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Abstract. Extended space model (ESM) is a generalization of the special theory of relativity at 

a 5-dimensional space, and more specifically at (1 + 4) -dimensional space. Rotations in extended 

space correspond to the motion of a particle in gravity field in the embedded four-dimensional 

space-time. The possibility of a transition from the components of the 5-momentum of a particle 

in extended flat space to the components of a 4-momentum in an arbitrary4-dimensional space 

by means of rotations is considered. Variational principle of the stationary energy integral of 

photon allows us to determine its dynamics. We consider variation of energy of the light-like 

particle in the pseudo-Riemann space-time, find Lagrangian, canonical momenta and forces. We 

study how (TS)-rotation in ESM agrees with photon dynamics in the Schwarzschild field. 

Equations of the critical curve are obtained by the nonzero energy integral variation in 

accordance with principles of the calculus of variations in mechanics. This method is compared 

with the Fermat's principle for the stationary gravity field and geodesics principle. Energy and 

momentum of the particle transferred to the gravity field is defined. The produced equations are 

solved for the metrics of Schwarzschild and Gödel. The gravitation mass of the photon is found 

in central gravity field in the Newtonian limit. 

 

1.  Introduction 
It is known, that between the mechanical and optical phenomena there is a certain likeness, which 

historically was exhibited that a set of the optical phenomena managed uniformly well to be described 

both within the framework of wave, and within the framework of the corpuscular theories. In particular, 

motion of a beam of light in an inhomogeneous medium in many respects similar to motion of a material 
particle in a potential field [1]. In the given activity, we shall take advantage of this connection to 

describe the gravitational phenomena. 

      The Fermat principle is the basis of geometric optics in media. It is also formulated for Riemannian 
space-time [2,3]. In [4-6] it is proposed a variational principle of the stationary energy integral of a light-

like particle, which does not lead to violation of the isotropy of light path and agrees with Fermat’s 

principle for stationary gravitational fields. It is also applicable to non-stationary gravitational fields in 
which the particle motion is free. This approach is the choice of Lagrangian of the particle and the 
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definition of canonical momenta and forces as its partial derivatives with respect to the velocities and 

coordinates in accordance with Lagrange’s mechanics. A correspondence is established between the 

physical energy and momentum of the particle, determined from non-gravitational interactions, and the 

contravariant canonical momentum vector. 

      In [7-9] it is investigated a generalization of special theory of relativity in a 5-dimensional space �(1,4) with a metric (+ - - - -) having an additional coordinate �. In ESM, in addition to the rotations in 

plane (TX) relating to the Lorentz transformations, the rotations in planes (TS) and (XS) are considered. 

In this paper we study how (TS)-rotation agrees with photon dynamics in the Schwarzschild field, which 
is analyzed using the principle of extreme energy of a light-like particle based on Lagrangian mechanics. 

The possibility of transition from the 5-momentum components of a particle to an extended space to the 

components of a 4-momentum in an arbitrary 4-dimensional space by means of a combination of 
rotations is considered. 

2.  (TS)-rotation in extended space model 
In Minkowski space �(1,3) a 4-vector of energy and momentum  

 

                                          ��   =   ��
	 , �
, ��, ��
 (1) 

is associated to each particle [2]. 

     In the extended space �(1,4) [7-9] it is completed to 5-vector  

 

                                       �̅   =   ��
	 , �
, ��, ��, ��
, (2) 

 

where � is a rest mass of the particle. In blank space in a fixed reference system there are two types of 

various objects with zero and nonzero masses. In space �(1,4) to them there corresponds 5-vectors  

 

 �  ℏ�
	   , ℏ�

	   , 0  
  (3) 

  

 (  ��  , 0  , ��  )  . (4) 

 

 For simplicity we have recorded these vectors in (1 + 2)-dimensional space. The vector (3) describes a 

photon with energy ℏ� and with speed �. The vector (4) describes a fixed particle with a rest mass �. 

Next we will consider the motion of a photon. 

At hyperbolic rotations on an angle � in the plane (TS) the photon vector (4) will be transformed as 

follows: 

 

 �ℏ�
	 , ℏ�

	 , 0
   →   �ℏ�
	 cosh�, ℏ�

	 , ℏ�
	 sinh�
 = �ℏ�

	 �, ℏ�
	 , ℏ�

	 √�� − 1
. (5) 

 

 In Extended Space Model (ESM) this rotation is associated with the photon’s motion in a medium in 

enclosed three-dimension space with refraction index � > 1. In such areas the speed of light is reduced. 

