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Abstract

There has been a resurgence of interest in theories of massive spin-2 fields, owing

to the recent discovery of ghost-free self-interactions. In addition to reviewing the

historical and recent progress in this subject, I discuss my contributions, including

the derivation of the complete decoupling limit of dRGT ghost-free massive gravity,

proving no-go theorems on ghost-free interactions for charged spin-2 fields, updating

the method of Dimensional Deconstruction for fermions to obtain massive supersym-

metric gauge theories, and my progress towards supergravity theories with non-zero

graviton mass.
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Chapter 1

Introduction to IR-Modifications

of Gravity

1.1 GR as a Quantum Theory

It has been over a century since Einstein and Hilbert first wrote down the

field equations for General Relativity (GR) and the Einstein-Hilbert action. Since

then, GR has contained many surprises; one prominent area of surprise is its close

relationship to Quantum Field Theory (QFT). Ever since Wigner’s classification [1],

it has been known that all field theories are fundamentally characterised by their

mass and their spin. Unexpectedly, many highly non-trivial aspects of GR can be

predicted in the QFT framework by systematically answering the question, “What

low-energy effective field theory (LEEFT) should describe a massless spin-2 field

with local, Lorentz invariant interactions?”

The first published work speculating the connection between GR and massless

spin-2 fields was given by Fierz and Pauli [2] in the 1930’s. The later twentieth

century works by Feynman, Weinberg, Deser, et al proved the full correspondence.

It was shown that the unique LEEFT of a local, Lorentz-invariant, interacting mass-

less spin-2 field is given precisely by General Relativity expanded around Minkowski

spacetime [3–8]. Specifically, it was demonstrated that the Einstein-Hilbert action

can be constructed as the consistent LEEFT action of a local, Lorentz-invariant the-

ory containing a massless spin-2 mode; there can only be one self-interacting massless

spin-2 mode in the spectrum [5, 9, 10]; and that the S-matrix elements for mass-

less spin-2 fields require many non-trivial properties, such as the weak principle of

equivalence. This has spurred many interesting developments into the field-theoretic

study of GR, with early attempts [11] in both canonical quantisation [12–14] and

1



2 Chapter 1. Introduction to IR-Modifications of Gravity

covariant quantisation [15, 16]; exploring loop corrections (both in pure GR [8, 17–

21] and in supergravity e.g. [22, 23] with interesting recent progress on N = 8

supergravity [24]); semi-classical treatments of GR (see [25]) that leads to the in-

formation paradox [26]; a full treatment and understanding of GR as a consistent

Wilsonian EFT [27, 28]. All of these developments lie outside of the full attempts

to quantise, for instance via perturbative quantisation of new, distinct theories (e.g.

string theory [29, 30]) or non-perturbative quantisation attempts (e.g. holography,

for a review see [31], and other more speculative methods like [32]). Therefore,

while a consistent, fully fleshed-out, UV-complete theory of General Relativity re-

mains illusive even after decades of research, one can confidently state that there

are many non-trivial things known about quantum gravity –even staying entirely

within the framework of QFT! Given the incredible progress towards understand-

ing the relationship between gravity and self-interacting massless spin-2 fields, an

obvious, weighty question arises. Since Wigner’s classification also alerts us to the

possibility of massive spin-2 fields, one may naturally ask, “What happens for the

case of massive spin-2 fields with local, Lorentz-invariant interactions?” I take this

as the first critical reason to study massive theories of gravity: It is fundamentally

interesting in its own right to study massive spin-2 fields as a QFT-inspired alter-

ation of General Relativity. Crucially, one may wonder if these theories exhibit

similar theorems and severe restrictions, if there are no-go theorems on how they

can interact, and so forth, like there are for their massless cousins. Some of this is

already well-known; they do have new non-trivial physics, which I broadly review in

Chapter 2. Historically, the literature abounds with either no-go theorems for mas-

sive spin-2 theories [9, 10, 33–40], the most devastating of which have turned out

to have important loopholes or evasions. Indeed, until very recently it was believed

that there were insurmountable inconsistencies in massive gravity. For instance, it

was incorrectly believed that self-interacting theories of massive spin-2 fields neces-

sarily contained a ghostly scalar ([41–45] gave a counter-example, namely the dRGT

theory of ghost-free massive gravity), and that massive gravity necessarily generates

acausalities that prevent it from having a consistent UV-completion ([46–48] have

demonstrated otherwise). Still, a full understanding is absent and a proof regarding

the ultimate consistency of massive spin-2 fields remains unsolved; however, new

research in this area leaves hope for the development of a consistent framework for

massive spin-2 fields. In this thesis, I develop and explore theories of massive spin-2

fields, working towards a deeper understanding of these questions.
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1.2 Cosmological Constant: Observation and The-

ory

There is a second area where massive gravity has arisen within modern physics,

which has to do with the observed cosmic acceleration. Within the context of pure

GR, the Cosmological Constant arises as an allowed contribution to the stress-energy

that sources gravity. It enters into the theory in a special way, with a coupling,

Rµν −
1

2
gµνR+ κ2 Λgµν = 2κ2Tmatter

µν , (1.1)

withRµν being the usual Ricci tensor, my conventions being set by κ =
√

4πG = 1
MPl

and the cosmological constant’s dimension is defined by [Λ] = E4, in natural units

where c = ~ = 1. In terms of a variational principle, the Einstein-Hilbert action for

GR with a cosmological constant is given by

SEH[gµν ] =

∫
d4x

1

2κ2

√
−g
(
R− 2κ2 Λ

)
+ Lmatter , (1.2)

andR is the usual Ricci scalar. The cosmic acceleration of the universe was famously,

and perhaps shockingly, discovered at the end of the 1990’s by Riess, et al, and

Perlmutter, et al, [49, 50], which is interpreted as hinting at a type of Dark Energy.

From the perspective of purely classical physics, this constant is merely a tunable

parameter freely allowed in GR, and one can explain the observed Dark Energy by

simply dialling this knob. Once measured, this parameter takes on the observed

value, and there is very little else to be said. However, in the context of field theory,

the concept of the cosmological constant becomes more problematic. In QFT, the

issue of renormalisation arises, wherein the parameters of the QFT change as one

flows from a UV theory into an IR theory. The cosmological constant is a relevant

operator, and does not appear as though there can be a symmetry protecting its

‘smallness’, which is the main protection mechanism for the mass scales [51] entering

into relevant operators. Without one, relevant operators grow as one flows into the

IR. To explicitly see the effect of running, suppose some new physics enters at

a scale ΛUV . One can estimate that the cosmological constant will get quantum
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contributions of the form1

〈Λ〉 ∼
∫ ΛUV

0

d4k ∼ Λ4
UV (1.3)

If one takes the scale of new physics to be MPl and uses the observed value, Λobs,

one then requires an enormous tuning between the bare CC and the quantum cor-

rections:

Λobs ≈M2
PlH

2
0 ≈ 10−120M4

Pl . (1.4)

This disconnect between the expectation from the running of quantum corrections

and the observed value remains an oddity in modern theoretical physics. Sometimes

the appearance of fine-tuning really indicates that there are hidden mechanisms

behind the small size (or even being zero) of various parameters. For instance, some

energy scales in marginal and relevant interactions are protected from quantum

corrections via symmetries; these cases are called ’t Hooftian technical naturalness

[51] and related non-renormalisation theorems (see for example the Galileon non-

renormalisation theorem [53]). But in principle, the universe may just fail to be

technically natural, with alternative explanations coming from anthropic arguments

(like those first discussed in [54]).

1.2.1 New IR Gravitational Physics from Non-Zero Gravi-

ton Mass

If one takes a cosmologist’s interest in finding potential, non-anthropic expla-

nations for the observed value of the cosmological constant, then the ’t Hooftian

technical naturalness argument is rather difficult. The absence of a known symme-

try, which would need to appear when the cosmological constant is sent to zero,

makes a technical naturalness argument difficult; indeed, there also is no known

symmetry which makes the cosmological constant zero.2 I will briefly mention two

possibilities. Firstly, perhaps new physics could cause the cosmological constant to

couple weakly through gravity through IR-modifications of gravity. I will review

this more carefully in the next section. Secondly, one can ask a different, but still

intriguing question: Perhaps other far-IR (cosmological scale) physics could give rise

1Of course, one should use a more careful, non-anomalous regulator, such as dimensional
regularisation. There only the logarithmic contributions are real; however, this estimator gives the
log-only contributions up to an O(1) factor. See [52] for further details on these quantum details.

2Outside of two cases: 1.) Supersymmetry, which is broken in Nature, and thus cannot aid us.
2.) The U(1) of partially massless gravity (see [55]), whose dynamical interactions are unknown
(and possibly may not exist) and, in any case, is a massive spin-2 field.
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to the same predictions as a Cosmological Constant (e.g. an expanding universe).

In other words, perhaps the observed accelerated expansion could come from new

IR physics rather than a CC; there were many early ideas for this. To reference but

a few [56–59]; for a more complete list please see [55] and references therein. Many

of these theories led directly back to theories of massive spin-2 fields. A comment on

all of these is that in the limit that m → 0 one regains diffeomorphism invariance,

so one might hope that a ’t Hooftian naturalness argument could apply directly

to the mass term itself, giving a technically natural explanation of the accelerated

expansion of the universe. Either or both of these phenomena could be considered

a success for explaining major aspects of the cosmological constant problem! Thus,

many straightforward attempts to modify gravity in the IR suggestively lead back

to theories of massive spin-2 fields. I will take a moment to describe one of the most

interesting ideas.

1.2.2 De-Electrification and Degravitation

During the period immediately following the discovery of cosmic acceleration,

many different ideas spawned for how one might deal with a cosmological constant

in a technically natural manner. One interesting possibility was developed by Dvali,

et al, called “degravitation” [60, 61]. The quintessential idea is perhaps one should

take the enormous bare cosmological constant that one gets from a näıve QFT

calculation seriously, and instead ask a different question: “If there is an enormous

cosmological constant with a small measured value, is it possible that gravity simply

couples weakly to cosmological constants?”

In other words, is there a reason why gravity would couple weakly to constant

sources of stress-energy (e.g. a cosmological constant)? At first glance, one might

think that it is impossible to do so without appealing to some kind of non-local or

similarly questionable physics. Such an intuition would presumably apply to a mass-

less force-carrying field; however, no such restriction exists for massive force-carrying

fields! Actually, this is already known to happen in Nature. In a superconductor

[62], the photon spontaneously picks up a mass and the net affect is that it acts

to screen all constant sheets of charge! This is sometimes called “de-electification”

[52]. Given a Proca theory, one has the field equations

(ηµν2− ∂µ∂ν)Aν −m2Aν = Jµ (1.5)

=⇒ ∂µ((ηµν2− ∂µ∂ν)Aν −m2Aν) = ∂µ(Jµ) (1.6)

=⇒ ∂µA
µ = 0 . (1.7)
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The last line follows since on the LHS, the identity 2 := ∂µ∂
µ causes the first term

to drop out leaving only the non-zero mass term −m2∂µA
µ. The RHS comes from

Jµ = const, then ∂µJ
µ = 0.

Now, famously the field equations for a Proca theory become

2Aµ −m2Aµ = Jµ ,

∂µA
µ = 0 . (1.8)

Notice, however that one can find a constant solution for this constant source, Aµ =
−1
m
Jµ which satisfies the field equations. However, since these are linear differential

equations, one can clearly see that all constant contributions to the stress-energy

amount to constant shifts in the 4-vector potential Aµ.

However, since particles only couple to the electromagnetic fields, Fµν ∼ ∂µAν ,

all of these constant shifts drop out of the physical forces and similar quantities

and thus the forces imparted on point particles are totally insensitive to

constant sources! This is why it is called “de-electrification”. One could imagine

similar physics occurring for gravity, where roughly Aµ → hµν and Jµ → Tµν .

Thus, if one can find a theory of massive gravity, one has good reason to hope

that large cosmological sources could be screened by the presence of a non-zero

graviton mass, and this would give a technically natural explanation for the smallness

of the observed Dark Energy appealing to nothing but an IR modification to General

Relativity! I will return to this in Chapter 2. This is one example, although as stated

above, there are similar interesting physics related to cosmological constants/new

ways to mimic Dark Energy when one gives the graviton a non-zero graviton mass.

1.3 Objectives

Thus, summarising the main issues:

1.) Massless spin-2 fields are well-known to have interesting restrictions on them,

coming only from QFT. Massive spin-2 fields are a natural object within QFT,

but the status of their interactions lead to interesting, still not fully under-

stood, results. This merits further exploration.

2.) If one is interested in expanding the theoretical understanding of what types

of new IR physics may be present, e.g. perhaps in cosmological context (and

may not seen in physics at collider scales), then the theory space of massive
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gravity should be understood. Indeed, many attempts on the cosmology side

of things lead one back to the study of massive spin-2 fields.

In this thesis, I will therefore work towards a further understanding of the dRGT

theory of massive gravity. Specifically, I will explore the full limits of the theory,

called the decoupling limit (Chapter 3); I will attempt to enhance the symmetries of

the theory to include charged interactions (Chapter 5), and I will also enhance the

theory to include potentially supersymmetric interactions for the theory (Chapter 6).

I will also extend the current knowledge of Dimensional Deconstruction to include

supersymmetry and broaden the conceptual development of this idea.

1.3.1 Outline

The outline of my thesis is as follows:

Chapter (2): I begin by reviewing the recent history and results of massive gravity. This

begins with the free theory of a massive spin-2 field given by Fierz-Pauli theory

and the new physics associated to this theory. From there, I give a toy model of

an interacting gauge theory, namely Proca-Yang-Mills theory. After addressing

the new physics found in massive gauge theories, I move back to discussing

generic theories of self-interacting massive spin-2 fields. These theories can be

shown to typically contain a ghostly scalar mode in their spectrum. In the

final subsection, I introduce the recently discovered dRGT theory of ghost-

free, self-interacting massive gravity. Additionally, I review this theory in the

Einstein-Cartan formalism and show the existence of a Λ3 decoupling limit.

Chapter (3): In the third section, I demonstrate my original proof of the full form and the

full tower of interactions present of dRGT theory in the decoupling limit. I

use novel methods to demonstrate the clean nature and relationship of dRGT

massive gravity in metric formulation and in the vielbein variables. Using the

Lorentz Stückelberg formalism, I obtain the complete form of the previously

unknown helicity-1 interactions, which I prove are exclusively between the

helicity-0 and the helicity-1 modes and can be placed into an integral form.

Taken together with the decoupling limit of the action, I write down the action

for complete decoupling limit of dRGT massive gravity.

Chapter (4.) I review a major discovery of dRGT massive gravity discovered by C. de Rham,

et al, namely that it may be obtained from a higher dimensional theory of

Einstein-Cartan (massless) gravity. I provide my perspective of the Dimen-
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sional Deconstruction procedure, a procedure which will be necessary for the

following sections.

Chapter (5.) I discuss my original derivation of a no-go theorem regarding self-interacting

charged spin-2 fields with a dRGT mass term. I briefly review the uses that

such a field would have in modern holographic superconductors and DC con-

ductivity, as well as giving a possible Lagrangian for charged spin-2 meson

resonances in nuclear physics. To provide the no-go theorem, a novel tech-

nique is developed for checking for the existence of ghosts.

Chapter (6.) After reviewing supersymmetry, I give a discuss the relationship between

dRGT massive gravity and Zinoviev theories (supersymmetric Fierz-Pauli the-

ories), and I provide a new Dimensional Deconstruction prescription for ob-

taining massive supersymmetric theories from higher dimensional massless su-

persymmetric theories. I show how N = 1 super-Proca and N = 1 Zinoviev

theory can be obtained from deconstructing supersymmetric Maxwell and lin-

ear supergravity theories, respectively.

Chapter (7.) I discuss my work towards developing a theory of a massive supergravity fol-

lowing the SUSY deconstruction procedure from Chapter 6.



Chapter 2

Introduction to Massive Gravity

2.1 Massive Spin-2 Theories?

As soon as one starts an exploration of theories of non-zero graviton mass, there

are immediate structural changes to gravitation. The first kind of structural changes

relate to new physics present around the scale of the graviton mass, m. The second

kind of structural changes are related to the fact that massive representations have

new physical degrees of freedom, which contain a rich set of physics not present

in its massless cousin. The third kind relates to the stringent requirements when

introducing interactions for massive gravitons, which is one of the major recent

breakthroughs in the field. Before moving into the main body of this section, I

pause to list some of my conventions. A detailed list of conventions can be found in

Appendix A, but as a reminder to the reader, these are some of the salient choices:

1.) My metric convention is (−,+,+,+) for M1, 3. I follow standard supergravity

conventions, so κ =
√

4πG and a “reduced” Planck mass M2
Pl = 1

κ2 .

2.) I shall make constant usage of generalised Kronecker delta symbols, δµ1···µN
ν1···νN ,

such that N ≤ D. For a detailed discussion of these objects, see the Appendix

B. These symbols will rapidly speed up calculations and manifest crucial gauge

symmetries/constraint structures.

3.) A brief glossary of acronyms:

– QFT = “Quantum Field Theory”,

– EFT = “Effective Field Theory”,

– LEEFT = “Low-Energy Effective Field Theory”,

– DL = “Decoupling Limit”,

9
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– GR = “General Relativity”,

– LGR = “Linearised General Relativity”,

– mGR = “Massive Gravity”,

– dRGT = “de Rham-Gabadadze-Tolley gravity”,

– YM = “Yang-Mills theory”,

– PYM = “Proca-Yang-Mills theory”

– FP = “Fierz-Pauli”,

– DOF = “Degree of freedom” (e.g. dimension of configuration space)

– PDF = “Physical Degree of Freedom” (polarisation; on-shell, local DOF),

– GKD = “Generalised Kronecker Delta symbol”,

– vDVZ = “van Dam-Veltman-Zakharov”.

This section proceeds as follows:

1.) In the first subsection 2.2, I review the details of a free (non-interacting) mas-

sive spin-2 field, called Fierz-Pauli theory. I discuss the new physics associated

at the linear description of a massive spin-2 mode. Finally, I review the con-

clusion that a robust analysis of a fully interacting theory is necessary.

2.) In the second subsection 2.3, I pause from the case of a spin-2 field to discuss

the more well-known case of an interacting, massive spin-1 gauge field (i.e.

Proca-Yang-Mills), and I review some important features of this theory.

3.) In the third section 2.4, I discuss the näıve attempts to covariantise the Fierz-

Pauli theory, and discover the return of a ghostly mode in the self-interacting

theory.

4.) In the fourth subsection 2.5, I introduce the dRGT theory of massive gravity,

discovered by de Rham, Gabadadze, and Tolley. It adds mass terms to GR that

identically and uniquely vanquish the ghostly mode. I show how the theory

can be reformulated in Einstein-Cartan formalism, and review the existence

of a convergent Λ3 decoupling limit.
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2.2 Massive Gravity without Self-Interactions

2.2.1 Representation-Theoretic Aspects

For simplicity, I start with the linearised (weak gravitational coupling, 1
MPl

=

κ→ 0) theory in 4-D. This must be described by a classical field theory in Minkowski

space. Before discussing the field-theoretic aspects, I begin with several comments

about the group theory that comes to bare. Firstly, following Wigner’s classification

of the unitary representations of the Poincaré algebra, a massive spin-2 mode sits

inside a j = 2 representation of the Wigner little group, SO(3) and has a mass m 6= 0,

coming from the Casimir P 2 = −m2 [1]. The dimension of this representation is

5, therefore the field theory must propagate 5 polarisations or PDF’s. If I wish to

move to arbitrary dimensions (i.e. D-dim Minkowski), the number of PDF’s is given

by

Number of PDF’s =
1

2
(D2 −D − 2) , (2.1)

with d = 4 clearly giving 5 PDF’s. Secondly, Wigner’s classification of unitary

representations of the Poincaré group for massive spin-2 state must be encoded into

a local, symmetric 2-tensor field hµν . In other words, the tensor structure is the

same, but the PDF’s are markedly increased!

These are the basic ingredients, from which I can begin the search for a linear

theory of massive gravity on Minkowski.

2.2.2 Fierz-Pauli Theory

Having a definite Lorentz representation, hµν , and a definite number of PDF’s,

one needs to find a Lagrangian to provide dynamics for a massive spin-2 field hµν .

The Lagrangian was originally developed by Fierz and Pauli [2] in 1939, with the

eponymous action:

SFP =

∫
d4x

[
−1

2
hµ

α
(
δµνραβγ ∂ν∂

β
)
hρ

γ +
1

2
m2hµ

αδµναβhν
β

]
. (2.2)

An analysis of the equations of motion allows one to see that it propagates only 5

PDF’s.

δµνραβγ∂ν∂
βhρ

γ +m2δµναβhν
β = 0 , (2.3)
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which when contracted into a derivative and traced over, respectively, yields the

constraints

∂α
(
δµνραβγ∂ν∂

βhρ
γ +m2δµναβhν

β
)

= 0

=⇒ ∂µhµ
α = 0 (4 constraints) (2.4)

δµ
α
(
δµνραβγ∂ν∂

βhρ
γ +m2δµναβhν

β
)

= 0

=⇒ hµ
µ = 0 (1 constraint) , (2.5)

where I have algebraically simplified the final expressions of both constraints using

the intermediate expressions. After subtracting these constraints from the original

10 symmetric tensor components, one is left with 5 unfixed, propagating degrees

of freedom. Crucially, notice the importance of the relative coefficients in the mass

terms, cf. (hµνh
µν−(hµ

µ)2) when deriving the trace constraint. There is no require-

ment from Poincaré invariance that the two allowed mass terms have this relative

weighting. It turns out that the theory will have 6 PDF’s for alternative weight-

ings, and the 6th degree of freedom is unstable and violates the positivity of the

Hamiltonian. Such degrees of freedom are called “ghosts” and will spoil unitarity

of underlying quantum theories unless their masses are pushed above the cutoff of

the theory. I return to this in subsection 2.2.6, for now one can rule the theory out

just on the grounds of clashing with the desired PDF’s. One can now do the usual

calculations, such as computing the propagator, deriving at the profile of potentials

sourced by a point mass, and so forth. Immediately, there is an odd puzzle with the

massive spin-2 field. Näıvely, one expects for there to be continuity in parameters;

for instance, as the gravitational coupling κ =
√

4πG = 1
MPl

is dialled down, one

expects GR to ‘flow’ into linear GR or if one takes YM and dials down g, one gets

back Maxwell theories. This begs an interesting question: If one dials the mass down

in Fierz-Pauli theory, m → 0, then näıvely one expects to recover the predictions

of linear GR. For instance, if one computes the gravitational potential generated by

FP theory by a point source M , one obtains

VFP(r) =
4

3
G
M1

r2
e−mr . (2.6)

The long-distance Yukawa suppression is not surprising, given that it is a mas-

sive particle, and represents the introduction of the mass into the theory. But if

I compute the gravitational potential created by that field, the answer for LGR
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immediately differs from the FP potential when m→ 0:

VLGR(r) = G
M

r2
(2.7)

VFP(r) =
4

3
G
M

r2
. (2.8)

Also, there are additional discrepancies in predictions, such as the lensing angles, so

this cannot be fixed by doing a classical renormalisation of G. Stated more devas-

tatingly, the PPN parameters of FP at m = 0 and LGR are different; thus, they are

fundamentally two totally different Poincaré invariant theories. Therefore, it appears

as though the scaling limit is discontinuous at m = 0. This discontinuity is referred

to as the van Dam-Veltman-Zakharov discontinuity (i.e. the vDVZ discontinuity)

after its discoverers [33, 34]. It is worth noting how this differs from the lower spin

cases. For spin-0 and spin-1
2
, the mass trivially may be scaled to zero in a continuous

fashion. In the case of the massive spin-1 field, there is a new polarisation, but the

electric potential (and related electromagnetic physics) created by a point charge in

the massless field agrees with the massive theory’s solution in the limit that m→ 0.

This bizarre new phenomena for massive spin-2 fields seems like an immediate killer

for any massive theory of gravity, since the m = 0 limit should dominate in the

weak-coupling, small distance limits (i.e. r � 1
m

, while r � κ) where Newtonian

gravity is known to be the dominant description of gravity. The physics of massive

spin-2 fields, however, lies precisely in how one can address the issues outlined in

this section, namely: consistently maintaining 5 PDF’s while keeping a consistent

high momentum limit (small distance) that flows to an ordinary massless gravity

(LGR in the weak gravity limit, but ideally GR when graviton self-interactions are

present). In order to accomplish this, I will need carefully explore these issues within

the Stückelberg formalism. But first a short interlude.

2.2.3 An Aside on Degravitation

For the interested cosmologist, I briefly prove that this linear theory does in-

deed degravitate, as advertised. In other words, the massive spin-2 field will fail

to respond to a uniform, static source. Here, a cosmological constant for the free

theory is just a constant source, for example the leading order contribution goes as

Tµν = Ληµν , (2.9)



14 Chapter 2. Introduction to Massive Gravity

where Λ is a parameter containing the scale of the cosmological constant. Given

this source, one can vary the action to arrive equations of motion of the form

δαβγµνρ ∂ν∂
βhγρ +m2δαγµνhρ

γ = −Ληαµ . (2.10)

I take as an ansatz that

hρ
γ = Aδγρ . (2.11)

Plugging in this solution, one generates a constraint on A, so that,

3 · 4Aηργ = −Ληργ (2.12)

=⇒ A = − 1

12
Λ . (2.13)

This is simply rescaling the ηµν Minkowski background (which would ostensibly lead

to something like gµν = ηµν + hµν = (1− Λ
12

+ · · · )ηµν in a covariant, self-interacting

theory). In other words, even though one is adding a cosmological constant as a

source, massive gravity simply returns a Minkowski spacetime as the solution! Note

that this shift does not affect physical observables like forces imparted between

particles. So long as matter are coupled gauge-invariantly to hµν , they are only

sourced by gauge-invariant ∼ ∂h quantities, which are invariant under constant

shifts! Note that this is wildly different than the case for even linear GR, and it is

entirely due to the new IR physics: The mass acts as a high-pass filter that screens

constant sources, e.g. a cosmological constant!

2.2.4 Proca Theory in Stückelberg Formalism

Returning to the small distance physics of the massive spin-2 field, I now in-

troduce a powerful formalism. It is quite convenient to explore both of these issues

within the Stückelberg formalism, which I now define for the massive spin-1 case.

It is well known that Maxwell, Yang-Mills, and General Relativity have gauge sym-

metries (the U(1) group; a compact, semi-simple Lie group G; and diffeomorphism

group, respectively). However, it is often stated in introductory QFT textbooks (e.g.

[63]) that theories with massive gauge particles break the gauge symmetries. This is

an inaccurate statement, although it is a close proxy for the truth. A more accurate

statement is that these massive theories are sitting in a very useful gauge-fixed form.

The Stückelberg procedure is a method for deriving the overarching gauge theory

of the massive gauge field. It begins by taking the original gauge symmetry for the
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massless theory; for the spin-1 case, one has

Aµ → Aµ − ∂µξ , (2.14)

and noting that while the kinetic term obeys gauge symmetry, the mass term man-

ifestly violates it

SProca[A] =

∫
d4x − 1

4
FµνF

µν − 1

2
m2AµA

µ . (2.15)

Therefore, at the Lagrangian level, one should conclude that the new degrees of

freedom must be associated with mass term. This can be explicitly seen by manually

installing the gauge symmetry at the price of introducing a new field ϕ. If one

substitutes

Aµ → Aµ − ∂µϕ (2.16)

into the action, it yields a new action

SStu[A,ϕ] =

∫
d4x − 1

4
FµνF

µν − 1

2
m2(Aµ − ∂µϕ)(Aµ − ∂µϕ) (2.17)

=

∫
d4x − 1

4
FµνF

µν − 1

2
m2

(
∂µϕ∂

µϕ+ 2Aµ∂
µϕ− 1

2
AµA

µ

)
.

(2.18)

It is useful to canonically normalise the scalar mode; this is achieved via a redefinition

ϕ→ 1

m
ϕ (2.19)

after which the action takes the canonically-normalised form

SNorm-Stu[A,ϕ] =

∫
d4x − 1

4
FµνF

µν − 1

2
∂µϕ∂

µϕ+mAµ∂
µϕ− 1

2
m2AµA

µ ,

(2.20)

which has the U(1) gauge symmetry

Aµ → Aµ − ∂µξ (2.21)

ϕ → ϕ−mξ . (2.22)

This theory is physically equivalent to the first, and can be seen at two different

levels. Firstly in terms of DOF, one has added a precise combination of one new

DOF alongside one new gauge symmetry. This simultaneously adds and subtracts



16 Chapter 2. Introduction to Massive Gravity

a DOF, thus keeping to the original number of PDF’s. Secondly, one action directly

comes from the other. One is clearly allowed to choose the “unitary gauge”, i.e.

ϕ = 0 in the Stückelberg action. This choice manifestly returns one to the original

Proca theory, thus proving the physical equivalence of these actions. So I am really

just expressing the same theory in two different forms. What is the upshot of

re-writing the theory in this manner? This new action boasts many new useful

features; the most important of which is that it manifests the degrees of freedom.

Now one is free to smoothly vary m and keep the 3 PDF’s of Proca manifest! Setting

m = 0 into the Stückelberg Lagrangian simply yields the free helicity-(±1) modes

and helicity-0 mode Lagrangian description. Additionally, this limit of the theory

happens to be the descriptor of Proca at high momentum, when the contribution

of the mass is negligible. This technique will be very helpful for providing simpler

effective descriptions of interacting massive gauge theories at high energies, E � m.

Although not relevant for my thesis, it is noteworthy that this is the most natural

connection to Higgs mechanisms, since this is Stückelberg mode is clearly the “eaten”

degree of freedom from the Higgs sector.

2.2.5 FP Theory in Stückelberg Formalism

I will repeat this analysis for Fierz-Pauli theory. To do so, I must first restore

linearised diffeomorphisms within the action by adding a vector mode B:

hµ
α → hµ

α − 1

2m
(∂µB

α + ∂αBµ) , (2.23)

where I have already put in the obviously required power-counting factor of 1
m

. This

generates a new action of the form

SFP-Stu =

∫
d4x− 1

2
hµ

α
(
δµνραβγ ∂ν∂

β
)
hρ

γ (2.24)

+
1

2
m2

(
hµ

α − 1

2m
(∂µB

α + ∂αBµ)

)
δµναβ

(
hν

β − 1

2m

(
∂νB

β + ∂βBν

))
=

∫
d4x− 1

2
hµ

α
(
δµνραβγ ∂ν∂

β
)
hρ

γ − 1

2
∂µBνδ

µν
αβ∂

αBβ

1

2
m2δµναβ

(
hµ

αhν
β − 2

m
∂µB

αhν
β
)
, (2.25)
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where in the last line I have integrated by parts and exchanged indices. This theory

possesses a linearised diffeomorphism gauge symmetry

hµ
α → hµ

α − 1

2
(∂µξ

α + ∂αξµ)

Bµ → Bµ −mξµ . (2.26)

Now, however, the new vector that I have introduced fails to have an associated

U(1) symmetry. To manifest all of the gauge symmetries of the theory, one may

then add in a U(1)-restoring Stückelberg field, this time a scalar mode π:

Bµ → Bµ −
1

m
∂µπ . (2.27)

This causes the action to take the form

SFP-Stu =

∫
d4x− 1

2
hµ

α
(
δµνραβγ ∂ν∂

β
)
hρ

γ − ∂µBνδ
µν
αβ∂

αBβ

+
1

2
m2δµναβ

(
hµ

αhν
β − 2

m
∂µB

αhν
β +

2

m2
∂µ∂

απhν
β
)
. (2.28)

It is now more difficult to canonically normalising the modes. The scalar mode

clearly fails to have a canonical kinetic term, which can only be repaired by a

diagonalising transformation; since the vector mode cannot give it one, one must

guess something of the form hµν → hµν + πηµν . One may then plug in arbitrary

coefficients rescaling the fields, and the fix them by diagonalising the interactions

and canonically normalising. One will find that the field redefinitions

hµ
α → hµ

α − 1√
6
πδαµ ,

Bµ →
1√
2
Bµ ,

π →
√

2

3
π , (2.29)

will diagonalise and canonically normalise the action into the form

SFP-Stu[h,B, π] =

∫
d4x − 1

2
hµ

αδµνραβγ∂ν∂
βhρ

γ − 1

4
GµνG

µν − 1

2
∂µπ∂

µπ

+m
[
−
√

2δµναβhµ
α∂νB

β +
√

3π∂µB
µ
]

+m2

[
1

2
hµ

αδµναβhν
β +

(
π2 −

√
3

2
πhµ

µ

)]
, (2.30)



18 Chapter 2. Introduction to Massive Gravity

with Gµν = ∂µBν − ∂νBµ. This action now possesses the linearised diffeomorphism

gauge symmetries, which are given by the infinitesimal transformations

δhµν = ∂(µξν)

δBµ = m
√

2ξµ ,

δπ = 0 . (2.31)

and a U(1) gauge symmetry with infinitesimal actions1

δhµν =
m

2
ηµνξ ,

δBµ = ∂µξ ,

δπ = m

√
3

2
ξ . (2.32)

To conclude this derivation of the Stückelberg formulation of FP, I make a few

cursory comments. First, one can now see that in the limit m → 0, one manifestly

obtains the action for a free massless spin-2 mode (2 PDF’s) with helicity-(±2), a free

massless spin-1 mode (2 PDF’s) with helicity-(±1), and single free massless spin-0

(1 PDF) mode; thus, the action manifests the correct degrees of freedom (5 PDF’s).

Of course, the m → 0 limit can also be thought of as a high momentum/energy

limit. This limit of massive theories is called the “decoupling limit”, where ones

scales the theory to zoom onto the dominant classical contribution of the theory

when probing energies well above the mass, E � m. I will return to the issue of

decoupling limits many times, as they are helpful simplifications of massive gauge

theories.

2.2.6 Fierz-Pauli Tuning and Ghostly Modes

It was claimed in subsection 2.2.2 that a deviation from the Fierz-Pauli tuning

leads to a sixth PDF that is a ghost. I pause now to provide an elegant proof of this

claim employing the Stückelberg formalism. This is doubly useful because it shows

one how effective the Stückelberg formalism is at diagnosing the existence of PDF’s

and it will efficiently show the true origin of this PDF as being necessarily ghostly.

To begin, I start by writing down the most general mixing of mass terms. One may

1Notice that due to the diagonalisation, the tensor mode also transforms.
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generalise the FP action for a massive linear gravity theory to the following form

SmLGR =

∫
d4x

(
1

2
hµ

αδµνραβγ∂ρ∂
γhν

β − 1

2
m2hµ

α
[
δµναβ + aδµβδ

ν
α

]
hν

β

)
, (2.33)

with the special case of FP only when a = 0; however, by carefully tuning a and

m one can get WLOG any linear combination of (hµν)
2 and (hµ

µ)2. I now ap-

ply the usual Stückelberg procedure by adding in a canonically-normalised vector

Stückelberg mode, hµν → hµν− 1
2
√

2m
(∂µBν +∂νBµ). This only affects the mass term

since the kinetic term is gauge invariant. If one singles out the mass term, one sees

it generates other terms of the form:

Smass term =

∫
d4x − 1

2
m2hµ

α
[
δµναβ + aδµβδ

ν
α

]
hν

β

+
1

16
(∂µB

α + ∂αBµ)
[
δµναβ + aδµβδ

ν
α

] (
∂νB

β + ∂βBν

)
+

1

2
√

2
mhµ

α
[
δµναβ + aδµβδ

ν
α

] (
∂νB

β + ∂βBν

)
. (2.34)

Now, I zoom onto the pure kinetic terms for Bµ, i.e. all terms of the form B∂2B.

After performing some integration by parts, one finds that absent the crucial anti-

symmetry provided by the FP tuning, one instead ends up with kinetic terms

SB-kinetic =

∫
d4x

1

16
(2∂µB

α)
[
δµναβ + aδµβδ

ν
α

] (
∂νB

β + ∂βBν

)
=

∫
d4x − 1

4
GµνG

µν +
1

2
a (∂µBµ)2 , (2.35)

with the usual Gµν = ∂µBν − ∂νBµ. Notice now that the action for the helicity-1

mode manifestly violates U(1) invariance, and moreover explicitly provides a kinetic

term for the B0 mode. The appearance of a kinetic term for the time-component

signals the existence of a ghost and unitarity violation. One can see this in an

alternate way by finishing the Stückelberg procedure. If the Stückelberg procedure

is applied for the U(1) symmetry, i.e. Bµ → Bµ − 1
m
∂µπ, one ends up with

SB-kinetic =

∫
d4x − 1

2
(Gµν)

2 + a
1

2

(
∂µBµ −

1

m
2π

)2

(2.36)

=

∫
d4x − 1

4
(Gµν)

2 + a
1

2
(∂µBµ)2 +

a

2m2
(2π)2 + · · · . (2.37)

In other words, the theory has a scalar with a kinetic term of the form π∂4π. Due to

the Ostragradsky theorem [64], this means it propagates two scalars, one with a valid

kinetic interaction but the other with a kinetic term of the wrong sign (i.e. a ghost).
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These theories are classically unstable because, once the ghost is propagating, they

cause the Hamiltonian to unbounded from below owing to their negative kinetic

energy (which leads to unitarity violations upon quantising the theory). Therefore,

within the linear theory, it is easy to see that this mode is identically killed if and

only if a = 0. To prove this without the use of Stückelberg modes is actually quite

challenging, and typically requires a long, careful Dirac analysis of the Hamiltonian

density associated to this theory [65]. As an added bonus, if one wishes to churn

through the analysis of the previous two sections (checking what mass is created via

the diagonalisation hµν → hµν + 1√
6
πηµν field redefinition), one can derive the mass

for the ghostly mode which acts as a cut-off if interpreted as an EFT (see, e.g. [55]).

This is one of areas where the Stückelberg formalism proves very powerful.

2.2.7 Origin of the vDVZ Discontinuity

Suppose one introduces a source term to Fierz-Pauli theory; at the level of the

action, one clearly has

Ssrc =

∫
d4x κhµνT

µν . (2.38)

Notice that with the diagonalising transformations (2.29) in the Stückelberg formal-

ism, the source terms get modified as

Ssrc =

∫
d4x κhµνT

µν (2.39)

→
∫

d4x κ

(
hµνT

µν +
1√
6
πTµ

µ

)
. (2.40)

Note that the derivative terms ∂µBν and ∂µ∂νπ drop out due to conservation of T µν ,

but crucially there is still a helicity-0 mode coupling to the trace of the stress-energy!

The origin of the vDVZ discontinuity is now trivial to see. Firstly, in order to take

the straightforward m → 0 limit, one needs to be in the Stückelberg formalism,

which smoothly interpolates the PDF’s. Secondly, in particle language, one can see

that an additional force is added between sources beyond the ones generated by the

helicity-2 modes; there is an additional contribution to the gravitational potential

from exchanging virtual helicity-0 modes. Alternatively, at the level of the action,

FP does not turn into LGR in the m→ 0 limit, one can see that it turns into SLGR

sourced by stress-energy, a free Maxwell theory SMaxwell with no source, and finally

a helicity-0 mode SKG sourced by the trace of the stress-energy.2 If one wishes to

2In other words, a (linearised) Brans-Dicke theory of gravity [66] (plus a decoupled vector).
This has all of the obvious 5th forces implications, only the scalar-matter coupling cannot be dialled
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restore purely LGR (plus a totally decoupled vector and scalar), one would have

to remove the T term sourcing π. Unfortunately it is clear that, structurally, FP

requires the presence of this term. Shortly after the 1976 papers on the vDVZ

discontinuity, Vainshtein sketched out an important oversight of this analysis and a

related possible resolution to this issue [67].

