncertainty in spatial coordinates [6, 7] at the quantum level. This uncertainty can be

realized by imposing the NC Heisenberg algebra on the operators representing phase-space variables

[x̂i, p̂j ] = i~δij , [x̂i, x̂j ] = iθij = iθǫij , [p̂i, p̂j ] = 0 , (1)

where θij is the constant antisymmetric tensor, which is written in terms of the constant NC parameter θ and the

totally antisymmetric tensor ǫij . Such granularity in spatial structure have been motivated by string theoretic [8]

and quantum gravity [9] results also. A wide range of theories, dubbed the NC theories, have been constructed in

this framework. This includes NC quantum mechanics (NCQM) [10], NC quantum field/gauge theories [11] and

gravity [12, 13]. Certain possible phenomenological consequences [14] have also been predicted. Naturally, a part

of the endeavour is spent in finding the order of the NC parameter and exploring its connection with observations

[15, 16, 17, 18]. The stringent upperbound on the coordinate commutator |θ| found in [16] is . (10 TeV)
−2

which corresponds to 4× 10−40 m2 for ~ = c = 11. This upperbound correspond to the length scale ∼ 10−20 m
which overlaps the length scale where the first GW has been detected [1]. Thus a good possibility of detecting the

NC structure of space-time would be in the present GW detection experiments as it may as well pick up the NC

signature of space-time as a noise source. So we need NCQM of GW-matter interaction that can anticiapte the NC

effects in GW detection events.

With this motivation, we have studied the interaction of GWs with simple matter systems in a NCQM framework

in [19, 20]. Our particular interest is in the NCQM of harmonic oscillator (HO) interacting with GW because

the response of a bar-detector to GW can be cast as phonon mode excitations formally identical to forced HO

[5]. Thus, NCQM of the HO interacting with GW is of fundamental importance. Therefore, we investigate the

1In a more general NC space-time structure [8] given by [xµ, xν ] = iθµν such upperbounds on time-space NC parameter is [17] θ0i

. 9.51× 10−18 m2.
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transition probabilities between the ground state and the excited states of this system in the present paper by treating

the combined effect of GW and spatial noncommutativity as time-dependent perturbations. We employ a number

of different GW forms that are typically expected from runaway astronomical events.

2. Formulation: constructing the NC Hamiltonian

To proceed we first obtain the classical Hamiltonian appropriate for the GW-HO interaction system. This can

be simply done by noting that in the proper detector frame the geodesic deviation equation for a 2−dimensional

harmonic oscillator of mass m and frequency ̟ subject to linearized GW becomes [5]

mẍj = −mRj
0,k0x

k −m̟2xj , (2)

where dot denotes derivative with respect to the coordinate time of the proper detector frame2, xj is the proper

distance of the pendulum from the origin and Rj
0,k0 are the relevant components of the curvature tensor in terms

of the metric perturbation hµν defined by3 gµν = ηµν +hµν ; |hµν | << 1, on the flat Minkowski background ηµν .

The transverse-traceless (TT) gauge-choice
(

h0µ = 0, hµν;
µ = 0, hµ

µ = 0
)

removes all unphysical degrees of free-

dom (DOF) and only non-trivial components of the curvature tensor Rj
0,k0 = −ḧjk/2 appear in equation (2).

Note that, equation (2) works as long as the spacial velocities are small and |xj | is much smaller than the re-

duced wavelength λ
2π of GW. These conditions are collectively referred as the small-velocity and long wave-

length limit and met by resonant bar-detectors and the Earth bound interferometric detectors, with the origin

of the coordinate system centered at the detector. This also ensures that in a plane-wave expansion of GW,

hjk =
∫

(Ajke
ikx + A∗

jke
−ikx)d3k/ (2π)

3
, the spatial part ei

~k.~x ≈ 1 all over the detector site. So only the

time-dependent part of the GW is relevant.

The two physical DOF, referred as the × and + polarizations of GW, are contained in Ajk and can be expressed

in terms of the Pauli spin matrices as hjk (t) = 2f
(

ε×σ
1
jk + ε+σ

3
jk

)

if z is the propagation direction. Here 2f is

the amplitude of the GW and (ε×, ε+) are the two possible polarization states of the GW satisfying the condition

ε2× + ε2+ = 1 for all t.

The Lagrangian for the system (2), can be written, upto a total derivative term as L = 1
2mẋ2 − mΓj

0kẋjx
k −

1
2m̟2 (xj)

2
, where Rj

0,k0 = −dΓj

0k

dt = −ḧjk/2. Computing the canonical momentum pj = mẋj −mΓj
0kx

k we

write the Hamitonian as

H =
1

2m

(

pj +mΓj
0kx

k
)2

+
1

2
m̟2 (xj)

2
. (3)

Once we have the classical Hamiltonian we can have the NCQM description of the system4 simply by elevating

the phase-space variables
(

xj , pj
)

to operators
(

x̂j , p̂j
)

and imposing the NC Heisenberg algebra (1). But since

this algebra can be mapped [19, 20] to the standard (θ = 0) Heisenberg algebra spanned by the operators Xi and

Pj of the ordinary QM through the mapping x̂i = Xi − 1
2~θǫijPj , p̂i = Pi so that the NCQM Hamiltonian

corresponding to equation (3) can be re-expressed as 5

Ĥ =
Pj

2

2m
+

1

2
m̟2Xj

2 + Γj
0kXjPk − m̟2

2~
θǫjmXjPm − θ

2~
ǫjmPmPkΓ

j
0k = Ĥ0 + Ĥint. (4)

This Hamiltonian gives the commutative equivalent description of the noncommutative system (3) in terms of the

operators Xi and Pj . Since they admit the standard Heisenberg algebra, the rules of ordinary QM applies to (4)

. The first two terms in equation (4) represent the unperturbed HO Hamiltonian Ĥ0. Rest of the terms are small6

compared to Ĥ0 and can be treated as perturbations Ĥint.

2It is the same as it’s proper time to first order in the metric perturbation.
3As is usual, latin indices run from 1− 3. Also ; denotes covariant derivatives.
4Also note that it has been demonstrated in various formulations of NC general relativity [12, 13] that any NC correction in the gravity

sector is second order in the NC parameter. Therefore, in a first order theory in NC space, the GW remains unaltered by NC effects.
5The traceless property of the GW is also required here.
6A term quadratic in Γ has been neglected in equation (4) since we deal with linearized gravity.
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Defining raising and lowering operators Xj =
√

~

2m̟

(

aj + a†j

)

and Pj =
√

~m̟
2i

(

aj − a†j

)

in terms of the

oscillator frequency ̟, we write the time-dependent interaction part of the Hamiltonian (4) as7

Ĥ ′
int(t) = − i~

4
ḣjk(t)

(

ajak − a†ja
†
k

)

+
m̟θ

8
ǫjmḣjk(t)

(

amak − ama†k + C.C
)

. (5)

3. Time-dependent perturbation

We now apply the time-dependent perturbation theory to compute the probability of transition between the ground

state |0, 0〉 and the excited states of the 2-d harmonic oscillator. To the lowest order the probability amplitude of

transition from an initial state |i〉 to a final state |f〉, (i 6= f ), due to a perturbation V̂ (t) = Fjk(t)Q̂jk is given by

[21]

Ci→f (t → ∞) = − i

~

∫ t→+∞

−∞

dt′
[

Fjk (t
′) e

i
~
(Ef−Ei)t

′〈Φf |Q̂jk|Φi〉
]

.

Using the above result, we find that the probability of transition survives only between the ground state |0, 0〉 and

the second excited state and it reads

C0→2 = − i

~

∫ +∞

−∞

dt
[

Fjk (t) e
i
~
(E2−E0)t

(

〈2, 0|Q̂jk|0, 0〉+ 〈1, 1|Q̂jk|0, 0〉+ 〈0, 2|Q̂jk|0, 0〉
)]

, (6)

where Fjk (t) = ḣjk(t) contains the explicit time dependence of Ĥ ′
int and Q̂jk = − i~

4

(

ajak − a†ja
†
k

)

+

m̟θ
8 ǫjm

(

amak − ama†k + C.C
)

contains the raising and lowering operators appearing in equation (5). Expand-

ing out Q̂ for i, j = 1, 2, we obtain the transition amplitude between the ground state |0, 0〉 and the second excited

state to be

C0→2 = − i

~

∫ +∞

−∞

dt e2i̟t

(

i~

2
ḣ12(t) +

m̟θ

4
ḣ11(t)

)

. (7)

The above equation is the main working formula in this paper. Now using the general formula (7), we can compute

the corresponding transition probabilities P0→2 = |C0→2|2 taking various template of GW forms that are likely to

be generated in runaway Astronomical events.

4. Response to Templet GW signals from possible events

We start with the simple scenario of periodic GW with sinusoidally varying amplitude and a single frequency Ω

hjk (t) = 2f0 cosΩt
(

ε×σ
1
jk + ε+σ

3
jk

)

. In this limiting case of an exactly monochromatic wave, the temporal

duration of the signal is infinite and we get for the transition probability

P0→2 = (πf0Ω)
2 (

ε×
2 + Λ2ε+

2
)

[δ (2̟ +Ω)− δ (2̟ − Ω)]
2
, (8)

where Λ = m̟θ
2~ = 1.888

(

m
103kg

)

(

ω
1kHz

)

is a dimensionless parameter carrying the NC signature. Here we have

used the stringent upper-bound |θ| ≈ 4 × 10−40 m2 [16] for spatial noncommutativity and for reference mass

and frequency used values appropriate for fundamental phonon modes of a bar detector [20] which are formally

identical to the NC harmonic oscillator system considered here.

Consider periodic GW signal coming from a binary system (with quasi-circular orbit) being received by some

earth-bound detector; if the orbit of the binary system is edge-on with respect to us, then we receive the + polar-

ization of the radiation only [5] , i.e., (ε×, ε+) = (0, 1), and in this case (8) shows that the transition probability

will scale quadratically with the dimensionless parameter Λ characterized by spatial noncommutativity. Therefore

such a transition will be driven by the combined perturbative effect of GW as well as spatial noncommutativity8

7C.C means complex conjugate.
8This corresponds to the last term in Ĥint in (5).
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and will occur only if the space has a NC structure. In other words, a quantum mechanical transition induced by

the linearly polarized GW from a binary system with its orbital plane lying parallel to our line of sight can be

an effective test of the noncommutative structure of space. Note that the angular frequency Ω of the quadrupole

radiation is twice the angular frequency of rotation of the source [5], thus (8) also tells us that for transition to oc-

cur we need to have a harmonic oscillator with natural frequency ̟ that matches with that of the source. Highly

accurate X-ray/radio-astronomical measurement of the frequency of orbital rotation of binary Pulsars can be used

to pin-point the natural frequency of the harmonic oscillator required here.

From another binary system similar to the one considered above, but with its orbital plane perpendicular to our

line of sight, both the + and × polarization of the radiation will reach the detector with equal amplitude and

consequently we will have a source for circularly polarized GW signal that can be generically written as hjk (t) =

2f0

[

ε× (t)σ1
jk + ε+ (t)σ3

jk

]

with ε+ (t) = cosΩt and ε× (t) = sinΩt and constant amplitudef0. The transition

probability in this case is9

P0→2 = (πf0Ω)
2
[

{(1 + Λ) δ (2ω +Ω)}2 + {(1− Λ) δ (2ω − Ω)}2
]

. (9)

Equation (9) shows a non-zero transition probability for Λ = 0, i.e. if our space has commutative structure. Thus

a transition induced by circularly polarized GW from a binary system cannot be used as a deterministic probe for

spatial noncommutativity. This feature lies with the earlier case of linearly polarized GW signals only.

In the last stable orbit of an inspiraling neutron star or black hole binary or during its merging and final ringdown,

the system can liberate large amount of energy in GWs within a very short duration 10−3 sec < τg < 1 sec. Such

signals are referred to as GW bursts. Supernova explosions and stellar gravitational collapse are other candidate

generators. Since bursts originate from violent and explosive astrophysical phenomena, their waveform cannot be

accurately predicted and only be crudely modeled as hjk (t) = 2f0g (t)
(

ε×σ
1
jk + ε+σ

3
jk

)

, where to be generic

we have kept both components of the linear polarization. Here g (t) is a smooth function which goes to zero rather

fast for |t| > τg. A convenient choice is a function peaked at t = 0 with g (0) = O(1) so that |hjk (t) | ∼ O (f0)

near the peak. So we take a simple Gaussian g (t) = e−t2/τ2

g . Owing to its small temporal duration the burst have

a continuum spectrum of frequency over a broad range upto fmax ∼ 1/τg whereas the detector is sensitive only

to a certain frequency window and blind beyond it. If the sensitive band-width is small compared to the typical

variation scale of the signal in the frequency space, the crude choice here, instead of a precise waveform, is good

enough. In terms of the Fourier decomposed modes the GW burst can thus be modeled as

hjk (t) =
f0
π

(

ε×σ
1
jk + ε+σ

3
jk

)

∫ +∞

−∞

g̃ (Ω) e−iΩtdΩ, (10)

where g̃ (Ω) =
√
πτge

−
(

Ωτg
2

)

2

is the amplitude of the Fourier mode at frequency Ω. Using equation (10) in the

general formula for transition amplitude (7) we find the probability for transition from the ground state to the

second excited state induced by a GW burst is

P0→2 =
(

2
√
πf0̟τg

)2
e−2̟2τ2

g

(

ε×
2 + Λ2ε+

2
)

, (11)

where the GW Fourier mode with twice the natural frequency of the harmonic oscillator (the detector in our

consideration) gets picked up. Since the burst signal duration τg ∼ 10−2 − 10−3 sec, the maximum frequency in

the Fourier spectrum can be Ωmax/2π ∼ 0.1− 1 kHz which partially overlaps with the sensitive bandpass for the

bar-detectors. From equation (11) we again see that the + polarization of the GW burst can only induce a transition

if the space has a NC structure. If the polarization state of a GW signal from a given source can be anticipated

since it depends largely on the orientation of the source which can be determined by observing its electromagnetic

radiation and the detector geometry. So detecting a QM transition induced by a GW burst from an appropriate

source can serve as a probe of the spatial noncommutativity.

9Note that here the transition probability has terms both linear and quadratic in the dimensionless NC parameter Λ. However estimate for

Λ shows that for phonon modes in a bar detector which are the realization of the NC HO system considered in this paper, Λ is of the order of

unity , so we cannot drop the quadratic term even though we started with a theory to first order in the NC parameter.
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5. Conclusion

In conclusion we would like to convey that the considerations in the present paper suggest that the joint operation

of various resonant detector groups like ALLEGRO, AURIGA, EXPLORER, NAUTILUS and NIOBE around the

world in IGEC (International Gravitational Event Collaboration) [23] may possess the potential to establish the

possible existence of a granular structure of our space as a by-product in the event of a direct detection of GW and

therefore must be continued.
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The blazar 3C 454.3 is a well known flat spectrum radio quasar at redshiftz = 0.859. The object has attracted
considerable attention due to its variable emission over the entire electromagnetic spectrum from radio to very
high energy gamma-rays. In the present work, we study the flaring activity of 3C 454.3 observed by different
instruments in the optical, X-ray and gamma-ray energy bands during May-June 2014. With the motivation of
understanding the physical mechanism involved in the variable emission from the source during the outburst, we
perform a detailed spectral and temporal analysis of the near simultaneous multi-wavelength data recorded over
the period from May 1, 2014 (MJD 56778) to June 30, 2014 (MJD 56838). For this time period, we study the
variability in UV-Optical, X-ray and gamma-ray regimes andpossible correlation between flux levels observed in
different energy bands. We also try to model the broad band spectral energy distribution of the source under the
framework of leptonic synchrotron self Compton model for blazar emission.

1. Introduction

According to the unified scheme, blazars are defined as the subclass of active galactic nuclei (AGN) with their
relativistic jets closely aligned to the line of sight of theobserver at the Earth [1]. The broadband emission
from the AGN over the entire electromagnetic spectrum from radio toγ–rays, is assumed to be originated from
the outflow of accreted matter onto a supermassive black hole(SMBH) at the center of the galaxy. Blazars in
particular are characterized by flat radio spectra, variable non-thermal emission with strong Doppler boosting
and high optical polarization. The broadband continuum radiation from blazars is described by spectral energy
distribution (SED) with two distinct humps [2]. Blazars aresubdivided into BL Lacertae objects (BL Lacs: lower
luminosity and lack of strong optical emission lines) and flat spectrum radio quasars (FSRQs: higher luminosity
and broad optical emission lines). The first hump in the blazar SED at low energies peaks in optical through X-
rays and is assumed to be dominated by the synchrotron radiation from relativistic leptons (electrons and positrons)
within the jet. The origin of second hump peaking at high energy (HE, E> 100 MeV) inγ–ray regime is attributed
to the inverse Compton (IC) scattering of seed photons by therelativistic leptons emitting synchrotron radiation or
by the ultrarelativistic hadrons from photo-pair production in the jet. The exact physical process for the high energy
emission is still not clear with concerns over the origin of seed photons, however two fundamentally different
approaches have been proposed, generally known as leptonicand hadronic models. In the leptonic context, the
emission of energeticγ–rays is attributed to the IC scattering of the sychrotron (synchrotron self Compton, SSC)
or external (external Compton, EC) photons by the same population of relativistic electrons and positrons [3]. The
external seed photons may originate from the accretion disk, broad line region and dusty torus. The hadronic model
attributesγ–ray emission to proton-synchrotron, neutral pion decay, synchrotron and IC emission from secondary
decay products of charged pions and proton initiated cascades in a magnetic field dominated jet [4]. Study of
broadband emission and correlated multi-wavelength variability of large sample of blazars provide a deep insight
into the emission process and thus allows the way for addressing the geometry of the jet (size and structure) and
location of the emission region in the jet.

In this paper, we study in multi-wavelength context the flaring activity of 3C 454.3 observed during May-June
2014 in HEγ–ray, X-ray and UV-Optical bands to understand the physicalprocesses involved in the outburst. In
Section 2, we summarize the results from previous observations of the source during flaring activity in brief. In
Section 3, the multi-wavelength observations and data analysis are reported. We report our results with discussion
in Section 4. Finally, we conclude our study in Section 5.
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2. The blazar 3C 454.3

3C 454.3 (also cataloged as PKS 2251+158;z = 0.859 (3.6 Gpc)) belongs to the FSRQ class of blazars and is one
of the brightest and highly variable source of electromagnetic radiation from radio toγ–rays. Theγ–ray emission
from this source was detected above 100 MeV byEGRETin 1999 with a flaring state flux of∼ 5.0 × 10−5 ph
cm−2 s−1 [5]. A dramatic optical outburst was observed from 3C 454.3 during April-May 2005. Following this
outburst, the source has been the target of several multi-wavelength campaigns and several flaring activities have
been observed over the past decade from this object. In the first week of December 2009, the source reached a
recordγ–ray flux above 100 MeV for blazars with a daily flux of approximately 2.5×10−5 ph cm−2 s−1 observed
by Fermi andAGILE [6]. In November 2010, 3C 454.3 showed sustained flaring activity maintainingγ–ray flux
above 100 MeV at 10−5 ph cm−2 s−1 observed byFermi for several days. The source was also extensively
monitored in X-ray, optical and radio bands during this period for multi-wavelength observation of the flaring
activity [7].
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Figure 1. The UV-optical (left) and X-ray &γ–ray (right) light curves for 3C 454.3 during May 1, 2014 to June 30, 2014. The
horizontal dotted lines represent the average emission in different energy bands during this period.

3. Multi-wavelength Observations and Data Analysis

We have used the multi-wavelength data fromFermi blazar observation program in our present study. The multi-
wavelength data for 3C 454.3 recorded during May 1, 2014 to June 30, 2014 (MJD 56778-56838) are described
below.

3.1 UV-Optical

The UV and optical observations of 3C 454.3 have been performed usingSwift-UVOT covering the wavelength
range of 180-600 nm [8]. We have analysed the data in six bands: V, B, U, UVW1, UVM2 and UVW2 (with central
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wavelengthsλc ∼ 546.8, 439.2, 346.5, 260.0, 224.6 and 192.8 nm respectively) depending upon the availability of
the data in the particular filter. A source region of 5 arcsec radius is selected around the source, while extracting
the background from a circular region of 20 arcsec centered in a source-free region. The detection significance,
magnitude and flux densities have been derived using the taskuvotsource. The obtained fluxes are corrected for
Galactic extinction of E(B-V) = 0.093 mag as given by [9]. We have derived the de-reddened flux densities in each
UVOT filter using the relation given by [10] for AB system.

3.2 X-ray

We have analyzed the data from X-ray telescope (XRT) onboardSwiftsatellite [11] available during May 1, 2014 to
June 30, 2014 in both Windowed Timing (WT) and Photon Counting(PC) modes. There are total nine observations
available during the above period. The cleaned XRT event files have been generated using the taskxrtpipeline
version 0.12.6following the standard filtering criteria with recent calibration files (version 20140709). The source
spectra are extracted from a circular region of radius of 40 arcsec about the source position for WT mode. For PC
mode observations, an annular region with inner radius of 8 arcsec and outer radius of 40 arcsec is used. The inner
region is excluded to avoid pileup of the source. The background has been estimated from an off-axis region of the
same size for individual observation according to the source position in the detector. The ancillary response files
(arfs) are extracted with the taskxrtmkarf. The source spectra are rebinned to have atleast 20 counts per spectral
bin with grppha.

The spectra are fitted with power-law model consisting of absorption due to a neutral hydrogen (PHABS× ZPOW)
usingXSPEC(ver 12.8.0) for z=0.859 in the energy band 0.3–10.0 keV. Theline-of-sight absorption is fixed to a
neutral hydrogen column density (NH ) of 6.63× 1020 cm−2. The unabsorbed energy fluxes are calculated using
cflux task in the energy band 0.3-10.0 keV and four sub-energy bands: 0.3-0.7 keV, 0.7-1.7 keV, 1.7-4.0 keV,
4.0-10.0 keV for a particular observation. We have also usedarchival X-ray data from theMAXI1 telescope in the
energy range 2-20 keV.

3.3 γ–ray

We have used HEγ–ray data from the large area telescope (LAT) onboardFermi satellite [12] during the period
May 1, 2014 to June 30, 2014 (MJD 56778-56838) from the publically available NASA data base2. We have
performed an unbinned likelihood spectral analysis to produce the light curve using the standard analysis toolgt-
like, provided in theFermi ScienceTools software packages (version v9r27p1). A refined LAT response function
P7 SOURCEV6 reflecting the improved point-spread function and effective area with galactic and isotropic dif-
fuse emission model filesgal 2yearp7v6v0.fitsandiso p7v6source.txtrespectively have been used to generate the
light curve of the source. We have included only photons located in a circular region of interest (ROI) with a 15◦

radius centered at the position of 3C 454.3 (RA = 22h53m57.7s, Dec = 16◦8′53.5′′) in the present analysis. In
addition, we have excluded the events arriving with zenith angles> 100◦ to avoid the contamination from Earth
limb γ–rays, and photons detected while the spacecraft rocking angle was> 52◦. All the point sources fromFermi
second LAT catalog (2FGL) [13] within 20◦ of 3C 454.3 have been considered in the source model file. Sources
within ROI are fitted with power law model with spectral indexand normalization as free parameters, while those
beyond ROI have their model parameters fixed to the values as reported in 2FGL. We have produced the daily light
curve in the energy range 0.1-100 GeV with minimum statistical significance accepted for each time bin as TS≥
16, where TS is the test statistic defined as twice the difference of thelog(likelihood)with and without the source
in the model file respectively (

√
TS gives the statistical significance of the detection).

1http://maxi.riken.jp/top/index.php
2http://fermi.gsfc.nasa.gov/ssc/data/access
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4. Results and Discussion

4.1 Light curve Analysis

The multi-wavelength light curves of 3C 454.3 in UV-Optical, X-ray and HEγ-ray bands during May 1, 2014
to June 30, 2014 (MJD 56778-56838) are shown in Fig.1. It is evident from Fig.1 that the source is observed in
extreme flaring state on June 21, 2014 (MJD 56829) in all energy bands from UV (W1, M2 & W2), optical (V, B
& U), X-ray (0.3-10 keV) andγ–ray (0.1-100 GeV). The averageγ–ray flux is above 10−6 ph cm−2 s−1 which
implies an active phase of the source during the above time period. In the highest flaring state on June 21, 2014,
theγ–ray flux increases upto∼ 10 times the average flux of the active phase. The HEγ–ray emission during May
1, 2014 to June 5, 2014 (MJD 56778-56813) is observed to be consistent with average or quiescent state emission.
The X-ray activity observed withSwift/XRT in the energy range 0.3-10 keV also shows that the flux level during
flaring state is approximately two times the average flux of the available observation during this period. In the
UV-Optical band, a significant change in the source activityis observed during this period, with a peak on June
21, 2014. Therefore, a near simultaneous flaring episode in UV-Optical, X-ray and HEγ–ray is evident from the
source.

To quantify the variability in different energy regimes, wehave computed the fractional variability amplitude (Fvar)
and variability amplitude parameter (Amp) as defined by [14] using daily light curves in each energy band. Both
the parameters,Fvar andAmp are shown as a function of mean observational energy of different energy bands in
Fig.2 using red squares and green circles respectively. We observe thatFvar andAmp show similar behaviour as a
function of energy during the flaring activity of the 3C 454.3. From this figure, it is evident that the UV-Optical and
X-ray emission from the source can be characterized by an average variability amplitude ofFvar ∼ 50% whereas
it is observed to be∼ 90% in HE γ–ray regime. Similar variability amplitudes in low energy bands from UV to
X-rays favour SSC process for their emission. The correlation study performed usingPearson coefficientsuggests
that the multi-wavelength emissions from the source are correlated with each other during the entire period. This
provides evidence to support the one zone leptonic model forblazar emission.
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Figure 2. Variability amplitudes in different energy bands. The red squares represent fractional variability amplitude (Fvar)
and green circles denote variability amplitude parameter (Amp).

4.2 Spectral Energy Distribution Modelling

We have used one zone blazar emission model to reproduce the SED of the source. In this model, we consider a
spherical emission region filled with relativistic non-thermal electrons and moving with the bulk Lorentz factorΓ

along the jet of the source. The size of emission region is constrained by variability time scale and light crossing
effects. The relativistic electrons emit synchrotron radiation due to the presence of uniform magnetic field in the
blob. The non-thermal electrons also emit high energy radiation by self synchrotron Compton process as well as
by Comptonizing external soft photons from the accretion disk. The photon emissivities due to synchrotron, self
synchrotron Compton and external Compton processes have been obtained from Finke et al. (2008) and Dermer
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et al. (2009) [15]. The broad band SED of the source in quiescent state is reproduced by assuming that the non-
thermal spectrum of electrons is described by a broken powerlaw with spectral indices of 1.5 before the break and
3.5 after the break. However, SED of the source during flaringactivity is obtained by the non-thermal population
of electrons following a power law spectrum with index∼ 2.5. The model SEDs of the source in the two states
along with observed multi-wavelength flux points are shown in Fig.3. The best fit values of bulk Lorentz factor
and magnetic field of the jet are found to be 200 and 0.06 G in thenormal state while the same parameter values
are obtained to be 700 and 0.01 G in flaring activity state. Theparameters derived in our present study under the
framework of synchrotron, SSC and EC models are consistent with the previous studies of the source.
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Figure 3. Spectral energy distribution of 3C 454.3 under the frame work of synchrotron external Compton (EC) model during
quiescent state (left) on May 14, 2014 (MJD 56791) and flaring state (right) on June 21, 2014 (MJD 56829).

5. Conclusions

In this study, we focus on the analysis of multi-wavelength data recorded bySwiftandFermi satellites during the
period May-June 2014 (MJD 56778-56838). We have obtained daily averaged light curves for the whole time span
in the UV-optical, X-ray and HEγ–ray bands from these data sets. The source is observed to be in active state with
a strong flaring activity on June 21, 2014 in the all energy bands. The activity of the source is characterized by
two variability parameters namelyFvar andAmp. The highest variability of the source is observed in high energy
regime with a comparatively less variability in lower energy bands (UV-optical and X-rays). The multi-wavelength
emission during the active phase of the source (including flaring activity) is very well correlated. This exceptional
multi-wavelength flaring activity of FSRQ 3C 454.3 allows usfor day scale spectral analysis with good quality
data and gives unique opportunity for modelling the SED of the source. Therefore, we have performed spectral
analysis for some selected time period involving the flaringactivity to study the simultaneous broadband SED of
3C 454.3 using one zone leptonic model with synchrotron, SSCand EC processes. The model parameters obtained
in the two states of source activity suggest that the jet is magnetically dominated during normal state while the jet
energy is contained in particles during flaring activity.
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We have formulated a generalized Pseudo-Newtonian potential (PNP) based on the conserved Hamiltonian for a

test particle motion around a spinning black hole described by Kerr Spacetime. The formulated potential repro-

duces most of the general relativistic effects for a test particle motion around the Kerr black hole with resonable

accuracy within Newtonian framework. Unlike the other prevailing PNPs for Kerr spacetime, the present PNP

contains the explicit information of frame dragging effect. The general relativistic effects like perihelion advance-

ment and bending of light also can be evaluated with high accuracy from the derived potential. The formulated

Pseudo-Newtonian potential should be quite useful to study complex accretion plasma dynamics within Newtonian

framework.

1. Introduction

The Kerr spacetime in the Boyer-Lindquist coordinate system is given by

ds2 = −

(

1−
2 rs r

Σ

)

c2dt2 −
4ars r sin

2 θ

Σ
cdtdφ+

Σ

∆
dr2

+Σdθ2 +

(

r2 + a2 +
2rs ra

2 sin2 θ

Σ

)

sin2 θ dφ2 , (1)

where ∆ = r2 + a2 − 2rsr, Σ = r2 + a2 cos2 θ and a = J
Mc

named as Kerr parameter. rs = GM/c2. The

Lagrangian density of the particle of mass m in the Kerr spacetime is then given by

2L = −

(

1−
2rs r

Σ

)

c2
(

dt

dτ

)2

−
4ars r sin

2 θ c

Σ

dt

dτ

dφ
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+

Σ
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+

(

r2 + a2 +
2rs ra

2 sin2 θ

Σ

)

sin2 θ

(

dφ

dτ

)2

. (2)

From the symmetries, we obtain two constants of motion corresponding to two ignorable coordinates t and φ,

given by

Pt =
∂L

∂t̃
= −

(

1−
2rs r

Σ

)

c2
dt

dτ
−

2ars r sin
2 θ

Σ
c
dφ

dτ

= constant = −ǫ (3)

and

Pφ =
∂L

∂φ̃
= −

2ars r sin
2 θ

Σ
c
dt

dτ
+

(

r2 + a2 +
2rs ra

2 sin2 θ

Σ

)

sin2 θ
dφ

dτ

= constant = λ , (4)

where ǫ and λ are specific energy and specific angular momentum of the orbiting particle, respectively. Here, t̃ and

φ̃ represent the derivatives of ‘t’ and ‘φ’ with respect to proper time τ . For particle motion in the equatorial plane

(θ = π/2), by solving the above two equations we obtain

dt

dτ
=

ǫ
c2

(

r3 + a2r + 2rsa
2
)

− 2arsλ
c

r∆
, (5)
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dφ

dτ
=

ǫ
c
2ars + (r − 2rs)λ

r∆
. (6)

Using L = − 1

2
m2c2 and substituting (5) and (6) in (2) we obtain

ǫ2 − c4

2c2
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2
ṙ2
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dt
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−
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(
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. (7)

Using (5) and (6) we find

dt

dτ
=

ǫ

c2
r

[

(r − 2rs) +
2ars
c

φ̇
] . (8)

2. Formulation of the generalized potential

The basis of our potential formulation is the low energy limit of the test particle motion [1, 2, 3] , which is

ǫ/c2 ∼ 1. We write E = ǫ2−c4

2c2
considering a locally inertial frame for test particle motion which will reduce to

the total mechanical energy (≡ Hamiltonian) in Newtonian mechanics in nonrelativistic limit with a = 0. Second

term in the above definition of E is the rest mass energy of the particle which is subtracted from relativistic energy

owing to the low energy limit, in analogy to Newtonian Hamiltonian. Computing λ from (6) and substituting in

(7) and using (8), we finally obtain the generalized Hamiltonian (EGK) of test particle around Kerr spacetime in

low energy limit as

EGK = −
GM

r
+

(

1

2
ṙ2

r − 2rs
∆

+
∆

2r
φ̇2

)

r3
[

(r − 2rs) +
2ars
c

φ̇
]2

, (9)

where overdots represent the derivative with respect to coordinate time t. With a = 0, EGK reduces to that of

Schwarzschild geometry. The generalized Hamiltonian EGK in the low energy limit should be equivalent to the

Hamiltonian in the Newtonian framework. The effective Hamiltonian in the Newtonian regime with the generalized

potential in the equatorial plane will then be equivalent to EGK in (9). Thus

EGK ≡
1

2

(

ṙ2 + r2φ̇2
)

+ VGK − ṙ
∂VGK

∂ṙ
− φ̇

∂VGK

∂φ̇
, (10)

where T = 1

2
(ṙ2 + r2φ̇2) is the nonrelativistic specific kinetic energy of the test particle. VGK is the most

generalized form of the potential in Newtonian analogue of Kerr spacetime in the spherical geometry with test

particle motion in the equatorial plane, which contains the entire information of the source. The potential VGK is

then given by

VGK = −
GM

r
(1− ωφ̇)−

(

G1ṙ
2 + G2r

2φ̇2

)

2
(

1 + ωφ̇
) +

ṙ2 + r2φ̇2

2
, (11)

where

G1 =
r3

(r − 2rs)∆
, G2 =

∆

(r − 2rs)2
. (12)
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Note that all the dynamical quantities expressed are specific quantities. In the Newtonian limit G1 = G2 = 1.