The parameter � relates the speed of light in vacuum � with the speed of light in a medium � as  

                                                        � = 	
� . (6) 

3.  Lagrangian, four-momentum and four-force in curved space-time 
In [4-6] it is proposed a variational principle of the stationary energy integral of photon without violation 

of Lorentz-invariance. In it the interval in pseudo-Riemann space-time with metrical coefficients ����:  

 

 ��� = �����!��!�  (7) 

 after substitutions  
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 ���� = "����, ���# = "��#, ��#$ = �#$ (8) 

 is rewritten in form  

 ��� = "�����!�� + 2"��#�!��!# + �#$�!#�!$. (9) 

 

Here, " is some quantity, which is assumed to be equal 1. Putting down !� as time, coordinates with 

indexes %, & = 2,3,4 as space coordinates and considering " as energy of light-like particle with �� = 0 

we present it as  

 " = ���� '
*
'- 
/� 5−��# '
6

'- + 7 8(��#��$ − ����#$) '
6
'-

'
9
'- :�/�<, (10) 

 

where 7 is ±1, the partial derivatives with respect to coordinates are written as  

 

 
?@

?
A = − �
�B*B*

?CDE?
A F�F�. (11) 

 
The partial derivatives with respect to components of the velocity four-vector are  

 

 
?@

?BA = − BAB*B*. (12) 

 

With ��� = 0 and ��# ≠ 0 even if for one % the energy takes form  

 

 " = C69B6B9
�B*B* . (13) 

 

      In this case the partial derivatives of " coincide with (11) and (12). 

For the free moving a particle lagrangian is taken in form  
 

 H = −", (14) 

 and conforms to relation [10]:  

 " = FI ?J
?BA − H. (15) 

 

     Thus energy " is a hamiltonian of the particle in gravitational field also an integral of the motion. 

Obtained derivatives give the canonical momenta  

 

 �I = ?J
?BA = BAB*B* (16) 

 and forces  

 KI = ?J
?
A = �

�B*B*
?CDE?
A F�F�. (17) 

 

     We note that the canonical forces, unlike canonical momenta, do not depend on the affine parameter. 

Components of the associated vector of the canonical momenta are  

 �I = BA
B*B*. (18) 

 

      Physical energy and momenta of photon with frequency � in Minkowski space-time with affine 

parameter L = �M form contravariant 4-vector of momenta N� = (ℏ�/�)F� . For arbitrary affine 

parameter it is rewritten as  

 N� = ℏ�
	

BD
B*. (19) 
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 And in pseudo-Riemannian space-time similar energy and momenta of the photon will be put in line 

with the components of the contravariant vector of momenta. A certain fixed value of the photon’s 

frequency �O is given by the corresponding equality � = �O/F�. Comparing expressions (18) and (19), 

we obtain  

 N� = ℏ�P	 ��. (20) 

 

This one provides Lagrangian of the photon HQR = ℏ�OH. The components of vector  

 

 K# = �#IKI (21) 
 

 associated to (17), with this approach, are proportional to gravity forces:  

 

 S� = ℏ�OK�, (22) 

 
 which acts on the photon. That is, although non-straight motion of particle in space-time according to 

the general relativity due to its curvature, identified with the gravitational field, we believe that it is 

caused by the action of forces obtained by considering the movement in the coordinate frame. 

4.  Equations of motion, energy and momentum of particle transferred to gravity field 
Taking into account equation (14) a motion equations are found by using Hamilton’s principle from 

variation of energy integral  

 T = ∫-*-P H�L = − ∫-*-P "�L, (23) 

 

where LO, L� are values of the affine parameter in points, which are linked by found extremal curve. 