2.2.8 Self-Interactions and Vainshtein’s Conjecture

Shortly after the vDVZ papers, it was pointed out that the vDVZ analysis

radically changes if one makes a very innocent assumption: Suppose that the spin-2

field has self-interactions. More than being an innocent assumption, if one wants

this to be a gravitational theory then one necessarily will require the existence of the

self-interactions present in GR. Although the original Vainshtein analysis [67] and

further clarifications answered this question by guessing covariantisations of the FP

action and then analysed the solutions, I will give a simpler, more general argument.

Here, I will purely analyse the power-counting analysis of what happens when self-

interactions are present within massive gravity. This means that I will neglect the

index structure. If one desires kinetic interactions like those present in GR, then

there will be a tower of interactions like

Skinetic =

∫
d4x ∂2h2 + (κh)∂2h2 + (κh)2∂2h2 + · · ·+ (κh)n∂2h2 + · · · . (2.41)

Any covariantisation, näıve or otherwise, of the Fierz-Pauli action will generically

have an infinite tower of interactions of the type3

Smass =

∫
d4xm2h2 + (κh)m2h2 + (κh)2m2h2 + · · ·+ (κh)nm2h2 + · · · . (2.42)

Next, I remind the reader that the Stückelberg formalism relies on following the

gauge invariance of the massless theory, which for GR is diffeomorphism invariance.

This complicates the introduction of the Stückelberg fields, but at leading order, they

will enter like the linearised diffeomorphisms in equation (2.23). So the Stückelberg

procedure enters into the theory as

h→ h̃ = h+
1

m
∂B +

1

m2
∂2π +O

( κ

mn

)
. (2.43)

to a small value.
3For instance, expanding the requisite

√
−g = exp

(
1
2Tr[ln(I + κh)]

)
yields such an infinite

series.
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Expanding the action to cubic order with the above Stückelberg procedure, one has

the following mass term

Smass =

∫
d4xm2

(
h+

1

m
∂B +

1

m2
∂2π +O

( κ

mn

))2

+κm2

(
h+

1

m
∂B +

1

m2
∂2π +O

( κ

mn

))
×
(
h+

1

m
∂B +

1

m2
∂2π +O

( κ

mn

))2

. (2.44)

From which, assuming the index structure does not make this identically zero, the

generic cubic self-interactions for π can read off as

Smass ⊃
∫

d4xκ

(
1

m2
∂2π

)
m2

(
1

m2
∂2π

)2

.

=

∫
d4x

(
1

MPlm4

)
(∂2π)3 . (2.45)

Therefore, typically one can see that π will enter in with derivative self-interactions

suppressed by powers of the graviton mass m. This is crucial, because if one

tries to take the limit m→ 0, then π becomes strongly self-interacting and

the dominant contributions for the scalar do not enter into the theory

from the Fierz-Pauli terms. Even worse, when one sends m → 0, the scalar

becomes infinitely strongly coupled; this will wash away the entire Fierz-Pauli con-

tribution to the solution, including the predictions of the 5th force! The Vainshtein

conjecture states that the complete theory of self-interacting massive gravity will al-

low one to make sense of these interactions, and non-linearly the theory will exhibit

a smooth limit, i.e.

lim
m→0

[SmGR] = SGR + SV+S (2.46)

where the action splits into GR plus a decoupled sector containing a vector/scalar

theory. This was first conjectured in [67] and further expounded upon in [68–71].4

Before moving to the task of constructing self-interactions for spin-2 fields, I pause to

treat the case of a simpler massive, self-interacting gauge theory: Proca-Yang-Mills.

It will illustrate several crucial features new to massive gauge theories.

4There is at least one counter example to Vainshtein’s claim, called the ‘minimal model’ of
dRGT massive gravity [72]; however, the purpose of the Vainshtein argument is to establish what
is typical of a self-interacting massive gravity theory.
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2.3 Self-Interacting Massive Gauge Theories

2.3.1 Implications of Nonabelian Gauge Redundancy

Although at first glance it may seem like a simple task to add in a set of desired

interactions (in addition to a mass term) to a physical theory, it is well known that

for gauge field theories this näıve assumption when born out is remarkably wrong.

For massive scalars, this story is largely as simple as one would expect; however,

for interacting bosons with a spin greater than zero, they also have nonabelian

gauge symmetries. For spin-1 theories, they have YM interactions with, e.g., an

SU(N) gauge group; for spin-2 theories, they have GR interactions and have a

full, nonabelian diffeomorphism gauge symmetry (and also a local Lorentz group in

Einstein-Cartan formalism). It is precisely this gauge structure plus the addition of

a mass term that creates issues within the theory. To help unravel this physics, I

will go through the toy example for the spin-1 case.

2.3.2 Proca-Yang-Mills

To create a self-interacting theory of a massive, spin-1 field, I start with 4-

dim SU(N) Yang-Mills theory with a mass term. This called the Proca-Yang-Mills

theory, henceforth denoted by “PYM”. Firstly, the YM conventions are given by

a = 1, 2, · · · , N2 − 1 (2.47)

A = Aµ
adxµT a (2.48)

[T a, T b] = ifabcT c (2.49)

Tr(T aT b) = δab (2.50)

DΦ = dΦ− ig[A, Φ] (2.51)

[D, D]Φ = −ig[F, Φ] , (2.52)
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with some other definitions and useful derived relations given by

[T a]bc = −ifabc (2.53)

fabc = −i
(
Tr
(
T a[T b, T c]

))
(2.54)

F = dA+
1

2
(−ig)[A,A] (2.55)

= (Fµν
a)

(
1

2
dxµdxν

)
T a

=
(
∂µAν

a − ∂νAµ a + gfabcAµ
bAν

c
)(1

2
dxµdxν

)
T a (2.56)

DΦ =
(
∂µAν

a − ∂νAµ a + gfabcAµ
bΦc
)

dxµT a , (2.57)

where Φ is any adjoint field of SU(N) in the rep basis, Φ = ΦaT a, and wedge

products are always implied, so dxνdxν := dxν ∧ dxν . Secondly, if I add the Proca

mass term, I will obtain an action of the form

SPYM =

∫
d4xTr

(
−1

4
FµνF

µν − 1

2
m2AµA

µ

)
. (2.58)

This mass term breaks gauge invariance and leads to a theory with 3 × (N2 − 1)

PDF’s, as one would predict for a theory with (N2−1) massive spin-1 fields. Näıvely,

one would predict that this theory is power-counting renormalisable, since the YM

interactions are renormalisable and m2(Aµ)2 appears as though it is a relevant oper-

ator. But famously the Proca mass term renders the theory non-renormalisable; the

problem stems from gauge symmetry and the fact that this action does not manifest

the PDF’s. In an important sense, this action should really be thought of as coming

from a larger gauge theory, and (2.58) is a specific gauge-fixed version of that action.

While it is often said that gauge symmetry is a sham and all gauge-fixed actions are

equivalent, this statement ought to be handled with care, which I will now show.

Why is the PYM action non-renormalisable? Crucially, when it is written in the

form (2.58) it appears to have discontinuous PDF’s if one applies the näıve power-

counting rules. But this invalidates the conditions necessary for power-counting, as

one cannot decrease the PDF’s when one zooms onto a theory. To reiterate this,

in 4-D, the gluon field obeys a scaling relation [Aµ] = E. So at low energies, the

theory has 3 × (N2 − 1) PDF’s of PYM. But if one (classically) flows the action

to high energies, where Λ � m, then the relevant action would then be given by

ordinary YM, with 2× (N2− 1) PDF’s. In order to be able to manifest all PDF’s of

the massive gauge theory at all scales, one must reintroduce the full SU(N) gauge

redundancies –only then will it be safe to take m → 0 limits of the theory! I now
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proceed to describe how to add Stückelberg fields to restore the nonabelian gauge

symmetries. Once obtained, one immediately discovers that the theory contains an

infinite tower of non-renormalisable interactions.

2.3.3 PYM in Stückelberg Formalism

I now turn to the task of restoring the SU(N) of PYM [73], like I restored the

U(1) gauge symmetry for ordinary Proca in subsection 2.2.4. Firstly, I note that

the full gauge transformation for YM is

A→ A′ = GAG−1 − i

g
dGG−1 (2.59)

=⇒ δA = Dθ , (2.60)

for G = exp(igθ) (where the SU(N) gauge parameter is required to obey θ = θ†).

The natural idea then is to place a Stückelberg field, πa, into the action with the

form

Aµ → UAµU−1 − i

g
∂µUU−1 (2.61)

where U = exp(ig π
m

) and π = πa T a. Now the action takes on the form,

SPYM =

∫
d4xTr

(
−1

4
FµνF

µν − 1

2
m2

(
AµU−1 +

i

g
∂µU−1

)(
UAµ − i

g
∂µU

))
=

∫
d4xTr

(
−1

4
FµνF

µν − 1

2

m2

g2
DµU †DµU

)
, (2.62)

where I have made use of Tr[UMU−1] = Tr[M ], and there is a right-covariant

derivative DµU = ∂µU − igUAµ, which manifests the Stückelberg symmetry. The

Stückelberg gauge transformations are given by the right-group action,

Aµ → GAµG
−1 − i

g
∂µGG

−1

U → UG−1 , (2.63)

which the right-covariant derivative DµU transforms trivially under. Pausing for a

moment, this convention is setup such that in the limit g → 0, one obtains (N2− 1)

copies of pure Proca theories in the Stückelberg formalism, as one expects, with the

action given in equation (2.17) and abelian Stückelberg gauge transformations in

equation (2.14). I now move onto analysing the structure of the interactions present

in PYM.
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2.3.4 The Decoupling Limit of PYM

If one analyses the interactions of the PYM action in Stückelberg formalism,

i.e. employing equation (2.62), one sees immediately that once one expands the Lie

group element out as the exponential of the Lie algebra matrix, pi = πaT a, i.e.

U = eig
π
m (2.64)

in the action, the mass term generates an infinite tower of irrelevant (perturbatively

non-renormalisable) operators, which follow the form

S ∼
∫

d4x
m2

g2

[
∂
(
e
g
m
π
)

+ gA
(
e
g
m
π
)]2

∼
∫

d4x
m2

g2

[
O
( g
m
∂π
(
π
g

m

)n)
+O

(
gA
( g
m
π
)n)]2

. (2.65)

One can read off that the leading order interactions enter in as

On =

(
π

Λ1

)n
π∂2π , (2.66)

with Λ1 = m
g

. Note that this is the scale at which perturbative unitarity breaks

down, essentially owing to the fact that resonances appear and/or non-perturbative

effects (e.g. instantons) contribute at the same order as loop corrections to the

theory, and so quantum mechanics completely washes away the classical theory. It

is expected that most theories go bad during this transition, and thus the general

expectation is that these theories should be UV-completed. In the case of the

Standard Model, this is what precisely happens in the Higgs mechanism; there,

these irrelevant operators in (2.66) explicitly can be seen as coming from integrating

out the Higgs particle, and the PYM arises as a part of the LEEFT of the SM in the

Wilsonian sense. Sticking to the classical theory, one can see that there is actually

a regime where there is a valid classical theory, called the decoupling limit. In some

sense, the decoupling limit is the high-energy effective action, where the theory is

still weakly coupled, g � 1, and thus one has a regime within a hierarchy of energies:

E s.t. Λ1 � E � m.5 The decoupling limit stems from excising any interactions

5It is worth reiterating, however, that this theory is not the Wilsonian LEEFT; the LEEFT
naturally needs to include the mass terms for the fields. The theory cannot actually forget the
existence of finite, non-zero mass terms in the quantum theory since they control the form of the
propagator, and thus affect EFT arguments. This turns out to be an important distinction in
massive gravity [46]. The decoupling limit, however, defines the dominant classical contribution in
this regime.
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suppressed by scales higher than Λ1, since these are the sub-leading contributions in

this regime. This can be accomplished by taking the following scaling limit of the

theory

m, g → 0
m

g
→ Λ1 = constant . (2.67)

In this limit, the theory reduces to a system of a self-interacting scalar and (N2−1)-

copies of Maxwell theory, where the two modes have completely decoupled from one

another (A fact from which the term “decoupling limit” derives). Explicitly, the

decoupling limit action is then simply,

SDL-PYM =

∫
d4xTr

(
−1

4
FµνF

µν − 1

2
Gµ
†Gµ

)
. (2.68)

with Fµν = ∂µAν − ∂νAµ and Gµ = iΛ1∂µUU−1. This theory is invariant under a

global SU(N)L × SU(N)R symmetry, for left and right group actions U to UG−1

and GU , respectively. There are also U(1)N
2−1 gauge symmetries as well, for the

Maxwell theories. I end by noting that there is a simple integral resummation of the

decoupling limit interactions for PYM, using the standard derivative of a matrix-

exponential formula, which results in

Gµ =

∫ 1

0

du e
i u 1

Λ1
π
∂µπ e

−i u 1
Λ1
π
. (2.69)

In section 3, I will give my derivation of the complete decoupling limit of massive

gravity; there I demonstrate that integral representations of decoupling limit inter-

actions are required, as well. So integral representations of interactions are quite

generic in the complete decoupling limits of massive gauge theories!

2.3.5 PYM and the vDVZ Discontinuity

It is often forgotten that the original vDV paper does not only analyse the

vDVZ discontinuity of Fierz-Pauli theory; they also analyse the existence of a similar

discontinuity at loop-level in PYM [33]. They note that the 1-loop corrected self-

energy for the PYM theory enters as twice the amount from an ordinary theory

of YM theory, which can be seen to come from a sum over helicity states. Here,

the introduction of new PDF’s causes a discontinuity in a physical observable, even

when m→ 0! There are other issues worth mentioning beyond those initially noted
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by van Dam and Veltman. Actually, this discontinuity is obvious even at tree-

level in the Stückelberg action, as seen above, and the appearance of these loop

corrections come from counter-terms for the non-renormalisable interactions for the

helicity-0 mode of PYM. But here it is interesting to note that the leading order

operators in the theory enter as ∼ g
m
∂ so they are suppressed by the energy scale

Λ1 = m
g

, which implies that the scalar theory becomes infinitely strongly-coupled in

this limit! Therefore, one should probably expect that the (presumably divergent)

2-loop corrections are far worse than the 1-loop discontinuity as m → 0. However,

none of this is a problem if these operators come from integrating out a massive

field (e.g. the Higgs mechanism) or (more speculative, but still possible) this theory

comes from a non-trivial UV fixed point. But in both cases, it involves new physics

entering into the theory beyond what is seen at the classical level. But if one

wishes to additionally discuss the loop-level calculations, this can also be seen to

be (unsurprisingly) even more problematic. In the Stückelberg formulation, one

can schematically see that there are (at least) generic `-loop counter-terms for the

non-renormalisable interactions of the form

On ∼ g`+F
( π
m

)q (A
m

)p(
∂

m

)n
∂2π2 , (2.70)

where I leave F to compensate all of the ways differing powers of g might enter into

the loop calculation. The important fact of equation (2.70) is that one should not

expect that they are able to take the m → 0 limit at any order in the quantum

effective action without causing the loop corrections to diverge, signalling a break

down in the perturbative unitarity around Λ1 = m
g

.6 Now that I have reviewed

this well-known toy model and have demonstrated what happens in a massive gauge

theory, I now return to the issue of the self-interacting, massive spin-2 fields.

6It is worth noting that Λ1 is not necessarily the scale where the theory breaks down; for an
interesting discussion on this point see [74]. More concretely, it is known that N = 2 SYM in 5-D
is not perturbatively renormalisable but is still a UV-complete theory with a non-trivial UV fixed
point [75–77]. It remains an open question whether or not such an ‘asymptotic safety’ scenario
[78] exists for massive spin-1 bosons, supersymmetric or otherwise. A framework for this flavor of
idea for massive gravity was attempted by others in [79].



2.4. Self-Interacting Massive Gravity 29

2.4 Self-Interacting Massive Gravity

2.4.1 Boulware-Deser Theories

In the previous two subsections 2.2 and 2.3, I discussed several bizarre phe-

nomena that arise in theories of massive spin-2 fields and self-interacting massive

spin-1 fields. Returning to the issues raised in subsection 2.2.8, I now discuss the

näıve approaches for developing self-interacting theories of massive gravity. The

basic conditions can be stated thus:

(1.) I assume that in order for self-interacting spin-2 fields to exist, they must cou-

ple to their own stress-energy since in the UV they ought to (classically) flow

to ordinary gravity. Thus, the kinetic term of self-interacting massive

gravity must be precisely that of Einstein-Hilbert, and the variational

field should be gµν . (An explicit, direct verification of this fact was proven

recently for ghost-free massive gravity in [80].)

(2.) Massive gauge theories necessarily break the gauge symmetry (away from any

Stückelberg formalism); to break diffeomorphisms, I need an explicit

“reference metric” fµν . Because I wish to maintain global LI, I take it to

be given by the Minkowski metric fµν = ηµν .

(3.) In the limit of zero gravitational coupling, the theory must return to Fierz-

Pauli theory. Therefore, limSmGR → SFP as κ→ 0 (Equivalently, MPl →∞).

Taken together, this leads to an action of the form,

SmGR =

∫
d4x

1

2κ2

√
−g
(
R+m2U(gµν , ηµν)

)
(2.71)

where finally one must require that

lim
κ→0

[√
−g 1

2κ2
U(gµν , ηµν)

]
= m2hµ

αδµναβhν
β . (2.72)

Noting that
√
g = 1 + κTr(h) + O(κ2) and gµν − ηµν = κhµν , one can see that an

obvious candidate is

U(gµν , ηµν) =
[
(gµν − ηµν)ηµαηνβ(gαβ − ηαβ)

]
. (2.73)



30 Chapter 2. Introduction to Massive Gravity

2.4.2 The Boulware-Deser Ghost

One will immediately discover that the action (2.73) is problematic, originally

discovered by Boulware, et al, in [35] (and further discussed in [9, 10, 36]). For this

section, I will use the notation

1.) [M ] := Tr[M ] = Mµ
µ.

2.) The usual matrix multiplication notation (M2)µ ν = Mµ
αM

α
ν .

3.) h means hµ ν = ηναhµα.

In non-interacting Fierz-Pauli theory, I had to choose the Fierz-Pauli tuning of the

mass terms7,

SFP mass =

∫
d4x

1

2
m2
(
[h]2 − [h2]

)
, (2.74)

on pain of generating a ghostly mode. At linear order, it turns out there is only one

coefficient that needs to be fixed; however, as I add in interactions for the massive

spin-2 field, I will have a growing number of coefficients with tensor-contraction

combinatorics like

Smass ⊃
∫

d4xκm2
(
a1[h]3 + a2[h2][h] + a3[h3]

)
+κ2m2

(
b1[h]4 + b2[h2]2 + b3[h][h3] + b4[h4]

)
+ · · · . (2.75)

An immediate issue arises, namely that typically these interactions are ghostly. This

can already been seen in the näıve cubic interactions from subsection 2.2.8. With

indices re-introduced and including hµν terms, the cubic vertices looks like

SmGR ⊃
∫

d4x

(
1

MPlm2

)
Aµνρσλω1 hλω∂µ∂νπ∂ρ∂σπ

+

(
1

MPlm3

)
Aµνρσλω1 Bλω∂µ∂νπ∂ρ∂σπ

+

(
1

MPlm4

)
Aµνρσλω2 ∂µ∂νπ∂ρ∂σπ∂λ∂ωπ , (2.76)

when one adds Stückelberg fields hµν → hµν+
1
m
∂(µBν)+

1
m2∂µ∂νπ into the cubic terms

in (2.75), and restricts to the cubic terms for π. Short of a miracle, these interactions

will generally give rise to higher-order equations of motion. The appearance of these

7Here for simplicity I have gauged away all Stückelberg fields.
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higher-order equations signals the existence of a ghostly mode, called the Boulware-

Deser mode, originally found in [35]. There is one other way to understand the BD

ghost, so I will discuss that now. Note, however, that one can easily read off that

this mode appears, it always enters through the 4th order derivatives on π!8 Thus,

this mode is necessarily a ghost.

2.4.3 All 6 Helicities of a D = 4 Spin-2 Field

I give a separate discussion of the modes of a spin-2 field in 4 spacetime dimen-

sions. One can do a Hamiltonian analysis of a generic mGR theory, where one may

diagnose all possible PDF’s. For concreteness, I shall work with the metric version

of GR, so the main variable is gµν . If one accepts the Einstein-Hilbert action for the

kinetic term, plus potential terms to generate a mass, then after a (3+1)-split, one

arrives at a schematic ADM formulation [81]

SmGR[gµν ] =
1

2κ2

∫
d4x
√
−g
(
R+m2U(gµν , ηρσ)

)
(2.77)

=

∫
dtd3xKij ġij + Πµġ0µ −HmGR[gij, g0i, g00, K

ij,Πi,Π] ,

(2.78)

where Kij, Πi and Π are given by

Kij =
δSEH

δġij
(2.79)

Πi =
δSEH

δġ0i

(2.80)

Π =
δSEH

δġ00

, (2.81)

(since only Einstein-Hilbert term contains derivatives) with the dot operator is Lie

derivatives WRT the foliated time, t. As is well-known for Einstein-Hilbert term

from the ADM analysis, the fields g0µ have no conjugate momentum

Πi = 0 (2.82)

Π = 0 . (2.83)

8It may look like you could get terms ∂3B, but crucially those always come in as
(∂2π)nhm∂2(∂B)k owing to the form of the Euler-Lagrange equations. With two integration by
parts, that always turns into first/second-order h terms and third/fourth-order π terms.
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If one takes stock of this fact, it means that one starts out with a näıve phase space

of 10 DOF for a symmetric 2-tensor gµν , but 4 of those modes do not propagate.

This leaves a maximum of 6 possible PDF for a spin-2 field. How would one get only

5 PDF’s from a variational principle? Here the Dirac analysis [82] tells one that:

Whatever potential mass terms one adds to their action,
√
−gU(gµν , ηρσ), one needs

a potential that generates two further second-class constraints. This is the only way

to eliminate the unwanted PDF! Without a mass term, the constraints generated by

(2.82) lead to secondary first-class constraints, which generate the diffeomorphism

gauge symmetries via the Castellani algorithm [83, 84]. The mass term will neces-

sarily breaks the gauge symmetries, so there are no first-class constraints. However,

the mass term must have the property that it still keeps enough “nice” structure that

it preserves 2 second-class constraints. This will be possible, for example, if upon

integrating out gi0, one obtains a Hamiltonian that is linear in g00 (which generates

only a single pair of second-class constraints). This will kill one of the (hij, K
mn)

pairs, leading to 5 PDF’s. Both of these analyses of this subsection and the previous

are equivalent, but they both provide distinctly useful ways of understanding the

origin and nature of the Boulware-Deser mode.

2.5 Ghost-Free, Self-Interacting Massive Gravity

2.5.1 Towards Ghost-Freedom

One can begin this process for discovering ghost-free self-interacting mass terms

by starting with the equations (2.76). Here I have lowered half of the indices into

the form

SmGR ⊃
∫

d4x

(
1

MPlm2

)
A1

µνρ
αβγ hµ

α∂β∂βπ∂ρ∂γπ

+

(
1

MPlm3

)
A2

µνρ
αβγ ∂µB

α∂ν∂
βπ∂ρ∂

γπ

+

(
1

MPlm4

)
A3

µνρ
αβγ ∂µ∂

απ∂ν∂βπ∂ρ∂γπ . (2.84)

First, one should note that the third line with A3 will necessarily generate a fourth-

order equation of motion short of two things happening:

1.) One requires A3 to be identically zero.

2.) One requires that the manner A3 enters the Euler-Lagrange equation is iden-



2.5. Ghost-Free, Self-Interacting Massive Gravity 33

tically zero. In other words, one imposes

∂α∂
µ

(
δL

δ∂α∂µπ

)
∝ ∂α∂

µ
(
A3

µνρ
αβγ ∂ν∂

βπ∂ρ∂
γπ + · · ·

)
= 0 . (2.85)

with the · · · indicating the permutations of the indices from removing the

second and third ∂2π terms in the functional variation.

The first condition implies no mass terms at cubic order, which is not viable; thus,

one must explore the second possible condition. Actually, the second case is quite

simple to accommodate, as was discovered in [41, 42].9 One just needs the condition

A3
µνρ
αβγ = A3

µνρ
[αβγ] = A3

[µνρ]
αβγ . (2.86)

Combined with the requirement that these tensors are Lorentz invariant, a dedicated

student of differential geometry will recall that there is a unique candidate, known as

a “generalised Kronecker delta” tensor (henceforth, “GKD tensor”), which satisfies

these conditions. See Appendix B for further discussion of these objects and their

properties. One can see then that hµ
ν must enter into cubic combinations of the

form,

S(3)
mGR mass = m2

∫
d4xκα

(
δµνραβγ hµ

αhν
βhρ

γ
)
, (2.87)

where α is a free numerical coefficient. Once this choice is made, then

A1 ∝ A2 ∝ A3 ∝ δ3 , (2.88)

with δ3 being the 3-index GKD tensor. From here, it is trivial to prove that the terms

proportional to A1 and A2 in (2.84) are all ghost-free; thus, this renders the entire

cubic action ghost-free! Also note that it turns the Stückelberg-only interactions into

total divergences. Following the obvious pattern of needing the (∂2π)n terms to be

total derivatives, one can see that a good quartic interaction, with a free coefficient

β, is given by

S(4)
mGR mass = m2

∫
d4xκ2β

(
δµνρσαβγδ hµ

αhν
βhρ

γhσ
δ
)
. (2.89)

This actually makes the Fierz-Pauli tuning’s properties extremely manifest: The

Fierz-Pauli tuning is simple the combination that leads to the GKD symbol with

two indices, and this anti-symmetry is what exorsises the would-be ghost’s kinetic

9They follow a different route to prove this, but the two approaches are equivalent.
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term! Also, GKD symbols may not have indices greater than the dimensionality of

the space (due to the antisymmetry), and thus in 4-D, one must stop here. No other

terms may be present at these orders if one wants to keep ghost vanquished, but

this leaves the higher-order interactions an open question.

2.5.2 dRGT Theory of a Ghost-Free Massive Graviton

Given the stringent requirements of ghost-freedom at cubic and quartic order

in an mGR theory, one has arrived at the following criteria:

(1.) The theory is still in need of a covariantisation, U(gµν , ηρσ), that reproduces

(2.89) only to cubic and quartic order when gµν = ηµν + κhµν .

(2.) Once this covariantisation is found, the higher order terms must fail to rein-

troduce the BD ghost.

In [43], an action was discovered which correctly solves the (1.), and gave arguments

pointing towards (2.) being satisfied. In [44, 45], it was shown conclusively that this

action solves (2.), and thus there exists a self-interacting, ghost-free massive theory

of gravity that propagates 5 PDF’s. This theory is called “dRGT massive gravity”

after the authors of [43]. The action discovered takes the form,

SdRGT =

∫
d4x

1

2κ2

√
−g
(
R+m2U(gµν , ηρσ)

)
, (2.90)

such that, given two free parameters α and β, one uses the combination

Kµ α = δαµ −
√
gµρηρν (2.91)

U(gµν , ηρσ) = δµναβKµ
αKν β + α δµνραβγ Kµ

αKν βKν β

βδµνρσαβγδKµ
αKν βKν βKσ δ . (2.92)

The square root here is defined as a matrix square root of g−1η at the level of

matrices, and the conditions of its general existence are argued in [85]. I should

remark that there are now many proofs which show that this action is ghost-free,

e.g. [86–91], including relaxing the ηµν reference metric to more general reference

metrics [92], and even allowing for a second dynamical metric (i.e. theories of

“bigravity”) [93].
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2.5.3 dRGT in Einstein-Cartan Formalism

There is a considerably more elegant formulation of dRGT massive gravity when

one re-writes the dRGT action into an Einstein-Cartan formulation; for a review

of the Einstein-Cartan formalism, see Appendix C. This will be the predominant

description of dRGT massive gravity that I will work with for the remainder of this

text. Following earlier attempts [94, 95], it was shown by Hinterbichler and Rosen

[90] that once one introduces the vielbein variables into the theory,

gµν = eµ
aηabeν

b , (2.93)

there is a simple way to remove the square root structure present in dRGT. This

substitution adds in a local Lorentz gauge symmetry,

eµ
a → Λa

beµ
b , (2.94)

into the action. Then one can use these 6 gauge symmetries to fix the following 6

conditions

gµνeµ
[aδν

b] = 0 , (2.95)

noting that δµ
a is the flat space vielbien ηµν = δµ

aηabδν
b. This is known as the

Deser-van Nieuwenhuizen condition (which is also known as the “symmetric vielbein

condition”)[85, 90, 95–97]. Once this is plugged into the action, and noting that the

GKD structure immediately extends to a p-form notation, one finds that the dRGT

action turns into the form

SdRGT =

∫
1

4 · 2!κ2

(
Rab + (ea − δa)(eb − δb)

)
ecedεabcd

+α
m2

4 · 1!κ2
(ea − δa)(eb − δb)(ec − δc)edεabcd

+β
m2

4 · 0!κ2
(ea − δa)(eb − δb)(ec − δc)(ed − δd)εabcd (2.96)

with wedge products left implied, with 1-forms given by ea := eµ
adxµ and δa =

δµ
adxµ, and Rab is the usual curvature 2-form. The precise nature of how the

square root structure falls out was given in [90], but also I discovered the connection

between the two actions without needing to appeal to gauge-fixing and which shows

a direct equivalence of the two actions via the use of Lorentz Stückelberg fields. I

will discuss this proof in Chapter 3. The simplicity of this action is quite nice, and

it makes it clear how to generalise to arbitrary dimensions [90], it makes the action
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is polynomial when using the vielbein and the symmetric-vielbein gauge choice.

2.5.4 Partial Decoupling Limit of dRGT

Recall from subsection 2.3.4 that there is a regime, assuming weak coupling

and a small mass, where Proca-Yang-Mills’ dominant classical contribution can be

defined by a “decoupling limit theory.” The crucial item here was identifying where

the strong-coupling scale enters, and staying well below that but also well above the

mass. If such a regime exists, it is dominated classically by the decoupling limit.

This raises the question of which scale in dRGT is the lowest scale where irrelevant

operators enter into the theory? This reflects the näıve strong coupling scale, where

the theory will need to be treated more carefully. I will use the following notation

to concisely see this:

(ΛN)N := MPlm
N−1 , s.t. N ≥ 1 . (2.97)

Recall that in my conventions, MPl = 1
κ
. ΛN is how generic scales enter into the

denominators of the interactions of the dRGT action, which I will prove now. All

operators in the theory with n-fields take on the form

On=p+q+r = M2
Plm

2

(
h

MPl

)p(
∂B

MPlm

)q (
∂2π

MPlm2

)r
(2.98)

= M2−p−q−r
Pl m2−q−2r (h)p (∂B)q

(
∂2π
)r
. (2.99)

Now, since for an nth-order interaction n = p + q + r > 2, the interactions are

suppressed by an energy scale

Λn−2
pqr =

(
MPlm

q+2r−2
p+q+r−2

)p+q+r−2

. (2.100)

For the Boulware-Deser-type theories of mGR [35, 67], it was found that there is a

smallest scale, Λ5 (cf. to the previous subsection). However, when one makes the

tunings necessary for the dRGT action, one can check from the equations in (2.87)

that are generated by (2.84) all fail to have interactions at the scale Λ5
5 and even Λ4,

as was demonstrated by de Rham and Gabadadze in [41, 42]; all of these interactions

being suppressed by Λ5 and Λ4 are total derivatives. This raises the smallest scale

to Λ3 = (MPlm
2)

1/3
! Ergo, the decoupling limit of dRGT must be given by scaling
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limit of the form

m → 0 ,

MPl → ∞ ,

MPlm
2 → Λ3 = const . (2.101)

For now, I will only analyse what terms are generated in the decoupling limit that

are generated from the helicity-0 sector.10 To this end, I re-write the vielbein action

in symmetric polynomial notation11, which I first introduced in [98]. With this

notation, the action takes on the form

SdRGT = SEH +

∫
d4xM2

Plm
2δ4[(E − F )2e2 + α(E − F )3e+ β(E − F )4] ,

(2.102)

and expand the action in terms of the Stückelberg expansion12

E → I +
1

MPl

hF → I +
∂B

MPlm︸ ︷︷ ︸
neglecting

+Π , (2.103)

where Πµ
ν = 1

m2MPl
∂µ∂

νπ, and h is the usual hµ
ν owing to the symmetric vielbein

condition. I ignore the helicity-1 mode B for now. Plugging this into the above

action, noting that M2
Plm

2 = MPl(Λ3)3,

SdRGT =
1

4

∫
d4xMPl(Λ3)3δ4

[1

2

(
1

MPl

h+−Π

)2(
I +

1

MPl

h

)2

+α

(
1

MPl

h− Π

)3(
I +

1

MPl

h

)
+β

(
1

MPl

h− Π

)4 ]
, (2.104)

one immediately finds that the only pieces that survive in the decoupling limit

are the terms linear in 1
MPl

. It may look like that this action is schematic, but

the notation and the simplicity of dRGT in the vielbein formulation makes this the

10I return to this issue in Chapter 3. Here I go over my proof of the complete decoupling limit
of dRGT, including the full tower of helicity-1 interactions.

11See Appendix B for further information on this notation.
12It is critical to note that I have not placed the Stückelberg fields into E as one might expect,

but instead I have placed it into the background vielbein; in the interacting theory, I can choose
either. For continuity with later results in Chapter 3, I choose to place the Stückelberg fields in the
background vielbein. For a detailed discussion, including demonstrating the equivalence between
where you place the diffeomorphism Stückelberg fields, see Chapter 3.
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exact action. Notice that the only interactions which survive are those linear

in h! Again, the terms containing only Π’s are total derivatives, otherwise this limit

would diverge as ∼MPl. Noting this, the decoupling limit action becomes

SdRGT in DL =

∫
d4x − 1

2
hµ

αδµνραβγ∂ν∂
βhρ

γ

+Λ3
3hµ

α (Xα
µ + (1 + 3α)Yα

µ + (α + 3β)Zα
µ) ,

(2.105)

with the “transverse tensors” [41, 42]

Πab =
∂a∂bπ

Λ3
3

(2.106)

Xµ
α = −δµναβΠν

β

Y µ
α =

1

2!
δµνραβγΠν

βΠρ
γ (2.107)

Zµ
α = − 1

3!
δµνρσαβγδΠν

βΠρ
γΠσ

δ . (2.108)

This theory has many interesting properties, and after a field redefinition, can be seen

to be a theory containing one decoupled massless helicity-2 theory and a separate,

self-interacting helicity-0 mode described through Galileon interactions [41, 42, 99].

2.5.5 Galileon Theory and the Vainshtein Mechanism

Before closing out this section, I briefly review the properties of the Galileon

theory described above. First, one may use the diagonalising field redefinitions found

in [41, 42]

π →
√

2

3
π

hµν → hµν +
1√
6
πηµν +

1

2Λ3
3

∂µπ∂νπ +O
(

1

Λ6
3

∂3π3

)
, (2.109)

to turn this into an action of the form

SDL = SLGR +

∫
d4x − 1

2
π2π +

A

Λ3
3

πδµναβ(∂µ∂
απ)(∂ν∂

νπ)

+
B

Λ6
3

πδµνραβγ(∂µ∂
απ)(∂ν∂

νπ)(∂ρ∂
γπ) , (2.110)
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where A and B depend on α and β (See [41] or the review [100] for details on this).

These interactions are commonly known as “Galileon” interactions, owing to their

shift symmetry and internal “Galilean” symmetries

π → π + a+ bµx
µ , (2.111)

which comes from the fact that the EOM always contain two derivatives on π. I

will not prove these claims in this text, but several interesting points can be shown

within this theory:

1.) At the purely classical level, this theory manifests the Vainshtein mechanism.

In other words, it becomes strongly self-interacting roughly at some scale called

the Vainshtein radius, rV =
(
rS
m2

)1/3
which can also depend on α and β; inside

this radius the Galileon scalar mode gets screened due to self-interactions and

there is no fifth force. Outside of this radius, the scalar mode is fully present

and FP dominates the description of dRGT. This creates a continuity between

LGR close to a point source and FP far away from the point source!

2.) These interactions do come with several concerns. Firstly, they are present

when E ∼ Λ3, and thus raise the question of either needing a full quantum

treatment and presumably a UV completion with new physics. For instance,

these theories generically give rise to superluminal modes (issues raised in

first for generic mGR in [9, 10], for Galileon-like interactions specifically in

[37], and again for dRGT in [38, 39]). Such questions have been taken up

in [37, 46–48, 79, 101]. Explicit quantum corrections to dRGT in and out of

the decoupling limit have been taken up in [53, 102, 103]. This is a diverse

topic with many different perspectives, and I could not do justice to all of the

perspectives and the discussion on this topic. For the most recent review of

dRGT massive gravity, which should give the reader an entry point into the

literature, I recommend [55].

It is safe to say that there is much left to understand about dRGT massive gravity

in terms of what is needed to make the theory completely consistent at or around

the scale Λ3, what the status of acausalities might be, and how to understand

the theory in the UV. Thus far, it seems that dRGT can be thought of as an

LEEFT well beneath this scale. What happens above this scale and if there is a

full realisation of the Vainshtein mechanism remains a mystery until I have a more

developed understanding of dRGT. I now turn to this task.



Chapter 3

The Complete Decoupling Limit of

dRGT Massive Gravity

3.1 The Λ3 Decoupling Limit

I now derive the complete decoupling limit of dRGT ghost-free massive gravity,

following my work in [98]. In subsection 2.5.4), I discussed how there is a simple

procedure for obtaining the decoupling limit of dRGT massive gravity. To recap, in

the EC formulation of dRGT ghost-free massive gravity is given by the action

SdRGT =

∫
1

4 · 2!

(
Rab + (ea − Ia)(eb − Ib)

)
ecedεabcd

+α
m2

2κ2
(ea − Ia)(eb − Ib)(ec − Ic)edεabcd

+β
m2

2κ2
(ea − Ia)(eb − Ib)(ec − Ic)(ed − Id)εabcd (3.1)

with Ia = δµ
a dxµ. In massive gauge theories, there can exist a “decoupling limit”.

This is the dominant classical contribution to the theory, so long as there is a

hierarchy of scales between the smallest scale that suppresses an irrelevant operator

and the mass of the gauge field (cf. to the analyses in subsections 2.2.4, 2.3.4, and

2.5.4). Typically, such a hierarchy exists when the coupling constant (in gravity,

this is given by 1/MPl) and the mass are sufficiently small. In dRGT, there is an

essential feature that the irrelevant operators of dRGT mass terms are divided by

a smallest energy scale Λ3, and so a Λ3 decoupling limit can consistently be defined

40
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as the scaling limit, i.e.

m → 0

MPl → ∞

MPlm
2 → Λ3 = const . (3.2)

The first feature of the decoupling limit is that it greatly simplifies the interactions.

The second feature is that in the high-momentum limit of dRGT, where its 5 PDF’s

decompose into 5 helicity states (±2, ±1, 0). This can only be seen in Stückelberg

language, where I have

hµν → hµν +
1

m
∂(µBν) +

1

m2
∂µ∂νπ , (3.3)

where these must be the fundamental variables in the decoupling limit.

It turns out, however, that taking the full decoupling limit is slightly more

subtle than this. This Stückelberg procedure will allow for all π − h interactions,

but it fails to provide all of the π − B interactions in any straightforward manner

[104]. To get the complete decoupling limit systematically, I will work with the

EC formulation and then add into my theory a Lorentz Stückelberg field, Λa
b, thus

completing all of the gauge symmetries of the Einstein-Cartan formulation. The

decoupling limit in this formalism is straightforward to derive, once a few clever

observations are made.

