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Abstract The 1+3 covariant approach and the covariant gauge-invariant approach
to perturbations are used to analyze in depth conformal transformations in cosmol-
ogy. Such techniques allow us to obtain insights on the physical meaning of these
transformations when applied to non-standard gravity. The results obtained lead
to a number of general conclusions on the change of some key quantities describ-
ing any two conformally related cosmological models. For example, even if some
of the geometrical properties of the cosmology are preserved (homogeneous and
isotropic Universes are mapped into homogeneous and isotropic universes), it can
happen that decelerating cosmologies can be mapped into accelerated ones. From
the point of view of the cosmological perturbations it is shown how these fluctu-
ation transform. We find that first-order vector and tensor perturbations equations
are left unchanged in their structure by the conformal transformation, but this
cannot be said of the scalar perturbations, which present differences in their evo-
lutionary features. The results obtained are then explicitly interpreted and verified
with the help of some clarifying examples based on f (R)-gravity cosmologies.

Keywords Conformal transformations, Modified gravity, Cosmology,
1+3 Covariant approach, Covariant gauge invariant theory of perturbations

1 Introduction

Conformal or Weyl transformations have played for long time an important role
in many fields, from geography (e.g. Mercator projection) to electromagnetism
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(see e.g. the work of Bateman [1]) to quantum theories [2]. In relativity and cos-
mology conformal transformations are also widely used. For example they can
be exploited to introduce the so-called conformally flat spacetimes, which are
among the simplest possible nontrivial spacetimes compatible with general rel-
ativity (GR) [3], or to construct Penrose diagrams [4], which are one of the most
important techniques for the study of black hole physics.

These transformations are also particularly important when one deals with
non-standard theories of gravity. Such theories have recently been focus of much
investigation because they are thought to offer a possible explanation for the prob-
lem of Dark Energy (for recent reviews see [5; 6; 7] ). One of the main difficulties
in dealing with these theories, however, is that the non-linearity of their struc-
ture makes it really hard to deal with them. Hence much effort has been put into
developing new methods to analyze those models. Conformal transformations are
particularly convenient in this respect. In fact, it is well known that with their use
one is able to map non-standard theories of gravity into GR plus a scalar field (φ )
which is minimally coupled to the geometry [8; 9]. For many years the meaning
and the physical interpretation of these maps have been debated and nowadays one
cannot say that a complete agreement has been reached in the community on this
issue (see e.g. [10; 11; 12; 13; 14; 15] for some recent papers). In what follow we
will not attempt to enter in this debate, but we will simply try to give a different
perspective on the problem based on a new technique: the 1+3 covariant approach.

The 1+3 covariant approach has been developed in recent years thanks to pio-
neering work of Ehlers [16], subsequently developed by Ellis (see for example
[17]). This formalism allows a treatment of any cosmological spacetime in a way
that is, at the same time, mathematically rigorous and physically clear, and that
can be easily adapted to non-standard theories of gravitation. The 1+3 covariant
approach has been successful not only in the direct analysis of complicated cosmo-
logical models but also in other applications. One of them, the development of the
dynamical system approach [18, and references therein], has revealed itself very
useful in shedding light on the dynamics of Bianchi Universes and the cosmology
of scalar tensor and higher-order gravity (see [18; 19; 20; 21] for details).

It is a matter of fact that an important part of our knowledge on the
cosmic evolution comes from the analysis of the perturbations of homoge-
neous and isotropic cosmological models. There are many different methods
to describe the evolution of these perturbations, the most popular approach
being Bardeen’s one [22]. Classical reviews of this approach can be found,
e.g., in [23; 24]. In this paper, however, we will use the so-called Covari-
ant Gauge Invariant (CoGI) approach [25; 26; 27; 28; 29]. This technique,
based on the 1+3 approach, preserves the most appealing properties of the 1+3
formalism and allows the description of the first order perturbation of any space-
time. It has revealed itself crucial in the development of a consistent theory of
perturbations in f (R)-gravity, as well as in other extensions of GR [30; 31]. Dif-
ferently from the other formulations [32; 33; 34; 35; 36; 37; 38; 39; 40; 41; 42; 43],
the CoGI approach offers not only the simplest way to describe the evolution of
the perturbations, but, as we will see, it also allows an easy comparison between
the perturbations in the different frames.

The purpose of this paper is to look at conformal transformations from the
point of view of the 1+3 approach and the CoGI approach. These formalisms will
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allow to see the conformal transformation under an entire different view, which
hopefully might be useful for further investigations of this topic. We will dis-
cover that conformal transformation can be associated to a passage from an iner-
tial observer to an accelerated one plus a redefinition of fields, and that a real
change in the physics can occur only at the stage of the field redefinition. Also we
will give general formulas that relate the main quantities in cosmology in the dif-
ferent frames including the transformation of the perturbations and this will shed
light on the difference in their behavior in the different frames. In order to show
that in a concrete example, we will apply this transformation to some models of
f (R)-gravity.

The paper is structured as follows. In Sect. 2 we give a brief review of the com-
mon procedure to perform a conformal transformation and we apply it to f (R)-
gravity, with a specific focus on the distinction between change in the geometry
and field redefinition. In Sect. 3 we introduce briefly the basics of the 1+3 covari-
ant approach. In Sect. 4 this formalism is applied to the conformal transformations
and to the transformation of the covariant equations. Section 5 is dedicated to the
corresponding transformation in the CoGI formalism. In Sect. 6 the behavior of
the scalar perturbations in the two frames is compared in detail for two simple
models based on f (R)-gravity. Finally, Sect. 7 is devoted to conclusions.

We now fix the notations. Unless otherwise specified, natural units (h̄ = c =
kB = 8πG = 1) will be used throughout the paper, Latin indices running from 0
to 3. The symbol ∇ represents the usual covariant derivative and ∂ corresponds
to partial differentiation. We use the −,+,+,+ signature and the Ricci tensor is
obtained as Rab = gcdRcadb. Finally, the Hilbert–Einstein action in the presence of
matter is given by

A =
∫

dx4√−g [R+2Lm] . (1)

2 Conformal transformations in relativity

In this section we will give a basic introduction on the usual treatment of con-
formal transformations in Riemannian geometry, following mainly [10; 44; 45].
Given a spacetime (M,gab) with dimension m (m ≥ 2), a conformal (or Weyl)
transformation is defined as a transformation of the metric tensor given by

gab → ḡab = ϒ gab, (2)

where ϒ = ϒ (x) is a regular, strictly positive function of the spacetime coordi-
nates. This type of transformation does not affect the index structure and, as a
consequence, preserves the angles between geometrical objects. In addition, since
ds̄ =ϒ ds, it is clear that this transformation leaves the causal structure unchanged,
i.e. null geodesics and light cones are preserved.1

It is easy to derive the transformation rule for the determinant of the metric
tensor g

ḡ ≡ det(ḡab) = ϒ
mg, (3)

1 For a rigorous proof of this fact see [44].
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where we have used the fact that ḡab =ϒ−1gab. This allows us to derive the trans-
formation laws for the Christoffel symbols, the Riemann and Ricci tensors, the
Ricci scalar, and the Weyl tensor [3; 44; 45; 46]:

Γ̄
a

bc = Γ
a

bc +za
bc = Γ

a
bc +

1
2ϒ

(
2δ

a
(b∇c)ϒ −gbc∇

a
ϒ

)
, (4)

R̄ d
abc = R d

abc −2∇[azd
b]c +2ze

c[az
d
b]e, (5)

R̄ab = Rab−
(m−2)

2
∇a∇b(lnϒ)−1

2
gab�(lnϒ )+

(m−2)
4

∇a(lnϒ )∇b(lnϒ )

− (m−2)
4

gab grs
∇r(lnϒ )∇s(lnϒ ), (6)

R̄ ≡ ḡabR̄ab =
1
ϒ

[
R− (m−1)�(lnϒ )− (m−1)(m−2)

4
gab∇aϒ ∇bϒ

ϒ 2

]
, (7)

C̄abc
d = Cabc

d (only with this index configuration), (8)

where � = grs∇r∇s.
An equation is said to be conformally invariant if there exists a number, s,

such that if Ψ is a solution of this equation then Ψ̄ = ϒ sΨ is a solution of its
conformally transformed one [44].

In relativity and cosmology, with the term conformal transformations one usu-
ally means two different transformations: (i) the transformation (2) on the met-
ric and (ii) a rearrangement of the basic quantities in the theory. For example, a
Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) metric with flat spatial sections

ds2 =−dt2 +S2(t)
(
dx2 +dy2 +dz2) , (9)

can be written as

ds2 = S2(t)
(
− dt2

S2(t)
+dx2 +dy2 +dz2

)
, (10)

and, defining the conformal time dη as dt/S(t), one can write

ds2 = S2(η)
(
−dη

2 +dx2 +dy2 +dz2) . (11)

We will see that exactly the same happens when we apply the conformal transfor-
mation to a theory of gravity: the transformation of the metric will be associated
to a re-parametrization of the fields in the action. In fact the latter is a crucial
point in understanding this application of the conformal transformations, because
it is only in the last step that real changes in the model, which are unrelated to
the geometrical conformal transformation (2), take place. In the following we will
call Jordan frame (JF) the initial set of metric and fields present in the theory
and Einstein frame (EF) the set of metric and fields obtained after this conformal
transformation.2

2 This definition is by no means commonly used in literature, where different aspect of the
theories (like the presence and position of non minimal couplings in the action) or other argu-
ments have been used to define the conformal frames. The reason behind our choice is that, in
principle one can choose as starting point a theory with any feature, the structure depending on
the observations and the data coming from experiments, and this choice is in fact irrelevant to
the understanding of the features of the conformal transformations.
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2.1 Conformal transformations and higher order gravity

Let us now see in detail what happens to the theory of gravity when we apply the
conformal transformation (2) to the metric tensor. As said above, we will focus on
the so-called f (R)-gravity, which is among the most studied models of modified
gravity. Before starting, it is worth to point out that one can apply a conformal
transformation at different levels, namely: (i) at the action level or (ii) at the level
of the field equations. Of course, since these transformations are, in principle,
different from each other, one has to prove their equivalence, but, as we will see,
this can be verified directly.

2.1.1 Conformal transformations at the action level

Let us start at the action level. A general Lagrangian for f (R)-gravity is given by

L =
√
−g
[

f (R)+2Lm(ג,gab)
]
, (12)

ג being a generic matter field.3 This action reduces to the Hilbert-Einstein one
for f (R) = R. It is interesting to note that, performing the transformations (5–7)
directly, with the action in this form, would result in a very complicated expres-
sion. Instead, using the tools of analytical mechanics [10; 47; 48], one manages
to reduce the action to the so-called Helmoltz form, by means of defining a set of
new fields associated with the higher-order momenta in the Lagrangian. A more
pragmatic way to do that is to write the action as [8; 45; 49]

L =
√
−g
[
A(R−B)+ f (B)+2Lm(ג, ḡab)

]
, (13)

where A and B are two auxiliary fields related to the canonical momenta of (12).
As a consequence one can prove that, on the one side, variation upon the field A
implies B = R, which means that this action is equivalent to (12), and on the other,
that variation upon B implies, instead, that A and B are related by A = f ′(B) [49].