Energy " is non-zero, its variations leave interval to be light-like, and application of standard variational 

procedure yields Euler-Lagrange equations  

 
'

'-
?J

?BA − ?J
?
A = 0. (24) 

 

Equations of isotropic critical curve can be rewritten in form  

 

 
'QA'- − KI = 0  . (25) 

 

      Passing in these equations to the associated canonical momenta and forces, we obtain  
 

 K# = 'Q6
'- + �#I 'CAD'- ��. (26) 

 

In accordance with conservation laws, the vector of energy and momentum of a system that includes a 

particle and the gravitational field generated by it, denoted by �̅#, can be written as the sum of the 

momentum and energy of the particle itself �#and transmitted it to the gravitational field �↔#. The vector �̅# changes under the influence of the force from the source of gravity:  

 

 
'Q̅6
'- = 'Q6

'- + 'Q↔6
'- = K#. (27) 

 

 Comparing two expressions for K# and passing in (26) to the partial derivatives of metrical coefficients 

we find the rate of exchange of energy and momentum between particle and gravitational field  
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'Q↔6
'- = �#I ?CAD?
E F���. (28) 

 

When considering the dynamics of a single particle, this vector is an analogue of the pseudotensor used 

in the laws of conservation in tensor form. 

      From the conservation laws it follows that the force acting on the system, including the particle and 

the gravitational field generated by it, is equal in magnitude and opposite in sign to the force acting on 
the system of the source of gravitation from the side of the particle system. This is equivalent to fulfilling 

Newton’s third law. Its adherence to the Newtonian limit of gravity means the equality of the passive 

and active gravitational masses. 

5.  Comparison of energy integral variation and Fermat principles 
Let us clear whether proposed variational method conforms to Fermat’s principle for stationary gravity 

field [2], which is formulated as follows  

 

 W ∫ �
C** X�Y + ��#�!#Z = 0, (29) 

 

 where �Y is element of spatial distance along the ray  

 

 �Y� = �C*[C*9C** − �Q$
 �!Q�!$. (30) 

 Denoting  

 �\ = �
C** X�Y + ��#�!#Z, (31) 

 

 and comparing this expression with (10) we write  
 

 
']
'- = "F�. (32) 

 
     Therefore, variation (31) is equivalent to variation of integral  

 

 T� = ∫-*-P "F��L. (33) 

 

We condition by appropriate choice of the affine parameter L the constant value of F�. The metrical 

coefficients in case of the stationary field doesn’t depend on time, therefore we have ∂"/ ∂!� = 0. The 

Euler-Lagrange equation for the Lagrangian H = \, corresponded to the time coordinate, gives  

 

 
'@
'- − ?@

?
* F� = 0. (34) 

 

     Since the energy " is assumed to be constant along critical curve, its differential is zero. Thus, 

expression (34) is idential equation, just as equation (24) obtained by variational principle of the 

stationary energy integral of photon, which is  

 
'B*
'- + B*

�B*
?CDE?
* F�F� = 0. (35) 

 

 For the space coordinates, the equations are follows:  

 

 
'

'- � ?@
?B6
 F� + ?@

?B6 'B*
'- − ?@

?
6 F� = 0. (36) 
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The second term in the left part of equations will be vanishing and they will be identical to (24). 

6.  Identity of geodesics and extreme energy integral curves in static space-time 
For the isotropic paths a transformation to metric ��� = ���/�OO is equivalent to replacement of 

parameter L on �L = �L/_�OO, to which the four-velocities �� = �!�/�L correspond. The curve of 

motion of lightlike particle in four-dimensional space-time and value of energy " are invariant under 

this reparametrization. For the static spacetime the first equation of motion with appropriate parameter L gives �O = 1. Canonical momentum and forces take form  
 

 �I = �I;        KI = �
�

?CDE?
A ����. (37) 

 

 Substitution of them in Euler–Lagrange equations gives  
 

 
'

'- ��I#�#
 = �
�

?CDE?
A ����. (38) 

 

      After performing the differentiation on the left-hand side of equations and multiplying them by �̅aI  

this expression, the summation over the repeated index b yields null geodesic equations  

 

 
'd
e
'-d + Γ��a '
D

'-
'
E
'- = 0, (39) 

 

 where Γ��a  are the second kind Christoffel symbols with respect to the metric tensor ��� . So in case of 

the static spacetime the geodesic principle and the energy variational method as well as Fermat’s 

principle give the same solution for the light propagation. 