ω = 2ars/c(r − 2rs). ωφ̇ in the potential in (11) arises due to the effect of frame dragging. Potential VGK(≡
VKN) is a modified potential deviating from exact Newtonian (spherical symmetric part). ‘KN’ symbolizes ‘Kerr-

Newtonian’.

3. Discussion about the utility of formulated pseudo-Newtonian potential

The potential is an explicit velocity dependent potential containing all gravitational effects of Kerr spacetime for

a stationary observer. Thus, the potential in (11) contains the explicit information of gravitomagnetic and frame

dragging effects which has been obtained directly from the Kerr metric by solving geodesic equations of motion.

Putting a = 0, the potential reduces to that in Schwarzschild geometry. Unlike most other PNPs which are either

derived or prescribed for particle motion in circular orbit, the potential in (11) is applicable for generalized orbital

dynamics. It is to be noted that we have restricted ourselves in deriving a Kerr-Newtonian potential corresponding

to a particle motion in the equatorial plane. Formulation of a more generalized Kerr-Newtonian potential for off-

equatorial particle orbits is immensely complicated within our present approach, where the necessary use of Carter

constant seems to be a prerequisite (see GM07). Such a study would be pursued in the near future.

Although the Kerr-Newtonian potential, in principle, should precisely reproduce all orbits in exact Kerr geometry,

the form of the potential in (11) gets diverge at r = 2rs = 2GM/c2. This is precisely happening owing to the

presence of the
[

(r − 2rs) +
2ars
c

φ̇
]2

in the denominator of Hamiltonian EGK in (9), which has been obtained

while replacing the conserved specific angular momentum λ by φ̇. Thus, the potential in the form given in (11)

would not be useful within the range r <
∼
2rs. Note that for Kerr BH, the horizon rH = rs for maximal spin.

However, such a radial zone of range r <
∼
2 rs is in the extreme vicinity of the rotating BH, which either lies within

the ergosphere for a certain range of a or having a direct ergospheric effect. Moreover, at r <
∼
2 rs, the notion of

potential indeed becomes insignificant and exact GR equations become relevant, where ergospheric effects would

dominate. The accretion powered phenomena which we would be more interested in are more relevant at much

outer radii, as most of the observed phenomena related to BH accretion occur at radii much beyond ∼ 2 rs. Also, it

is to be noted that for lesser BH spin, rH is much greater than rs for which the inner accretion edge is way beyond

∼ 2 rs.

In Fig.1 we show the variation of the Kerr-Newtonian potential with r for both prograde and retrograde circular or-

bits and compare them with Schwarzschild and Newtonian cases. It is being seen that for co-rotating case (Fig.1a),

the magnitude of the corresponding Kerr-Newtonian potential is less than that with respect to Schwarschild space-

time in the inner regions of the central BH, and decreases with the increase in Kerr parameter a. This occurs exactly

due to the effect of frame dragging. With the increase in a, the effect of frame dragging increases which tends to

diminish the radial effect of Kerr-Newtonian potential. This property of Kerr spacetime has a direct consequence

on the accreting plasma in the vicinity of rotating BHs, by providing an additional boost to propel matter and radia-

tion out of the accretion flow. On the contrary, for counterrotating particle orbits, the magnitude of Kerr-Newtonian

potential is much higher as compared to that in Schwarzschild geometry, which increases with the increase in a
(Fig.1b)

The Lagrangian of the particle in the presence of this Kerr-Newtonian potential is given by

LKN =
GM

r
(1− ωφ̇) +

(

G1ṙ
2 + G2r

2φ̇2

)

2
(

1 + ωφ̇
) , (13)

which exactly reduces to that in Schwarzschild geometry with a = 0. Specific angular momentum which is a

constant of motion corresponding to Kerr-Newtonian potential is then given by

λKN =
∂LKN

∂φ̇
= −

GMω

r
+

G2r
2φ̇

(

2 + ωφ̇
)

2
(

1 + ωφ̇
)2

−
G1ṙ

2ω

2
(

1 + ωφ̇
)2

. (14)

Obtaining the specific Hamiltonian from (13), the radial motion of the particle in the presence of this potential is
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Figure 1. Variation of potential with radial distance r. Solid, long-dashed, short-dashed and dotted curves in (a) are for Kerr-

Newtonian potential with Kerr parameter a = 1, a = 0.5, Schwarzschild-Newtonian potential (a = 0) and Newtonian potential

respectively. Similarly Solid, long-dashed, short-dashed and dotted curves in (b) are for Kerr parameter a = −1, a = −0.5,

Schwarzschild case and Newtonian case respectively. Potential in y-axis has negative values expressed in units of c2. r and a

are expressed in units of rs. Both x-axis and y-axis are in logarithmic scale.

then given by

ṙ2 =
2

G1

(

EKN +
GM

r

)

(

1 + ωφ̇
)2

−
G2

G1

r2φ̇2 . (15)

EKN is the conserved specific Hamiltonian of the particle motion in Kerr-Newtonian which is equivalent to EGK.

ṙ is identical to the expression in exact Kerr geometry in low energy limit. Next we compute the equations of

motion of test particle using the Kerr-Newtonian potential. For r coordinate we obtain

(

1−
A3

B1

B5ṙ
2

)

r̈ +

[

A1 +
A3

B1

(B2 + B3 + B4)

]

ṙ2

−A2φ̇
2 +A4 +

A3

B1

B6ṙ
4 = 0 . (16)

Similarly for φ coordinate we have

(

1−
A3

B1

B5ṙ
2

)

φ̈+

[

1

B1

(B2 + B3 + B4 +A4B5)

]

ṙ

−
A2B5

B1

ṙφ̇2 +
1

B1

(B6 +A1B5) ṙ
3 = 0 . (17)

Here,

A1 =
1

2(r − 2rs)

[

2a2(r − 3rs)− 4rrs(r − 2rs)

r∆
+

ωφ̇

1 + ωφ̇

]

,

A2 =
G2

2r

[

2(r − 3rs)(r − 2rs)− 4
rs
r
a2 + ∆

ωφ̇

1 + ωφ̇

]

,

A3 =
ω

1 + ωφ̇
, A4 =

GM

r2G1

[

1−
4ars
c

r − rs
(r − 2rs)2

φ̇

]

,
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B1 =
(

G2r
2 + G1ω

2ṙ2
)

, B2 =
r2φ̇

2(r − 2rs)
G2 ωφ̇

(

3 + ωφ̇
)

B3 =
r2φ̇

(

1 + ωφ̇
)

2(r − 2rs)

[

2(r − 3rs)(r − 2rs)− 4 rs
r
a2

(r − 2rs)2

(

2 + ωφ̇
)

]

,

B4 =
4GMrsa(r − rs)

(

1 + ωφ̇
)3

cr2(r − 2rs)2
, B5 = ωG1

(

1 + ωφ̇
)

,

and

B6 =
ω

2





G1

(

1− ωφ̇
)

r − 2rs
−

2a2r2(r − 3rs)− 4r3rs(r − 2rs)

(r − 2rs)2
∆2

(1+ωφ̇)



 .

The equations (14), (15), (16) and (17) will provide a complete particle dynamics around Kerr BHs in Kerr-

Newtonian framework. They reduce to the expressions corresponding to Schwarzschild case, with a = 0.
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In synchrotron radiation there is a paradox whether or not the pitch angle of a radiating charge varies. The con-

ventional wisdom is that the pitch angle does not change during the radiation process. The argument is based on

Larmor’s radiation formula, where in a synchrotron case the radiation power is along the instantaneous direction of

motion of the charge. Then the momentum loss will also be parallel to that direction and therefore the pitch angle

of the charge would remain unaffected. The accordingly derived formulas for energy losses of synchrotron elec-

trons in radio galaxies are the standard text-book material for the last 50 years. However, if we use the momentum

transformation laws from special relativity, then we find that the pitch angle of a radiating charge varies. While the

velocity component parallel to the magnetic field remains unaffected, the perpendicular component does reduce

in magnitude due to radiative losses, implying a change in the pitch angle. This apparent paradox is resolved

when effects on the charge motion are calculated not from Larmor’s formula but from Lorentz’s radiation reaction

formula. We derive the exact formulation by taking into account the change of the pitch angle due to radiative

losses. From this we first time derive the characteristic decay time of synchrotron electrons over which they turn

from highly relativistic into mildly relativistic ones.

1. Introduction

Synchrotron radiation is of extreme importance in many relativistic plasma and is widely prevalent in extragalactic

radio sources, supernovae remnants, the Galaxy, and many other astrophysical phenomena. A power-law spectrum

is the main characteristic of this radiation process. As electrons emit radiation and thereby lose energy, the radiation

spectrum steepens. This steepening of the spectrum causes even a break in the spectrum slope. This break is a

direct indication of the radiative life-time of electrons and tells us about the age of the source of synchrotron

radiation. Therefore it is important to understand these radiation losses in detail.

Formulas for synchrotron radiative losses were derived more than about 50 years back and have been in use ever

since for calculating radiative losses in a variety of radio sources. In these formulas, it has always been assumed that

the pitch angle of the radiating charged particle remains constant and the dynamics and the life-time of radiating

electrons are accordingly derived [1]. This formulation is now a standard text-book material [2, 3]. However, it

turns out that this formulation is not relativistically covariant. It will be shown here that in the case of synchrotron

losses, the pitch angle in general changes. We shall derive the exact formulation for radiative losses, taking into

account the pitch angle changes.

2. Synchrotron power loss

We use Gaussian (cgs) system of units throughout. A relativistic charged particle, say, an electron of charge - e,

rest mass m0, having a velocity β = V/c and energy E = m0c
2γ (with Lorentz factor γ = 1/

√
(1− β2)), moves

in a magnetic field B in a helical path with θ as the pitch angle, defined as the angle that the velocity vector makes

with the magnetic field direction. We assume the magnetic field to be uniform, say, along the z-axis (Fig.(1)). As

there is no force component due to the magnetic field parallel to itself, a charge with a velocity component β‖ only

along the z-axis keeps on moving unaffected by the field.

The charge spiraling in a magnetic field radiates in the forward direction of its instantaneous motion. For a highly

relativistic motion of the charge, like in a synchrotron case, all the radiated power, as calculated from Larmor’s

formula (or rather from Liénard’s formula), is confined to a narrow cone of angle 1/γ around the instantaneous

direction of motion of the charge. Therefore the momentum carried by the radiation will be along the direction of

motion of the charge. From the conservation of momentum it can then be construed that the radiation should cause

only a decrease in the magnitude of the velocity vector without affecting its direction. As a result it is expected that

the pitch angle θ of the motion should not change due to radiative losses [1]. Thus the ratio V⊥/V‖ = β⊥/β‖ =
tan θ, will not change.
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Figure 1. Helical motion of the electron moving with a velocity V along pitch angle θ in a uniform magnetic field B. V‖ is

the velocity component parallel to B while V⊥ is the perpendicular velocity component.

With the pitch angle as a constant of motion, half life-times of radiating electrons have been calculated, using an

approximate power loss formula [1, 2, 3],

dE
dt

= −ζ sin2 θ E2 , (1)

where ζ = 2e4 B2/(3m4

oc
7) = 2.37 × 10−3B2erg−1s−1. Let E0 be the initial energy at t = 0, then from

equation (1) the energy of the radiating charge at t = τ is calculated to be,

E =
E0

1 + ζ sin2 θ τ E0
. (2)

From equation (2) it follows that the electron loses half of its energy in a time τ1/2 = 1/(ζ sin2 θ Eo).
One thing we note from equation (2) is that it can be true only for a highly relativistic charge (γ = E/(m0c

2) ≫ 1)

and that it is not a general equation. This can be seen immediately from τ → ∞, where E → 0 implying γ → 0,

while we know that γ ≥ 1 always. Actually an approximation β ≈ 1 has been used right from the beginning and

instead of equation (1), the exact equation for the energy loss rate is [4, 5, 6],

dE
dt

= −ζβ2 sin2 θ E2. (3)

We can rewrite the power loss rate in terms of the Lorentz factor γ (= E/(m0c
2), which implies expressing energy

in units of the rest mass energy), to write,

dγ

dt
= −ηβ2 sin2 θ γ2. (4)

Here η = 2e4B2/(3m3

o
c5) = 1.94× 10−9B2 s−1.

3. The pitch angle paradox

Consider a charge particle in its gyrocenter (GC) frame K′, which is moving with a velocity β‖ with respect to the

lab frame K. In K′ therefore the charge has no component of velocity parallel to the magnetic field and has only a

circular motion in a plane perpendicular to the magnetic field (with a pitch angle θ = π/2). In this frame, due to
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radiative losses by the charge, there will be a decrease in the velocity which is solely in a plane perpendicular to

the magnetic field, and the charge will never ever attain a velocity component parallel to the magnetic field.

Now we look at this particle from the lab frame K, in which the charge has (at least to begin with) a motion, β‖

along the magnetic field. Since in the inertial frame K′, the charge never gets a velocity component parallel to the

magnetic field and the two inertial frames (K and K′) continue to move with reference to each other with a constant

β‖, the parallel component of velocity of the charge should remain unchanged even in K. However, magnitude of

the perpendicular component of velocity is continuously decreasing because of radiative losses, therefore the pitch

angle of the charge, θ = tan−1(β⊥/β‖), should decrease continuously with time and the velocity vector of the

charge should increasingly align with the magnetic field vector.

Thus we have a paradox here. While conservation of momentum argument led us to the conclusion that the pitch

angle of the charge is a constant, the second argument from relativistic transformation considerations showed

that the pitch angle will be progressively reducing as the charge radiates with time. Which of the two is true

then? It turns out that the second argument is correct and we shall show that the pitch angles of the radiating

charges decrease continuously and due to that their angular distribution in the momentum space changes with time.

Even if to begin with there were an isotropic energy distribution of electrons in a synchrotron source, electrons

radiating synchrotron radiation develop a pitch angle anisotropy because of sin2 θ dependence of the radiated

power (equation (4)). Then there is the additional fact that the pitch angle of radiating electrons monotonically

decreases with time, and as we shall show the rate of change of the pitch angle depends upon the value of the pitch

angle itself.

Instead of calculating the effects of radiation on charge energy from Larmor’s formula (or its relativistic gener-

alization Liénard’s formula) if we use the Lorentz’s radiation reaction formula and apply it in frame K′, we get

a force along β̈′, which is in a direction opposite to the velocity vector in K′, and the charge accordingly would

have a deceleration vector only in a plane perpendicular to the magnetic field. It should be noted that in all refer-

ence frames gyro acceleration β̇ always lies in the plane perpendicular to the magnetic field and so is the vector

β̈ therefore. And a relativistic transformation of acceleration due to radiation losses, between frames K to K′,

gives a non-zero vector only along the direction perpendicular to the magnetic field and a nil acceleration along

the parallel direction [9], consistent with conclusions reached based on the theory of relativity.

There is another way of arriving at the paradox. Larmor’s formula says that a charge moving with non-relativistic

speeds radiates energy at a rate ∝ β̇2. However, the radiation pattern of such a charge has a sin2 φ dependence

[4, 7, 8], about the direction of acceleration. Due to this azimuthal symmetry the net momentum carried by the

radiation is nil. Therefore the charge too cannot be losing momentum. Thus we have the paradox of a radiating

charge losing its kinetic energy but without a corresponding change in its momentum.

4. Synchrotron losses and the radiative life times

We first calculate the power losses in the GC frame K′, where pitch angle is a constant (θ = π/2) and thus the

standard formulation should be applicable, and then using special relativistic transformations, convert them to the

lab frame K.

In the GC frame K′, there is no motion along the z direction and the charge moves in a circle in the x-y plane. The

velocity β′ of the charge as well as the force F ′ due to radiation losses are perpendicular to the z′-axis in frame

K′ and there is hardly any ambiguity about that. From the 4-force transformation [9, 10] to the lab frame K, with

respect to which the GC frame K′ is moving along the z direction with a velocity β‖, we get,

F‖ = F ′γ‖β‖β⊥ , (5)

F⊥ =
F ′

γ‖
. (6)

There is of course no acceleration component β̇‖ along the z-axis, even though a finite parallel force component

F‖ exists. From a relativistic transformation of acceleration [9] we can verify that there is no parallel component

of acceleration in frame K if it is zero in frame K′ (i.e., β̇‖ = 0 if β̇′
‖ = 0). Actually in frame K, a force component

along z direction shows up solely because of a rate of change of γ due to β̇⊥, even though β̇‖ = 0. It can be
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recalled that in special relativity, force and acceleration vectors are not always parallel, e.g., in a case where force

is not parallel to the velocity vector, the acceleration need not be along the direction of the force. When the applied

force is either parallel to or perpendicular to the velocity vector, it is only then that the acceleration is along the

direction of force [9]. It has to be further kept in mind that the acceleration we are talking about here is not that

due to the force by the magnetic field on the moving charge (which is perpendicular to the instantaneously velocity

of the charge), but the acceleration (or rather a deceleration) caused on the charge due to the radiation reaction

force. An alternative derivation of radiation losses and the pitch angle changes based on radiation reaction force is

available in Singal [11].

In equation (4) sin θ is a variable, but we can write this equation for the GC frame K′, where pitch angle is always

a constant (θ′ = π/2). Then we have,

dγ′

dt′
= −ηβ′2γ′2 = −η(γ′2 − 1) . (7)

Equation (7) has a solution,

tanh−1 1

γ′
= ηt′ + a . (8)

Let γ′
o

be the initial energy at t′ = 0 in frame K′, then 1/γ′
o
= tanh(a) and at time t′ = τ ′ we have,

tanh−1 1

γ′
= tanh−1 1

γ′
o

+ ητ ′ . (9)

which complies with the expectations that as τ ′ → ∞, γ′ → 1.

Now a transformation between K′ and K gives γ′γ‖ = γ and γ′β′ = γβ⊥ or β′ = γ‖β⊥ [5]. Also we have

dt/dt′ = γ‖ or τ = τ ′γ‖. For the transformation of acceleration we then get β̇′ = γ2

‖ β̇⊥ with β̇‖ = β̇′
‖/γ

3

‖ = 0.

Equation (9) can then be transformed in terms of quantities expresses in the lab frame K,

tanh−1
γ‖

γ
= tanh−1

γ‖

γo
+

ητ

γ‖
. (10)

This is a general solution for all values of γ. We can rewrite it as,

γ = γ‖
γo + γ‖ tanh(ητ/γ‖)

γo tanh(ητ/γ‖) + γ‖
. (11)

For an initially ultra relativistic charge (γ0 ≫ 1, β0 ≈ 1), we have 1/γ‖ =
√
(1− β2

0
cos2 θ0) ≈ sin θ0. That also

implies that (except for initially small pitch angle cases) sin θ0 ≫ 1/γ0 or γ‖/γ0 ≪ 1, and from equation (10) we

could write,

tanh−1 1

γ sin θ0
= ητsin θ0 . (12)

This implies that for τ = γ‖/η ≈ 1/(η sin θ0), we have γ ≈ 1.3/ sin θ0. Thus even if an electron had started

with an almost infinite energy, it loses most of its kinetic energy in a time interval of the order of 1/η, reducing to

perhaps a mildly relativistic status (for not too small an initial pitch angle). For instance let us consider γ0 = 103

and θ0 = π/4, then γ‖ ≈ 1/ sin θ0 =
√
2, then from equation (10) or equation (12) we get for τ = 1/η, γ = 2.3.

In another example, taking γ0 = 104 and θ0 = π/3, for τ = 1/η we get γ‖ ≈ 1/ sin θ0 = 2/
√
3 and γ = 1.7. Thus

1/η represents the characteristic decay time of synchrotron electrons over which they turn from ultra relativistic

into mildly relativistic ones.

5. Reduction in the pitch angle

Equation (7) can be also written as,

γ′3β̇′β′ = −ηβ′2γ′2, (13)

or
β̇′

β′
=

−η

γ′
. (14)
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Then transforming to the lab frame K we have,

β̇⊥

β⊥
=

−η

γ
, (15)

Both β and θ in β⊥ = β sin θ are functions of time. Therefore we can rewrite equation (15) as,

β cos θ
dθ

dt
+ β̇ sin θ =

−ηβ sin θ

γ
. (16)

Also from β̇‖ = 0 we get,

β sin θ
dθ

dt
= β̇ cos θ . (17)

Eliminating β̇ from equations (16) and (17), we get,

dθ

dt
=

−η sin θ cos θ

γ
=

−η sin 2θ

2γ
. (18)

This is the relation for the rate of change of the pitch angle of a charge undergoing synchrotron radiative losses.

The negative sign implies that the pitch angle decreases with time and the velocity vector gets increasingly aligned

with the magnetic field. The rate of alignment is very slow for low pitch angles (θ ≈ 0) as well as for high pitch

angles (θ ≈ π/2), and the highest rate of change of the pitch angle is for θ = π/4.

With the help of equation (10), we can integrate equation (18),

∫ θ

θ0

dθ

sin θ cos θ
= −

∫ τ

0

ηdt

γ‖
tanh

(

ηt

γ‖
+ a

)

, (19)

where a = tanh−1(γ‖/γo). This gives us,

ln
tan θ

tan θ0
= ln

cosh(a)

cosh
(

ητ
γ‖

+ a
) . (20)

or

tan θ =
tan θ0

cosh
(

ητ
γ‖

)

+
γ‖

γ0

sinh
(

ητ
γ‖

) . (21)

In equation (21), θ < θ0, because pitch angle always reduces with time. There are many notable points. If

θ0 = π/2, then θ = π/2 also, which is because if the pitch angle is π/2, then the radiating electron always moves

in a circular path in the plane perpendicular to the magnetic field. And if θ0 = 0, then θ = 0 too as there is no

more reduction in the pitch angle. For any 0 < θ0 < π/2, θ → 0 as τ → ∞. For large γ0 values,

tan θ =
tan θ0

cosh (ητsin θ0)
, (22)

which can be used to estimate change in pitch angle with time. For example for say, θ0 = π/3, and θ = π/6,

cosh(ητ sin θ0) = 3, which gives τ ≈ 2/η for this change in the pitch angle. Thus there are appreciable pitch

angle changes in time τ ∼ 1/η (except for in the vicinity of very small pitch angles).

All charges of a given energy and pitch angles, directed towards the observer in a narrow angle 1/γ around the

line of sight not only lose energy but will also get shifted outside the angle 1/γ around the line of sight towards

the observer, in a time τ ∼ 1/η. Thus in a mono-energetic and a narrow pitch angle distribution, the pitch angle

changes might be quite relevant. But it may be of less importance when there is a wide angular (isotropic!)

distribution of pitch angles.
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The astrophysical parameters of poorly studied open star cluster Teutsch 40 are estimated using the 2MASS JHKs

data. The stellar density distribution, colour-magnitude and colour-colour diagram are used to estimate the geo-

metrical structure parameters (cluster center, cluster radius, core radius, the distance from the Sun, galactocentric

distance and the distance from the galactic plane).

1. Introduction

Open clusters (OCs) are gravitationally bound group of stars situated at the same distance from the Sun and have

same age. They are very important tools to study the star formation and evolution in the Galactic disk. Fundamental

parameters of the clusters, e.g. distance, reddening, age and metallicity are very essential to study the Galactic disk.

Ref. [1] provided statistically significant samples of star clusters of known distance, age and metallicity.

In the present study, we aim to estimate the basic parameters of open cluster Teutsch 40 using near-IR photometric

data taken from Two Micron All Sky Survey (2MASS). Teutsch 40 (α2000 = 19h 29m 17s (292◦.31), δ2000 = 23◦

18′ 18′′ (23◦.35); l = 57◦.85, b = 2◦.64) is an old age open star cluster. This cluster is located in first galactic

quadrant and towards anticentre direction. In the literature this cluster is not well studied.

This paper is organized as follows. Section 2 presents the description of data used. Section 3 described the

derivation of fundamental parameters of the cluster. Finally, the conclusion are drawn in Section 4.

2. Data used

The astrophysical parameters of the cluster Teutsch 40 are estimated using the 2MASS Point Source catalouge [2].

The 2MASS [3] uses two highly-automated 1.3m telescope (one at Mt. Hopkins, Arizona (AZ), USA and other

at CTIO, Chile) with a 3-channel camera (256 × 256 array of HgCdTe detectors in each channel). This 2MASS

photometric catalouge provides J (1.25 µm), H (1.65 µm) and Ks (2.17 µm) band photometry for millions of

galaxies and nearly a half-billion stars [4]. The sensitivity of 2MASS catalouge is 15.8 mag for J , 15.1 mag for

H and 14.3 mag for Ks band at S/N=10. The photometric data are taken with in the radius 20 arcmin from the

cluster center.

The errors given in 2MASS catalouge for J , H and Ks band are plotted against J magnitudes in Fig. 1. This figure

shows that the mean error in J , H and Ks band is ≤ 0.04 at J ∼ 13.0 mag. The errors become ∼ 0.08 at J ∼ 15

mag.

3. Derivation of fundamental parameters

3.1 Center estimation

The centre of any cluster can be roughly estimated by eye, but to determine the centre coordinates more precisely,

we applied the star count method to the whole area of cluster. To estimate the cluster centre, we plotted the

histogram in Right ascension (RA) and declination (DEC) for cluster Teutsch 40 as shown in Fig. 2. The purpose

of this counting process is to determine the maximum central density of the cluster. The Gaussian curve-fitting is

applied to the profiles of star counts in RA and DEC respectively. The cluster centre is assumed as the location

of the maximum stellar density in the clusters area. In this way we found the coordinates of center as α =
292.32± 0.01 deg and δ = 23.27± 0.01 deg. These coordinates are very close to the value given in the literature

for the cluster Teutsch 40.
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Figure 1. Photometric errors in J , H and K magnitudes against J magnitude.

Figure 2. Profiles of stellar counts across the cluster Teutsch 40. The Gaussian fits have been applied. The center of symmetry

about the peaks of Right Ascension and Declination is taken to be the position of the cluster center.

3.2 Radial density profile

To estimate the cluster extent, we established the radial density profile for cluster Teutsch 40. The observed area

of this cluster is divided into many concentric circles. We have used cluster center which is estimated by us in the

previous section. The number density, Ri, in the ith zone is calculated by using the formula Ri = Ni

Ai

. Where Ni

is the number of stars and Ai is the area of the ith zone. Fig. 3 represents RDP for the cluster Teutsch 40. The

background density level with errors is also shown with dotted lines. RDP flattens at r ∼ 2.0 arcmin and begin to

merge with the background stellar density as seen in Fig. 3. Therefor we consider 2.0 arcmin as cluster extent. A

smooth continuous line represents fitted [5] profile:

f(r) = fb +
f0

1 + (r/rc)2
,



2MASS analytical study of galactic star cluster Teutsch 40 139

Figure 3. Surface density distribution of the cluster Teutsch 40. Errors are determined from sampling statistics (= 1
√

N
, where

N is the number of stars used in the density estimation at that point). The smooth line represent the fitted profile whereas dotted

line shows the background density level. Long and short dash lines represent the errors in background density.

where f0 is the central density, rc is core radius and fb is the background density. By fitting the King model to the

cluster density profile, we estimated the peak stellar density (f0), core-radius (rc) and background density (fb) as

7.74± 0.8 stars/arcmin2, 0.5± 0.1 arcmin and 3.52± 0.08 stars/arcmin2.

Figure 4. The J, (J −H) colour-magnitude diagram for the cluster Teutsch 40 using stars with in cluster radius. Stars outside

the cluster radius are also plotted as field region stars.

3.3 Colour-magnitude diagram

Colour-magnitude diagram plays most important role for the estimation of age and distance of open star clusters.

The J, (J − H) CMDs of the cluster and field region for the cluster Teutsch 40 is shown in Fig. 4. Stars falling

with in the cluster radius is considered as cluster region stars while those outside the radius are assumed as field

region stars. To get the clear sequence in the CMD, we consider the stars within cluster radius. The area of the
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Figure 5. The plot of (J −H) versus (J −K) colour-colour diagram of the cluster Teutsch 40 using stars within the cluster

radius. The solid line is the ZAMS taken from [6]. The dotted lines is the ZAMS shifted by the values given in the text.

field region was kept equal to area of the cluster region. The CMDs shown in Fig. 4 exhibits a poor main-sequence

(MS) extending from J ∼ 13.8 mag, where the turn off point is located down to J ∼ 15.5 mag. The main sequence

fainter than ∼ 15.5 mag is more scattered and heavily contaminated by field stars. CMD of the cluster Teutsch 40

shows a poorly populated old age open star cluster.

3.4 Colour-colour diagram

Reddening is one of the very useful parameter for the reliable estimation of distance and age of the cluster. To

estimate the reddening of the cluster Teutsch 40 we have plotted (J −H) versus (J −K) colour-colour diagram

as shown in Fig. 5. Stars plotted in this figure are taken within the cluster radius. The Zero age main sequence

(ZAMS) shown by the solid line is taken from [6]. The same ZAMS is shifted by E(J −H) = 0.20 ± 0.02 mag

& E(J − K) = 0.37 ± 0.04 mag for Teutsch 40 and shown by dotted line. The ratio E(J − H)/E(J − K) ∼
0.54± 0.02 for this cluster is in good agreement with the normal interstellar extinction value of 0.55 suggested by

[7]. However, scattering is larger due to error in JHK data.

3.5 Age and distance estimation

In Fig. 6, we show the fitting of isochrones to J/(J −H) and J/(J −K) CMDs. The isochrones of different age

(log (age) = 8.90, 9.00 and 9.10) and Z = 0.019 have been superimposed on the CMDs. The overall fit is good

for log (age) = 9.00 (middle isochrone). The best fitted isochrone provides an age of 1 ± 0.2 Gyr. The distance

modulus m−Mk = 13.85 mag provide a heliocentric distance 4.4± 0.5 kpc. The galactocentric distance is 11.72

kpc, which is determined by assuming 8.5 kpc as the distance of the Sun to the Galactic center. The Galactocentric

coordinates are estimated as X⊙ = 0.08 kpc, Y⊙ = 11.20 kpc and Z⊙ = 0.180 kpc. The value of Z indicates that

this object is above ∼ 180 pc from the Galactic plane in the Galactic disc.

4. Conclusion

In the present work, we have studied the cluster Teutsch 40 using 2MASS JHKs data. This cluster is very useful

for studying the disc subsystem. The main findings of our analysis are given below:

• We estimated radius of the cluster Teutsch 40 as 2 arcmin, by using radial density profile.

• From the two colour (J −H) versus (J −K) diagram, we estimated E(J −H) = 0.20 ± 0.02 mag and

E(J −K) = 0.37± 0.04 mag.
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Figure 6. The J, (J−H) and K, (J−K) color-magnitude diagrams of the cluster Teutsch 40 using stars within cluster radius.

The different lines are the different age isochrones taken from [8]. Three isochrones of different age (log (age) = 8.90, 9.00

and 9.10) of metallicity Z = 0.019 are shown in this figure.

• Distance and age to the cluster is determined as 4.4 ± 0.5 Kpc and 1 ± 0.2 Gyr respectively. These values

are estimated by comparing the isochrones of Z = 0.019 given by [8].