3.2 Stückelberg Procedure for dRGT

3.2.1 dRGT Interactions as a Deformed Determinant

I begin by restructuring the dRGT action in a manner that elucidates some

novel properties of the dRGT mass terms. I reshuffle the mass terms in (3.1) by

directly expanding the quadratic, cubic, and quartic terms in (e − I) into their

constituent pieces

SdRGT =
M2

Pl

4
εabcd

∫
m2
[β0

4!
eaebeced +

β1

3!
Iaebeced

+
β2

2!2!
IaIbeced +

β3

3!
IaIbIced

]
, (3.4)
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plus a pure number ∝ IaIbIcIdεabcd, which one may discard. If one wishes to make

explicit contact with the previous action, I have

β0 = −12− 8α3 − 2α4

β1 = 6 + 6α3 + 2α4

β2 = −2− 4α3 − 2α4

β3 = 2α3 + 2α4 . (3.5)

From here, there is a clever observation that these can be reformulated as a ‘de-

formed determinant’ [105]. A deformed determinant contains the same terms in the

expansion of the determinant of a matrix, but each term is deformed away from an

ordinary determinant with an arbitrary cn coefficient. Explicitly, this is

Lmass(E
a, F b) = −1

4
M2

Plm
2D̂et[ΛE − F ] (3.6)

= c0εabcd(ΛE)a(ΛE)b(ΛE)c(ΛE)d

+ c1εabcdF
a(ΛE)b(ΛE)c(ΛE)d

+ c2εabcdF
aF b(ΛE)c(ΛE)d

+ c3εabcdF
aF bF c(ΛE)d

+ c4εabcdF
aF bF cF d , (3.7)

where from now on I drop off the term proportional to c4 (it is just a constant), and

for convenience I denote Λa
bE

b := (ΛE)a. Note that to compare to the old form,

the {ci} can be read off as

cn = − 1

4n!(4− n)!
M2

Plm
2βn . (3.8)

This can be re-expressed as

Lmass = −1

2
M2

Plm
2D̂et[E − I] (3.9)

= c0εabcdE
aEbEcEd

+ c1εabcdI
aEbEcEd

+ c2εabcdI
aIbEcEd

+ c3εabcdI
aIbIcEd

+ c4εabcdI
aIbIcId , (3.10)

using the fact that Det[Λ] = 1 for Λ ∈ SO(1, 3) and the identity εabcd =
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Λa
a′Λb

b′Λc
c′Λd

d′εa′b′c′d′ . Now, note the following simplified form of the dRGT ac-

tion:

Smass =

∫ 4∑
n=0

(−1)n

n!
cn

∂n

∂µn
Det[E − µ I]

∣∣∣
µ=0

. (3.11)

It turns out that this action will exhibit some remarkable properties when dealing

with the Lorentz Stückelberg field. I now turn to the issue of re-incorporating all of

the EC symmetries to the dRGT action, including local Lorentz invariance.

3.2.2 Stückelberg Fields in Einstein-Cartan Variables

Following the Stückelberg procedure (cf. subsections 2.2.4, 2.2.5, and 2.3.3),

I systematically re-incorporate the old gauge symmetry, which for the ordinary

Einstein-Cartan action is diffeomorphisms and local Lorentz symmetry [106, 107]

Eµ
a → ∂yν

∂xµ
Eν

a (Diffeomorphism) (3.12)

Eµ
a → Λa

bEν
b (Local Lorentz). (3.13)

This can be done by manually installing them using a new field φµ (called a diffeo-

morphism Stückelberg field)[108] and a substitution of the form

Eµ
a → ∂xν

∂φµ
Eν

b , (3.14)

which will linearise like the vector mode in subsection 2.2.51. I choose a diffeomor-

phism of that particular form because it will be useful later. Finally, I add in a

Lorentz Stückelberg symmetry (following the prescient work of [94]) via

Eµ
a → Λa

b
∂xν

∂φµ
Eν

b , (3.15)

1A clever reader may notice that I have not yet included the scalar mode, π. Strictly speaking,
the fully covariant U(1) symmetry remains elusive; this is discussed, for instance, in [86]. However,
it is irrelevant for the decoupling limit analysis, since whatever such an analysis would yield, it
must approach the ordinary B → B − 1

m∂π in the decoupling limit: in the limit MPl → ∞, the
infinitesimal U(1) linearises to the known form.
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Then one may note that the action is invariant under a diffeomorphism by exactly

φµ, which has the following effect on the variables

Ea
µ → Λa

bE
b
ν

Iaµ → F a
µ =

∂φν

∂xµ
Iaν = ∂µ(φa) , (3.16)

since they are always contracted into εµνρσ from the p-form structure, and a quick

check shows the determinant factors cancel out. After performing this, one can see

that the dRGT action equals

Smass = −1

2
M2

Plm
2εabcd

∫ [β1

3!
F a
(

Λb
b′E

b′
)(

Λc
c′E

c′
)(

Λd
d′E

d′
)

+
β2

2!2!
F aF b

(
Λc

c′E
c′
)(

Λd
d′E

d′
)

+
β3

3!
F aF bF c

(
Λd

d′E
d′
) ]

.

(3.17)

Here one can read off that the Lorentz Stückelberg field is an auxiliary field

(it has no derivative interactions), which means that we can solve for its equations

of motion explicitly and integrate it out if one chooses!

3.2.3 Auxiliary Equations for Lorentz Stückelberg Field

I now return to the issue of solving for the Lorentz Stückelberg field’s equations

of motion. To begin, I take the ‘deformed determinant’ action and with my Lorentz

Stückelberg mode, I have an action of the form

Smass =

∫
c0εabcd(ΛE)a(ΛE)b(ΛE)c(ΛE)d

+ c1εabcdF
a(ΛE)b(ΛE)c(ΛE)d

+ c2εabcdF
aF b(ΛE)c(ΛE)d

+ c3εabcdF
aF bF c(ΛE)d

+ c4εabcdF
aF bF cF d , (3.18)

=⇒ Smass =

∫ 4∑
n=0

(−1)n

n!
cn

∂n

∂µn
Det[ΛE − µF ]

∣∣∣
µ=0

(3.19)

again with F a = dφa and the coefficients {ci} defined by (3.8). The cleverness of

using the deformed determinant formulation alongside the Lorentz Stückelberg field

is that I will be able to simply derive that the equations of motion for Λ do not

depend upon µ! From here, one can see that the equation of motion of Λ are
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totally independent of the values of cn parameters (i.e. m, α, β). Thus, despite all

of the different possible ghost-free mass terms of dRGT, I will demonstrate that the

Lorentz Stückelberg fields always take on the same form. To prove this, I make an

important observation about the deformed determinant: if one varies the ordinary

determinant Det[ΛE−µF ], and one obtains an equation for Λa
b such that µ drops

out, then this solution is independent of any values the cn’s take on, since

Lmass =
(−1)n

n!
cn

∂n

∂µn
Det[ΛE − µF ]

∣∣∣
µ=0

. (3.20)

That means if I can find a solution that is independent of µ and sets the variation of

Det[ΛE−µF ] to zero, then that solution works for all values of cn by construction.2

First, I need to vary equation (3.18), which at the level of matrices yields

δDet[ΛE − µF ] = Det[ΛE − µF ] Tr
[
δΛE (ΛE − µF )−1

]
, (3.21)

using well known variation rules for matrices. I pause for a moment to note that at

the level of matrices, by construction of g = ETηE crucially only allows for Lorentz

indices to contract together and spacetime indices to contract together. Since the

determinant for a generic vielbein Xµ
a takes on the form

Det[X] =
1

4!
δµ1···µ4
a1···a4

Xµ1

a1 · · ·Xµ4

a4 , (3.22)

this remains respected in this expression. Returning to the variation, one can see

that the variational term

Det[ΛE − µF ] Tr
[
δΛE (ΛE − µF )−1

]
(3.23)

can be made equal, after an insertion of unity I = (Λ−1η)(ηΛ), to the equation

Det[ΛE − µF ] Tr
[
(δΛΛ−1η)η(ΛE) (ΛE − µF )−1

]
. (3.24)

From here, the well-known Lorentz identity ΛηΛT = η can be varied to obtain the

equation (
(δΛ)Λ−1η

)T
= −

(
(δΛ)Λ−1η

)
. (3.25)

2One might ask if the solution space is non-unique, and if there are alternative solutions for
Lorentz Stückelberg field. This question was taken up in [91], and the answer is affirmative, though
they are unphysical. However, a fortiori, the existence of such a solution at minimum entails there
is a solution which works for all possible mass terms.
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This means that in (3.23) is an equation of the form

AT = −A , Tr[AB] = 0

⇔ BT = B . (3.26)

Thus, following equation (3.25), I can infer

Tr
[
(δΛΛ−1η)η(ΛE) (ΛE − µF )−1

]
= 0

=⇒ ηΛE (ΛE − µF )−1 =
(
ηΛE (ΛE − µF )−1

)T
. (3.27)

Expanding, one finds

η(ΛE) (ΛE − µF )−1 =
[
η(ΛE) (ΛE − µF )−1

]T
=

[
(ΛE)T − µF T

]−1
(ΛE)Tη , (3.28)

After cross-multiplying the matrices, one obtains

(ΛE)Tη(ΛE − µF ) = ((ΛE)T − µF T )η(ΛE) . (3.29)

Finally, one can see that the terms proportional to µ appear on both the left and

right of the equation, and thus are completely cancelled out in the solution. This

completes the proof of the independence of µ within this solution, ergo the resulting

equation solves all possible dRGT mass terms! After cancelling the µ-dependent

terms, one obtains the simple equation

(ΛE)TηF = F Tη(ΛE) . (3.30)

I now move out of matrix notation and back into component form. Here, this

equation takes the form

(ΛE)µ
aηabFν

b = (ΛE)ν
aηabFµ

b. (3.31)

With little effort, this equation can be seen to be equal to

gµν(ΛE)µ
[aFν

b] = 0 . (3.32)

This is not a new equation. It was discovered as a useful LLT gauge-fixing condition

in [96, 97] (whose existence was further discussed in [85]) with Λ = 1 and as an

imposed condition on the background and fluctuations. As such, this is often called
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the Deser-van Nieuwenhuizen condition (It is also referred to as the “symmetric

vierbein condition”, e.g. [90], for obvious reasons).3 With this equation in hand,

I can now do several powerful things that were not capable of being done before.

Firstly, one may derive the complete decoupling limit of massive gravity, since the

Lorentz Stückelberg scales non-trivially in the Λ3 decoupling limit. I will derive the

missing tower of helicity-1 interactions, and I will show that they can be resummed

in a tractable form in the next subsection. Before I move onto the derivation of this

action, I pause to make two important point about dRGT: firstly, how this relates

to the explicit equivalence to the metric formalism; secondly, I will give an original

elegant proof for why the metric formulation turns into the EC formulation upon

gauge-fixing.

3.2.4 Equivalence to Metric dRGT

In dRGT massive gravity in metric formulation famously appears with a curi-

ous, seemingly unaccountable square root structure [43]. One might naturally ask

why this structure appears, and it owes its existence to the DvN condition. The

relationship between the square root structure and the DvN condition was first dis-

cussed in [85, 90], but a precise, direct equivalence without appealing to gauge-fixing

remained elusive. I will show that the square root structure is obtained by explicitly

solving for Λ in equation (3.30), which will generate the square root structure. Then,

upon substituting back into the Einstein-Cartan formulation of the dRGT metric, I

conclusively and explicitly obtain the metric formulation of dRGT. First, I take the

equation of motion (3.30) for the Lorentz Stückelberg field

(ΛE)TηF = F Tη(ΛE) ,

and note that, after multiplying η(E)−T on the left, it equals

ηΛTηFE−1 = η(E)−TF TηΛ . (3.33)

This may be simplified after: Firstly, taking this equation and performing left mul-

tiplication with the RHS expression; secondly making use of the ΛηΛT = η identity

for the Lorentz group. After which, one finds

(η(ET )−1F TηΛ)2 = η(ET )−1F TηΛηΛTηFE−1 (3.34)

= η(ET )−1F TηFE−1 . (3.35)

3Henceforth, “DvN condition.”
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The general solution for Λ now obviously involves a matrix square root. In general,

existence and uniqueness of a square root of a matrix is not guaranteed; in some

cases, one can choose a non-positive matrix roots, as has been considered in, e.g.

[85, 109]. But in order to have a well-formed Minkowski reference metric upon which

to take a decoupling limit, I self-consistently impose that the square root be defined

via as the one stemming from the diagonal basis with all positive eigenvalues. Given

this, I may write down the (positive) matrix square root as

η(ET )−1F TηΛ =
√
η(ET )−1F TηFE−1 . (3.36)

I may use a similarity transformation (existence is all that is required here) identity,

i.e.

E−1
√
Y E =

√
E−1Y E . (3.37)

to simplify my expression into

E−1(η(ET )−1F TηΛ)E = E−1
√
η(ET )−1F TηFE−1E

=
√
E−1η(ET )−1F TηF

=
√
g−1f , (3.38)

using g−1 = (ETηE)−1 = E−1ηE−T . This derives the usual dRGT action in metric

formulation, showing explicitly how one bridges the EC and metric formulations,

and gives a simple reason for the appearance of the square root structure owing

to the DvN condition. To go beyond this statement, I can see that the non-linear

variable for the massive spin-2 mode is given by Ea − F a. Finally, I determine the

explicit solution of Λ to be

Λ = η(F T )−1g
√
g−1fE−1 . (3.39)

Re-writing this back into the usual component notation,

Λa
b = ηacF µ

c gµα(
√
g−1f)ανE

ν
b . (3.40)
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I may now take my solution for Λ and place it into the combination Det[ΛE − µF ]

Det[ΛE − µF ] = Det[η(F T )−1g
√
g−1f − µF ] (3.41)

= Det
[
F
(
F−1η(F T )−1g

√
g−1f − µI

)]
(3.42)

= Det[F ]Det[f−1g
√
g−1f − µI] (3.43)

=
√
−Det[g]Det[I − µ

√
g−1f ] , (3.44)

repeatedly employing the relations Det[AB] = Det[A]Det[B] and Det[
√
A] =

√
Det[A].

When this is substituted back into the action, it yields

Smass =

∫
d4x

4∑
n=0

(−1)n

n!
cn

∂n

∂µn
Det[ΛE − µF ]

∣∣∣
µ=0

(3.45)

=

∫
d4x
√
−g

4∑
n=0

(−1)n

n!
cn

∂n

∂µn
Det[I − µ

√
g−1f ]

∣∣∣
µ=0

. (3.46)

By construction, this immediately regenerates the symmetric polynomials of I −√
g−1f , which is the metric dRGT action (2.91), thus I have proven the equivalence

constructively!

3.2.5 dRGT and the Deser-van Nieuwenhuizen Gauge

For completeness, I show how the DvN gauge-fixing, plus fixing diffs to unitary

gauge, for veilbeins defined as F a = Ia and Λ = 1, returns one back to the Einstein-

Cartan formulation of Hinterbichler and Rosen [90]. I fix unitary gauge (i.e. Λ = 1)

and the DvN condition (3.30) now becomes a constraint imposed upon the theory

of the form

(E−1ηF ) = (E−1ηF )T ,

Once I fix the diffs to unitary gauge (i.e. φµ = xµ), I have F a = Ia and so

(ηE)T = (ηE) . (3.47)

This is the “symmetric vierbein” condition Eµa = Eaµ of [90]. This action obviously

leads back the EC formulation. Alternatively (but ultimately equivalently), one

could consider forcing the DvN gauge by fiat

(E−1ηF ) = (E−1ηF )T , (3.48)
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which trivially implies Λ = 1; however, one should worry whether it is consistent

to set this gauge. To verify this at the level of the action, I take the following the

usual definitions g−1 = E−1ηE−T and f = F TηF , and the easily verifiable identities

E−1 = ηE−Tη and F = ηF Tη. Applying these to the square root structure, one can

see that they entail: √
g−1f =

√
E−TηE−1FηF T (3.49)

=
√
E−TηF TE−TηF T (3.50)

= E−TηF T . (3.51)

Obviously, for the same reason as the previous subsubsection, one can see that

Smetric ≡ −M
2
Plm

2

2

∫ √
−g

∑
βi ei

(√
g−1f

)
= −M

2
Plm

2

2

∫
detE

∑
βi ei(E

−TηF T ) ≡ Svierbein . (3.52)

And thus I have provided explicit vielbein formulation from the metric formulation

upon gauge-fixing, as promised. I reiterate that the Stückelberg formulation of the

local Lorentz symmetry greatly clarifies the role between the DvN condition and the

square root structure of dRGT massive gravity, and indeed the bridge between the

theory in Einstein-Cartan variables and metric variables.

3.3 Surviving Helicity-1 Interactions

3.3.1 Scaling of Lorentz Stückelberg

Following the analysis in section 3.1 and the form of the Lorentz Stückelberg

field from section 3.2, the fields obey scalings of the form

Eµ
a = δaµ +

1

2MPl

eaµ

Λa
b = eω̂

a
b = Ia + ω̂a b +

1

2
ω̂a cω̂

c
b + · · ·

∂µφ
a = ∂µ

(
xa +

Ba

mMPl

+
Eaν∂νπ

Λ3
3

)
= Ia +

1

mMPl

dBa + Πa (3.53)



3.3. Surviving Helicity-1 Interactions 51

where ω̂ is the yet-to-be-fixed-scale for the Lorentz auxiliary field (which by con-

struction must be anti-symmetric ω̂ab = −ω̂ba to form a Lorentz transformation),

and Πa = 1
Λ3

3
d(Eaν∂νπ). To reiterate, the Λ3 limit scales the parameters as

MPl → ∞ ,

m → 0 ,

while holding Λ3 = (m2MPl)
1
3 = const . (3.54)

In order to evaluate the decoupling limit, I will need to fix the scaling properties of ω̂.

By inspection and with some thought, one will find that the only non-pathological

(i.e. forcing it to not have terms that diverge in the decoupling limit) is the choice

ω̂a b =
ωa b
mMPl

. (3.55)

Specifically, I will have a single schematic operator4 which diverges like ∼ 1
m

in the

action

Lmass ⊃ m2M2
Pl

(
1

mMPl

ω

)(
∂2π

m2MPl

)(
I +

∂2π

m2MPl

)2

, (3.56)

but is identically zero, owing to anti-symmetry in ω and symmetry in ∂2π as they

sit inside a symmetric polynomial. From here, I have two avenues for determining

the equation of motion for the Lorentz Stückelberg field: Firstly, by varying for ω

its EOM in the decoupling limit action. The second is applying the decoupling limit

to the non-linear equation of motion (i.e. the Deser-van Nieuwenhuizen condition)

and consistently truncating to the leading order piece. Although the second is the

most immediate result, I will show both since: Firstly, it gives a nice sanity check

on both methods. Secondly, although taking the limit directly on the EOM is far

simpler, one will need to see how to take the decoupling limit of the mass terms to

construct the action anyway, it is good practice to see how ω enters into the action

in the decoupling limit.

3.3.2 Solution via Decoupling Limit Action

Using the argument from subsection 3.2.3, I know that I can pick any of the

mass term in dRGT to determine the equations of motion for the Lorentz Stückelberg

field. For concreteness, I choose the term proportional to β1 in symmetric polynomial

4If this is not manifestly clear to the reader, these terms will be explicitly derived in the
following section.
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notation

−β1
m2M2

Pl

12
δ4

(
I +

∂B

mMPl

+ Π

)(
I3 + 3

(
I2ω

mMPl

+
Iω2

m2M2
pl

)
+ 3

I2ω · ω
2m2M2

pl

)
(3.57)

where I have chosen the notation Π = ∂2π
Λ3

3 , since none of this is affected by the

decoupling limit procedure, and I is the Kronecker delta/identity matrix. Now, this

action simplifies at leading order into the form

= −β1
m2M2

Pl

12
δ4

(
∂BI2ω + (I + Π)

(
Iω2 +

I2ω · ω
2

))
+O

(
1

M
1/2
Pl

)
. (3.58)

For the reader’s convenience, I note that this is equivalent to the component notation

= −β1
1

4
δµνρσabcd

(
∂µB

aδbνδ
c
ρω

d
σ + (δ + Π)aµ

(
δbνω

c
ρω

d
σ +

δbνδ
c
ρω

d
cω

c
σ

2

))
.

(3.59)

Here I also remind the reader that since the expansion is off of flat space, the

vielbein a, b, . . . are the same as µ, ν, . . . and thus may be contracted. Now I vary

the action and obtain the equation of motion for ωa b. Firstly, since ω ∈ so(1, 3),

I have ωab = −ωba. Ergo, my equations of motions follow the anti-symmetrisation

rule

δS
δωab

δωab = A[ab]δω
ab

=⇒ δωab
δωcd

=
1

2
δcdab . (3.60)

Using this variational scheme, the equations of motion come out as a symmetric-

polynomial equation of the form

δ4

(
GI

δω

δω
η + (I + Π)

(
2ω
δω

δω
+ I

δω

δω
· ω + ω · δω

δω
I
))

= 0 , (3.61)

with normal matrix notation A · B = Aa bB
b
c. Before reinserting the indices and

evaluating, I break this up into specific terms and evaluate them separately for
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simplicity. I choose cut up the problem into these 4 parts:

ε
(
GI

δω

δω
η︸ ︷︷ ︸

(A)

+(I + Π)
(

2ω
δω

δω︸ ︷︷ ︸
(B)

+ I
δω

δω
· ω︸ ︷︷ ︸

(C)

+ω · δω
δω
δ︸ ︷︷ ︸

(D)

))
= 0 . (3.62)

A simple, direct evaluation leads to

(A) = δµνρabc δ
a
ρ∂νB

bδaµ
′

αβ ηµ′µ

= 2Gαβ (3.63)

(B) = 2δµνρabc ω
a
µδ

bν
αβηνν′(δ + Π)c ρ

= 4 [(2 + [Π])ωαβ + ωaαΠa
β − ωaβΠa

α] (3.64)

(C) = δµνab δ
ac
αβωcµ(δ + Π)bν

= −2ωαβ (3 + [Π])−
(
ωβaΠ

a
α − ωαβΠa

β

)
(3.65)

(D) = δµνab ω
a
γδ
γµ′

αβ ηµµ′(δ + Π)b ν

= (C) (3.66)

where I have used the trace-notation of [Π] = (Πa
a), and the field strength notation

Gαβ = ∂αBβ − ∂βBα. Together, they sum to the full equation of motion:

−(A) = (B) + (C) + (D)

=⇒ Gab = 2ωab − (ωcaΠ
c
b − ωcbΠc

a) . (3.67)

Which gives the equation of motion for the Lorentz Stückelberg field in the decou-

pling limit.

3.3.3 Solution via Limit of DvN Condition

I now proceed with the method that essentially immediately determines the

equation of motion. If I take the full equation of motion for Λ (3.31) that I discovered

in subsection 3.2.3, and combine it with the scaling limits in equation (3.55). Then,

finally, recalling that F a = dφa, I finally arrive at the equation

Eµ
a

(
eω̂
)
bc
∂µφ

c = Eµ
b

(
eω̂
)
ac
∂µφ

c . (3.68)

Expanding out with the decoupling parameters, at leading order to arrive at

ωb
c (δca + Πca) + ∂aBb = ωa

c (δcb + Πcb) + ∂bBa +O(m) . (3.69)
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With a bit of trivial algebra, this equation can be seen as the final equation

ωba + ωbcΠ
c
a + ∂aBb = ωab + ωacΠ

c
b + ∂bBa

=⇒ Gab = 2ωab − (ωcaΠ
c
b − ωcbΠc

a) . (3.70)

This gives one a faster, cleaner derivation of this equation of motion!

3.3.4 Integral Form of the Lorentz Stückelberg Field

Now that I have the equation of motion for the decoupling limit, I can solve

for ω. This is one of the more non-trivial uses of the Lorentz Stückelberg field. In

a sense, this variable contains all of the interactions between the helicity-0 mode π

and the helicity-1 mode Bµ. The solution of this equation is guaranteed as it is 6

equations and linear (i.e. with a 6 × 6 matrix linear equation); however, it would

be nice if there was a way to quickly get at an elegant, if not simple, solution to

this equation. I will use the following observation: Since Πab is a symmetric, real

matrix, then I can always use a global Lorentz transformation to diagonalise Πab at

one point. This leads to

Πab = 0 if a 6= b . (3.71)

I may invert the equations at that point, since it has the much simplified form

Gab =
(
2 + Πa

a + Πb
b

)
ωab (3.72)

=⇒ ωab =

(
Gab

2 + Πa
a + Πb

b

)
. (3.73)

Note that I am explicitly not making use of Einstein summation convention. The

second clever observation is to note that this solution followed from an equation

who started out life in a totally covariant form. Thus, if I can find a formal solution

which, upon diagonalization at any point in Minkowski, leads to the form above, I

have found the complete solution. The task now becomes finding an expression that

reduces to (3.72) after diagonalizing Π. A manifestly Lorentz-covariant solution can

be found by using a usual Schwinger-parameterisation integral technique. Equation

(3.72) is equivalent to the integral equation

ωab =

∫ ∞
0

du e−u(2+Πa a+Πb b)Gab . (3.74)
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This can be easily re-expressed as a matrix equation

ωab =

∫ ∞
0

du e−2ue−uΠa a
′

Ga′b′e
−uΠb

′
b , (3.75)

which trivially recovers the old equation when Π is diagonal. Therefore, this is the

formal solution for ωab! I now move onto a constructing the complete action of

dRGT massive gravity in the decoupling limit.

3.4 The Complete dRGT Action in the Decou-

pling Limit

It the simplest way to derive the complete tower of interactions of ghost-free

massive gravity in the decoupling limit is to return to the action for dRGT in

symmetric polynomial form:

Smass =

∫
d4xM2

Plm
2δ4

[
(ΛE − F )2(ΛE)2 + α(ΛE − F )3(ΛE) + β(ΛE − F )4

]
.

(3.76)

Upon substituting in these terms (they are the highest order in terms that contribute

to the action)

Λa
bEµ

b = δaµ +
1

MPl

hµ
a +

1

mMPl

ωa b +
1

2m2M2
Pl

ωa cω
c
b

=⇒ (ΛE) = I +
h

MPl

+
1

mMPl

ω +
1

m2M2
Pl

ω · ω (3.77)

F a = = ∂µ

(
xa +

Ba

mMPl

+
∂aπ

Λ3
3

)
=⇒ F = I +

1

mMPl

∂B + Π . (3.78)
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Upon substituting these relations into the above action (3.76), one arrives at

Smass =

∫
d4x

1

2
M2

Plm
2δ4

[( h

MPl

− Π +
(ω − ∂B)

mMPl

+
ω · ω

2m2M2
Pl

)2

×
(
I +

h

MPl

+
ω

mMPl

+
ω · ω

2m2M2
Pl

)2 ]
+αM2

Plm
2δ4

[( h

MPl

− Π +
(ω − ∂B)

mMPl

+
ω · ω

2m2M2
Pl

)3

×
(
I +

h

MPl

+
ω

mMPl

+
ω · ω

2m2M2
Pl

)]
+βM2

Plm
2δ4

[(
h

MPl

− Π +
(ω − ∂B)

mMPl

+
ω · ω

2m2M2
Pl

)4
]
. (3.79)

Although somewhat algebraically lengthy, the math here is simple owing to isomor-

phism between ordinary real algebra and variables inside of a symmetric polynomial;

crucially, multinomial expansion rules are the same, e.g.

(a+ b)n = an + n an−1 b+ · · ·+ n a bn−1 + bn . (3.80)

It is also useful to outright neglect any term which comes in at too high of an

order (e.g. terms containing factors of ω2+n, hω1+n, h2+n for n ≥ 1) and to recall

that the pure ∂B and pure Π terms are total derivatives. All together, one quickly

arrives at a simple lemma that the only terms that need to be considered are the

surviving terms, which given the overall common factor m2M2
Pl are terms that inside

the parenthesis

(A.) Have a scale factor 1
m2M2

Pl
.

(B.) Have a scale factor 1
MPl

.
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Noting all of those, one is quickly lead to a Lagrangian with a leading-order

expansion of the form

1

2
M2

Plm
2δ4

[
− 4Π

ω2 − ∂Bω
m2M2

Pl

I − ω · ω
m2M2

Pl

ΠI2 +
Π2(ω2 + ω · ωI)

m2M2
Pl

+2
ω2 − ∂Bω
m2M2

Pl

I2 + 2h
−ΠI2 + Π2I

MPl

]
+αM2

Plm
2δ4

[−Π3ω · ω
2m2M2

Pl

+ 3Π2ω
2 − ∂Bω
m2MPl

− 3Π
(ω − ∂B)2I

m2M2
Pl

+3
ω · ω
m2M2

Pl

Π2I + h
3Π2I − Π3

MPl

]
+βM2

Plm
2δ4

[
− 3

2
Π3 ω · ω
m2M2

Pl

+ 6Π2 (ω − ∂B)2

m2M2
Pl

− 3h
Π3

MPl

]
+O

(
1

MPl

)
.

(3.81)

After canceling the common scale factors, I may simplify the derivatives further as

follows: All interactions containing a single factor ∂B always come with a factor of

anti-symmetric terms, and in this context ∂aB
b = 1

2
Ga

b; all terms containing more

than one factor of ∂B are total derivatives! Therefore, one may linearise ∂B and

apply the aforementioned substitution. Upon which, one obtains the Lagrangian

1

2
δ4

[
Π(−4ω2 + 2Gω)I − ω · ωΠI2 + Π2

(
ω2 + ω · ωI

)
+(2ω2 −Gω)I2 + 2Λ3

3h(−ΠI2 + Π2I)
]

+αδ4

[
− Π3ω · ω + 3Π2

(
ω2 − 1

2
Gω

)
− 3Π(ω2 −Gω)I

+3ω · ωΠ2I + Λ3
3h(3Π2I − Π3)

]
+βδ4

[
− 3

2
Π3ω · ω + 6Π2(ω2 −Gω)− 3Λ3

3hΠ3
]
. (3.82)
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Finally, one may collect like terms and re-insert indices to get

SdRGT =

∫
d4x − 1

2
hµ

αδµνραβγ∂ν∂
βhρ

γ + Λ3
3hµ

α (Xα
µ + (1 + 3α)Yα

µ + (α + 3β)Zα
µ)

+
1

2
δµνρσαβγδ

[
Πµ

α(−4ων
βωρ

γ + 2Gν
βωρ

γ)δδσ − ωµ λωλ αΠν
βδγρδ

δ
σ

+Πµ
αΠν

β
(
ωρ

γωσ
δ + ωρ

λωλ
γδσ

δ
)

+ (2ωρ
γωσ

δ −Gρ
γωσ

δ)δγρδ
δ
σ

]
+αδµνρσαβγδ

[
− Πµ

αΠν
βΠρ

γωσ
λωλ

δ + 3Πµ
αΠν

β

(
ωρ

γωδσ −
1

2
Gρ

γωσ
δ

)
−3Πµ

α
(
ων

βωγρ −Gν
βωγρ
)
δδσ + 3ωµ

λωλ
αΠν

βΠρ
γδδσ

]
+βδµνρσαβγδ

[
− 3

2
Πµ

αΠν
βΠρ

γωσ
λωλ

δ + 6Πµ
αΠν

β(ωρ
γωδσ −Gρ

γωδσ)
]

(3.83)

where hµ
α is the usual spin-2 graviton perturbation eµ

α = δαµ + 1
MPl

hµ
α, and I

remind the reader of the known relations

ωab =

∫ ∞
0

du e−2ue−uΠaa
′

Ga′b′e
−uΠb

′
b (3.84)

Gab = ∂aBb − ∂bBa (3.85)

Πab =
∂a∂bπ

Λ3
3

. (3.86)

The “transverse tensors”, which I denote as Xµ
α, Y µ

α, and Zµ
α are defined via

[42],

Xµ
α = −δµναβΠν

β

Y µ
α =

1

2!
δµνραβγΠν

βΠρ
γ (3.87)

Zµ
α = − 1

3!
δµνρσαβγδΠν

βΠρ
γΠσ

δ . (3.88)

3.5 Comments on the Helicity-1 Modes

Although my resummation for the decoupling limit Stückelberg mode given in

(3.75) is not the simplest expression, it does simplify the infinite tower of interac-

tions considerably and gives a systematic, order-by-order approach for constructing

the interactions. This is considerably more straightforward than expanding a matrix

square root (which was done with much greater effort in [104, 110]). The results
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in these papers follow from much simpler, more systematic nature of (3.75). With

minimal effort, one can now go to much higher order. For instance, given a back-

ground that has Π̄, I can first expand the expression as a series centred around some

exact solution Ḡab, i.e.

Ḡab = 2ω̄ab − (ω̄caΠ̄
c
b − ω̄cbΠ̄c

a) , (3.89)

Then the interactions (or what will become interactions when this is substituted back

into the decoupling limit action) for fluctuations may be systematically derived via

the same Schwinger parameterisation technique

δGab = 2δωab − (δωcaΠ̄
c
b − δωcbΠ̄c

a)− (ω̄caδΠ
c
b − ω̄cbδΠc

a) (3.90)

=⇒ δω =

∫ ∞
0

du e−2ue−uΠ̄a a
′

(δG− ω̄δΠ + δΠω̄)a′b′e
−uΠ̄b

′
b (3.91)

δω =
∑
n,m

(n+m)!

21+n+mn!m!
(−1)n+m Π̄n(δG− ω̄δΠ + δΠω̄)Π̄m . (3.92)

Subsequent to this work5, these kinds of constructions have been central for analysing

the helicity-1 modes. This lead to various interesting breakthroughs about their

properties, such as a further understanding of the superluminalities [111], extensions

of the decoupling limit to other theories [112, 113], all of which was performatively

unattainable prior to the development of my methods. Shortly after being published,

my systematic analyses allowed for the discovery of the mysterious Galileon duality

[112–116], which still remains poorly understood but seems likely to be important

to massive gravity. Additionally, my work also sheds new light onto the no-go proof

found in [117] for partially massless gravity, because the proof of the decoupling limit

demonstrates that the helicity-0 and helicity-1 mode cannot be made to decouple if

one picks the dRGT mass terms6.

5Originally published in [98].
6I would like to thank C. de Rham for observing this.



Chapter 4

Review of Dimensional

Deconstruction

4.1 Massive Theories from Higher-Dimensional Mass-

less Theories

I now review Dimensional Deconstruction, originally developed in [108, 118]

and further developed in [119–124]. It is a major technique that will allow one to

create massive gauge theories. Although originally constructed for Yang-Mills the-

ories and BSM physics, Dimensional Deconstruction (henceforth ‘deconstruction’)

also shows how to derive dRGT gravity from Einstein-Cartan gravity in one di-

mension higher. In the following sections, I shall make repeated use of (and find

extensions of) deconstruction; therefore, I shall carefully discuss the powers and

limitations of this technique. To give a rough overview, the essential idea is to take

a massless theory of a spin-J field living in (d + 1)-dimensions, forcibly breaking

the spacetime symmetry down to d-dimensions, to generate a theory of a massive

spin-J in d-dimensions. One breaks the spacetime symmetry by demoting integrals

and derivatives in this continuous dimension into linear maps on “site basis” by

hand; one may geometrically interpret this as discretising a continuous dimension.

The simplest case possible is to show how one may “deconstruct over 1-site”, where

one takes a massless 5-D scalar and deforms it into a massive 4-D scalar. Note

that in the literature, typically a 1-site theory is taken, by definition, to be straight

dimensional reduction and thus only contain a massless mode. I reserve the term

“1-site deconstruction” to apply explicitly to generating a single massive mode. For

now, suppose that I write down the action of a massless scalar in 5-D. At the level

60
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of the action, this is given by

S[ϕ] =

∫
d5X − 1

2
∂Mϕ∂

Mϕ . (4.1)

If one separates out one of the spatial dimensions, i.e. XM = (xµ, y), then one can

split the action up into

S[ϕ] =

∫
d4xdy − 1

2
∂µϕ∂

µϕ− 1

2
∂yϕ∂yϕ . (4.2)

In turn, one may then explicitly break the structure of this extra dimension by

(1) Deforming the y-derivatives into ∂yϕ→ mϕ.

(2) Deforming y-integrals to
∫

dy f (xµ, y) · · · g (xµ, y)→ 1
m
fn (xµ) · · · gn (xµ).

(3) I absorb this normalisation into the fields themselves, since bosons in 5-D have

different scales than they do in 4-D, which this factor of 1
m

accounts for. Thus

I ignore it and give the fields their 4-D scaling dimension, which is equivalent

to ϕ→
√
mϕ = ϕ4-D.

The deconstucted action is now simply a 4-d massive scalar∫
d4x − 1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2 . (4.3)

At this level, this may appear just to be a cute trick; however, this procedure proves

remarkably endurable, including for interacting gauge theories.

4.1.1 Embeddings of Reps

From a completely group-theoretic perspective, it is easy to see that the Poincaré

groups ISO(1, d) for Minkowski spaces M1,d of differing dimension are nested within

each other:

ISO(1, 1) ⊂ ISO(1, 2) ⊂ ISO(1, 3) ⊂ · · · ⊂ ISO(1, d) . (4.4)

Therefore, if one looks at representations of ISO(1, d + 1), one expects that they

necessarily contain all of information about the representations of ISO(1, d). For

instance, this is famously how Kaluza-Klein compactification over an 1-dimensional

internal manifold works [125, 126]. The compactification is realised by exactly de-

composing an ISO(1, d) representation into an infinite tower of ISO(1, d−N) repre-

sentations. Typically, it will contain a single massless rep combined with an infinite
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tower of massive modes; this forces the dynamics to be consistent. For example,

purely at the level of representations, one then can decompose a 5-D massless, spin-

J rep into a set of 4-D massive and massless spin-J reps, and since one is only

at the level of representations there are no concerns over the dynamics or the La-

grangian. In a bra-ket notation, this can be seen through the Casimir invariant on

the single-particle state

PMP
M |kN〉 = (PµP

µ + PyP
y) |kµ, ky〉 = 0 . (4.5)

If one takes the amount of momentum in Py and define the state to have the E = m

and rotate the direction of motion to lie in the y direction, one can see that massive

reps in 4-D naturally fall out of massless 5-D reps:

(
PµP

µ +m2
)
|kµ, m〉 = 0

⇔ PµP
µ|kµ〉 = −m2|kµ〉 (4.6)

where the state |kµ〉 is now manifestly a massive single-particle state in 4-D with mass

m. Following the obvious condition that P 2
y = m2 implies that one may generalise

this to account for multiple sites, in which case the promotion is Py → MIJ (i.e.

a linear operator on the site basis), and then one has (using Einstein summation

convention for site basis indices)

(
PµP

µ + P 2
y

)
|kµ, n〉 = 0 ,

→ PµP
µ|kµ, n〉 = −m2|kµ, n〉 , (4.7)

and MIJMJK |kµ, K〉 = δIKm
2
K |kµ, K〉 , (4.8)

which leads to the condition M2 = I in matrix notation. This can be translated

into field-theoretic language. Then one obvious choice is to force the condition

ϕ (xµ, y) → ϕI (xµ)

∂yϕ (xµ, y) → MIJϕJ (xµ)∫
dy ϕ (xµ, y) · · ·ψ (xµ, y) →

∑
I

ϕI (xµ) · · ·ψI (xµ) (4.9)
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at the level of the fields.1

4.2 Deconstructing Free Theories

Returning to the general case of a scalar field, one can see that if the previous

prescription is applied, one derives that

S(D+1)-dim[ϕ] =

∫
dD+1X

(
−1

2
∂Mϕ∂

Mϕ

)
(4.10)

=

∫
dDxdy

(
−1

2
∂µϕ∂

µϕ− 1

2
(∂yϕ)2

)
, (4.11)

after doing a (D + 1)-split and then deforming the action according to (4.9), one

arrives at

→ SD-dim[ϕ] =

∫
dDx

∑
I

(
−1

2
∂µϕI∂

µϕI −
1

2
ϕJMIJMIKϕK

)
. (4.12)

Next, there is an eigenvalue decomposition (or a singular-value decomposition, if

massless modes are present) that allows one to diagonalise the fields via a similarity

transformation S

ϕI → ϕ̃ = SIJϕN =⇒MIJ ϕ̃J = mIϕ̃I , (4.13)

so then

SD-dim[ϕ̃] =

∫
dDx

∑
N

(
−1

2
∂µϕ̃I∂

µϕ̃I −
1

2
m2
Iϕ̃Iϕ̃I

)
, (4.14)

where in principle there might be zero-modes mI = 0 for some I, representing

the massless modes. In principle an arbitrary number of massless modes are al-

lowed; however, in practice I will only allow at most a single massless mode. The

masses then are simply the eigenvalues of the MIJ matrix. This greatly generalises

Kaluza-Klein compactification; it includes straight dimensional reduction, lattice

discretisations like the kind put on computers, and it also includes totally new ways

of breaking a 5-D theory down to a 4-D theory. (Note, however, that only KK com-

pactifications form an equivalency with the original theory; otherwise one is only

1The clever reader may notice that Py = i∂y in the bra-ket notation, and thus rightfully ask
about what happened to all of the factors of i. Perhaps unexpectedly, they are a choice in the
procedure. Since once I deform the derivative, the Leibniz rule no longer applies (the crucial part
of making P anti-Hermitian), one has to pin down a convention by hand. If one demands that
only first derivatives on operators ∂yϕ → MIJϕJ are well-defined via the deformation procedure,
then the requirement of integrating by parts before deforming removes the required factors of i.
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extracting portions of the higher dimensional theory.)