The Lagrangian (13) is effectively a scalar-tensor Lagrangian and can, conse-
quently, be conformally transformed in the same way as in these theories. Specif-
ically, from (2) one obtains

L̄ =
√
−ḡ ϒ

−2

{
ϒ F(B)

[
R̄+3�(lnϒ )− 3

2
ḡab∇aϒ ∇bϒ

ϒ 2

]

−F(B)B+ f (B)+2Lm(ג, ḡab)
}

, (14)

being F = d f /dB and where we have used the transformation laws4 (4)–(7).

3 It is worth to specify that here we are performing a conformal transformation of the met-
ric only, leaving the matter fields (as well as any other additional field) untransformed. This
assumption is widely used in the literature and, for the sake of simplicity, we will adopt it here
too.

4 Note that the conformal transformation performed here is limited to the metric tensor. Since
the field B defined in (13) is a generic field, one can set B̄ = B.
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At this point one proceeds to the reparametrization of the fields in the action.
Setting5

ϒ = |F(B)| , (15)

one obtains

L̄ =
√
−ḡ

[
R̄− 3

2
ḡab∇aϒ ∇bϒ

ϒ 2 −2U(ϒ )+2ϒ
−2Lm(ג, ḡab)

]
, (16)

where

U(ϒ ) =
BF(B)− f̄ (B)

2F(B)2

∣∣∣∣
B=F−1(γϒ/2)

, (17)

γ = ¯|F |/F , and we have used the Gauss theorem to eliminate the term 3�(lnϒ ).

The Einstein frame can be then achieved by redefining ϒ as ϒ = eλφ and
considering φ a new (scalar) field in the theory. This step allows us to eliminate
the non-minimal coupling in the kinetic term of (16) and to obtain:

5 Note the absolute value in this definition. It is required in order to preserve the causal struc-
ture of the metric (ϒ has to be positive) and implies that the conformal transformation can be
only done on sections of the total history of the systems in which F(B) has a constant sign.
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L̄ =
√
−ḡ
[
R̄− ḡab

∇aφ∇bφ −2W (φ)+2e−2
√

2/3φ Lm(ג, ḡab)
]
, (18)

once λ is chosen to be
√

2/3. In this form, this Lagrangian looks like a standard
GR + minimally-coupled-scalar-field theory, and in vacuum this would be indeed
the case. However, the matter Lagrangian in (18) appears to be coupled with the
scalar field. This is the reason why in the literature it is often mentioned that
in the Einstein frame matter is non-minimally coupled to the scalar field φ . The
presence of such coupling is understandable if we bear in mind that φ is in fact
a part of the gravitational interaction in the JF and, as such, it is bound to have
a direct coupling with standard matter. To wit, a non-minimal coupling between
gravity and matter is already present implicitly in (12), so that one can imagine
that the conformal transformation separates fourth-order gravity into a tensorial
part, which is minimally coupled with matter, and a scalar part, which carries the
non-minimal coupling. In this sense the non-minimal coupling is an expression of
the universality of the gravitational interaction in the Jordan frame.

2.1.2 Conformal transformations at the field equation level

Let us now look at the transformation (2) from the point of view of the grav-
itational field equations. Upon variation, the Lagrangian (12) gives rise to field
equations that can be recast as [50]:

Gab =
T m

ab(ג, ḡ
ab)

F
+T R

ab = T tot
ab , (19)

where the term

T R
ab =

1
F

gab ( f −RF)+
∇c∇dF

F
(gc

agd
b −gabgcd), (20)

can be considered to represent an effective fluid associated with the non-Einstein
contributions to the gravitational interaction, the term T m

ab = 2√
−g

δ (Lm)
δgab

represents

the stress-energy tensor of standard matter, F(R) = d f
dR , and we have dropped the

R-dependence of f and F . Also these equations reduce to the standard Einstein
field equations when f (R) = R.

Using (6) and (7) directly on the L.H.S. of (19), we obtain the Einstein-tensor
transformation law

Gab = Ḡab +
1
2

∇a ln(ϒ )∇b ln(ϒ )+
1
4

ḡabḡcd
∇c ln(ϒ )∇d ln(ϒ )

+∇a∇b ln(ϒ )− ḡab� ln(ϒ ). (21)

At this point supposing F = F̄ [10; 47; 48], one can transform the energy momen-
tum tensor T tot

ab , obtaining6

T̄ tot
ab =

1
F

T̄ m
ab(ג, ḡ

ab)− ḡab Ū(F)+∇a∇bF −gab�F

−∇cF∇dϒ

(
ḡc

(aḡd
b) +

1
2

ḡabḡcd

)
, (22)

6 Note that in the operation just mentioned we have left unchanged the Ricci scalar R. This
happens because one considers R = R(F) and F is left unchanged by the transformation. This is
analogous to the introduction of the field B in the Lagrangian derivation.
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where

Ū(F) = −1
2

(
f −RF

F2

)∣∣∣∣
R=R(F)

. (23)

In order to pass to the Einstein frame, we first need to set ϒ = F and then to
introduce a scalar field φ such that ϒ = eλφ . In this way

Gab = Ḡab +
λ 2

2
∇aφ∇bφ +

λ 2

4
ḡabḡcd

∇cφ∇dφ +λ∇a∇bφ −λ ḡab�φ , (24)

T̄ tot
ab = e−λφ T̄ m

ab(ג, ḡ
ab)− ḡabW (φ)+2λ

2
∇aφ∇bφ

−λ 2

2
∇cφ∇

c
φ +λ∇a∇bφ −λ ḡab�φ , (25)

where the scalar field potential is defined as

W (φ) = Ū |F=eλφ , (26)

which is equivalent to (17).
At this point, setting λ =

√
2/3 one obtains

Ḡab = e−λφ T̄ m
ab(ג, ḡ

ab)+∇aφ∇bφ − 1
2

ḡab∇cφ∇
c
φ −gabW (φ) . (27)

Equations (27) describe Einstein gravity plus a scalar field minimally coupled with
gravity and non minimally coupled with standard matter. This theory coincides
with the one directly derived upon variation of (18). Such result shows that the
conformal transformation (2), with

F = ϒ = exp
(√

2/3φ

)
, (28)

leads, both at the action and field equation levels, to the “same” theory in the
Einstein frame.

Comparing (27) and (19) it is clear that the possibility to perform a conformal
transformation has many advantages if one deals with a matter-less system. How-
ever, if matter is added the conformal transformation does not necessarily lead to
an easier model. This is due mainly to the non-minimal coupling between stan-
dard matter and φ appearing in (27) and (18), which induces additional terms in
the Bianchi identities. For example, the Klein Gordon equation for φ reads[

�φ −V ′(φ))
]

∇̃cφ =
1√
6

exp
(
−
√

2/3φ

)
ḡabT̄ m

ab∇̃cφ , (29)

and the energy-momentum conservation is given by

∇̃
bT̄ m

ba =

√
2
3

T̄ m
ba∇̃

b
φ − 1√

6
T̄ m

∇̃aφ . (30)

The above equations tell us that only a form of matter-energy for which the trace
T̄ is null renders the above equation conformally invariant.
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In spite of its usefulness, the conformal transformations of theories of gravity
bring a serious problem: the possibility of changing the type and number of the
fields in a theory by a simple change in the metric tensor implies that there is
no reason, a priori, to choose a specific representation of the action among all
possible ones. In other words, recognizing the freedom associated to the conformal
mapping means, in fact, loosing the physics of the theory in an infinite set of
representations. This fact, in itself, would not be a problem if those representations
would describe the same physics but, as we will see later, this does not appear to
be the case: they describe very different Universes. As a consequence we are left
with the choice of either establish the existence of the particular “physical frame”
(i.e. the specific field parametrization, that reflects the actual physical fields), or
to prove that somehow all the frames are equivalent. There is a wide literature
on this issue and we will not enter into the details of the debate referring the
reader to some of the many papers and reviews on the topic (see e.g. [10; 11; 12;
45]). The purpose of this paper is to offer, using the covariant approaches, a new
perspective on conformal transformation that might contribute to the clarification
of its properties.

3 The 1+3 covariant approach to cosmology

In this section we will present a brief introduction to the covariant approach to
cosmology. We will use this approach to understand better the physics behind the
conformal transformations and for the construction of a theory of cosmological
perturbations in the two frames.

Given a space-time associated to a cosmological model one can single out a
family of preferred worldlines representing a certain class of observers (for exam-
ple the ones comoving with standard matter). If we suppose that it is possible to
define a unique 4-velocity vector field ua associated to these worldlines, then we
can split the metric tensor as

gab = hab−ua ub , (31)

i.e. the spacetime is foliated in hypersurfaces with metric hab orthogonal to the
vector field ua. In this way any affine parameter on the worldlines associated to
ua can be chosen to represent “time” and the tensor hab (ha

c hc
b = ha

b , ha
a =

3 , hab ub = 0) determines the geometry of the instantaneous rest-spaces of the
observers we have chosen. Using ua and hab, one can then define the projected
volume form ηabc = udηabcd , the covariant time derivative (̇ ) along the funda-
mental worldlines, and the fully orthogonally projected covariant derivative ∇̃:

Ẋab
cd = ue

∇eXab
cd , ∇̃eXab

cd = ha
f hb

g hp
c hq

d hr
e∇r X f g

pq. (32)

Performing a split of the first covariant derivative of ua into its irreducible parts,
namely

∇aub =−ua ab +
1
3

Θ hab +σab +ωab , (33)

one can define the basic kinematical quantities of this formalism [17]. The trace
Θ = ∇̃aua is the rate of volume expansion scalar of the worldlines of ua (which
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is proportional to the standard Hubble parameter H: H = 3Θ ); σab = ∇̃〈aub〉 is
the trace-free symmetric rate of shear tensor (σab = σ(ab), σab ub = 0, σa

a = 0)
describing the rate of distortion of the observer flow; ωab = ∇̃[aub] is the skew-
symmetric vorticity tensor (ωab = ω[ab], ωab ub = 0) describing the rotation of
the observers relative to a non-rotating (Fermi-propagated) frame, and ab = u̇b is
the acceleration vector, which describes the non-gravitational forces acting on the
observers.7

A general matter energy-momentum tensor Tab can also be decomposed
locally using ua and hab. One has

Tab = µ ua ub +qa ub +ua qb + phab +πab, (34)

where µ = (Tabuaub) is the relativistic energy density relative to ua, qa =
−Tbc ub hca (qa ua = 0) is the relativistic momentum density, which is also the
energy flux relative to ua, p = 1

3 (Tabhab) is the isotropic pressure, and πab =
Tcd hc

〈a hd
b〉 (πa

a = 0,
πab = π(ab)) is the trace-free anisotropic pressure.