• The value of Z indicates that cluster Teutsch 40 is above ∼ 180 pc from the Galactic plane in the Galactic

disc.
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We have studied the density and angular distributions of Cherenkov photons in extensive air showers initiated by
γ-ray and proton primaries at different energies and at different zenith angles. The study of this kind is important to
distinguish theγ-ray initiated showers from hadronic showers by understanding the nature ofγ-ray and hadronic
showers. In this work, we used CORSIKA 6.990 simulation package. For the high energy hadronic interaction part,
QGSJET-II and EPOS hadronic interaction models are used whereas for low energy interaction FLUKA model is
used. Here we are going to report the result of this work.

1. Introduction

For ground based detection ofγ-rays in the range of few hundred GeV to few TeV, the Atmospheric Cherenkov
Technique (ACT) is the most extensively used technique which is based on detection of Cherenkov photons emitted
in the Extensive Air Showers (EASs) created during the process of interaction between the primaryγ-rays and
earths atmosphere [1]. It should be noted that, the sources which emitγ-rays also emit Cosmic Rays (CRs). As
the CRs are mostly charged particles they got deflected by theintergalactic magnetic fields and hence they loose
their directional property, whereasγ-rays being neutral, retain their direction of origin. So the detection ofγ-rays
can lead to the estimation of the locations of such astrophysical objects.

ACT, being an indirect process ofγ-ray detection and due to the presence of huge CR background,a detailed
Monte Carlo simulation studies of atmospheric Cherenkov photons have to be carried out for detection and proper
estimation of their energy from the observational data of experiments based on ACT. Although bothγ-ray and CR
can generate EAS, the nature of two are different as the former is purely electromagnetic in nature whereas the
later is a mixture of electromagnetic and hadronic cascades. Many studies have already been carried out on the
density, arrival time and angular distributions of Cherenkov photons in EASs using available detailed simulation
techniques [2, 3, 4, 5, 6, 7], however not many studies have been done on model dependent behaviour of density
and angular distributions of Cherenkov photons initiated by γ-ray and hadronic particles incident at various zenith
angles, particularly at high altitude observation levels.Consequently, in this work we have studied the angular and
density distributions of Cherenkov photons at different energies and at different zenith angles on a high altitude
observation level, using two different high energy hadronic interaction models, viz., QGSTJETII and EPOS with
FLUKA low energy hadronic interaction model available in the CORSIKA simulation package [8].

CORSIKA is a detailed Monte Carlo simulation package to study the evolution and properties of extensive air
showers in the atmosphere. This allows to simulate interactions and decays of nuclei, hadrons, muons, electrons
and photons in the atmosphere up to energies of some 1020eV. For the simulation of hadronic interactions, presently
CORSIKA has the option of seven high energy hadronic interaction models and three low energy hadronic inter-
action models. It uses EGS4 code [9] for the simulation of electromagnetic component of the air shower [8]. This
paper is organized as follows. In the section 2, we discuss briefly about the simulation process. The section 3
contains the analysis and results of the simulated data. Thesummary of the work with conclusion is put in the
section 4.

2. Simulation of the Extensive Air Showers

The simulation of the Cherenkov photons in EASs is carried out by using the CORSIKA 6.990 simulation package.
As mentioned earlier, we have used two high energy hadronic interaction models, viz., QGSJETII.3 and EPOS 1.99
with the low energy hadronic interaction model FLUKA to generate EASs for the monoenergeticγ-ray and proton
primaries incident vertically as well as inclined at zenithangle 10o, 20o and 30o. The QGSJETII and EPOS
high energy hadronic interaction models are preferred because QGSJETII is the improved version of the model
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QGSJET01 and EPOS is based on quantum mechanical multiple scattering approach based on partons and strings,
which performed better compared to RHIC data [10]. By using QGSJETII-FLUKA and EPOS-FLUKA model
combinations, the following numbers of showers were generated at different energies and at different zenith angles
for theγ-ray and proton primaries as given in Table 1.

Table 1. Number of showers generated at different energies and at different zenith angles for different primaries using
QGSJETII-FLUKA and EPOS-FLUKA model combinations.

Primary particle Energy Number of Showers
γ-ray 100 GeV 10000

250 GeV 7000
500 GeV 5000

1 TeV 2000
2 TeV 1000

Proton 250 GeV 10000
500 GeV 8000

1 TeV 5000
2 TeV 2000
5 TeV 800

The energies of the primaries selected for this work are the typical ACT energy range of respective primaries
in terms of the equivalent number of Cherenkov photons yield. The altitude of HAGAR experiment at Hanle
(longitude: 78o 57′ 51′′ E, latitude: 32o 46′ 46′′ N, altitude: 4270 m) is used as the observational level in the
generation of these showers. The cores of the EASs is considered to be at the centre of the detector array. The
detector geometry is set as a horizontal flat detector array,where there are 25 telescopes in each of the E–W
direction and the N–S direction with a separation of 25 m in between two telescopes. The mirror area of each
telescope is taken as 9 m2. Details of the simulation parameters can be obtained in ourearlier work in [7].

3. Analysis and results

The density of the Cherenkov photon is obtained by counting the numbers of photons incident on each detector
for each of the shower, while the angular distribution of Cherenkov photons is obtained by counting the number of
photons produced per angular bin with respect to the shower axis. For angular distribution the numbers of photons
are then normalized to one photon (1

N

dN

dθ
(degree−1)) with averaged over azimuth. The analysis has been done on

the ROOT software [11] platform by using C++ programs developed by us. The results of this work are discussed
in the following subsections:

3.1 Cherenkov photon density

Fig. 1 shows the variation of average Cherenkov photon density ρch as a function of core distancer (in meter)
in the EASs initiated by theγ and proton primaries of various energies incident at zenithangles0o and300. The
hadronic interaction model combination used here is the EPOS-FLUKA. In Fig. 2 the density distributions for
γ-ray and proton primaries have been plotted for fixed energies but for different zenith angles. It is seen that the
density distribution has an exponential fall with increasing core distance for both the primaries at all energies [7]
and at all zenith angles. It is clear that with increasing zenith angle, theρch decreases sufficiently upto a certain
core distance depending upon the primary particle type and energy. This effect of zenith angle decreases with
increasing energy of primary particle. Forγ-ray primaries at energy 100 GeV, the characteristic hump isvisible at
a core distance of about 100 m.

3.2 Angular distribution

Fig. 3 shows the angular distributions of Cherenkov photonsfor γ-ray and proton primaries at different energies
and incident at zenith angles0o and30o. It can be seen that for bothγ-ray and proton primaries, the Cherenkov
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Figure 1. Density distributions of Cherenkov photons in EASs ofγ-ray and proton primaries at different energies and incident
at angles0o and30o.
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Figure 2. Density distributions of Cherenkov photons in EASs ofγ-ray and proton primaries at two different energies incident
at angles0o, 10o, 20o and30o.

photons are distributed on average within1
0 to 30

o/40o from the shower axis. Most of the photons are scattered
within 1

o to 2
o from the shower axis after which there is a rapid fall in the number of particles scattered at larger

angles. For each of the angle of incidence, the pattern has become flatter with increase in energy of the incident
primary. Further, for larger value of the angle of incidencethe distribution profile has become steeper as well
as symmetric for all values of energy. For proton primaries,the distribution follows a rather linear fall than in
comparison to the exponential fall for theγ-ray. Moreover, the distributions for theγ-ray at higher zenith angles
are more symmetric than that for the proton primary.

3.3 Dependence on hadronic interaction model

Fig. 4 and 5 show the angular distributions of Cherenkov photons initiated byγ-ray of energy 100 GeV and 1000
GeV and proton primaries of energy 250 GeV and 2000 GeV respectively as obtained by using two hadronic
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Figure 3. Angular distributions of Cherenkov photons in EASs ofγ-ray and proton primaries at different energies incident at
zenith angles0o and30o.

interaction model combinations viz. EPOS-FLUKA and QGSJETII-FLUKA for four different zenith angles under
consideration. It is seen from the distributions that both the model combinations produce similar results except for
the 250 GeV proton where the EPOS-FLUKA combination seems tohave generated slightly higher numbers of
Cherenkov photons than the QGSJETII-FLUKA model combinations.
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Figure 4. Angular distribution of Cherenkov photons initiated byγ-rays of energy 100 GeV and 1000 GeV incident at various
zenith angles obtained by using EPOS-FLUKA and QGSJETII-FLUKA model combinations. In the respective plots, different
coloured• and� indicate the EPOS-FLUKA and QGSJETII-FLUKA model combinations respectively. Plots with peaks from
left to right represent the showers with zenith angles from0

o to 30
o respectively.

4. Summary and conclusion

Considering the importance of effective gamma-hadron separation techniques and the lack of sufficient studies in
this context, we have studied the density and the angular distributions of Cherenkov photons in EASs produced by
γ-ray and proton primaries at different energies and at different zenith angles using the CORSIKA 6.990 simula-
tion package [8]. The density of Cherenkov photons in EASs ofboth primaries is the increasing function of energy
of primary particle, but the decreasing functions the zenith angle and the distance from the shower core. The
decreasing effect of the zenith angles decreases with increasing energy of primary particle. Most of the Cherenkov
photos are scattered within1o to 2

o with respect to the shower axis. Angular distributions of Cherenkov photons
for γ-ray and proton primaries have slightly different patterns. A detail study on the difference in the patterns of
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Figure 5. Angular distribution of Cherenkov photons initiated by proton primaries of energy 250 GeV and 2000 GeV incident
at various zenith angles obtained by using EPOS-FLUKA and QGSJETII-FLUKA model combinations. In the respective plots,
different coloured• and� indicate the EPOS-FLUKA and QGSJETII-FLUKA model combinations respectively. Plots with
peaks from left to right represent the showers with zenith angles from0

o to 30
o respectively.

distributions of Cherenkov photons obtained from EASs ofγ-ray and proton primaries may be useful for distin-
guishing theγ-rays from the CR background. The angular distributions of Cherenkov photons are found to be
model independent for bothγ-ray and proton primaries in the range of 100 GeV to 100 TeV.
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In this paper we make reanalysis of a self-similarity based model of the proton structure function at small Bjorken

x pursued in recent years. The additional assumption is that it should be singularity free in the entire kinematic

range 0 < x < 1. Our analysis indicates that the model is valid in a more restrictive range of Q2. We also report

an analysis of momentum fractions carried by quarks and gluons in the model.

1. Introduction

The idea of self-similarity in the structure of proton received attention in 2002 when Lastovicka [1] proposed a

relevant formalism and a functional form of the structure function F2(x,Q
2) at small x. One of the limitations

of the phenomenological analysis of Ref [1] is that it has a singularity at x ∼ 0.019 which is well within the

kinematical range of validity 0 < x < 1. In the present report, we therefore make a reanalysis of the model [1],

demanding it to be singularity free in the entire x-range of 0 < x < 1. To that end we will use the more recently

compiled HERA data [2]. We also use momentum sum rule [3] to compute the fractions of momentum carried by

quarks and gluons in such a model.

2. Formalism

2.1 Proton Structure Function based on self-similarity

The self-similarity based model of the proton structure function of Ref. [1] is based on Transverse Momentum

Dependent (TMD) Parton Distribution Function (PDF) fi(x, k
2
t ). Here k2t is the parton transverse momentum

squared. Choosing the magnification factors
(

1
x

)

and
(

1 +
k2

t

k2

0t

)

, it can be written as [1, 12]

log[M2.fi(x, k
2
t )] = D1. log

1

x
. log

(

1 +
k2t
k20t

)

+D2. log
1

x
+D3. log

(

1 +
k2t
k20t

)

+Di
0, (1)

where i denotes a quark flavor. Here D1, D2, D3 are the three flavor independent model parameters, while Di
0 is

the only flavor dependent normalization constant. M2 (= 1 GeV2) is introduced to make PDF qi(x,Q
2)as defined

below [in equation (2)] dimensionless. The integrated quark densities then defined as

qi(x,Q
2) =

∫ Q2

0

fi(x, k
2
t )dk

2
t . (2)

As a result, the following analytical parametrization of a quark density is obtained by using equation (2) [8]:

qi(x,Q
2) = eD

i
0f(x,Q2), (3)

where

f(x,Q2) =
Q2

0 x
−D2

M2
(

1 +D3 +D1 log
(

1
x

))





(

1

x

)D1 log

(

1+
Q2

Q2
0

)

(

1 +
Q2

Q2
0

)D3+1

− 1



 (4)

is flavor independent. Using equation (3) in the usual definition of the structure function F2(x,Q
2), one can get

F2(x,Q
2) = x

∑

i

e2i
(

qi(x,Q
2) + q̄i(x,Q

2)
)

(5)
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or it can be written as

F2(x,Q
2) = eD0xf(x,Q2), (6)

where

eD0 =

nf
∑

i=1

e2i

(

eD
i
0 + eD̄

i
0

)

(7)

involves both quarks and anti-quarks. From HERA data [4, 5], equation (6) was fitted in Ref. [1] with

D0 = 0.339± 0.145,

D1 = 0.073± 0.001,

D2 = 1.013± 0.01,

D3 = −1.287± 0.01,

Q2
0 = 0.062± 0.01 GeV2 (8)

in the kinematical region,

6.2× 10−7 ≤ x ≤ 10−2,

0.045 ≤ Q2 ≤ 120 GeV2. (9)

3. Limitations of Lastovicka Model

The above phenomenological analysis has been two inherent limitations:

First, the parameter D3 is negative contrary to the expectation of positivity of fractal dimension [6]. Secondly,

due to its negative value, equation (5) develops a singularity at x ∼ 0.019 as it satisfies the condition 1 + D3 +
D1 log

1
x
= 0 contrary to the physically viable form of structure function.

To overcome these limitations we make the model singularity free under the condition that D1, D2 and D3 must be

positive. Redefining the model parameters Djs by D′

js of equation (4) in the present phenomenological analysis

we get the structure function as

F ′

2(x,Q
2) =

eD
′

0 Q′2
0 x−D′

2
+1

M2
(

1 +D′

3 +D′

1 log
1
x

)





(

1

x

)D′

1
log

(

1+
Q2

Q′2
0

)

(

1 +
Q2

Q′2
0

)D′

3
+1

− 1



 . (10)

4. Results

4.1 Analysis of singularity free model

To determine the model parameters
(

D′

0, D
′

1, D
′

2, D
′

3, Q
′2
0

)

we have used recently compiled HERA data [2] instead

of earlier data [4, 5] used in Ref. [1]. Following this procedure of Ref. [1], we make χ2 analysis of the data and

obtained the more restrictive range of Q2 and x : 0.85 ≤ Q2 ≤ 10 GeV2 and 2 × 10−5 ≤ x ≤ 0.02 receptively

with the fitted parameters given below:

D′

0 = −2.971± 0.409,

D′

1 = 0.065± 0.0003,

D′

2 = 1.021± 0.004,

D′

3 = 0.0003± 0.0001,

Q′2
0 = 0.20± 0.0008 GeV2. (11)
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Figure 1: Comparison of the present model of structure function F ′

2
as a function of x in bins of Q2 with measured data of F2 from recently

compiled HERA data [2].

5. Momentum sum rule

The momentum sum rule [3, 7, 8] is given as

∫ 1

0

x
∑

(

qi(x,Q
2) + q̄i(x,Q

2)
)

dx+

∫ 1

0

G(x,Q2) dx = 1, (12)

where

G(x,Q2) = xg(x,Q2) (13)

and g(x,Q2) is the gluon number density. It can be converted [8] into an inequality if the information about quarks

and gluons is available only in a limited range of x, say xa ≤ x ≤ xb i.e.

∫ xb

xa

x
∑

(

qi(x,Q
2) + q̄i(x,Q

2)
)

dx+

∫ xb

xa

G(x,Q2) dx ≤ 1. (14)

This yields the respective information when the momentum fractions carried by small x quarks and gluons in

xa < x < xb to be

〈x̂〉q =

∫ xb

xa

x
∑

(

qi(x,Q
2) + q̄i(x,Q

2)
)

dx (15)

and

〈x̂〉g =

∫ xb

xa

G(x,Q2) dx ≤ 1− 〈x̂〉q. (16)
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Note that equation (16) yields only the upper limit of the fractional momentum carried by the gluons in the regime

xa < x < xb. Equations (12)-(16) show that the momentum fraction needs information about the parton distribu-

tion of the proton within the model. In terms of structure function the momentum sum rule inequality is

∫ xb

xa

{

aF2(x,Q
2) +G(x,Q2)

}

dx ≤ 1. (17)

So, we can express the momentum fraction carried by quarks by taking the structure function of equation (10) in a

limited range of xa ≤ x ≤ xb as

〈x̂〉q =

∫ xb

xa

aF2(x,Q
2)dx, (18)

where a = eD̃0

eD0
is Q2-independent parameter determined from data [9], a = 3.1418, using the fractionally charged

quarks.

6. Numerical Results

In Table 2 we record the numerical values of 〈x̂〉q of equation (18) for a few representative values of Q2 which are

well within the kinematical range. For completeness we have taken a few points beyond its validity upto Q2 = 120

GeV2 which was earlier cut off of Ref. [1]. We have not taken the analytical approach of calculating 〈x̂〉q of Ref.

[8] because our recent analysis [10] has shown that results are not convergent, rather oscillating. Therefore we use

equation (18) directly to calculate the momentum fraction numerically.

Table 1: Numerical values of 〈x̂〉q for different Q2

.

Q2(GeV2) 〈x̂〉q
0.85 3.5335×10−4

2 9.0482×10−3

4 1.9533×10−2

5 2.5008×10−2

8 4.2632×10−2

10 5.4901×10−2

20 1.2105×10−1

60 4.2078×10−1

80 5.8450×10−1

120 9.3236×10−1

7. Conclusion

In the present report we have made a reanalysis of the structure function F2(x,Q
2) based on self-similarity using

the more recently compiled HERA data [2]. The present study is based on the notion that a physically viable model

of proton should be finite in the x-range 0 < x < 1, hence singularity free. It also conforms to the expectation that

“fractal dimension” associated with self-similarity are invariably positive definite. However our analysis indicates

that the range of validity of the present version of the model becomes lower in Q2, 0.85 < Q2 < 10 GeV2 instead

of 0.045 < Q2 < 120 GeV2 of Ref. [1]. It indicates that the present version of singularity free model of proton

can explain the data only for low Q2 and low x. From Table 1 we see as Q2 increases the fraction of momentum

carried by quarks increases. To illustrate that point we have taken a few representative values of Q2 = 20, 60, 80,

120 GeV2 . It implies that the present pattern does not conform to the usual expectation of QCD [11] which states

that 〈x〉q (rather than 〈x̂〉q) decreases as Q2 increases.

Let us now conclude with the comment regarding the limitations of the present model. It is basically a parametriza-

tion based on self-similarity for Transverse Momentum Dependent Parton Distribution Function (TMDPDF) equa-

tion (1) that is related to PDF [equation (3)]. So the proper choice of TMD and hence the magnification factors are

very essential in such study [12, 13]. Further work is necessary to improve the present method of self-similarity
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based parametrization of TMD and PDF such that the models can accommodate a large range of x and Q2 and

possibly conforms to QCD expectations. Such work is currently under progress.

The model can be further improved by changing the magnification factor 1
x

to
(

1
x
− 1

)

accommodate large x

behavior as in suggested in Ref. [12]. We will then be able to compare the self-similarity based PDF with the

standard PDF [14]. Such possibility is also currently under study.
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We have observed three blazers, viz., 1ES 1426+428, 1ES 1218+304 and 3C 454.3 using the High Altitude Gamma

Ray (HAGAR) telescope array. The HAGAR array is a wavefront sampling array of 7 telescopes, set-up at Hanle,

at 4270 amsl, in Ladakh region of the Himalayas (Northern India). These three sources 1ES 1426+428, 1ES

1218+304 and 3C 454.3 are observed for 28, 56 and 10 hrs respectively. Our observation span is about 6 year

period from 2009 to 2015. From the preliminary data analysis of above mentioned sources we do not find any

evidence for a statistically significant γ-ray signal. The results of these analysis will be discussed in this paper.

1. Introduction

High Altitude GAmma Ray (HAGAR) telescope system is an array of 7 telescopes which is based on the nonimag-

ing atmospheric Cherenkov technique. It is designed to detect very high energy γ-rays from various astronomical

sources. In the nonimaging atmospheric Cherenkov technique, the arrival time of Cherenkov shower front at var-

ious locations in the Cherenkov light pool is measured, from which the direction of shower axis is estimated to

enable rejection of off-axis cosmic ray showers [14]. HAGAR set-up at Hanle (longitude: 78o 57′ 51′′ E, lati-

tude: 32o 46′ 46′′, altitude: 4270 m) is the first array of atmospheric Cherenkov telescopes established at a so

high altitude. Because of the high altitude, even with a modest mirror area of 31 m2, this experiment achieves

a comparatively low energy threshold of 208 GeV. Since September 2008 regular source observations have been

going on with the complete set up of seven telescopes. In this article we present details of HAGAR data analysis

done to obtain the γ-ray flux from three blazers, viz., 1ES 1426+428, 1ES 1218+304 and 3C 454.3.

2. The HAGAR experiment details

Out of the seven telescopes of the HAGAR array, six are deployed at the vertices of a hexagon and the seventh

one is placed at the center of the hexagon (see Fig. 1) [2]. Each telescope consists of seven front coated mirrors

of parabolic shape with f
d

equal to 1 and each of diameter 0.9 m. The mirrors are fabricated from 10 mm thick

float glass sheets. All the seven mirrors of each telescope are mounted para-axially on a single platform while

the telescopes themselves are mounted alt-azimuthally. A fast Photonis UV sensitive PMT XP 2268B is placed

at the focus of each mirror. The diameter of PMT photo cathode defines the field of view to be 3o at FWHM.

Coaxial cables of length 85 m and of types LMR-ultraflex-400 (of length 30 m) and RG 213 (of length 55 m)

are used to bring pulses from the photo-tubes to control room situated below the central telescope. The telescope

movement is maneuvered by a control software written on Linux platform. High voltages fed to photo tubes are

controlled and monitored using C.A.E.N controller (model SY1527). PMT pulses are given to CAMAC based

Figure 1. Schematic layout of HAGAR array (left) and one of the telescope of the array (right).
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interrupt driven system in control room which acquires and records the data. For trigger generation, the 7 pulses

of PMTs of a given telescope are linearly added to form telescope pulse, called royal sum pulse. A coincidence of

any 4 telescope pulses above a preset threshold out of 7 royal sum pulses with in a resolving time of 150 to 300

ns generates a trigger pulse [3]. RS discriminator biases are adjusted to keep the RS rates within 25 to 35 kHz

to maintain a chance coincidence rate within a few percent of the trigger rate. Data recorded on event interrupt

includes relative arrival time of a shower front recorded by the TDCs accurate to 0.25 ns. 12 bit QDCs are used to

record the Cherenkov photon density at each telescope, given the total charge in PMT pulses. An absolute arrival

time of an event accurate to µs is given by a Real Time Clock (RTC) module synchronized with GPS. Various

other information, such as the triggered telescopes in an event, are also recorded.

3. Signal extraction procedure

The HAGAR data analysis is based on the arrival angle estimation of the incident atmospheric shower w.r.t. the

source direction. This angle called space angle i.e the angle between the direction of arrival of the shower and

the direction of the source, is obtained for each event by measuring relative arrival times of the showers at each

telescope. An accurate pointing of telescopes as well as precise time calibration of the optoelectronic chain is

then required [2]. The later part is achieved first by computing TDC differences between pairs of telescopes from

fix angle runs. Fix angle runs are used to compute the theoretical time-offsets, using information on the pointing

direction, coordinates of telescopes, and on the transit time of each channel through the electronic chain. The TDC

differences between pairs of telescopes from fix angle runs yield the calculation of T0’s (read as tzeros). T0’s are

the relative time offsets for all telescopes to be used in the analysis to ensure a valid estimation of the relative

timing differences in the arrival of the Cherenkov signal on the telescopes. Plane front approximation is then used

to fit the arriving spherical Cherenkov wavefront in order to compute the space angle. For each event, the value

of the χ
2 of the fit and other fit parameters are taken, and the number of telescopes with valid TDC information,

i.e. participating in the trigger, is written. Thus four types of events, based on the Number of Triggered Telescopes

(NTT), viz. events with NTT = 4, NTT = 5, NTT = 6 and NTT = 7 are defined. Atmospheric conditions change

during observation time, reflected by variations on the trigger rate readings. This add systematics in our analysis.

In order to remove isotropic emission due to cosmic rays, source observation region (ON) is compared with OFF-

source region at same local coordinates on the sky, but at a different time (before or after tracking the source region

for about 30 to 50 min). Normalisation of background events of both the ON and OFF source data sets is done

by comparing number of events at large space angles, where no γ-ray signal is expected. This yield a ratio, called

normalisation constant, which allows to calculate the ON-OFF excess below one specific cut on the space angle

distribution [3].

4. Data selection criteria

In order to reduce systematics as much as possible data selection is done using some parameters which characterize

good quality data. First, only those runs are selected for which trigger rate is stable. Runs with high value of the

trigger rate are data that were taken under different conditions and hence are kept aside for future analysis. Then,

the stability of the trigger rate of each run is quantified using one variable, called Rstab, defined as the RMS

of the rate on the square root of its mean. For perfect Poissonnian fluctuations, this variable is expected to be

equal to 1. Difference of Rstab (Rstab(ON)− Rstab(OFF )) of a given ON-OFF pair, gives relative rate stability of

that run pair. A Gaussian fit to distribution of Rstab(ON)− Rstab(OFF ) and events within 3σ (standard deviation)

limit define the range of Rstab cut for selection of pairs. Pair selection is then done imposing constraints on

several other parameters. The relative difference of the coincidence window rate between ON and OFF source

runs is imposed to be less than 10%, otherwise the pair is rejected. This parameter is related to the night sky

background rate. Difference between the mean trigger rates of an ON and an OFF run is restricted to less than

2 Hz. Also, to prevent additional systematics during space angle computing, where some events are rejected, we

impose difference between mean trigger rates to be less than 1 Hz after this analysis processing. During the pair

processing, ratio of events for each telescope are computed and constrained to be between 0.8 and 1.2. Events

with χ
2 ≥ (mean + 1σ) are rejected, where χ

2 is the parameter of plane front fit. Further events with space angle

greater than 7o are rejected, as these are mostly due to bad fits [3]. Additional cuts viz., position error ( Poserr )

cut of reproduced source position from TDC events relative to source position in sky is also applied. Position error
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is calculated separately for RA and DEC directions. A Gaussian fit to distribution of relative Poserr in between

ON-OFF pairs and events within 3σ (standard deviation) limit define the range of position error cut for selection

of pairs [5]. At the last step of the selection, value of the normalization constant between ON and OFF events is

computed and is constrained to be between 0.85 and 1.15.

 MJD 56400 56450 56500 56550 56600 56650 56700 56750 56800

 R
at

e/
M

in
:N

T
T

>=
4 

-2

-1

0

1

2

3

Graph

H1426+428 Seasonal Average

 MJD 56400 56450 56500 56550 56600 56650 56700 56750 56800

 R
at

e/
M

in
:N

T
T

>=
5 

-3
-2
-1
0
1
2
3
4 Graph

 MJD56400 56450 56500 56550 56600 56650 56700 56750 56800

 R
at

e/
M

in
:N

T
T

>=
6 

-4
-3
-2
-1
0
1
2
3

Graph

 MJD56400 56450 56500 56550 56600 56650 56700 56750 56800

 R
at

e/
M

in
:N

T
T

>=
7 

-6

-4

-2

0

2

4
Graph

Figure 2. Light curve of 1ES 1426+428 averaged over each observation season.

5. Observed sources

3C454.3 is a powerful flat-spectrum radio quasar located at a redshift z = 0.859. Its RA is 22:53:57.7 and DEC is

16:08:54. It is one of the brightest gamma ray sources in the sky. In 2005 it underwent a very active phase in optical

and X-ray bands, triggering intensive observations in the radio, optical and X-ray (Swift, Chandra, INTEGRAL)

bands [6, 7, 8].

1ES 1228+304 is a HBL object. It has a redshift of z = 0.182 and it is one of the more distant VHE blazars detected

to date. Its RA is 12:21:26.3 and DEC is 30:11:29. It was first detected at VHE by MAGIC [9] and confirmed by

VERITAS [10].

1ES 1426+428 (z = 0.129) is classified as a BL Lac object. Its RA is 14:28:32.6 and DEC is 42:40:21. H 1426 +

428 is classified as an extreme. The source was first detected at TeV energies by the Whipple collaboration [11]

and later confirmed using other ground-based imaging atmospheric Cherenkov telescopes [12].

6. Results

The HAGAR has observed these three sources 1ES 1426+428, 1ES 1218+304 and 3C 454.3 for 28, 56 and 10

hours respectively over an observation span of about 6 year period from September, 2009 to May, 2015. After

imposing different analysis cuts, out of 39, 79 and 16 total run pairs, we had 23, 16 and 50 good ON-OFF pairs for

the 1ES 1426+428, 1ES 1218+304 and 3C 454.3 that corresponds to 16.4, 9.8 and 35.9 hours of data respectively.

The light curve of the three sources 1ES 1426+428, 1ES 1218+304 and 3C 454.3, for different telescope trigger

conditions are shown in the Fig. 2, Fig. 3 and Fig. 4 respectively. Rate excess from the pair analysis is now
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Figure 3. Light curve of 1ES 1218+304 averaged over each observation season.

represented for each selected pair as a number of counts per minute, expected to contain a significant fraction of

γ-rays. The estimated γ-ray rates from these three sources for different triggering criteria are given in Table 1,

Table 2 and Table 3 respectively.

Considering the facts that the sources 1ES 1426+428, 1ES 1218+304 and 3C 454.3 are situated farther in distance

and the sensitivity of HAGAR, very long duration observations are required to detect significant excess from these

three sources. Therefore we have estimated flux upperlimit for these three sources from our observations. Thus

we have obtained 3σ upperlimit on VHE γ-ray flux as 2.43x10−6 photons m−2s−1, 6.57x10−6 photons m−2s−1

and 1.63x10−6 photons m−2s−1 at the energy threshold of about 182 GeV for NTT ≥ 4-fold for these sources

respectively.

Table 1. Results of the 1ES 1426+428 for NTT ≥ 4-fold, 5-fold, 6-fold and 7-fold.

NTT Rate/min. RMS/min. σ T(hours) Runs σ/T

NTT ≥ 4 - 6.67 1.44 - 4.64 7.91 12 - 1.65

NTT ≥ 5 - 3.18 1.18 - 2.70 7.91 12 - 0.96

NTT ≥ 6 - 2.19 0.95 - 2.31 7.91 12 - 0.82

NTT≥7 - 0.70 0.70 - 1.00 7.91 12 - 0.36

7. Summary

In summary, we have presented data analysis from HAGAR observations of the three blazers 1ES 1426+428, 1ES

1218+304 and 3C 454.3. We had a total of 28, 56 and 10 hrs of data for these three sources respectively, over an

observation span of about 6 year period from 2009 to 2015. We have not detected a signal from either of these
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Figure 4. Light curve of 3C 454.3 averaged over a day (zenith < 30o).

Table 2. Results of the 1ES 1218+304 for NTT ≥ 4-fold, 5-fold, 6-fold and 7-fold.

NTT Rate/min. RMS/min. σ T(hours) Runs σ/T

NTT ≥ 4 2.02 0.68 2.96 35.99 50 0.49

NTT ≥ 5 2.22 0.54 4.10 35.99 50 0.68

NTT ≥ 6 0.21 0.41 0.52 35.99 50 0.09

NTT ≥ 7 -0.48 0.27 -1.83 35.99 50 -0.30

Table 3. Results of the 1ES 3c454.3 for NTT≥ 4-fold, 5-fold, 6-fold and 7-fold (zenith < 30o).

NTT Rate/min. RMS/min. σ T(hours) Runs σ/T

NTT ≥ 4 - 6.67 1.44 - 4.64 7.91 12 - 1.65

NTT ≥ 5 - 3.18 1.18 - 2.70 7.91 12 - 0.96

NTT ≥ 6 - 2.19 0.95 - 2.31 7.91 12 - 0.82

NTT ≥ 7 - 0.70 0.70 - 1.00 7.91 12 - 0.36

sources and have set upper limits on their γ-ray flux levels. The source 3c454.3 is a quasar with a very high

redshift (z = 0.859). The flux of very high energy γ-rays from this source is likely to be affected by absorption due

to extragalactic background radiation during their propagation in the inter galactic medium and get attenuated. As

a result this source is not detected by the any of the VHE experiments so far. Further, since HAGAR sensitivity is

very less compared to other ground based VHE γ-ray telescopes, so for a significant detection of 1ES 1426+428

and 1ES 1218+304 number of hours of observation must be increased.
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The QCD potential V (r) = − 4αs

3r
+ br + c, which is also known as Cornell potential is not analytically solvable.