7.  Photon’s dynamics in Schwarzschild space-time 

7.1 Spherical coordinates 
A centrally symmetric gravity field in the free space is described by the Schwarzschild metric. At 

spherical coordinates !� = (g, j, �, k) with g = �M its line element is  

 

 ��� = �1 − l
m
 �g� − �1 − l

m
/� �j� − j�(��� + sin���p�), (40) 

 

where q is constant. To find the photon motion, we solve the Euler-Lagrange equations, which for static 

metrics give for Lagrangian (14) a solution that is identical with the geodesics. In plane � = N/2 

equations (24) with canonical momenta (16) and forces (17) yields [4-6]:  
 

 
'r
'- = 1, (41) 

  

 
't
'- = u

md �1 − l
m
. (42) 

 

 Substituting these values in equation �� = 0 we find  

 

 
'm
'- = ± v�1 − l

m
� − �u
m
� �1 − l

m
wx�/�. (43) 
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 The value of the coordinate velocity in the remote frame is  

 

 � = y�j 't
'r 
� + �'m

'r
� = � �1 − l
m
. (44) 

 

In the framework of geometrical optics using analogy its analogy with gravity [7-9,11] the refraction 
index (6) is given by:  

 � = �1 − l
m
/�. (45) 

 

     Turning to ESM we write four-momentum after rotation in the plane (TS) in space �(1,4) (5):  

 

 ��
	 , z, �{
 = | ℏ�

	��/}~
 , ℏ�
	 , ℏ�

	
[l(�m/l)]*/d

m/l �. (46) 

 

In 4D space-time for the Schwarzschild field the canonical momenta are  

 

 �� = 1, �� = ∓ �
��/}~
 y1 − ud

md �1 − l
m
, 

 

 �w = 0, �� = −�; (47) 

 

 Nonzero components of the contravariant vector of momenta are given by  
 

 �� = �1 − l
m
/�, 

 

 �� = ±y1 − ud
md �1 − l

m
, 
 

 �� = u
md. (48) 

 
      The physical energy and momentum are matched exactly with the contravariant vector, since in the 

limit of the Minkovsky space it has momentum components with a sign coinciding with the direction of 

motion. 

7.2 Rectangular Coordinates 
To determine the magnitude of the photon momentum we use the Schwarzschild metric in rectangular 

coordinates [5,6]. To the isotropic form of metric one can go from its spherical form (40) with the help 

of the transformation  

 j = �1 + l
�m̅
� j̅, (49) 

 and it is written as  

 ��� = ��/ }�~��� }�~�
�� �g� − �1 + l

�m̅
� (�!� + ��� +  ���), (50) 

 

where (g, !, �, �) is rectangular frame and j̅ = _!� + �� + ��. 

      We will consider the motion in the plane � = 0 and seek the force acting on the particle at a point (g, !, 0,0) that corresponds to the value of the angular coordinate k = 0 in the spherical frame. 

Coordinate transformations in the plane are  
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 ! = j̅cosk,        � = j̅sink. (51) 

 

 The nonzero spatial components of the 4-velocity are  

 

 F�� = '

'- = 'm̅

'- ,        F�w = '�
'- = 't

'- j̅. (52) 

 

 The transformation (49) implies the relation  
 

 �j = �1 − ld
��m̅d
 �j̅. (53) 

 Equations (41)-(43) yield  

 F�� = 1, (54) 

  

 F�� = ��/ }�~��� }�~�
��, (55) 

  

 F�� = ± ��/ }�~�

��� }�~�
� �1 − ud��/ }�~�
d

m̅d��� }�~�
��
�/�

, (56) 

  

 F�w = u��/ }�~�
d

m̅��� }�~�
�. (57) 

 
 Substitution of these velocities in (18) gives components of associated vector of the canonical momenta  

 

 �̅� = ��� }�~��/ }�~�
��, (58) 

  

 �̅� = ± �
��/ }*�~�d
 �1 − ud��/ }�~�
d

m̅d��� }�~�
��
�/�

, (59) 

  

 �̅w = u
m̅��� }�~�
�. (60) 

 

 Passing back from the variable j̅ to j, we write, in accordance with equation (20), the value of the 

photon energy and momentum in a remote coordinate frame  

 

 � = ℏ�O �1 − l
m
/�, (61) 

  

 z� = [(�̅�) + (�̅w)]�/� = �
��/ }*��d


ℏ�P	 , (62) 