The quantities presented above completely determine a cosmological model.
Their evolution and constraint equations, also known as 1+3 covariant equations,
are completely equivalent to the Einstein equations and characterize the full evolu-
tion of the cosmology. They are shown in the Appendix. The advantages in using
these variables is that they allow for a treatment of cosmology that is both math-
ematically rigorous and physically meaningful and they are particularly useful in
the construction of the theory of perturbations.

4 The 1+3 conformal transformation

As we have seen in the previous section, a conformal transformation in relativity
and cosmology is, in fact, the combination of a geometric operation and a field
redefinition. We will treat them separately.

4.1 The geometric part of the conformal transformation

Let us look at the geometric part of the conformal transformation in terms of the
1+3 covariant approach. Starting from (2) and using (31), we can write

gab → ḡab = ϒ gab ⇒
{

hab → h̄ab = ϒ hab,

ua → ūa =
√

ϒ ua.
(35)

The equations above show how the fact that the conformal factor is positive trans-
lates in the fact that the conformal observer velocity is always well defined and
has to have the same direction of the Jordan observer. In addition, ϒ > 0 implies
that the sign of the projector tensor hab remains the same, preserving the pseudo-
Riemannian character of the manifold. The relations above also imply that in terms

7 For an introduction to relativistic fluid mechanics and more information on the meaning of
these tensors we refer the reader to [16; 51].
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of the 1+3 formalism a conformal transformation8 can be associated to a change
from the Jordan observer OJ , associated to ua, to a new one which we will call
Conformal observer OC, associated to ūa.9 In particular: (i) the conformal observer
has a 4-velocity whose modulus depends on the spacetime coordinates (and as a
consequence is accelerated), and (ii) the spatial metric of this observer is modi-
fied by the conformal factor. This tells us that (35) basically consists in switching
from an inertial observer to an observer whose clock rate and rod length change
continuously in spacetime. This can be seen clearly looking at the transformation
of the derivative operators. For scalars, we have

X † = ḡacūc∇aX =
1
ϒ

gac
√

ϒ ua∇
cX =

1√
ϒ

Ẋ , (36)

∇̃eX = h̄ r
e ∇rX = h r

e ∇rX = ∇̃eX , (37)

for vectors

X †
a = ḡcbūc∇bXa =

1
ϒ

gcb
√

ϒ uc(∇bXa−zc
baXc)

=
1√
ϒ

[
Ẋa−

1
ϒ

ubX(b∇a)ϒ +
1

2ϒ
uaX r

∇rϒ

]
, (38)

8 In the following we will consider this transformation as a passive transformation for gab.
The reason for doing so is physical. If the transformations were active, we would basically
change spacetime and the comparison of two observers in two different spacetimes would be
less physically consistent.

9 Consistently with the tradition in Relativity, here we call “observer” a reference frame in a
specific state of motion.
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∇̃eXa = h̄ c
a h̄ r

e ∇rXc = h f
a h r

e (∇rX f −zc
f rXc)

= ∇̃eXa−
1
ϒ

X(e∇̃a)ϒ +
1

2ϒ
heaX r

∇rϒ , (39)

and the ones for tensors follow accordingly.10

Since the derivatives are changed, the basic quantities that one uses to describe
the cosmology and the perturbations are also changed. The 1+3 kinematical quan-
tities are transformed as follows

Θ̄ =
1√
ϒ

(
Θ +

3
2

ϒ̇

ϒ

)
, (40)

σ̄ab =
√

ϒ σab, (41)

ω̄ab =
√

ϒ ωab, (42)

āb = ab +
1
2

∇̃bϒ

ϒ
, (43)

and the electric and magnetic parts of the Weyl tensor are transformed in them-
selves (one should beware of the position of the indices):

Eab = Eab, (44)
Hab = Hab. (45)

The transformations above describe clearly the differences between OC and OJ .
The conformal observer sees an expansion rate which is increased if the conformal
factor grows in time and it might even observe the Universe undergoing cosmic
acceleration when in the Jordan frame the expansion is decelerated11 [13]. Instead,
the vorticity and the shear are only changed by a multiplicative factor, so that under
conformal transformation homogeneous, isotropic and irrotational universes do
not loose their symmetries. Such effect can be traced back to the fact that the
velocity of the conformal observer is always parallel to the one of the Jordan
observer. Finally, the transformation of the acceleration vector shows that even if
we start from Universes with zero acceleration (i.e. no additional forces other than
gravity) the conformal observer perceives an acceleration which depends on the
spatial dependence of the conformal factor.

The connection between conformal transformation and observers is also
important when one looks at the thermodynamics. Since OC is moving with
respect to OJ with varying velocity, he/she will measure different thermodynam-
ics. In fact, using the transformation (35) one can write the energy momentum
tensor as

Tab =
µ

ϒ
ūaūb +

p
ϒ

h̄ab +
2√
ϒ

q(aūb) +πab, (46)

10 Note that when one changes the position of the index of X the corrections z change their
sign in the same way as for the Christoffel symbols.

11 Similarly, when the cosmology becomes singular in the Einstein frame the modified gravity
description in the Jordan frame shows qualitatively a different behavior (e.g. it might become a
complex theory [52; 53]).
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and the conformal observer will detect

µ̄ = Tabūaūb =
µ

ϒ
, (47a)

p̄ =
1
3

Tabh̄ab =
p
ϒ

, (47b)

q̄a = −Tbc ūb h̄ca =
qa√
ϒ

, (47c)

π̄ab = Tcd h̄c
〈a h̄d

b〉 = πab. (47d)

Thus if we assume standard matter in the JF to be a perfect fluid in its rest frame, in
the Einstein frame standard matter remains a perfect fluid in the conformal frame
(i.e. q̄a = 0, π̄ab = 0). In fact, with these transformations, in general also the equa-
tion of state is preserved. However, since OC will measure only the barred quan-
tities, the spacetime variation of all the thermodynamical quantities is different.
The thermodynamics is further modified by the transformations in the derivatives
which lead to further changes in the usual conservation laws. For example, in the
homogeneous and isotropic cases one has

µ̄
† +Θ̄(µ̄ + p̄)− 1

2
(µ̄ +3p̄)

ϒ †

ϒ
= 0. (48)

This is easy to understand in terms of the properties of the observer described
above. Since the rods of the conformal observer change in time and space, the
mass energy contained in a box at rest with this observer will change, and OC will
measure a modification of the standard conservation laws.

At this point, using the transformation of the kinematics and the thermodynam-
ics presented above, one can derive how the 1+3 equations transform under (2).
The detailed set of equations is given in the Appendix. One can see that the confor-
mal observer perceives many corrections to the standard cosmological equations.
These equations show that for an accelerated observer, like OC, the expressions
appear deeply modified in their structure. It is interesting to note, en passant, that
such observer, if unaware of its acceleration, would conclude that some exotic
physics or change in the gravitational interaction is taking place on cosmological
scale.

4.2 The field-redefinition part of the conformal transformation

Let us now concentrate on the remaining part of the conformal transformation.
As we have mentioned before, this consists basically in a field redefinition. In
principle there is no standard prescription for the definition of a field in a theory,
however the structure of the 1+3 equations and what we know about field theory
(the correct form for a kinetic term, etc.) suggests the definition (28) should be
taken. This specific choice (or any other whatsoever) leads to a tremendous change
in the model, which the 1+3 formalism helps appreciate in detail.

As we have seen, the conformal observer uses clocks and rods that change
with the spacetime coordinates. This means that such observer will perceive, for
example, an object moving with a constant velocity with respect to the Jordan
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observer as if it was accelerating. Associating the conformal factor to a scalar
field basically amounts to considering such effects as a result of the presence of a
new interaction, rather than a kinetic effect. In a way this resembles Einstein’s lift
Gedankenexperiment: the (accelerated) conformal observer becomes an inertial
observer, which we will call Einstein observer OE , and a scalar field is introduced
in the model which accounts for the additional kinematics.

What said above explains the fact that, if one performs a conformal transfor-
mation, even in pure GR, one obtains Einstein’s gravity plus a scalar field. It also
allows to clarify the nature of φ . Such field cannot be really considered a matter
field, even if it behaves exactly like one: the best interpretation for φ is, in our
view, to consider it as a kinematical effect promoted to interaction.

When one applies the conformal transformation to f (R)-gravity two additional
operations are performed, namely the specification of the nature of the thermody-
namical quantities and the connection of the scalar field with the f (R) term. Both
steps require particular attention. Let us consider the first one. If we look at the 1+3
equations as perceived by OC, we can see that these equations are different from
the ones we would obtain for the theory (18) even if we would write ϒ in terms
of φ . The reason is that these equations miss a critical ingredient, i.e. the speci-
fication of the structure of µ̄ which represent the total energy density as derived
from T tot

ab in (20). In making this substitution one has to remember the presence
of the non-minimal coupling between standard matter and the Ricci scalar and
the fact that—differently to what happens with standard-matter thermodynamical
variables—the effective variable associated to T R

ab contain derivative terms. This
implies that the effective thermodynamic quantities associated to T R

ab do not follow
strictly the transformations (47). In particular,

µ̄
R =

1
ϒ

(
µ

R +F
(

1− 1
ϒ

)
W (F)− 3

2
ϒ̇

ϒ

Ḟ
F

+
1
2

∇̃aF∇̃aϒ

F2

)
, (49a)

p̄R =
1
ϒ

(
pR−F

(
1− 1

ϒ

)
W (F)+

1
2

ϒ̇

ϒ

Ḟ
F
− 5

6
∇̃aF∇̃aϒ

F2

)
, (49b)

q̄R
a =

1√
ϒ

(
qR

a −
1
2

ϒ̇

ϒ

∇̃aF
F

− 1
2

Ḟ
F

∇̃aϒ

ϒ

)
, (49c)

π̄
R
ab = πab +

∇̃〈aF
F

∇̃b〉ϒ

ϒ
, (49d)

where

µ
R =

1
F

[
1
2
(RF − f )−Θ Ḟ + ∇̃

2F
]
, (50a)

pR =
1
F

[
1
2
( f −RF)+ F̈ +

2
3

Θ Ḟ − 2
3

∇̃
2F − ab∇̃

bF
]
, (50b)

qR
a = − 1

F

[
∇̃aḞ − 1

3
Θ ∇̃aF −σab∇̃

bF −ωab∇̃
bF
]
, (50c)

π
R
ab =

1
F

[
∇̃〈a∇̃b〉F −σabḞ

]
, (50d)
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W (F) =
R(F)F − f (F)

2F2 . (50e)

Once the correct transformations are introduced, one can substitute

|F |= eλφ , (51)

to obtain the equations one would derive from (18). Again, the 1+3 approach
helps shedding light on the physical meaning of this important step. The rela-
tion between F and φ modifies the cosmological equations in such a way that all
the higher-order terms are compensated, and one is just left with a linear theory of
gravity and a scalar field minimally coupled to the geometry. In other words, one
is thereby choosing a specific form of the conformal factor for which the kinemat-
ical terms compensate the non-Einstenian part of the equations. Thus, in practice,
the Einstein observer moves in such a way to compensate the f (R) correction.
Such compensation is complete in vacuum, but constraints matter to move non
geodetically (at least with the choice (51)) as a footprint of the transformation we
performed. Also this fact bears clear similarities with Einstein’s lift experiment:
the only way in which the observer in the lift is able to infer the presence of an
actual gravitational field is to study the geodesic deviation of matter.