We use the Dalgarno’s method of perturbation to solve Schrodinger’s equation and obtain the corresponding meson

wave function. We first demonstrate that the Dalgarno’s method of perturbation theory is compatible with the

quantum mechanical expectation: that the scale factor ‘c’ even if it is present in the potential should not appear in

the wave function of the system, a feature overlooked in the previous applications. Using this improved formalism

we calculate the masses of various heavy flavored mesons. The obtained results are then compared with the

experimental values.

1. Introduction

Quantum Chromodynamics, familiarly called QCD is the sector of the Standard Model (SM) where heavy hadron

spectroscopy played a major role. The motivation of the present work is to find the masses of the heavy flavored

mesons in a QCD potential model. The present work takes into account the idea of quantum mechanics that a

scale factor ‘c’ in a potential should not effect the wave function of the meson while using perturbation theory like

Dalgarno’s method [1]. The methodology involves the construction of the wave functions out of the Schrodinger

equation. In Section 2, we outline the formalism, while Section 3 summarizes the results. Section 4 contains the

conclusion.

2. Formalism

2.1 QCD potentials and corresponding wave functions

QCD potential between a quark and an anti-quark has been one of the first important ingredient of phenomenolog-

ical models to be studied in quantum physics. We calculate the total wave function using Dalgarno’s method of

perturbation using Cornell potential [2]

V (r) = −
4αs

3r
+ br + c, (1)

where - 4

3
is due to the color factor, αs is the strong coupling constant, r is the inter quark distance, b is the

confinement parameter (phenomenologically, b = 0.183 GeV2) and ’c’ is a constant scale factor. The Schrodinger

equation describing the quark-anti quark bound state is

−
~
2

2m
∇2ψ(r) + [E − V ]ψ(r) = 0 (2)

The potential is defined as the function V (r). To apply the perturbation, the choice of parent child is very important.

For the potential as defined in equation (1), we can make four choices with the constant term ’c’:

(i) - 4αs

3r
as parent and br+ c as perturbation, (ii) br as parent and - 4αs

3r
+ c as perturbation, (iii) - 4αs

3r
+ c as parent

and br as perturbation, and (iv) br + c as parent and - 4αs

3r
as perturbation.

The wave function for choice (i) is calculated in Ref. [3] using Dalgarno’s method of perturbation, which is

ψtotal
I (r) =

N1
√

πa3
0

[

1 + cA0

√

πa3
0
−

1

2
µba0r

2

](

r

a0

)

−ǫ

e
−

r
a0 , (3)
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where

a0 =

(

4

3
µαs

)

−1

, (4)

µ =
m1m2

m1 +m2

, (5)

m1 and m2 are the masses of quark and anti quark respectively and µ is the reduced mass of the mesons and

ǫ = 1−

√

1−

(

4

3
αs

)2

(6)

the relativistic effect due to Dirac modification factor and A0 is the undetermined co-efficient appearing in the

series solution of Schrodinger equation and N1 is the normalization constant.

Again the wave function for choice (ii) of the Hamiltonian is calculated in Ref. [4] which is

ψtotal
II (r) =

N2

r

[

1 +A1(r)r +A2(r)r
2 +A3(r)r

3 +A4(r)r
4
]

Ai[ρ1r + ρ0]

(

r

a0

)

−ǫ

, (7)

where Ai(r) is the Airy function and N2 is the normalization constant. The co-efficients are:

A0 = 0 (8)

A1 =
−2µ 4αs

3

2ρ1k1 + ρ2
1
k2

(9)

A2 =
−2µ(W 1 − c)

2 + 4ρ1k1 + ρ2
1
k2

(10)

A3 =
−2µW 0A1

6 + 6ρ1k1 + ρ2
1
k2

(11)

A4 =
−2µW 0A2 + 2µbA1

12 + 8ρ1k1 + ρ2
1
k2

(12)

The parameters are:

ρ1 = (2µb)
1

3 (13)

ρ0 = −

[

3π(4n− 1)

8

]
2

3

(14)

In our case (n = 1 for ground state)

k1 = 1 +
k

r
(15)

k =
0.3550281− (0.2588194)ρ0

(0.2588194)ρ1
(16)

k2 =
k2

r2
(17)
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Similarly, we have calculated the wave function for choice (iii) which is

ψtotal
III (r) =

N3
√

πa3
0

[

1−
1

2
µba0r

2 −
1

20
µ2bca0r

4

](

r

a0

)

−ǫ

e
−

r
a0 , (18)

where N3 is the normalization constant. Finally, the wave function for choice (iv) including relativistic effect

considering upto O(r4) is

ψtotal
IV (r) =

N4

r

[

1 +A1(r)r +A2(r)r
2 +A3(r)r

3 +A4(r)r
4
]

Ai[ρ1r + ρ0]

(

r

a0

)

−ǫ

, (19)

where N4 is the normalization constant. The co-efficients are

A0 = 0 (20)

A1 =
−2µ 4αs

3

2ρ1k1 + ρ2
1
k2

(21)

A2 =
−2µW 1

2 + 4ρ1k1 + ρ2
1
k2

(22)

A3 =
−2µ(W 0 − c)A1

6 + 6ρ1k1 + ρ2
1
k2

(23)

A4 =
−2µ(W 0 − c)A2 + 2µbA1

12 + 8ρ1k1 + ρ2
1
k2

(24)

The equations (3), (7), (18) and (19) showed that the effect of ‘c’ in the total wave function will be present in all

the cases. Thus Dalgarno’s method conflicts with the quantum mechanical idea that the scale factor ‘c’ should not

have an observable effect except the energy shift.

For the validation of the quantum mechanical expectation, we therefore consider c = 0 in the potential (1). In such

situation choice (i) & (iii) and (ii) & (iv) are identical.

However the inter-quark separation ‘r’ can be roughly divided into short distance (rS) and long distance (rL)

effectively, one of the potential will dominate over the other. In such situation confinement parameter (b) and the

strong coupling parameter (αs) can be considered as effective and appropriate small perturtbative parameters. To

find the cut offs (rS and rL) we use the following two perturbation conditions:

Case-I: For coulomb as parent and linear as perturbation:

−
4αs

3r
> r (25)

Case-II: For linear as parent and coulomb as perturbation:

br > −
4αs

3r
(26)

From (25) and (26) we can find the bounds on r up to which case-I and II are valid. Case-I gives the cut off on

the short distance rSmax <
√

4αs

3b
and case-II gives the cut off on the long distance rLmin >

√

4αs

3b
. Now using this

improved perturbative approach we calculate the masses of various heavy flavored mesons.
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2.2 Definition of masses of mesons

Masses of heavy flavored mesons in a specific potential model in the ground state can be obtained as:

M = mq +mq̄ + 〈H〉, (27)

where M is the mass of pseudoscalar meson and mq and mq̄ are the masses of quark and anti-quark of the meson

respectively. The above expression shows that to calculate the masses of mesons one needs to find 〈H〉:

〈H〉 = 〈
p2

2µ
〉+ 〈V (r)〉

= 4π

∫

∞

0

r2ψ∗(r)Hψ(r)dr

= 4π

∫

∞

0

r2ψ∗(r)

(

p2

2µ
+ V (r)

)

ψ(r)dr (28)

To take into account both the coulomb and linear part of the potential we improve the above equation to

〈H〉 = 4π

[

∫ rshort

0

r2ψ∗(r)

(

p2

2µ
+ V (r)

)

ψ(r)dr +

∫ r0

rlong

r2ψ∗(r)

(

p2

2µ
+ V (r)

)

ψ(r)dr

]

. (29)

3. Results and discussion:

Considering c = 0, we calculate the masses of various heavy light mesons using equation (27) and results are

compared with the previous work [6] with c = 0 as shown in the Table 1. The input parameters in the numerical

calculations used are mu = 0.336 GeV, ms = 0.483 GeV, mc = 1.55 GeV and mb = 4.95 GeV, b = 0.183 GeV2.

Table 1. Masses of heavy light mesons.

αs Meson rS = rL(fm) Mass (GeV) Mass (in Ref. [6] with c = 0) Experimental Mass (GeV)

0.39
D(cū/cd̄)

0.3320
1.886 2.35 1.869± 0.0016

Ds(cs̄) 2.033 2.35 1.968± 0.0033

0.22 Bc(b̄c) 0.2494 6.500 7.04 6.277± 0.006

Again, the application of Airy function as meson wave function needs suitable cut off to make the analysis normal-

izable and convergent. We therefore set the cut off (r0) in the range 1 fm (5.076 GeV−1) [5] for our calculations.

The results above are improvement over the earlier analysis [6]. To obtain the results as given in the 5th column

of Table 1, we impose the condition c = 0 instead of cA0 = 1 GeV as in Ref. [6].

4. Conclusion:

Thus the analysis shows that our calculated values of masses of mesons are found to be in better agreement with

the experimental values. Therefore the improved perturbative approach is suitable to find masses of various heavy

flavored mesons. The modification of the model with a non-zero scaling factor is currently under study.
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The coupled DGLAP equations at smallx is Taylor approximated upto the second order O(x2) and are solved
analytically. Assuming a plausible relation between quarkand gluon distribution we demonstrate that the two
different sets of quark and gluon distributions are possible from the two coupled equations not reported earlier.
Using the proper matching condition, we then obtain the range of (x,Q2) where they will be identical.

1. Introduction

This paper reports the solution of Taylor approximatedO(x2) DGLAP [1, 2, 3, 4] equations at smallx using the
Method of separation of Variables [5]. We demonstrate that such DGLAP equations are of elliptic nature under
plausible assumptions relating quark and gluon distributions and the coupled version of them have got two alternate
solutions for quark and gluon distributions a feature not noticed earlier[6]. It gives a very restrictive range ofx and
Q2 for this validity, which we study numerically as well. Taylor approximated uptoO(x2) form of the coupled
DGLAP equations [7] are:

t
∂

∂t
q(x, t) =

αs(t)

2π
[J1(x) + J4(x)C(t)]q(x, t) +

αs(t)

2π
x[J2(x) + J5(x)C(t)]

∂

∂x
q(x, t) +

αs(t)

2π
x2[J3(x)

+ J6(x)C(t)]
∂2

∂x2
q(x, t), (1)

t
∂

∂t
(C(t)q(x, t)) =

αs(t)

2π
[J7(x) + J10(x)C(t)]q(x, t) +

αs(t)

2π
x[J8(x) + J11(x)C(t)]

∂

∂x
q(x, t)

+
αs(t)

2π
x2[J9(x) + J12(x)C(t)]

∂2

∂x2
q(x, t). (2)

WhereJi’s (i = 1, 2, ...12) are explicit calculable functions ofx. We assumed the relation between quark and gluon
distribution [8, 9] given by,

xg(x, t) = C(t)x
∑

i

{qi(x, t) + qi(x, t)} . (3)

Neglecting the flavor and antiquark degrees of freedom equation (3) is can be simplified to

xg(x, t) = C(t)xq(x, t), (4)

whereC(t) is a ’t’ dependent function.

1.1 Solution qI(x, t) from quark distribution equation

In standard QCD quark and gluon distributions, are in general not factorizable inx andt. To fecilitate our solution
analytically, we however use the method of separation of variables[5]. We assume the solution of equation (1) to
beqI(x, t) = X(x)T (t). Substituting this in equation(1) we get the solution forT (t) as:

T (t) = exp[−k2 log t+D], (5)

165



166 Luxmi Machahari, D. K. Choudhury and P.K Sahariah

where− k2 is separation constant andD is an integration constant. To obtain the solution forX(x) we define,

A(x, t) =
αs(t)

2π
x2[J3(x) + J6(x)C(t)],

B(x, t) =
αs(t)

2π
x[J2(x) + J5(x)C(t)],

C(x, t) =
αs(t)

2π
[J1(x) + J4(x)C(t)] + k2. (6)

Assuming them to be nearlyx andt independent such that,A(x, t) ≃ A, B(x, t) ≃ B, C(x, t) ≃ C. One gets
the solution for three separate cases depending on the sign of the discriminant(B2 − 4AC). To that end we also
need to define:m1 = −B+

√

B2
−4.A.C

2.A , m2 = −B−

√

B2
−4.A.C

2.A .

CASE I: B2−4AC > 0 (Hyperbolic equation): Ifm1 andm2 are real and unequal i.em1 6= m2, then the solution
qI(x, t) for quark distribution of equation (1) is

qI(x, t) = exp[−k2 log t+D]. [c1e
m1.x + c2e

m2.x] , (7)

wherec1 andc2 are arbitrary constants.

CASE II: B2 − 4AC = 0 (Parabolic equation): Herem1 andm2 are equal (∼ m), then the quark distribution
solutionqI(x, t) for equation (1) is

qI(x, t) = exp[−k2 log t+D]. [c1e
m.x + c2xe

m.x] . (8)

CASE III: B2 − 4AC < 0 (Elliptic equation): Ifm1 = α + iβ, andm2 = α − iβ are complex numbers, where
α andβ are respectively−B

2A and
√

4AC−B2

2A , then the solutionqI(x, t) of equation (1) would be

qI(x, t) = exp[−k2 log t+D]. [eαx(c1 cosβx+ c2 sinβx)] . (9)
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Figure 1: Plots (a), (b) are forB2/4AC versusQ2 and (c), (d) are for̂B2/4ÂĈ versusQ2 at different fixedx.

1.2 Solution qII(x, t) from gluon distribution equation

For equation (2) we write the solution asqII(x, t)) = X̂(x)T̂ (t). The analysis yields again three plausible
solutions as follows:



A DGLAP based second order x evolution equation of quarks and gluon distribution...... 167

è

è
è
è
è
è
è
è è è è è è è è è è è è è è

ã

ã

ã

ã

ã

ã

ã

ã

ã

ã
ã
ã
ã
ã
ã
ã
ã
ã ã ã ã

è B2

ã 4AC

0.05 0.10 0.15 0.20

10

20

30

40

x

B
2 �

4A
C

Q2
® 0.76 GeV2

(a)

è

è

è
è
è
è
è
è
è è è è è è è è è è è è è

ã

ã

ã

ã

ã

ã

ã

ã

ã

ã
ã
ã
ã
ã
ã
ã ã ã ã ã ã

è B2

ã 4AC

0.05 0.10 0.15 0.20
0

2000

4000

6000

8000

x

B
2 �

4A
C

Q2
-> 26 GeV2

(b)

è

è

è

è
è
è è è è è è è è è è è è è è è è

ã

ã

ã

ã

ã
ã
ã
ã ã ã ã ã ã ã ã ã ã ã ã ã ã

è B
` 2

ã 4A
`

C
`

0.05 0.10 0.15 0.20

0

1´106

2´106

3´106

4´106

x

B`
2 �

4A
`

C`

Q2
-> 1.26 GeV2

(c)

è

è

è

è
è
è è è è è è è è è è è è è è è è

ã

ã

ã

ã

ã
ã
ã
ã ã ã ã ã ã ã ã ã ã ã ã ã ã

è B
` 2

ã 4A
`

C
`

0.05 0.10 0.15 0.20

0

2.0´107

4.0´107

6.0´107

8.0´107

1.0´108

1.2´108

x

B`
2 �

4A
`

C`

Q2
-> 8.64 GeV2

(d)

Figure 2: Plots (a), (b) are forB2/4AC versusx and (c), (d) are for̂B2/4ÂĈ versusx at different fixedQ2.

CASE I: B̂2 − 4ÂĈ > 0 (Hyperbolic equation):

qII(x, t) = exp

[

∫

(

−k̂2

tC(t)
−

1

C(t)

∂C(t)

∂t

)

dt+ F

]

.

[

ĉ1e
−B̂+

√

B̂2
−4ÂĈ

2Â
.x + ĉ2e

−B̂−

√

B̂2
−4ÂĈ

2Â
.x

]

, (10)

where,Â, B̂, Ĉ are the corresponding parameters similar to equation (6).− k̂2 is separation constant and̂c1, ĉ2
are arbitrary constants.

CASE II: B̂2 − 4ÂĈ = 0 (Parabolic equation):

qII(x, t) = exp

[

∫

(

−k̂2

tC(t)
−

1

C(t)

∂C(t)

∂t

)

dt+ F

]

. [ĉ1e
m.x + ĉ2xe

m.x] . (11)

CASE III: B̂2 − 4ÂĈ < 0 (Elliptic equation):

qII(x, t) = exp

[

∫

(

−k̂2

tC(t)
−

1

C(t)

∂C(t)

∂t

)

dt+ F

]

.
[

eα̂x(ĉ1 cos β̂x+ ĉ2 sin β̂x)
]

. (12)

From equations (7), (8), (9) and equations (10), (11), (12) we establish thatqI(x, t) 6= qII(x, t). For completeness
we also record the solution of DGLAP equations taking only O(x) terms from equation (1) and (2). Here too we
obtain two non unique solutionsqI(x, t) andqII(x, t) using the same method as follows:

qI(x, t) = exp[−k2 log t+D]. exp[
−C

B
x+ c1], (13)

qII(x, t) = exp

[

∫

(

−k̂2

tC(t)
−

1

C(t)

∂C(t)

∂t

)

dt+ F

]

. exp[
−Ĉ

B̂
x+ ĉ1], (14)

whereB,C, B̂, Ĉ are the counterterms as inO(x2) andc1, ĉ1 are constants of integration.
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Figure 3: Plots (a), (b) are forR(x, t) versusQ2 and (c), (d) are for̂R(x, t) versusQ2 at certain fixedx.
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Figure 4: Plots (a), (b) are forR(x, t) versusx and (c), (d) are for̂R(x, t) versusx at certain fixedQ2.

2. Results

2.1 Nature of the equation

To ascertain the nature of the above equations, we numerically determine (B2 − 4AC) and (B̂2 − 4ÂĈ) by
taking αs(t)

2π = 6
(33−2Nf )

1
t
, Nf = 1, C(t) = log(Q

2

Λ2 )
σ, σ = 2.5 [10], Λ = 220 MeV [11] and approximating

k2 = k̂2 = 0. Then we see graphically in which class they belong. Fig. 1and Fig. 2 showB2 < 4AC and
B̂2 < 4ÂĈ indicating elliptic nature. Fig. 1 shows that such nature isalways true for anyQ2, while Fig. 2
indicates that for largex, it might have a tendency to transform into a parabolic nature.For graphical representation
of qI(x, t) 6= qII(x, t) we approximateD = 0, c1 + c2 = U (say) for equation (9) andF = 0, ĉ1 + ĉ2 = Û
(say) for equation (12).U andÛ are found to be7.9 × 10 and 4597 respectively, taking the input of MSTW2008
LO [12] for up quarks with the value ofQ2 = 2 GeV2 andx = 0.005 andq(x, t) = 78.44 [12]. We obtain the
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ratioR(x, t) = qI(x,t)
qII(x,t)

numerically. Correspondingly we obtain the countertermR̂(x, t) = qI(x,t)
qII(x,t)

numerically

as well, taking similar approximations as in O(x2) for O(x) and assumingc1 = 0 and ĉ1 = 0. We show it
graphicallyR(x, t) andR̂(x, t) as in Fig. 3 and Fig. 4 for a certain range of (x, Q2) i.e, 0.025 ≤ x ≤ 0.225 and
0.76 ≤ Q2 ≤ 26 GeV2. From both the figures we observe that for variousx andQ2, the two quark distributions
are identical only at certainx andQ2. However it is not obvious that one will obtain such intersecting point for
any value ofx andQ2. Fig. 3 and Fig. 4 illustrate that there is no allowed range ofx andQ2 that will coincide.

3. Conclusion

We highlight the Elliptic nature of leading orderO(x2) DGLAP equations at smallx neglecting the flavor and
antiquark degrees of freedom.The incorporation of flavor aswell as antiquark degrees of freedom and testing with
data are currently in progress.
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Rare B decays induced by flavor-changing neutral current (FCNC) transitions provide promising approaches to

probe the flavor sector of the standard model (SM) and provides important constraints on models of new physics

(NP). In the SM they can only occur through loop level processes and are generally suppressed. However, these

processes can be significantly enhanced in the model which goes beyond the SM. In recent scenario, Bd → τ+τ−

rare decay has been the subject of many theoretical as well as experimental studies. There are strong predictions

of the existence of Z ′ boson in theories beyond the SM. But its exact mass is still unknown as it has not yet

been discovered experimentally. Considering the effect of such Z ′-mediated FCNCs on the Bd → τ+τ− decay

we calculate the branching ratio. Here, using the experimental value of branching ratio and recent values of the

parameters we estimate the mass of Z ′ boson.

1. Introduction

The rare B meson decays with leptons in the final states Bd → l+l− (l = e, µ, τ) induced by FCNCs are very

important to probe the flavour sector of the SM as well as provide a new window to search new physics (NP) beyond

the SM [1− 9]. The rate of FCNC processes are generally suppressed by small electroweak gauge couplings, off-

diagonal Cabibbo-Kobayashi-Maskawa (CKM) matrix elements and the loop factors in the SM. However, these

suppression can be lifted in theories beyond SM such as minimal supersymmetric standard model (MSSM), littlest

Higgs model, flavor-changing Z ′ models etc. [10-12]. In this paper, we study Bd → τ+τ− decay considering

the effect of both Z and Z ′ mediated FCNCs. The Bd → τ+τ− decay involves b → d transitions which are

highly suppressed in the SM of the particle physics. But, these decays can be significantly enhanced in many

scenarios beyond the SM [13]. Existence of Z ′ bosons are predicted in the theories beyond the SM [14], such as

grand unified theories (GUTs), superstring theories and theories with large extra dimensions [15]. The Z ′ sector

gives a good platform for understanding the new physics beyond the SM [16]. The right-handed quarks dR , sR
and bR have different U ′(1) quantum numbers than exotic qR. Their mixing induces Z ′ mediated flavor-changing

neutral current (FCNC) [17, 18] among the ordinary down quark types. The tree level FCNC transitions can also

be mediated through an additional Z ′ boson on the up-type quark sector [19]. In the Z ′ model [20], the FCNC

coupling is related to the flavor-diagonal couplings qqZ ′ in a predictive way, which can be used to get the upper

limits on the leptonic llZ ′ couplings. Therefore, it is possible to evaluate the branching ratio for Bd → τ+τ−

decay.

This paper is organized as follows: in Section 2, we briefly discuss the model and explain why it implies FCNC

at the tree level. In Section 3, we evaluate the effective Hamiltonian for Bd → τ+τ− decay considering the

contribution coming from Z and Z ′ bosons. Then corresponding branching ratio is also evaluated using the recent

experimental data. In Section 4, we estimate the mass of Z ′ boson using the recent experimental value of branching

ratio for Bd → τ+τ− decay and discuss our result.

2. The Model

In extended quark sector model [10, 21], including the three standard generations of the quarks, there is another

SU(2)L singlet of charge − 1

3
. This model allows Z-mediated FCNCs. The up quark sector interaction eigenstates

are identified with mass eigenstates but down quark sector interaction eigenstates are related to the mass eigenstates

by a 4× 4 unitary matrix which is denoted by K. The charged-current interactions are described by

LW
int =

g√
2
(W−

µ Jµ+

+W+
µ Jµ−

), (1)

Jµ−

= VijuiLγ
µdjL. (2)
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The charged-current mixing matrix V is a 3 × 4 submatrix of K

Vij = Kij ; for i = 1, 2, 3; j = 1, 2, 3, 4. (3)

Here, V is parameterized by six real angles and three phases, instead of three angles and one phase in the original

CKM matrix.

The neutral-current interactions are described by

LZ
int =

g

cos θW
Zµ(J

µ3 − sin2 θWJµ
em). (4)

Jµ3 = −1

2
UpqdpLγ

µdqL +
1

2
δijuiLγ

µujL. (5)

In neutral-current mixing, the matrix for the down sector is U = V †V . Since in this case V is not unitary, U 6= 1.

Its nondiagonal elements do not vanish:

Upq = −K∗
4pK4qforp 6= q. (6)

Since the various Upq are non-vanishing, they allow FCNC and would be signal for new physics (NP).

3. Bd → τ
+
τ
− decay process in Z

′ model

Let us consider the Bd → l+l−, (l = τ) decay process, which involves b → d transitions. The effective Hamilto-

nian describing this process can be written as [7, 22]:

Heff =
GFα√
2π

λt[C
eff
9 (dγµPLb)(lγ

µl) + C10(dγ
µPLb)(lγ

µγ5l) +
2C7mb

p2
(dpγµPRb)(lγ

µγ5l)], (7)

where GF is the Fermi coupling constant, λt = VtbV
∗
td, PR,L = 1

2
(1 ± γ5), p = P+ + P− the sum of the

momentum of l+ and l−, and C7, Ceff
9 and C10 are Wilson coefficients [23] evaluated at the b quark mass scale.

We use the Vacuum Insertion Method (VIM) [24] for the evaluation of matrix elements and write the transition

amplitude for this process as

M(Bd → l+l−) = i
GFα√
2π

λtfBd
C10ml(lγ5l) (8)

and the corresponding branching ratio [16,17] is given by

B(Bd → l+l−) =
G2

F τBd

16π3
α2f2

Bd
mBd

m2
l |VtbV

∗
td|2C2

10

√

1− 4m2
l

m2
Bd

. (9)

From equation (8), it is clear that the amplitude for the decay of Bd → l+l− is proportional to ml and thus the

decay rates are suppressed by (ml/mBd
)2. The suppression is smallest for Bd → τ+τ− due to the large τ lepton

mass. The value of branching ratio in the standard model is predicted as B(Bd → τ+τ−) = (2.22± 0.04)× 10−8

[5]. In 2006, BABAR [25] has placed the limit on τ+τ− channel as: B(Bd → τ+τ−) < 4.1× 10−3 (90% C.L.).
The difference in the observed branching ratio with respect to the SM prediction would provide a direction in

which the SM should be extended.

Now considering the Bd → l+l−, (l = τ) decay process in the presence of Z-mediated FCNC [10, 11, 21] at tree

level , one can write the effective Hamiltonian [7, 22] as

Heff (Z) =
GF√
2
Udb[dγ

µ(1− γ5)b][l(C
l
V γµ − Cl

Aγµγ5)l], (10)

where Cl
V and Cl

A are the vector and axial vector Zl+l− couplings and are given as

Cl
V = −1

2
+ 2 sin2 θW , Cl

A = −1

2
. (11)
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The transition amplitude is given as

M(Bd → l+l−) = −i
GF√
2
UdbfBd

Cl
A2ml(lγ5l) (12)

and the corresponding branching ratio is given as

B(Bd → l+l−)|Z =
G2

F τBd

4π
|Udb|2f2

Bd
mBd

m2
l |Cl

A|2
√

1− 4m2
l

m2
Bd

. (13)

The same idea can be applied to Z ′ boson i.e., mixing among particles which have different Z ′ quantum numbers

will induce FCNCs due to Z ′ exchange [6, 11] and surprisingly these effects can be just as large as Z-mediated

FCNCs. The Z ′-mediated coupling UZ′

pq can be generated via mixing of particles with same weak isospin and so

suffer new suppression. Even though Z ′-mediated interactions are suppressed relative to Z, these are compensated

by UZ′

pq /U
Z
pq ∼ M2/M1. Thus the effect of Z ′-mediated FCNCs are comparable to that of Z-mediated FCNCs.

Since Z ′ doesnt couple to charged leptons in the leptophobic model, we can write the Heff (Z
′) , with same

coupling as that of Z(g = g′), as

Heff (Z
′) =

GF√
2
Udb[dγ

µ(1− γ5)b][l(C
l
V γµ − Cl

Aγµγ5)l]
M2

Z

M2
Z′

. (14)

Hence the net effective Hamiltonian can be written as Heff = Heff (Z) +Heff (Z
′) and

Heff =
GF√
2
Udb

[

dγµ(1− γ5)b
] [

l(Cl
V γµ − Cl

Aγµγ5)l
]

(

1 +
M2

Z

M2
Z′

)

(15)

and the corresponding branching ratio is given as

B(Bd → l+l−)|Z+Z′ =
G2

F τBd

4π
|Udb|2f2

Bd
mBd

m2
l |Cl

A|2
√

1− 4m2
l

m2
Bd

(1 +
M2

Z

M2
Z′

). (16)

4. Results and discussion

Figure 1. Blue line represents the variation of branching ratio B(Bd → τ
+
τ
−) with MZ′ and yellow line represents its

experimental upper limit.

In this section, we estimate the mass of Z ′ boson using the upper bound of the experimental value B(Bd →
τ+τ−) < 4.1 × 10−3 [25]. For this purpose we use all the recent data from Particle Data Group 2014 [26]:
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mτ = 1776.99MeV , mBd
= (5279.4± 0.5)MeV , average Bd lifetime τBd

= (1.536± 0.014)× 10−12s, decay

constant fBd
= 190MeV , MZ = 91.1876GeV , GF = 1.16639 × 10−5GeV −2 and sin2 θW = 0.23. With these

values, we observe that the value of branching ratio in Z ′ model is consistent with the value of MZ′ ≥ 18GeV .

The variation of branching ratio B(Bd → τ+τ−) with MZ′ is shown in Fig. 1. The existence of light Z ′ boson

could have important implications in dark matter (DM) phenomenology. Recently [27] it is shown that the genesis

of DM is possible with a light Z ′ boson. They have studied the genesis of DM by a Z ′ portal for a spectrum of

Z ′ mass in the range 1 GeV – 1 TeV. In [28] it is depicted that the strong first order electroweak phase transition

(EWPT) can be realized in the light of Z ′ boson region, MZ′ < 220GeV . Furthermore, it is claimed that in our

model [29] for a light Z ′ boson MZ′ ∼ 16GeV , the D0 result for the same-sign dimuon charge asymmetry can

be produced. Since long back from 1970s experimental particle physicists have been testing the accuracy of the

SM with more precession of data. Many physicists think that failure of the SM will account for phenomena such

as gravity and dark matter. It may be an approximation of another description beneath. This is clearly something

that must be studied in more detail. We are looking forward to get more data and analysis of these decays as well

as some more similar decays at the LHC Run-2 or any of the future colliders. Furthermore, the improved theory

accuracy is also essential for interpreting the experimental findings in terms of the SM or new physics.
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We consider a simple QCD potential model in compact extra dimension and find the wave function of mesons in

higher dimensions (3 non compact + others compact) solving Schrodinger equation. Then we report the dimen-

sional dependence of mass of heavy flavoured mesons considering only the Coulomb potential with a plausibly

generalization to compact extra dimension, without taking into account the confinement effect, which is yet to be

known in compact extra dimensions. Our analysis suggests that if the gluon effect, due to the Coulomb term can

spread even to the compact extra dimension of size 1 fm - 10−4 fm, it can effectively account for the expected con-

finement effect, presumably indicating confinement-compact extra dimension duality. The above estimated range

of compact extra dimension is not inconsistent with the corresponding bounds obtained from various experiments.

1. Introduction

According to current level of thought, notion of extra dimension is very important. Splitting one of the spatial

dimension from the rest made it apparent that the structure of electromagnetism is contained in General theory

of Relativity. Different theories such as Kaluza-Klein [1], ADD model [2], RS model [3] etc support this fact.

If fields propagate on such extra dimension, mass of the standard model particles will change [1, 2]. The earlier

analysis [4, 5] with assumption that all the extra-dimensions are of infinite extent do not correspond to current level

of thought. In this work, we therefore confine to finite extra-dimension and apply to QCD potential model.

In the present work, we solve D-dimensional Schrodinger equation with modified Coulomb term in the potential.

Specifically, we consider one finite extra-dimension and obtain proper wavefunction and normalization. We cal-

culate mass of some heavy flavoured mesons, and show their variation with size of compact extra-dimension. We

confine to heavy flavoured mesons [14, 15], because non-relativistic potential approach is more successful in such

mesons. Our analysis suggests that if the gluon effect, due to the Coulomb term can spread even to the compact

extra dimension of size 1 fm - 10−4 fm, it can effectively account for the expected confinement effect, presumably

indicating confinement-compact extra dimension duality. The above estimated range of compact extra dimension

is not inconsistent with the corresponding bounds obtained from various experiments. The last section includes

summary of this work and future outlook.

2. Formalism:

2.1 Potential model in finite extra-dimension

We consider the general 3 dimensions to be 0 to α and the extra dimension to be compact within the range 0 to L

[2, 3]. Thus

r2d = r2 + y2, (1)

where r2 = r21 + r22 + r23 , y is the size of compact extra dimension. Hence,

rd ≃ r +
y2

2r
. (2)

Now, we consider the Coulomb potential in d-dimension:

V (rd) = −A

rd
, (3)

where A = 4αs

3 at d = 3 and with finite extra-dimension it is generalized to

4αs

3
−→ 4αs

3
e−µLy =

4αs

3
(1− µLy) (4)
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for µy ≪ 1. At d = 3, y = 0, and we get back the standard 3-dimensional QCD coupling constant. We assume

that mass parameter (µL) occurred in equation (4) is identical to the mass of the heavy flavoured mesons.

