
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
6
7

Validity range of canonical approach to finite
density QCD

Ryutaro Fukuda∗

Institute für Theoretische Physik, ETH Zürich, CH-8093 Zürich, Switzerland
Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
E-mail: jr-fukuda@nt.phys.s.u-tokyo.ac.jp

Atsushi Nakamura
Research Center for Nuclear Physics, Osaka University, Ibaraki 567-0047, Japan
Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198, Japan
School of Biomedicine, Far Eastern Federal University, Vladivostok, 690950, Russia

Shotaro Oka

Department of Physics, Rikkyo University, Tokyo 171-8501, Japan

In this study, we calculate pressure, baryon number density and baryon susceptibility at fi-
nite density through lattice QCD with the canonical approach which is a fugacity expansion of
grand canonical partition function. We compare the results with those obtained using the multi-
parameter reweighting (MPR) method. The results of these methods were found to be in very
good agreement in the regions where the errors of the MPR method are under control. Moreover,
our canonical approach works beyond µB/T = 3 in many cases.

The 33rd International Symposium on Lattice Field Theory
14 -18 July 2015
Kobe International Conference Center, Kobe, Japan*

∗Speaker.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:jr-fukuda@nt.phys.s.u-tokyo.ac.jp


P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
5
)
1
6
7

Validity range of canonical approach to finite density QCD Ryutaro Fukuda

1. Introduction

Although it is well known that QCD has a rich phase structure on a temperature-density
plane[1], the investigations with a first-principles calculation are limited in a small density region
due to the so-called sign problem[2]. However, in finite temperature and density QCD systems, a
lot of physically interesting targets such as the early universe, neutron stars and quark matters have
been waiting to be explored. Therefore, it can be said that it is quite meaningful to seek methods
for accurate computation of thermodynamic quantities at large chemical potential values: this is an
urgent subject in the fields of particle and nuclear physics.

The canonical approach[3, 4, 5, 6] which is studied in this work probably has a potential to
overcome the sign problem. This is because it can avoid the sign problem in an artful manner.
However, it is reported that it has its particular numerical instabilities[7] and it is somewhat unclear
whether it can produce reliable results. Taking this situation into consideration, in this work, we
discuss the validity range of the canonical approach comparing directly with the results obtained
by the MPR method[8].

2. Frame work

2.1 Canonical approach for finite density systems: fugacity expansion of grand canonical
partition function

A system which obeys the grand canonical ensemble is consistent with a system which obeys
the canonical ensemble in thermodynamic limit. Standing on this fundamental idea, the canonical
approach can be interpreted as a polynomial expansion method of a grand canonical partition func-
tion ZGC(T,µB) at temperature T and baryon chemical potential µB in terms of canonical partition
functions ZC(B,T ) and fugacity exp(µB/T ) as follows:

ZGC(T,µB) =
∞

∑
B=−∞

ZC(B,T )eBµB/T , (2.1)

where B is not net quark number but net baryon number[3, 4, 9]. If the canonical partition functions
at all fixed net baryon number sectors can be obtained once, one can calculate expectation values
of thermodynamic observables at any real baryon chemical potential values. This is because the
baryon chemical potential dependence of the grand canonical partition function in a context of the
canonical approach can be tuned only by fugacity. This feature is a major advantage of canonical
approach in view of the numerical computation. The largest advantage of the canonical approach
is to be able to avoid the sign problem. To be more specific, canonical partition functions can be
calculated through Fourier transformation of the grand canonical partition function computed at
pure imaginary chemical potential values:

ZC(B,T ) =
1

2π

∫ 2π

0
d
(µI

T

)
ZGC(T, iµI) eiBµI/T , (2.2)

where µI ∈ R. Therefore, in the canonical approach, it is essential to calculate grand canoni-
cal partition functions at various pure imaginary chemical potential values to perform the Fourier
transformation for calculating canonical partition functions.
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2.2 Winding number expansion method

In this work, the following simplest reweighting method for a fermion determinant is adopted
in the calculation of grand canonical partition functions at pure imaginary chemical potential.