4.2.1 Deconstructing Maxwell to Proca Theory

I now explore how deconstruction behaves on a gauge theory. For concreteness,

I take a massless spin-1 theory (i.e. Maxwell) in 5-D and I focus on deconstructing

over a single site. A priori, this ought to lead to a Proca theory in 4-D, which I will

now show. Using the logic of the previous section, I take the 5-D Maxwell theory

and do a (4 + 1)-split of the action

SM[AM ] =

∫
dD+1X − 1

4
FMNFMN

=

∫
dDxdy − 1

4
FµνFµν −

2

4
FyµFyµ

=

∫
dDxdy − 1

4
FµνFµν −

1

2
(∂yAµ)2 (4.15)

where in the final line I have made use of Ay = 0. Applying the deconstruction

prescription, the Proca action is obtained immediately

S =

∫
dD+1x − 1

4
FµνFµν −

1

2
m2AµA

µ . (4.16)

One might ask what happens if one does not gauge-fix prior to applying the deforma-

tion. Things will become more complex when one does not gauge fix in interacting

theories, however for quadratic Lagrangians there is an elegant result: If one has a

gauge symmetry present when deconstructing a massless theory, one will generate

the Stückelberg formulation of the massive theory! To see this, one can leave the

gauge unfixed and leave in this mode free; in this case, the (D + 1)-split takes the

form

SM[AM ] =

∫
dDxdy − 1

4
FµνFµν −

1

2
(∂yAµ − ∂µAy)2 , (4.17)

and I now choose to relabel Ay = ϕ. Now, applying the deformation, the action

transforms into

S[Aµ, ϕ] =

∫
dDx − 1

4
FµνFµν −

1

2
m2

(
Aµ −

1

m
∂µϕ

)2

, (4.18)

which by sight is the Stückelberg action (cf. the formalism in subsection 2.2.4) and

even enters with the correct normalisation factors. Note that for more complex

theories, like spin-3
2

and spin-2 fields, this will not happen and more complex diago-
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nalising transformations will be needed even when deconstructing over a single site.

I finish the Stückelberg theory by generating the Stückelberg gauge symmetry from

the higher dimensional gauge theory. The higher dimensional symmetry is generated

by

δAM = ∂Mξ =⇒
δAµ = ∂µξ

δAy = ∂yξ
. (4.19)

Applying the deformation, one immediately generates the Stückelberg symmetry

δAµ = ∂µξ

δϕ = mξ . (4.20)

Even though this is only the linear theory, these correspondences are still quite

remarkable!

4.2.2 Deconstructing LGR to FP Theory

One may repeat this process with linearised gravity. Starting with LGR in

(D + 1)-dimensions, I will deconstruct this theory and arrive at Fierz-Pauli theory

in D-dimensions. Likewise, gauge-fixing will lead to ordinary FP theory, but leaving

in the linearised diffeomorphisms gauge symmetries will generate the FP theory

within the Stückelberg formulation. For now, I focus on the gauge-fixed version

(which leads to an ordinary FP theory), setting Hµy = Hyy = 0. Plugging this into

the action and doing a (D + 1)-split you end up with

SLGR[HM
A] =

∫
dD+1X − 1

2
HM

AδMNR
ABC ∂N∂

BHR
C (4.21)

=

∫
dDxdy − 1

2
Hµ

αδµνραβγ∂ν∂
βHρ

γ +
1

2
∂yHµ

αδµyναyβ∂yHν
γ ,

(4.22)

were in the last line has made use of integration by parts. Then, making use of the

fact that δµyναyβ = δµνyαβy = δµναβ, one can see this naturally gives the required Fierz-Pauli

tuning. We relabel Hµν = hµν , and finish by deforming the y-derivatives. This gives

rise to

→ SFP =

∫
dDx − 1

2
hµ

αδµνραβγ∂ν∂
βhρ

γ +
1

2
m2hµ

αδµyναyβhν
γ , (4.23)

which one may compare to (2.2) to see that this is the Fierz-Pauli theory. Therefore,

deconstruction allows one to generate a massive spin-2 theory from a massless spin-2

theory in one dimension higher. I leave the Stückelberg formulation as an exercise
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for the reader, but I give a quick sketch of the proof of these statements. The Bµ

Stückelberg mode is proportional to Hµy, and π is proportional to Hyy. Likewise,

one can show that the (D+1)-dimensional gauge algebra of LGR, which I christen L-

Diff(D+1), generates the massive Stückelberg gauge algebra of u(1)×L-Diff(D) by

deforming the gauge algebra from LGR! (Note that the gauge algebra of L-Diff(D)

is isomorphic to u(1)D, since linearised diffeomorphisms are abelian.)

4.3 Deconstruction and Interactions

4.3.1 Obstructions to Interactions

The procedure for deconstruction that I outlined in sections 4.1 and 4.2 clearly

plays nicely with quadratic Lagrangians. Now that I have deconstructed several

bosonic theories2 I note that for a generic interacting bosonic theory, several crucial

relationships can be violated away from the free theories. The differences between

the free and interacting theories can easily be seen at the schematic level since in

the free action. To start with the quadratic terms in the Lagrangian are given by

kinetic terms and mass terms of the form

S ∼
∫
ϕD2ϕ (4.24)

where D2 is a second-order differential operator potentially with index structure

(including spacetime and internal symmetries). Crucially, however, these differential

operators obey
∫
AD2B =

∫
−DADB =

∫
BD2A for any field A and B, modulo

boundary terms. The (D + 1)-split of the action then obeys a relationship like

S ∼
∫
ϕD2ϕ− ∂yϕO∂yϕ , (4.25)

where O holds the indices for the spin reps, which for spin-2 fields already contains

non-trivial information about ghostly modes (see subsection 2.2.6). As for the de-

construction procedure, the ambiguities in resolving ∂y vs Py then can be seen to

be irrelevant at quadratic order, namely if I define ∂2
yϕ → −m2ϕ or I force the

derivative to only operate once on any field, ∂yϕ = mϕ. Either substitution clearly

results in a valid deconstruction procedure (although it will make extracting the

2I will discuss fermionic theories in Chapter 6, where I discuss my foundational work on de-
constructing fermions while maintaining the SUSY required for long multiplets.
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Stückelberg symmetries less clear, so there is at least a minor preference for the

single-derivative method; however, it may seem more pleasing to follow the natural

QM relation of P 2
y |k〉 = m2|k〉.) The major structural change underlying all of this

is that once the substitution ∂y → MIJ takes place, the Leibniz identity is

lost. So after the deformation, ∂y[ϕ(y)ψ(y)] 6= (∂yϕ)ψ+ϕ(∂yψ) 3 But what happens

when we add in natural interactions found in nature, like those of the NLSM, YM,

or GR? For instance, even at cubic order (subsuming all indices into a tensor O3)

one has

S ∼
∫
ϕD2ϕ+O3(ϕ2∂2ϕ)

∼
∫

(ϕD2ϕ− ∂yϕO2∂yϕ) +O3(ϕ2∂2ϕ− ϕ2∂2
yϕ)︸ ︷︷ ︸

Ambiguous!

, (4.26)

since after the substitution relations, e.g.

∂yϕ
2 6= 2ϕ∂yϕ (4.27)

are fundamentally broken! With the criterion of gauge symmetries, this clearly be-

comes even worse in terms of the effects this can have on the theory, since gauge

symmetries typically require delicate cancellations between interactions and often

makes repeated use of the Leibniz rule of all of the derivatives. This is potentially

a disastrous result for deconstruction, and it certainly makes working with decon-

struction more challenging for interacting theories!

4.3.2 Deconstructing YM to PYM

Here I show that:

1.) Given a mode XMN ···Q, I always fix axial gauge XMN ···Q = 0, if M , N ,

· · · , or Q = y.

2.) I always use the single derivative prescription, ∂yX →MijXj.

provides a robust, albeit still not fully understood, procedure that plays well with

gauge symmetries. To show this, I will now work with Yang-Mills, and deconstruct

it into PYM. To start, one must write down Yang-Mills in (D+ 1)-dimensions with

3Notably, KK-compactification still maintains an algebriac identity similar to the Leibniz rule,
owing to MIJ being anti-symmetric, and in discretisations the Abel summation-by-parts identity
also applies. These, however, do not contain the full algebraic properties of the Leibniz law!
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gauge group SU(N); see section 2.3 for my conventions. I will choose the gauge-

fixing condition such that Ay = 0, which at the moment is simply an ad hoc choice.

The action after (D+ 1)-split, followed by the deformation, of the action yields the

deconstructed action

SYM[AM ] =

∫
dD+1X − 1

4
Tr
[
FMNFMN

]
(4.28)

=

∫
dDxdy − 1

4
Tr [FµνFµν + 2FyµFyµ] (4.29)

=

∫
dDxdy − 1

4
Tr [FµνFµν + 2∂yAµ∂yA

µ] (4.30)

→
∫

dDxTr

[
−1

4
FµνFµν −

1

2
m2AµA

µ

]
(4.31)

where in the last line I have used the usual deformation, ∂yAµ
a = mAµ

a. This is

Yang-Mills Proca theory. If one wishes to go back to adjoint indices, this is equal to

SPYM[Aµ
a] =

∫
dDx − 1

4
Fµν aFµν a −

1

2
m2 (Aµ

a)2 . (4.32)

If one engages in a simple analysis of this action, it results in the usual 3 PDF’s

of the massive spin-1 mode, times the number of spin-1 fields filling out an adjoint

representation of the gauge group, G. For SU(N), this gives (N2 − 1) massive,

interacting spin-1 fields, for a total of 3(N2 − 1) PDF’s. This compares nicely with

the 3(N2 − 1) PDF’s that a 5-D SU(N) massless spin-1 theory has.

4.4 dRGT from Deconstruction

4.4.1 Deconstructing EC Gravity to dRGT Gravity

Next, I move to deconstruct Einstein-Cartan gravity, and see what kind of

massive theory of gravity one obtains [124, 127, 128]. From the outset, however,

there are choices which will generate different results. Firstly, should one deconstruct

using the metric or vielbeins? Notice that we need to choose an offset in the definition

of the ∂yeµ
a = m(eµ

a − δµ a), since otherwise ∂yeµ
a = m(δaµ + hµ

a) 6= mhµ
a. But

whichever is chosen, either an offset for the veilbein or the metric, it forces the other
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to be inconsistent, i.e. choosing the metric leads to

∂ygµν = m(gµν − ηµν)

= ∂y(eµ
aηabeν

b) , (4.33)

but contrarily

∂ygµν = ∂yeµ
aηabeν

b + eµ
aηab∂yeν

b

= m(eµ
a − δµ a)ηabeν b + eµ

aηabm(eν
b − δν b)

6= m(gµν − ηµν) . (4.34)

The deconstructing using the metric ansatz was tried early on in the deconstruction

program [108, 119–123, 129, 130]. Although much of the physics community is more

familiar with GR in its metric formulation, the vielbein is in many senses a more

natural object for gravity. On geometric grounds, it is the object that takes one

to the locally inertial frame, and also it is the one that leads to natural generali-

sations that include torsion. On field-theoretic grounds, it is the formulation that

allows gravity to couple to fermions and deals correctly with spin-couplings [131].

Stated differently, fermions are ad hoc if ones moves out of the Einstein-Cartan

formalism, since a generic manifold does not furnish a representation for fermions

[132]. Einstein-Cartan, however, has a globally well-defined local Lorentz group,

from which representations for fermions can be drawn; additionally, the required

interactions lead naturally to torsion. They are famously required in order to con-

sistently write down self-interacting spin-3
2

fields, i.e. supergravity [131, 133]. This

is because supergravity is the theory of local super-Poincaré symmetry, meaning

that it has local SUSY, local Poincaré symmetry, amongst possible internal gauge

symmetries. Therefore, I argue that this is the closest formulation of GR which

relates back to representations of the Poincaré algebra, which was the starting point

of Deconstruction. In either case, the Einstein-Cartan formulation certainly will

deconstruct correctly into dRGT gravity. I review this argument now. One begins

with the EC action in first-order form:

SEC[EA,ΩA
B] =

MD−2

4 · (D − 2)!

∫
RABEC1 · · ·ECD−2 εABC1···CD−2

(4.35)

with vielbein EA := EM
AdXM , curvature 2-form RA

B := dΩA
B + ΩA

CΩC
B, and

wedge products are implicit, ωξ := ω∧ξ. Following the logic of the previous section,

any mode which transforms non-trivially under the diffeomorphism or local Lorentz

gauge symmetries needs to be removed, and one can see that again the axial gauge
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will work just fine:

δEy
5 = ∂yξ

yEy
5 (4.36)

δEµ
5 = λ5

aEµ
a (4.37)

δEy
a = ∂yξ

yEy
a (4.38)

δΩy
ab = Ω′y

ab ⊃ ∂yλ
ab , (4.39)

where Ey
A is the y = XD manifold coordinates, and V A = (V a, V (y)), a ∈ 0, · · · , D−

1 for Lorentz indices. These represent D + 1
2
D(D − 1) distinct modes, but there

are precisely that many gauge symmetries. Making the choices then4 that removes

these modes, the axial gauge

Ey
(y) = 1

Eµ
(y) = 0

Ey
a = 0

Ωy
ab = 0 , (4.40)

is applied. Once the spin-connection is integrated out (which in first-order form is

an auxiliary field), it generates the torsion-free conditions:

dEA + ΩA
BE

B = 0 . (4.41)

Upon substituting (5.17) into this equation, one derives the conditions

Ωy
a(y) = 0 (4.42)

Ωµ
ay = ∂yEµ

a (4.43)

Ωµ
ab = ωµ

ab[eµ
a] (4.44)

E[µ
aΩν]

b(y)ηab = 0 , (4.45)

where ωµ
ab[Eµ

a] is the D-dim spin connection dDe for ea = Eµ
adxµ. For notational

convenience, I now define

Ka = Ωµ
a (y)dxµ (4.46)

4Actually, there is no obvious requirement from the outset that one should send Eµ
(y) = 0,

since Eµ
(y) → λ(y) aEµ

a is not obviously a problem. This will be the topic of Chapter 5. For now,
this may be taken as a simplifying ansatz since there is enough gauge symmetry to fix this mode
to zero.
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and so condition (4.45) simplifies as

eaKa = 0 . (4.47)

Now, plugging in (5.17), (4.42-4.44), and (4.47) into the EC action (4.35), one will

find the result

S[eµ
a] =

MD−2

4(D − 3)!

∫
dy
(
Rab +KaKb

)
ec1 · · · ecD−3 εabc1···cD−3

(4.48)

with Ra
b := dωa b + ωa cω

c
b. Next, apply the deconstruction prescription, ∂ye

a =

m(ea − Ia). Note that here one must make a choice about what the VEV of the

vielbein will be; for simplicity, I choose the Poincaré invariant background vielbein,

Ia which is the only choice of deconstruction that preserves Poincaré invariance.

After the VEV has been chosen, it must be subtracted off the mass deformation,

since the true mass eigenstate is (ea−Ia), not ea. This is what breaks diffeomorphism

invariance, a requirement of massive theories of gravity. (Note, however, that the

theory retains global Poincaré invariance.) This then leads to an action of the form,

d = D − 1

S[eµ
a] =

Md−2

4(d− 2)!

∫ (
Rab +KaKb

)
ec1 · · · ecd−2 εabc1···cd−2

, (4.49)

given ea Ia = 0 ,

Ka = m(ea − Ia) , (4.50)

where the last equation is commonly known as the symmetric vielbein condition

or the Deser-van Nieuwenhuizen condition (Henceforth, “DvN condition” or “DvN

gauge”) whose importance was discussed in the previous subsection 3.2.3, and I

have rescaled the Planck mass between the dimensions, MD−1 =
(

1
m
MD−2

D

) 1
D−3 , as

usual. (For interacting theories like dRGT and PYM, my convention is that the

coupling constant absorbs the dimensions obtained from the deconstructed integral,∫
dy → 1

m

∑
I , and then one may easily rescale the fields as desired to obtain the

correct scaling dimension for their fluctuations.)

4.4.2 2-Site Deconstruction and Bigravity

It is worth noting that ghost-free bi-gravity, found in [45], in Einstein-Cartan

formulation [90] can also be found following deconstruction procedure given by de
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Rham, et al, in [124].

It is a straightforward generalisation of the previous section. Instead, one

changes the deconstruction prescription to

Ea(x, y) → Ea
I (x) :=

(
ea

fa

)
(4.51)

∂ye
a → m(ea − fa) , (4.52)

∂yf
a → m(fa − ea) , (4.53)∫

dy →
2∑
I=1

, (4.54)

where in the first line the vector array indicates the site basis, so the first site has

vielbein ea and the second site has vielbein fa.

This ansatz trivially generalises to the well known bigravity model

S[ea, f b] =
Md−2

4(d− 2)!

∫ (
Rab +KaKb

)
ec1 · · · ecd−2 εabc1···cd−2

+
(
Qab +KaKb

)
f c1 · · · f cd−2 εabc1···cd−2

, (4.55)

given ea fa = 0 , (4.56)

Ka = m(ea − fa) , (4.57)

Rab = dωab + ωa c ω
cb , (4.58)

Qab = dθab + θa c θ
cb , (4.59)

where ωab[e] is the spin connection for the first site, and θab[f ] is the connection for

the second site, and again, ea = eµ
adxµ and fµ

adxµ and the spin connection obeys

the usual functional dependence on their associated vielbein, see Appendix C for

further details.



Chapter 5

Obstructions to Interacting

Charged Spin-2 Fields

5.1 Charged Spin-2 Fields?

Aside from considerations of cosmology and gravitational physics, massive spin-

2 fields enter into particle physics and condensed matter physics in a natural manner.

For instance, there are several known massive spin-2 resonances found in nuclear

physics (e.g. spin-2 mesons such as the π2(1670), ρ3(1690), α4(2040) [134]) and

indeed some of the earliest work in massive spin-2 fields [2, 135, 136] dealt with how

one could imagine resonances and related physics. Specifically in these instances,

they are concerned with charged spin-2 fields, in other words complex massive spin-2

field, i.e. a complex 2-tensor fieldH±, µν that rotates under U(1) transformations, e.g.

H±, µν → e±iθH±, µν ; for obvious reasons, I will refer to these fields as being “charged

massive spin-2 fields”. In this context, one need not be interested in gravitational

theory, although the close-knit relationship between spin-2 fields and gravitational

theory is useful to exploit. A similar line was explored prior to the advent of dRGT

theory in [137–140]. Note that it is not possible to have an interacting massless

charged spin-2 fields, since it is impossible to have multiple interacting massless

spin-2 fields as was shown by Weinberg [5, 6]; since the complex spin-2 fields are

made up of two real spin-2 fields, an interacting charged spin-2 field would necessarily

violate this condition. Therefore, charged spin-2 fields only make natural sense in

the massive spin-2 context, which makes the advances in dRGT theory potentially

quite interesting to shed new light on an old topic.

In a different arena, massive charged spin-2 fields have also arisen as an in-

teresting and useful topic in AdS/CMT, namely for holographic descriptions of

73
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superconductors [141, 142]. The philosophy for AdS/CMT is to stick theory of

superconductors theory on the boundary of AdS and use the known relations of

AdS/CFT (for a review, see [31]) to attempt to use gravity in AdS to describe the

strongly-coupled physics associated to superconductors (for a classic field-theoretic

review of superconductors, see [62]). It is well-known in the literature that S-wave

superconductivity can be modelled with a charged AdS scalar (in AdS, it creates a

charged spin-0 hair on top of AdS black holes) that spontaneously breaks the U(1)

symmetry in the holographic CMT system; however, in order to describe D-wave

superconductivity one needs charged spin-2 hairs on the bulk AdS black hole, neces-

sitating the use of a charged massive spin-2 field [142, 143]. Similarly, massive spin-2

fields have come about because of the ability to break translational invariance on

the boundary theory (which corresponds to diffeomorphism invariance in the bulk)

[144–147] that are naturally related to DC conductivity.

Therefore, it seems quite timely to understand if dRGT theory of ghost-free,

massive spin-2 fields can be modified to give a new understanding of massive charged

spin-2 fields. The purpose of this chapter shall be to explore this topic, and in the

end, I shall develop a no-go theorem against dRGT being able to give new kinds of

interactions, owing to structural incompatibilities between the ghost-free properties

and the maintenance of a U(1) symmetry.

This Chapter is Outlined As Follows:

(1.) The first part of this chapter begins by reviewing the Federbush theory of a

charged spin-2 field; this theory contains no self-interactions and instead only

contains an interaction of a single photon field (abelian massless spin-1 field).

(2.) The second part deals with the generations of candidate theories from the in-

sights of Dimensional Deconstruction outlined in Chapter 4. The deconstruc-

tion procedure can be modified to generate theories that contain interactions

between complex massive spin-2 fields and a massless spin-1 field (i.e. a pho-

ton). I will show that this generates the most general kind of interactions,

given a set of reasonable assumptions, for charged spin-2 theory based upon

dRGT mass terms.

(3.) In the third part, I will show that this theory necessarily contains ghosts when

one moves away from the Minkowski background. In doing so, I generate a

novel, simplified method for determining the presence of PDF’s beyond those

contained for a complex ghost-free massive spin-2 theory, which acts as a means

of checking for the existence of BD modes.



5.2. Federbush Theory of Massive Charged Spin-2 Fields 75

5.2 Federbush Theory of Massive Charged Spin-2

Fields

If one wishes to incorporate electromagnetic interactions for a (complex) mas-

sive spin-2 field Hµν = 1√
2

(hµν + ifµν), then one needs to add in local, Lorentz-

invariant interactions between Hµν and a photon Aµ. Typically, one would simply

apply the usual “minimal coupling” inspired by a Nöther completion, i.e.

∂µ → Dµ = ∂µ − iqAµ , (5.1)

like one does for a scalar to create scalar QED or a fermion to create QED [63], to

restore a local copy of the U(1) symmetry

Hµν → eiθHµν ,

H∗µν → e−iθH∗µν ,

Aµ → Aµ −
i

g
∂µθ . (5.2)

Notice here, however, that there is an ambiguity, since the following Lorentz-invariant,

local interactions (up to the typical quartic order) are given by the most general ac-

tion

S[H,A] =

∫
d4x − 1

4
FµνF

µν −H∗µ α
(
δµνραβγDµD

β
)
Hρ

γ

−m2 ([H∗H]− [H∗][H]) + iq(2gM − 1)H∗µ
αFα

νHν
µ . (5.3)

Notice that this leaves a full parameter, gM ∈ R, totally unfixed; this parameter can

be interpreted as a gyromagnetic ratio since this interaction is Pauli-like [137]. This

ambiguity comes about essentially because covariant derivatives do not commute,

i.e. [Dµ, Dν ]Hαβ = −qFµνHαβ. Thus there is an ordering ambiguity, so for instance

DνD
µHαβ 6= DµDνHαβ (5.4)

DνD
µHαβ −DνD

µHαβ = −iqFν µHαβ , (5.5)

and thus there is a new, unspecific cubic term (a Pauli-like interaction) representing

ordering ambiguity. This is, in general, a ghostly action for essentially the same non-

Fierz-Pauli theories. However, In 1961, Federbush wrote down the first interacting,

ghost-free theory of a massive spin-2 field interacting with a massless spin-1 photon.
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The action takes on the specific form

SF =

∫
d4x − 1

4
FµνF

µν −H∗µ α
(
δµνραβγDµD

β
)
Hρ

γ

−m2 ([H∗H]− [H∗][H]) . (5.6)

Therefore, one has gM = 1
2

for Federbush. How does the Pauli interaction generate

ghostly modes?

Perhaps unsurprisingly, a Stückelberg analysis will again elucidate the nature

of the ghostly modes (analyses of this type were first done by Poratti, et al, in

[138–140]). First, I introduce a U(1)-covariant Stückelberg substitution

Hµν → Hµν −
1

m
D(µBν) +

1

m2
D(µDν)π , (5.7)

where, again, I use weight-one conventions, A(µBν) = 1
2

(AµBν − AνBµ). Then,

knowing how the canonical kinetic terms must arise, I apply the canonical kinetic

diagonalising transformations

Hµν → Hµν +
1√
6
πηµν ,

Bµ → +
1√
2
Bν

π →
√

2

3
π . (5.8)

This leads to a canonically-normalised action, which at quadratic order is

S(2) =

∫
d4x − 1

4
FµνF

µν −H∗µ α
(
δµνραβγ∂µ∂

β
)
Hρ

γ

−∂µπ∗∂µπ −
1

2
G∗µνG

µν (5.9)

with Gµν = 2∂[µBν]. The lowest (clearly higher-order in derivative) interaction in

the theory is

S =

∫
d4x (2gM − 1)

i

Λ4
q,4

∂µ∂
απ∗Fα

ν∂ν∂
µπ (5.10)

suppressed by Λq,4.1 As with the usual analyses that I have done up to now, em-

ploying a decoupling limit will allow me to remove the other operators, so long as I

1It is amusing to note that if a Kaluza-Klein relation q = m
MPl

is applied, then Λq,n = Λn of
the ordinary decoupling limit scales of massive gravity; see chapter 3 for more details.
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pick scalings

q → 0 ,

m → 0 ,

Λq,4 =
m

q
1
4

→ const. (5.11)

Therefore, in the classical contribution to the high-energy theory, I have a cut-off

ΛC = Λq,4 (2gM − 1)−
1
4 (5.12)

for gM 6= 1
2
. It is noteworthy that this scale goes to infinity when the Federbush gM

is chosen, owing to this interaction going to zero. This means that, much like the

dRGT mass tunings, the scale for the lowest order interactions is raised to a higher

scale! The new scale may be computed to be Λq,3, again in close analogy to dRGT.

This may be computed, schematically, by using H ∼ H+ 1
m
DB+ 1

m2DDπ, I obtain2

S ∼ δ3

[(
H∗ +

DB∗

m
+
DDπ∗

m2

)
DD

(
h+

DB

m
+
DDπ

m2

)]
. (5.13)

If one repeatedly makes use the of the schematic identity δ3[DDDB] ∼ δ3[qF∂B],

then one can then see that the interactions are now suppressed, at leading order, by

Lλq,3 = − i√
3Λ3

q,3

δµνραβγ∂µ∂
νπ∗FνρGβγ + (c.c.) . (5.14)

Note, however, that this new interaction –similar to the Galileon interactions– leads

to second-order equations of motion due to the critical anti-symmetry amongst the

indices! Therefore, Federbush is ghost-free, at least up to Λq,3. Taking this argument

to its full completion, the entire action is ghost-free to all orders. This shows that

Federbush propagates 5 complex massive spin-2 PDF’s and 2 massless spin-1 PDF’s,

as was proven in an alternate manner by Federbush in [135] and Poratti, et al, in

[138–140].

5.2.1 Acausalities and Velo-Zwanziger

Ghost freedom is not sufficient to prove the consistency of a theory; even with

a local, Lorentz-invariance, and ghost freedom, it was shown by Velo, et al, in

2In a schematic notation similar to the symmetric polynomials in Appendix B; this does not
uniquely specify how to restore indices, but the reader need only follow the schematics since the
calculated answer is provided.
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[148–150] and Johnson, et al, [151] that these theories still exhibit superluminal

velocities and acausality, similar to properties derived for massive gravity/Galileons

five decades later [37, 38, 152]. In the case of the Velo-Zwanziger-type acauasalities

(owing to the presence of a non-trivial background EM field, F̄µν) can be shown to

arise for the Federbush theory. For instance, away from the decoupling limit, with

a careful analysis, one can derive that the propagator for the helicity-0 modes are

schematically deformed as

S(2) ⊃
∫

d4x
1

Λ2
q,2

F̄ |Gµν |2 +
1

Λ4
q,2

F̄ 2|∂π|2 , (5.15)

which leads to kinetic terms that will generically have new phase velocities like [150]

cS = 1 + ε2 . (5.16)

For ε > 0, this implies the existence of superluminal modes. It has been argued that

these issues are not insurmountable obstructions for a UV completion [153] and

could potentially be resolved by quantum physics. Such ideas were further taken up

in [55, 79, 114, 115] and use exotic UV physics to resolve the acausalities found here

(effectively, the new physics would invalidate the analyses provided here). Although

I remain agnostic to the existence of such UV-completion ideas, I have shown that

this scenario could equally apply to fixing the superluminal velocities of the massive

spin-2 Velo-Zwanziger.

5.3 Charged Deconstruction

5.3.1 Deconstruction Prescription

Given the existence of a non-self-interacting charged spin-2 fields theory, one

can naturally ask if one could analyse the case for gravitationally interacting charged

massive spin-2 fields. Given the discovery of dRGT and bigravity, this provides a

new arena for taking on old questions, originally raised in the discussion of mesons

[135, 136] is if the dRGT mass interactions will allow for a new perspective on this

problem.

Actually, early work into Dimensional Deconstruction led me to a theory of a

charged spin-2 field, which I explored in [128]. This is quite clearly a possibility

from the standpoint of the “truncated Kaluza-Klein” deconstruction [124], where
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one obtains a spectrum of a massless spin-2 field and a complex massive spin-2 pair.

For simplicity, I will deconstruct 4-D Einstein-Cartan to a 3-D theory with dRGT

mass terms, since 3-D theories are considerably easier to work with; also, I will Wick

rotate t→ it so gMN = EM
AδABEN

B, thus the height of local frame indices will be

irrelevant. Recall that deconstruction proceeds by performing a (D+1)-split –here a

(3+1)-split to a 3-D theory– and applying specific gauge fixings. Previously, I chose

to set every field to radial gauge,

Ey
(y) = 1 ,

Eµ
(y) = 0 ,

Ey
a = 0 ,

Ωy
ab = 0 , (5.17)

however I will now choose a less restrictive choice, and allow for an extra

vector mode to be present

Eµ
(y) = Aµ 6= 0 ,

Ωy
ab 6= 0 , (5.18)

where (y) = 3 is the 4th Lorentz index, A = 0, 1, 2, 3. I have defined a = 0, 1, 2.

Prior to applying this gauge, I will split the spin connection up as

ΩM
AB dxM =

(
ωµ

abdxµ βabdy

Ka
µdxµ λady

)
. (5.19)

Using this convention, the (3+1)-split on the action leads to

S4-D EC =
M2

Pl

4

∫
εabc

[ (
Rab −KaKb

)
ec

+
(
Dλa − ∂yKa − βafKf

)
ebec

+
(
Dβab − ∂yωab − λ[aKb]

)
Aec
]
dy . (5.20)

Now, integrating out the spin connection, one obtains the well known torsion-free

condition

dEA + ΩA
BE

B = 0 , (5.21)

which immediately splits up into the separate conditions; upon applying the gauge-
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fixing conditions, one finds

Ka
µ = ∂yeµ

a + βabeµ
b + λaAµ

Fµν = 2Ka
[µeν]

a

λaeaµ = 0 . (5.22)

Thus far, to wit, I have used up the following gauge fixings: 1 from y-diffs, 3 from

local y-rotations (y-boosts if I Wick rotate back to Minkowski), I may use up the

remaining local rotation symmetries to fix the condition

βab = −1

2
F ab ≡ −1

2
F µνeaµe

b
ν . (5.23)

This has the immediate consequences

Ka
µ = ∂ye

a
µ −

1

2
F abebµ , (5.24)

and

e[µ
a ∂yeν]

a = 0 . (5.25)

First, I would like to note that from chapter 3 that setting the Deser-van Nieuwen-

huizen (i.e. DvN) condition is essential for the ghost-free properties of dRGT massive

gravity. In Deconstruction, the above condition (5.25) leads to the DvN condition

upon deconstructing ea.

Applying these conditions to the action, I obtain the following

S4-D EC =
M2

Pl

2

∫
εabc

(
Rabec + ∂ye

a∂ye
bec + 2∂yω

abAec
)

dy

+
M2

Pl

2

∫
d3xdy e

(
−1

4
FµνF

µν

)
(5.26)

with e = Det(eµ
a); using the identity

F afef∂ye
bec ∝ Fµνe

µ
a∂ye

ν
a = 0 , (5.27)

and that it can be shown, using De ∼ Ae, that the term is identically zero

εabcF
abADec ∝ AA = 0 . (5.28)

Thus there are some nice simplifications within the action.



5.3. Charged Deconstruction 81

5.3.2 Charged spin-2 Fields from Deconstruction

Now I turn to the actual application of the Deconstruction procedure. The

immediate question is how to obtain a charged spin-2 mode in the spectrum of the

deconstructed theory. The answer to this is straightforward, following [124], I may

choose a “truncated” Kaluza-Klein tower,

∂yφ(xµ, y)→ mαIJφJ(xµ) ,∫
dy f(y)→ 1

m

N∑
I=1

fI . (5.29)

In other words, I can treat this like a Kaluza-Klein reduction (modulo the fact that

I am freezing the dilaton Ey
(y) = 1), where I put in a cut-off to a finite largest

mode. Here, I choose to only take three modes (which in deconstruction means 3

sites, N = 3 in my sums). The precise relationship between the αIJ can be seen

in the [124], but it was shown there that the spectrum of this theory is a single

massless spin-2 mode and a complex massive spin-2 field. Applying this choice and

deconstructing action (5.26) yields

S3-D =
M3

4

∫
εabc

N∑
I=1

(
R[ωI ]

ab + q
∑
J

AαIJω
ab
J −m2

∑
J,K

αIJαIKe
a
Je

b
K

)
ecI

−1

4

∫
d3x eFµνF

µν , (5.30)

again using the rescaling technique M3 ≡M2
Pl/m. Here the charge takes on a specific

value

qDeconstruction =
m√
NM3

=
m2

√
NM2

Pl

, (5.31)

although in principle one can consider generalising this action for arbitrary q. It is

worth mentioning that the precise site for where one places the photon is ambiguous,

so I make the choice to place it simply on the first site; this is inspired by the

obstructions to multi-site matter found in [154–156]. Thus I pick for the first site,

Ea = (e0)µ
a and let e ≡ Det(e0).
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5.3.3 Charged Deconstruction Spectrum has Complex Spin-

2 Fields

The simplest way to see the appearance of the complex modes is to go to a

presentation of the variables which manifests the complex properties. The most

natural formulation which accomplishes this is the Fourier decomposition, which

amounts to a field redefinition

Φ̃n =
1√
N

2N+1∑
I=1

ΦIe
2πiIn/N (5.32)

where I have chosen the parameterisation ΦI = {eaI , ωabI }. By construction, N is

odd, and so one can readily see that the inverse redefinition is

ΦI =
1√
N

(N−1)/2∑
n=−(N−1)/2

Φ̃ne
−2πiIn/N . (5.33)

Crucially, notice that the ΦI fields (in “site basis”) are real, while the Fourier fields

Φ̃n are manifestly complex, and moreover are subject to the condition Φ̃∗n = Φ̃−n

in order for ΦI to be a real variable. Physically, the site basis manifests certain

geometric properties, but the Fourier basis manifests the complex structure. Indeed,

if one linearised this theory following,

κ =
1

MPl

→ 0, q → 0 , (5.34)

they would immediately discover a theory with one massless spin-2 field (LGR) and

a massive complex spin-2 field with a U(1) symmetry, upon applying the redefinition

(5.33). Just by noting the properties of a Fourier decomposition, (again with N is

being odd) the mass/charge eigenbasis is always spanned by a tower of (N − 1)

complex massive spin-2 fields H+ µ
a (with H†+ = H− and a single massless, neutral

spin-2 mode H0. A massless spin-2 field in 3-D has 0 PDF’s (the constraints balance

the phase space variables), and a massive spin-2 field has 2 PDF’s. Therefore, a

complex massive spin-2 field has 4 PDF’s.3

Performing this limit demonstrates that charged deconstruction generates, at

quadratic order, a spectrum containing (in principle N − 1) complex massive spin-2

modes, plus a massless spin-2 mode. The natural question is whether the self-

interactions respect this symmetry. If they do, then I will have found a consistent

3Again, this works exactly the same as a KK compactification over S1, cf. [125, 126, 157].
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(modulo causality concerns) action for a charged spin-2 field with both electromag-

netic and gravitational interactions. If they do not, then I have shown that one is

not permitted to deconstruct while keeping the vector mode present. As it turns

out, these interactions will not preserve a U(1) invariance. I turn to this issue now.

5.4 Deconstructed Action in Fourier Variables

5.4.1 Interactions in Fourier Variables

For this section, I will be using an arbitrary number of sites (an N -site de-

construction), unless otherwise specified. I will now show that although the theory

contains a charged spin-2 mode in its spectrum, its interactions necessarily violate

the U(1) symmetry. This issue will be independent of the photonic interactions, and

instead lie in the eI self-interactions, so I will focus on the pure eI terms (this is

equivalent to setting q = 0).

To start with, I will explicitly make use of the Fourier variable formulation of

the action, therefore if I expand out

Φ̃n = ΦIe
2πiIn/N ,

=⇒ ẽan =
1√
N

N∑
I=−N

ẽaI e
2πiIn/N , (5.35)

=⇒ ω̃abn =
1√
N

N∑
I=−N

ω̃abI e2πiIn/N . (5.36)

Perhaps surprisingly, the new variables ω̃+ and ω̃− are no longer connections. One

can see that the effect of the field redefinition is that the ω̃n now transform as tensors

under the diagonal local Lorentz transformations, eaI → Λa
be
b
I . To see this, note for

example that in the case N = 3 that the definition can be repackaged into

ω̃ab1 =
1√
3

(
1

2
(ωab3 − ωab1 ) +

1

2
(ωab3 − ωab2 ) + i

√
3

2
(ωab1 − ωab2 )

)
. (5.37)

Remarkably, the connections all act to form difference combinations, ergo even

though under the diagonal local Lorentz transformation in matrix notation acts

on the site basis as

ωI → ΛωIΛ
−1 − dΛΛ−1 , (5.38)



84 Chapter 5. Obstructions to Interacting Charged Spin-2 Fields

the variables ω̃ab are no longer connections! Only ω̃0 transforms as a connection.