2.2 Wave function (D-dimensional with only Coulomb term in compact extra dimension)

The D-dimensional Schrodinger equation is [17, 18]

[

d2

dr2
+
d− 1

rd

d

dr
− l(l + d− 2)

r2d
+

2µL

~2
(E − V0)

]

R(rd) = 0. (5)

For ground state (n = 0) we get the unperturbed wave function as

ψ(rd) = Nd(r
2 + y2)

σ(d−3)
2 e−µLA(r+ y2

2r ). (6)

Now at d = 3, y = 0 we get from above equation (6) that

ψ(r) = Ne−µLAr, (7)

which is consistent with standard H-atom wave function [20] at d = 3 with A = 1
µα

. Also, for consistency of the

wave function with H-atom wave function µL corresponds to reduced mass µ of H-atom.

2.3 Normalization: with 3 non-compact and one compact extra dimension

The normalization condition [21] is

∫ α

0

∫ l

0

dCd(r
2 + y2)

σ(d−3)
2 |ψ(r, y)|2drdy = 1, (8)

where Cd = (π)
d
2

Γ( d
2+1)

. The normalization constant obtained from the above equation has got singularity at d = 3,

but for d = 3, L = 0 it is free of singularity. At d = 3, in analogy with H-atom, NH=(µ
3α3

π
)

1
2

, standard QCD

normalization constant is

Ns = [
(µ 4

3αs)
3

π
]

1
2

. (9)

Now putting equation (6) in equation (8) we get (neglecting higher orders of L):

Nd = [
(2µA)(2σ+

3
2 )

dCd(
π
µA

)0.5Γ(2σ + 3
2 )

]
1
2 . (10)

For d = 3 and A = 4αs

3 , we find

Nd = [
22σ+1.5

4π2Γ(2σ + 3
2 )

][(
4

3
αsµ)

2σ+2

]

1
2

. (11)

Now, equating this with equation (9) for αs = 0.39 and µ = 0.27 at c-scale, we get, σf ≈ π
9 (by graphical method

and using mathematica). The similar value of σf at b-scale for αs = 0.22 and µ = 0.173 is π
16 . Hence, the correct

wave function in compact extra dimension with only Coulomb term in the potential is

ψ(rd) = Nd(rd)
σf (d−3)

2 e−µA(r+ y2

2r ). (12)

This is an improvement over the earlier result [4, 19], where σf is assumed to be 1.
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2.4 Mass calculation : With only Coulomb term in compact extra dimension

Pseudoscalar meson mass can be computed from the following relation [15, 22]:

Mp = mQ +mQ +∆E (13)

where, ∆E = 〈H〉. In D-spatial dimension, the Hamiltonian operator H has the form[18 ]:

H = −∇2
d

2µ
+ V (rd) (14)

where, µ =
(mQ)(mQ)

mQ+mQ
is the reduced mass of the meson with mQ and mQ are the quark and anti-quark masses;

V (rd) is the inter-quark potential given in equation (3), and ∇2
d is the Laplace’s operator in D-dimension [18],

which at l = 0 is given by

∇2
d ≡ d2

dr2
+
d− 1

r

d

dr
. (15)

Now, 〈H〉 can be expressed as (with only Coulomb term in the potential in compact extra dimension),

〈H〉 = 〈−∇2
d

2µ
〉+ 〈−A

rd
〉. (16)

The correct D-dimensional wave function (3 non compact and other compact) is

ψ(rd) = Nd(r
2 + y2)

σ(d−3)
2 e−µA(r+ y2

2r ) (17)

where, σ = π
9 and A = 4

3αs at d = 3. We consider,

4

3
αs −→

4

3
αse

−µL ≃ 4

3
αs(1− µL) (18)

at d = 3, L = 0 and we get back to the standard 3-dimensional result. Since, H = −∇
2
d

2µ + V (rd), so we get,

〈H〉 = 〈−∇2
d

2µ
〉+ 〈− 1

2µ

δ2

δy2
〉+ 〈−A

rd
〉 = 〈H1〉+ 〈H2〉+ 〈H3〉. (19)

Again, 〈−∇
2
d

2µ 〉 = 9
32µ

µπ
12

2
[4], so

〈H1〉 = 〈−∇2
d

2µ
〉 = 9

32µ
(
µπ

12
)
2
. (20)

For the only compact extra dimension, ψ = Nde
−µAy and with it we get,

〈H2〉 = 〈− 1

2µ

δ2

δy2
〉 = N2

dA

4
(1 + 2µAL). (21)

With only Coulomb term in the potential and considering the fact that 4
3αs −→ 4

3αs(1− µL), we get

〈H3〉 = 〈−A

rd
〉 = N2

dAdCd

[

1

2

√
π√
µA

Γ(5σ + 1
2 )

(2µA)
(5σ+ 1

2 )
+

1

2

√
πL

Γ(5σ)

(2µA)
5σ

]

(22)

neglecting higher orders of L as L is very small. Then we get the final result,

〈H〉 = 〈H1〉+ 〈H2〉+ 〈H3〉 =
9

32µ
(
µπ

12
)
2
+
N2

dA

4
(1 + 2µAL) +N2

dAdCd

[

1

2

√
π√
µA

Γ(5σ + 1
2 )

(2µA)
(5σ+ 1

2 )
+

1

2

√
πL

Γ(5σ)

(2µA)
5σ

]

. (23)
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3. Result

With the expression obtained for 〈H〉, for only Coulomb term in the potential in compact extra dimension we

calculate the mass of heavy flavoured meson [4], [15] B(bc). We take the value of ’L’ from Ref. [24]. Table 1

shows that as size of extra-dimension increases, mass also increases. Further, for L = 0 atd = 3, the theoretical

mass is above the experimental value. That means, confinement effect reduces mass in 3D. We therefore raise

the question if such reduction of mass due to the confinement effect can be generated equivalently through the

assumption that gluon effect propagates to extra-dimension, which is shown in Table 2. In Table 2 we generalize

the effect of confinement through the extra dimension with only coulomb potential for B(bc) at αs = 0.39.

The expected mass can be generated with these assumption that if there is some unobservable extra-dimension.

We show that for L ∼ 0.009 fm, exact experimental mass of B(bc) meson can be achieved at c-scale without

confinement. This value of L is well within the experimental limit [24].

Table 1. Variation of mass of B(bc) with size of extra dimension.

Size (L in fm) bare mass 〈H1〉+ 〈H2〉 〈− A
rd
〉 MP (gev)

0.01 5.97 0.0.46439 0.44212 6.4343

0.02 5.97 0.47741 0.45512 6.4474

0.03 5.97 0.48784 0.4656 6.4578

0.04 5.97 0.49985 0.4776 6.469

0.05 5.97 0.51211 0.48986 6.4821

Table 2. Generation of mass of B(bc) without confinement.

L (fm) QUARK mass of qq A 〈− A
rd
〉 MP (Gev) Exp. mass (Gev)

0.005 5.97 0.5175 0.266 6.24

0.006 5.97 0.5170 0.269 6.247

0.007 5.97 0.5163 0.271 6.25

0.008 5.97 0.5157 0.272 6.26

0.009 5.97 0.5152 0.2744 6.27 6.27

4. Discussion and Conclusion

We have developed a wave-function for mesons in D-dimension(3 non compact and other compact) considering

only Coulomb term in the potential and find the correct normalization constant. Also we check whether our results

agrees with well known 3-dimensional results [20], when dimension is reduced to 3.Our analysis indicates that

if the gluon effect, due to the Coulomb term can spread [24] even to the compact extra dimension of size 1 fm

- 10−4 fm, it can effectively account for the expected confinement effect, presumably indicating confinement-

compact extra dimension duality. The above estimated range of compact extra dimension is not inconsistent with

the corresponding bounds obtained from various experiments and theories suggested in different papers [2,3, 24].

Also,we have checked that above values of µ and L always satisfy µLy << 1.
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We investigate the single production of doubly and singly charged Higgs bosons in the Minimal Left Right Sym-

metric Model (MLRSM), in association with gauge bosons and neutral scalars. In order to accommodate the

present experimental constraints, the SU(2)R breaking scale is considered to be about 8 TeV and the vacuum

expectation value of one of the Higgs doublets is set close to zero, while that of the other doublet is kept as the

same as EW symmetry breaking scale. We have found that the cross-section for two particle productions involving

doubly charged scalars is not significant enough at 14 TeV LHC. On the other hand, three particle productions

like H++
L W−H0

3 / H++
L W−W− / H++

L W−A0
2 / H++

L W−H−
1 are found to be significant with cross-section in

the 1-10 pb range. Right handed doubly charged scalar (H++
R ) does not have enough production cross-section

even in the three body production modes. We analyze the above processes considering the subsequent decays into

SM final state particles. We also carry out the background analysis and establish the significant parameter space

regions that could be probed at the LHC.

1. Introduction

The Standard Model (SM) successfully explains almost all the experimental results so far, including the measure-

ments related to the recently discovered Higgs boson at LHC. Yet, there are many unanswered questions related to

the hierarchy problem, dark matter, the number of families in the quark and lepton sector, neutrino mass problem,

etc., requiring to go beyond the SM to find explanations. The Left-Right Symmetric Model (LRSM) is one of the

simplest models beyond the SM, which has the potential to offer answers to some of the above issues. The gauge

group of the LRSM is a very simple extension of the SM, with an additional SU(2)R symmetry under which the

right-handed fermions transform as doublets, while the left-handed ones are invariant. This leads to three heavy

gauge bosons W±
R and ZR along with SM gauge bosons in EW scale.The presence of additional right-handed neu-

trinos give rise to Majorana Masses, resulting in naturally small neutrino masses through. This minimal version

of the model, MLRSM incorporates a Higgs bi-doublet and two Higgs triplets. The Left -Right Symmetric gauge

theory keep the fermionic content of the SM intact, also incorporate the full quark-lepton symmetry of the weak

interactions and give rise the U(1) generator of the electroweak symmetry group a definite meaning in terms of the

B − L quantum number. The triplet representations of the Higgs fields are chosen such that they can couple to

lepton-lepton channels, thereby leading to the generartion of Seesaw Mechanism.

The MLRSM is elaborately explained in [1, 2, 3, 4], to which we refer the reader for the details, while the next

section introuduces the model in a concise manner, especially focusing on what is relevant to this report. Following

this, in section 3, we discuss the process being considered, and the results obtained. In section 4 we summarise the

study and present the conclusions.

2. The Model

The full Lagrangian of the MLRSM, with the gauge symmetry of SU(3)c × SU(2)L × SU(2)R × U(1)B−L is

discussed in Ref. [1]. In order to be brief, we shall present the scalar potential of the model, which is relevant to

the phenomenology of the Higgs sector at the LHC. The bi-doublet (φ), and the left- and right-triplet scalar fields

transform under the SU(3)c, SU(2)L, SU(2)R and U(1)B−L gauge groups as denoted in the brackets along side

the fields below:

φ(1, 2, 2, 0), ∆L(1, 3, 1, 2), ∆R(1, 1, 3, 2). (1)
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The B−L quantum number in ∆R field has been chosen to realise the seesaw mechanism to explain small neutrino

masses. A convenient representation of the field is given by the 2×2 matrices:

φ =

(

φ0
1 φ+

1

φ−
2 φ0

2

)

, ∆L,R =

(

δ+L,R/
√
2 δ++

L,R

δ0L,R −δ+L,R/
√
2

)

. (2)

The most general scalar field potential of the model can be written as [5]

V (φ,∆L,∆R) = −µ2
1(Tr[φ

†φ])− µ2
2(Tr[φ̃φ

†] + (Tr[φ̃†φ]))− µ2
3(Tr[∆L∆

†
L] + Tr[∆R∆

†
R])

+λ1((Tr[φφ
†])2) + λ2(Tr[φ̃φ

†]2 + Tr[(φ̃†φ])]2) + λ3(Tr[φ̃φ
†]Tr[φ̃†φ])

+λ4(Tr[φφ
†](Tr[φ̃φ] + Tr[φ̃†φ])) + ρ1((Tr[∆L∆

†
L])

2 + (Tr[∆R∆
†
R])

2)

+ρ2(Tr[∆L∆L]Tr[∆
†
L∆

†
L] + Tr[∆R∆R]Tr[∆

†
R∆

†
R]) + ρ3(Tr[∆L∆

†
L]Tr[∆R∆

†
R]) +

+ρ4(Tr[∆L∆L]Tr[∆
†
R∆

†
R]) + α1(Tr[φφ

†](Tr[∆L∆
†
L] + Tr[∆R∆

†
R])) + α2(Tr[φφ̃

†]Tr[∆R∆
†
R]

+Tr[φ†φ̃]Tr[∆L∆
†
L]) + α⋆

2(Tr[φφ̃
†]Tr[∆R∆

†
R] + Tr[φ†φ̃]Tr[∆L∆

†
L])

+α3(Tr[φφ
†∆L∆

†
L] + Tr[φ†φ∆R∆

†
R]) + β1(Tr[φ∆Rφ

†∆†
L] + Tr[φ∆Lφ∆

†
R]) +

β2(Tr[φ̃∆Rφ
†∆†

L] + Tr[φ̃†∆Lφ∆
†
R]) + β3(Tr[φ∆Rφ̃

†∆†
L] + Tr[φ†∆Lφ∆

†
R]). (3)

Because of the non-zero quantum number B − L of the ∆R and ∆L triplets, these always appear in quadratic

combinations. Here, φ̃ ≡ τ2φ
⋆τ2, and the LR symmetry implies that the Lagrangian is symmetric under

∆R ↔ ∆L, φ ↔ φ†. (4)

The SU(2)R symmetry is broken spontaneously with the neutral Higgs fields δ0R acquiring VEV of υR, leading to

massive WR and ZR, and also generating masses to the right-handed neutrinos. The VEV’s of the higgs bidoublet

field κ1 and κ2 with the relation of SM VEV v =
√

k21 ± k22 have double action of breaking the remaining

symmetry SU(2)L × U(1)B−L down to the usual U(1)EM and setting the mass scale for the WL and Z boson

along with quark and lepton Dirac masses. The VEV of the left-triplet, < δ0L > = υL, if present, will affect the

precision electroweak observable, ρ parameter, and therefore requires to be very small (less than 3.5 GeV) [6].

The VEV υR must be larger than κ1 and κ2 such that the mass of WR and ZR are significantly heavier than WL

and Z. After the symmetry breaking of the potential, we will have three extra heavy gauge bosons W±
R and ZR;

four neutral Higgs scalars H0
0 , H0

1 , H0
2 and H0

3 ; two neutral pseudo scalars A0
1, A0

2 and four charged Higgs scalars

H±
1 , H±

2 , H±±
L , H±±

R . The parameters and mass relations of scalars and gauge bosons of MLRSM can be found

in Ref. [7].

The recent LHC analysis limits the WR mass to be above 2.8 TeV [8, 9]. For the left-right symmetry of the

model, we considered gL = gR. ZR is related to the WR mass, MZ2
≃ 1.7MW2

. The heavy gauge boson

masses restrict the SU(2)R breaking scale to be υR > 5 TeV, which dictates the mixing between the left and right

sectors to be negligibly small, due to the relation, tan 2ξ = − 2k1k2

υ2
R

. Experimental limits on WL − WR mixing

constrains ξ ≤ 0.05 [6]. We have also taken in to account the bounds on neutral Higgs bosons obtained from

FCNC constraints assuming MA0
1
,MH0

1
> 15 TeV by requiring α3 = 7.1. Assuming a 100% same-sign di-lepton

decay, the LHC direct searches limit the doubly charged Higgs boson mass to be MH++ ≥ 445 GeV (409 GeV)

for CMS (ATLAS) [10, 11].

3. Results

We consider the production of one doubly charged Higgs boson in association with other Higgses, as well as the

gauge bosons at the 13 TeV LHC. Compatible with the constrained described above, we consider the following

Benchmark Points (BP).
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Input parameters:

vR = 8 TeV, vL = 0, v = 246 GeV, k1 = 246 GeV, k2 = 0

ρ1 = 0.239764, ρ2 = 2.36 ×10−4, ρ3 = 0.48, α3 = 4.69, λ = 0.13

Derived masses (in GeV):

W±
R = 3676.9 , ZR = 6150.7, H0

0 = 125, H0
1 = 15073, H0

2 = 5539.84, H0
3 = 122.9

H+
1 = 350, H+

2 = 15076.7, A0
1 = 15073, A0

2 = 122.9, H++
L = 479.5, H++

R = 495

We have calculated the production cross-section of different channels containing H++
L/R in association with scalars

and gauge bosons with BP mentioned above at 13 TeV LHC as shown in Table 1. It is seen that the cross-section

for production of H++
L H−

1 is sizable at 13 TeV LHC.

Table 1. List of production cross-section of H±

L/R in association with gauge boson and scalars with the BP at 13 TeV LHC.

Production of H++

R at LHC σ in fb Production of H++

L at LHC σ in fb

H++

R W− 0 H++

L W− 0

A0
2H

0
3 0.4 H++

L H−

1 4.2

H++

R W−

2 0.02 H++

L W−H0
3 2.0

H++

R W−H−

1 0 H++

L W−A0
2 2.0

H++

R ZH−

1 0 H++

L W−H−

1 1.8

H++

R W−A0
2/H

0
3 0 H++

L ZH−

1 0.02

H++

R H−

1 H−

1 0.007 H++

L W−W− 0

H++

R W−

2 W−

2 6.39.10−9 H++

L W−γ 0

Figure 1. Variation of production cross-section of H++

L H−

1 with different mass of H++

L at 13 TeV LHC.

The variation of cross-section for H++
L H−

1 produced at LHC with different mass of H++
L /H+

1 is depicted in Fig.

1, which decreases with increasing mass of H++
L /H+

1 . The channel we considered for our preliminary study at

LHC is H++
L W−H0

3/A
0
2, which constitutes most of H++

L H−
1 , with subsequent decay of H−

1 → W−H0
3/A

0
2 .

Below we list out all possible tri-linear and quartic couplings, which contribute to the above process:

H−
1 W−H++

L : i cos ξ gW , W+H−H0
3 (W

+H−A0
2) : i cos ξ gW /

√
2 (cos ξgW /

√
2)

W−H0
3W

−H++
L : -i cos ξ2 g2w

√
2, H++

R H0
3H

++
L : -2i ρ4υR

H−
2 H−

1 H++
L : iα3k1k2

v
√

1+0.5(k2
1
−k2

2
)2/v2υ2

R

, H−
1 H0

3H
−
2 : −iα3k1k2

v
√
2
√

1+0.5(k2
1
−k2

2
)2/v2v2

R

In Table 2 we present the cross sections, at two different chosen values of υR = 8, and 10 TeV at 13 TeV LHC.

The BR of H++
L → W+H+

1 is 99% and corresponding BR of H+
1 → W+H0

3 is 50 %. The cross-section of the

major SM background is also listed in Table 2. The Transverse Momentum (PT) of W boson and the Missing

Transverse Energy (MET) for the intermediate state W+W−W+νℓνℓνℓνℓ for signal with two different υR value

of 8 TeV and 10 TeV are showed in red and blue respectively and in green, PT of W boson and MET for SM
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Table 2. Final state cross-section with different υR value along with SM background at LHC.

Signal cross-section in fb

pp → H++

L W−H0
3 → W+W−W+νℓνℓνℓνℓ σ13TeV = 0.94 fb ( υR = 8 TeV)

σ13TeV = 2.6 fb ( υR = 10 TeV)

SM background

pp → W+W−W+νℓν̃ℓ σ13TeV = 0.08 fb

Figure 2. Kinematic distribution of W boson for the final state W+W−W+υℓυℓυℓυℓ of the process pp → H++

L W−H0
3 with

different υR at 13 TeV LHC.

background are shown in Fig. 2. In this preliminary study, we have found that MLRSM signal with a chosen BP

can be found over SM background at 13 TeV LHC.

4. Summary and outlook

The Minimal Left Right Symmetric Model (MLRSM) has the potential to address the issues of dark matter as well

as the neutrino mass problems. The Higgs sector of this model is much richer and non-standard with triplet and

bidoublet scalar fields present, leading to doubly charged Higgs boson in the physical spectrum, apart from singly

charged and more than one neutral Higgs bosons. In the project being discussed, we consider the signatures of

the doubly charged Higgs bosons at the LHC. In the preliminary analysis, we have found that distinct scenarios

(with different Benchmark Points in the parameter space) where cross section for single production of H++
L along

with H−
1 is significant . Detailed of the study will be carried out with the analyses of detector level final states, to

establish methods to identify the signature of the doubly charged Higgs bosons for the selected Benchmark Points.
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We have studied the stability of bottomonia states in QGP by incorporating color screening effects and vacuum

screening effects. We have particularly looked into the medium effects on the ground state and excited states

of bottomonia. The dependence of energy eigenvalues on screening parameter µ and the strength of the quark-

antiquark potential have been studied. It is observed that with increase in the potential strength, color screening

radii rD increases, while vacuum screening parameter µvs decreases with increase in potential strength.

1. Introduction

The relativistically heavy ion collision experiments at the RHIC at Brookhaven National Laboratory and LHC at

CERN, characterize the properties of the matter at high temperature with high density. This leads to the decon-

fined state of hadronic matter because of the screening effects between quarks and glouns. As the hadron moves

through the medium, the higher excited states with smaller binding energy and higher radii breakup to open quark-

antiquark. There are menay attempts to understand the dissociation phenomenon of quarkonia QQ̄ states in a

deconfined medium using theories like QCD sum rules, lattice calculation, effective field theories and effective

potential models. The study of a deconfined medium has been attempted by solving the schrödinger equation with

a non-relativistic Hamiltonian given by

H = M +
p2

2m
+ V (r, T ) (1)

where, M = m1+m2 and m = m1m2

m1+m2

. Here, m1/2 corresponds, to the mass of the quark/antiquark constituting

the quarkonia states. For the bottomonium, the bottom quark mass is taken as mb = 4.746 GeV/c2 [3]. The

medium dependent quark-antiquark potential [4] is considered as

V (r, µ(T )) =
−α

r
exp[−µ(T )r] +

σ

µ(T )
(1− exp[−µ(T )rν ]) (2)

where, α = 0.471 [5] and σ has been determined by taking the corresponding spin average mass of bottomonia

(1s, 2s and 1p-states) without considering the medium effects (µ →0). The parameter σ for different choices of ν
thus are obtained are plotted in the Fig. 1. It is found that for ν = 1 the value of σ remains almost same for the

different bb̄ states.
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Figure 1. String tension σ at different choices of power index ν for bottomonia.
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Table 1. Screening parameters of the bb̄ (1s) state for µ = µc for the different choices of ν.

ν σ µc r M rD

GeV ν+1 GeV fm GeV fm

0.1 0.212 1.3640 0.39804 9.6474 0.14467

0.3 0.207 1.3374 0.39389 9.6468 0.14755

0.5 0.203 1.3155 0.38960 9.6463 0.15000

0.7 0.198 1.2969 0.38611 9.6447 0.15215

0.9 0.193 1.2823 0.38369 9.6426 0.15389

1.0 0.192 1.2776 0.38253 9.6423 0.15445

1.1 0.188 1.2712 0.38228 9.6399 0.15523

1.3 0.1821 1.2619 0.38184 9.6363 0.15637

1.5 0.177 1.2552 0.38180 9.6330 0.15721

1.7 0.171 1.2490 0.38231 9.6289 0.15799

2.0 0.162 1.2408 0.38343 9.6226 0.15904

Table 2. Screening parameters of the bb̄ (2s) state for µ = µc for the different choices of ν.

ν σ µc r M rD

GeV ν+1 GeV fm GeV fm

0.1 0.511 1.0600 0.71679 9.9740 0.18616

0.3 0.401 0.9472 0.79303 9.9153 0.20833

0.5 0.323 0.8359 0.86467 9.8784 0.23607

0.7 0.263 0.7255 0.93271 9.5453 0.27202

0.9 0.217 0.6228 0.99571 9.8404 0.31685

1.0 0.192 0.5726 1.03308 9.8273 0.34465

1.1 0.179 0.5340 1.06148 9.8272 0.36955

1.3 0.149 0.4646 1.14111 9.8127 0.42475

1.5 0.124 0.4128 1.23972 9.7924 0.47805

1.7 0.103 0.3761 1.34601 9.7657 0.52470

2.0 0.0784 0.3436 1.47302 9.7202 0.57433

2. Colour screening effects

The Schrödinger equation

[

1

2µ
(
−d2

dr2
+

l(l + 1)

r2
) + V (r)

]

Φn,l(r) = En,l(r)Φn,l(r) (3)

with the potential defined by equation (2) is solved to get the energy eigenvalue En,l(µ) as a function of the

medium parameter µ. We now define an effective binding energy expressed as [3, 6]

En,l
cs (µ) ≡ 2m+

σ

µ
− En,l(µ). (4)

En,l
cs (µ) described by equation (4) provides a positive value for the bound state and as µ increases, it decreases.

For a particular value of µ = µc at which

En,l
cs (µ = µc) = 0 (5)

defines a critical value for the screening mass µc, beyond which no more binding is possible and it just dissociates.

Table 1 to 3 contains the screening parameters of 1s, 2s, and 1p-state of the bb̄ and the Fig. 2 shows the change

in binding energy with respect to screening parameter µ for different choices of potential exponent ν. The value

of µc is extracted from the condition given by equation (5). It is observed that the critical value for the screening

mass µc decreases with increase in the choice of potential exponent ν. Also with increase of ν, the color screening

radii rD (rD = 1/µc) and the r.m.s value (r) at µ = µc show a increasing trend (see Fig. 3).
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Table 3. Screening parameters of the bb̄ (1p) state for µ = µc for the different choices of ν.

ν σ µc r M rD

GeV ν+1 GeV fm GeV fm

0.1 0.414 1.0717 0.69182 9.8783 0.18412

0.3 0.336 0.9430 0.75084 9.8484 0.20925

0.5 0.282 0.8238 0.80592 9.8343 0.23954

0.7 0.239 0.7115 0.85072 9.8279 0.27735

0.9 0.206 0.6143 0.87292 9.8273 0.32122

1.0 0.192 0.5725 0.87716 9.8273 0.34469

1.1 0.178 0.5349 0.88272 9.8248 0.36892

1.3 0.155 0.4731 0.90015 9.8196 0.41712

1.5 0.136 0.4249 0.93709 9.8121 0.46443

1.7 0.119 0.3857 0.99319 9.8005 0.51163

2.0 0.098 0.3407 1.10460 9.7793 0.57913

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

5

10

15

20

25

E
cs

 (G
eV

)

 (GeV)

 
 
 
 
 
 
 
 
 
 

For 1s-state of bottomonia

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

5

10

15

20

25

30

35

40

45

50

55

E c
s(
G
eV

)

 (GeV)

 
 
 
 
 
 
 
 
 
 

For 2s-state of bottomonia

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
0

5

10

15

20

25

30

35

40

45

E
cs
(G

eV
)

 (GeV)

For 1p-state of bottomonia

Figure 2. Colour Screening energy En,l
cs (µ) of the bound states of bottomonium for the different values of ν.

3. Vacuum screening effects

At T = 0, the absence of light quarks indicates the screening parameter µ = 0 while the presence of light quark-

antiquark from vacuum correspond to µ 6= 0. As the separation between Q − Q̄ increases the gluonic flux that

binds Q and Q̄ breaks and the light quark and antiquark pairs are produced out of vacuum. This breaking of string

is attributed to the creation of qQ̄ and q̄Q but not exactly due to colour screening. Energy is required to bring out

the virtual qq̄ pair from vacuum and hence, µ 6= 0. Considering the vacuum screening, the effective binding energy

can be represented as [3]

Evs(T = 0) = 2mbq̄ −Mbb̄. (6)

Comparing equation (6) with equation (4) the vacuum screening parameter, calculated for the different choices of

power exponent ν and we get the vacuum screening parameters which are tabulated in the Table 4.

The effect of medium on the binding energy of the bb̄ states are studied by introducing a medium dependent
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Table 4. Vacuum screening parameter µvs for bottomonia states.

ν µvs(GeV)

Υ Υ
′

χb

0.1 0.1712 0.3093 0.2534

0.2 0.1708 0.3004 0.2486

0.3 0.1704 0.2915 0.2438

0.5 0.1698 0.2779 0.2356

0.7 0.1690 0.2613 0.2260

0.9 0.1682 0.2453 0.2164

1.0 0.1676 0.2283 0.2085

1.1 0.1671 0.2195 0.2033

1.3 0.1663 0.2022 0.1930

1.5 0.1654 0.1856 0.1827

1.7 0.1645 0.1695 0.1725

1.9 0.1637 0.1543 0.1624

2.1 0.1628 0.1416 0.1528

2.3 0.1619 0.1288 0.1433

2.5 0.1610 0.1174 0.1342

2.7 0.1601 0.0927 0.1218

3.0 0.1587 0.0752 0.1081
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Figure 3. Screening effects on the different states of bottomonia.

screening mass parameter µ. For the different choices of µ we have calculated the effective binding energy and

the bound state radii by solving the Schrödinger equation. Here, we defined an colour screening effective binding

energy (En,l
cs ) which is found to vanish for a particular value of µ = µc. This value µc is then defined as critical

screening mass parameter of the quarkonia state above which bound state will not be possible. And corresponding

to this µc we obtained the screening parameter rD = 1/µc and the r is radius of last binding of bottomonia states

for each choices of ν.
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The barrel time-of-flight (TOF) detector for PANDA experiment at GSI, Germany is proposed to be a Scintillator

tile hodoscope (SciTil) using about 6000 small scintillator tiles readout by silicon photomultiplier (SiPM). Each

of the scintillator tiles has the dimension of 3 × 3 × 0.5 cm3 . This thin scintillator hodoscope provides π/K
separation for particle momentum below 700 MeV/c with the time resolution of 100 ps. We perform a simulation

work to study the performance of this detector sub-system. Some of the preliminary results are presented in this

paper.

1. Introduction

PANDA (antiProton ANnihilation at DArmstdt) is one of the major projects at FAIR, GSI, Germany [1]. The main

objective of this experiment is to study the fundamental questions of hadron physics and QCD in pp̄ annihilation

using high intensity cooled anti-proton beams with momenta between 1.5 GeV/c and 15 GeV/c. To achieve high

momentum resolution and full solid angle coverage, the PANDA detector is split in to two parts: target spectrometer

and forward spectrometer (see Fig. 1). The target spectrometer is a complex detector consisting of several sub-

systems surrounding the interaction point. It is surrounded by a 2T superconducting solenoid magnet. A Micro

Vertex Detector (MVD), close to interaction point, detects secondary vertices of D and Hyperon decays. The Straw

Tube Tracker (STT) is the central tracking system around the MVD. A cherenkov counter named DIRC (Detection

of Internally Reflected Cherenkov light), provides π/K separation for particle momenta up to 3.5 GeV/c. The

barrel Time-of-Flight (TOF) detector, consists of plastic scintillator tiles with a time resolution of 100 ps. It is used

to identify particles of momentum below cherenkov threshold. Following the TOF detector, an electromagnetic

calorimeter (EMC) is placed to detect e−, e+ and γ particles. The Muon detector is the outermost part of the

PANDA target spectrometer. The complete description and technical details of the PANDA detector can be found

elsewhere [2].

Figure 1. The PANDA detector. The beam enters from the left and interacts in the target spectrometer.
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2. The barrel time-of-flight detector

The barrel time-of-flight (TOF) detector is motivated by physics as well as technical benefits [3]. It provides

particle identification for charged particles below the momentum threshold of barrel DIRC detector below 700

MeV/c. In addition to the particle identification, it also provides timing information to construct event building

algorithm to avoid an event-mixing at high collision rates. The PANDA detector does not have a start timing

detector. Nevertheless based on the relative time-of-flight algorithm, the event start time can be calculated by

using the timing information of barrel TOF. Plastic scintillators are insensitive to photons, but highly sensitive

to charged particles. This helps to detect the preshowers in PANDA barrel spectrometer by using barrel TOF

information. The barrel TOF detector has a minimum material budget below 2% of a radiation length and less than

2 cm radial thickness, including the readout electronics and mechanics and provide a large angular acceptance of

220 ≤ θ ≤ 1400. For the reasons given above a good time resolution σ < 100 ps and a fast readout and signal

processing is mandatory.