5 Perturbations and conformal transformations

At this point we are ready to move our attention on how the conformal transfor-
mations affect the evolution of the cosmological perturbations. This will be done
using the CoGI approach, which is based on the 1+3 equations mentioned in the
previous section and listed in Appendix.

The CoGI approach presents one main difference (which is at the same time
a point of strength) with respect to other perturbation theory approaches in that
it relies directly on the structure of the perturbed Universe, rather than on the
concepts of background quantities and perturbations. In normal cases, the struc-
ture of the perturbed spacetime is trivial because one can just consider a com-
pletely generic spacetime. However, when we want to compare the perturbations
of two conformally related spacetimes, the structure of the perturbed Universe in
the “arrival” frame is not generic, but depends on the type of transformation cho-
sen. In what follows we will assume that the conformal factor is a function of all
the spacetime coordinates.12

The next step in the construction of the CoGI formalism is the definition of
the background. This is not done by assigning a metric, but rather by recognizing
which 1+3 quantities are zero in the background and which are not. In what fol-
lows we will consider expanding (Θ 6= 0) homogeneous and isotropic (σab = 0,

12 In principle one could choose a conformal factor which depends on spatial or temporal
coordinates only, but this would induce problems in the connection between the conformal factor
and the scalar field made in Sect. 2.1. For example, performing a conformal transformation with
a conformal factor that depends, say, only on time, would result in the disappearance of all
the projected derivatives of φ in the 1+3 equations and would make impossible to characterize
the perturbation of this field. If one would force the perturbations on these quantities, like one
seems to be able to do in other perturbation formalisms, the perturbation of φ would represent
a fluctuation of the conformal mapping, introducing something similar to gauge modes in the
theory.
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ωab = 0) backgrounds. In this setting we will characterize the perturbations in
terms the of 1+3 quantities seen in Sect. 3 and their projected gradients. For exam-
ple, the key quantities relevant to the evolution of scalar perturbations in GR are
(defining S as the averaged length scale given by 3Ṡ = ΘS)

Da =
S
µ

∇̃aµ, Za ≡ S∇̃aΘ , Ca ≡ S3
∇̃aR3, (52)

which represent the comoving normalized spatial gradient of the energy density,
the comoving spatial gradient of the expansion, and the comoving spatial gradi-
ent of the 3-Ricci scalar, respectively. These variables are related by a constraint
coming form the spatial derivative of the Gauss equation [30; 31]. Moreover it can
be proven that these variables, as well as any other quantity which vanish in the
background, are gauge-invariant [54].

A quick look to the Einstein frame 1+3 equation in Appendix shows clearly
that the tensor and vector perturbation equations are left unchanged in their struc-
ture, but, as we will see, the same cannot be said of the scalar perturbations. In the
following we will focus on this last type of perturbations only and, specifically, on
spherically symmetric collapse, which is associated to the cosmological density
fluctuations. To extract this information from the variables (52), we use the local
splitting

S∇̃aXb = Xab =
1
3

habX +Σ
X
ab +X[ab], (53)

where

Σ
X
ab = X(ab)−

1
3

habX , (54)

and we then single out the scalar parts of (52):

∆
m =

S2

µm ∇̃
2
µ

m, Z = S2
∇̃

2
Θ , C = S4

∇̃
2R̃, (55)

which are gauge invariant, for the same reasons that Da,Za,Ca are. We will select
(and deal) with variables of the type (55) only.

In order to describe the scalar fluctuations in f (R)-gravity (as in any other
gravitational theory) we will use the variables (52), plus other ones that will take
into account the additional degrees of freedom of the theory and are defined specif-
ically for the theory itself. The results of [54] will guarantee that these new quan-
tities are indeed gauge invariant.

At this point it is relatively easy to construct the perturbation equations. Start-
ing from the 1+3 equations one obtains a set of propagation and constraint equa-
tions for the variables (55). Then, one chooses a background while recognizing
which of these variables is zero in the background. These variables are then con-
sidered to be of order one. At this point the linearized equations can be obtained
by dropping all the terms of order higher than one from the propagation and con-
straint equations.

Before analyzing in detail the transformation of the perturbation equations thus
obtained, let us consider—as we already did for the kinematical quantities—what
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can we learn from the transformation of the perturbation variables (55) upon (2).
We have

Da =
S̄
µ̄

∇̃aµ̄ =
√

ϒ

(
Da−S

∇̃aϒ

ϒ

)
, (56a)

Za = Za−
1
2

SΘ
∇̃aϒ

ϒ
− 9

4
S

ϒ̇

ϒ

∇̃aϒ

ϒ
+

3
2

S
∇̃aϒ̇

ϒ
, (56b)

Ca =
√

ϒ

[
Ca−2S2Za

ϒ ′

ϒ
+S3

(
8Θ

ϒ̇

ϒ
+9

ϒ̇ 2

ϒ 2 −2R̃
)

∇̃aϒ

ϒ

−S3
(

2Θ +
3ϒ ′

ϒ

)
∇̃aϒ̇

ϒ

]
. (56c)

This clearly shows that the matter fluctuations in the Einstein frame are a combi-
nation of the matter fluctuations in the Jordan frame with the fluctuations of the
conformal factor. This can be understood, intuitively, if one thinks that the con-
formal observer measures the matter fluctuations with clocks and rods which are
also perturbed. It is useful to give the transformation for the scalar variables too,
which read, to first order,

∆ = ϒ

(
∆ −S2 ∇̃2ϒ

ϒ

)
, (57a)

Z =
√

ϒ

(
Z− 1

2
S2

Θ
∇̃2ϒ

ϒ
− 9

4
S2ϒ̇

ϒ

∇̃2ϒ

ϒ
+

3
2

S2 ∇̃2ϒ̇

ϒ

)
, (57b)

C =
√

ϒ

[
C−2S2Z

ϒ̇

ϒ
+S3

(
8Θ

ϒ̇

ϒ
+9

ϒ̇ 2

ϒ 2 −2R̃
)

∇̃2ϒ

ϒ

−S3
(

2Θ +
3ϒ ′

ϒ

)
∇̃2ϒ̇

ϒ

]
. (57c)

The differences between the Jordan and the Einstein frames appear clearly: even if
the JF matter fluctuations are close to zero for some reason, OE can still be able to
observe matter fluctuations, or, depending on the choice of the conformal factor,
in spite of the presence of matter fluctuations in the Jordan frame the conformal
observer could possibly see no matter fluctuations at all! In addition, because of
the transformations above, it seems clear that Ċ = 0 does not necessarily imply that
˙̄C = 0. This means that in the long wavelength limit the system of perturbation

does not posses a conserved quantity, like it happens in GR. Such feature will
have an important impact on the difference in the perturbation behaviors in the
two frames.

The equations above also show that, in general, the perturbation equations are
not conformally invariant in the sense of [44]. For example, given the structure of
(56a) and (57a), one can see that it would be difficult to prove that there exists a
number s such that Da = ϒ sDa.
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5.1 Scalar perturbations of f (R)-gravity in the Jordan frame

Let us now derive explicitly the perturbation equations for f (R)-gravity around an
homogeneous and isotropic background in the presence of a barotropic fluid with
equation of state pm = ωµm. The zeroth order equations are given by

Θ
2 = 3

µm

F
+3µ

R− 3R3

2
, (58a)

Θ̇ +
1
3

Θ
2 +

1
2F

(µ
m +3pm)+

1
2
(µ

R +3pR) = 0, (58b)

µ̇
m + Θ (µ

m + pm) = 0, (58c)

µ̇
R + Θ (µ

R + pR)−µ
m F ′

F2 Ṙ = 0, (58d)

where µR and pR are given in (50a) and (50b), R3 is the 3-Ricci scalar and R3 =
6K/S2 with the spatial curvature index K = 0,±1 and S coincides now with the
usual scale factor.

Now, in order to model the additional degrees of freedom of this theories one
can add to (55) the following scalar quantities

R = S2
∇̃

2R, ℜ = S2
∇̃

2Ṙ, (59)

where R determine the fluctuations in the Ricci scalar R and ℜ and the ones
of its momentum Ṙ.13 Again, since these quantities vanish in the background,
we can say that, as in the case of ∆ ,Z and C, they are gauge invariant. The set
of variables ∆ ,Z,C,R,ℜ completely characterizes the evolution of the density
perturbations in f (R)-gravity. Their evolution equations constitute a system of
first order partial differential equations [30; 31]. In order to reduce it to a system
of ordinary differential equations, one defines the eigenfunctions of the spatial
Laplace-Beltrami operator:

∇̃
2Q =− `2

S2 Q, (60)

where ` = 2πS/λ is the wave number and Q̇ = 0, and expands every first order
quantity in the above equations:

X(t,x) = ∑X (`)(t) Q(`)(x), (61)

where ∑ stands for both summation over discrete or integration over continuous
indices. In this way, one obtains the equations describing the `th mode for scalar

13 This choice of variables is by no means unique, but the ones we have chosen are definitely
among the most convenient.
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perturbations in f (R) gravity. They are [30; 31]:

∆̇
(`)
m = wΘ∆

(`)
m − (1+w)Z(`), (62)

Ż(`) =
(

ṘF ′

F
−2Θ

3

)
Z(`)+

[
(w−1)(3w+2)

2(w+1)
µm

F
+

2wΘ 2+3w(µR+3pR)
6(w+1)

]
∆

(`)
m

+
ΘF ′

F
ℜ

(`)+

[
1
2
−F ′

F
`2

S2−
1
2

f
F

F ′

F
−F ′

F
µm

F
+ṘΘ

(
F ′

F

)2

+ṘΘ
f (3)

F

]
R(`),

(63)

Ṙ(`) = ℜ
(`)− w

w+1
Ṙ ∆

(`)
m , (64)

ℜ̇
(`) =−

(
Θ +2Ṙ

f (3)

F ′

)
ℜ

(`)− ṘZ(`)−
[
(3w−1)

3
µm

F ′ +
w

3(w+1)
R̈
]

∆
(`)
m

+

[
`2

S2 −

(
1
3

F
F ′ +

f (4)

F
Ṙ2 +Θ Ṙ

f (3)

F ′ + R̈
f (3)

F ′ −
R
3

)]
R(`). (65)

These equations have been thoroughly studied in [30; 31], we refer the reader to
these papers for additional information on their properties.