Additionally, I shall make use of a convenient notation allowed only in three

dimensions. One uses a modified Hodge dual of the spin connection, namely

ωab =
1

2
εabcωc , (5.39)

and thus ωa = εabcωbc, where for this chapter a non-standard normalisation of the

Hodge dual was chosen of 1
(D−p)! rather than 1

p!
. Covariant derivatives now take on

the form DV a = dV a +ωabV b = dV a− 1
2
εabcωbV c, and and using the dual curvature

2-form Ra = εabcRbc and the Einstein-Cartan action are re-expressed as

Ra = εabcRbc = dωa − 1

4
εabcωbωc , (5.40)

SEC = M3

∫
Raea , (5.41)

with M3 = 1
2κ2 . Now then, applying the field redefinition at the level of the action,

one obtains a new action of the form

S3-D = M3

∫ ∑
I

[ 1

N

∑
n1,n2

(dω̃an1
ẽan2

)e2πiI(n1+n2)/N

+
1

N3/2

∑
n1,n2,n3

(
−1

2
εabcω̃

a
n1
ω̃bn2

ẽcn3

)
e2πiI(n1+n2+n3)/N

+
m2

N3/2

∑
n1,n2,n3

(
εabcẽ

a
n1
ẽbn2
ẽcn3

)(∑
J,K

βIJKe
2πi
N

(In1+Jn2+Kn3)

)]
,

(5.42)

noting that I have denoted βIJK := αIJαIK for expediency.

5.4.2 U(1) symmetry in the N →∞ limit

It is useful to start with a clear example of a theory with a U(1) invariance,

which is the actual KK “deconstruction” (here we take the literal full KK prescrip-

tion to “deconstruct”), but I add in the condition that Aµ = eµ
4 = 0 (i.e. only

keeping the tensor modes in the KK tower) and use the same gauge choices that

have been applied in this and the previous section, e.g. one may confer to ([125])
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for a 4-D to 3-D compactification. One then obtains an action

SKK = M2
Pl

∫ L

0

dy

∫ [ 1

L

∑
n1,n2

(dω̃an1
ẽan2

)e2πi(n1+n2)y/L

+
1

L3/2

∑
n1,n2,n3

(
−1

2
εabcω̃

a
n1
ω̃bn2

ẽcn3

)
e2πi(n1+n2+n3)y/L

+
1

L3/2

∑
n1,n2,n3

(−n1n2)
(
εabcẽ

a
n1
ẽbn2
ẽcn3

)
e2πi(n1+n2+n3)y/L

]
. (5.43)

I then can perform the integrals over y, which using the orthnormality relations,∫ L

0

dye2πiny/L = Lδn,0 (5.44)

will put the action into the form

= M2
Pl

∫ [ ∑
n1,n2

δn1+n2,0(dω̃an1
ẽan2

)

+
1√
L

∑
n1,n2,n3

δn1+n2+n3,0

(
−1

2
εabcω̃

a
n1
ω̃bn2

ẽcn3

)
+

1√
L

∑
n1,n2,n3

δn1+n2+n3,0(−n1n2)
(
εabcẽ

a
n1
ẽbn2
ẽcn3

) ]
. (5.45)

This action, it can be seen with little effort is equivalent to limN→∞ S3-D of (5.42),

in other words the infinite-site deconstruction. This elucidates two important facts.

The first is that the N →∞ deconstruction theory has a U(1) symmetry. Secondly,

the reason it obtains a U(1) symmetry is due to the appearance of the charge-

conserving Kronecker delta’s, δn1+···nM ,0, i.e.

δU(1)Φn = inΦn (5.46)

=⇒
∫
δU(1) (Φn1 · · ·ΦnM δn1+···nM ,0) ∝

∫
(n1 + · · ·+ nM)δn1+···nM ,0

= 0 . (5.47)

Away from N → ∞, one can see that the (finite) sums can no longer be writ-

ten as integrals with orthonormality relations (5.44), and instead obey the finite

orthonormality relations

N∑
I=1

e2πiIn/N = Nδn,kN 6= δn,0 . (5.48)
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This orthonormality relation instead introduces an action of the form

S = M3

∫ [ ∑
n1,n2

δn1+n2,0(dω̃an1
ẽan2

)

+
1√
N

1∑
k=−1

∑
n1,n2,n3

δn1+n2+n3,kN

(
−1

2
εabcω̃

a
n1
ω̃bn2

ẽcn3

)

+
m2

N3/2

∑
n1,n2,n3

(
εabcẽ

a
n1
ẽbn2
ẽcn3

)(∑
I,J,K

βIJKe
2πi
N

(In1+Jn2+Kn3)

)]
, (5.49)

which manifestly fails to have the charge conserving Kronecker delta symbols! In

fact, one can see that this only fails to affect the quadratic terms, owing to n1 +n2 =

kN =⇒ k = 0 when |n| ≤ (N − 1)/2. For all of the interactions (cubic and higher),

this property fails to hold and thus charge conservation disappears within the theory.

I close out this section with the explicit example of the N = 3 action

S = M3

∫
εabc

(
R[ω̃0]ab ẽc0

+
[
(dω̃ab1 + 2ω̃ad0 ω̃cb1 ) ẽ∗,c1 + c.c.

]
+ ω̃ad1 ω̃

∗,db
1 ẽc0 +m2ẽa1 ẽ

∗,b
1 ẽc0

+
[
ω̃ad1 ω̃db1 ẽc1 +m2ẽa1 ẽ

b
1ẽ
c
1 + c.c.

] )
. (5.50)

Here it is trivial to read off the charge conservation-violating interactions on the

final line.

5.5 Obstructions to Restoring the U(1) Symmetry

In terms of a Deconstruction, I have shown that one is not allowed to De-

construct while keeping on vector modes unfrozen, thus Aµ = 0. This will

have important consequences in Chapter 6, but for now I turn to natural question

of whether or not one can be motivated by the observations in deconstruction to

obtain a different theory of a massive, charged spin-2 field. The issue amounts to

restoring the U(1) symmetry by hand, and see if this can consistently be maintained

alongside diffeomorphism invariance, local Lorentz invariance, locality, and ghost

freedom.

The obvious suggestion from deconstruction is to multiply the local, Lorentz-

invariant, diff invariant terms by a projection operator that acts analogously to the

Kronecker delta to maintain charge conservation; this is the most one can leverage

at once, so this leaves ghost freedom incapable of being manifested. Starting with
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the mass terms, if I impose U(1) invariance, then this imposes constraints on what

βIJK can be. Note, however, that the mass term has a ghost-free form, so as long as

the kinetic terms do not move substantially away from Einstein-Hilbert, then there

is no ghost re-introduction. For the case of interest, with 3-sites this is restricted to

the terms

Smass, U(1) =

∫
m2 (c1ẽ0ẽ0ẽ0 + c2ẽ1ẽ

∗
1ẽ0) . (5.51)

Using the inverse field redefinition back into site basis, one obtains the mass terms

with the coefficient tensor with non-zero entries

β111 = c1 + c2

β112 = 3c1

β123 = 6c1 − 3c2 . (5.52)

Also, imposing the tadpole cancellation condition, one has

β111 =
36

5
, β112 = 3, β123 = −63

5
. (5.53)

Kinetic term

Moving on to the kinetic interactions, the interactions from deconstruction that

are cubic in eaI and ωaI follow the form

S(3) =
M3

31/2

∫ 1∑
k=−1

∑
n1,n2,n3

δn1+n2+n3,kN

(
−1

2
εabcω̃

a
n1
ω̃bn2

ẽcn3

)
. (5.54)

Restricting further, the interactions containing purely charged states ẽ±1, ω̃±1, in

other words terms which pick up a phase after a U(1) transformation, are given by

Sk=±1
(3) = −1

2

M3

31/2

∫
εabc

(
ω̃a1 ω̃

b
1ẽ
c
1 + ω̃a−1ω̃

b
−1ẽ

c
−1

)
. (5.55)

This can be off-loaded to site basis via (5.33), which takes on the form

Sk=±1
cubic = −M3

∫ ∑
I,J,K

γIJKεabcω
a
Iω

b
Je

c
K , (5.56)

where

γIJK ≡
1

32
cos

(
2π

3
(I + J +K)

)
. (5.57)
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Therefore, one simple way to restore U(1) invariance is just to subtract off the guilty

terms, leaving only U(1)-invariant interactions

Sk=0
cubic = S3 − Sk=±1

3 = M3

∫ ∑
I

εabc

[
−1

2
ωaIω

b
Ie
c
I +

∑
J,K

γIJKω
a
Iω

b
Je

c
K

]
. (5.58)

However, this has the consequence of which can be reinterpreted as deforming the

Einstein-Hilbert structure of the kinetic terms

Sk=0
kin = SGR + Snew

kin , (5.59)

=⇒ Sk=0
kin, (3) = M3

∫ ∑
IJK

γIJKεabcω
a
Iω

b
Je

c
K . (5.60)

I now turn to proving that, unsurprisingly, this deformation away from the Einstein-

Hilbert kinetic structure is fatal to the underlying theory. Thus, the dRGT mass

term does not buy any leeway with deforming the kinetic terms. Indeed, what is

being uncovered here is similar to what was found earlier in [127] (where de Rham,

et al, applied deconstruction to Gauss-Bonnet terms, and the results were shown to

be ghostly), and will play a role in building up more powerful theorems regarding the

dRGT theory of massive gravity [80] which I will discuss further in the conclusions.

The precise identification between these interactions and those found in [127] may

be seen through a field redefinition

ω1 → ω1 + (ω2 − ω3) , (5.61)

upon which

R[ω1]e1 → R[ω1]e1 +R[ω2]e1 +R[ω3]e1 − 2(ω1 − ω3)(ω2 − ω3)e1 . (5.62)

The chief difference between these terms and [127] is that ωI is still an auxiliary

field in my formulation, thus one cannot immediately deduce the existence of ghosts

just yet, and a more direct analysis is needed.
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5.5.1 Projecting out the U(1)-Violating Interactions

Taken all together, I have obtained a U(1) invariant, Lorentz invariant, and diff

invariant action, which collecting all of the results of this section is

S = Sk=0
kin + Sk=0

mass

= M3

∫
εabc

(
R[ω̃0]abẽc0

+
[
(dω̃ab1 + 2ω̃ad0 ω̃

cb
1 )ẽ∗,c1 + c.c.

]
+ ω̃ad1 ω̃

∗,db
1 ẽc0

+m2ẽa1 ẽ
∗,b
1 ẽc0

)
. (5.63)

A few general comments about the things that do succeed for this theory:

(1.) Supposing that the theory was consistent (or at least ghost free), then one

would next want to incorporate U(1) interactions through the standard min-

imal coupling procedure, i.e. d → D = d − iqA. After introducing the gauge

field, one can easily show that it recovers the Federbush theory in the scaling

limit M3 →∞ where one loses gravitational interactions.

(2.) Snewkin has diagonalized diff invariance, guaranteed by the form structure, as

well as diagonalized local Lorentz invariance, which can be seen by expanding

out the γIJK explicitly

Snewkin =
1

9
M3

∫
εabc

[
2(ωa1 − ωa2)(ωb1 − ωb3)− (ωa2 − ωa3)(ωb2 − ωb3)

]
ec1

+(Z3 perms) , (5.64)

noting that the only scale in the kinetic terms is M3.

(3.) Again, the spin connections are auxiliary fields, so they remain independent

at the moment.

5.5.2 Generic non-linear completions

Unsurprisingly, the deconstruction-motivated charged spin-2 theory will contain

spurious PDF’s and have more than 5 complex PDF’s (10 real PDF’s). Rather than

go through a detailed proof of this specific theory, I wish to make this no-go proof

as strong as possible. To this end, I will write down the most general non-linear

theory involving a linearly-realised U(1) symmetry acting on a complex spin-2 state,

ẽa± → e±iαẽa±, and the standard gravitational properties with vielbein ea, but give up
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entirely on any Einstein-Hilbert, but retain the wedge product structure. Although

this analysis will only be done for the 3 −D case (since this is where Hamiltonian

analysis is easiest), if the theory existed in higher D-dimensions, it would have to

come out via Sn dimensional reduction, where D = 3+n. Taking all of this together,

I have

* A dreibein and spin connection ea, ωab, which are neutral and have 0 PDF’s

(DOF - diff/LLI constraints = 0), encoding the massless spin-2 field.

* A complex vielbein field Ha
±,µ,Θ

a
±,µ, which carry the charged spin-2 DOF’s.

We take H− = H∗+. Under a U(1) transformation with parameter α, the spin-2

field H± transforms as H± → e±iqαH±, and similarly for Θ±. They ought to

have 4 (a complex massive spin-2 field, 2× 2 = 4).

* All fields transform under diffeormorphisms as forms, and as Lorentz vectors

Xa → Λa
bX

b.

* U(1) is easy to explore in this representation. The requisite diagonal Lorentz

invariance enforces that the spin connection ω should appear only through

the dual curvature R[ω]a = 1
2
εabcRbc[ω] or the exterior covariant derivative

D = d + ω, modulo a Chern-Simons interaction which I shall not consider

here.

* Again, I consider only theories that can be written explicitly with wedge prod-

ucts since this element is critical to all known ghost-freedom proofs.

Firstly, comparing to old notation, morally I have Θa
+ = εabcω̃bc1 and similar

for Θa
−, but I am only interested in writing down a Hamiltonian, thus Θa

± is only

playing the role of the momenta conjugate to Ha
±,µ.

Secondly, I can give some justification for the last line by noting that non-wedge

product actions typically will have kinetic terms of the form

Ha
+,µH

b
−,νX

µν
ab , (5.65)

given some tensor Xµν
ab that is a function of fields. After introducing the Stückelberg

fields by H ∼ H +Dφ, this will have the form

DµφaDνφbXµν
ab , (5.66)

which clearly leads to terms of the form

φ̇aφ̇bX00
ab . (5.67)
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This manifestly gives all Stückelberg fields φa a kinetic term (owing to Lorentz

invariance), clearly generating a BD ghost. Contrarily, the wedge/GKD structure

can guarantee diffeomorphism invariance and the rough draft of the structure of

ghost freedom.

With a bit of effort, one can derive the most generic action that follows the

above criterion. It takes on the form

S = M3

∫
εabcR[ω]abec

+
[
(c1DΘa

+H
a
− + c.c.) + c2Dea+ea− + c3DΘa

+Θa
−
]

+εabc
(
c4Θa

+Θb
−e

c + (c5Θa
+H

b
−e

c + c.c.)
)

+εabc
(
m2Ha

+H
b
−e

c + Λ eaebec
)
, (5.68)

with a usual cosmological constant Λ.

It will be useful to use another set of field redefinitions away from this form.

First, one can note that the kinetic terms can be put into the form

Lkin =
(
c1DΘa

+H
a
− + c.c.

)
+ c2Dea+ea− + c3DΘa

+Θa
−

= c2D
(
Θa

+ − C(+)Ha
+

) (
Θa
− − C(−),∗Ha

−
)

+ c.c. , (5.69)

such that

C(±) =
c1

c2

(
−1±

√
1− c2c3

|c1|2

)
, (5.70)

and then performing the field redefinition

Θa
+ − C(+)Ha

+ → Θa
+

Θa
+ − C(−)Ha

+ → Ea
+ . (5.71)

Using the condition that Θ− = Θ∗+, one is then allowed to set c2 = c3 = 0. Note

that this field redefinition cannot be inverted when |c1|2 = c2c3; however, for this

specific choice of parameters, the action is a perfect square and so after a field

redefinition the action becomes L ∼ DE+E−. Then Θ± drops out of the kinetic

term completely, and this will not linearise to Federbush. I will return to the issue

of the correct linearisation properties momentarily.

This will change the factors in front of c4, c5,m
2, λ, so I rescale these parameters

to compensate for this. Finally, I am able to rescale the fields to absorb c1 and c4,
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leaving the action

S = M3

∫
εabcR[ω]abec +

(
DΘa

+H
a
− + cc

)
+εabc

(
Θa

+Θb
−e

c +
(
c5Θa

+H
b
−e

c + c.c.
))

+εabc
(
m2Ha

+H
b
−e

c + λeaebec
)
. (5.72)

5.5.3 Reproducing Federbush

Although this is the most generic non-linear action with the desired properties

(modulo the PDF’s of the theory, which can only be determined after performing

the Hamiltonian analysis), there is one implicit assumption I alluded to above: One

needs to reproduce Federbush in the M3 →∞ limit. A quick check of this leads one

to the condition that c5 = 0. This can be seen via

ea =

(
δaµ +

1

2
√
M3

haµ

)
dxµ = Ia +

1

2
√
M3

ha ,

ωabµ =
1√
M3

Θab
µ ,

Ha
± =

1

2
√
M3

ha± ,

Θa
± =

1√
M3

Θa
± . (5.73)

Neglecting the neutral, massless spin-2 sector, one has for the charged modes

S =

∫ (
dΘa

+ ∧ ha− + c.c.
)

+εabcΘ
a
+∧Θb

−∧Ic+
(
c5εabch

a
+ ∧Θb

− ∧ Ic + c.c.
)
, (5.74)

where I have restored wedge products to avoid confusion and compare more easily

with linearised Einstein-Cartan. Upon integrating out the spin-connection Θ± one

finds the equation of motion

Θa
+,µ = εabc∂bh

c
+,µ + c5h

a
+,µ , (5.75)

which upon being plugged back into the action generates the usual, second-order

acton plus a spurious term

S = SComplex FP + c5

∫
d3xεµνρ∂µh

a
+,νh

a
−,ρ . (5.76)

Therefore, I take c5 = 0.
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5.5.4 Deconstruction-Motivation is the Unique Ansatz

Collecting these results, I derive the final form of the action to be

S = M3

∫
εabcR[ω]abec +

(
DΘa

+H
a
− + cc

)
+εabc

(
Θa

+Θb
−e

c +m2Ha
+H

b
−e

c + λeaebec
)
. (5.77)

If one relabels the variables so that Ha
± → ẽa±1 and Θa

± → εabcω̃
bc
±1, then one can see

that this is the unique ansatz is the deconstruction-motivated ansatz. Therefore,

if one wants the properties listed in this section, one is uniquely led to this action!

The lingering question is whether or not this action is free of ghosts; I now show

this action contains spurious degrees of freedom.

5.6 Hamiltonian Analysis of the Ansatz

One could proceed with a Hamiltonian analysis á la ADM [81], however in

practice this method will be quite cumbersome. Instead, I will make use of a new

analysis in first-order formalism and represents an original formalism for this kind

of Hamiltonian analysis.

This analysis will be predicated upon a few crucial details. First, I will incorpo-

rate all of the Stückelberg fields for the Lorentz and diffeomorphism invariance for

the vector mode. Second, this will be done in first-order form where the momenta

can easily be identified (at least in 3 −D). The advantage here is that aside from

the would-be second-class constraints that remove the BD ghost, all constraints are

first-class. Third, in the second-order form, one checks for the existence of a BD

ghost based on whether or not the Hessian is invertible

Hab = δ2S/δφ̇aδφ̇b , (5.78)

cf. to [44, 158]. Typically, this is a very difficult condition to check. However, one can

observe that there is an equivalent simpler condition. If and only if the theory has no

Boulware-Deser ghost, then the Boulware-Deser ghost mode must not be found in

the quadratic Lagrangian expanded about an arbitrary off-shell background. (This

works for the usual reason, namely that the absence of the BD ghost is always related

to whether or not the Stückelberg kinetic structures generated from mass terms fail

to exist for φ0 which can be seen at quadratic order so long as one considers all
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possible backgrounds.) By only concerning oneself with the quadratic action greatly

simplifies the action, but also the manner in which the Stückelberg modes enter into

the Lagrangian and the existence of spurious kinetic terms.4

5.6.1 Hamiltonian Setup

One begins by expanding the action to quadratic order. I use the variables

eaµ = ēaµ + haµ

ωabµ = ω̄ab + Θab
µ

Ha
±,µ = H̄a

±,µ + va±,µ

Θa
±,µ = Θ̄a

±,µ + µa±,µ . (5.79)

To reiterate, the backgrounds fields are off-shell, and as such there is no condi-

tion forcing them to obey any equations of motion. Next, one can introduce the

Stückelberg fields at the level of the perturbations,

va± → va± + D̄φa±
µa± → µa± + D̄λa± , (5.80)

choosing D̄φa = dφa + ω̄abφb for the background covariant derivative. Note that

the background diagonalised diffeomorphisms and local Lorentz symmetry are still

realised in the usual manner.

Generic kinetic terms for arbitrary fluctuations, χa and ψb and a background

field Φ̄a
µ, must have the form∫

εabc D̄χaD̄ψbΦ̄c =

∫
εabc

(
−χaD̄2ψbΦ̄c + χaD̄ψbD̄Φ̄c

)
=

∫
εabc

(
−χaψdR̄bdΦ̄c + χaD̄ψbD̄Φ̄c

)
. (5.81)

Crucially, one can make use of the formula D̄2ψ ∼ R̄ψ from the form structures

in the theory, and the Bianchi identity D̄R̄ = 0. Another novel feature, again to

demonstrate the upshot of forcing the action to have p-form notation, is that one can

easily check that at quadratic-order the zero components ha0dt,Θab
0 dt, va±,0dt, µa±,0dt

4I will not review these here, but for the purposes of comparison: A straightforward analysis
to cubic order also confirms the results given by our analysis. Likewise, this original analysis also
reproduces the ghost-freedom of 3-D dRGT and bigravity in this streamlined method, providing
explicit examples demonstrating that this method works precisely as advertised.
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are all Lagrange multipliers because of the antisymmetry.

Degrees of freedom for healthy spin-2 fields in three-dimensions

In order to determine if the BD ghost persists, one must check the size of the

physical phase space. Recall that my nomenclature is that the number DOF’s is

defined as (half of) the dimensionality of the phase space, whereas the number of

PDF’s is defined as (half of) the dimensionality of the constraint-reduced phase

space (i.e. PDF’s = DOF’s − number of second-class constraints −2× number of

first-class constraints). The DOF’s are just an artefact of the choice of variables, but

the PDF’s are a physical, meaningful observable. Peeling off the component basis

of the form, e.g. ei
adxi → ei

a, one can decompose the phase space DOF’s into

•
(
ei
a, ωi

ab
)
: 6 components× 2 = 12 fields.

• {Ha
±,i, Θa

±,i}: 6 components× 2× 2 = 24 fields.

• {φa±, λa±}: 3 components× 2 × 2 = 12 fields.

By construction, one also has several first-class constraints

• 3 diagonal diffeomorphism symmetries (with Lagrange multipliers ea0).

• 2×3 Stückelberg diffeomorphism symmetries (with Lagrange multipliers Ha
±,0).

• 3 local Lorentz symmetries (with Lagrange multipliers ωab0 ).

• 2× 3 Stückelberg local Lorentz symmetries (with Lagrange multipliers Θa
±,0).

Therefore if one reduces the phase space using these constraints (or gauge-fixing the

first-class constraints), one obtains an intermediary number of phase space DOF’s:

(12 + 24 + 12) dynamicalvariables

−2× 18 first− classconstraints

= 2× (2 + 2) + 2× (1 + 1) DOF′s . (5.82)

If there are no further constraints, this the physical phase space, so 2× the number of

PDF’s. Notice, however, that if there are further PDF’s, then the BD ghost survived.

It is useful to split this down into the further Poincaré sup-representations. In 3-D, a

massless spin-2 field has 0 PDF’s, while a charged massive spin-2 field has 2×2 = 4.

Thus one should expect that these 4 PDF’s (i.e. 8 phase space dimensions). The

residual +2× (1 + 1) away from this number represent the potential BD ghosts.
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If the theory has further constraints, this will uniquely kill the BD ghosts,

but if there are no further constraints, this theory will possess ghostly modes. Al-

ternatively, the absence of the constraints can been seen by the quadratic action

fluctuating a full 2× (2 + 2) + 2× (1 + 1) set of modes on an arbitrary background.

5.6.2 Reappearance of the Boulware-Deser Mode

There is little effort needed to see that 2×(2+2)+2×(1+1) modes are present

in this theory. I will take a fixed gravitational background field ēa, and assume a

trivial background for the charged modes ha± = Θa
± = 0, but it is assumed that the

gravitational background follows the torsion-free condition D̄ē = 0.

Expanding (5.77) around this off-shell background, and introducing the Stückelberg

fields as (5.80), one obtains

S =

∫
D̄µa+

[
va− − εabcλb−ēc

]
+ D̄φa+

[
R̄abλb− +m2εabcv

b
−ē

c
]

+ c.c.

+UN.D.

(
va−, µ

b
+, φ

c, λd−, e
a
)
, (5.83)

where UN.D. are potential terms without any derivatives in the fluctuations.

In passing to the Hamiltonian analysis, one needs to extricate the terms with

time derivatives on the fluctuation fields. Zooming in onto terms with only time

derivatives, one finds that the momenta can be straightforwardly defined (again,

another great advantage of working in first-order formalism),

S ⊃
∫

d3x µ̇+,a
i P−,ai + φ̇+,aπ−,a + c.c. (5.84)

where I have denoted

P−,ai = εijv
−,a
i − εabcλ−,be0,c

j

π−,a = εabcεijλ−,bRc
ij +m2εabcεijv

−,b
i e0,c

j . (5.85)

Curiously, but perhaps not surprisingly since the theory is in first-order form5

Now, the analysis proceeds by seeing if there is a linear combination of the

conjugate momenta which drop out. To reiterate, if a combination of the conjugate

5When using the Hamiltonian for ordinary gravity in first-order, the Lorentz spin-connection
(the generator of local Lorentz boosts) plays the role of the conjugate momenta to the vielbien,
cf. [106, 107], which is the broken generator of diffeormopshisms/local translations [159]. There-
fore, it is not entirely surprising the the Lorentz Stückelberg is the momenta conjugate to the
diffeomorphism Stückelberg fields.



5.7. Obstructions to Self-Interacting Charged Spin-2 from Group Theory 97

momenta drop out, then there is a second-class constraint. This will generate a

secondary partner via the Dirac procedure [82, 84], yielding the desired pair of

second-class constraints. If there is no such combination, then the BD ghost is not

vanquished within this theory, and so the theory propagates a spurious PDF.

The first step is to solve for π−,a in terms of the field P−,a. A simple substitution

yields

π−,a = εabcεij

[(
R̄b
ij +m2εbpqēpi ē

q
j

)
λ−,c +m2P−,bi ēcj

]
. (5.86)

First, a sanity check. Since I am working to quadratic order and shuffling the

interactions into an off-shell background, I ought to be able to see that when I set

the background to Minkowski my argument results in ghost-free Federbush. Indeed,

this is the case. In general, following the above formula, if the term proportional

to λ−,c drops out, then π is just proportional to another conjugate momentum and

so the momenta are not independent. This is another way of saying that a linear

combination of momenta are zero, and thus the Dirac analysis argument is triggered

and the pair of second-class constraints is generated.

When expanding off of Minkowski, i.e. R̄ = 0 and ēai = δai , it is easy to see

that the generalised coordinate λ− drops out of the formula for π− and thus the

action (which is the Federbush theory written in different variables) is ghost-free,

as expected. Unfortunately, it is just as easy to see that for any deviation away

from those choices, the generalised coordinate λ− does not drop out of the formula,

and there is no linear combination of conjugate momenta that are trivial.

Thus, the Dirac analysis is not triggered, and a spurious PDF exists inside of the

theory. It is amusing to note how this is essentially the same argument that is found

in the Buchdahl condition [160, 161], the only difference is that it applies to the

Stückelberg modes found inside of a massive theory.

5.7 Obstructions to Self-Interacting Charged Spin-

2 from Group Theory

Given the difficulties in developing a theory of self-interacting massive charged

spin-2 fields, one might wonder if there are related fundamental obstructions to the

existence of these fields. A clear issue might be the impossibility of finding fields

which transform in the prescribed manner actually cannot exist at the the level of

groups.
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5.7.1 Non-Existence of Specific [ISO(1, d)× ISO(1, d)] o U(1)

For self-interacting spin-2 fields, there are two broken copies of ISO(1, d) sym-

metries; comparing to the previous sections, when the gravitational background is

frozen.

For there to be charged spin-2 modes, then they have a specific variant of

ISO(1, d) × ISO(1, d) that is non-linearly realized, but still present. Specifically, in

order to have the interpretation of being charged spin-2 fields, one must have the

basic commutation relations

[P a
i , P

b
j ] = 0

[Q, P a
i ] = εijP

a
j

[Q, Mab
i ] = εijM

ab
j . (5.87)

in addition for each local Lorentz algebra [P a
i , M

ab
i ] to be associated to each graviton,

e.g. δMcd
i

(λcd)eaj = λa be
a
i , for i = j. Note that I have chosen to use U(1) ∼= SO(2),

so i, j label the indices of 2-D real vectors of the charge multiplet, not the spatial

components of spacetime. For concreteness, the specific group action is given by the

usual U(1) rotations

δU(1)(Θ)Ea = ΘεijE
a
j =⇒ [Q, P a

i ] = εijP
a
j . (5.88)

Obviously then, [Q,P a
i ] 6= 0, so one must have an algebra from

G = U(1) o [ISO(1, d)× ISO(1, d)] , (5.89)

where there is definitive non-commutation from (5.87).

The most natural question now is whether or not this is even consistent as a

group. The unfixed commutation relations are given by

[P a
i , M

bc
j ] = ? (5.90)

[Mab
i , M

cd
j ] = ? (5.91)

when i 6= j.

Firstly, we wish for i = j to form the usual Poincaré algebra. Unfortunately,

this theory seems to lack the requisite structure to finish off the algebra non-trivially,

since a self-consistent algebra would need something analogous to an f ijk structure,

which cannot be furnished non-trivially for an abelian U(1) theory. Thus the only
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consistent choice is to set these to zero

[P a
i , M

bc
j ] = 0

[Mab
i , M

cd
j ] = 0 , (5.92)

when i 6= j.

5.7.2 Checking the Jacobi identity

This leads directly to an inconsistency. Taking these generators {Q,Mab
1 ,M

ab
2 , P

c
1 , P

c
2}

and the given commutation relations

[Q, Q] = 0

[P a
1 , P

b
1 ] = [P a

1 , P
b
2 ] = 0 (Same for 1 ↔ 2)

[Mab
1 , P

c
2 ] = [Mab

1 , M
cd
2 ] = 0 (Same for 1 ↔ 2)

[Mab
1 , P

c
1 ] = ηbcP a

1 − ηacP b
1 (Same for 2)

[Mab
1 , M

cd
1 ] = ηacM bd

1 + ηbdMac
1 − ηadM bc

1 − ηbcMad
1 . (Same for 2) . (5.93)

From this, one can easily see that the Jacobi identity cannot be upheld[
Q, [M1,M2]

]
+
[
M1, [M2, Q]

]
+
[
M2, [Q,M1]

]
=
[
Q, 0

]
+
[
M1,M1

]
+
[
M2,M2

]
= ηac

(
M bd

1 +M bd
2

)
+ ηbd (Mac

1 +Mac
1 )− ηad

(
M bc

1 −M bc
2

)
− ηbc

(
Mad

1 +Mad
2

)
6= 0 , (5.94)

therefore this cannot close under a Lie algebra structure, and thus one cannot ex-

ponentiate this structure to a consistent Lie group.

5.8 Comments about No-Go Theorem on Charged

Spin-2 Fields

I have explored the case of charged spin-2 fields, due to the possible applica-

tions for dRGT theory in particle physics and condensed matter theory. Within the

context of the Dimensional Deconstruction procedure, there is a natural method of

obtaining a self-interacting theory of a charged spin-2 with both electromagnetic
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and gravitational backgrounds, namely that of 3-site Deconstruction where the vec-

tor modes are unfrozen (“charged deconstruction”). It is easy to show that this

action fails to generate a complete U(1) due to a set of interactions that are only

U(1) invariant when the number of sites is infinite; however, one can systematically

subtract off of these guilty interactions. From there, I write down and analyse all

possible generalisations of this structure, given a natural set of requirements, to

include new types of interactions. I demonstrated that when one writes down the

most general interactions, one is invariably lead back to the very same action gener-

ated by charged deconstruction with the U(1)-violating interactions projected out.

I then demonstrated, using a simple novel new method for checking the existence of

ghosts, the existence of a spurious PDF in this charged spin-2 theory. It is worth

reiterating that this must be interpreted as a ghostly mode appearing at a energy

scale higher than Λ3, thus it is possible for one to include new UV corrections or

PDF’s at a scale around or above Λ3.

It is worth noting that this no-go theorem is complementary to Boulanger, et

al, [162] where it was shown that one is forbidden from having spin-2 fields that are

charged under nonabelian gauge groups, although they used very different methods

to derive their theorem.

The techniques and arguments developed in this chapter also helped set up

developments into two other important questions for massive spin-2 fields, thus it

has greatly deepened and expanded theorems regarding massive spin-2 fields. Firstly,

the techniques and concepts were expanded to deal with the case of gravity-matter

couplings, supplementing earlier work [154–156]. This is a natural and important

question in multi-gravity theories, since multiple metrics make matter couplings

inherently ambiguous. For instance the techniques developed in this work have

contributed to the ideas laid out in [163] and their applications for cosmology [164].

It was shown in [163] that the vielbein formulation cannot provide new ways to

couple massive spin-2 fields to matter, and lead to the argument that one must pick

a single site for a matter field to couple to.

Secondly, the techniques and the analyses of the chapter directly lead to the

advancements showing that there cannot be any new kinetic terms for dRGT mass

terms [165]. For instance, the complete uniqueness of the Einstein-Hilbert term even

within the context of massive spin-2 fields was proven in [80] by my collaborator

Matas. This result is particularly powerful since it explicitly links the dRGT ghost-

free mass terms to Einstein-Hilbert kinetic terms for spin-2 fields, and the proof

made extensive use of the techniques developed here for determining ghost-freedom

of massive spin-2 theories.
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Finally, this work will also be directly relevant to the following section, which

deals with attempts to make dRGT more symmetric in a different fashion (i.e.

enhancing the spacetime symmetry to supersymmetry, rather than incorporating

internal symmetries). This is no-go theorem of particular importance in the context

of supersymmetry; any no-go theorem on charged spin-2 fields immediately leads

to a no-go theorem on BPS short supermultiplets, which necessitate massive spin-2

fields charged under a U(1)BPS symmetry.



Chapter 6

Deconstructing Supermultiplets

The outline of this chapter goes as follows:

(1.) I will discuss some motivations for studying supersymmetric (SUSY) theories

of massive spin-2 fields. I will overview both the notion that SUSY theories

have radically simplified quantum properties, which is appealing for potential

future analyses of dRGT massive gravity, and the notion that SUSY theories

are interesting in their own right for trying to understanding what types of

SUSY QFT’s are consistent.

(2.) Once one sets their sights on a supersymmetric theory containing massive spin-

2 fields, one is then tasked with generating these theories. In general, it is very

hard to find supersymmetric theories. To this end, I will derive a procedure

for generating 4-D massive gauge theories from 5-D gauge theories, extend-

ing the Dimensional Deconstruction program from Chapter 4 to successfully

incorporate supersymmetry. This is the first step in being able to system-

atically generating massive supersymmetric gauge theories with interactions;

however, for the purposes of this chapter, I will be content with working out

the procedure for free theories.

(3.) This will lead me to explore some 5-D N = 2 massless theories1, specifically

N = 2 super-Maxwell and linearised N = 2 supergravity. I will create a

procedure that allows me to deconstruct these theories into 4-D massiveN = 1

SUSY theories, where deconstruction breaks half of the supersymmetry. Thus,

I fill in a gap in the literature where it has been speculated that there is a

relationship between the 5-D massless and 4-D massive SUSY theories, e.g.

1The minimal amount of SUSY in 5-D is N = 2, owing to the Dirac fermions being the only
kind of representation available for the supercharges.

102
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[166, 167], by explicating the exact relationship and how the 4-D massive

theories can be derived directly from the 5-D massless theories.

As for (1.), it was discussed in Chapter 2 that massive gravity remains far from

understood at the quantum level. Even a very simplified version of massive gravity,

which cleanly illustrated consistency of a quantum massive spin-2 field, would be

a major victory towards understanding and developing a fully consistent picture of

massive gravity. Well beneath Λ3, the theory appears to be largely understood, but

the story surrounding reliable predictions around or above Λ3 is considerably less

clear (See [55] for a discussion on these issues). Therefore, it seems timely to develop

modifications of massive gravity that might make analyses of the UV quantum

physics more tractable. One will naturally be led to the study of supersymmetric

theories.

On the other hand, one may be quite interested in SUSY in its own right.

Supersymmetric field theories and supersymmetric gravitational theory (supergrav-

ity/SUGRA) have attracted much attention over the past four decades do to their

alluring role in UV completions of gravity and gauge theories (See for instance

[131, 168, 169]); therefore, for those interested in what types of supersymmetric

theories are possible, it is intrinsically interesting if there is a supergravity theory

with non-zero graviton mass. The earliest attempts at this are [129, 130], some of

which were attempting to resolve unitarity issues in massive gravity (the BD ghost)

via supersymmetry.

Points (2.) and (3.) will be taken up starting in section 6.3 of this chapter. I

will continue discussion of these points there.

6.1 Review of Supersymmetry

Supersymmetry was originally developed in [170] for 4-D, and the first super-

gravity theory was developed in [171]. Stated simply, supersymmetry is an extension

to the usual Poincaré spacetime symmetries, namely by adding in a fermionic charge

(a Grassmann-valued spinor), Q. Traditionally, this is called a supercharge; these

theories no longer obeys commutation relations from a Lie algebra, but now obey

super-commutation relations of a super-Lie algebra [131, 168]. In terms of field con-

tent, the simplest SUSY theories have a single supercharge with the following new
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super-commutation relations

{Q, Q̄} = 2iγµPµ , (6.1)

[Q, P ] = 0 , (6.2)

[Q, Mµν ] = −1

4
γµνQ . (6.3)

In other words, anti-commutators of supercharges result in translations, super-

charges commute with translations, and supercharges transform as fermions under

boosts. There is also another charge that (chirally) rotates the supercharge, called

the R charge, obeying

[Q, R] = iγ5Q . (6.4)

As one can see, R follows an axial U(1) structure, which amounts to chiral rotations

in the supercharge’s spinor basis.

This may seem bizarre, since the Coleman-Mandula theorem [172] demon-

strated that there are no further charges beyond internal symmetry algebras and

the Poincaré algebra (or conformal algebra) that allow for interacting QFT’s. This

super-algebra is clearly an extension of the Poincaré algebra, but the crucial loop-

hole is that the charge is fermionic. Shortly after the discovery of SUSY, it was

found that there is an overarching theorem proving that the only extension to

Poincaré representations are the super-Poincaré algebra (or superconformal alge-

bra) with the R-symmetry algebra and internal symmetry algebras [173], called the

Haag-Lopuszański-Sohnius theorem. Any other QFT containing fields with repre-

sentations from larger symmetry group cannot interact with a consistent, non-trivial

S-matrix.2 Therefore, supersymmetry is literally the “most symmetric” type of in-

teracting theory allowed within the whole framework of QFT. Since non-anomalous

quantum corrections must respect the underlying symmetries of the theory, it should

come as no surprise that SUSY greatly simplifies the underlying quantum version

of these theories.

The spectrum of supersymmetric theories is set by the representations of the

super-Poincaré algebra, some useful reviews go over these in more detail [131, 167,

168, 175]. Since the Poincaré algebra is a subgroup, they fall into collections of

Poincaré reps, as one expects; however, unlike reps/multiplets coming from an in-

ternal symmetry algebra, supermultiplets necessarily contain collections of fields

2Outside of theories with an infinite tower of spins, e.g. [174] or string theory [29, 30]; I will
not discuss these theories here. Also, since this only applies to representations, it follows that
non-linearly realised symmetries have no restrictions from this theorem.
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with mixed spin. In other words, representations of the super-Poincaré algebra

contain fermions and bosons. The number of spins depends on the amount of su-

percharges and whether or not the supermultiplets have a mass. Much like Poincaré

reps, supermultiplets are bifurcated into massive and massless reps, and there are

non-trivial differences between massive and massless supermultiplets.