3. Study of preshower in the PANDA Target Spectrometer

The presence of other detectors in front of the electromagnetic calorimeter with a high material budget leads to the

possibility for a high energetic photon to start the electromagnetic shower in front of the EMC. An electromagnetic

shower started in front of the EMC is called preshower. In the PANDA detector, the material budget in front of the

EMC is mostly contributed by the DIRC detector material [4]. Therefore, this study is concentrated on preshowers

in the DIRC detector. A study for the BaBar experiment [5] show, that detecting the preshower in the DIRC, the

energy resolution of π0 could be improved by about 5%. The BaBar DIRC detector itself was used to detect the

preshower and 50% of converted photons were recovered. However, unlike the BaBar detector, the PANDA target

spectrometer is facilitated with the TOF detector between DIRC and EMC. This thin detector system is capable of

detecting preshowers in the DIRC with a high efficiency and may help in the reconstruction of photon showers in

the EMC.

4. Simulation in PandaRoot

We use PandaRoot [6] to study the preshowers. Single photon MC events of energy 1 GeV are generated using

box generator. The radial part of the starting point of an electromagnetic (EM) shower can be obtained from the

simulation output. A shower is identified as preshower if the starting point falls between the inner radius and

outer radius of the DIRC detector. The variation of the gamma conversion probability with polar angle (θ) is

shown in Fig. 2. A comparison of the reconstructed photon energies for preshower and non preshower events is

Figure 2. Gamma conversion probability in DIRC as a fuction of polar angle (θ) for 1 GeV photons.
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shown in Fig. 3. It has been observed that the energy distribution for non preshower events (black histogram)

Figure 3. Reconstructed energy of 1 GeV photons for preshower and non preshower events.

can be well described by a Gaussian function. The preshower events (red and green) add a low-end tail part

to the energy distribution. However, there is no remarkable deterioration in photon energy resolution due to

DIRC preshowers is observed in our simulation. Previous beam-test [7] showed, that for energies above 1 GeV a

preshower improves the energy resolution, while for energies below 1 GeV a preshower deteriorates the energy and

position reconstruction. The TOF detector can help to identify these cases and may help to improve the situation.

5. Conclusion

Simulation studies are in progress for better understanding of DIRC preshowers in the PANDA target spectrometer.

It is also planned to recover the converted photons in the DIRC using barrel TOF detector with high efficiency.
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We calculate quark susceptibility and velocity of sound incorporating one loop correction in mean field potential.

The calculation shows continuous increasing susceptibility and velocity of sound up to the temperature T =
0.4 GeV. Then the susceptibility and sound velocity approach to the behaviour of lattice result for higher value of

temperature. The result indicates that the calculated values of the model fit well to reach the ideal gas pattern with

the one loop correction in the mean field potential.

1. Introduction

Strong interactions predicts quark-hadron phase transition under the condition of extreme high energy nuclear

density and high temperature. In this process of transition [1, 2] phenomena a deconfined phase of free quarks,

gluons at very large temperature and a confined phase of bound quarks at lower temperature, lived for a short

period. During this short time, the formation of the deconfined phase known as quark-gluon plasma (QGP) is still

a theoretical conjecture. So the system is still considered to be a complicated phenomena from the beginning of

early universe. Due to this complicated nature it has facilitated a lot of interest in this topics and a lot of affords has

been taken care in working out to investigate this transformation of quark-hadron phases. To investigate and search

this nature of the universe there are a number of experimental facilities set up around the globe like relativistic

heavy-ion collision (RHIC) at BNL and large hadron collider (LHC) at CERN. Besides these experiments set up,

there are another experimental facilities like FAIR at Darmstadt and NICA at Dubna, where the study have focused

on dense baryonic matter and the baryonic matter at Nuclotron (BM@N) experiments with ion beams extracted

from modernized Nuclotron. These facilities are trying to provide the information about the existence of the early

universe phase transition, formation of QGP and chromodynamics (QCD) phase structure [3, 4, 5, 6]. So, the

study of quark-gluon plasma (QGP) in Ultra Relativistic Heavy-Ion Collisions has become an exciting field in

the present day of heavy ion collider physics [7, 8]. In this brief article, we focus on the calculation of quark

susceptibility and velocity of sound through the free energy evolution of QGP with one loop correction in mean

field potential. To evaluate the susceptibility and velocity, we need to understand the thermodynamic partition

function which correlate the Gibb’s free energy of the system. To incorporate one loop correction in the mean

field potential we modify the free energy incorporating the loop correction with quark and gluon flow parameters.

Due to the correction factor in the mean field potential, there are changes in the free energy expansion of QGP

fireball, and it also impacts in the stability of droplet formation with the variation of dynamical quark and gluon

flow parameters [9, 10, 11]. So the flow parameter takes the role of stability in forming droplet size with changing

temperature. In brief, we review free energy evolution through the density of state which is modified by one loop

correction with quark and gluon flow parameters. The loop correction is introduced in the coupling parameter and

hence modified the density of state constructed through the coupling value. Then we calculate quark susceptibility,

entropy and specific heat with the relevant flow parameters of stability droplets. We further calculate velocity of

sound also through these two above thermodynamic entities, entropy and specific heat. In conclusion, we give the

details of evolution of QGP fireball with different flow parametrization values and show the results of susceptibility,

entropy, specific heat and velocity of sound.

2. Free energy evolution

The free energy of quarks and gluons can be obtained through a simple model modifying density of state with the

inclusion of one loop correction factor [12, 13, 14, 15] as given by,

Fi = ±Tgi

∫
ρq,g(p) ln[1∓ e−(

√
m2

i
+p2

−µ)/T ]dp , (1)
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Figure 1. Free energy evolution versus QGP droplet size at this particular quark and gluon flow parameter.

where minus sign if for the bosonic particle and plus sign is for fermionic particles. gi is color and particle-

antiparticle degeneracy for quarks and gluons. ρq,g is the density of states in phase space under the inclusion of

one loop correction in the interacting potential. It is reviewed through our earlier paper [16]:

ρq,g(p) =
ν

π2
[
γ3
q,gT

2

2
]3g6(p)A, (2)

where

A = {1 + αs(p)a1
π

}2[ (1 + αs(p)a1/π)

p4
+

2(1 + 2αs(p)a1/π)

p2(p2 + Λ2) ln(1 + p2

Λ2 )
], (3)

where γq,g is quark and gluon parametrization factors taken as γq = 1/8 and γg = (8 − 10) γq . These factors

determine the dynamics of QGP flow and enhance the transformation to hadrons. ν is the volume occupied by the

QGP. g2(p) = 4παs(p). The coefficient a1 used in the above expression is due to one loop correction obtained in

their interactions and contribute in the modification of density of state. In addition to these free energies, there is

an inter-facial energy which takes care of the hydrodynamic effects in the system and the Bag energy constant. It

is:

Finterface =
γTR2

4

∫
p2δ(p− T )dp, (4)

in which γ is root mean square value of quark γq and gluon flow parameter γg . R is size of QGP droplet. The

hadronic contribution of free energy with the corresponding degeneracy factor of g is [17]

Fh = (gT/2π2)ν

∫
∞

0

p2 ln[1− e−(
√

m2

h
+p2

−µ/T )]dp. (5)

Where, mh is considered to be the corresponding mass of hadronic particles. We can thus compute the total

modified free energy Ftotal as,

Ftotal =
∑
i

Fi + Finterface + Fh, (6)

where i stands for u, d and s quark and gluon.
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Figure 2. Quark susceptibility versus temperature at this particular quark and gluon flow parameter.

Figure 3. Entropy versus temperature at this particular quark and gluon flow parameter.

3. Quark susceptibility, entropy, specific heat and velocity of sound:

The quark susceptibility, entropy, specific heat and velocity of sound are calculated from the total free energy. The

susceptibility is calculated by the following relations [18, 19, 20],

χ = (
∂2F

∂µ2
i

)µi=0. (7)
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Figure 4. Specific heat versus temperature at this particular quark and gluon flow parameter.

Figure 5. Velocity of sound versus temperature at this particular quark and gluon flow parameter.

The susceptibility value can be observed from the figure with the variation of temperature. We look the calculation

of entropy and specific heat from the free energy. The entropy and specific are defined as,

s = (−∂F

∂T
)v, (8)

Cv = (T
∂s

∂T
)v. (9)

Then, we look the velocity of sound with this model of one loop correction in the coupling value. The speed of

sound is ratio of the thermodynamic property entropy to specific heat, which are calculated through the free energy,
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and it is given as [21, 22],

C2
s =

S/T 3

Cv/T 3
(10)

The value of sound velocity is also shown in the following figure with the corresponding temperature.

4. Results:

Analytical calculation of free energy of QGP-hadron fireball evolution with one loop correction factor in the

interacting mean-field potential is reviewed for looking into quark susceptibility, entropy, specific heat and velocity

of sound . The stability droplets are found in quark and gluon parametrization factor γq = 1/8 and 10γq ≤ γg ≥
8γq . At these particular ranges we numerically calculate quark susceptibility entropy, specific heat and velocity

of sound for one particular flow parameter out of the above ranges. The choice of this particular flow value

is because of highly stable in the QGP droplet. In Fig.1 we show the free energy evolution for one particular

stable droplet of the system with the change in temperature. The free energy spectrum is almost showing at this

γq = 1/8 and γg = 9γq . It shows very nice evolution with the stable droplet size of 3.2 fm. In Fig.2 again we plot

the quark susceptibility with the variation of temperature. The figure shows that the system with the modification

of one loop correction in the mean field potential agree with many other works [21, 22, 23]. This indicates that

the choice of parameter during the time of QGP formation play very important and significant role. It’s value is

probably a kind of Reynold number of this dense nuclear fluid. Again in Figs.3 and 4 we look the entropy and

specific heat. These results follow almost same pattern with the lattice and ideal gas behaviour. Again from these

two thermodynamic entities we obtained velocity of sound. It is shown in Fig.5 and the value is found to be 1/3
around the temperature range of T = 0.4 GeV to T = 0.6 GeV and also matches with the recent data of velocity

of sound for the whole range of temperature.

5. Conclusion:

We can conclude from these results that due to the presence of loop correction in the mean field potential, the

stability of droplets increases while its size decreases in comparison with the result of uncorrected potential. So,

we can further study velocity of sound on the basis of these smaller droplets through the thermodynamic properties

like entropy and specific heat of QGP. In our further work, we plan to compare the results with available data on

fireball radius and possible experimental tests.
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Some Type-I seesaw mass models [1] are revisited with the motivation to study their textures under Z8 cyclic

symmetry. These neutrino mass models are based on both diagonal charged lepton mass matrices and Dirac

neutrino mass matrices with the non-diagonal right handed Majorana neutrino mass matrices MR. We observe that

the one zero texture of MR propagate to the left-handed neutrino mass matrices Mν as their vanishing minors and

the symmetry of the textures corresponds to Z8 cyclic group symmetry. It is done by extending the SM to include

two or three Higgs doublet and some SU(2) singlet scalar.

1. Introduction

The series of neutrino experiments have confirmed without any doubt that the neutrinos are massive. To achieve

massive neutrinos in theory, one has to move beyond the SM of particle physics which can accommodate massless

neutrinos only. The basic SM extensions include the existence of right-handed Majorana neutrino. These RH

Majorana neutrinos are often used to explain neutrino masses via the type-I seesaw mechanism.

In the Type-I seesaw mechanism, the effective neutrino mass matrix Mν is given by

Mν = −MDM−1

R MT
D , (1)

where MD and MR are respectively the Dirac neutrino mass matrix and right-handed Majorana mass matrix.

Zero textures [2, 3, 4], vanishing minors [5] and hybrid textures [6] are some of the interesting proposals that are

being studied extensively so as to restrict the form of the neutrino mass matrix and thus reduce the number of

free parameters. Zero textures in Mν have been extensively studied because of their implications for the possible

existence of family symmetries which require certain entries of the matrix, which are extremely small compared

to the other elements of the matrix, to vanish. Since according to equation (1), Mν is a combination of the Dirac

mass matrix MD and the heavy right-handed Majorana neutrino mass matrix MR, so the zeros of MD and MR,

propagate as zeros in Mν . Thus the study of zero texture of MD and MR is more basic than the study of Mν [7].

The zeros in MD and MR apart from propagating as zeros in Mν may also reflect as vanishing minors in Mν ,

provided MD is diagonal. Zeros in any arbitrary entries of the mass matrices can be enforced effectively with the

help of certain cyclic group symmetry [8]. In our paper, we have made use of the Z8 cyclic group symmetry to

enforce zeros in the mass matrices.

The paper is organised as follows: in section 2, we have presented a general form of texture zero and vanishing

minor in the neutrino mass matrices. In section 3, we have studied the one zero textures of the symmetric RH

Majorana mass matrix of the bimaximally mixed neutrino mass matrices [1], where MD and Ml are chosen to be

diagonal, also vanishing minors were observed in each case. We present symmetry realization of the mass matrices

using an Abelian cyclic group Z8 with suitable scalar singlets and Higg’s doublets in section 4. And finally end up

with conclusion in section 5.

2. General form of one zero textures of MR and vanishing minors in Mν

We work in the basis where the charged lepton mass matrix Ml is diagonal, and the Dirac mass matrix MD [1] and

the general form of the symmetric RH Majorana mass matrix respectively takes the form:

MD = tanβ





λm 0 0
0 λn 0
0 0 1



mτ , MR =





a b c

b d e

c e f



 , (2)
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where λ = 0.22 is the Wolfenstein parameter, m = 6, n = 2 and tanβmτ = C(say) is a constant. The effective

neutrino mass matrix, in the context of Type-I seesaw mechanism becomes,

Mν =
1

|MR|





(df − e2)λ2m (bf − ce)λm+n (be− cd)λm

(bf − ce)λm+n (af − c2)λ2n (ae− bc)λn

(be− cd)λm (ae− bc)λn (ad− b2)



R1, (3)

where R1 is a constant and |MR| = (adf − ae2 − b2f + 2bce − c2d). All the possible one zero texture of the

symmetric RH Majorana mass matrix are shown in the table below:

Table 1: All possible one zero texture of MR.

A B C




0 b c

b d e

c e f









a 0 c

0 d e

c e f









a b 0
b d e

0 e f





D E F




a b c

b 0 e

c e f









a b c

b d 0
c 0 f









a b c

b d e

c e 0





Here we have distinguished the different structures of texture zero in different classes. For example, class A: gives

the mass matrix where the zero corresponds to the position ’a’ of the matrix; class B: mass matrix where the zero

corresponds to the position ’b’ of the matrix and so on. As our MD is diagonal, the zeros of MR will show as

a vanishing minor in Mν . In the context of type-I seesaw, the effective neutrino mass matrix Mν with MD as

diagonal and one zero texture of MR (class A) becomes,

Mν =
1

|MR|





(df − e2)λ2m (bf − ce)λm+n (be− cd)λm

(bf − ce)λm+n −c2λ2n −bcλn

(be− cd)λm −bcλn −b2



 , (4)

where |MR| = (−b2f + 2bce− c2d). Thereby giving rise to a vanishing minor in Mν for a zero corresponding to

class A in MR. Similarly, for each class of MR, a vanishing minor is obtained in Mν with MD as diagonal.

3. One zero texture of the RH Majorana mass matrix

When Ml = diag(me, mµ, mτ ) and MD = diag(λ6, λ2, 1) C (C being a constant) the neutrino mass matrix arises

solely due to MR. It is found that the texture study of the right handed Majorana mass matrices in each case, that

is, normal, degenerate and inverted heirarchy from Ref. [1], gives different texture structure.

3.1 Normal heirarchy

I(A): The right-handed Majorana mass matrices [1] of the form,

MR =





λ11 λ7 λ5

λ7 λ6 0
λ5 0 1



 vR (5)

with vR ≈ 1014 gives rise to a structure with e = 0 (class E), thereby leading to the following form of effective

neutrino mass matrix through seesaw mechanism:

Mν =
1

|MR|





dfλ12 bfλ8 −cdλ6

bfλ8 (af − c2)λ4 −bcλ2

−cdλ6 −bcλ2 (ad− b2)



R1, (6)

where R1 is a constant and |MR| = (adf − b2f − c2d). Thus a vanishing minor is obtained in Mν for e = 0 in

MR.
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3.2 Degenerate case

I(B): The right-handed Majorana mass matrix [1] is of the form,

MR =





(1 + 2δ1 + 2δ2)λ
12 δ1λ

8 δ1λ
6

δ1λ
8 (1 + δ2)λ

4 δ2λ
2

δ1λ
6 δ2λ

2 (1 + δ2)



 vR, (7)

where δ1 = 3.6 × 10−5, δ2 = 3.9 × 10−3, vR ≈ 1013 GeV, enforcing (δ1 + δ2)λ
12 = 0, δ1λ

8 = 0, MR reduces

to the following structure:

MR =





a 0 c

0 d e

c e f



 (class B). (8)

3.3 Inverted hierarchy

II(A): With a = 0.5, ǫ = 0.002, η = 0.0001, vR ≈ 1012 in

MR =





2aη(1 + 2ǫ)λ12 ηǫλ8 ηǫλ6

ηǫλ8 aλ4 −(a− η)λ2

ηǫλ6 −(a− η)λ2 a





vR

2aη
(9)

the terms aηǫλ12 and ηǫλ8 can be effectively forced to zero.Thereby reducing MR to the following form,

MR =





a 0 c

0 d e

c e f



 (class B). (10)

Thus the structure of Mν (I(B), II(A) with b = 0) becomes,

Mν =
1

|MR|





(df − e2)λ12 −ceλ8 −cdλ6

−ceλ8 (af − c2)λ4 aeλ2

−cdλ6 aeλ2 ad



m0, (11)

where m0 is a constant and |MR| = (adf − ae2 − c2d). In each case a vanishing minor is obtained in Mν for a

corresponding zero in MR. Similarly when a texture study is made on all the other models I(B), I(A), I(C), II(B)

from Ref. [1] they reveals different texture structure as shown in the Table below:

Table 2: Texture structure of the mass models.

Mass Models (M ′
Rs) Zero Texture in MR

I(B)





−λ10 λ6 λ4

λ6 λ6 λ

λ4 λ 1



 vR, where vR ≈ 1013 GeV MR11
= 0

(Normal) Class A

I(A)







−2δ2λ
2m ( 1√

2
+ δ1)λ

m+n ( 1√
2
+ δ1)λ

m

1√
2
+ δ1)λ

m+n ( 1
2
+ δ1 − δ2)λ

2n (− 1

2
+ δ1 − δ2)λ

n

( 1√
2
+ δ1)λ

m (− 1

2
+ δ1 − δ2)λ

n ( 1
2
+ δ1 − δ2)






vR, MR11

= 0

(Degenerate) where δ1 = 6.18× 10−3,δ2 = 3.06× 10−3,vR ≈ 1013 GeV Class A

I(C)





(1 + 2δ1 + 2δ2)λ
2m δ1λ

m+n δ1λ
m

δ1λ
m+n δ2λ

2n (1 + δ2)λ
n

δ1λ
m (1 + δ2)λ

n δ2



 vR, MR12
= 0

(Degenerate) where δ1 = 3.6× 10−5, δ2 = 3.9× 10−3, vR ≈ 1013 GeV Class B

II(B)





−λ15 λ8 λ6

λ8 λ λ−1

λ6 λ−1 λ−3



 vR, where vR ≈ 1012 GeV MR11
= 0

(Inverted) Class A
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4. Symmetry Realization

Texture zeros can be enforced in any arbitrary entries of the mass matrices with an extended scalar sector and Higg’s

doublet by means of Abelian symmetries. For symmetry realization of different textures of MR we consider the

Z8 cyclic group symmetry. The leptonic field transformations are different for different texture mass matrices. Let

the fields transform under Z8 as

D̄eL → ωD̄eL , eR → ω6eR, νeR → νeR ,

D̄µL
→ ω4D̄µL

, µR → ω5µR, νµR
→ ω4νµR

,

D̄τL → ω6D̄τL , τR → ω2τR, ντR → ωντR ,

where ω = ei2π/8 is the generator of Z8, D̄jL(j = e, µ, τ) denotes SU(2)L doublets, lR(l = e, µ, τ) denotes the

RH SU(2)L singlets and νkR
(k = e, µ, τ), the RH neutrino singlets.

The bilinears D̄jLνkR
, D̄jL lR, ν̄

T
kR

C−1νjR relevant for MD ,Ml and MR respectively transforms as

D̄kL
νjR =





ω ω5 ω2

ω4 1 ω5

ω6 ω2 ω7



 , D̄kL
ejR =





ω7 ω6 ω3

ω2 ω ω6

ω4 ω3 1



 , ν̄TkR
C−1νjR =





1 ω4 ω

ω4 1 ω5

ω ω5 ω2



 (12)

We introduce three SU(2)L doublet Higg’s (φ1, φ2, φ3) transforming under Z8 as

φ1 → φ1, φ2 → ωφ2, φ3 → ω7φ3. (13)

For the case i(a)(class E texture)we consider three scalar singlets (χ12, χ13, χ33) transforming under Z8 as

χ12 → ω4χ12, χ13 → ω7χ13, χ33 → ω6χ33. (14)

thereby leading to the following form of MD, Ml and MR:

MD =





X 0 0
0 X 0
0 0 X



 , Ml =





X 0 0
0 X 0
0 0 X



 , MR =





X X X

X X 0
X 0 X



 . (15)

The Z8 invariant Yukawa Lagrangian becomes,

−L = Y l
11D̄eLΦ2eR + Y l

22D̄µL
Φ3µR + Y l

33D̄τLΦ1τR + Y D
11 D̄eLΦ̃3νeR + Y D

22 D̄µL
Φ̃1νµR

+Y D
33 D̄τLΦ̃2ντR +

MM
11

2
ν̄TeRC

−1νeR +
Y M
12

2
ν̄TeRC

−1νµR
χ12 +

Y M
13

2
ν̄TeRC

−1ντRχ13

+
MM

22

2
ν̄TµR

C−1νµR
+

Y M
33

2
ν̄TτRC

−1ντRχ33 + h.c,

(16)

where φ̃ = iτ2φ∗. Similarly for the case I(B) (class B texture), we consider three scalar singlets:

χ13 → ω7χ13, χ23 → ω3χ23, χ33 → ω6χ33.

reducing MR to the form,

MR =





X 0 X

0 X X

X X X



 . (17)

The Z8 invariant Yukawa Lagrangian becomes,

−L = Y l
11D̄eLΦ2eR + Y l

22D̄µL
Φ3µR + Y l

33D̄τLΦ1τR + Y D
11 D̄eLΦ̃3νeR + Y D

22 D̄µL
Φ̃1νµR

+Y D
33 D̄τLΦ̃2ντR +

MM
11

2
ν̄TeRC

−1νeR +
Y M
13

2
ν̄TeRC

−1ντRχ13 +
MM

22

2
ν̄TµR

C−1νµR

+
Y M
23

2
ν̄TµR

C−1ντRχ23 +
Y M
33

2
ν̄TτRC

−1ντRχ33 + h.c.

(18)

Here MR contains two types of mass terms viz. the terms arising from Yukawa coupling to the scalar singlets
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χ′s and bare mass terms. The scale of the former depends upon the scale of the Abelian Group Z8 breaking. The

bare mass terms are the mass terms that arises without the involvement of the extra scalar singlets which were

incorporated in our extended form of the SM. So there is no restriction on the scale of the bare mass terms, and

hence can have a higher mass scale. Thus a large effective neutrino mass can arise in such a model.

For the case II(A), the texture structure and symmetry realization is same as I(B). The symmetry realization of all

the other models are illustrated in the table below:

Table 3: Transformation properties of leptons and scalar fields under Z8 cyclic group.

Models D̄eL , D̄µL
, D̄τL eR, µR, τR νeR , νµR

, ντR φ′
s χ′

s

I(B), I(A), II(B) ω7, ω5, ω4 ω5, ω3, ω4 ω, ω3, 1 1, ω4 ω4, ω7, ω2, ω5

I(C) ω, ω4, ω6 ω6, ω5, ω2 1, ω4, ω ω, 1, ω7 ω7, ω3, ω6

5. Conclusion

We have explored one zero texture of the bimaximally mixed neutrino mass models [1] and achieved the symmetry

realization of these textures under Z8 abelian group. It is an interesting observation that the location of one zero

of symmetric MR determines the possible schemes of neutrino mass spectrum in certain cases. The a = 0 texture

(class A) of MR allows all the three schemes, viz., normal, degenerate and inverted schemes. The b = 0 texture

(class B) favours the degenerate and inverted schemes, while the e = 0 texture (class E) allows only the normal

hierarchical scheme. The c = 0 (class C), d = 0 (class D) and f = 0 (class F) textures of MR have not been found

to favour any models under consideration. For the a=0 texture models, two Higgs doublet and four scalar singlets

need to be included to extend SM while for the b = 0 and e = 0 texture models, three Higg’s doublet and three

scalar singlets are required to extend the SM. It is the inherent problem of symmetry realization of one zero texture

of neutrino mass matrices which requires a couple of Higg’s doublets and scalar singlets.
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We parametrize lepton mixing matrix, known as PMNS matrix, in terms of three parameters which account devi-

ations of three mixing angles from their bi-maximal or tri-bimaximal values. On the basis of this parametrization

we can determine corresponding charged lepton mixing matrix in terms of those three parameters which can de-

viate bi-maximal or tri-bimaximal mixing. We find that the charged lepton mixing matrices which can deviate

bi-maximal mixing matrix and tri-bimaximal mixing matrix exhibit similar structures. Numerical analysis shows

that these charged lepton mixing matrices are close to CKM matrix of quark sector.

1. Introduction

Over the last three years contributions from reactor [1, 2, 3], accelerator [4, 5] and solar [6] neutrino experiments

have provided precise values of three mixing angles and two mass squared differences under a three-neutrino

mixing scenario. Global analysis[7, 8, 9] of 3ν oscillation data available from various experiments provides us an

overall view on mixing parameters.

As neutrino experiments have been trying for more and more precision measurements of neutrino mixing param-

eters, meanwhile theorists have been trying to realize the flavour mixing pattern of leptons. Bimaximal mixing

(BM) [10] and Tri-bimaximal mixing (TBM) [11] have been playing an attractive role in the search of flavour mix-

ing pattern over a decade. Both these mixing schemes are µ− τ symmetric [12] and predict maximal atmospheric

mixing and zero reactor angle. They differ in their predictions of solar angle in such that BM mixing predicts

maximal value of solar angle while TBM mixing leads to a value which equals arcsin( 1√
3
). Out of these two

mixing schemes predictions of TBM mixing are more closer to global data [7, 8, 9] compared to the other. With

the confirmation of non zero θ13, the deviation of lepton mixing from exact BM or TBM pattern is clear. It is

therefore useful to study the deviations of lepton mixing from exact BM or TBM pattern. Deviations from BM or

TBM mixing is in fact a natural idea frequently discussed in the literature [13, 14, 15].

In this paper, we introduce three parameters which account for deviations of the three mixing angles, namely

solar, atmospheric and reactor angle from their exact BM or TBM values. We then parametrize the lepton mixing

matrix in terms of these three deviation parameters. Parametrization of lepton mixing matrix in terms of deviation

parameters is also discussed in Ref. [16]. Our parametrization set up is however different from that. We mainly

implicate the parametrization set up in predicting possible structure of charged lepton mixing matrix which in

turn can generate the lepton mixing matrix from BM or TBM neutrino mixing via charged lepton correction.

Charged lepton correction [17, 18] is a very common tool to deviate special mixing schemes like BM or TBM

mixing. Corrections to special mixing schemes can also be accounted in mass matrix formalism. We also analyse

numerically the charged lepton mixing matrices with an interest to compare them with the CKM matrix [19] of

quark sector. In Grand Unified Theory (GUT) based models [20] CKM like charged lepton corrections to special

mixing schemes are naturally considered. Such models also incorporates Quark-Lepton Complementarity (QLC)

[21].

Rest of the paper is organized as follows : in Section 2 we discuss the parametrization of the lepton mixing matrix

in terms of deviation parameters. In Section 3 we discuss an implication of our model in charged lepton correction

scenario. Finally Section 4 is devoted to summary and discussion.

204
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2. Parametrization of lepton mixing matrix

In general, lepton mixing matrix, known as PMNS matrix, is parametrized in terms of three mixing angles, namely

θ12, θ23 and θ13 which are commonly known as solar, atmospheric and reactor angle; and three CP violating

phases: one Dirac CP phase δ and two Majorana phases α and β. In the standard Particle Data Group (PDG)

parametrization it looks like

UPMNS =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ
−c12s23 − s12c23s13e

iδ c23c13



 .P, (1)

where cij = cos θij , sij = sin θij (i, j = 1, 2) and P = diag(1, eiα, eiβ) contains the Majorana CP phases. In the

present work, we however, drop Majorana phase matrix P assuming that neutrinos obey Dirac nature.

Both BM and TBM matrices predict θ
bm/tb
13

= 0 and θ
bm/tb
23

= 45◦ (suffices bm and tb represent BM and TBM

respectively). However their predictions for solar angle are different and are given by θbm
12

= 45◦ and θtb
12

=
arcsin( 1√

3
). Putting these predictions in equation (1), BM and TBM matrices can be obtained as

UBM =







1√
2

1√
2

0

−
1

2

1

2

1√
2

1

2
−

1

2

1√
2






, (2)

UTBM =











√

2

3

1√
3

0

−

√

1

6

1√
3

1√
2

√

1

6
−

1√
3

1√
2











. (3)

We now introduce three parameters which account for the deviations of three mixing angles from their correspond-

ing BM or TBM values as follows :

θ12 = θ
bm/tb
12

+ δθ
bm/tb
12

,

θ23 = θ
bm/tb
23

+ δθ
bm/tb
23

,

θ13 = θ
bm/tb
13

+ δθ
bm/tb
13

,











(4)

where the deviation parameters δθ
bm/tb
12

and δθ
bm/tb
23

can take positive as well as negative values, whereas δθ
bm/tb
13

takes only positive values. We present the best fit and 3σ values of mixing angles and Dirac CP phase in Table 1

[9]. Based on these global data we calculate the values of deviation parameters and are presented in Table 2.

Table 1. Best fit and 3σ values of mixing angles and Dirac CP phase for normal and inverted hierarchy (NH and IH) from

global data [9].

Model Parameter Best Fit 3 σ

θ12 34.6◦ 31.8◦ - 37.8◦

NH θ23 48.9◦ 38.8◦ - 53.3◦

θ13 8.6◦ 7.9◦ - 9.3◦

δ 254◦ 0◦ - 360◦

θ12 34.6◦ 31.8◦ - 37.8◦

IH θ23 49.2◦ 39.4◦ - 53.1◦

θ13 8.7◦ 8.0◦ - 9.4◦

δ 266◦ 0◦ - 360◦

For BM mixing we have from equation (4)

θ12 = 45◦ + δθbm
12

,

θ23 = 45◦ + δθbm
23

,

θ13 = δθbm
13

.







(5)
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Table 2. Calculated values of deviation parameters from global data.

Mixing Scheme Model Parameter Best Fit 3 σ

δθ12 −10.4◦ 13.2◦ - (−7.2◦)
NH δθ23 3.9◦ −6.2◦ - 8.3◦

δθ13 8.6◦ 7.9◦ - 9.3◦

BM

δθ12 −10.4◦ 13.2◦ - (−7.2◦)
IH δθ23 4.2◦ −5.6◦ - 8.1◦

δθ13 8.7◦ 8.0◦ - 9.4◦

δθ12 −0.66◦ −3.46◦ - 2.53◦

NH δθ23 3.9◦ −6.2◦ - 8.3◦

δθ13 8.6◦ 7.9◦ - 9.3◦

TBM

δθ12 −0.66◦ −3.46◦ - 2.53◦

IH δθ23 4.2◦ −5.6◦ - 8.1◦

δθ13 8.7◦ 8.0◦ - 9.4◦

Substituting these values in equation (1) we have PMNS matrix as

UPMNS =







1√
2
pr̃ 1√

2
p̃r̃ re−iδ

−
1

2

(

p̃q̃ + pqreiδ
)

1

2

(

pq̃ − p̃qreiδ
)

1√
2
qr̃

1

2

(

p̃q − pq̃reiδ
)

−
1

2

(

pq + p̃q̃reiδ
)

1√
2
q̃r̃






, (6)

where
p = cos δθbm

12
− sin δθbm

12
,

p̃ = cos δθbm
12

+ sin δθbm
12

,

q = cos δθbm
23

+ sin δθbm
23

,

q̃ = cos δθbm
23

− sin δθbm
23

,

r = sin δθbm
13

,

r̃ = cos δθbm
13

.