5.2 Scalar perturbations of f (R)-gravity in the Einstein frame

Let us consider now the Einstein frame.14 The Lagrangian and the general field
equations are given by (18) and (27) respectively. Considering the background
choices in the Jordan frame and the transformations (40), (47) and (49), we obtain
the associated background equations:

Θ̄
2 = 3µ̄

me
(
−
√

2/3φ

)
+3µ

φ − 3R̄3

2
, (66a)

Θ̄
† +

1
3

Θ̄
2 +

1
2
(µ̄

m +3p̄m)e
(
−
√

2/3φ

)
+

1
2
(µ

φ +3pφ ) = 0, (66b)

µ̄
†
m + Θ̄ (µ̄

m + p̄m)−
√

2
3

µ̄
m

φ
†− 1√

6
(3p̄m− µ̄

m)φ † = 0, (66c)

�φ −W ′(φ) =
1√
6
(3p̄m− µ̄

m) e
(
−
√

2/3φ

)
, (66d)

14 In the following we will reconstruct the perturbation equations from the 1+3 system given
in Appendix. Of course one could have made the transformation directly from (62) using the
formulas given above. The result is, of course, the same.
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where

µ
φ =

1
2
(φ †)2 +

1
2

∇̃
a
φ ∇̃aφ +W (φ), (67a)

pφ =
1
2
(φ †)2 − 1

6
∇̃

a
φ ∇̃aφ −W (φ). (67b)

In order to model the additional degrees of freedom, we need to define two addi-
tional variables:

Φ̄ = S2
∇̃

2
φ , Ψ̄ = S2

∇̃
2
φ

†, (68)

which represent, by construction [54], the gauge invariant fluctuations of the scalar
field and its momentum. The relation between the variables in the Jordan and
Einstein frames, at linear order, is given by

∆̄
m = F

(
∆

m− F ′

F
R

)
, (69a)

Z̄ = Z− 1
2

Θ
F ′

F
R +

3
2

F ′

F
ℜ, (69b)

Φ̄ =

√
3
2

F ′

F
R, (69c)

Ψ̄ =

√
3

2F

[(
F ′′

F
− 3

2
(F ′)2

F2

)
ṘR +

F ′

F
ℜ

]
. (69d)

This allows us to connect the initial conditions in the two frames. The fact that
in the Einstein Frame we need the same number of variables as in the Jordan
one, shows that in the conformal transformation no information on the degrees of
freedom is lost, as it is expected.

In performing the harmonic decomposition one needs to remember that the
defining equation for the covariant harmonics (60) has to be transformed too, so
that the Qs could be different. However, using (38) one obtains

ϒ ∇̃
2Q̄− 1

2
∇̃aQ̄∇̃aϒ

ϒ
=−ϒ

`2

S̄2 Q̄, (70)

which shows that, at first order, Q̄ = Q. Using this, one is able to write the pertur-
bation equations as follows

∆
†
(`) =

[
wΘ − w(3w+1)φ †

√
6(w+1)

]
∆(`)− (w+1)Z(`) +

√
6

6
(3w+1)Ψ(`)

+(w−1)

[√
6

6
Θ − (3w+1)φ †

6(w+1)

]
Φ(`), (71)

Z†
(`) = −2

3
ΘZ(`)−2φ

†
Ψ(`) +

2w
[
Θ 2 +3(φ †)2−3W

]
−3e−

√
2
3 φ (3w+1)µ

6(w+1)
∆(`)

+
1

6
√

6(w+1)

[√
8
3
(w−1)Θ 2 +3(3w+1)2

µe−
√

2
3 φ +3(w−1)(φ †)2
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−6(w−1)W +3
√

6(w+1)W ′

]
Φ(`), (72)

Φ
†
(`) = Ψ(`)−

wφ †

w+1
∆(`)−

(w−1)φ †
√

6(w+1)
Φ(`) (73)

Ψ
†
(`) = −ΘΨ(`)−φ

†Z(`) +
1√

2(w+1)

[
(1−3w)µ e−

√
2
3 φ +

√
6wΘφ

†

+
√

6wW ′
]

∆(`) +
1

12(w+1)

[
2
(
9w2−1

)
µ e−

√
2
3 φ +6

√
2(w−1)Θφ

†

(74)

+6
√

2(w−1)W ′−12
√

3(w+1)W ′′
]

Φ(`). (75)

The most striking difference between the system above and (62) is the structure
of the matter fluctuation equation (71). In the Einstein frame the scalar field and its
momentum act as a source for the matter fluctuations and influence the dissipation
term. Such difference in the behavior of the perturbation in the two frames is due
to the change in the structure of the derivative operators. Also, the structure of
the coefficients of the remaining equations is deeply modified, and this will surely
induce changes in the behavior of the solution. As we will see in the examples,
the difference is particularly evident on large scales, because of the absence of the
conserved quantity that characterizes the JF [30].

6 Two examples

In the following we will explicitly consider two examples, one related to a sim-
ple f (R) model in a FLRW background and the other arising from a de Sitter
background in an f (R) cosmology.

6.1 The Einstein frame perturbations for Rn-gravity

Let us consider the case f (R) = χRn, called also sometimes Rn-gravity, which
action reads

L =
√
−g
[
χRn +2Lm(ג,gab)

]
, (76)

and constitutes the simplest possible example of fourth-order gravity. We choose
this model because its homogeneous and isotropic cosmologies have been studied
in detail using the dynamical system approach [18; 19; 20], while the evolution of
the large scale cosmological perturbations of a FLRW background has been inves-
tigated in [30; 31] using the covariant gauge invariant approach. As background
solution in the Jordan frame, we will choose the transient spatially flat solution:

S = S0

(
t
t0

) 2n
3(1+w)

. (77)



22 S. Carloni et al.

Here we will only consider the case n > 3
4 (1+ω) for this background, in order to

keep the sign of F = nRn−1 always positive, consistently with the condition (15).
In the Einstein frame (76) corresponds to the theory

L̄ =
√
−ḡ
[

R̄− ḡab
∇aφ∇bφ −W0e

√
2
3

(n−2)
1−n φ +2e−

φ√
6 Lm(ג, ḡab)

]
, (78)

where W0 = 1
2 (χ)

1
1−n n

n
1−n (n−1). In turn, (77) for n 6= 3/2 transforms into a solu-

tion for the scale factor given by

S̄ = S̄0

(
t̄
t̄0

) n+3(n−1)w−3
3(2n−3)(w+1)

, (79)

where

S̄0 = S0χ
1

6−4n t
n−1
2n−3

0 n
n

6−4n (w+1)
n−1

4n−6

(
3
2
−n
) n−1

2n−3
(

4n
3(w+1)

−1
) n−1

6−4n
, (80)

and induces a solution for the scalar field

φ = φ0−
1

(2n−3)

√
3
2

ln

(
t̄ 2(n−1)

χ

)
, (81)

with

φ0 = ln
[

3nn22n−1(3−2n)2(1−n)(w+1)1−n
(

8n
w+1

−6
)(

4n
3w+3

−1
)n]

.

(82)

If n = 3/2, instead, one obtains

S̄ = S̄0e
− (n+3(n−1)w−3)t̄+2nt̄0

3χ
√

3n[4n−3(w+1)] , (83)

where now

S̄0 = 2n−1nn/2S0

(
4n
3
−w−1

) n−1
2

(w+1)1−n√
χ, (84)

and induces a solution for the scalar field

φ = φ0−
2(n−1)(w+1)t̄

χ
√

3n[4n−3(w+1)]
, (85)

with

φ0 =

√
3
2

ln

[
4n−1nχ

(
n

w+1

)n−1( 4n
3(w+1)

−1
)n−1

]
. (86)
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Fig. 1 Comparison of the time evolution of the long wavelength density fluctuations in the
Jordan frame and the Einstein frame in the case of Rn-gravity and dust. Note that for n → 1 the
two solutions tend to converge to the GR solution. This is due to the fact that in this limit in both
frames the equations tend to the GR ones. a The time evolution of the long wavelength density
fluctuations in the Jordan frame for n = 1.1. b The time evolution of the long wavelength density
fluctuations in the Einstein frame for n = 1.1. c The time evolution of the long wavelength
density fluctuations in the Jordan frame for n = 1.2. d The time evolution of the long wavelength
density fluctuations in the Einstein frame for n = 1.2

This last case is particularly interesting because it explicitly shows how a non
accelerating background is in fact transformed into a de Sitter solution via a con-
formal transformation.

Introducing these solutions in the two scalar perturbation systems (62) and
(71), we are able to calculate numerically the evolution of the scalar fluctuations
in the two frames. The results we obtained for the long wavelength dust (ω = 0)
fluctuations, with different values of the parameter n, are shown in Figs. 1 and 2.
It is clear from these that, as expected from the general equations, the behavior
of the scalar perturbations differs in the two conformal frames. In particular one
can notice that the growth rate of the fluctuation becomes more and more different
when n increases. For example, for n = 1.4 the perturbations in the Jordan frame
decay, while they still grow in the Einstein frame. Moreover, the JF perturbations
on the several scales evolve clearly with a power law behavior, while the EF ones
oscillate visibly, as expected form the general considerations in the previous sec-
tion. Finally one can see that for n → 1 the differences in the matter fluctuations
in the two frames tend to disappear. This happens because in the Jordan frame
the fourth-order terms, being multiplied by the n− 1 factor, become more and
more suppressed and the corresponding theory tends to ordinary GR. A similar
phenomenon happens in the Einstein frame: for n → 1 the scalar field is related
to Rn−1 and tends to a constant while its potential tends to zero so that the theory
corresponds once more to pure Einsteinian gravity.

6.2 Perturbations of the de Sitter spacetime in f (R)-gravity

In this section we will compare the properties of the Jordan and of the Einstein
frames of f (R) cosmological models characterized by a de Sitter background.
The presence of such background(s) in f (R)-gravity is one of the most impor-
tant features of these theories because it has the potential to model both inflation
and dark energy [56; 57]. In fact, it has been proven that a viable f (R)-gravity
model unifying inflation and late time acceleration in the form of double de Sit-
ter solution can be always constructed numerically [58]. As we will see, however,
such backgrounds are not suitable for structure formation, because matter, even if
present in non negligible quantities, is dissipated very quickly. Notwithstanding
this physical issue, the peculiar properties of this metric allow us to go deeper in
understanding the difference between the two frames.