 

 where �O is the photon frequency at infinity at the world line with unlimited j. Moving to the scale of 

the length of spherical frame in view of Eq. (53) we obtain 0 /P c�� � . By defining � in the same way 

we obtain the coincidence of the energy and momentum (46) in the embedded four-dimensional space-
time in ESM with the result given by variational principle of the stationary energy integral of photon. 
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7.3 Forces and Gravity Mass of Photon 
At spherical coordinates the canonical forces (17) are  

 

 K� = Kw = K� = 0, (63) 

  

 K� = l
md��/}~
 − ud

m� + lud
�m� . (64) 

 

 A nonzero component of vector associated with the canonical forces is  

 

 K� = − l
md + ud

m� �1 − l
m
 �1 − l

�m
. (65) 

 

 In so far as with gravitational constant � and active gravitational mass � the Newtonian limit of gravity 

theory requires q = 2��, for the radial motion (� = 0) the first term of K� yields (22) twice Newton 

gravity force acting on a photon  

 S� = −ℏ�O l
md. (66) 

 

 It corresponds to the passive gravitatinal mass of the photon  

 

 �CQ = 2ℏ�O. (67) 

 

Considering the non-radial motion in order to avoid the appearance of a fictitious component of the force 

due to the sphericity of the coordinate system, we use the Schwarzschild metric in rectangular 

coordinates (50). The components of the canonical forces vector K# (21) are put in correspondence with 

the gravitational forces acting on the particle. Substituting nonzero 4-velocity components (54)-(57) in 

(17), we find the unique nonzero component of the force vector (22) acting on the photon:  

 

 S�� = −ℏ�O l��/ }�~�

m̅d��� }�~�
���/ }�~�
. (68) 

 

 Taking into account transformation (49) it is rewritten as  

 

 S�� = −ℏ�O l��/ }�~�

md��/ }d

*�~�d�. (69) 

 

 Its magnitude does not depend on the direction of motion of the photon. This formula differs from force 
in spherical coordinates (65) because the expression for the canonical force (17) is non-covariant, that 

is, with this approach gravity force acting on the photon depends on the choice of the coordinate system. 

However, in the limit of weak gravity these expressions asymptotically converge and give Newton’s law 

of gravitation with passive gravitational mass of the photon 2ℏ�O (67). One conforms to the light 

deflection in central gravity field, which is twice value being given by the Newton gravity theory. 

Obtained gravitational mass of the light-like particle is independent on the direction of its motion. The 
gravitational mass of a photon for low gravity is equal to doubled mass of a material particle, equivalent 

to its energy. This corresponds to the result of Tolman [12] for active gravity mass of photon. He solved 

Einstein’s equations for electromagnetic field in case of the weak gravitation and obtained it for the 

interaction between a light package or beam and a material particle. 

      This result can have the following application. At annihilation of an electron and positron the energy 

determined from non-gravitational interactions and the momentum are preserved. We will consider how 
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the gravitational mass of system changes. Although it is not known exactly whether the gravitational 

mass of the positron is positive or negative, some estimates give its positive value [13]. Proceeding from 

this assumption the total gravitational mass of an electron and positron 2��  is twice less than the 

gravitational mass of the formed gamma quanta 4�� . This raises the question of mass conservation [14]. 

If to consider energy as a gravitation source, it means that on condition of its preservation at annihilation 

besides gamma quanta this process has to be allocated the particles �/ which are carrying away negative 

energy as a source of gravitational field, that is, having negative gravitational mass. Process of 
annihilation will look as follows  

 �� + �/ → 2� + 2�/. (70) 

 The particles �/ with gravitational mass  

 �C� = −��  (71) 

 

 do not have a kinetic momentum and therefore their detection by standard means of particle registration, 

for example, a bubble chamber, is not possible. However, if there is opposite to them in "a gravitational 

charge" particle ��, it can apply for a share in dark energy and matter, as well as �/. 
8.  Extremal isotropic curves in Gödel space-time  
The stationary solution of the Einstein's field equation with cosmological constant found by Goedel 

describes gravity field of the rotating uniform dust matter. With coordinates !� = (M, j, �, �) the line 
element is written in form 

 ��� = �M� − �j� − ��� + 2exp(√2�j)�M�� + �
� exp(2√2�j)���,                (72)  

 

where � is constant. 