(7)

For TBM mixing we have from equation (4)

θ12 = 35.26◦ + δθtb
12
,

θ23 = 45◦ + δθtb
23
,

θ13 = δθtb
13
.







(8)

Substituting these values in equation (1) we have PMNS matrix as

UPMNS =









√
2√
3
p′r̃′ 1√

3
p̃′r̃′ r′e−iδ

−
1√
6

(

p̃′q̃′ +
√

2p′q′r′eiδ
)

1√
3

(

p′q̃′ − 1√
2
p̃′q′r′eiδ

)

1√
2
q′r̃′

1√
6

(

p̃′q′ −
√

2p′q̃′r′eiδ
)

−
1√
3

(

p′q′ + 1√
2
p̃′q̃′r′eiδ

)

1√
2
q̃′r̃′









, (9)

where
p′ = cos δθtb

12
−

1√
2
sin δθtb

12
,

p̃′ = cos δθtb
12

+
√

2 sin δθtb
12
,

q′ = cos δθtb
23

+ sin δθtb
23
,

q̃′ = cos δθtb
23

− sin δθtb
23
,

r′ = sin δθtb
13
,

r̃′ = cos δθtb
13
.































(10)

We want to emphasize that parametrization of lepton mixing matrix in terms of deviation parameters has also been

discussed by King [16]. There also exists some interest in parametrizing the lepton mixing matrix in terms of

Wolfenstein parameter λ [22], where λ accounts for the deviations of mixing angles from their values predicted by

special mixing schemes.
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3. An implication of the model : charged lepton mixing matrix

Deviations from BM or TBM mixing can be accounted in terms of charged lepton corrections [17, 18]. In the basis

where both charged lepton mass matrix (ml) and left handed Majorana mass matrix (mν) are non diagonal, lepton

mixing matrix is given by the product of two mixing matrices as

UPMNS = U
†
lLUν , (11)

where UlL diagonalizes ml and Uν corresponds to the diagonalization of mν . In the basis in which charged lepton

mass matrix is itself diagonal PMNS matrix is directly given by Uν , UlL being identity matrix. The general idea

of charged lepton correction is to work in the basis where both ml and mν are non diagonal and then considering

Uν be a special mixing matrix like BM or TBM a small perturbation to it is accounted from UlL leading to the

desired PMNS matrix. Following this set up charged lepton corrections to special mixing patterns like BM, TBM,

Hexagonal mixing etc. are done. For example charged lepton corrections to BM mixing are found in Refs. [23, 24]

and those to TBM mixing are discussed in Refs. [24, 25]. With the same idea, in our work, we first find out UlL

which can deviate BM neutrino mixing matrix and yield the lepton mixing matrix in equation (6). In that case Uν

in equation (11) is given by UBM and corresponding UlL is then given by

U bm
lL =







a −
1√
2
(b+ z1)

1√
2
(c− z2)

1√
2
(d+ z3)

1

2
(e+ z4)

1

2
(f − z5)

−
1√
2
(d− z3)

1

2
(e− z4)

1

2
(f + z5)






, (12)

where
a = cos δθbm

12
r̃,

b = sin δθbm
12

q̃,

c = sin δθbm
12

q,

d = sin δθbm
12

r̃,

e = qr̃,

f = q̃r̃,

z1 = cos δθbm
12

qre−iδ,

z2 = cos δθbm
12

q̃re−iδ,

z3 = reiδ,

z4 = cos δθbm
12

q̃ − sin δθbm
12

qre−iδ,

z5 = cos δθbm
12

q − sin δθbm
12

q̃re−iδ.







































































(13)

The parameters a-f and z1-z5 are used to express the matrix in equation (12) in convenient way.

For TBM mixing case Uν in equation (11) is given by UTBM and corresponding UlL is then given by

U tb
lL =







a′ −
1√
2
(b′ + z′

1
) 1√

2
(c′ − z′

2
)

1√
2
(d′ + z′

3
) 1

2
(e′ + z′

4
) 1

2
(f ′

− z′
5
)

−
1√
2
(d′ − z′

3
) 1

2
(e′ − z′

4
) 1

2
(f ′ + z′

5
)






, (14)

where the parameters a′-f ′ and z′
1
-z′

5
are given by equation (13) with the substitutions of δθbm

12
, q, q̃, r and r̃ by

δθtb
12

, q′, q̃′, r′ and r̃′ respectively.

We note that both charged lepton mixing matrices U bm
lL and U tb

lL have similar structure due to µ − τ symmetry of

BM and TBM mixing matrices. We estimate the numerical values (in modulus) of the elements of these mixing

matrices for best fit values of deviation parameters and are presented in equations (15) and (16) as

U bm
lL =





0.972512 0.183349 0.143535
0.185651 0.980189 0.062209
0.140544 0.074912 0.980319



 , (15)

U tb
lL =





0.988657 0.114991 0.096260
0.108234 0.991394 0.072972
0.103806 0.062329 0.992184



 . (16)
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Naturally there exists naive interest in searching connection between quark sector and lepton sector. GUTs gen-

erally provide the framework for quark-lepton unification. Quark-lepton-complementarity (QLC), which signifies

interesting phenomenological relations between the lepton and quark mixing angles supports the idea of grand

unification. Derivation of QLC relations assumes the deviation of lepton mixing from exact BM pattern to be de-

scribed by quark mixing matrix. In GUT based models [14, 25, 20] charged lepton corrections to special neutrino

mixing schemes are considered as CKM like. From such points of view we make comparison of the charged lepton

mixing matrices in equations (15) and (16) with the CKM matrix. For convenience, we present the best fit values

(in modulus) of the elements of CKM matrix in equation (17) [26]:

VCKM =





0.97428 0.2253 0.00347
0.2252 0.97345 0.0410
0.00862 0.0403 0.999152



 . (17)

Wee see that both the mixing matrices are close to CKM matrix. Like CKM matrix the diagonal elements in

these mixing matrices are close to unity and non diagonal elements exhibit an approximate symmetric nature. One

significant point, we note, is that the corner elements, namely (UlL)13 and (UlL)31 in both the mixing matrices are

relatively larger compared to those of VCKM matrix.

4. Summary and Discussion

BM and TBM are two special neutrino mixing schemes. To accommodate non zero θ13 and deviations of solar

mixing and atmospheric mixing from maximality these special mixing schemes should be modified. We have three

parameters, viz. δθ
bm/tb
12

, δθ
bm/tb
23

and δθ
bm/tb
13

, which account the deviations of lepton mixing angles from their

BM or TBM values. Numerical values of these deviation parameters can be obtained from global 3ν oscillation

data. We then parametrize PMNS matrix in terms of these parameters. Such parametrization of lepton mixing

matrix may help authors in phenomenological works which incorporate deviation of special mixing schemes. We

implicate our parametrization set up in predicting possible structure of charged lepton mixing matrices which can

generate the desired lepton mixing matrix from BM or TBM mixing matrices. We have found that charged lepton

mixing matrices UlL’s in both cases (BM and TBM) exhibit similar structures. Numerical analysis shows that

these mixing matrices (U bm
lL and U tbm

lL ), necessary to deviate BM mixing and TBM mixing in obtaining mixing

parameters consistent with global data, are close to the CKM matrix of quark sector. This result is in agreement

with the assumption, generally made in GUT based model, that charged lepton correction to neutrino mixing can

be considered as CKM like.
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We have developed a non-relativistic approach to study exotic heavy hadron spectroscopy, where the four body

system is considered as three subsequent two-body systems. We have solved numerically the Schrödinger equation

using an effective Cornell-like potential to model the two-body interaction in each step of the tetraquark calcula-

tion. We have studied four body systems consisting of diquark-antidiquark in the charm and strange sector and

determined the mass spectra of ground and excited tetraquark states by incorporating the spin hyperfine, spin-orbit

and tensor components of the one gluon exchange interaction. Here, the tetraquark model consists of a diquark-

antidiquark system (Qq − Q̄q̄), in which the diquarks interact through the exchange of colored objects and the

attraction force can be intense. We have been able to assign the JPC values for many of the recently observed

exotic states according to their structure. Our results are in good agreement with experiment and other available

theoretical results.

1. Introduction

In last few years many charmonium and charmonium-like states were discovered at B-factories [1] which cannot

be simply accommodated in the quark-antiquark (cc̄ and qs̄ ) picture. These states and especially the charged

charmonium-like ones can be considered as indications of the possible existence of exotic multiquark states.

Whereas some of these are good charmonium candidates, as predicted in different models, many states have exotic

properties, which may indicate that exotic states, such as multi-quark, molecule, hybrid or hadron-quarkonium

have been observed [2]. Understanding the nature of the exotic XYZ resonances is one of the open problems in

hadronic spectroscopy. Despite the experimental efforts, the structure of these particles still lacks of an accepted

theoretical framework. The most popular models proposed to describe the internal structure of these particles are

the compact diquark-antidiquark [3, 4, 5], the loosely bound meson molecule [6, 7, 8, 9, 10], the so-called hadro-

charmonium [11] and the gluonic hybrid [12]. None of these models have been generally accepted as the right one

yet. In our earlier work [5], we have calculated masses of the hidden heavy-flavor tetraquarks and light tetraquarks

in the framework of the non-relativistic quark model using the Cornell like potential in Quantum Chromo Dy-

namics(QCD). Here we extend this analysis to the consideration of heavy tetraquark states with open charm and

strange. This study could help in revealing the nature of the anomalous charmed-strange tetraquarks.

The paper is organized as follows. In Section 2, we describe the phenomenological quark-antiquark interaction

potential and extract the parameters that describe the ground state masses of four quark system. We also compute

the low lying orbital excited states of these systems. In Section 3 we present and analyze our results to draw

important conclusions.

2. The phenomenology and extraction of the spectroscopic parameters

There are many methods to estimate the mass of a hadron, among which phenomenological potential model is a

fairly reliable one, specially for heavy hadrons. In this paper we shall take a different path and investigate different

ways in which the experimental data can be reproduced. Non-relativistic interaction potential we have used here is

the Cornell potential consists of a central term V (r) which is being just a sum of the Coulomb (vector) and linear

confining (scalar) parts given by

V (r) = VV + VS = ks
αs

r
+ σr, (1)

where

ks = −4/3 for qq̄,

= −2/3 for qq or q̄q̄. (2)
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The value of the αs running coupling constant is determined through the model, namely

αs(µ
2) =

4π

(11− 2

3
nf )(ln

µ2

Λ2 )
, (3)

where µ is the renormalization scale related to the constituent quark mass, Λ = 0.413 GeV and nf is number of

flavours. The model parameters we have used in the present study are same as in Refs. [13, 14]. The constituent

quark masses employed here are taken from Particle Data Group [15]. Different degenerate n2S+1LJ low-lying

tetraquark states are calculated by including spin dependent part of the usual one gluon exchange potential [16, 17,

18, 19]. The potential description extended to spin dependent interactions results in three types of potential terms

such as the spin-spin, the spin-orbit and the tensor part that are to be added to the spin independent potential as

given by equation (1). Accordingly, the spin-dependent part VSD is given by

VSD = VSS

[

1

2
(S(S + 1)−

3

2
))

]

+VLS

[

1

2
(J(J + 1)− S(S + 1)− L(L+ 1))

]

+VT

[

12

(

(S1.r)(S2.r)

r2
−

1

3
(S1.S2)

)]

. (4)

The spin-orbit term containing VLS and tensor term containing VT describe the fine structure of the states, while

the spin-spin term containing VSS proportional to 2S1.S2 gives the hyperfine splitting. The co-efficient of these

spin-dependent terms of equation (4) can be written in terms of the vector and scalar parts of static potential V (r)
as

V ij
LS(r) =

1

2MiMjr

[

3
dVV

dr
−

dVS

dr

]

, (5)

V ij
T (r) =

1

6MiMj

[

3
d2VV

dr2
−

1

r

dVS

dr

]

, (6)

V ij
SS(r) =

1

3MiMj

∇2VV =
16παs

9MiMj

δ3(r). (7)

Where Mi, Mj corresponds to the masses and r is relative co-ordinate of the two body system under consideration.

Our main aim is to interpret the four quark state structure in the different scheme i.e. clusters of diquark-antidiquark

like structure. In this picture, we have treated the four particle system as two-two body systems interacting through

effective potential of the same form of the two body interaction potential discussed above. The Schrödinger

equation with the potential given by equation (1) is numerically solved using the Mathematica notebook of the

Runge-Kutta method [20] to obtain the energy eigen values and the corresponding wave functions.

2.1 The four quark state as Qq, Q̄q̄ clusters

In this section, we calculate the mass spectra of tetraquarks with hidden charm as the bound states of two clusters

(Qq and Q̄q̄), (Q = c; q = u, d). We think of the diquarks as two correlated quark with no internal spatial

excitation. Because a pair of quarks can’t be a color singlet, the diquark can only be found confined into the

hadrons and used as effective degree of freedom. Heavy light diquarks can be the building blocks of a rich

spectrum of exotic states which can not be fitted in the conventional charmonium assignment. Maiani et al [3]

in the framework of the phenomenological constituent quark model considered the masses of hidden/open charm

diquark-antidiquark states in terms of the constituent diquark masses with their spin-spin interactions included.

We discuss the spectra in the framework of a non-relativistic Hamiltonian including chromo-magnetic spin-spin
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Table 1. The mass spectra of Qq − Q̄q̄ states for quark content csc̄s̄ (in GeV).

Diquark content S L J Mass Vss VLS VT MJ

SS̄ 0 0 0 4.069 0.0 0.0 0.0 4.069

0 1 1 4.530 0.0 0.0 0.0 4.530

0.0

SĀ 1 0 1 4.089 0.0 0.0 0.0 4.089

1 1 0 4.550 0.0 -0.029 -0.133 4.388

1 0.0 -0.0145 0.033 4.569

2 0.0 0.0145 -0.033 4.532

AĀ 0 0 0 4.110 -0.140 0.0 0.0 3.969

1 0 1 -0.070 0.0 0.0 4.039

2 0 2 0.070 0.0 0.0 4.189

0 1 1 4.571 -0.013 0.0 -0.11 4.469

1 1 0 4.571 -0.0069 -0.029 -0.220 4.314

1 -0.0069 -0.014 -0.055 4.494

2 -0.0069 14 -0.121 4.457

2 1 1 4.571 0.0069 -0.043 -0.340 4.192

2 0.0069 -0.014 0.121 4.685

3 0.0069 0.029 -0.176 4.430

Table 2. The mass spectra of Qq − Q̄q̄ states for quark content css̄s̄ (in GeV).

Diquark content S L J Mcw VSS VLS VT MT

SĀ 1 0 1 3.991 0.0 0.0 0.0 3.991

1 1 0 4.449 0.0 -0.0272 -0.132 4.289

1 0.0 -0.013 0.033 4.469

2 0.0 0.013 -0.033 4.429

AĀ 0 0 0 4.015 -0.131 0.0 0.0 3.884

1 0 1 -0.065 0.0 0.0 3.950

2 0 2 0.065 0.0 0.0 4.081

0 1 1 4.474 -0.0123 0.0 -0.110 4.351

1 1 0 4.474 -0.0061 -0.027 -0.220 4.220

1 -0.0061 -0.0135 -0.055 4.399

2 -0.0061 0.0135 -0.121 4.360

2 1 1 4.474 0.0061 -0.040 -0.341 4.098

2 0.0061 -0.013 0.121 4.588

3 0.0061 0.027 -0.176 4.331

interactions between the quarks (antiquarks) within a diquark (antidiquark). Masses of diquark (antidiquark) states

are obtained by numerically solving the Schrödinger equation with the respective two body potential given by

equation (1) and incorporating the respective spin interactions described by equation (4) perturbatively. In the

diquark-antidiquark structure, the masses of the diquark/diantiquark system are given by

md = mQ +mq + Ed + 〈VSD〉Qq, (8)
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Table 3. Comparison of the masses of diquark antidiquark states with other theoretical predictions for quark content csc̄s̄ (left

to the table) and css̄s̄ (right to the table) (in GeV).

JPC Present [13] [4] Present [14]

[csc̄s̄] [css̄s̄]

0++ 4.069 4.051 3.241 3.025

1++ 4.089 4.113

0++ 3.969 4.110 3.136 3.003

1++ 4.039 4.113 3.200 3.051

2++ 4.189 4.209 3.326 3.135

1−− 4.469 4.466 4.330± 0.070

Table 4. Comparison of some predicted states with experimental results (in GeV).

State Mass JPC Exp

Y(4360) 4.360 1−− 4.361± 0.013 [21]

Y(4274) 4.289 0−+ 4.274+0.0084
−0.0067 [22]

Y(3943) 3.950 1+− 3.943± 0.017 [23]

X(4350) 4.360 2++ 4.350+0.0046
−0.0051[24]

md̄ = mQ̄ +mq̄ + Ed̄ + 〈VSD〉Q̄q̄. (9)

Further, the same procedure is adopted to compute the binding energy of the diquark-antidiquark bound system as

Md−d̄ = md +md̄ + Edd̄ + 〈VSD〉dd̄. (10)

Where Q and q represents the heavy quark and light quark respectively. In the present paper, d and d̄ represents di-

quark and antidiquark respectively. While Ed, Ed̄, Edd̄ are the energy eigen values of the diquark, antidiquark and

diquark-antidiquark system respectively. The spin-dependent potential (VSD) part of the Hamiltonian described

by equation (4) has been treated perturbatively.

3. Results and Discussions

The masses of the low lying hidden charm and strange four quark states as diquark−diantiquark (Qq − Q̄q̄) states

have been computed. Various combinations of the orbital and spin excitations have been considered. The results

obtained are listed in Tables 1 and 2. We have compared the present results for [csc̄s̄] and [css̄s̄] quark content

with other available theoretical data and these results are listed in Table 3. The authors of Refs. [4, 13] have

considered only diquark−diantiquark spin interactions and thus they have not considered spin-orbit interactions

between diquarks and antidiquarks. This ignorance of the spin-orbit interactions have contributed to the differences

between the present results and those of the Refs. [4, 13]. We have predicted some of the states with its parity

quantum number which are listed in Table 4 and they are in good agreement with the experimental results. Finally,

we believe that future high luminosity experiments will be able to shed more light in the understanding of the these

exotic states.
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Coupled DGLAP equations involving singlet quark and gluon distributions are explored by a Taylor expansion at

small x as two first order partial differential equations in two variables: Bjorken x and t (t = lnQ2

Λ2 ). The system of

equations are then solved by the Lagrange’s method and Method of Characteristics. We obtain the proton structure

function FP
2 by combining the corresponding non-singlet and singlet structure functions by both the methods.

Analytical solutions for FP
2 thus obtained are compared with the data available and their compatibility is checked.

Data favours the analytical solution by Lagrange’s method.

1. Introduction

Solutions of DGLAP [1, 2, 3, 4] evolution equations give quark and gluon structure functions which produce

ultimately proton, neutron and deuteron structure functions. The standard program to study the x dependence of

quark and gluon PDFs is to compare the numerical solutions of the DGLAP equations with the data and so to fit the

parameters of the x profiles of the PDFs at some initial factorization scale Q2
0 and the asymptotic scale parameter Λ.

However, for analyzing exclusively the small-x region, there exists alternative simpler analysis, some of which are

the existing analytical solutions of the DGLAP equations in the small-x limit with considerable phenomenological

success [5, 6, 7, 8, 9]. In this work, we make an extensive comparative study on the applicability of two analytical

methods: Lagrange’s method [10] and method of characteristics [11, 12, 13] in context of the unpolarized proton

structure function FP
2 . This suggests utility of such approaches in understanding the dynamics of evolution of

quarks and gluons at small x.

In Section 2 we describe the formalism, Section 3 is devoted to testing our prediction’s comparison with the data,

while in Section 4, we give our conclusion.

2. Formalism

2.1 Singlet coupled DGLAP equations in Taylor approximated form

In order to get the FP
2 we need both singlet and non-singlet structure functions. In our earlier work [5] we

reported our analytical solutions by the two analytical methods . Hence we discuss only the solution for the quark

singlet part here. The coupled DGLAP equations for quark singlet (Σ(x,Q2)) and gluon (G(x,Q2)) densities are

[1, 2, 3, 4],

∂

∂ lnQ2

(

Σ
(

x,Q2
)

G
(

x,Q2
)

)

=
αs

(

Q2
)

2π

(

Pqq Pqg

Pgq Pgg

)

⊗

(

Σ
(

x,Q2
)

G
(

x,Q2
)

)

. (1)

Introducing the variable t = ln Q2

Λ2 and using the explicit forms of the splitting functions Pi,j(i, j = q, g), the

evolution equation for singlet distribution in LO can be written as

∂FS
2 (x, t)

∂t
−

Af

t

[

{3 + 4 ln(1− x)}FS
2 (x, t) + 2

∫ 1

x

dz

(1− z)

{

(1 + z2)FS
2

(x

z
, t
)

−2FS
2 (x, t)

}

+ 3
2nf

∫ 1

x
dz

(

z2 + (1− z)2
)

G
(

x
z
, t
)

]

= 0. (2)

Here Af = 4
3β0

, β0 = 11 − 2
3nf and αs(t) = 4π

β0t
. FS

2 (x, t) is the singlet structure functions of the proton.

Introducing a variable u defined as u = 1 − z and doing Taylor approximation we can express equation (2) in a
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more precise form as

∂FS
2 (x, t)

∂t
−

Af

t

[

3 + 4 ln(1− x)FS
2 (x, t) + (2x− 3)FS

2 (x, t) +

(

x+ 2x ln
1

x

)

∂FS
2 (x, t)

∂x

]

−
Af

t

[

nf

(

1−
3

2
x

)

G(x, t)−
nf

2

(

5x− 3x ln
1

x

)

∂G(x, t)

∂x

]

= 0. (3)

The exact relation between the gluon distribution function G(x, t) = xg(x, t) and quark distribution function

FS
2 (x, t) = x

∑

i e
2
i {qi(x, t) + q̄i(x, t)} is not derivable in QCD even in LO. However, simple forms of such

relation are available in literature to facilitate the analytical solution of coupled DGLAP equations [14, 15]. A

more rigorous analysis was done by Lopez and Yundurain [16] and they investigated the behaviour of the singlet

FS
2 (x,Q2) and gluon G(x,Q2) as x → 0. They observed that,

FS
2 (x,Q2)x→0 = Bs(Q

2)x−λs , (4)

G(x,Q2)x→0 = BG(Q
2)x−λs , (5)

where Bs and BG are Q2 dependent and λs is strictly positive. Thus,

G(x,Q2)

F (x,Q2)x→0

≃ f(Q2). (6)

It suggests a more general form [17],

G(x,Q2) = k(Q2)FS
2 (x,Q2). (7)

Using above relation given by equation (7), we express equation (3) as

∂FS
2 (x, t)

∂t
−

Af

t

[

{3 + 4 ln(1− x) + (2x− 3)}FS
2 (x, t) + nf

(

1−
3

2
x

)

K(Q2)FS
2 (x, t)

]

−
Af

t

[

x+ 2x ln
1

x
−

nf

2

(

5x− 3x ln
1

x

)

K(Q2)

]

∂FS
2 (x, t)

∂x
= 0. (8)

Which is a partial differential equation for the singlet structure function FS
2 (x, t) with respect to the variables x

and t. We solve this PDE equation (8) with the two formalisms described here, the Lagrange’s method and Method

of Characteristics. In order to do that we express equation (8) as

t
∂FS

2 (x, t)

∂t
= ω1

∂FS
2 (x, t)

∂x
+ ω2F

S
2 , (9)

where

ω1 =
4

3β0
{x+ 2x ln

1

x
−

nf

2

(

5x− 3x ln
1

x

)

K(Q2), (10)

ω2 =
4

3β0
{3 + 4 ln(1− x) + (2x− 3) + nf

(

1−
3

2
x

)

K(Q2). (11)

2.2 Solution by the Lagrange’s Auxiliary Method

To solve the equation (9) by the Lagrange’s Auxiliary method [10], we write the equation in the form,

Q(x, t)
∂FS

2 (x, t)

∂t
+ P (x, t)

∂FS
2 (x, t)

∂x
= R(x, t, FS

2 (x, t)), (12)

where

Q(x, t) = t, (13)

P (x, t) = −ω1, (14)
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and

R(x, t, FS
2 (x, t)) = R′(x)FS

2 (x, t) (15)

with

R′(x) = ω2. (16)

If u(x, t, FS
2 ) = C1 and v(x, t, FS

2 ) = C2 are the two independent solutions of equation (12), then in general, the

solution of equation (12) is

F (u, v) = 0, (17)

where F is an arbitrary function of u and v. Using the physically plausible boundary conditions and solving the

auxiliary system for u and v, we obtain the solution for equation (12) as

FS
2 (x, t) = FS

2 (x, t0)

(

t

t0

)

[XS(x)−XS(1)]

[XS(x)− ( t
t0
)XS(1)]

(18)

with the explicit analytical form of XS(x) in the leading ( 1
x
) approximation are,

XS(x) = exp

[

−
6β0

4(4 + 3nfK(Q2)
log[log x]

]

, (19)

leading to

XS(1) = 0 (20)

which yields,

FS
2 (x, t) = FS

2 (x, t0)

(

t

t0

)

. (21)

Equation (21) gives the t evolutions of singlet structure function at LO.

2.3 Solution by the method of characteristics

To solve the PDE equation (9) by the method of characteristics, we express it in terms of a new set of coordinates

(s, τ), such that equation (9) becomes an ODE w.r.t. one of the new variables. The characteristic equations of

equation (9) are given by,

dt

ds
= t, (22)

dx

ds
= −ω1. (23)

The left hand side of equation (9) can be expressed as an ordinary derivative with respect to t and the equation

becomes an ordinary differential equation:

dFS
2 (s, τ)

dt
+ cS (s, τ)FS

2 (s, τ) = 0, where cS(s, τ) = ω2. (24)

Integrating equation (24) over t from t0 to t along the characteristic curve, the solution of the equation for charac-

teristic equations leads us to the solution for FS
2 (x, t) as

FS
2 (x, t) = FS

2 (x, t0)(
t

t0
)n(x,t) (25)
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where,

n(x, t) =
1

log( t
t0
)
log

(

FS
2 (τ)

FS
2 (x, t0)

)

+
(− 4

3β0

ξ1)

log t
t0

, (26)

ξ1 = 4 log

(

1− τ exp

[

−(
t

t0
)

1

α1

])

+ 2τ exp

[

−(
t

t0
)

1

α1

]

+nf

(

1−
3

2
τ exp

[

−(
t

t0
)

1

α1

])

K(Q2), (27)

τ = x exp

[

(
t

t0
)

1

α1

]

, (28)

α1 =
3β0

4
{2 +K(Q2)

9

2
}. (29)
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Figure 1. Proton structure function FP

2 (x, t) as function of Q2 at different x values using Lagrange’s method. Data are taken

from E665 [19].

2.4 The function K(Q2)

Traditional determination of quark and gluon distribution function includes simultaneous fitting of experimental

data (mainly at small x) of the proton structure function FP
2 (x,Q2) measured in deep inelastic scattering, with a

large number of values of x and Q2. The most appropriate QCD inspired functional form for the function K(Q2)
has to be of the logarithmic form and we consider it to be,

K(Q2) = (log
Q2

Λ2
)σ, (30)

where σ is a parameter to be determined. To determine the ’best-fit’ value for σ, we consider the input PDFs at

entire x region. Our analysis yields that the best-fit value of σ lies in between 2 and 3 for Q2 = 2 GeV2. For our

further calculations we take the average and fix σ = 2.5.



Comparison of analytical solutions of the coupled DGLAP equations for FP

2 at small x 219

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.2

0.4

0.6

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

0.5

0.6

4 6 8 10 12 14

0.1

0.2

0.3

0.4

0.5

x=0.0052

 

 

x=0.0069

 

 

x=0.0089

 

 

x=0.01729
 

 

 

x=0.02449

 

 

x=0.03459

Q
2

Q
2

F
P
2

 

 

F
P
2

Q
2

Figure 2. Proton structure functionFP

2 (x, t) as function of Q2 at different x values using Method of characteristics. Data are

taken from E665 [19].

2.5 Results and Discussion

We check the compatibility of the analytical methods in terms of proton structure function FP
2 , which we derive

combining our analytical solutions for both non-singlet [5] and singlet structure functions to calculate the proton

structure function. We use the MSTW 2008 [18] input for evolution and the range of data considered for compari-

son are 0.0052 ≤ x ≤ 0.18 and 1.094 GeV2 ≤ Q2 ≤ 34.27 GeV2 for E665 [19]. Figs. 1 and 2 show comparison

of our analytical results for FP
2 obtained by Lagrange’s method and method of characteristics respectively, with

E665 experimental data within small x and low Q2 range 0.0052 ≤ x ≤ 0.04897 and 1.093 GeV2 ≤ Q2 ≤ 25
GeV2. Though the evolution of analytical result by Lagrange’s method conforms well with data, that of method

of characteristics decreases with increasing Q2, which is against the general expectations of pQCD. The Q2 de-

pendence of the function K(Q2), given by equation (7) is playing an important role in our analytical solutions.

For hence it shows in the solution by equation (25) by method of characteristics, though in case of the solution by

Lagrange’s method, equation (21), it does not have any visible effect, due to the consideration of 1
x

limit.

3. Conclusion

This work is an extension of the comparative study of the two important analytical methods, Lagrange’s and

Method of Characteristics for proton structure function FP
2 , derived from corresponding analytical solutions for

FNS
2 and FS

2 . For this part we pursue a general form as given by equation (7), relating FS
2 (x,Q2) and G(x,Q2) for

comparison with theoretical analysis of [16]. The solution by Method of Characteristics has exclusive dependence

on the relation. However, data analysed in the range 0.0052 ≤ x ≤ 0.04897 and 1.093 GeV2 ≤ Q2 ≤ 25 GeV2 is

found to favour the former (Lagrange’s method) and not the later (Method of Characteristics).
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A gauge independent field decomposition formulation for SU(3)c QCD, has been constructed in terms of dual

gauge potentials which takes into account the local as well as the topological structure of the color gauge group into

its dynamics. The topological magnetic charges associated with resulting monopoles have been shown to evolve

through the second homotopy of the gauge group. The dynamical configuration of the resulting dual QCD vacuum

and its flux tube configuration have been investigated for analyzing the non-perturbative features of QCD. Using

color reflection invariance, the correct physical spectrum of resulting dual QCD in the dynamically broken phase

of magnetic symmetry has been computed which has been shown to include two magnetic glueballs appearing

as the collective excitations of the magnetically condensed dual QCD vacuum. Evaluating the associated non-

perturbative dual gluon propagator, the inter-quark static potential has been derived and analyzed for its color

confining properties.

1. Introduction

Quark confinement is one of the most important non-perturbative phenomena in Quantum Chromodynamics

(QCD), the proper understanding of which continues to be a challenge for the physics of elementary particles.

One of the most [1] popular mechanism of quark confinement has been propagated using the dual version of the

superconductivity, in which the QCD vacuum state behaves like a magnetic superconductor and the monopole

degrees of freedom play the most prominent role to describe confinement. The existence of chromomagnetic

monopole has been studied explicitly through lattice formulation of gauge theories [2] using a gauge condition

[3, 4, 5, 6]. However, such gauge condition is centered around fixing to one particular gauge which leads to the

problem of the color symmetry breaking in view of the Schlider’s theorem. The present paper, therefore, deals to

present a gauge independent field decomposition formalism for SU(3)c QCD in which the QCD potential splits

into the non-topological abelian part and the topological monopole part [7, 8, 9, 10] to establish the magnetic con-

finement and to construct the heavy quark-antiquark confining potential leading to a viable topological basis for

the confinement.

2. Monopole condensation and quark confinement potential in SU(3) dual QCD

The mathematical foundation for the field decomposition formulation for QCD evolves from the fact that the non-

abelian gauge symmetry always allows an internal symmetry called magnetic symmetry which imposes a strong

constraint on the connections and the associated gauge covariant magnetic symmetry condition may be expressed

in the following form [7, 8, 10, 11, 12],

Dµ m̂ = 0 , i.e. ( ∂µ + gWµ × ) m̂ = 0 , (1)

where m̂ is the magnetic killing vector which forms an adjoint representation of the gauge group G. The killing

vector m̂ automatically selects another m̂
′

by the symmetric product of m̂,

m̂
′

=
√
3m̂ ∗ m̂, Dµm̂

′

= 0, (2)

where ∗ denotes the symmetric product. For a complete description of the monopole solutions two killing vectors

[8] m̂ and m̂
′

are necessary and sufficient and one may choose the fundamental symmetry m̂ to be always λ3-like,

in which the product symmetry m̂
′

automatically becomes λ8-like.