24 S. Carloni et al.

Fig. 2 Comparison of the time evolution of the long wavelength density fluctuations in the
Jordan frame and the Einstein frame in the case of Rn-gravity and dust. a The time evolution of
the long wavelength density fluctuations in the Jordan frame for n = 1.3. b The time evolution of
the long wavelength density fluctuations in the Einstein frame for n = 1.3. c The time evolution
of the long wavelength density fluctuations in the Jordan frame for n = 1.4. d The time evolution
of the long wavelength density fluctuations in the Einstein frame for n = 1.4.

6.2.1 Perturbations of the vacuum de Sitter spacetime in f (R)-gravity

Let us consider a Universe in which the background is given by a de Sitter space-
time characterized by a scale factor S = S0eβ t and vacuum (µ = 0). Substituting
in the cosmological equations it is easy to show that β has to satisfy the equation

18β
2F0− f0 = 0, (87)

where F0 = F(R0), f0 = f (R0) and R0 = 12β 2. Let us now consider a perturbation
of this spacetime in which a fluid, constituted for instance by standard matter, is
present. According to what has been said in the previous section on this model,
this fluid will be described by first-order quantities. We will also assume that the
fluid is actually barotropic in its rest frame i.e. its equation of state is p = ωµ .
Choosing a set of observers comoving with it,15 the harmonically decomposed
perturbation equations reduce to

∆̇
(`) =−3β (ω +1)∆ (`), (88)

R̈(`) +3βṘ(`) +

[
e−2tβ `2

S2
0

−12β
2 +

4 f0

F0
+

2F0

F ′
0

]
R(`)− (1−3ω)∆ (`)

3F ′
0

.

(89)

In this system the equation for ∆ is scale invariant and, as expected, matter per-
turbations are exponentially suppressed with a time constant which depends on
ω and the time constant of the de Sitter solution. The curvature perturbations,
instead, are governed by a second-order equation which is forced by the matter
term.

In the long wavelength limit ` = 0 the above equations yield the general solu-
tions

∆ = ∆0 e−3tβ (1+ω) = ∆0

(
S
S0

)−3(ω+1)

, (90)

R = R0,1 e−3tβ (1+ω) +R0,2 etα+ +R0,3 etα− , (91)

where

α± =−3β ±

√
25β 2− 4F0

3F ′
0
. (92)

15 Since the definition of the fluid flow ua is made at the level of the perturbed Universe this
choice is legitimate. In addition to that, the de Sitter solution is frame invariant so any choice of
frame in the background is equivalent.
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Here R0,i and ∆0 are constants of integration and we have dropped the apex “(0)”
to make the notation lighter. It is plain from this solution that, in a de Sitter back-
ground, standard matter is clearly made homogeneous, but this is not the case for
the perturbation of the Ricci curvature. If one considers R as representing the
scalar gravitational waves normally associated to this type of theories, one can see
that, depending on the form of the function f , this kind of perturbation is able
to grow. In addition, if we imagine our f (R)-model to be a (classic) inflationary
one, we can see that the analysis of these scalar waves would constitute a direct
and purely classical test of the nature of the gravitational interaction, based on the
gravitational wave relic of the inflationary era. This is a result worth exploring.

In the Einstein frame, the background S corresponds to another de Sitter back-
ground, given by

S̄ = S̄0et̄ζ , ζ =
β

F0
= β e−

√
2/3φ0 , φ = φ0 =

√
3
2

log [F0] , (93)

where S̄0 = S0
√

F0. The perturbation equations become

∆̄
†
(`) =

β

3
e−
√

2/3φ0 ∆̄(`), (94)

Φ̄
††
(`) =−β e−

√
2/3φ0Φ̄

†
(`)−

`2

S̄2
0

Φ̄(`) e−2t̄ζ−
√

2/3φ0 . (95)

It is clear that, also in the Einstein frame, standard matter perturbations are scale
invariant, and they are dissipated by the expansion, but in this frame they do not
act as a source of the perturbation of the scalar degree of freedom. In fact the two
equations above are decoupled and can be solved exactly. In the long wavelength
limit ` = 0, one has

∆̄ = ∆̄0 et̄ζ = ∆̄0

(
S̄
S̄0

)1/3

, (96)

Φ̄ = Φ̄0,1−
Φ̄0,2

β
e−t̄ζ+

√
2/3φ0 . (97)

where we have dropped again the apex “(0)”. Note how, because of the modifi-
cation in the conservation equations, the evolution of the density perturbation in
the Einstein frame does not depend on the barotropic factor of the matter fluid.
Also the behavior of Φ can be very different from the one of R. For F > 0, for
example, the first quantity is damped and converges exponentially to a constant
value, while the latter one can exhibit a very different behavior.

The form of the exponents of the modes the solutions above for some popular
models of f (R)-gravity [55; 56; 57] are given in Table 1.

6.2.2 Perturbations of the non-vacuum de Sitter spacetime in f (R)-gravity

The background solutions we have considered so far are purely-vacuum solutions.
This is due to the fact that the cosmological equations do not seem to be com-
patible with the de Sitter evolution in presence of matter. However, one can find
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Table 1 Some of the values of β and the exponents of the modes of the scalar fluctuation
solutions for various popular f (R)-gravity models in pure de Sitter backgrounds in the Jordan
and in the Einstein frames

f (R) β α±

R+ χRn
(
22n−13n−1α −3n4n−1nχ

) 1
2−2n −3β ±A

exp(qR) ± 1
3
√

2q ± 2
3

√
2
q

Rm+χ

1+ξ Rn
3n+14nnβ 2n(12mξ β 2m+1)−(3m(34mm+22m+1)ξ β 2m+2)(12nβ 2n+χ)

12(12mξ β 2m+1)2 = 0 −3β ±
√

25β 2 +B

R+ χ + χ

α[(Rβ−1)2n+1+1]+1
β 2 − 6β 2ξ 2 χ2(2n+1)(12β 2ξ−1)2n

(2(12ξ−1)2n+1+ξ χ+2)2 + χ

6 −
ξ χ2

12(12β 2ξ−1)2n+1
+ξ χ+2

= 0−3β ±
√

25β 2 −D

A =
√

25n2+7n−32
3n(n−1)

(
22n+3 −3n4n

) 1
2−2n χ

1
2−2n

B =
16(12mξ β 2m+1)(12nnβ 2n(12mξ β 2m+1)−12mmβ 2mξ(12nβ 2n+χ))

12mmξ(12m(m+1)ξ β 2m−m+1)(12nβ 2n+χ)β 2m+12n(n−1)n(12mξ β 2m+1)2
β 2n−22m+2n+13m+nmnξ(12mξ β 2m+1)β 2(m+n)

C =
2
(

24nβ 2ξ χ(144ξ β 4+1)−n−1
+1
)
(144ξ β 4+1)n+2

3nξ(144(2n+1)β 4ξ−1)χ

D =
(12β 2ξ−1)1−2n

(
2(12β 2ξ−1)2n+1

+ξ χ+2
)3

3(2n+1)ξ 3 χ2
(

2(n+1)(12β 2ξ−1)2n+1−n(ξ χ+2)
)
(

1− 2(2n+1)ξ 2(12β 2ξ−1)2n
χ2(

2(12β 2ξ−1)2n+1
+ξ χ+2

)2

)
f (R) ζ

R+ χRn 2
1

n−1 (2−3n)(3n−1(22n+1−34nn)χ)
1

2−2n

2−2n
exp(qR) ± 1

3
√

2e2/3q3/2

Rm+χ

1+ξ Rn
12β 3(12mξ β 2m+1)2

12nnβ 2n(12mξ β 2m+1)−12mmβ 2mξ(12nβ 2n+χ)
R−χ

[(
1

ξ R2+1

)n
−1
]

β

24nβ 2ξ χ(144ξ β 4+1)−n−1
+1

R+ χ + χ

α[(Rβ−1)2n+1+1]+1
β

1−
2(2n+1)ξ 2(12β2ξ−1)2n

χ2(
2(12β2ξ−1)2n+1

+ξ χ+2
)2

For the more complex forms of f (R) the implicit equation to be solved in order to find the parameters have been
given. Of special interest are the models f (R) = Rm+χ

1+ξ Rn and their generalizations, which can provide a unique
theoretical framework for early time inflation and late time acceleration [56; 57] (the first unified models of this
type were proposed in [13; 49])

special equations of state for which a de Sitter solution can exist within f (R)-
gravity which is actually compatible with a non zero (although constant) energy
density.

Let us consider an homogeneous and isotropic cosmology with a fluid with
equation of state p = γµ + ξ where γ is a barotropic factor, µ is (as before) the
matter energy density and ξ = 1

2 (γ +1)
[

f0−18β 2F0
]
.16 Then a generic de Sitter

spacetime S = S0eβ t is a solution for this cosmology provided that µ = µ∗ is
constant and µ∗ = − ξ

1+γ
. If one derives the scalar perturbation equations in the

16 Note that this fluid is physical only as far as µ is different from zero, because in the vacuum
case one would have a pressure which is not associated to any energy density. In the following
we will always assume µ 6= 0.
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Jordan Frame, one obtains, after harmonic decomposition,

∆̇
` =−3β (γ +1)∆ `, (98)

R̈` +3βṘ` +

[
e−2tβ `2

S2
0

−12β
2 +

4 f0

F0
+

2F0

F ′
0

]
R`− (1−3γ)∆ `

3F ′
0

. (99)

In this system, as expected, the matter perturbations are exponentially suppressed
with a time constant which depends on γ and on the time constant of the de Sitter
solution, while the curvature perturbations are forced by the matter term. In the
long wavelength limit ` = 0 the above equations yield the general solutions

∆ = ∆0e−3t(ωβ+β ), (100)

R = e−3t(ωβ+β )c1 + etα+c2 + etα−c3, (101)

where

α± =−3β ±

√
57β 2− 8 f0

3F0
− 4F0

3F ′
0
, (102)

and ci are constants of integration.
In the Einstein frame the background S transforms again into the de Sitter

background seen in the previous case plus a constant scalar field, however the
presence of matter in both the background and the perturbed Universe makes the
differences between the two frames even more evident. The perturbation equations
in the Einstein frame read

∆̄
†
` = −(γ +1)β∆̄` e−

√
2/3φ0 −

√
2
3

Φ
†
` , (103)

Φ
††
` = −βΦ

†
` e−

√
2/3φ0 +

(
− `2

S̄2
0

e−4t̄ζ−
√

2/3φ0 +
ξ (3γ −1)
3(1+ γ)

e−
√

2/3φ0

)
Φ`

+
ξ√
6

(1−3γ)
1+ γ

∆̄` e−
√

2/3φ0 . (104)

Comparing with (100), one finds that the equation describing the matter pertur-
bations does not decouple, so that the interaction between the scalar degrees of
freedom and matter is more pronounced. The solution of this system reads

∆̄ = ∆̄0,1 eδ1t̄ + ∆̄0,2 eδ2t̄ + ∆̄0,3 eδ3t̄ , (105)

Φ = Φ0,1 eα1t̄ +Φ0,2 eα2t̄ +Φ0,3 eα3t̄ , (106)

where Φ0,i and ∆̄0,i are integration constants, while αi and δi are the solutions of
the equations [

et̄δ−λφ0β (γ +1)+ et̄δ
δ

]
∆0 + et̄α

αλΦ0 = 0,{
et̄α

α
2−
[
−et̄α−λφ0αβ − 1

6
et̄α−λφ0(γ +1)(3γ −1)

(
18eλφ0β

2− f0

)]}
Φ0

−1
4

et̄δ−λφ0(γ +1)(3γ −1)λ
(

18eλφ0β
2− f0

)
∆0 = 0. (107)
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It seems clear that the presence of matter at the background level enhances the
differences between the equations in the two frames, JF and EF. This obviously
propagates to their solutions too. As an example, the matter fluctuations in the Ein-
stein frame contain now three modes while the ones in the Jordan frame contain
only one.