ForN = 1 SUSY, a massless multiplet contains only a single Grassmann-valued

operator that raises the spin of the base state, whereas a massive multiplet contains

two Grassmann-valued operators that raise and fill out twice as many states (see

[168] for details). The simpler argument comes from PDF’s; it can be shown that for

supermultiplets, bosons and fermions must have the same number of PDF’s [168].

Therefore, supposing one starts off with a spin-1
2

fermion, one needs to give it a

spin-1 partner. Explicitly, if they are massless, a spin-1 mode has 2 PDF’s, so it can

partner with a single Majorana fermion with 2 PDF’s. Thus only one other field (the

spin-1 mode) is needed to fill out the supermultiplet. If they all have a mass, then

the spin-1 mode has 3 PDF’s, while the massive spin-1
2

Majorana fermion only has

2 PDF’s. The correct way to fill out the multiplet will be adding a single massive

scalar and another Majorana fermion. Then the supermultiplet will be balanced

by 2 + 2 fermion PDF’s = 3 + 1 boson PDF’s. The new states come from a new

Grassmann-valued operator that acts on the base state (the super-spin state) to

decrease the helicity by 1
2
. With some effort, it can be seen that the “superspin”

state enters with (+1) and (−1) R-charge, respectively (For a review of massive

supermultiplets, see [167, 168]).

In other words, a massless N = 1 supermultiplet with superhelicity-Y falls into

a collection of fields of spin (
Y + 1

2

Y

)
, (6.5)

whereas massive N = 1 supermultiplets with superspin-Y fall into a collection of

fields of spin  Y + 1
2

Y Ŷ

Y − 1
2

 , (6.6)

where the Y field has spin-Y with R-charge +1 and the Ŷ field has spin-Y but

R-charge −1.
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6.1.1 Massless N = 1 Supermultiplets

Here I will take the simplest case of a massless spin-2 supermultiplet, with a

superpartner spin-3
2
. So, this gives a theory of a free massless spin-2 field hµν (the

“graviton” field) and a massless Majorana spin-3
2

field ψµ (the “gravitino” field). The

action follows the obvious choice of the linearised Einstein-Hilbert action combined

with the Rarita-Schwinger action, i.e.

S[h, ψ] =

∫
d4x

[
−1

2
hµ

αδµνραβγ∂ν∂
βhρ

γ − i

2
ψ̄µγ

µνρ ∂νψρ

]
. (6.7)

This action has two types of gauge symmetries related to the massless gauge fields.

The graviton obeys the obvious linearised diffeomorphisms, but the gravitino has a

fermionic gauge symmetry,

δψµ = ∂µη (6.8)

where η is a Majorana fermionic gauge parameter. It is easy to check that the

action is invariant under this symmetry, owing to integration by parts and the anti-

symmetry of γµνρ.

It also has global symmetries. The first kind are the usual Poincaré symme-

tries. The second kind of transformation that it is invariant under are the N = 1

supersymmetry transformations

δhµν = iε̄γ(µψν) ,

δψµ = γαβ∂αhβµε . (6.9)

One can prove with some effort that these form a supersymmetry algebra,

[δ1, δ2]hµν = (2iε̄2γ
αε1) ∂αhµν + δGaugehµν

[δ1, δ2]ψµ = (2iε̄2γ
αε1) ∂αψµ + δGaugeψµ + (E.O.M.) (6.10)

where the first piece is the momentum shift induced by {Q, Q} ∼ γµPµ, the second

term are the δGauge, coming from are the linearised diffeomorphism and supergauge

transformations

ξα = 2iε̄2γ
αε1 (6.11)

δGhµν = ∂(µ

[
−ξαhν)α

]
(6.12)

δGψµ = ∂µ[−ξαψα] , (6.13)
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with the (E.O.M.) term finally being a zilch symmetry (see [159]), so this closes on

the SUSY algebra (plus local symmetries) and keeps the action invariant.

6.1.2 Massless N = 2 Supermultiplets

I will use information aboutN = 2 massless supermultiplets, so I briefly discuss

them here. For N = 2 theories the superalgebra is extended over two supercharges,

with the non-trivial commutation relations given by

{Qi, Q̄j} = 2iδijγµPµ , (6.14)

[Qi, Pµ] = 0 , (6.15)

[Qi, Mµν ] = −1

4
γµνQ

i , (6.16)

[Qi, R] = iγ5Q
i , (6.17)

[Qi, Rj
k] = iδjkQ

k , (6.18)

where the two supercharges work as usual, but now the R-symmetry is enhanced to

U(2)R = SU(2)R × U(1)R; the U(1)R chirally rotates charges and is carried by R,

and SU(2) does non-chiral, complex rotations of supercharges and is carried by Rj
k

in my notation.

Unsurprisingly, the introduction of new supercharges introduces new fields of

differing spin, and thus enhances the size of the supermultiplet. For instance, the

N = 2 supergravity multiplet is spanned by a massless spin-2, two massless Majo-

rana spin-3
2
, and a massless spin-1, i.e. hµν

ψµ
1 ψµ

2

Bµ

 , (6.19)

where hµν is the graviton field, ψµ
i (for i = 1, 2) are the gravitini fields, and a real,

non-axial Bµ, which I will call the graviphoton. Here one can easily see that the

i indices act as the vector representation of the remaining R-symmetry after the

Majorana condition is applied (i.e. only manifesting the real so(2)R subalgebra of

su(2)R). At linear level, it is given by an action of the form

S[h, ψ,B] =

∫
d4x

[
−1

2
hµ

αδµνραβγ∂ν∂
βhρ

γ − i

2
ψ̄µ

iγµνρ ∂νψρ
i − 1

4
GµνG

µν

]
,

(6.20)
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with the usual Gµν = 2∂[µBν] = ∂µBν − ∂νBµ and Einstein summation convention

with the R-symmetry indices.

This action possesses all of the obvious symmetries, including the full gauge

symmetries and the Poincaré symmetry. For the gravitini, they have an obvious

doubled supergauge symmetry

δψµ
i = ∂µη

i , (6.21)

where ηi, i = 1, 2 are a pair of Majorana fermions that act as gauge parameters.

In addition, this action is invariant under a more intricate set of N = 2 SUSY

transformations

δhµν = iε̄iγ(µψν)
i

δψµ
i = γαβ∂αhβµε

i +
i

4
√

6
γαβγµGαβ ε

ijεj

δBµ =
1√
2
εijεiψ̄µ

j (6.22)

where εi for i = 1, 2 are the two supersymmetry group parameters, which by con-

struction are two Majorana fermions. Note that when this theory is promoted to

having interactions, the two supersymmetries and the two supergauge transforma-

tions fuse into an N = 2 local supersymmetry of an N = 2 supergravity theory.

6.1.3 Massive N = 1 Supermultiplets

Finally, I discuss massiveN = 1 supermultiplets containing a Fierz-Pauli mode.

Owing to the previous discussion, one can check that this contains the same field

content, roughly, of the N = 2 supermultiplet. It has one massive spin-2 field, two

massive Majorana spin-3
2

fields, and a massive spin-1 field, hµν

ψµ
1 ψµ

2

Aµ

 , (6.23)

where hµν is the graviton field, ψµ
i (for i = 1, 2) are the gravitini fields, and Aµ is

an as-of-yet undetermined massive spin-1 mode. Again, this gives the PDF counting

of 4 + 4 = 3 + 5, where massive Majorana fermions have 4 PDF’s. The only other

thing one can prove is that each gravitino has the opposite R-charge assignment.
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Thus, the U(1)R symmetry transformation can be re-written as(
ψµ

1

ψµ
2

)
→

(
eiθγ5 ψµ

1

e−iθγ5 ψµ
2

)
, (6.24)

=⇒ ψµ
i →

(
eiθγ5η

)i
j ψµ

j (6.25)

=⇒ δψµ
i = θ iγ5 η

ij ψµ
j (6.26)

=⇒ δψ̄µ
i = −θ ψ̄µ jηji iγ5 , (6.27)

where I am denoting the 2× 2 matrix diag(1,−1) as ηij.

It is worth noting already at this level that there are a great many choices

that are now unconstrained. First, in principle, the parity of Aµ is totally unfixed;

secondly, there are several choices of fermion masses one could take (Majorana,

Dirac, mixed). Therefore, it is not immediately obvious what Lagrangian needs to

be written down for the linear theory.

6.1.4 Towards Massive N = 1, Y = 3
2 Supermultiplets

I will now argue that the consistent Lagrangian should be equivalent to one

already known to the literature, namely the N = 1 Zinoviev theory [166]. I will now

review the arguments that would lead one to choose the N = 1 Zinoviev theory.

One ideally wants to specify the aforementioned ambiguities through the superalgebra-

motivated arguments. Specifically, one wishes to

(1.) Deduce the parity of Aµ.

(2.) Fix the fermion’s mass terms (i.e. pick either Majorana, Dirac, or mixed).

One can see that (1.) can be cleared up with a clever use of the Stückelberg

formalism + decoupling limit argument. If the IR is supersymmetric, then the

decoupling limit (high momentum, UV theory) must be supersymmetric, too. In

order to consistently flow to the UV, one needs to add in Stückelberg fields. If one

applies the Stückelberg formalism and take p� m, then the massive graviton splits

into hµν , Bµ, π (helicity-2, helicity-1, and helicity-0 modes), the massive gravitini

split into ψµ
i, ξi (helicity-3

2
and helicity-1

2
modes), and the massive spin-1 mode

turns into Aµ, ϕ (helicity-1 and helicity-0 modes). Naturally then, a portion of

this system (in the decoupling limit) will need to form a massless Wess-Zumino

supermultiplet, thus the two scalars and one of the fermions (e.g. some linear
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combination χ ∼ aχ1 + bχ2) will link up to form an N = 1 supermultiplet(
χ

π, ϕ

)
. (6.28)

As is well-known, this only works if one of the two scalar modes is parity-odd! This

imposes a non-trivial constraint, since this scalar must either appear as a Stückelberg

mode for the massive spin-2 or the massive spin-1 field. Since the Stückelberg shares

the parity assignment of its progenitor, one is forced to pick the massive spin-1 mode

to be parity-odd (PT : Aµ → Aµ), thus ensuring that its Stückelberg mode is parity-

odd (PT : ϕ→ −ϕ). This is because the graviton would have to have an unphysical

PT transformation, i.e. PT : hµν → −hµν in order for π → −π. Therefore Aµ is

an axial vector.

Returning to (2.), one must figure out how to pick the correct mass term for

the gravitini. I will start with describing the two types of mass terms that a pair of

Majorana fermions are allowed to have. Temporarily, I will return to unitary gauge

so there are no Stückelberg modes. Firstly, the general form of a mass term is given

by

SGravitini Mass[ψ] =

∫
d4x

1

2
mψ̄µ (Aγµν)ψν (6.29)

:=

∫
d4x

1

2
mAijψ̄µ

iγµνψν
j . (6.30)

Since Aij is a 2× 2 matrix, there is a simple Hermitian choice of basis

Aij = span
{
δij,∆ij, iεij, ηij

}
(6.31)

where I define

δij =

(
1 0

0 1

)
, iεij =

(
0 −i
i 0

)
, (6.32)

∆ij =

(
0 1

1 0

)
, ηij =

(
1 0

0 −1

)
. (6.33)

These are, of course, just a different presentation of the Pauli matrices along with

the identity matrix. It turns out that this is too many matrices. Firstly, the choice of

the mass matrix A = iε is identically zero in the action (6.29), therefore this cannot

generate a mass term. Moreover, the two matrices in (6.33) actually generate the
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same mass term. One can prove this in matrix notation via noting that

SMass[ψ] =

∫
d4x

1

2
mψ̄µ (∆γµν)ψν

SMass[φ] =

∫
d4x

1

2
mφ̄µ (ηγµν)φν (6.34)

are equivalent under the field redefinition

ψµ →
1√
2

(δ + ε)φµ

ψ̄µ → φ̄µ
1√
2

(δ − ε) , (6.35)

where the second line follows from the first by trivial matrix manipulations of ψ̄µ
i.

Therefore, one is left with only two linearly independent choices for masses. I choose

A ∈ {δ, η}. The first is a Majorana mass term (δ) and the second is a Dirac mass

term (∆).

One can finally choose between these two using the U(1)R symmetry (6.24).

Clearly, only the A = η Majorana mass terms are invariant under this symmetry.

This is easier to see in the R-charge basis, so let me re-express the mass term in

R-charge basis:

Lmass ∼
1

2
ψ̄µ∆γµνψ = ψ̄µ

1γµνψµ
2 , (6.36)

which is manifestly invariant under R-symmetry transformations given by (6.24).

Therefore, I must choose this as my mass term for the gravitini. The physical

significance of these two formulations is that one is manifestly in mass

eigenbasis (∼ ψ̄ηψ) and the other is manifestly in R-charge eigenbasis

(∼ ψ̄∆ψ). The first statement follows trivially by expanding the definition of ηij,

and the second I have just demonstrated.

Once one realises this, they are immediately led to the Zinoviev action [166]. I

will now discuss the ramifications of these choices and the properties of the N = 1

Zinoviev theory.
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6.2 The N = 1 Zinoviev Theory

The N = 1 Zinoviev theory has an action of the form

S[h, ψ,A] =

∫
d4x

[
−1

2
hµ

αδµνραβγ∂ν∂
βhρ

γ +
1

2
m2hµ

αδµναβhν
β

− i
2
ψ̄µ

iγµνρ ∂νψρ
i +

1

2
mψ̄µ

iγµν∆ijψν
j

− 1

4
FµνFµν −

1

2
m2AµA

µ

]
. (6.37)

Simply stated, this is a theory which combines the actions for a Fierz-Pauli graviton,

two Rarita-Schwinger gravitini with a Dirac mass, and a Proca photon. While this

action is a valid formulation of the N = 1 Zinoviev Lagrangian, I will promote this

to the Stückelberg formulation and reintroduce all of the gauge symmetries. To do

this I introduce the Stückelberg fields, Bµ, π, φ, and χi through the usual manual

installation of the original gauge symmetry

hµ
α → hµ

α − 1

2m
(∂µB

α + ∂αBµ) +
1

m2
∂µ∂

απ , (6.38)

ψµ
i → ψµ

i − 1

m
∂µχ

i , (6.39)

ψ̄µ
i → ψ̄µ

i − 1

m
∂µχ̄

i , (6.40)

Aµ → Aµ −
1

m
∂µϕ . (6.41)

This restores linearised diffeomorphism invariance, the U(1) invariance for the gravipho-

ton Bµ Stückelberg field, both of the supergauge symmetries of the two Rarita-

Schwinger fields, and finally the U(1) of the axial Proca photon. The terms added

to the action come, as usual, from the mass terms. Substituting the above relations

yields an action of the form

Smass =

∫
d4x

[
1

2
m2δµναβ

(
hµ

αhν
β − 2

m
∂µB

αhν
β +

2

m2
∂µ∂

απhν
β − 1

m2
∂µBν∂

αBβ
)

+
1

2
mψ̄µ

iγµν∆ijψν
j − ψ̄µ iγµν∆ij∂νχ

j

−1

2
m2AµA

µ +mAµ∂
µϕ− 1

2
∂µϕ∂

µϕ

]
. (6.42)

Following from the Stückelberg formalisms introduced in Chapter 2, the reader may

confer to this for the spin-2 and spin-1 cases. To recap, the scalar Stückelberg π

needs a diagonalising transformation in order to obtain a canonical kinetic term.
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The Rarita-Schwinger gravitini also needs a diagonalisation transformation. First,

I canonically scale the requisite fields

π →
√

2

3
π , (6.43)

Bµ →
1√
2
Bµ , (6.44)

χi →
√

2

3
χi , (6.45)

and then use the diagonalisation transformations

hµ
α → hµ

α − 1√
6
πδαµ ,

ψµ
i → ψµ

i − i√
6
γµ∆ijχj ,

ψ̄µ
i → ψ̄µ

i +
i√
6
χ̄j∆jiγµ , (6.46)

to obtain an action that has all canonically normalised fields. For simplicity, I will

expand the action into the form S = S0 + mS1 + m2S2. In this expansion, the

canonically normalised Zinoviev action in Stückelberg formalism is

S0 =

∫
d4x

[
−1

2
hµ

αδµνραβγ∂ν∂
βhρ

γ − i

2
ψ̄µ

iγµνρ ∂νψρ
i

−1

4
FµνFµν −

1

4
GµνG

µν +
i

2
χ̄iγµ∂µχ

i

−1

2
∂µπ∂

µπ − 1

2
∂µϕ∂

µϕ

]
, (6.47)

mS1 =

∫
d4x

[
−m
√

2δµναβhµ
α∂νB

β +m
√

3π∂µB
µ ,

+
1

2
mψ̄µ

iγµν∆ijψν
j + im

√
3

2
ψ̄µ

iγµχi +mχ̄i∆ijχj +mAµ∂
µϕ

]
(6.48)

m2S2 =

∫
d4x

[
−1

2
m2AµA

µ +
1

2
m2hµ

αδµναβhν
β +m2

(
π2 −

√
3

2
πhµ

µ

)]
.

(6.49)

6.2.1 Gauge Symmetries of the Zinoviev Lagrangian

The Zinoviev action in Stückelberg formalism has many symmetries. First,

I will list the Stückelberg symmetries. The graviton has four (abelian) linearised
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diffeomorphisms with bosonic vector gauge parameter ξµ,

δhµν = ∂(µξν) , δBµ = m
√

2ξµ , δπ = 0 . (6.50)

From its vector Stückelberg Bµ, the spin-2 also has a U(1) gauge symmetry with

bosonic scalar gauge parameter ξ. They are

δhµν =
m

2
ηµνξ ,

δBµ = ∂µξ ,

δπ = m

√
3

2
ξ . (6.51)

The axial Proca field Aµ has the traditional Stückelberg U(1) symmetry with bosonic

pseudo-scalar gauge parameter θ. They are

δAµ = ∂µθ , δφ = mθ .

Finally, gravitini fields have two supergauge symmetries with fermionic Majorana

group parameter ηi, given by

δψµ
i = ∂µη

i + i
m

2
γµ∆ijηj .

δχi = m

√
3

2
ηi . (6.52)
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6.2.2 The Supersymmetry Transformations

Finally, there is the crucial global N = 1 supersymmetry. With a global,

Majorana fermionic parameter ε, the SUSY variations are

δhµν = αi iε̄γ(µψν)
i ,

δψi = αi γαβ∂αhβµε−
m√

2

[
γµγ

αBα + i
√

3γ5Aµ

]
αiε

− i

4
√

2
γαβγµ

[
Gαβ −

√
3iγ5Fαβ

]
βiε+ im

[
γαhαµ + γµπ

]
βiε ,

δBµ = βi
1√
2
ε̄ψi + αi i

√
3

2
ε̄γµχ

i ,

δAµ = βi
√

3

2
ε̄γ5ψµ

i + αi
1

2
ε̄γµγ5χ

i ,

δχi = −1

4
γαβ
[√

3Gαβ + iγ5Fαβ
]
εαi

−iγα
[
∂απ + γ5∂αϕ

]
βiε+ imγα

[√
3Bα − iγ5Aα

]
βiε ,

δπ = iβiε̄χi ,

δϕ = βi iε̄γ5χ
i . (6.53)

To simplify the language, I have chosen to package the fermions consistently into

vectors of so(2), i.e. I write all of my fermions with i indices. Note, however, that

there is no so(2) symmetry (one can easily check that it is broken by the Dirac mass

term), thus in the SUSY variations, there are special directions in the so(2)R basis

that are picked out in order to preserve invariance of the mass terms

αi =

(
0

1

)
= −ηijαj ,

βi =

(
−1

0

)
= εijαj = −∆ijαj , (6.54)

which preserves the N = 1 SUSY R-symmetry transformations (6.24).

To state this differently and more directly at the level of the action, the kinetic

terms are invariant under arbitrary αi (where βi is still a shorthand for βi = −εijαj),



116 Chapter 6. Deconstructing Supermultiplets

since only the mass terms break the N = 2 structure; in fact, it was first pointed out

in [166] that long massive multiplets generically have kinetic terms that repackage

into N = 2 supermultiplets with N = 2 supersymmetry, specifically an N = 2

gravity supermultiplet and an N = 2 vector supermultiplet: hµν

ψµ
1 ψµ

2

Bµ

⊕
 Aµ

χ 1 χ 2

π, ϕ

 . (6.55)

The presence of the mass terms (and Stückelberg interactions) breaks this symmetry

down to a single copy of N = 1 SUSY.3 One can see the broken N = 2 SUSY by

noticing that portions of the SUSY variations without a factor of m in (6.53) are

N = 2 SUSY variations with εi = αiε, cf. to the N = 2 gravity supermultiplet’s

transformations (6.22). This is a useful way to interpret the αi and corresponding

βi parameters. They determine how the N = 1 SUSY for massive representations

can be embedded into broken N = 2 SUSY for massless representations.

6.3 Dimensional Deconstruction of Fermions

6.3.1 Incorporating Fermions

Knowing that there is a supersymmetric extension to Fierz-Pauli is useful, but

in principle one would like to know what a supersymmetric extension of dRGT

massive gravity might look like (if it is even possible, or if it must be a broken

phase of another SUGRA theory, etc). Unfortunately, discovering supersymmetric

theories is quite challenging, and it will therefore be quite helpful to develop a

procedure for obtaining SUSY theories from higher dimensional ones. The most

systematic way, tailored way of obtaining massive gauge theories is Dimensional

Deconstruction (henceforth “deconstruction”), see Chapter 4 for my review of this

technique. It would therefore be quite beneficial and powerful if one could generate

a method for deconstructing 5-D massless SUSY theories (of which much is known)

into 4-D massive SUSY theories (of which little is known). It has been speculated in

the literature, e.g. [166, 167], that there appears to be a relationship between 5-D

massless supermultiplets and 4-D massive supermultiplets.

3Since one knows that this is the dominant description in the decoupling limit, E � m, the UV
theory actually uplifts to an N = 2 theory. This has been christened “supersymmetry uplifting”.
I will return to this point in the discussion section of this chapter.
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The aim of this section is to extend the deconstruction prescription for bosons,

which is

Φ(x, y) → φ(x) , (6.56)

∂yΦ(x, y) → mφ(x) , (6.57)∫
dyΦ(x, y)Ψ(x, y) → φ(x)ψ(x) , (6.58)

to incorporate the case when Φ and Ψ are fermions. In other words, I will derive a

procedure to deconstruct fermions, which is the natural first step towards deriving

a deconstruction procedure for SUSY theories. In keeping with desire for clarity

and conceptual simplicity, I will only consider free SUSY theories and I will only

deconstruct over a single site. Thus I will deconstruct a theory of a single 5-D mass-

less fermion field to a single 4-D massive fermion field, and I will not be concerned

about defining cases with fermions with multiple sites. Before continuing, I will

note earlier attempts at this idea, however none of them generate Zinoviev theory

[129, 130, 176].

6.3.2 Engineering Fermion Mass

In 5-D, there are no Majorana (or Weyl) spinor representations for fermions.

The only available representation is the ordinary Dirac fermion. Since I have an

eventual interest in SUSY, I will remind the reader of an alternative description

for 5-D Dirac fermions, called symplectic-Majorana spinors (henceforth “spM”

fermion). This is a compromise between the elegance and beautiful mathematical

properties of Majorana fermions and the requirement of containing a full Dirac

representation. An spM fermion is constructed by first writing down two Dirac

fermions, indexed by i = 1, 2,

Ψ→ Ψi . (6.59)

From there, one imposes a condition on the spM fermion,

Ψ̄i =
(
Ψ̄j
)T

ΩjiC5 (6.60)

where Ψ̄i := (Ψi)†Γ0, C5 is the 5-D charge matrix and Ωij is an symplectic form (i.e.

a non-degenerate, invertible, anti-symmetric 2-tensor). For i = 1, 2, then Ωij = εij is

simply a Levi-Civita 2-tensor. This condition forces the 2 Dirac fermions to contain

only a single Dirac fermion worth of information. However, spM fermions obey
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many novel identities and useful properties that are directly analogous to their 4-D

Majorana fermion cousins. I review the exact definitions, useful identities, and the

decomposition of 5-d spM fermions in section A.2.1. For later convenience, I define

ΓM , M = 0, 1, 2, 3, 5, as

ΓM =

(
γµ

iγ5

)
, (6.61)

which obey the Clifford-algebra relation

{ΓM , ΓN} = −2ηMN . (6.62)

Taking all of this together, one can take the Dirac action for a spin-1
2

field Ψ in 5-D

and re-write it as a spM action for a spin-1
2

field Ψi, i.e.

SD[Ψ] =

∫
d5x

(
i

2
Ψ̄ ΓM∂MΨ

)
, (6.63)

⇔ SspM[Ψi] =

∫
d5x

(
i

2
Ψ̄i ΓM∂MΨi

)
, (6.64)

=

∫
d4xdy

(
i

2
Ψ̄i γµ∂µΨi +

i

2
Ψ̄i (iγ5)∂5 Ψi

)
. (6.65)

If I take this action and perform a (4+1)-split, XM = (xµ, y), one obtains

SspM[Ψi] =

∫
d4xdy

(
i

2
Ψ̄i γµ∂µΨi +

i

2
Ψ̄i (iγ5)∂y Ψi

)
. (6.66)

If I then decompose the 5-D symplectic-Majorana fermion into two 4-D Majorana

fermions, i.e. plugging (A.28) into (6.65), the action takes on the form

=

∫
d4xdy

i

2
ψ̄i γµ∂µψ

i +
1

2
εijψ̄i(∂yψ

j) . (6.67)

If one wishes to generate fermion mass terms, then one can read off that they would

need to deconstruct ∂y derivatives on fermions following the rule

∂yψ
i → m(−εij)ψj =⇒ Lmass = 1

2
mψ̄i ψi

∂yψ
i → m(ηij)ψj =⇒ Lmass = 1

2
m∆ijψ̄i ψj

∂yψ
i → m(∆ij)ψj =⇒ Lmass = 1

2
mηijψ̄i ψj

(6.68)

to get the Majorana mass, Dirac mass in R-charge eigenbasis, and Dirac mass in

mass eigenbasis, respectively. The latter two are physically equivalent as Dirac mass
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terms, but the first is the Majorana mass. This is not the typical scenario, since

now one is forced to make the derivative mix the R-symmetry/symplectic

indices. To get a handle on this peculiar feature, I will give a group-theoretic

description, analogous to the bosonic case in section 4.1.

6.3.3 Group-Theoretic Perspective

Fermions obey a dispersion relation that follows from the formula

(
iΓMPM

)
|F5−D〉 = 0 (6.69)

=⇒
(
i/∂ + ε∂5

)
|F4−D〉 = 0,

which I want to obtain the familiar bosonic Klein-Gordon relationship

(
kµkµ +m2

)
|F4−D〉 = 0 . (6.70)

In order to preserve the massive dispersion relation for fermionic states this is actu-

ally less restrictive than for bosons. Here, I can see that I may insert a matrix, M

s.t. (εM)2 = m2δ, into the deconstruction deformation procedure,

∂y|F 〉 →M |F 〉 , so that (εPy)
2 → (εM)2 = m2 ,

and I will maintain the desired dispersion relation! Thus if I have R-symmetry

indices in 5-D, I have shown that they can be deformed in the deconstruction pro-

cedure to generate the different kinds of fermion masses in 4-D. For the case of

obtaining the Dirac mass, one can see that the correct choice is

= (εη)2 = m2(∆)2 = m2δ . (6.71)

Then one sees that this leads to a Dirac mass: 1
2
ψ̄iεij∂yψ

j → 1
2
ψ̄i∆ijψj.

6.3.4 Prescription for Deconstructing Fermions

The other masses follow similar patterns as before, but since I am interested in

SUSY, I will only consider the deconstruction procedure for the Dirac mass in the

remainder of this chapter. Taken all of what I have developed above, if one wishes
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to obtain a Dirac mass, one must apply

ψi(x, y) → ψi(x) ,

∂yψ
i(x, y) → mηijψj(x) ,∫

dy ψ̄iφi → ψ̄iφi . (6.72)

Alternatively, for 5-D spM fermions, one can check that this is equivalent to

∂yΨ
i(x, y)→ m∆ijΨj(x) . (6.73)

When I apply these rules to my action for a 5-D spM fermion, I obtain a 4-D action

for two massive spin-1
2

Majorana fermions with a Dirac mass, i.e.

SspM =

∫
d4xdy

i

2
ψ̄i γµ∂µψ

i +
1

2
εijψ̄i(∂yψ

j) (6.74)

→ SM =

∫
d4x

(
i
1

2
ψ̄iγµ∂µψ

i +
1

2
m∆ijψ̄iψj

)
. (6.75)

6.4 Super-Proca Theory a lá Deconstruction

6.4.1 5-D N = 2 Super-Maxwell Theory

I now turn to the question of whether or not this deconstruction procedure is

consistent with SUSY, and whether I am actually able to derive 4-D massive SUSY

theories from 5-D SUSY theories following this prescription. A useful 5-D gauge

theory to use as a benchmark is 5-D super-Maxwell theory. 5-D super-Maxwell

theory is given by the massless superhelicity-1
2

supermultiplet,AMΨi

Φ

 . (6.76)

Which has one massless spin-1 Aµ field (photon), a massless spin-1
2

symplectic-

Majorana field Ψi (photini), and one massless spin-0 Φ (axion4). Note that in

5-D, a massless spin-1 field has 3 PDF’s, a spin-0 has 1 PDF, and a massless

4This contains no axion interactions since the theory is free; I chose this nomenclature because
this field generates the pseudoscalar field in 4-D, and is considerably more elegant than, e.g.,
“sphotino”.
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spin-1
2

Dirac/symplectic-Majorana field has 4 PDF’s; thus the counting goes 3 +

1 bosonic PDF’s = 4 fermionic PDF’s.

In my conventions, the 5-D N = 2 super-Maxwell Lagrangian has the action

S =

∫
d5x

[
−1

4
FMNF

MN + i
1

2
Ψ̄iΓM∂MΨi − 1

2
(∂Mφ)2

]
, (6.77)

with using the usual FMN = ∂MAN − ∂NAM . Beyond the obvious U(1) gauge

symmetry, δAM = ∂Mξ, this theory also obeys an N = 2 5-D SUSY symmetry. The

variations for this symmetry are

δAM = iε̄iΓMΨi ,

δΨi = −1

2
ΓABFABε

i − ΓM∂Mφε
i , (6.78)

δφ = iε̄iΨi . (6.79)

With a little effort, one can prove that they obey the 5-D SUSY algebra

[δ1, δ2]AM = ξR∂RAM + ∂Mθ ,

[δ1, δ2]Ψi = ξR∂RΨi + (E.O.M.) ,

[δ1, δ2]φ = ξR∂Rφ , (6.80)

with

ξM = 2iε̄i2ΓMεi1 (6.81)

θ = −ξMAM + 2iε̄i2 ε
i
1 . (6.82)

6.4.2 Deconstructing 5-D Super-Maxwell

The first step in the deconstruction procedure is to perform a (4 + 1)-split. For

the vector mode, I split it as

AM =

(
Aµ

π

)
, (6.83)

Φ = φ , (6.84)
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and I use the relations Ψi = P ijψj following section A.2.1. Then, one arrives at the

action

S5-D sMaxwell =

∫
d4xdy

[
−1

4
FµνF

µν − 1

2
(∂yAµ − ∂µπ)2

+i
1

2
ψ̄iγµ∂µψ

i +
1

2
εijψ̄i∂yψ

j

−1

2
(∂µφ)2 − 1

2
(∂yφ)2

]
. (6.85)

I am explicitly using the identities (A.28) in section A.2.1. I will use the definition

εi = P ijεj for the SUSY parameter, which puts (6.78) into the (4+1)-split form

δAµ = iε̄iγµψ
i ,

δψi = −1

2
γαβFαβε

i − iγα(∂yAα − ∂απ)εijεj ,

+γµγ5∂µφ ε
ijεj − iγ5∂yφε

i ,

δφ = −iεij ε̄iγ5ψ
j ,

δπ = εij ε̄iψj . (6.86)

Finally, I will apply my deconstruction prescription. Collecting previous results,

the prescription is given by

∂yAµ = mAµ ,

∂yψ
i = mηijψj ,

∂yφ = mφ . (6.87)

Together, they deform the action into

→ SN=1 Super-Proca =

∫
d4x

[
−1

4
FµνF

µν − 1

2
m2

(
Aµ − 1

m
∂µπ

)2

+i
1

2
ψ̄iγµ∂µψ

i +
1

2
m∆ijψ̄iψj

−1

2
(∂µφ)2 − 1

2
m2φ2

]
. (6.88)

A few comments are in order. Firstly, by not choosing a gauge prior to decon-

structing, I obtained the action in the Stückelberg form where one can see that

the Stückelberg mode is clearly given by Ay = π. If one applies the deconstruc-

tion rule on the gauge transformation δAy = ∂yθ, then one manifestly obtains the

Stückelberg symmetry transformation δπ = mπ! Secondly, one of the scalars must
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be a pseudoscalar for the same reason as the Zinoviev theory: There is a Wess-

Zumino sub-supermultiplet sitting in this theory when E � m, which forces one of

these scalars to be parity-odd/a pseudoscalar (PT : φ→ −φ). Noting that the pho-

ton is not parity-odd/an axial vector, this imposes that φ must be a pseudoscalar

as a consistency condition. In the next subsection, I prove this explicitly at the

level of the transformations. Thirdly, I have not shown how one might take the 5-D

N = 2 transformations (6.86) and deconstruct these into the 4-D SUSY variations.

I proceed to this task now.

6.4.3 4-D Supercharges from Deconstructed 5-D Supercharges

If I now apply the deconstruction prescription (6.87) onto the 5-D N = 2

transformations (6.86), I obtain

δAµ = iε̄iγµψ
i ,

δψi = −1

2
γαβFαβε

i − iγµ∂µ
(
π − iγ5φ

)
εijεj ,

−m
(
iγαAαε

ij + iγ5φδ
ij
)
εj ,

δφ = −iεij ε̄iγ5ψ
j ,

δπ = εij ε̄iψi . (6.89)

This looks like an N = 2 SUSY transformation, but from the fact that deconstruc-

tion has broken y-translations, so

δX = ξ∂yX =⇒ δS 6= 0 (6.90)

means that there cannot be a full copy of N = 2 supersymmetry (where X is any

field in the supermultiplet). This follows from the 5-D N = 2 SUSY algebra

[δ(ε̄i1), δ(εj2)]X = 2iε̄i2ΓAεi1 ∂AX

= 2iε̄i2Γµεi1∂µX + ε̄i2Γ5εj1ε
ij∂yX︸ ︷︷ ︸

A=0, must be imposed

. (6.91)

Obviously then, only one linear combination of εi = αiε survives. By direct calcu-

lation from the action,

δS = δ0S0︸︷︷︸
=0

+m
(
δ0S1 + δ1S0︸ ︷︷ ︸
∝(∆ij−εij)αj

)
+m2

(
δ1S1 + δ0S2︸ ︷︷ ︸
∝(∆ij−εij)αj

)
+m3 δ1S2︸︷︷︸

=0

(6.92)
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leads to the condition

εijαj = ∆ijαj , (6.93)

which combined with βi = εijαj leads to the previously known (6.54), i.e.

αi =

(
0

1

)
= −ηijαj ,

βi =

(
−1

0

)
= εijαj = −∆ijαj . (6.94)

In other words, this picks out the same special direction in the so(2)R plane that

the Zinoviev theory does! Likewise, this manifestly preserves the action.

Substituting these relations into (6.95) leads to the finalN = 1 SUSY variations

for N = 1 super-Proca theory

δAµ = αi
(
iε̄γµψ

i
)
,

δψi = αi
(
−1

2
γαβFαβε

)
+ βi

(
−iγµ∂µ

(
π − iγ5φ

)
ε
)
,

+βi
(
−m

(
iγαAαε

)
+ αi (−miγ5φε) ,

δφ = βi
(
−iε̄γ5ψ

i
)
,

δπ = βi
(
ε̄ψi
)
. (6.95)

They obey the SUSY algebra

[δ1, δ2]Aµ = ξν∂νAµ + ∂µθ ,

[δ1, δ2]ψi = ξν∂νψ
i + (E.O.M.) ,

[δ1, δ2]π = ξν∂νπ +mθ

[δ1, δ2]φ = ξν∂νφ (6.96)

with

ξα = 2iε̄2γ
αε1 , (6.97)

θ = −ξνAν . (6.98)

There are a few final comments for this theory. Firstly, notice that although the

action does not give any indication for the parity of the two scalars, the parity

can be read off immediately from the SUSY transformations, and even though the

mode originally started off with even-parity assignment in 5-D, φ becomes parity
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odd (a pseudoscalar) under 4-D PT transformations. Secondly, the algebra closes

on a Stückelberg gauge symmetry transformation, in direct analogy to the massless

super-Maxwell case. Thirdly, this has a clean interpretation of deforming an N = 2

5-D supercharge Qi for a massless supermultiplet into an N = 1 4-D supercharge

for a massive supermultiplet.

6.5 Deconstructing D = 5 SUGRA to the Zinoviev

Theory

6.5.1 Review of Linearised 5-D N = 2 Supergravity

Now that I have demonstrated how to deconstruct fermions and how one can

deconstruct SUSY theories into massive SUSY theories, I turn to the central issue

of this chapter, namely if this procedure actually is capable of generating Zinoviev

theory, with all of the information about SUSY variations and gauge symmetries,

from 5-D N = 2 linearised SUGRA. Note that this theory is the obvious choice to

deconstruct, since it is the supermultiplet containingHMN

ΨM
i

AM

 . (6.99)

Thus this multiplet contains a massless spin-2 field HMN (graviton), one symplectic-

Majorana spin-3
2

field ΨM
i (gravitino), and one spin-1 field AM (graviphoton) [177–

180]. The action for linearised 5-D N = 2 supergravity is given by

S =

∫
d5X

[
−1

2
HM

A
(
δMNR
ABC ∂N∂

B
)
HR

C − i1
2

Ψ̄M
iΓMNR∂NΨR

i − 1

4
FMNF

MN

]
,

(6.100)

which is just a collection of the linearised Einstein-Hilbert action, the Rarita-Schwinger

action for a symplectic-Majorana fermion, and a 5-D Maxwell action. In 5-D, the

physical degrees of freedom counting goes as 5 PDF’s for a massless spin-2 field, 8

PDF’s for a massless symplectic-Majorana spin-3
2
, and 3 PDF’s for a massless spin-1

field. Other than the manifest Poincaré invariance and the obvious abelian gauge
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symmetries,

δHMN = ∂(MξN) =
1

2
(∂MξN + ∂NξM)

δΨM
i = ∂MΛi

δAM = ∂Mξ , (6.101)

it enjoys an N = 2 global SUSY

δHM
A = i

1

2
ε̄i
(
ΓMΨA i + ΓAΨM

i
)
,

δΨM
i = ΓAB∂AHBMε

i +
1

2
√

6

(
ΓAB M − 4ΓAδBM

)
FABε

i ,

δAM = −i
√

3

2
ε̄iΨM

i (6.102)

where the global N = 2 group parameter εi is a symplectic-Majorana fermion.

6.5.2 Deconstructing to the N = 1 Zinoviev Action

Now I will deconstruct the 5-D supergravity theory into the 4-D Zinoviev theory.