The most general gauge potential in SU(3) QCD which satisfies the constraints (1) and (2) can then be expressed

as,

Wµ = Aµ m̂+ A
′

µ m̂
′ − g−1 ( m̂× ∂µ m̂) − g−1 ( m̂

′ × ∂µ m̂
′

), (3)
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where, Aµ and A
′

µ are the abelian (color electric) component of Wµ along m̂ and m̂
′

respectively and are unre-

stricted by the constraint while the second part, determined completely by the magnetic symmetry are of topolog-

ical in origin and are of dual nature. The associated generalized field strength may then be written as,

Gµν = (Fµν + B(d)
µν ) m̂+ (F

′

µν + B
′(d)
µν ) m̂

′

, (4)

where,

Fµν = ∂µAν − ∂νAµ, F
′

µν = ∂µA
′

ν − ∂νA
′

µ,

B(d)
µν = ∂µBν − ∂νBµ = g−1 ( m̂× ∂µ m̂), B

′(d)
µν = ∂µB

′(d)
ν − ∂νB

′(d)
µ = g−1 ( m̂

′ × ∂µ m̂
′

). (5)

The effective gauge strength takes the separate contributions from both parts, one unrestricted and the other com-

pletely determined by the magnetic symmetry. Thus the topological structure may be brought into dynamics in

a dual symmetric way by imposing magnetic symmetry and the λ3-like multiplet m̂ may be viewed to define the

mapping,

S2
R → SU(3)/U(1)⊗ U

′

(1) with Π2(SU(3)/U(1)⊗ U
′

(1)) ≃ Π1(U(1)⊗ U
′

(1)),

where U(1) and U
′

(1) are the two abelian subgroups generated by λ3 and λ8. Rotating the magnetic vector m̂ to

a fix time independent direction using the following parametrization [8],

U = exp

[

−β′

(−1

2
t3 +

1

2

√
3t8)

]

× e−αtnexp

[

−(β − 1

2
β

′

)t3e
−αt2

]

, (β = nϕ, β
′

= n
′

ϕ), (6)

leads to the value of gauge potential in the following form,

Wµ
U−→g−1

[(

(∂µβ − 1

2
∂µβ

′

)cosα

)

ξ̂3 +
1

2

√
3(∂µβ

′

cosα)ξ̂8

]

. (7)

Thus, the dual QCD Lagrangian density in the magnetic gauge with complex scalar fields φ(x) and φ
′

(x) for the

monopole is expressed in the following form,

£ = −1

4
F 2
µν − 1

4
F

′2
µν − 1

4
B2

µν − 1

4
B

′2
µν + ψ̄rγ

µ[i∂µ +
1

2
g(A(d)

µ +Bµ) +
1

2
√
3
g(A

′(d)
µ +B

′

µ)]ψr

+ψ̄bγ
µ[i∂µ +

1

2
g(A(d)

µ +Bµ) +
1

2
√
3
g(A

′(d)
µ +B

′

µ)]ψb + ψ̄gγ
µ[i∂µ − 1√

3
g(A

′(d)
µ +B

′

µ)]ψg+

|(∂µ + i
4π

g
(Aµ +B(d)

µ )φ|2 + |(∂µ + i
4π
√

(3)

g
(A

′

µ +B
′(d)
µ )φ

′ |2 −m0(ψ̄rψr + ψ̄bψb + ψ̄gψg), (8)

where the red, blue and green quarks are denoted by ψr, ψb and ψg and A
(d)
µ and A

′(d)
µ are the dual singular

potentials introduced to describe the dual interaction between the quarks and the monopoles. Further, in absence

of color electric sources the Lagrangian density may be reduced in the following form,

£ = −1

4
B2

µν − 1

4
B

′2
µν + |(∂µ + i

4π

g
B(d)

µ )φ|2 + |(∂µ + i
4π
√

(3)

g
B

′(d)
µ )φ

′ |2 − V. (9)

The above Lagrangian has a manifest U(1) ⊗ U
′

(1) magnetic gauge invariance and is known to generate the

dynamical breaking of magnetic symmetry through an effective potential given by,

V =
48π2

g4
λ(φ∗φ− φ20)

2 +
432π2

g4
λ

′

(φ∗φ
′ − φ

′2
0 )2, (10)

and induces the magnetic condensation of QCD vacuum which, in turn, leads to a definite flux tube structure to

the dual QCD vacuum. It is, therefore, naturally desired to analyze the flux tube structure and the nature of the

magnetically condensed vacuum. The field equations associated with the λ3 and λ8 -component using Lagrangian

(9) may be derived in the following form,

B ν
µν, + i

4π

g
(φ∗

↔
∂ µ φ)−

32π2

g2
B(d)

µ φφ∗ = 0 , (11a)
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(∂µ − i
4π

g
B(d)

µ )(∂µ + i
4π

g
B(d)

µ )φ+
96λπ2

g4
(φ∗φ− φ20)φ = 0, (11b)

(∂µ − i
4π

√
3

g
B

′(d)
µ )(∂µ + i

4π
√
3

g
B

′(d)
µ )φ

′

+
864π2

g4
λ

′

(φ
′∗φ

′ − φ
′2
0 )φ

′

= 0, (11c)

B
′ ν
µν, + i

4π
√
3

g
(φ

′∗
↔
∂ µ φ

′

)− 96π2

g2
B

′(d)
µ φ

′

φ
′∗ = 0 . (11d)

Using the cylindrical symmetry with the co-ordinates (ρ, ϕ, z) the dual gauge field and the monopole field for the

λ3 and λ8 -component can be expressed as,

B(d)
µ = g−1cosα(∂µβ)m̂, B

′(d)
µ =

√
3

2g
cos α (∂µ β

′

) m̂
′

, (12)

φ(x) = exp (i nϕ)χ(ρ), φ
′

(x) = exp (i n
′

ϕ)χ
′

(ρ). (13)

Using the field ansatz given by, (12) and (13), the field equations (11a), (11b), (11c) and (11d) in the static limit

may be expressed as given below,

d

dρ

[

ρ−1 d

dρ

(

ρB(ρ)

)]

− (16πα−1
s )1/2

(

n

ρ
+ (4πα−1

s )1/2B(ρ)

)

χ2 (ρ) = 0, (14a)

1

ρ

d

dρ

(

ρ
dχ(ρ)

dρ

)

−
[(

n

ρ
+ (4πα−1

s )1/2B(ρ)

)2

+ 6λα−2
s

(

χ2 − φ20

)]

χ(ρ) = 0, (14b)

d

dρ

[

ρ−1 d

dρ

(

ρB
′

(ρ)

)]

− (48πα−1
s )1/2

(

n
′

ρ
+ (12πα−1

s )1/2B
′

(ρ)

)

χ
′2 (ρ) = 0, (14c)

1

ρ

d

dρ

(

ρ
dχ

′

dρ

)

−
[(

n
′

ρ
+ (12πα−1

s )1/2B
′

(ρ
′

)

)2

+ 54λ
′

α−2
s

(

χ
′2 − φ

′2
0

)]

χ
′

(ρ) = 0. (14d)

Imposing the asymptotic boundary condition appropriate for the large-scale behavior of QCD as, B(ρ)
ρ→∞−→

− ng
4πρ , B

′

(ρ)
ρ→∞−→ − n

′

g

4
√
3πρ

and φ
ρ→∞−→ φ0, φ

′ ρ→∞−→ φ
′

0 leads to the asymptotic solution for as B(ρ) = − ng
4πρ [1 +

F (ρ)], B
′

(ρ) = − n
′

g

4
√
3πρ

[1 +G(ρ)], where the function F (ρ) and G(ρ), in asymptotic limit are obtained as,

F (ρ)
ρ→∞−→ −n + C

√
ρ exp (−mB ρ),

G(ρ)
ρ→∞−→ −n

′

+ C
′√
ρ exp

(

−m′

Bρ

)

, (15)

where C and C
′

are constant and mB = (8πα−1
s )

1

2φ0, m
′

B = (24πα−1
s )

1

2φ
′

0 are the vector glueball masses

generated after the dynamical breaking of magnetic symmetry. The corresponding string tension of the resulting

flux tube configuration then takes the following form,

k(n,n′ ) = 2π

∫ ∞

0

ρ dρ

[{

n2g2

32π2ρ2

(

dF

dρ

)2

+
n2

ρ2
F 2(ρ)χ2(ρ) +

(

dχ

dρ

)2

+ 3λα−2
s (χ2 − φ20)

2

}

+

{

n
′2g2

96π2ρ2

(

dG

dρ

)2

+
n

′2

ρ2
G2(ρ)χ

′2(ρ) +

(

dχ
′

dρ

)2

+ 27λ
′

α−2
s (χ

′2 − φ
′2
0 )2

}]

. (16)

The masses of the magnetic glueballs may be estimated by evaluating the string tension k(n,n′ ) of the resulting

flux tube which can be written as, k(n,n′ ) =
1

2πα′ = γ(n,n′ )φ
2
0 = αs

8πγ(n,n′ )m
2
B , where γ(n,n′ ) = γn +

(

φ
′

0

φ0

)2

γn′

is a dimensionless parameter which can be calculated from the string solution of the quark pair and α
′

= 0.93
GeV−2 as the Regge slope parameter of the meson trajectories. Using the numerical computation of equation (16)

for γ(n,n′ ) and incorporating color reflection invariance, we obtain the vector and scalar glueball masses for some
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Table 1. Vector and scalar glueball masses in dual QCD.

λ γ αs m̄B (GeV) m̄φ (GeV)
1
4 5.617 0.25 1.75 1.20
1
2 6.828 0.24 1.62 1.69

1 8.093 0.23 1.52 2.17

2 9.833 0.22 1.41 2.90

typical values of strong coupling in infrared sector of QCD and are given in the Table 1 [13]. The color reflection

invariance is incorporated by insisting m̄φ = mφ = m
′

φ and m̄B = mB = m
′

B , or equivalently

φ
′

0 =
1√
3
φ0, λ

′

=
1

3
λ. (17)

Furthermore, in order to investigate the heavy quark-antiquark confining potential let us start from the Lagrangian

density (8) and apply Zwanziger formalism [14] to eliminate the singular behavior of potentials. In addition, using

the assertion for the coupling of quark fields with the color electric potential and that of the monopole field with

the dual magnetic potential, using the effective potential given by equation (10) and carrying out the monopole

field expansion under mean-field approximation, the Lagrangian density reduces to the following form,

L = − 1

2n2
[n.(∂∧A)]ν [n.(∂∧B(d))d]ν+

1

2n2
[n.(∂∧B(d))]ν [n.(∂∧A)d]ν−

1

2n2
[n.(∂∧A)]2− 1

2n2
[n.(∂∧B(d))]2

− 1

2n2
[n.(∂∧A′

)]ν [n.(∂∧B′(d))d]ν+
1

2n2
[n.(∂∧B′(d))]ν [n.(∂∧A′

)d]ν−
1

2n2
[n.(∂∧A′

)]2− 1

2n2
[n.(∂∧B′(d))]2+

ψ̄(iγµ∂
µ − gγµA

µ.λ3 −m)ψ + ψ̄(iγµ∂
µ − gγµA

′µ.λ8 −m)ψ +
1

2
m2

BB
(d)2
µ +

1

2
m

′2
BB

′(d)2
µ . (18)

Within quenched approximation, integrating out Aµ and Bµ, the effective Lagrangian including external source j
to represent heavy quark is given as follows,

Lq = −1

2
(j3µD

µνj3ν + j8µD
′µνj8ν), (19)

where Dµν and D
′µν are the propagator of the diagonal gluons,

Dµν = −1

2

gµν

∂2 +m2
B

− 1

2

n2

(n.∂)2

(

m2
B

∂2 +m2
B

)(

gµν − nµnν

n2

)

, (20)

D
′µν = −1

2

gµν

∂2 +m
′2
B

− 1

2

n2

(n.∂)2

(

m
′2
B

∂2 +m
′2
B

)(

gµν − nµnν

n2

)

. (21)

The action is obtained in the following form,

Sj =

∫

Ljd
4x =

∫

d4x

[

j3µ

(

−1

2

gµν

∂2 +m2
B

− 1

2

n2

(n.∂)2

(

m2
B

∂2 +m2
B

)(

gµν − nµnν

n2

))

j3ν

+j8µ

(

−1

2

gµν

∂2 +m
′2
B

− 1

2

n2

(n.∂)2

(

m
′2
B

∂2 +m
′2
B

)(

gµν − nµnν

n2

))

j8ν

]

. (22)

The quark currents for static system of a heavy quark and antiquark pair with opposite color charge located at a

and b, respectively are given by

j3µ(k) = Q3gµ02πδ(k0)(e
−ik.b − e−ik.a), j8µ(k) = Q8gµ02πδ(k0)(e

−ik.b − e−ik.a),

where Q3 and Q8 are the color electric charge of the static quark and the action reduces to the following form,

Sj = −Q2
3

∫

dt

∫

d3k

(2π)3
1

2
(1− eik.r)(1− e−ik.r)

[

1

k2 +m2
B

+
m2

B

k2 +m2
B

1

(n.k)2

]
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−Q2
8

∫

dt

∫

d3k

(2π)3
1

2
(1− eik.r)(1− e−ik.r)

[

1

k2 +m
′2
B

+
m

′2
B

k2 +m
′2
B

1

(n.k)2

]

, (23)

where, n is a unit vector and r = b − a is a vector which connects the quark to the antiquark. The static quark-

antiquark potential obtained from the action (23) may be expressed as,

U(r) = −Q
2
3

4π

e−mBr

r
− Q2

8

4π

e−m
′

B
r

r
+
Q2

3m
2
B

8π
rln

m2
B +m2

φ

m2
B

+
Q2

8m
′2
B

8π
rln

m
′2
B +m

′2
φ

m
′2
B

. (24)

Using color reflection invariance the expression reduces to the following form,

U(r) = −Q2

4π

e−m̄Br

r
+

Q2m̄2
B

8π
rln(1 + κ2QCD), (25)

where Q2 = Q2
3 + Q2

8 and the κQCD = m̄φ/m̄B is the GL-parameter for the dual QCD.. The first one in the

expression (25) is a Yukawa-like term and the second one describes, a linear potential in the inter-quarks separation.

The corresponding plot for the case of static quark (25) has been shown in figure 1 for αs = 0.25 and αs = 0.24

Figure 1. The quark-antiquark static potential for αs = 0.25 and αs = 0.24.

coupling in infrared sector of QCD. For αs = 0.25 the plot is well in agreement with the phenomenological

Cornell potential [15]. However αs = 0.24 needs an correction factor of 0.45 GeV in order to fit it with the

Cornell potential. The graphical representation clearly shows that the Yukawa term dominates the short-range

physics and the linear term dominates the physics at large distances responsible for quark confinement.
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Based on the topological structure of non-abelian gauge theories, a dual QCD gauge formulation has been de-

veloped in terms of magnetic symmetry, which manifest the topological structure of the symmetry group in a

non-trivial way. The dynamical breaking of the magnetic symmetry has been shown to impart the dual super-

conducting properties to the magnetically condensed QCD vacuum, which ultimately leads to a unique flux tube

configuration in QCD vacuum responsible for enforcing the color confinement. For the study of phase structure

of QCD, the deconfinement phase transition in QCD has been investigated at finite temperatures. Utilizing the

path-integral formalism, dual QCD has also been extended to the thermal domain by undertaking the mean field

approach. The effective potential at finite temperature has been derived to compute the critical temperature for

phase transition which has been shown to be in good agreement with the lattice results. A large reduction of color

monopole condensate and glueball masses near the critical point has been shown to lead to a first order decon-

finement phase transition in QCD. The evaporation of color monopole condensate and the release of the magnetic

degrees of freedom in high temperature domain in QCD vacuum has been shown to lead the restoration of magnetic

symmetry, which has its intimate connection with the quark-gluon plasma phase of QCD.

1. Introduction

After the advent of Quantum Chromodynamics (QCD) [1, 2, 3] as a viable theory of strong interactions and

in particular asymptotic freedom [1, 4], the attention focused on the ideas of Quark Gluon Plasma (QGP), a

typical phase of QCD in which the quarks and gluons degrees of freedom are supposed to be defrozen. It is

believed, that such a deconfined matter has a deep relevance and implications on cosmology, astrophysics and in

the phenomenology of heavy-ions collisions which provide a unique opportunity to study such typical QCD phase

transition from HG to QGP [6]. At present, the best available tool to study the non-perturbative properties of QCD

matter at zero chemical potential [7, 8, 9, 10, 11] is the numerical simulation on the lattice. However, the lattice

methods still lack a reliability to describe the properties of matter possessing a finite density of baryons [12]. In

view of these facts, it is therefore very much desired to perform a detailed analytical study to understand many

new features of QCD phase structure, under the extreme conditions of temperature and density. The present paper

deals mainly with the analysis of the large scale structure of QCD, its thermal response and the study of the QCD

phase transition. In section 2, the dual QCD formulation based on magnetic symmetry has been analyzed and its

resulting flux tube structure has been investigated for the mechanism of color confinement. In section 3, utilizing

the path integral formalism, dual QCD has been extended to the thermal domain by undertaking the mean field

approach in order to the compute the critical parameters of phase transition. In section 4, the numerical results and

conclusions of the work have been presented.

2. Dual QCD with magnetic symmetry

The topological structure expressed in the form of magnetic symmetry plays a crucial role to establish the duality

which exists in non-abelian gauge theory to provide the magnetically condensed vacuum important for the analysis

of non-perturbative phenomenon of QCD vacuum. In this context, it is important to note that a gauge symmetry can

be viewed as an n-dimensional isometry which leads to P as a principal fibre bundle P (M,G) with a canonical

projection Π : P → M . Since, a connection on P (M,G) admits a left isometry, the magnetic symmetry may

be introduced as an internal isometry H (with Killing vector fields as m̂a ) which is Cartan’s subgroup of G and

commutes with it. The associated Killing condition, Lma
gAB = 0, then leads to a gauge covariant magnetic

symmetry conditions as given by [13, 14, 15, 16, 17],

Dµ m̂ = 0 , i.e. ( ∂µ + gWµ × ) m̂ = 0 , (1)

∗Best poster presentation in the High Energy Physics section.
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where Wµ, is the gauge potential and m̂ is the killing vector which automatically selects another m̂
′

obtained by

the symmetric product of m̂,

m̂
′

=
√
3m̂ ∗ m̂ such that, Dµm̂

′

= 0, (2)

where ∗ denotes the symmetric product and the self-consistency requirement comes from the following identities,

Dµ(m̂1 × m̂2) = (Dµm̂1)× m̂2 + m̂1 × (Dµm̂2),

Dµ(m̂1 ∗ m̂2) = (Dµm̂1) ∗ m̂2 + m̂1 ∗ (Dµm̂2). (3)

For a complete description of the monopole solutions two killing vectors [13] m̂ and m̂
′

are necessary and sufficient

and one may choose the fundamental symmetry m̂ to be always λ3-like, in which the product symmetry m̂
′

automatically becomes λ8-like.

The most general gauge potential in SU(3) QCD which satisfies the constraints (1) and (2) can easily be expressed

as,

Wµ = Aµ m̂+ A
′

µ m̂
′ − g−1 ( m̂× ∂µ m̂) − g−1 ( m̂

′ × ∂µ m̂
′

), (4)

where

Aµ = m̂.Wµ, A
′

µ = m̂
′

.Wµ, (5)

are the abelian component unrestricted by the magnetic symmetry. On the other hand, the second part which is

determined completely by the magnetic symmetry, is of topological origin since the multiplet m̂ may be viewed

to define the homotopy of the mapping S2
R → SU(3)/U(1) ⊗ U

′

(1), Π2(SU(3)/U(1) ⊗ U
′

(1)) ≃ Π1(U(1) ⊗
U

′

(1)), where U(1) and U
′

(1) are two abelian subgroups generated by λ3 and λ8, so that the monopoles must be

classified by two integers. The topological structure of the theory may be then brought into dynamics explicitly

by performing the separation of gauge fields in the magnetic gauge obtained by rotating m̂ to a prefixed direction

in isospace using a gauge transformation (U) [14] such that m̂ exhibits the homotopy class which consists of

n windings of the i-spin subgroups followed by n
′

windings of the u-spin subgroup of SU(3), and thus may be

explicitly expressed as,

m̂ =

























sinα cos α
2 cos[(β − β

′

)]

sinα cos α
2 sin[(β − β

′

)]
1
4 cosα(3 + cosα)
sinα sin α

2 cosβ
sinα sin α

2 sinβ

− 1
2 sinα cosα cosβ

′

− 1
2 sinα cosα sinβ

′

1
4

√
3 cosα(1− cosα)

























. (6)

This leads to the value of gauge potential and corresponding gauge field strength in the magnetic gauge as,

Wµ
U−→g−1

[(

(∂µβ − 1

2
∂µβ

′

) cosα

)

ξ̂3 +
1

2

√
3(∂µβ

′

cosα)ξ̂8], (7)

Gµν
U−→−g−1

[

sinα

(

(∂µα∂νβ−∂να∂µβ)−
1

2
(∂µα∂νβ

′−∂να∂µβ
′

)

)

m̂+
1

2

√
3 sinα(∂µα∂νβ

′−∂να∂µβ
′

)m̂
′

]

.

(8)

For a field-theoretic description of the resulting dual QCD we use the regular dual magnetic potential (B
(d)
µ and

B
′(d)
µ ) associated with the monopoles and introduce complex scalar fields φ(x) and φ

′

(x) for the monopole and

with these consideration the Lagrangian in absence of color electric sources quenched approximation may be

expressed in the following form,

£ = −1

4
B2

µν − 1

4
B

′2
µν + |(∂µ + i

4π

g
B(d)

µ )φ|2 + |(∂µ + i
4π
√

(3)

g
B

′(d)
µ )φ

′ |2 − V, (9)

where

V =
48π2

g4
λ(φ∗φ− φ2

0)
2 +

432π2

g4
λ

′

(φ∗φ
′ − φ

′2
0 )2 (10)
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is the proper quadratic effective potential which enforces the magnetic symmetry breaking and the resulting mag-

netic condensation in QCD vacuum and leads to a definite flux tube structure in the dual QCD vacuum. With such

potential, using the cylindrical symmetry with the co-ordinates (ρ, ϕ, z) the dual gauge field and the monopole

field for the λ3 and λ8 -component can be expressed as,

B(d)
µ = g−1 cosα(∂µβ)m̂, B

′(d)
µ =

√
3

2g
cos α (∂µ β

′

) m̂
′

, (11)

φ(x) = exp (i nϕ)χ(ρ), φ
′

(x) = exp (i n
′

ϕ)χ
′

(ρ), (12)

and the field equation associated with the Lagrangian in static limit may be derived in the following form,

d

dρ

[

ρ−1 d

dρ

(

ρB(ρ)

)]

− (16πα−1
s )1/2

(

n

ρ
+ (4πα−1

s )1/2B(ρ)

)

χ2 (ρ) = 0, (13a)

1

ρ

d

dρ

(

ρ
dχ(ρ)

dρ

)

−
[(

n

ρ
+ (4πα−1

s )1/2B(ρ)

)2

+ 6λα−2
s

(

χ2 − φ2
0

)]

χ(ρ) = 0, (13b)

d

dρ

[

ρ−1 d

dρ

(

ρB
′

(ρ)

)]

− (48πα−1
s )1/2

(

n
′

ρ
+ (12πα−1

s )1/2B
′

(ρ)

)

χ
′2 (ρ) = 0, (13c)

1

ρ

d

dρ

(

ρ
dχ

′

dρ

)

−
[(

n
′

ρ
+ (12πα−1

s )1/2B
′

(ρ
′

)

)2

+ 54λ
′

α−2
s

(

χ
′2 − φ

′2
0

)]

χ
′

(ρ) = 0. (13d)

Utilizing the asymptotic solutions of the associated dual QCD fields, B(ρ) = − ng
4πρ [1 + F (ρ)], B

′

(ρ) =

− n
′

g

4
√
3πρ

[1 +G(ρ)], the energy per unit length of the resulting flux tube configuration may be given as,

k(n,n′ ) = 2π

∫ ∞

0

ρ dρ

[

{

n2g2

32π2ρ2

(

dF

dρ

)2

+
n2

ρ2
F 2(ρ)χ2(ρ) +

(

dχ

dρ

)2

+ 3λα−2
s (χ2 − φ2

0)
2

}

+

{

n
′2g2

96π2ρ2

(

dG

dρ

)2

+
n

′2

ρ2
G2(ρ)χ

′2(ρ) +

(

dχ
′

dρ

)2

+ 27λ
′

α−2
s (χ

′2 − φ
′2
0 )2
}

]

. (14)

The masses of the magnetic glueballs can be estimated by evaluating the string tension k(n,n′ ) of the resulting flux

tube which can be expressed as, k(n,n′ ) =
1

2πα′ = γ(n,n′ )φ
2
0 = αs

8πγ(n,n′ )m
2
B , where γ(n,n′ ) = γn +

(

φ
′

0

φ0

)2

γn′

is a dimensionless parameter. In view of the relationship of k with Regge slope parameter and α
′

= 0.9GeV −2,

using the numerical computation of equation (14) for γ and incorporating color reflection invariance, we obtain

the masses m̄φ and m̄B of the 0++ and 1++ magnetic glueballs for some typical values of strong coupling in full

infrared sector of QCD at zero temperature and are presented in table 1 [18]. The color reflection invariance is

incorporated by insisting m̄φ = mφ = m
′

φ and m̄B = mB = m
′

B , or equivalently φ
′

0 = 1√
3
φ0, λ

′

= 1
3λ, which

tells us that the two modes mφ and m
′

φ (also mB and m
′

B) should actually describe one and the same mode m̄φ

(and m̄B , respectively).

Table 1. The masses of vector and scalar glueball as functions of αs.

λ αs m̄φ (GeV) m̄B (GeV) λ
(d)
QCD (fm) ξ

(d)
QCD (fm) κQCD

1
4 0.25 1.20 1.75 0.57 0.83 0.69
1
2 0.24 1.69 1.62 0.61 0.59 0.99

1 0.23 2.17 1.52 0.65 0.46 1.42

2 0.22 2.90 1.41 0.70 0.34 2.05

These two scales are basically related to the penetration depth (λ
d)
QCD) and coherence length (ξ

(d)
QCD) in the fol-

lowing manner, m̄B = (λ
(d)
QCD)−1 and m̄φ = (ξ

(d)
QCD)−1. With these set of dual QCD parameters, we may identify
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the nature of the dual QCD vacuum in infrared sector by defining the Ginzburg-Landau parameter κQCD, which

is basically the ratio of the characteristic length scales given by, κ =
λ
(d)
QCD

ξ
(d)
QCD

. The transition from type-I to type-II

behaviour of dual QCD vacuum is evident from the table-1 around the strong coupling value 0.23. Using these pa-

rameters as the initial (zero temperature) parameters and to understand the behavior of QCD at finite temperatures

alongwith its phase structure, let us use the partition function approach alongwith the mean-field treatment for the

QCD monopole field to evaluate the thermal contributions to the effective potential in dual QCD. The parameters

associated with the dual QCD vacuum are extremely useful for understanding the nature of phase transition in

infrared sector of QCD.

3. Effective potential formalism at finite temperature in dual QCD

In order to deal with the non-perturbative aspects of QCD at finite temperature, let us start with the partition func-

tional, for the dual QCD in thermal equilibrium at a constant temperature T , which is expressed in the following

form,

Z[J ] =

∫

D[φ]D[B(d)
µ ]D[φ

′

]D[B
′(d)
µ ]exp(−S(d)), (15)

where, S(d) is the dual QCD action and is given by [19],

S(d) = −i

∫

d4x(L(m)
d − J |φ|2 − J

′ |φ′ |2). (16)

Using the mean-field treatment and separating the fluctuation part of the QCD-monopole field from its mean value

as [20],

φ → (φ+ φ̃)exp(iξ), φ
′ → (φ

′

+ φ̃
′

)exp(iξ
′

), (17)

so that the intregrand in action (16) may be expressed as,

L(m)
d − J |φ|2 − J

′ |φ′ |2 = −3λα−2
s (φ2 − φ2

0)
2 − Jφ2 − 1

4
B2

µν +
1

2
m2

B(B
(d)
µ )2 + [(∂µφ̃)

2 − (mφφ̃)
2]

+
[

4πα−1
s (B(d)2

µ )(2φφ̃+ φ̃2)− 3λα−2
s (φ̃4 + 4φφ̃3)

]

−
[

12λα−2
s (φ2 − φ2

0)φ+ 2Jφ
]

φ̃− 27λ
′

α−2
s (φ

′2 − φ
′2
0 )2

−J
′

φ
′2− 1

4
B

′2
µν+

1

2
m

′2
B(B

′(d)
µ )2+[(∂µφ̃

′2)−(m
′

φφ̃
′

)2]+[12πα−1
s (B

′(d)
µ )2(2φ

′

φ̃
′

+φ̃
′2)−27λ

′

α−2
s (φ̃

′4+4φ
′

φ̃
′3)]

−[108λ
′

α−2
s (φ

′2 − φ
′2
0 )φ

′

+ 2J
′

φ
′

]φ̃
′

, (18)

where J = −6λα−2
s (φ2 − φ2

0) and J
′

= −54λ
′

α−2
s (φ

′2 − φ
′2
0 ). The corresponding partition function may be

written as,

Z[J ] = exp[i

∫

d4x(−3λα−2
s (φ2 − φ2

0)
2 − Jφ2 − 27λ

′

α−2
s (φ

′2 − J
′

φ
′2)]

×[Det(iDµν)
−1(B,k)]−1[Det(i△−1 (φ, k))]−1/2 × [Det(iDµν)

−1(B
′

,k)]−1[Det(i△−1 (φ
′

, k))]−1/2. (19)

The effective action leads to the following form,

Seff =

∫

d4x{−3λα−2
s (φ2 − φ2

0)
2 − 27λ

′

α−2
s (φ

′2 − φ
′2
0 )2}+ ilnDet(iD−1

µν (B,k))

+
i

2
lnDet(i△−1 (φ, k)) + ilnDet(iD−1

µν (B
′

,k)) +
i

2
lnDet(i△−1 (φ

′

, k)). (20)

The effective potential, which corresponds to the thermodynamical potential at finite temperature is obtained as

[21],

Veff (φ) = − Seff
∫

d4x
= 3λα−2

s (φ2 − φ2
0)

2 + 27λ
′

α−2
s (φ

′2 − φ
′2
0 )2 + 3

T

π2

∫ ∞

0

dkk2ln(1− e−
√

k2+m2
B
/T )

+
3T

2π2

∫ ∞

0

dkk2ln(1− e−
√

k2+m2
φ
/T ) + 3

T

π2

∫ ∞

0

dkk2ln(1− e−
√

k2+m
′2
B
/T )
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+
3T

2π2

∫ ∞

0

dkk2ln(1− e
−
√

k2+m
′2
φ
/T

). (21)

Minimization of the thermodynamical potential alongwith the requirement of color reflection invariance then leads

to the thermal values of the VEV of the monopole field and the vector glueball masses as,

< φ >
(T )
0 =

√

φ2
0 −

(

4παs + λ

λ

)

T 2

8
, m

(T )
B =

√

8πα−1
s

√

φ2
0 −

(

4πα+ λ

λ

)

T 2

8
. (22)

Figure 1. Thermal response of monopole condensate and vector glueball masses in dual QCD.

4. Results and Conclusions

For the analysis of the vital phase transition parameters of QCD, the vacuum expectation value of φ field at finite

temperature has been obtained by minimization condition on effective potential (22). The variation of vacuum

expectation value < φ >
(T )
0 with temperature for different coupling has been shown in figure 1. The < φ >

(T )
0

value in high temperature region, ultimately vanishes at some typical characteristic value of temperature, called

the critical temperature (Tc) of phase transition, which is obtained as 0.241GeV, 0.206 GeV, 0.166 GeV and 0.133
GeV for the coupling values of 0.22, 0.23, 0.24 and 0.25 respectively. The disappearance of the QCD monopole

condensate at sufficiently high temperature indicates the restoration of the magnetic symmetry and evaporation

into thermal monopoles. The vacuum expectation value leads to temperature dependent scalar and vector glueball

masses and has been depicted in Fig. 1. These plots demonstrate a decrease in monopole condenstate and glueball

masses with temperature which is an indicative of a first-order deconfinement phase transition in dual QCD.
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