ZGC(T, iµI) =
∫
[dU ]

(
det∆(iµI)

det∆(µ0)

)
det∆(µ0) e−Sg (2.3)

Here, ∆(µ) is a fermion matrix and Sg is a gauge action. The chemical potential µ0 in Eq.(2.3) can
be set to zero or any pure imaginary values. Considering to perform a Monte Carlo integration with
a weight det∆(µ0)e−Sg in Eq.(2.3), the expectation value of the grand canonical partition functions
at pure imaginary chemical potential normalized by a grand canonical partition function at the
chemical potential µ0 can be given by the following way.⟨

ZGC(T, iµI)

ZGC(T,µ0)

⟩
µ0

=
1

ZGC(T,µ0)

∫
[dU ]

(
det∆(T, iµI)

det∆(T,µ0)

)
det∆(T,µ0) e−Sg

=

⟨
det∆(T, iµI)

det∆(T,µ0)

⟩
µ0

(2.4)

Using this relation, Eq.(2.2) can be rewritten as

ZC(B,T )
ZGC(T,µ0)

=
1

2π

∫ 2π

0
d
(µI

T

)⟨det∆(T, iµI)

det∆(T,µ0)

⟩
µ0

eiBµI/T . (2.5)

The extra constant 1/ZGC(T,µ0) in the left-hand side of Eq.(2.5) is irrelevant in actual numerical
calculations. This is because for example one can avoid the constant to define normalized canonical
partition functions as ZC(B,T )/ZC(B = 0,T ).

In this work, we adopt the Wilson fermion formalism and we use a winding number expansion
based on the hopping parameter expansion to calculate expectation values of the fermion determi-
nant assuming that quarks are heavy enough. In general, Wilson fermion matrix ∆(T,µ) can be
written as

∆(T,µ) = 1−κQs −κQt(T,µ)≡ 1−κQ(T,µ), (2.6)

where κ is the hopping parameter, Qs and Qt correspond to the hopping term in the three dimen-
sional space direction and in the time direction, respectively. Therefore, a logarithm of the fermion
determinant can be written as

logdet∆(T, iµI) = Trlog∆(T, iµI) =−
∞

∑
n=1

κn

n
TrQn(T, iµI) (2.7)

The trace in Eq.(2.7) is taken over spacetime, spinor and color indices. Taking into account the
feature of the hopping term Q in the trace in Eq.(2.7), one can easily find that all non-zero con-
tribution of the trace comes from any closed loops on a lattice. Moreover, it can be said that the
chemical potential dependence comes only from any closed loops which are winding along positive
or negative time directions through the anti-periodic boundary condition considering the introduc-
tion of the quark chemical potential onto the link variables in the time direction. For example, a
trace of a closed loop which is winding along positive time direction n times can be evaluated as
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Ceinµq/T , where C is complex constant. Thus, if one classifies all closed loops in Eq.(2.7) accord-
ing to “winding number" which is the number of net windings along the time direction, as a result,
one can analytically reach the following expression with complex coefficients Wn and the complex
fugacity eiµI/T

det∆(iµI) = exp

[
∞

∑
n=−∞

Wn einµI/T

]
, (2.8)

where n represents the winding number. In practical numerical calculations, one can approximately
evaluate the complex coefficients Wn up to ±N th order performing the hopping parameter expan-
sion up to Nt ×N th order, where Nt is the size of a lattice in the time direction. A major advantage
of this method is to be able to significantly reduce numerical costs for the calculation of the fermion
determinant because if one calculates Wn with one gauge configuration generated at µ0, one can
compute all fermion determinants at any pure imaginary chemical potential values for the gauge
configuration. On the other hand, the numerical costs are rather expensive in case of using an exact
calculation method for the fermion determinant. Therefore, in this instance, it is so hard to adopt
a sufficiently large lattice size with recent computational resources. Moreover, the main aim of
this work is to investigate if the canonical approach works well. Taking these circumstances into
consideration, it can be suitable for this work to adopt a winding number expansion for realizing
simple and meaningful numerical analyses as a kind of test.

3. Numerical results

3.1 Lattice design and calculation procedure

We adopted a two-flavor clover-improved Wilson fermion action and Iwasaki gauge action.
All simulations were performed on an 83 × 4 lattice at temperatures of T/Tc = 1.35(7), 1.20(6),
1.08(5), 0.99(5), 0.93(5) and 0.84(4) and mπ/mρ = 0.8, as in Ref.[10]. All gauge configurations at
each temperature were generated at µ0 = 0 using the hybrid Monte Carlo (HMC) method. Coeffi-
cients Wn in Eq.(2.8) were approximately computed up to ±n = 120 using the hopping parameter
expansion up to 120×Nt th order with 400 configurations in all temperature cases. We used 64
and 128 noise vectors for temperatures above and below Tc, respectively, to calculate the trace in
Eq.(2.7). Canonical partition functions were evaluated through the Fourier transformation of the
fermion determinant calculated by the winding number expansion. For this Fourier transformation,
a multiple precision calculation with the numerical library FMlib[11] was adopted with 400 signif-
icant digits. This is because the Fourier transformation is an oscillatory integral and cancellation of
significant digits are not negligible in the calculation. Multiple precision calculation plays a impor-
tant roll to reduce the numerical instability in the canonical approach. For the detailed discussion,
see Ref.[12].