7 Discussion and conclusions

In this paper we have used the 1+3 covariant approach and the CoGI approach to
investigate the physics of conformal transformations. We have shown that, what
is ordinarily called a conformal transformation is in fact the combination of two
different transformations: the usual geometrical transformation of the metric, first,
and a subsequent redefinition of the fields in the theory. The two transformations
are independent from each other and each one has its own specific meaning. In
particular, the geometrical conformal transformation can be seen as the passage to
an observer, called conformal, which is non-inertial, e.g., the conformal observer
possesses an acceleration with respect to the reference observer in JF and perceives
a warped spatial metric. In operational terms, this implies that the rods and clocks
of this observer have a rate and length which depend on the spacetime coordinates.
In performing this transformation, that is a (relatively) simple change of observers,
no change in the model occurs.

A real change can appear only in the second transformation, when the fields
are redefined. This redefinition corresponds, operatively, to impose to the confor-
mal observer to be inertial and to assuming that all the non-inertial effects the
conformal observer perceives are, in fact, due to a new interaction. This realiza-
tion physically clarifies both the origin and nature of the scalar field in the Einstein
frame: this field is not a new form of matter energy, but just a kinematic effect,
conceptually not dissimilar from a non-inertial force in classical mechanics. In
some cases, like the scalar tensor gravity one, such change is masked by the fact
that there are ways to redefine a scalar field in the action which do not change any
other aspects of the theory. In others, like f (R)-gravity, the situation is more deli-
cate and, as we have seen, the effect of this transformation becomes more evident.

The new scalar field is precisely the key to the important simplification that
non-standard gravitational models undergo upon being conformally transformed.
In particular, when one transforms a specific theory of gravity, the conformal
transformation is chosen in such a way that the kinematic effects compensate the
non-Einsteinian contribution to the theory. As a consequence, the transformation
reduces non-standard gravity to standard GR plus a scalar field. It is interesting
to note that this new field turns out to be non-minimally coupled to matter only if
a non-minimal coupling is already present in the theory. In other words, the con-
formal transformation does not generate non-minimal coupling between the scalar
field and standard matter.

In this paper we have explicitly derived the 1+3 kinematical and thermody-
namical variables and this has given us an idea of the general action of confor-
mal transformations on a cosmological model. In particular we have seen that,
as expected, the physics in the Einstein frame can have characteristics which are
completely different from the ones arising in the Jordan frame. Even if some of
the geometrical properties of the cosmology are preserved (homogeneous and
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isotropic Universes are mapped into homogeneous and isotropic universes), its
behavior can be very different. As we have seen explicitly, it can even happen that
decelerating cosmologies are mapped in accelerated ones.

These differences become even more pronounced when we consider first-order
perturbations. In particular, from the 1+3 equations it is quite clear that the struc-
ture of first-order vector and tensor perturbations are not affected by the confor-
mal transformation, but the same cannot be said of the scalar perturbations, which
include the matter density fluctuations. The behavior of these quantities appears
to be very different in the two frames, not only in terms of the growth rate, but
also concerning general evolutionary features, as the presence or absence of oscil-
lations, and so on.

In recent years, the issue has been raised that the difference we have encoun-
tered between the Jordan and the Einstein frame are only apparent, because
they do not take in account that we usually perform measurement compar-
ing homogeneous physical quantities and in these comparisons the confor-
mal factor can be cancelled out [11; 12]. Although this is certainly true for
(some specific!) local measurements, it is also true that a theory of measure-
ment in GR has not yet been formulated [59; 60], and one should refer to
this theory to determine if the differences in the cosmologies of the con-
formal frames are apparent or not. The development of such theory and the
analysis of its consequences is well beyond the scope of this paper and it will
be pursued elsewhere.

We would like to conclude saying that the results above show clearly that our
analysis provides a set of very efficient tools to perform a thorough analysis of con-
formally related cosmological models. Even if we have used these tools to probe
the differences between the two conformal frames, the transformations equations
can be also used to translate results obtained in one of the frames to another, or
even to define new forms of the conformal factor specifically tailored to analyze
different aspects of the theories considered. The mathematical structure of the
1+3 formalism guarantees that this is possible also when one introduces approx-
imations. Hence, seen through the 1+3 approach, the conformal transformation
becomes a powerful tool, able to help in the analysis of complicated alternative
gravity models in ways so far unexpected, which deserves further investigation.
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Appendix: The 1+3 equations and their form in the conformal frame

In this appendix we will list explicitly all the 1+3 covariant equations in the differ-
ent frames. Here µ and p represent the total energy density and pressure, respec-
tively, that one would define when the field equations are in the form Gab = T tot

ab .
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The general 1+3 equations

Expansion propagation (generalized Raychaudhuri equation):

Θ̇ +
1
3

Θ
2− ∇̃

aaa−aaaa +2σabσ
ab−2ωaω

a +
1
2
(µ +3p) = 0. (108)

Vorticity propagation:

ω̇〈a〉+
2
3

Θωa−
1
2

curlaa−σabω
b = 0. (109)

Shear propagation:

σ̇〈ab〉+
2
3

Θσab− ∇̃〈aab〉−a〈aab〉+σc〈aσb〉
c +ω〈aωb〉+Eab−

1
2

πab = 0.

(110)

Gravito-electric propagation:

Ė〈ab〉+
1
2

π̇〈ab〉+Θ

(
Eab−

1
6

πab

)
− curlHab +

1
2
(µ + p)σab +

1
2

∇̃〈aqb〉+a〈aqb〉

−2ac
ηcd(aHb)

d −3σc〈a

(
Eb〉

c− 1
6

πb〉
c
)
−ω

c
ηcd(a

(
Eb)

d − 1
6

πb)
d
)

= 0.

(111)

Gravito-magnetic propagation:

Ḣ〈ab〉+ΘHab + curlEab−
1
2

curlπab−3σc〈aHb〉
c− 3

2
ω〈aqb〉−ω

c
ηcd〈aHb〉

d

+2ac
ηcd〈aEb〉

d +
1
2

ηcd〈aσb〉
cqd = 0. (112)

Vorticity constraint:

∇̃
a
ωa−aa

ωa = 0. (113)

Shear constraint:

∇̃
b
σab + curlωa−

2
3

∇̃aΘ +2[ω,a]a +qa = 0. (114)

Gravito-magnetic constraint:

curlσab− ∇̃〈aωb〉−Hab−2a〈aωb〉 = 0. (115)

Gravito-electric divergence:

∇̃
b
(

Eab−
1
2

πab

)
− 1

3
∇̃aµ +

1
3

Θ q̄a−
1
2

σabqb

−[σ ,H]a +
3
2

η
abc

ωbqc +3Habω
b = 0. (116)
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Gravito-magnetic divergence:

∇̃
bHab +(µ + p)ωa +

1
2

curlqa +[σ ,E]a +
1
2
[σ ,π]a

+3ω
b
(

Eab−
1
6

πab

)
= 0. (117)

Conservation Equations (twice contracted Bianchi identities)

µ̇ + Θ (µ + p)+2acqc +σ
b
a π

a
b = 0, (118)

q〈a〉+ ∇̃bπ
ab + ∇̃

a p+(µ + p)aa +
4
3

Θqa +σ
a
b qb +abπ

ab +η
abc

ωbqc = 0.

(119)

In the equations above the spatial curl of a vector and a tensor is

(curl X)a = η
abc

∇̃bXc, (curl X)ab = η
cd〈a

∇̃cXb〉
d , (120)

respectively.
Finally, ωa = 1

2 ηa
bcωbc and the covariant commutators are

[X ,Y ]a = ηacdXcY d , [W,Z]a = ηacdW c
eZde.

The 1+3 equations for the conformal observer

Let us now see how these equation look like in the conformal frame.
Expansion propagation (generalized Raychaudhuri equation):

Θ̄
† +

1
3

Θ̄
2− ∇̃

aāb− ābāa +2σ̄abσ̄
ab−2ω̄aω̄

a +
1
2
(µ̄ +3p̄)

=−3
2

(
ϒ †

ϒ

)2

+
∇̃aϒ ∇̃aϒ

ϒ 2 +
3
2

ϒ ††

ϒ
+

1
2

ϒ †

ϒ
Θ̄ − 1

2
∇̃2ϒ

ϒ 2 − 3
2

ab∇̃bϒ

ϒ
.