 
8.1  Solution by use of principle of stationary integral of energy 
The canonical momenta (16) for cyclic coordinates M, �, � are the constants of motion [5,6]. They are 
written in form  

  

�� = 1F�, 
                                                      

�w = exp(√2�j)F� + 12 exp(2√2�j)Fw
F�XF� + exp(√2�j)FwZ , 

 

 �� = − B�
B*XB*����(√��m)B�Z. (73) 

 

 These equations with following from Eq. (72) condition  

 0 = (F�)� − (F�)� − (F�)� + 2exp(√2�j)F�Fw + �
� exp(2√2�j)(Fw)� (74) 

 yield components of the four-velocity vector:  

 
' 
'- = �

Q*, (75) 

  

 
'm
'- == ± ¡�Q*Q����(√��m)/(Q*d�Q�d)���(�√��m)/�Q�d¢*/d

Q*XQ*���(√��m)/�Q�Z , (76) 

  

 
'�
'- = 2 Q�/Q*���(√��m)

Q*���(√��m)XQ*���(√��m)/�Q�Z, (77) 
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'�
'- = Q����(√��m

Q*XQ*���√��m/�Q�Z. (78) 

 

With ��exp(√2�j) = 2�w the singularity takes place. 

      The canonical momentum corresponding to coordinate j is  

 

 �� = ±¡4���wexp(−√2�j) − (��� + ���) −2�w�exp(−2√2�j)¢�/�. (79) 

 

 Canonical forces have values  

 K� = Kw = K� = 0, 
 

 K� = 2√2� Q�XQ�/Q*���(√��m)Z
XQ*���(√��m)/�Q�Zd. (80) 

 

 Associated canonical momentum and forces are  

 

 �� = −�� + 2�wexp(−√2�j), 
 

 �� = ∓¡4���wexp(−√2�j) − (��� + ���) −2�w�exp(−2√2�j)¢�/�, 
 

 �w = 2��exp(−√2�j) − 2�wexp(−2√2�j), 
 

 �� = −��; (81) 

  

 K� = Kw = K� = 0, 
 

 K� = −2√2� Q�XQ�/Q*���(√��m)Z
XQ*���(√��m)/�Q�Zd. (82) 

 
 

8.2  Comparision of Extreme Integral of Energy Curves and Geodesics 
The procedure for obtaining the geodesic equations [14] by the variation of the integral of expression  

 

 £ = ��� '
D
'-

'
E
'- , (83) 

 

 is identical to finding the Euler-Lagrange equations [10] for the Lagrangian  

 

 HC = �
� £, (84) 

 

 that is, these equations are identical. For metric (72) we have  

 

 HC = �
� 8(F��)� − (F��)� − (F� �)� + 2exp(√2�j)F��F�w + �

� exp(2√2�j)(F�w)�:,  (85) 

 where F�� are 4-velocities of geodesics. The constants of motion are the canonical momenta  

 

 ��I = ?J¤?BA (86) 

 corresponding to cyclic coordinates  
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 ��� = F�� + exp(√2�j)F�w, 
 

 ��w = exp(√2�j)F�� + �
� exp(2√2�j)F�w, 

 

 ��� = −F� �. (87) 
 

 These equations, together with condition (74) for 4-velocities, yield  

 

 
	' 
'-¥ = −��� + 2��wexp(−√2�j), (88) 

  

 
'm
'-¥ = ±¡−���� − ���� + 4�����wexp(−√2�j) − 2��w�exp(−2√2�j)¢�/�, (89) 

  

 
'�
'-¥ = 2¡���exp(−√2�j) − ��wexp(−2√2�j)¢, (90) 

  

 
'�
'-¥ = −���. (91) 

 

       As a result, after substitution ���∗ = ���/��� in case ��� ≠ 0 we obtain velocities as the derivatives of 

spatial coordinates with respect to time  
 

 j̇C = ± ¡/(��Q��∗ )d)���(�√��m)��Q��∗���(√��m)/�(Q��∗)d¢*/d
���(√��m)/�Q��∗ , (92) 

  

 �̇C = 2 Q��∗/���(√��m)
���(√��m)¡���(√��m)/�Q��∗¢, (93) 