3.2 Thermodynamic observables

In this work, we calculate the baryon chemical potential dependence of a dimensionless pres-
sure ∆p/T 4, baryon number density nB/T 3 and baryon susceptibility χB/T 2:

∆p(µB,T )
T 4 =

p(µB,T )
T 4 − p(0,T )

T 4 =

(
Nt

Ns

)3

log
(

ZGC(µB,T )
ZGC(0,T )

)
,
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nB(µB,T )
T 3 =

∂
∂ (µB/T )

p(µB,T )
T 4 ,

χ(µB,T )
T 2 =

∂ 2

∂ (µB/T )2
p(µB,T )

T 4 , (3.1)

where Ns = Nx = Ny = Nz and T−1 = Nta for a lattice spacing of a. In the following, we discuss the
validity range of the canonical partition function comparing our canonical results with MPR results
in Ref.[13].

3.2.1 Pressure

Figure 1: Baryon chemical potential dependence
of pressure.

Figure 2: Comparison of pressure calculated by
the canonical approach and the MPR method.

Fig.1 shows the baryon chemical potential dependence of pressure calculated by our canonical
method. This shows that the pressure at above Tc are free enough from statistical errors up to µB/T
of approximately 5, and the results at below Tc are reliable up to µB/T of approximately 3.5–4. On
the other hand, the results at just below Tc are reliable only up to µB/T of approximately 3. This
is because we generated configurations at µ0 = 0 . Namely, they suffered from fluctuations caused
by the confined-deconfined phase transition located around zero density region.

Fig.2 is the comparison of pressure calculated by the canonical approach and MPR method.
This shows that in low density region where statistical errors of MPR method are under our control,
the canonical approach can produce completely consistent pressure results with those calculated by
MPR method.

3.2.2 Baryon number density

Fig.3 shows the baryon chemical potential dependence of baryon number density computed by
our canonical method. This demonstrates that for above and below Tc case, the results are reliable
up to µB/T of approximately 4 and 3–3.5, respectively, whereas the reliable baryon chemical po-
tential range of the results for just below Tc case are limited for µB/T of up to 2.4. This may be for
the same reason described in the pressure analysis. Moreover, as a whole the reliable baryon chem-
ical range is limited more than that of pressure. This can be interpreted that the convergence of the
fugacity expansion for baryon number density becomes worse due to the first-order differentiation
in terms of µB/T as shown in Eq.(3.1).

Fig.4 is the comparison of baryon number density calculated by the canonical approach and
the MPR method. This shows good agreement between the results of the canonical approach and
those of the MPR method also in the baryon number density case. Paying attention to the temper-
ature dependence of the baryon number density, the gradient as a function of the baryon chemical
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Figure 3: Baryon chemical potential dependence
of baryon number density.

Figure 4: Comparison of the baryon number den-
sities calculated by the canonical approach and the
MPR method.

potential becomes smaller as the temperature decreases. In the zero temperature case, nB is phe-
nomenologically expected to be zero up to µB/T = mB/T , where mB is the lightest baryon mass of
the system, and becomes a finite value at this point. For example, the data at T/Tc = 0.84 in Fig.3
indicates such a feature in fact.

Figure 5: Chemical potential dependence of baryon susceptibility.

Figure 6: Comparison of baryon susceptibilities calculated by the canonical approach and the MPR method.

3.2.3 Baryon susceptibility

Fig.5 demonstrates the baryon chemical potential dependence of baryon susceptibility com-
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puted by our canonical method. This shows that the results at temperatures above Tc are reliable
up to a ratio µB/T of approximately 3.5, whereas those at temperatures below Tc are reliable up to
Tc = 2.4− 2.9. The baryon susceptibility as a function of µB/T does not show a clear peak, and
thus the signal of the transition between the confined and deconfined phases at finite density cannot
yet be observed.

Fig.6 is the comparison of baryon susceptibility calculated by the canonical approach and
MPR method. From Fig.6, we find that the susceptibility results of the canonical approach are in
very good agreement with those of the MPR method.

4. Summary

In this work, we checked the canonical approach could produce consistent results with those
calculated by the MPR method in the low density region. Moreover, the canonical approach pro-
vided reliable results beyond µB/T = 3 for almost all observables. Although we need to calculate
canonical partition functions more accurately at large baryon numbers to get more reliable sig-
nals of thermodynamic quantities at large baryon chemical potential regions, our results are very
encouraging for the first-principles calculation of finite density QCD.
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