(121)

Vorticity propagation:

ω̄
†
〈a〉+

2
3

Θ̄ ω̄a−
1
2

curlaa− σ̄abω̄
b = 0. (122)

Shear propagation:

σ̄
†
〈ab〉+

2
3

Θ̄ σ̄ab− ∇̃〈aāb〉− ā〈aāb〉+ σ̄c〈aσ̄b〉
c + ω̄〈aω̄b〉+ Ēab−

1
2

π̄ab

=
1
2

σab
ϒ †

ϒ
− 1

2
∇̃〈a∇̃b〉ϒ

ϒ
+

1
4

∇̃〈aϒ ∇̃b〉ϒ

ϒ
. (123)
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Gravito-electric propagation:

Ē†
〈ab〉+

1
2

π̄
†
〈ab〉+Θ̄

(
Ēab−

1
6

π̄ab

)
− curl H̄ab +

1
2
(µ̄+ p̄)σ̄ab+

1
2

∇̃〈aq̄b〉+ ā〈aq̄b〉

−2āc
η̄cd(aH̄b)

d −3σ̄c〈a

(
Ēb〉

c− 1
6

π̄b〉
c
)
− ω̄

c
η̄cd(a

(
Ēb)

d − 1
6

π̄b)
d
)

=
(

Ēab−
1
2

π̄ab

)
ϒ †

ϒ
− 3

2
η̄

cd
〈aHb〉d∇̃cϒ − 3

2
q̄〈a∇̃b〉ϒ

ϒ
. (124)

Gravito-magnetic propagation:

H̄†
〈ab〉+Θ̄ H̄ab + curlEab−

1
2

curlπab−3σ̄c〈aH̄b〉
c− ω̄

c
η̄cd〈aH̄b〉

d +2āc
η̄cd〈aĒb〉

d

−3
2

ω̄〈aq̄b〉−
1
2

η̄cd〈aσ̄b〉
cq̄d =

1
2

H̄ab
ϒ †

ϒ
− 1

2
η̄

cd
〈a

(
Ēb〉d −

3
2

π̄b〉d

)
∇̃cϒ .

(125)

Vorticity constraint:

∇̃
a
ω̄a− āa

ω̄a = 0. (126)

Shear constraint:

∇̃
b
σ̄ab + curl ω̄a−

2
3

∇̃aΘ̄ +2[ω̄, ā]a + q̄a

=
σ̄ba∇̃bϒ

ϒ
+

ω̄ba∇̃bϒ

ϒ
+

1
2

ϒ †

ϒ

∇̃bϒ

ϒ
− 1

3
Θ̄

∇̃bϒ

ϒ
+

∇̃bϒ
†

ϒ
. (127)

Gravito-magnetic constraint:

curlσab− ∇̃〈aω̄b〉− H̄ab−2ā〈aω̄b〉 = 0. (128)

Gravito-electric divergence:

∇̃
b
(

Ēab−
1
2

π̄ab

)
− 1

3
∇̃aµ̄ +

1
3

Θ̄ q̄a−
1
2

σ̄abq̄b−3H̄abω̄
b− [σ̄ , H̄]a+

3
2

η̄
abc

ω̄bq̄c

=
1
2

(
Ēab−

1
2

π̄ab

)
∇̃aϒ

ϒ
− 1

2
µ̄

∇̃aϒ

ϒ
+

3
2

q̄a
ϒ †

ϒ
. (129)

Gravito-magnetic divergence:

∇̃
bH̄ab +(µ̄ + p̄)ω̄a +

1
2

curlqa +[σ̄ , Ē]a +
1
2
[σ̄ , π̄]a +3ω̄

b
(

Ēab−
1
6

π̄ab

)
=

1
2

H̄ab
∇̃aϒ

ϒ
− 1

2
[q̄,

∇̃ϒ

ϒ
]a. (130)
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Conservation Equations

µ̄
† + Θ̄ (µ̄ + p̄)+2ācq̄c + σ̄

b
a π̄

a
b =

1
2
(µ̄ +3p̄)

ϒ †

ϒ
+

1
ϒ

q̄c∇̃
c
ϒ , (131)

q̄†
〈a〉+ ∇̃bπ̄

b
a + ∇̃a p̄+(µ̄ + p̄) āa +

4
3

Θ̄ q̄a + σ̄abq̄b + āb
π̄ab + η̄abcω̄

bq̄c

=
1
2
(µ̄ − p̄)

∇̃aϒ

ϒ
+ q̄a

ϒ †

ϒ
+

1
ϒ

π̄ab∇̃
b
ϒ . (132)

The 1+3 equations for f (R)-gravity in the Einstein frame

In the following we give, for completeness, the 1+3 equation for f (R)-gravity in
the Einstein frame. The ones in the Jordan frame can be found in [30; 31]. The
thermodynamic quantities for the scalar field φ are defined as

µ
φ =

1
2
(φ †)2 +

1
2

∇̃
a
φ ∇̃aφ +W (φ), (133a)

pφ =
1
2
(φ †)2 − 1

6
∇̃

a
φ ∇̃aφ −W (φ), (133b)

qa = −φ
†
∇̃aφ , (133c)

π̄ab = ∇̃〈aφ ∇̃b〉φ , (133d)

and we will use them in order to make the following equations more compact.
Expansion propagation (generalized Raychaudhuri equation):

Θ̄
† +

1
3

Θ̄
2− ∇̃

aāb− ābāa +2σ̄abσ̄
ab−2ω̄aω̄

a

=−1
2
(µ̄

m +3p̄m)e
(
−
√

2/3φ

)
− (φ †)2 +W (φ). (134)

Vorticity propagation:

ω̄
†
〈a〉+

2
3

Θ̄ ω̄a−
1
2

curlaa− σ̄abω̄
b = 0. (135)

Shear propagation:

σ̄
†
〈ab〉+

2
3

Θ̄ σ̄ab− ∇̃〈aāb〉− ā〈aāb〉+ σ̄c〈aσ̄b〉
c + ω̄〈aω̄b〉+ Ēab

=
1
2

π̄
m
abe

(
−
√

2/3φ

)
+

1
2

∇̃〈aφ ∇̃b〉φ . (136)
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Gravito-electric propagation:

Ē†
〈ab〉+Θ̄ Ēab− curl H̄ab−2āc

η̄cd(aH̄b)
d −3σ̄c〈aĒb〉

c− ω̄
c
η̄cd(aĒb)

d

=−1
2
(π̄m)†

〈ab〉e
(
−
√

2/3φ

)
+

1√
6

φ
†
π̄

m
abe

(
−
√

2/3φ

)
−
(

∇̃〈aφ

)†
∇̃b〉φ

+
Θ̄

6

(
π̄

m
abe

(
−
√

2/3φ

)
+∇̃〈aφ ∇̃b〉φ

)
−1

2
(µ̄

m+ p̄m)σ̄ab−
1
2

[
(φ †)2+

1
3

∇̃aφ ∇̃
a
φ

]
σ̄ab

−1
2

e
(
−
√

2/3φ

)
∇̃〈aq̄m

b〉+
1√
6

e
(
−
√

2/3φ

)
∇̃〈aφ q̄m

b〉−
1
2

∇̃aφ
†
∇̃

a
φ

−φ
†
∇̃a∇̃

a
φ − ā〈aq̄m

b〉e
(
−
√

2/3φ

)
−φ

†ā〈a∇̃b〉φ −
1
2

σ̄
c
〈aπ̄b〉c

me
(
−
√

2/3φ

)

−σ̄
c
〈a∇̃〈cφ ∇̃b〉φ−

1
6

σ̄ab∇̃aφ ∇̃
a
φ−ω̄

c
η̄

d
c(a

1
6

π̄b)d
me
(
−
√

2/3φ

)
−ω̄

c
η̄

d
c(a

1
6

∇̃〈aφ ∇̃b〉.

(137)

Gravito-magnetic propagation:

H̄†
〈ab〉+Θ̄ H̄ab + curlEab−3σ̄c〈aH̄b〉

c− ω̄
c
η̄cd〈aH̄b〉

d +2āc
η̄cd〈aĒb〉

d

=
1
2

curlπm
abe

(
−
√

2/3φ

)
− 1√

6
ηcd〈aπb〉

d
∇̃

c
φ +

1
2

curlπφ
ab +

3
2

ω̄〈aq̄m
b〉e
(
−
√

2/3φ

)

−3
2

ω̄〈aφ
†
∇̃〉bφ +

1
2

η̄cd〈aσ̄b〉
cq̄d

me
(
−
√

2/3φ

)
− 1

2
η̄cd〈aσ̄b〉

c
φ

†
∇̃

d
φ . (138)

Vorticity constraint:

∇̃
a
ω̄a− āa

ω̄a = 0. (139)

Shear constraint:

∇̃
b
σ̄ab + curl ω̄a−

2
3

∇̃aΘ̄ +2[ω̄, ā]a =−q̄m
a e
(
−
√

2/3φ

)
−φ

†
∇̃bφ . (140)

Gravito-magnetic constraint:

curlσab− ∇̃〈aω̄b〉− H̄ab−2ā〈aω̄b〉 = 0. (141)

Gravito-electric divergence:

∇̃
bĒab−3H̄abω̄

b− [σ̄ , H̄]a

=
1
2

∇̃
b
π̄

m
ab e

(
−
√

2/3φ

)
+

1√
6

π̄
m
ab∇̃

b
φ +

1
2

∇̃
b
π̄

φ

ab +
1
3

∇̃aµ̄
m e
(
−
√

2/3φ

)

− 1√
6

µ
m e
(
−
√

2/3φ

)
∇̃

b
φ +

1
3

∇̃aµ̄
φ

−1
3

Θ̄ q̄m
a e
(
−
√

2/3φ

)
− 1

3
Θ̄ q̄m

a e
(
−
√

2/3φ

)
− 3

2
η̄

abc
ω̄bq̄m

c e
(
−
√

2/3φ

)

+
3
2

η̄
abc

ω̄bφ
†
∇̃cφ − 1

2
σ̄abq̄b

m e
(
−
√

2/3φ

)
+

1
2

σ̄abφ
†
∇̃

b
φ . (142)
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Gravito-magnetic divergence:

∇̃
bH̄ab +[σ̄ , Ē]a +3ω̄

bĒab

=−(µ̄
m + p̄m)ω̄a e

(
−
√

2/3φ

)
− (µ̄

φ + p̄φ )ω̄a−
1
2

curlqm
a e
(
−
√

2/3φ

)

+
1√
6

η
bc
a q̄m

b ∇̃cφ − 1
2

curlqφ
a−

1
2
[σ̄ , π̄m]a e

(
−
√

2/3φ

)
− 1

2
[σ̄ , π̄φ ]a

−1
2

ω̄
b
π̄

m
ab e

(
−
√

2/3φ

)
− 1

2
ω̄

b
π̄

φ

ab. (143)

Conservation equations for standard matter (as a general fluid):

µ̄
†
m + ∇̃

cq̄m
c + Θ̄ (µ̄

m + p̄m)+2ācq̄c
m + σ̄

b
a π̄

a
b

=
1√
6
(µ̄ +3p̄)φ † +2

√
2
3

q̄m
c ∇̃

c
φ , (144)

q̄†
〈a〉+ ∇̃bπ̄

b
a + ∇̃a p̄+(µ̄ + p̄) āa +

4
3

Θ̄ q̄a + σ̄abq̄b + āb
π̄ab + η̄abcω̄

bq̄c

=
1√
6
(µ̄ − p̄)∇̃aφ +

√
2
3

φ
†q̄a +

√
2
3

π̄ab∇̃
b
φ . (145)
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