With a little effort, it can be seen that the 5-D modes can be decomposed into

the canonically-normalised 4-D modes in Stückelberg formalism upon making the

decomposition

HM
A =

hµ α − 1√
6
πδαµ

1√
2
Bα

1√
2
Bµ

√
2
3
π

 , (6.103)

AM =

(
Aµ

ϕ

)
. (6.104)

After using this definition for the bosons, and then applying bosonic deconstruction,

it straightforwardly leads to the actions for Fierz-Pauli and Proca 4-D theories with

canonical kinetic terms. The major new piece here is deconstructing the Rarita-

Schwinger action, so I will explicitly derive this piece of the action. Following

the usual route of first applying the (4 + 1)-split, XM = (xµ, y), the 5-D Rarita-
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Schwinger action decomposes into

SRS =

∫
d5x

[
−i1

2
Ψ̄M

iΓMNR∂NΨR
i

]
, (6.105)

=

∫
d4xdy

[
−i1

2
Ψ̄µ

iγµνρ∂νΨρ
i − i1

2
Ψ̄µ

iγµν(iγ5)
[
2∂νΨy

i − ∂yΨµ
i
]]

,

(6.106)

=

∫
d4xdy

[
−i1

2
ψ̄µ

iγµνρ∂νψρ
i − εijψ̄µ iγµν∂νψy i +

1

2
εijψ̄µ

iγµν∂yψµ
i

]
.

(6.107)

Next, I decompose the 5-D spM fermions into 4-D Majorana doublet, and decon-

struct via ∂yψµ
i = mηijψµ

j. This yields the following action

=

∫
d4x

[
−i1

2
ψ̄µ

iγµνρ∂νψρ
i +

1

2
mψ̄µ

iγµν∆ijψν
j − ψ̄µ iγµνεij∂νψy j

]
. (6.108)

Upon making the identification (and redefining ψµ)

P̄ ijΨM
j =

(
ψµ

i

ψy
i

)
→

ψµ i − i√
6
γµ∆ijχj√

2
3
ηijχj

 ,

(6.109)

one arrives at fully diagonalised and canonically-normalised kinetic terms within the

action. Explicitly, the Rarita-Schwinger action deconstructs to

SRS-D =

∫
d4x − i

2
ψ̄µ

iγµνρ ∂νψρ
i +

i

2
χ̄iγµ∂µχ

i

+
1

2
mψ̄µ

iγµν∆ijψν
j + im

√
3

2
ψ̄µ

iγµχi +mχ̄i∆ijχj , (6.110)

which when combined with the bosonic actions leads to the full action for N = 1

Zinoviev theory. Therefore, I have shown that the linearised 5-DN = 2 supergravity

action can be deconstructed to the 4-D N = 1 Zinoviev action (6.47).

Also, one can deconstruct the 5-D supergauge symmetries δΨM
i = ∂MΛi using

Λi = P ijηj, ∂yηi = mηijηj, and (6.109), obtaining the Stückelberg supergauge

symmetries,

δψµ
i = ∂µη

i + i
m

2
γµ∆ijηj ,

δχi = m

√
3

2
ηi , (6.111)
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where Λi is a spM fermion and ηi is a Majorana doublet.

6.5.3 Deriving the Zinoviev SUSY Transformations

The next question is whether or not the Zinoviev transformations (6.53) can be

obtained from deconstructing the 5-D SUSY variations (6.101), in the same manner

as how the super-Proca N = 1 transformations were obtained from the N = 2

Maxwell SUSY transformations. First, I will collect the decomposition formulas for

the 5-D modes into their 4-D constituents

HM
A =

hµ α − 1√
6
πδαµ

1√
2
Bα

1√
2
Bµ

√
2
3
π

 , (6.112)

P̄ ijΨM
j =

ψµ i − i√
6
γµ∆ijχj√

2
3
ηijχj

 , (6.113)

AM =

(
Aµ

ϕ

)
. (6.114)

From here, one simply needs to apply these definitions consistently to (6.101), fol-

lowing the deconstruction prescription

∂yHMN → mHMN

∂yψµ
i → mηijψµ

j

∂yχ
i = mηijχj

∂yAM = mAM . (6.115)

Performing a (4+1)-split on the transformations, substituting in the decompositions,

and applying the deconstruction prescription is laborious. Here I will write down



6.5. Deconstructing D = 5 SUGRA to the Zinoviev Theory 129

the major steps, starting with the spin-2 mode,

δHy
y = −ε̄iγ5Ψy

i = εij ε̄i

(√
2

3
ηjkχk

)
,

=

√
2

3
δπ ,

=⇒ δπ = iβiε̄χi , (6.116)

,

δHµ
y =

1

2
ε̄i
(
γµΨy

i + iγ5Ψµ
i
)
,

=
1√
2
δBµ ,

=⇒ δBµ = βi
1√
2
ε̄ψi + αi i

√
3

2
ε̄γµχ

i , (6.117)

δHµ
α = iε̄iγ(µΨν)

i = iε̄iγ(µ

(
ψν)

i − i√
6
γν)∆

ijχj
)
,

= δhµ
α − 1√

6
δπδαµ ,

=⇒ δhµ
α = αi iε̄γ(µψν)

i . (6.118)

In the last equation, I have made use of the εi = αiε and related identities (6.54).

The next easiest to work through are the spin-1 transformation rules. The major

intermediary steps and the final results are given by

δAy = −i
√

3

2
ε̄iΨy

i = −i
√

3

2
εij ε̄iγ5

(√
2

3
ηjkχk

)
,

=⇒ δϕ = βi iε̄γ5χ
i , (6.119)

(6.120)

δAµ = −i
√

3

2
ε̄iΨµ

i = −i
√

3

2
εij ε̄iγ5

(
ψµ

i − i√
6
γµ∆ijχj

)
,

=⇒ δAµ = βi
√

3

2
ε̄γ5ψµ

i +
1

2
ε̄γµγ5χ

i . (6.121)

This completes the analysis of the bosonic transformations; a quick comparison to

(6.53) shows that I have correctly obtained the bosonic transformation rules for the

Zinoviev theory!

I now turn to the fermionic SUSY transformations, which are considerably more

laborious than their bosonic counterparts. Once again, splitting the transformations,



130 Chapter 6. Deconstructing Supermultiplets

decomposing the modes, and deconstructing the y-derivatives yields

P̄ ijδΨ5
j =

1√
2
γαβ∂αBβ − iγα

(√
2

3
∂απ −

1√
2
∂yBα

)
εijεj ,

− 1

2
√

6
γαβγ5Fαβε

i +

√
2

3
γαγ5 (∂yAα − ∂αϕ) εijεj ,

=

√
2

3
ηijδχj , (6.122)

for the gravitini. For the photino fields χi, I find

P̄ ijδΨµ
j = γαβ∂α

(
hβµ −

1√
6
πηβµ

)
εi + iγα

[
∂y

(
hµα −

1√
6
ηµα
)
− 1√

2
Bα

]
εijεj ,

+
1

2
√

6

[
γαβ µ − 4γαδβµ

]
Fαβε

ijεj − i√
6

[γα µ − 4δαµ ]γ5(∂yAα − ∂αϕ)εi ,

= δψµ
i − i√

6
γµ∆ijδχj . (6.123)

Next, if I compare these SUSY transformations to (6.53), it shows that this has

failed to reproduce the immediate Zinoviev transformations. However, this is only

a superficial difference. They may be put into the form originally written by Zi-

noviev in [166] by performing a field-dependent supergauge transformation, with

supergauge parameter

ηi = (− 1√
6
παiε+ i

1√
2
γαBαβ

iε) . (6.124)

After which, I have manifestly obtained the Zinoviev transformations for the fermions,

namely

δψµ
i = αi γαβ∂αhβµε−

m√
2

[
γµγ

αBα + i
√

3γ5Aµ

]
αiε ,

− i

4
√

2
γαβγµ

[
Gαβ −

√
3iγ5Fαβ

]
βiε+ im

[
γαhαµ + γµπ

]
βiε ,

δχi = −1

4
γαβ
[√

3Gαβ + iγ5Fαβ

]
εαi ,

−iγα∂α
[
π + γ5ϕ

]
βiε+ imγα

[√
3Bα − iγ5Aα

]
βiε . (6.125)

Again, a few final comments. First, one can easily read off that the lowest spin in

the 5-D supermultiplet, here Aµ, has again flipped parity from what it was in the

5-D theory. A quick analysis of these SUSY variations clearly tells one that this is an

axial vector and its Stückelberg ϕ mode is a pseudoscalar. Secondly, it is interesting
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that (given this interpretation) there is a simultaneous supergauge transformation

alongside. Thirdly, I will not write down the commutators of the SUSY variations,

but they do indeed reproduce the normal SUSY algebra, which closes on Stückelberg

gauge transformations and EOM (ziltch symmetries), as one expects.

6.6 Discussion of Fermionic Deconstruction

I have explicitly demonstrated how one may deconstruct a symplectic-Majorana

fermion from 5-D into a two different kinds of fermions in 4-D, namely an doublet

of fermions with Majorana or Dirac masses. Following the work of Zinoviev and the

shared criteria for a linear theory of massive supergravity, in order to keep an N = 1

SUSY present, one must choose the Dirac mass in order to keep SUSY. If one does

so, then I have shown that a 5-D N = 2 super-Maxwell theory may be deconstructed

into a 4-D N = 1 super-Proca theory, and a 5-D N = 2 linear SUGRA theory may

be deconstructed to give a 4-D N = 1 Zinoviev theory (i.e. an N = 1 “super-

Fierz-Pauli theory”). If the pattern holds, as seems likely, one may use this outlined

procedure to extract seemingly unrelated theories of massive superspin-Y fields from

higher dimensional theories of massless superhelicity-(Y − 1
2
) fields. Remarkably, I

have shown how to do this entirely within the Stückelberg formalism and explicitly

have extracted the 4-D transformations from the 5-D transformations, showing that

the deconstruction procedure robustly and completely is generated from higher di-

mensions. The Zinoviev theory is not the theory obtained from any Kaluza-Klein

compactification, making this more remarkable. Previously, Dimensional Decon-

struction [118, 120, 121, 124] prescriptions have relied heavily upon a clear relation-

ship to Kaluza-Klein and similar compactification arguments in order to keep the

consistency of the resulting massive theory obvious. However, our procedure does

seem naturally interpretable from the standpoint of extracting representations of

D-dimensional representations from (D + 1)-dimensional representations.

Unfortunately, this says nothing about interacting theories, which I have re-

viewed in the purely bosonic case in section 4.3.1; even there it is quite a bit more

complicated than these linear theories. There are several considerations here. For

instance, it may be useful to see if one can export the results from this section to

the superfield formalism. In 5-D, the N = 2 SUSY (8 real supercharges) is too

much for an ordinary superfield formalism, e.g. [181, 182], there are extensions to

the superfield for N = 2 theories (such as those discussed in [183], e.g. harmonic

superspace). It may be possible, and indeed quite advantageous, before moving over
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to interacting massive SUSY theories to formulate the SUSY deconstruction proce-

dure I have given into the a deformation directly upon an (e.g. harmonic) massless

5-D superfield action to 4-D massive superfield action. The presence of SUSY is

manifest in this formalism, so the failure to uphold SUSY should be obvious under

such a procedure. In the final chapter, I will review what happens in component

formalism, but it would be quite beneficial.

Secondly, it is interesting to further map out how one might be able to find

N = 1 self-interacting massive supergravity theories (here it may or may not have

a literal N = 1 SUSY, but ideally it will have the same field content of Zinoviev

theory with supergravity kinetic terms and dRGT/ghost-free mass terms). In the

final chapter, I will go over the progress in building such a theory by Dimensionally

Deconstructing 5-D N = 2 supergravity.



Chapter 7

Decontructing Supergravity

I now move onto 1-site deconstructing the full, interacting theory of N = 2 5-D

supergravity into a 4-D theory whose spectrum contains a massive graviton, two

massive Majorana gravitini, and a massive pseudo-spin-1 field.1 This theory may or

may not possess supersymmetry; it cannot possess a local SUSY since this theory

contains no massless spin-3
2

field, although it is not a priori impossible that it

contains a global SUSY. In either case, a completely ghost-free theory of a massive

gravitini field would be new to the literature (see for instance a discussion in [185]).

At another level, it is interesting to see what qualities a deconstructed interacting

theory has within the fermionic deconstruction procedure I developed in the previous

chapter.

This chapter proceed as follows:

(1.) I will review the most important aspects of supergravity theory (SUGRA),

including its tightly-knit relationship to local SUSY which forms the (su-

per)gauge redundancy for interacting gravitino fields and briefly touch on the

uniqueness theorems for supergravity theories. I will specifically outline 4-D

and 5-D minimal supergravity theories.

(2.) I will then take the full 5-D SUGRA theory and perform the deconstruction

procedure, including on fermionic interactions, at the level of the action. This

will lead to a theory with many interesting and novel properties.

(3.) I will demonstrate that the presence of an N = 1 global SUSY in the theory

is greatly obstructed by the absence of a way to extract supercharges, in the

manner performed in Chapter 6, when interactions are present. I will then

conclude the chapter with some final remarks on what is clear about the de-

1This follows major results to appear in [184].

133
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constructed theory thus far and possible ways to resolve the inadequacies of

the current method.

7.1 Review of Supergravity

I will now quickly review the salient features of supergravity theories; stated

most simply, supergravity theories are theories which contain interacting spin-3
2

field(s) and when the spin-3
2

field(s) are massless, the theory possess a local SUSY

invariance (the gauge redundency for a massless spin-3
2

field). The supergauge sym-

metry ψµ → ψµ+∂µε of the linearised theory always combines with the global SUSY

δψ ∼ ∂hε into a combined local SUSY symmetry ψµ ∼ Dµε (when linearised, the

spin connection forms the ∂h contribution to the global symmetry). It is worth

noting that the proofs for ordinary GR, its uniqueness, and its relation to diffeo-

morphism invariance in [3, 4, 6–8] may be extended into supergravity and local

SUSY, e.g. see proofs contained in [133, 186, 187]. Namely, supergravity (SUGRA)

is the unique theory of a massless, self-interacting spin-3
2

fields, it is the fundamental

theory of supergauge/local SUSY invariance, and it has non-trivial soft-scattering

implications (including containing GR as its spin-2 superpartner). To begin with a

concrete example, I start with the first discovered theory, that ofN = 1 supergravity

(SUGRA) in four spacetime dimensions.

7.1.1 N = 1 and N = 2 4-D Supergravity

The simplest theory of supergravity in 4-D is N = 1 supergravity, which con-

tains a massless spin-2 field eµ
a (graviton) and a massless spin-3

2
field (gravitino)

[131, 133, 186]. The N = 1 supergravity action is given by the combination of the

Einstein-Cartan action and Rarita-Schwinger action, thus it is

S4-D SUGRA =

∫
d4x

1

2κ2
eR [ω̂]− i1

2
eψ̄µ

iγµνρDν [ω̂]ψρ , (7.1)

with Dµ

[
ω̂]ψν := ∂µψν − 1

4
γabω̂µ

abψν . Upon integrating out the spin connection ω̂

and going into second-order form (see Appendix C for details), one will obtain 4-

Fermi interactions from the contorsion squared K2 ∼ (ψ̄ψ)2, since for connection

1-forms ω̂ = ω +K, the curvature 2-form follows

R[ω̂] = dω̂ + ω̂ω̂ = R[ω] +D[ω]K +KK , (7.2)
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which in L = Rabecedεabcd gives rise to the Einstein-Hilbert term, a total derivative

DK, and the aforementioned 4-Fermi interactions, respectively.

Aside from diffeomorphisms and local Lorentz transformations, this action is

additionally invariant under a local N = 1 SUSY

δQeµ
a = i

1

2
κ2ε̄γaψµ (7.3)

δQψµ = Dµε , (7.4)

where the superalgebra is filled out, using X = eµ
a or ψµ, the closure rule

[δQ(ε1), δQ(ε2)]X = δDiff (ξν) + δLLT

(
ξµων

ab
)

+ δQ (ξνψν) . (7.5)

Here I have used the usual ξµ = i1
2
κ2ε̄2γ

µε1 (note that my k value is now 1
2

away from

the previous chapter, which is a more convenient convention for SUGRA theories).

These gauge transformations form the gauge redundancies for the gravitino field,

and from this one can see that much like the spin-2 field couples to the conserved

stress-energy current (implied by diff invariance) and the spin-1 field couples to

the conserved color current (implied by U(1) or SU(N) invariance), the spin-3
2

field

couples to the conserved supercurrent implied by SUSY invariance.

The N = 2 theory contains an additional pair of fields, since N = 2 doubles

the size of the multiplet. Now it has content (eµ
a, ψµ

i, Aµ), for i = 1, 2. It follows

the same action as above, sending bispinors to ψ̄ψ → ψ̄iψi and includes a Pauli

interaction, ∼ εijψ̄µ
i(F µν + γ5 ∗ F µν)ψν

i. The full theory can be derived via a

dimensional reduction of 5-D SUGRA, e.g. as was done in [126, 177, 178].

7.1.2 N = 2 5-D Supergravity

The 5-D theory of N = 2 5-D SUGRA [177–179] contains the usual terms, i.e.

the Einstein-Hilbert, Rarita-Schwinger kinetic terms, and the covariant Maxwell

term. In order to keep the action invariant under the SUSY variations, they are

supplemented with two interaction terms, a Pauli term and a Chern-Simons inter-

action term. The total action is therefore given by

S5-D SUGRA =

∫
d5X

1

2κ2
ER

[
Ω̃
]
− i1

2
EΨ̄M

iΓMNRDN

[
Ω̃− 1

2
Θ

]
ΨR

i − 1

4
E FMNF

MN

−κ i
8

√
3

2
E Ψ̄P

iXMNPQΨQ
i
(
FMN + F̂MN

)
− 1

6
√

6
κ εMNRSLFMNFRSAL . (7.6)
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Note that local Minkowski fibre indices are labelled by {A, B, . . . } and the tangent

space indices are labelled by {M,N,R, P,Q, . . . }. For convenience, I will remind

the reader that in my conventions,

GMN = EM
AηABEN

B (7.7)

E = Det[EM
A] (7.8)

RMN
AB[Ω] = ∂[MΩN ]

AB − Ω[M
ACΩN ]C

B (7.9)

= EP
AEQ

BRMN
PQ [GMN ] , (7.10)

the graviphoton-gravitini tensors are defined via

F̂MN = (∂MAN − ∂NAM)− i
√

6

4
κ2Ψ̄M

iΨN
i (7.11)

XMNPQ = ΓMNPQ +GMPGNQ −GNPGMQ , (7.12)

and the various spin connection constituents are defined via

OABC = EM AEN B
(
∂[MEN ]

C
)

(7.13)

ΩM
AB[E] = EM C

(
OABC −OBCA −OCAB

)
(7.14)

K̂M AB = i
κ2

4

(
Ψ̄A

iΓMΨB
i + 2Ψ̄M

iΓ[AΨB]
i
)
, (7.15)

and

ΘM AB = −iκ
2

8

(
Ψ̄P

iΓPQ MABΨQ
i
)

(7.16)

K̃M
AB = K̂M

AB + ΘM
AB (7.17)

Ω̂M
AB = ΩM

AB[E] + K̂M
AB (7.18)

Ω̃M
AB = ΩM

AB[E] + K̃M
AB . (7.19)

Noting that R[GMN ] is the usual Riemann tensor defined with Christoffel symbols

∼ (∂Γ + ΓΓ), and that ΨA
i := EA

MΨM
i. It is also worth noting that the auxiliary

field is Ω̃, so just like the 4-D case, there are also four-Fermi interactions coming

from the kinetic term of ΨM
i after integrating out Ω̃.
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This action is invariant under the local SUSY transformations

δQEM
A = i

1

2
κ2 ε̄iΓAΨM

i (7.20)

δQΨM
i = D̂Mε

i +
1

4
√

6

[
ΓM

PQ − 4ΓP δQM

]
F̂PQε

i (7.21)

δQAM = −i
√

3

8
κ ε̄iΨM

i , (7.22)

where, as one expects, εi is a symplectic-Majorana fermion.

7.2 Properties of the Conjectured Non-Linear The-

ory

The best case scenario for an interacting theory with a spectrum containing

a massive graviton, massive gravitini, and a massive spin-1 field (graviphoton) is

one that is ghost-free and contains an N = 1 SUSY (here the global Killing spinor

would need to come from the reference vielbein). If such a theory existed, it would

necessarily follow that it must obey the following diagram of scaling limits for its

two fundamental parameters, MPl and m:
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Self-Interacting

Massive ‘SUGRA’

N = 2 Linear SUGRA+

N = 2 SUSY Galileon

N = 1 Zinoviev

N = 2 Linear SUGRA+

N = 2 spin-1 supermultiplet

m → 0

MPl → ∞
Λ3 = m2MPl

MPl → ∞
m → 0

Λ3 → ∞

Figure 7.1: The scaling limits of the conjectured interacting theory of a massive supermultiplet.
Notice that each limit of the theory ends with N = 2 SUSY, even though the original massive
theory only has N = 1. The supersymmetry is enhanced in any m → 0 limit, because the spin- 32
are then massless and must have 2 local supersymmetries for their supergauge redundancies.

First, any limit which sends m → 0 must uplift the SUSY from N = 1 to

N = 2 (owing to the presence of two massless gravitini fields). Then the major

question is what happens to the interactions when MPl is scaled. Quite simply, it

should linearise to the N = 1 Zinoviev theory (super-Fierz-Pauli) for the obvious

reasons, so MPl →∞ must result in Zinoviev theory. The decoupling limit,

m→ 0 ,

MPl →∞ ,

MPlm
2 → Λ3

3 , (7.23)

is another interesting question. Presuming that the fermionic interactions do not

lower the scale of interactions away from
(

1
MPlm2

)n
O4+3n, then the decoupling limit
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must be some kind of N = 2 supersymmetric Galileon theory (a vector multiplet)

decoupled from a linearised N = 2 SUGRA theory. It is encouraging to note that

some N = 1 super-Galileon theories were explored in [188, 189], so it is possible to

have supersymmetric Galileon theories. This is a very interesting limit, although I

will not explore it in detail in here.

I will instead focus on the fact that the theory should linearise to Zinoviev;

this provides a good justification for applying Dimensional Deconstruction to 5-D

N = 2 SUGRA, since whatever results from this will have the right field content and

bosonic PDF’s. I will reiterate here that even if the deconstructed SUGRA theory

does not itself possess an N = 1 global SUSY, one should expect that this diagram

approximately holds. One should expect that this theory ought to be a very good

ansatz for ghost-freedom and having global SUSY, and by construction contains the

same spectrum of fields and corresponding non-linear, gauge-invariant kinetic terms

and, to linear order, the correct mass terms.

7.3 1-Site Deconstruction of N = 2 5-D SUGRA

Now I turn to deconstructing the full 5-D SUGRA theory following the proce-

dures in Chapter 4 and 6 following the 1-site prescription. To wit, this means that

I use the gauge-fixing

EM
A =

(
eµ

a 0

0 1

)
(7.24)

Ωy
ab = 0 (7.25)

ΨM
i =

(
P ijψµ

j

0

)
(7.26)

AM =

(
Aµ

0

)
, (7.27)

Again, this completely fixes all of the gauge symmetries for 5-D SUGRA –the local

5-D Diff(M) and SO(1, 4) for the fünfbein EM
A, the local U(1) for the graviphoton

AM , and both of the local N = 2 SUSY of the gravitini ΨM
i. This will cause the

deconstructed D = 4 action to sit in unitary gauge.
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From here, I apply the deformation procedure

∂yeµ
a → m(eµ

a − δµ a) (7.28)

∂yψµ
i → m∆ijψµ

j (7.29)

∂yAµ → mAµ , (7.30)

where again Ψµ
i = P ijψj following section A.2.1. Due to the lengthiness of calcula-

tion, I will first apply this procedure to the purely bosonic actions, and then I will

apply it to the covariant Rarita-Schwinger term and the other gravitini interaction

terms.

7.3.1 Spin-2 Sector

I will repeat quickly, now taking into account the presence of torsion, the EC

term.

SEC[E,Ω] =

∫
1

4 · 3!κ2
RAB

[
Ω̃
]
ECEDEF εABCDF (7.31)

Integrating out the auxiliary field Ω̃AB, leads to the algebraic torsion constraint

dEA + Ω̃A
BE

B = T̃A . (7.32)

Following Appendix C, I decouple this equation via the definition

Ω̃AB = ΩAB[E] + K̃AB , (7.33)

which upon substitution into into the original torsion-free condition satisfied by the

usual definition of Ω[E] ∼ E−1∂E. This will deconstruct identically into the usual

manner.

The second equation, K̃A
BE

B = T̃A leads to 4-Fermi interactions which I

shall address later in the next section on fermionic interactions. The pure graviton

interactions, however, obviously then give rise to the exact same manner. Following

the same results as those derived in Chapter 4, the deconstructed action for the pure

spin-2 self-interactions gives rise to the ordinary dRGT theory of a massive spin-2

field

SdRGT =
1

4κ2

∫
Rab[ω]ecedεabcd +m2

(
ea − δa

)(
eb − δb

)
ecedεabcd ,

ea[µfν] a = 0 . (7.34)
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7.3.2 Spin-1 Sector

Starting with the covariant graviphoton bosonic terms

Sspin-1 =

∫
d5X E

(
−1

4
FMNF

MN − 1

E 6
√

6
κ εMNRSLFMNFRSAL

)
(7.35)

If one follows the deconstruction prescription, then one quickly sees that the Chern-

Simons term vanishes identically under deconstruction, since LCS ∝ εµνρσFµνFρσAy ∝
Ay = 0, leaving only the covariant Maxwell term. From here, one immediately de-

rives a covariant Proca action from it, via

S5-D =

∫
d5X E

(
−1

4
FMNF

MN

)
=

∫
d4xdy e

(
−1

4
(FµνFµν + 2FyµFyµ)

)
(7.36)

which under deconstruction naturally leads to

→ S4-D =

∫
d4x e

(
−1

4
FµνFµν −

1

2
m2AµA

µ

)
, (7.37)

where I have used E = 1 · e, and the formula

GMN =

(
gµν 0

0 1

)
. (7.38)

These follow from my gauge-fixing conventions.

7.3.3 Deconstructing the Fermions

To begin the fermionic interactions, I will start with collecting the 4-Fermi

interactions from its contributors; here the contributing terms are the squared con-

torsion terms from the Einstein-Cartan action (after integrating out Ω̃) and from

the contorsion piece in the covariant Rarita-Schwinger action. Starting with the EC

action, one has

=

∫
1

4 · 3!κ2

(
dΩ̃AB + Ω̃A

F Ω̃FB
)
ECEDEF εABCDF . (7.39)
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The curvature 2-form decomposes under Ω̃ = Ω[E] + K̃ into the Riemann tensor

and contorsion squared pieces, i.e.

R̃AB = dΩ̃AB + Ω̃A
F Ω̃FB (7.40)

= dΩAB[E] + ΩA
F [E] ΩFB[E] +DΩ[E] K̃

AB + K̃A
F K̃

FB (7.41)

= RAB[Ω[E]] +DΩ[E] K̃
AB + K̃A

F K̃
FB . (7.42)

Following the same as the 4-D N = 1 SUGRA case, the term proportional to DK̃AB

is a total derivative, and leaving only the K̃2 term in the action. The REEE term

obviously has already been accounted for in the dRGT action. Next, employing

(7.17) which be derived from laborious but straightforward algebra, one finds finally

finds the equation for K̃AB to be

K̃M
AB =

iκ2

4

[
Ψ̄A

iΓMΨB
i + 2Ψ̄M

iΓ[AΨB]
i − 1

2
Ψ̄P

i ΓPQ M
ABΨQ

i

]
. (7.43)

Then, the Einstein-Cartan action’s K2 4-Fermi terms are given by

SEC
5-D 4-Fermi =

∫
1

4 · 3!κ2

(
K̂A

F K̂
FB + 2K̂A

FΘFB + ΘA
FΘFB

)
ECEDEE εABCDE

(7.44)

Then one may apply this split in the spin connection in the covariant Rarita-

Schwinger action, Ψ̄(D + K̃)Ψ which will split into a covariant kinetic term for

a Rarita-Schwinger field and the desired contribution to the 4-Fermi interaction

(Note that there is a shift in the connection for the gravitini, which also contributes

outright to the 4-Fermi interaction terms). Honing in on the latter, one finds

S5-d RS =

∫
d5X

(
− i1

2
EΨ̄M

iΓMNRDN

[
Ω̃− 1

2
Θ

]
︸ ︷︷ ︸
D[Ω+K̂− 1

2
Θ]

ΨR
i
)

(7.45)

=⇒ SRS
4-Fermi =

∫
d5X

(
−i1

2
EΨ̄M

iΓMNR

[(
−1

4
ΓAB

)(
K̂N

AB − 1

2
ΘN

AB

)]
ΨR

i

)
(7.46)

Combining all of this with those terms from the Pauli interactions Ψ̄F̂Ψ ∼
(Ψ̄Ψ)2 with only 4-D derivatives, one must note that the Dimensional Deconstruc-

tion procedure, particularly since Ψy
i = 0, changes nothing about the overall 4-

Fermi structure present in 4-D N = 2 SUGRA, since there are no derivatives are

involved in the derivation of the 4-Fermi interactions. Thus, it follows deconstruct-
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ing results identically in the same structure that one gets via straight dimensional

reduction [126, 178, 180], and thus must be directly equivalent to the N = 2 4-Fermi

interaction, i.e. those found in [171, 190].

Rarita-Schwinger Kinetic Term

Next, I deconstruct the purely covariant (the portion of the spin connection

containing only the vielbein contribution and no contorsion) Rarita-Schwinger ac-

tion. This procedure results in

S5-d RS =

∫
d5X

(
−i1

2
EΨ̄M

iΓMNR

(
∂N −

1

4
ΓABΩN

AB

)
ΨR

i

)
(7.47)

The (4+1)-split on the action, employing the simplifications gauge-fixing applies on

the spin connection in Chapter 4, results in

S5-d RS =

∫
d4xdy e

[
−i1

2
Ψ̄µ

iΓµνρ
(
∂νΨρ

i − 1

4

[
ΓabΩν

ab + 2Γa5Ων
a5
]

Ψρ
i

)]
+e

[
i
1

2
Ψ̄µ

iΓyµν
(
∂yΨν

i − 1

4
ΓABΩy

ABΨν
i

)]
(7.48)

=

∫
d4xdy e

[
−i1

2
Ψ̄M

iΓµνρ
(
∂νΨρ

i − 1

4

[
ΓabΩν

ab + 2Γa5Ων
a5
]

Ψρ
i

)]
+e

[
i
1

2
Ψ̄µ

iΓyµν
(
∂yΨν

i − 1

4

[
ΓabΩy

ab + 2Γa5Ωy
a5
]

Ψν
i

)]
. (7.49)

The deconstruction deformation on the gravitini yields an action of the form

S4-d RS =

∫
d4x e

[
−i1

2
ψ̄µ

iγµνρ
(
∂νψρ

i − 1

4
γabων

abψρ
i

)]
+e

[
−i1

4
ψ̄µ

iγµνρ(γaiγ5)
(
Ων

a5
) (
−εijγ5ψρ

j
)]

+e

[
i
1

2
ψ̄µ

i (γµνiγ5) (m∆ij)
(
−γ5ε

jkψν
k
)]

. (7.50)

After performing some simplifying algebra, one arrives at the usual action one ex-

pects, i.e. the covariant Rarita-Schwinger action, plus an odd interaction.

The Rarita-Schwinger action takes the obvious form

=

∫
d4x e

[
−i1

2
ψ̄µ

iγµνρDνψρ
i +

1

2
ηijmψ̄µ

iγµνψν
j

]
,
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alongside this peculiar interaction that violates local Lorentz invariance

+e

[
1

4
mεijψ̄µ

iγµνργcψν
j (eρ

c − δρ c)
]
. (7.51)

Interestingly, the spin connection appears to contribute a new O(m) interaction

between the vierbein and the Rarita-Schwinger field. However, this interaction drops

out and can be seen to be re-expressible as

γc = γσeσ
c =⇒ ψ̄µ

iγµνργcψσ
j (eρ

c − δρ c) . (7.52)

However, using the generalized Majorana identity and Clifford algebra properties

one can derive the lemma that

εijψ̄µ
iγµνργσψν

j = εijψ̄µ
iγµνρσψρ

j . (7.53)

Together, one can see that this causes this O(m) interaction to be identically zero

e

[
1

4
mεijψ̄µ

iγµνρσψν
j (gρσ − eσ cδρ c)

]
, (7.54)

owing to the DvN condition δ[ν
aeµ] a = 0. This leaves only the covariant kinetic

term and the Dirac mass,

S4-d RS =

∫
d4x e

[
−i1

2
ψ̄µ

iγµνρDνψρ
i +

1

2
ηijmψ̄µ

iγµνψν
j

]
. (7.55)

In other words, this leads to a purely covariant Rarita-Schwinger action with a Dirac

mass!

Pauli Interactions

Finally, the Pauli interactions need to be deconstructed. After removing the

already-accounted-for 4-Fermi interactions, one has

S5-D Pauli =

∫
d4xdy

(
−κ i

4

√
3

2
E Ψ̄ρ

iXµνρσΨσ
iFµν

)

+

(
−κ i

4

√
3

2
e Ψ̄ρ

iXyµρσΨσ
iFyµ

)
, (7.56)
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which after algebraically simplifying the Γ matrices becomes

=

∫
d4xdy

(
−κ−i

2

√
3

2
e ψ̄µ

i [Fµν − iγ5(∗F)µν ] (−γ5ε
ijψν

j)

)

+

(
−κ i

2

√
3

2
e ψ̄ρ

i [iγ5γ
µνρ]ψσ

iFyµ

)
. (7.57)

The Deconstruction deformation leaves the term

S4-D Pauli =

∫
d4x

(
κi

√
3

8
e ψ̄µ

i [Fµν − iγ5(∗F)µν ] γ5ε
ijψν

j

)
, (7.58)

unchanged, but there is y-derivative on Aµ is converted to

∫
d4xmκ

(√
3

8
e ψ̄ν

i [γ5Aµγ
µνρ]ψρ

i

)
. (7.59)

This leaves the original D = 4 Pauli interaction between the gravitini fields and the

axial vector field, plus a new order κm Velo-Zwanziger-type interaction [148, 149,

151].

7.3.4 The Action for a Massive Spin-3
2 on a Curved Space

Up to the N = 2 4-Fermi interactions, the complete action is given by

S4-D mSUGRA =

∫
d4x

1

2κ2

(
eR[ω] +

2m2

2!
δµνρσabcd (e− δ)µ a(e− δ)ν beρ ceσ d

)
+e

(
−i1

2
ψ̄µ

iγµνρDν [ωe]ψρ
i +

1

2
mηijψ̄µ

iγµνψν
j

)
+e

(
−1

4
FµνFµν −m2 1

2
AµA

µ

)
+e κ

(
i

√
3

8
ψ̄µ

i [Fµν − iγ5(∗F)µν ] γ5ε
ijψν

j

)

+e κm

(√
3

8
ψ̄ν

i [γ5Aµγ
µνρ]ψρ

i

)
(7.60)
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7.4 Difficulties Deconstructing the Non-Linear Su-

peralgebra

In the Chapter 6, I demonstrated how one can readily read off the 4-D SUSY

transformations by deconstructing the 5-D SUSY variations, as long as one forces

the condition εi = αiε that breaks the so(2)-invariance. I will now show that there

are issues to applying such a straightforward procedure to seeing the existence of

a 4-D SUSY variation. This does not demonstrate the non-existence of an N = 1

local SUSY, but it does make proving its existence considerably more difficult.

7.4.1 Superalgebra for D = 5 SUGRA

Since for interacting theories one needs to gauge-fix before applying the De-

construction procedure, I will now note the obvious amendment to the procedure

outlined in Chapter 6. First, one needs to fix the SUSY variations to preserve

the gauge-fixing condition, which amounts to discovering and adding compensating

gauge transformations. Thus one starts with

δQEM
A = i

1

2
κ2 ε̄iΓAΨM

i (7.61)

δQΨM
i = D̂Mε

i +
1

4
√

6

[
ΓM

PQ − 4ΓP δQM

]
F̂PQε

i (7.62)

and

δQAM = −i
√

3

8
κ ε̄iΨM

i . (7.63)

Together, they obey the superalgebra

[
ε̄i1Q

i, ε̄j2Q
j
]
X = δDiff

(
ξM
)
X + δLLT

(
λAB

)
X + δQ

(
ηi
)
X + δU(1) (ζ)X , (7.64)

such that

ξM = i
1

2
κ2 ε̄i2ΓMεi1 (7.65)

λAB = ξMΩM
AB + · · · (7.66)

ηi = ξMΨM
i (7.67)

ζ = ξMAM + · · · . (7.68)
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From here, I take a useful re-writing of the gauge-fixing conditions

E[MA] = 0 (7.69)

Ey
5 = 1 (7.70)

Ey
A = δA5 , (7.71)

noting that I have lowered A with respect to the 5-D η metric. This looks like more

conditions than the original gauge conditions, but multiple equations are redundant.

Together they can be explicitly checked to be equivalent to the previous gauge-fixing

conditions (7.27). For the remaining fields, I keep them as

Ψy
i = 0 (7.72)

Ay = 0 (7.73)

The compensated transformations δQ′X = δQX + δGX are forced to obey the

compensating equation

δQ′F ≡ 0 . (7.74)

Local Lorentz and diffeomorphism transformations require

δQ′Ey
a = δQEy

a + Λa
BEy

B + ∂yξ
NEN

a = 0 (7.75)

δQ′EMA = δQ′EAM . (7.76)

Using the resummation techniques I developed in Chapter 3, I arrive at conditions

ξy = −
∫

dy
(
δQEy

5
)

= 0 (7.77)

ξµ = −Eµ
a

∫
dy (δQEy

a) = 0 (7.78)

Λa
5 = −Ea

b

∫
dy [δQ + δD(ξ)]Ey

a (7.79)

Λab = −
∫ ∞

0

dµ exp(−µE)a
c
(
[δQ + δD(ξ)]E[cd]

)
exp(−µE)b

d , (7.80)

where I have made use of the gauge-fixings Ψy
i = Ay = 0. N.B. the term Ea

b

denotes the inverse vielbein; unfortunately, the Deser-van Nieuwenhuizen condition

makes a difficult time of the indices, and thus vierbeins must explicitly be written

down and cannot be inferred from indices being Latin or Greek.
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7.4.2 Solving for the Residual Gauge Symmetries

Although the 5-D SUSY transformations need to obey the gauge transforma-

tions, it is worth noting that there is still a full set of 4-D gauge symmetries remaining

in the gauge-fixed theory. This follows from noting that the gauge conditions, e.g.

infinitesimal 4-D diff transformations on the 4-D vierbein, are still invariant subject

to

δDEy
a = ∂yξ

NEN
a = 0 , (7.81)

if one wishes to fix

ξN(xµ, y) = ξN(xµ) . (7.82)

Now I check how this impacts the SUSY transformations, and if one can find a

preserved N = 1 copy of SUSY. In other words, I will only be concerned with the

case where εi(x, y) = εi(x) with some fixed y-dependence

δQΨy
i = D̂yε

i +
κ

4
√

6
ΓµνΓ5F̂µνε

i +
κ√
6

ΓµF̂yµε
i = 0 , (7.83)

which can be re-expressed as

= ∂yε
i − iκ2

16
(Ψρ

jΓ5Ψσ
j)Γρσεi +

κ

4
√

6
ΓµνΓ5F̂µνε

i +
κ√
6

Γµ∂yAµε
i . (7.84)

This local SUSY case differs from the bosonic case, where the simply forcing the

restriction εi(x, y) = εi(x) clearly will not function as desired. Thus, ε must vary in

y in order to cancel off the affine contributions and solve this equation. Packaging

those additional pieces (here I make the x dependence implicit) as

∂yε
i(y) +M(y)εi(y) = 0 , (7.85)

where M(y) is field-dependent, then I can use the ansatz

εi(y) = εi(0)−
∫ y

0

dy′M(y′)εi(y′) . (7.86)

A little algebra allows this to be written as an infinite series of integrals

εi(y) = εi(0)−
∫ y

0

dy′M(y′)εi(y′)+

∫ y

0

dy′
∫ y

0

dy′′M(y′)M(y′′)εi(y′′)− . . . . (7.87)

Although not a pithy equation, this does concretely demonstrate that a 4-D SUSY

parameter εi(0) with fixed y-dependence (but arbitrary xµ dependence) can preserve
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the gauge conditions and by construction keep the action invariant. Now I turn to

the case of deconstruction.