  

 �̇C = Q��∗���(√��m)
���(√��m)/�Q��∗. (94) 

 

Solution by use of principle of stationary integral of energy (75)-(78) after substitution ��∗ = ��/�� in 

case �� ≠ 0 gives velocities  
 

j̇ = ± ¡(/��(Q�∗)d)���(�√��m)��Q�∗ ���(√��m)/�(Q�∗ )d¢*/d
���(√��m)/�Q�∗ ,                         (95) 

  

  

�̇ = 2 Q�∗/�� (√��m)
���(√��m)¡���(√��m)/�Q�∗ ¢,                                              (96) 

  

 �̇ = Q�∗���(√��m)
���(√��m)/�Q�∗. (97) 

 
      Expressions (92)-(94) and (95)-(97) are identical. Thus, curves of extreme integral of a light-like 

particle energy coincide with isotropic geodesics in Goedel space-time. Since it was shown in §5 that 

the first of these methods yields solutions consistent with the Fermat principle, we can conclude that for 

this stationary but not static space the solution of geometric optics coincide with null geodesics. 

9.  Introduction of the photon 4-momentum via rotations in ESM generally 

In addition to the (TS)-rotation (5) of 5-momenta [9]: 
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cosh sinhTS s TS
E E p
c c

� �
�
� � , 

P P� � , 

                                                         cosh sinhs TS TS
Ep p
c

� �� �� �                                                    (98)     

in ESM there is (XS)-rotation 

E E
c c
�
� , 

cosh sinhXS s XSP P p� �� � � , 

                                                         cosh sinhs XS XSp p P� �� �� � .                                                  (99)  

  
With the help of these transformations from the components of photon 5-momentum (5) in a flat 

extended space, one can pass to components of its 4-momentum in an arbitrary 4-dimensional space (7):  

 

                              �ℏ�
	 , ℏ�

	 , 0
   →   �ℏ�
	 F T (x i ), ℏ�

	 F P (x i ), ℏ�
	 F S (x i )
,                            (100) 

 

where F T (x i ), F P (x i ), F S (x i ) are functions of coordinates. Transformations are not communicative 

at specified angles of rotation TS�  и XS� : 

 

                                                         ( ) ( ) ( ) ( )TS XS XS TS� � � .                                                    (101)  

 

In the case of a material particle, a transformation (TX) is added to them. 

10.  Conclusion  
Canonical 4-momentum is the result given by variational principle of the stationary energy integral of 

photon. The physical energy and momentum of photon are matched exactly with the contravariant 4-

momentum, since in the limit of the Minkovsky space it has momentum components with a sign 

coinciding with the direction of motion. This approach applied to the Schwarzschild space-time and 

Extended Space Model are compared. In ESM these energy and momentum in the embedded four-

dimensional space-time are obtained by (TS)-turn that is corresponded to the photon’s motion in space 

with refraction index � > 1. With the help of (TS) and (XS) transformations from the components of 

photon 5-momentum in a flat extended space, one can pass to the components of its 4-momentum in an 

arbitrary 4-dimensional space. A transformation (TX) is added to them In the case of a material particle. 
       A definite Lagrangian produces particle canonical momenta and forces acting on it in the coordinate 

frame. Contravariant forces are mapped to the components of the vector of the gravitational force. The 

four-force vector is not covariant. The value of the force acting on a particle depends on the choice of 
the coordinate frame, and therefore the quantities determined through them are meaningful only for 

weak gravity, for which its values asymptotically converge in the different coordinate frames. The 

analogy between the mechanics of particle motion in the Schwarzschild space and Newton’s gravity 

theory allows to determine passive gravitational mass of the photon, which is equal to twice the mass of 

a material particles of the same energy determined from non-gravitational interactions. This corresponds 

to the result of Tolman for active gravity mass of photon. This discrepancy suggests that at annihilation 

of an electron and positron in addition to gamma quanta particles are released that have zero kinetic 

energy and momentum and carrying away negative energy as a source of gravitational field, that is, they 

have negative gravitational mass. 
      For the static space-time Fermat principle for the light propagation, variational principle of the 
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stationary energy integral of photon and geodesics principle are equivalent. The equivalence between 

the first two extends to stationary space-times. 
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