7.4.3 Obstructions to Deconstructing the SUSY Transfor-

mations

I now take the exact same logic of the previous section, but now in the presence

of the deconstruction deformations. Thus, the equations for a local SUSY invariance

(including the special case of global SUSY invariance) starts off as

∂yε
i − iκ2

16
(Ψρ

jΓ5Ψσ
j)Γρσεi +

κ

4
√

6
ΓµνΓ5F̂µνε

i +
κ√
6

Γµ∂yAµε
i = 0 ,

but now I must deform it under the very general form of Deconstruction via

∂yε
i(y)→ −m∆ijDIJε

j
J . (7.88)

Absorbing the non-y derivative terms into M again, I find the linear difference-like

equation

−m∆ijDIJε
j
J +MIε

i
I = 0 . (7.89)

Now y-anti-derivatives are multi-linear matrix inversions, and not particularly el-

egant ones. One may write down a formal inverse operator for DIJ , which acts

trivially on massless states (in order to define the pseudo inverse) but acts as an

inverse on the massive states, i.e.

[mD]−1
IJ ≡=

1

m
DIJ . (7.90)

Unlike the continuum case, there is no recursion relation

εiI +
1

m
DIJ(MJεJ) = 0 (7.91)

Explicitly for the 1-site case, this equation immediately implies

εI = 0 . (7.92)

Therefore, this technique fails to reproduce a 4-D super-algebra and non-trivial

SUSY variations. It is unclear if this is not the correct way of recovering the 4-D

symmetry variations, although it does seem to be the most natural. So while this

cannot easily be interpreted as a proof that of the absence of SUSY in either model,
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it does show that a natural method one would apply to deconstructing the symmetry

fails.

One interesting way to prove SUSY invariance would be to take the 2-site

model (freezing the lower N = 1 vector multiplet of the N = 2 SUGRA multiplet,

leading a bimetric theory) which couples the N = 1 massive SUGRA multiplet

with an ordinary N = 1 SUGRA. Critically, the ordinary N = 1 SUGRA multiplet

contains a massless spin-3
2

field, and thus if this theory propagated the correct 10

bosonic PDF’s and 10 fermionic PDF’s, then the theory necessary contains a local

SUSY gauge redundancy. This can be explicitly checked via a Dirac analysis. The

methods I developed in Chapter 5 could also potentially be employed for counting

the fermionic PDF’s.2

7.5 Comments on the Non-Linear Theory

The limits of this theory seem to point to largely positive signs, despite the

unclear nature of the SUSY charge. First, by construction, the linear limit of this

theory is the N = 1 Zinoviev theory in the limit MPl →∞. Second, one can look at

what happens when modes of the theory are frozen. For instance, if one freezes the

fermions, then the theory propagates 5+3 massive bosonic PDF’ since this merely is

dRGT and covariant Proca. Another case is when the bosons are frozen. Supposing

I freeze the vielbein to an Einstein vacuum ḡµν , such that R̄µν = kḡµν , and I freeze

out the vector mode

eµ
a = ēµ

a

Aµ = 0 (7.93)

Then the theory only has the massive Rarita-Schwinger fields (here with a Dirac

mass) and 4-Fermi interactions. This theory is known to be ghost-free to all orders

(See [185] for details and further references), so long as an Einstein background

is chosen. Therefore it non-linearly propagates 4 + 4 = 8 fermionic degrees of

freedom. Of course, moving away from Einstein vacuum manifolds is precisely what

the Rarita-Schwinger needs SUGRA in order to have a consistent gauge symmetry

(e.g. see the proof of N = 1 invariance of SUGRA in [131]); thus one should

not expect that away from the Einstein vacuum the theory should remain healthy.

2Although it may need to be slightly modified owing to the subtle differences in how fermionic
PDF’s are counted, see [84].
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Explicitly, one must have in mind that in the high-momentum/massless limit the

effectively massless Rarita-Schwinger fields will fail [160, 161]) and lose fermionic

gauge invariance.

Finally, it was shown in [185] that massive, covariant Rarita-Schwinger actions

with SUGRA 4-Fermi interactions have the energy scale of the irrelevant fermionic

interactions raised to Λ3 or higher. In addition to those terms, the deconstructed

action also possesses some Aµ-ψµ
i interactions, and it is easy to see that they only

generate irrelevant terms suppressed by Λ3 and higher. Therefore, this theory will

be ghost-free up (contains no new higher-derivative interactions) to at least the scale

Λ3. Therefore, a consistent decoupling limit will exist. A further important issue

is whether or not this decoupling limit or the LEEFT exemplifies an N = 1 or 2

global SUSY.

Finally, I conclude this chapter by noting, similarly to Chapter 6, that it would

also be beneficial in future work to incorporate the fermionic deconstruction pro-

cedure into the superspace formalism, by taking a 5-D superspace formalism (e.g.

harmonic superspace) and deconstruct the superfields directly into 4-D ordinary su-

perspace (see [183], which addresses methods that seem related to this goal). The

results I have discovered here are robust enough to suggest a meaningful relationship

between SUSY invariance and fermionic deconstruction. If one wishes to further ex-

plore these ideas, one could take a simpler interacting 5-D SUSY theory (for example

an interacting matter supermultiplet like SYM or a supersymmetric NLSM) and see

if it is able to be consistently deconstructed in a way that preserves the interactions.

To reiterate the issues found in the superalgebra, they are circumvented the super-

space formalism; this makes this approach all the more ideal for interacting massive

gauge theories.
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Conclusion

8.1 Summary of Thesis Achievements

The question of consistent theories of massive spin-2 fields is raised in gravi-

tational, cosmological, and even condensed matter physics. Given recent progress

in developing ghost-free, self-interacting mass terms which linearise to Fierz-Pauli

theory, it is timely to explore these interactions and the ensuing massive gauge the-

ories of spin-2 fields. I have worked towards understanding these issues in variety of

contexts.

The Λ3-decoupling limit of ghost-free massive gravitational theories exhibits

delicate and complex helicity-0 and helicity-1 interactions. I have shown that the

most efficient manner of understanding these interactions is by making use of the

Stückelberg formalism in the Einstein-Cartan variables, thus restoring a gauge the-

ory picture for massive spin-2 fields. Here, one must use Stückelberg fields for both

diffeomorphism and local Lorentz transformations, the gauge symmetries of ordinary

Einstein-Cartan gravity (a massless spin-2 field). Additionally, I have developed a

concise method for employing the Lorentz Stückelberg field and for solving their

fully non-linear equations of motion. Using these techniques, one is able to directly

apply the decoupling limit and write down a closed-form expression for the complete

tower of interactions for dRGT massive gravity and related self-interacting spin-2

theories. This expression allows one to systematically express and analyse the vector

modes present within spin-2 fields that have dRGT mass interactions, and directly

enabled the research into the propagation of the helicity-1 modes [111], the exis-

tence of the Galileon duality [112–116], further no-go proofs on the kinds of possible

matters interactions [163], extensions of my results to curved spacetimes [112] and

multi-gravity [113], it is a necessary piece tot understand the Λ2 non-Poincaré in-

152
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variant decoupling limit [191], and this chapter developed necessary techniques for

all of the following work in my thesis [127, 184, 192].

Dimensional Deconstruction program has shown how massive spin-2 theories

can be generated from massless spin-2 fields in a higher dimension by de Rham, et al,

in [124], following earlier work by [108, 118–124]. In general, this procedure makes

a systematic (though not completely understood) connection between Poincaré-

invariant massless fields in (D + 1)-dimensions and massive Poincaré-invariant the-

ories in D-dimensions. Following the successes of this program, I explored the

possibility of modifying the deconstruction procedure to create different types of

massive spin-2 theories, both to further the general understanding of Dimensional

Deconstruction and gauge theories of massive spin-2 fields.

The first way that I did this was presented in Chapter 5 on a type of “Charged

Deconstruction.” I demonstrated that by not gauge-fixing the vector mode present

prior in the deconstruction procedure leads to a theory of a charged spin-2 field,

and gave a No-Go theorem on charged spin-2 fields with dRGT mass terms. Here

I applied a 3-site deconstruction procedure and kept the vector mode unfrozen,

with the interpretation of this mode being a photon mode that couples to the u(1)-

currents generated by the theory. Thus, I demonstrated that this theory lacks a

global U(1) invariance, and therefore Dimensional Deconstruction cannot form a

consistent gauge theory of a charged spin-2 field. With a subtractive procedure,

I cancelled off the U(1)-violating terms to generate a new, U(1)-invariant theory

of a spin-2 field with dRGT mass terms. To make the argument more robust,

I demonstrated that this in fact is the most general Lagrangian following several

necessary criterion, i.e. Lorentz invariance, linearising to Federbush (the extension

of Fierz-Pauli to include electromagnetic interactions), and so forth. Using this

ansatz Lagrangian, I gave a proof using a novel new manner of counting PDF’s

in massive spin-2 theories that this theory necessarily contains spurious additional

PDF’s beyond those found in dRGT massive gravity. This signals the presence of

Boulware-Deser ghosts, and thus rules out these theories, at least to energy scales.

above Λ3. Therefore, I demonstrated that the charged deconstruction procedure fails

to maintain U(1) invariance, that subtracting off the U(1)-violating interactions in

charged deconstruction leads to a unique ansatz which has a spurious number of

PDF’s, and I developed a novel PDF-counting algorithm for massive spin-2 fields to

demonstrate as such. The further development of this technique by a collaborator

led to the proof of the uniqueness of the Einstein-Hilbert kinetic term [80] when the

dRGT mass term is present, and similar theorems regarding the interplay between

matter interactions and spin-2 fields with dRGT mass terms [163].
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In Chapter 6, I explored Dimensional Deconstruction in the context of super-

symmetric gauge theories. I created a novel method of extending the Dimensional

Deconstruction program to theories containing fermions, including the case of su-

persymmetric gauge theories. Due to the highly non-trivial structural differences

between spinors of differing dimensions, I focused on the case of 5-D massless (nec-

essarily Dirac) fermions to 4-D Majorana doublets. Using this procedure, I explicitly

demonstrated how one can obtain all 4-D mass terms for Majorana doublets from

a simple deformation of the usual Dimensional Deconstruction procedure to break

both the y-derivatives and a symplectic-Majorana indices with a mass doublet ma-

trix. I showed how this procedure works explicitly for spin-1
2

fermions, where no

gauge symmetry exists in order to obtain massive fermions, and spin-3
2

fermions,

which realises a supergauge symmetry. I then demonstrate that this fermionic de-

construction procedure, choosing the R-symmetry preserving mass doublet matrix,

a single N = 1 copy of the 5-D N = 2 SUSY is preserved. I explicitly demonstrate

the existence of supersymmetric gauge theories being generated by this method; I

deconstructed 5-D N = 2 Maxwell theory down to N = 1 super-Proca theory and

5-D N = 2 linear SUGRA to 4-D N = 1 Zinoviev theory. The N = 1 Zinoviev the-

ory [166] is a supersymmetric completion of Fierz-Pauli theory, gaining two massive

gravitini superpartners and a massive psuedo-spin-1 superpartner. I also explicitly

demonstrated how in these linear theories, one is able to directly extract the N = 1

component SUSY transformations directly from a linear combination of their 5-D

counterparts. This represents a substantial step forward in the ability to generate

new theories of massive SUSY theories and view old massive SUSY gauge theories

in a new light.

In Chapter 7, I begin the effort towards generating interaction SUSY gauge

theories via the Dimensional Deconstruction approach I developed in the previous

chapter. Specifically, I begin with the fully non-linear 5-D N = 2 SUGRA theory,

and I performed 1-site deconstruction at the level of the action. The action has many

interesting features. By construction, it linearises to N = 1 Zinoviev theory; since it

descends from a SUGRA theory, it follows the properties necessary for having a Λ3

decoupling limit outlined in earlier work by Rahman [185] where we have a doublet of

Majorana fermions rather than a single massive spin-3
2

field. Although the existence

of a global N = 1 SUSY, which would need to come from a borrowed global Killing

spinor on the Minkowski reference spacetime, seems dubious, it is interesting that

this theory should remain ghost-free at least to the scale of Λ3, possibly including

a full global N = 1 (or N = 2) SUSY, although the derivation or falsification of its

existence is left to future work.
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8.2 Outlook

Moving forward from this work, it seems that there are several potentially

important new areas to explore. I shall focus largely on the case of SUSY theories

with massive gauge fields, since I think this has the largest new frontier to explore,

both in terms of old and new questions.

First, in terms of a concrete proposal, it seems like future progress for interact-

ing SUSY theories lies in developing methods where the SUSY invariance is manifest.

In the presence of interactions, checking the explicit SUSY-invariance of the resulting

action in component form (and deriving said SUSY variations) is cumbersome and

highly inefficient. Therefore, exporting my results on the fermionic Dimensional

Deconstruction program into the arena of Superspace/Superfield program seems

highly advantageous, pragmatic, and timely. In other words, developing an explicit

Deconstruction of a massless gauge theory living in 5-D N = 2 (e.g. harmonic)

superspace to a massive gauge theory living in 4-D N = 1 superspace. Since the re-

sults in component form are directly checked, the N = 1 SUSY-preserving direction

of N = 2 R-symmetry space is detailed, and explicit examples are known, it should

be relatively straightforward, although potentially tedious, to implement. Once this

procedure exists, however, the systematic analysis of massive SUSY gauge theories

will be straightforward and immediate owing to SUSY-invariance being trivial to

check in superspace formalism. Coupled with a modification of the ghost-freedom

analysis provided in Chapter 5, and further refined by my collaborator Matas in

[80], one may even be able to come up with very efficient algorithms to test ghost-

freedom and SUSY-invariance. If SUSY is present, then one could make repeated

use of the theorem that fermionic PDF’s are equal to the number of bosonic PDF’s

when SUSY is present (see [168]), noting that my PDF-counting algorithm gives a

relatively simple analysis for counting the bosonic PDF’s.

Second, although both qualitative and speculative, it may be interesting to

return to the question of the vDVZ discontinuity and Vainshtein philosophy within

the context of the work here and recent advances in field theory. It is worth noting

that a great deal of the foundational work in massive gravity was conducted in the

1970’s when the most of the modern perspectives on Quantum Field Theory were

either nascent or non-existent. For example, a great deal of work was absent on

interacting CFT’s and non-Lagrangian field theories (see [193] and [31] for a modern

review of some of these results) and also the complete Wilsonian RG paradigm had

not yet been developed (including notions of asymptotic safety/non-trivial UV fixed

points [78] and explicit examples of such [75]).
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Since massive spin-2 fields naturally involve topics of quantum gravity, it may be

convenient to return to the vDVZ discontinuity/UV-non-renormalisability of Proca-

Yang-Mills theory (the whole of which resides purely in the QFT framework) and

explore it from the light of the Vainshtein philosophy supplemented by modern

QFT. It seems like many of the results derived in this thesis demonstrate the inad-

equacy of Lagrangian methods for massive gauge fields. If one views this in light of

Vainshtein’s philosophy –namely that irrelevant operators dominate and make the

theory strongly-interacting (i.e. non-perturbative) at the decoupling-limit energy

scale– with the recent understanding that interacting CFT’s, who can play the role

of UV-fixed points, are often non-Lagrangian. This is the core of the asymptotic

safety scenario; from this standpoint, all of these results by myself and others should

be neither worrying nor surprising. This is precisely what happens for N = 2 5-D

SYM with its dimensionful coupling constant g5-D; although SYM is not perturba-

tively renormalisable, it is UV complete when viewed as a specific interacting CFT

(whose existence is implied by String Theory) with relevant deformations; at scales

E � 1
g2
5-D

, this quantum theory flows in the IR to a theory dominated by classical

SYM theory [75].

The Vainshtein philosophy may be dramatically updated in this framework for

4-D PYM; the idea would then be comprised of an asymptotic-safety setup plus

two conditions. The first would be that one would need to obtain an interacting

massive gauge theory (PYM, having 3 × (N2 − 1) PDF’s, plus matter multiplets)

in the IR, which would be viewed as an EFT with a tower of irrelevant operators;

this is the obvious condition. The second1 would be that the UV theory made up

of two separate, decoupled (e.g. factorised) CFT’s in the UV; both the ordinary

YM UV-CFT (2× (N2 − 1) vector PDF’s) and a new interacting, presumably non-

Lagrangian CFT (with 1× (N2− 1) spin-0 PDF’s), for a total UV CFT theory with

3× (N2− 1) at all energy scales larger than m. The RG flow would come from both

the YM interactions and a new set of relevant (scaleful) operators coupling the two

CFT sectors. Below the scale, the gluons would “feel” the scalar (here expressible

as the Stückelberg mode), but above this scale, the theory would become ordinary

YM and increasingly decoupled at higher energies E � Λ1 from a strongly self-

interacting, presumably non-Lagrangian CFT. In this scenario, the theory would be

UV-complete and at the same time resolve the vDVZ discontinuity. Such a scenario

can only hope to be explored in the presence of SUSY, since much of what is known

1To the author’s knowledge, no one has setup a picture of massive gauge theories in this
language before. Many consistency conditions would be rendered obvious if such a scenario could
be constructed, and it would be provide a natural loophole to many –if not all– no-go results in
the literature regarding massive, self-interacting gauge theories.
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about interacting CFT’s is only known in the SUSY versions of the theories, making

my methods particularly relevant. Additionally, from a Dimensional Deconstruction

perspective, it would be aesthetically pleasing if the quantum theory of a 4-D massive

spin-1 field shared such a similar quantum structure to that of massless spin-1 field in

5-D. Although this discussion is quite qualitative and speculative, if such a scenario

could be consistently concocted for a super-PYM –a theory potentially obtainable

from my methods, since super-Proca theory was obtained from my methods– then

it would represent the first UV-complete massive gauge theory that does not make

use of a Higgs mechanism (require new UV PDF’s), and would represent the first

fundamental theory of a massive spin-1 field. I believe that this idea merits further

inspection. This would be historically interesting in its own right, and could mark

an important milestone in the derivation and creation of a fully consistent, fully

quantum theory of a massive spin-2 field, should an analog scenario prove possible

for its spin-2 cousin.

In conclusion, since dRGT was discovered in 2010 I believe that it fair to say

that the physics community is undergoing a new renaissance in our understanding

of massive gauge theories –one that would likely not have been guessed when Fierz

and Pauli first wrote their equations down in 1939.
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Appendix A

Conventions and Nomenclature

A.1 Nomenclature

A complete glossary of acronyms:

• QFT = “Quantum Field Theory”,

• EFT = “Effective Field Theory”,

• IR = “Infra-red” (at low energies E ∼ 0),

• UV = “Ultraviolet” (at high energies E ∼ ∞),

• LEEFT = “Low-Energy Effective Field Theory”,

• DL = “Decoupling limit”,

• RG = “Renormalisation group”,

• GR = “General Relativity”,

• ADM = “Arnowitt-Deser-Misner”,

• EC = “Einstein-Cartan”,

• spM = “symplectic-Majorana”,

• RS = “Rarita-Schwinger”,

• LLT = “local Lorentz transformation/boost”,

• SUSY = “supersymmetric”,

• SUGRA = “supergravity”,
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• diff = “diffeomorphism”,

• LGR = “Linearised General Relativity”,

• FP = “Fierz-Pauli”,

• mGR = “Massive Gravity”,

• BD = “Boulware-Deser”,

• dRGT = “de Rham-Gabadadze-Tolley gravity”,

• DvN = “Deser-van Nieuwenhuizen”,

• KK = “Kaluza-Klein”,

• YM = “Yang-Mills theory”,

• PYM = “Proca-Yang-Mills theory”

• DOF = “Degrees of freedom” (e.g. size of näıve configuration space)

• PDF = “Physical Degree of Freedom” (polarisation; half of the total initial

conditions of time ODE’s),

• GKD = “Generalised Kronecker Delta symbol”,

• vDVZ = “van Dam-Veltman-Zakharov”.

A.2 Conventions and Notations

My conventions are:

(1.) The same as Srednicki [63] (of specific interest for fermions are sections 33

through 43). Natural units are always employed, so by definition ~ = c = 1

unless otherwise specified.

(2.) Therefore, I use the (−, +, ..., +) metric signature, but my gamma

matrices obey {ΓA,ΓA} = −2ηAB. Grassmann numbers obey (ab)† = b†a†.

(3.) Majorana spinors can easily be decomposed into Weyl spinors by following the

recipe outlined in the above sections of Srednicki, or by directly decomposing

γµ into σµ and σ̄µ in my formulas.
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(4.) All 5-D fermions are given by capital Greek characters (e.g. Λ, Ψ), whereas

all 4-D fermions are given by lower case characters (e.g. λ, ψ). This will also

be true of my bosonic variables, the only exceptions being the vector fields Aµ

and Bµ. 5-D symplectic-Majorana spinors (Ψi) will often have their indices

referred to as “symplectic indices”, but 4-D Majorana spinors ψi will be called

“so(2)R-symmetry” indices.

(5.) Gamma matrices in each dimension are also (un)capitalized following the pre-

vious convention, and obey Γa = γa and Γ5 = iγ5. Note that (γ5)2 = +1.

(6.) I take weight-one objects ΓA1···An ≡ 1
n!

(
ΓA1 · · ·ΓAn + (Perms)

)
.

(7.) I make extensive use of the generalized Kronecker delta tensors, e.g. δA1···AD
B1···BD ≡

εA1···ADεB1···BD and δABMN = δAMδ
B
N − δANδ

B
M . Note that I always use weight 1

(anti)-symmetrisation, e.g. ΓABC = Γ[AΓBΓC] = 1
3!
δABCMNRΓMΓMΓR.

(8.) In my definition of the SUSY algebra, one has an ambiguity,

[ε̄1Q, Q̄ε2] = kε̄2ΓMε1PM + (Gauge Symmetries) (A.1)

I make the choice that k := 2 for SUSY theories, but k := 1
2

for SUGRA

theories. This is just because these are the most natural coefficients to use

in those theories, but they are related by rescalings of the SUSY parameter

εSUSY → 2εSUGRA. Otherwise, there is no difference.

(9.) Note that I also follow the variational convention of Srednicki. In

this variational convention, functional differentiation by a fermion ψ is defined

with an extra minus sign

δS[ψ] :=

∫
dDx

(
− δRS
δψ(x)

)
δψ(x) (A.2)

Therefore, δψ → −δψ away from usual variational conventions. (This causes

my SUSY algebra to have positive k parameters rather than negative.)

(9.) Supplemental to Srednicki’s QFT conventions, I use gravitational conventions

1

2
M2

Pl =
1

2κ2
=

1

8πG
(A.3)

SEH =
1

2κ2

∫
dDx
√
−gR[g] (A.4)

hµν s.t. eµ
a = δµ

a + κhµ
α . (A.5)
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I will make a few notes about other common conventions that I do not follow in

this thesis. In many texts that use fermions in 4-D and 5-D, their ψ̄ will always refer

to the Majorana conjugate (e.g. [126, 180]); secondly for those texts the placement

of symplectic indices i on symplectic-Majorana fermions Ψi vs Ψi = ΩijΨ
j and the

height of the index refers to chirality , e.g. ψi := Lψi. Contrariwise, I will not

indicate chirality in 4-D fermions with this index, so ψi : 6= Rψi or Lψi, and my ψ̄i

always indicates the Dirac conjugate,

ψ̄ ≡ (ψ)†γ0 (A.6)

ψ̄i ≡ (ψi)†γ0 (A.7)

Ψ̄i ≡ (Ψi)†Γ0 (A.8)

As such, the height of the symplectic index does not signify anything, and thus I

will always be written upstairs to prevent clutter in my notation.

Explicitly, one can check my identities and formulas by using the 4x4 spinor

matrices:

γ0 =

(
0 I

I 0

)
, γi =

(
0 σi

−σi 0

)
, (A.9)

γ5 = iγ0γ1γ2γ3 =

(
−I 0

0 I

)
, (A.10)

C4 = −iγ0γ2 =

(
−ε 0

0 ε

)
, (A.11)

C5 = C4γ5 =

(
ε 0

0 ε

)
, (A.12)

L =
1

2
(1− γ5) =

(
I 0

0 0

)
, (A.13)

R =
1

2
(1 + γ5) =

(
0 0

0 I

)
, (A.14)
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and these 2x2 matrices

I = δ =

(
1 0

0 1

)
, (A.15)

σ1 = ∆ =

(
0 1

1 0

)
, (A.16)

σ2 = iε =

(
0 −i
i 0

)
, ε =

(
0 −1

1 0

)
. (A.17)

σ3 = η =

(
1 0

0 −1

)
, (A.18)

(A.19)

I choose to keep my Weyl spinor-based tensors (i.e. (σi)α β , I
α
β) and the symplectic/so(2)R

symmetry-based matrices (i.e. δij, ηij, εij, ∆ij) separated with distinct symbols,

even though they are numerically equivalent (up to factors) to the Pauli matri-

ces. Unquestionably, the existence of these matrices within the SUSY/R-symmetry

structure, which I prove in Chapter 6, would straightforwardly indicate a higher di-

mensional spinor origin to all of these R-symmetry objects (almost certainly within

a 6-D theory), I choose to hide this fact for conceptual clarity and keep a clean 4-D

notation.

A.2.1 Treatise on Spinors

Fermions in 5-D are generally less well known than their 2, 4, 6, and 10 dimen-

sional counterparts, and I have my own convention to decomposing them into 4-D

fermions. Therefore, I will give a quick sermon on 4-D and 5-D spinors/fermions.

For 4-D spinors, there are 3 distinct representations to choose from: Weyl

spinors, Dirac spinors, and Majorana spinors. The irreducible unitary representation

(rep) is Weyl, thus the other two can always be recast as Weyl fermions. A Dirac

fermion is composed of a L-handed and a R-handed Weyl spinor, which when the

spinors as in Weyl basis gives the simple decomposition

ψ =

(
ψL

ψR

)
, (A.20)

where ψL, ψR are 2-dimensional complex, Grassmann-valued vectors (Weyl spinors).
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Majorana spinors then are Dirac spinors subjected to the Majorana constraint:

ψ̄ = ψTC4 ,

=⇒ ψ†γ0 = ψTC4 , (A.21)

where C4 is the 4-D charge conjugation matrix. This kills half of the degrees of

freedom of the Dirac fermion, and acts as an effective “reality condition”.

By contrast, fermions in 5-D can only come from one spinor representation,

namely the Dirac representation. This means it is 4-d vector of complex Grassmann

numbers and, rather unpleasantly, they have no nice Majorana properties that are

often power the identities underpinning SUSY invariance. For this reason, it has

become popular in 5-D (and 6-D) SUSY theories to make use of an equivalent,

but far more elegant, fermion structure called a symplectic-Majorana fermion.1

Symplectic-Majorana fermions are defined by taking two Dirac fermions Ψ → Ψi,

i = 1, 2, and then recovering a single Dirac fermion worth of information by imposing

the relation

Ψ̄i ≡ (Ψi)†Γ0 = (Ψj)T εjiC5 , (A.22)

which returns one back to a single Dirac fermion worth of information. A few

comments are in order. First, the odd appearance2 of the symplectic matrix εij is

due to the fact that in 5-D, the absence of a Majorana representation is because

the natural charge conjugation operator, C5 fails to be a star operator; it obeys
¯̄ΨM = −Ψ, rather than ¯̄ΨM = Ψ. But the introduction of ε resolves the sign

problem, ¯̄ΨspM = −ε2Ψ = Ψ, at the price of having an indexed object. Thus, in

5-D, one is forced to make use of a charge conjugation that mixes the spinor basis

and a new symplectic index in order to talk about Majorana-like fermions. This

leads to a nice set of identities I will list in section A.2.2.

A natural question now is what relationship, if any, exists between 4-D Majo-

rana fermions and a 5-D symplectic-Majorana fermion. At the level of DOF, two 4-D

Majorana fermions have 8 real grassmann numbers of information, which matches

the 8 from a symplectic-Majorana (i.e. Dirac) rep. This leads one to conjecturing

a conversion formula between them (which I often call a “descending relation” or a

“decomposition” in this text), which I take to have the form

Ψi = P ijψj , (A.23)

1Further details can be found in [131, 159].
2If one has more fermions, they can mix them up with a more complicated symplectic form,

Ωij , but I will not use this fact.
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where P ij operates on both the symplectic/so(2)R-symmetry indices and on the

spinor basis. This operator must simultaneously satisfy conditions (A.22) and

(A.21). I use a solution of the form

P ij =
1√
2

[
Iδij − γ5ε

ij
]
, (A.24)

where, explicitly, the matrices I and γ5 operate on the spinor basis, but δ and ε

operate on the symplectic/so(2)R indices. Then the inverse is given by

ψi = P̄ ijΨj =
1√
2

[
Iδij + γ5ε

ij
]
Ψj . (A.25)

From these relations, I have derived the following formulas:

Ψ̄i = ψ̄jP ji , (A.26)

Ψ̄iNΨi =

ψ̄iNψi if {N, γ5} = 0 ,

−εijψ̄iNγ5ψ
j if [N, γ5] = 0 ,

(A.27)

P ijΨj = −γ5ε
ijψj , (A.28)

P̄ ijΨj = ψi , (A.29)

which I frequently use; note that I am using N in (A.28) to represent an arbitrary

spinor operator, e.g. N = I, γµ, γµν , γµγνρ, etc. It is interesting to note that that

pure bispinors (N = I) are PT -odd in 4-D but even in 5-D.

A.2.2 Useful Formulas for Fermions

Here I use XM = (xµ, y) when I need to compare 5-D to 4-D identities, but

many of these identities are dimension independent. It will be explicitly stated when

this is the case.

Firstly, I will list some useful R-symmetry identities

∆ijηjk = εik = −ηij∆jk , (A.30)

εijηjk = ∆ik = −ηijεjk , (A.31)

∆ijεjk = ηik = −εij∆jk . (A.32)

Secondly, I will write down some Γ matrix “recursion relations”. I will start by
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noting the definitions of Γ matrices

ΓA = ΓA (A.33)

ΓAB =
1

2!
δABMNΓMΓN (A.34)

ΓABC =
1

3!
δABCMNRΓMΓMΓR

=
1

3

(
ΓAΓBC + ΓBΓCA + ΓCΓAB

)
(A.35)

ΓABCD =
1

4!
δABCDMNRSΓMΓNΓRΓS (A.36)

ΓABCDE =
1

5!
δABCDEMNRSLΓMΓNΓRΓSΓL . (A.37)

From this, one may use [ΓM , ΓN ] = −2ηMN , the GKD recursion relations (given

in totality by (B.8), and shown as an example for gamma in (A.35) to obtain the

dimension-independent Γ recursion formulas

ΓA = ΓA (A.38)

ΓAB = ΓAΓB + ηAB (A.39)

ΓABC = ΓAΓBΓC + ΓAηBC − ΓBηAC + ΓCηAB (A.40)

ΓABCD = ΓAΓBΓCΓD

+ ΓAΓBηCD − ΓAΓCηBD + ΓAΓDηBC

+ ΓCΓDηAB − ΓBΓDηAC + ΓBΓCηAD

+ ηABηCD − ηACηBD + ηADηBC (A.41)

ΓABCDE = ΓAΓBΓCΓDΓE

+ ΓAΓBΓEηCD − ΓAΓCΓEηBD + ΓAΓDΓEηBC − ΓBΓCΓDηAE + ΓBΓCΓEηAD

+ ΓAΓCΓDηBE + ΓAΓBΓDηCE − ΓAΓBΓCηDE + ΓBΓDΓEηAC − ΓCΓDΓEηAB

+ ΓAηBCηDE − ΓAηBDηCE + ΓAηBEηCD

+ ΓBηACηDE − ΓBηADηCE + ΓBηAEηCD

+ ΓCηABηDE − ΓCηADηBE + ΓCηAEηBD

+ ΓDηABηCE − ΓDηACηBE + ΓDηAEηBC

+ ΓEηABηCD − ΓEηACηBD + ΓEηADηBC . (A.42)
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Fortunately, supergravity never requires a Γ with more than 5 indices, so I stop here.

However, with deepest regret, I inform that reader that supergravity makes use of

ΓMNRPQ (in dimensions 5 and higher) for the derivation of torsion and contorsion

generated from Rarita-Schwinger kinetic terms (i.e. gravitini) on curved spacetimes.

Thirdly, I will list the dimension-dependent contraction identities in 4-D

and 5-D, which are as follows:

5-D 4-D

ΓABCDEΓE = (−1)ΓABCD

ΓABCDΓD = (−2)ΓAB γabcdγd = (−1)γabc

ΓABCΓC = (−3)ΓAB γabcγc = (−2)γab

ΓABΓB = (−4)ΓA γabγb = (−3)γa

ΓAΓA = (−5) γaγa = (−4)

which holds true for contractions applied on any side so long as it is the index

‘closest’ to it, e.g. γa•γ• = γ•γ
•a).

Fourthly, I will write down the dimension-dependent Majorana “exchanging

identities”. Starting in 5-D, for any two 5-D symplectic-Majorana spinors, the

symplectic-Majorana exchanging identities [159] are given by

Λ̄i
1Λi

2 = −(+1)Λ̄i
2Λi

1 (A.43)

Λ̄i
1ΓAΛi

2 = −(+1)Λ̄i
2ΓAΛi

1 (A.44)

Λ̄i
1ΓABΛi

2 = −(−1)Λ̄i
2ΓABΛi

1 (A.45)

Λ̄i
1ΓABCΛi

2 = −(−1)Λ̄i
2ΓABCΛi

1 (A.46)

The overall minus sign is due to the symplectic form from the definition of charge

conjugation, with the crucial sign sign factors are (±1); these coefficients are often

labelled as tN for a gamma matrix, Γ(N) ≡ ΓM1···MN . The generalized symplectic-

Majorana exchanging identity, which handles all cases, is

Λ̄i
1Γ(N1) · · ·Γ(Np)Λi

2 = (−1)
(
tN1 · · · tNp

)
Λ̄i

2Γ(Np) · · ·Γ(N1)Λi
1 , (A.47)

or more simply, to reverse bispinors, one simply reverses the multiplication order of

the Γ(N)’s, and multiplies by minus one times all of the tN ’s of each Γ(N). It has

been shown that tN has mod-4 periodicity (See [159]), tN+4 = tN , so this gives a

formula for any Γ(N); this periodicity holds in all dimensions.
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The four dimensional Majorana identities are given by

λ̄1λ2 = (+1)λ̄2λ1 (A.48)

λ̄1γ
aΛ2 = (−1)λ̄2γ

aλ1 (A.49)

λ̄1γ
abλ2 = (−1)λ̄2γ

abλ1 (A.50)

λ̄1γ
abcλ2 = (+1)λ̄2γ

abcλ1 , (A.51)

with the generalized Majorana identity given by

λ̄1γ
(N1) · · · γ(Np)Λi

2 =
(
tN1 · · · tNp

)
λ̄2γ

(Np) · · · γ(N1)λ1 . (A.52)

where the tN ’s are read off the same way as 5-D (i.e. the coefficient in parenthesis).

A.2.3 A Useful Formalism for γ Matrices

Famously Γ matrices form a complex Clifford algebra C`(D − 1, 1), that is

defined by

{γµ, γν} = −2ηµν , (A.53)

so a = 1, · · · , D . The higher rank γµ1···µN objects obey even more complex (anti)-

commutation relationships, which are critical to the structure of SUSY and SUGRA.

Frequently, one winds up with permutations and re-orderings of γ matrices, e.g.

expressions like

γµνγρ − γργµν . (A.54)

I have found a useful formalism for dealing with the large combinatorics associated

to γ identities, which eases proofs and cumbersome notation.

The conversion to my gamma formalism proceeds by assigning each gamma

matrix with a unique (i.e. free) index a number. Firstly, in the above expression

one could make a dictionary, e.g.

µ → 1 ,

ν → 2 ,

ρ → 3 . (A.55)

Secondly, if one has gamma matrices that are contracted (e.g. an expression like
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γαγµγα), I give that repeated label a Greek character, e.g.

γα → α . (A.56)

Thirdly, I turn the γ matrices into these (now exotic) numbers; additionally, I have

it that brackets represent the higher rank γ matrices, so e.g.

γµ → 1

γν → 2

γρ → 3

γα → α

γµν → [12]

γµνρ → [123] , (A.57)

where these ‘numbers’ are actually stand-ins for matrices; alternatively, one

can simply think of them as being exotic Clifford numbers. So for example, the

expression γαγµγα → α1α.

Fourthly, all numerical coefficients are put in factor form (e.g. (2 → 2
1
) to

differentiate them from the matrices being represented by numbers (In practice, on

paper one can draw a circle around, or underline, numerical factors to differentiate

them).

Fifthly, and finally, the only rules I impose on my numbers are the following,

ab = −ba− 2

1
(ab) , ∀ a, b ∈ {1, 2, 3, α} (A.58)

αα =
−D

1
. (A.59)

In other words, these exotic numbers anti-commute up to a Clifford term, and all of

the Greek numbers contract to create a pure number (equal to minus the spacetime

dimension). The final critical rule is that when two contracted indices touch, one

ends up with the expected γαγα = −D → αα := −D
1

. (A.59)

These two rules force an isomorphism between this simplified formalism and

the original γ matrices; the dictionary forms a 1-to-1 correspondence between all

expressions. From here, one can start writing down old equations in a new form, so
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for example

γµγν + γνγµ = −2ηµν → 12 + 21 =
−2

1
(12) (A.60)

γµγν + γνγµ = 2γµν → 12− 21 =
2

1
[12] . (A.61)

Adding both of those equations, one ends up with a nice, frequently used relation,

[12] = 12 + (12) . (A.62)

Returning to the original example expression γµνγρ − γργµν , one has

→ [12]3− 3[12] =
(

123 + 3(12)
)
−
(

312 + 3(12)
)

= 123− 312

=

123 −312

+2
1
(13)2

−2
1
1(23)

(A.63)

=
2

1

(
2(13)− 1(23)

)
(A.64)

→ 2 (γνηµρ − γµηνρ) . (A.65)

The middle lines look convoluted, however they obey an extremely trivial pattern.

The parenthesis tracks which two numbers are being permuted (as well as being the

Minkowski metric), and thus all cubic terms 123, 231, 132, 312, etc, are all equivalent

at cubic order, up to ± and subleading linear terms of the form a(bc). In other

words, every time one permutes the numbers passed one another, a term is picked

up (from the Clifford anti-commutator) and the sign of the cubic term alternates.

The subleading terms (those underneath the term −312) are generated by anti-

commutator terms, and one continues doing the permutations until one has the

“normal ordering” of 123. The ±1 is determined by the sign of the last item in the

stack, so here −123. This cancels the other normal-ordered terms.

This procedure systematically simplifies any sequence of unordered, anti-symmetrised

γ expression as well as provides expedited ways of proving all of the γ matrix formu-

las generated in subsection A.2.3. For instance, converting (A.35) (these recursion

formulas are extraordinarily powerful in this context) into this formalism, one finds

3

1
[123] = 1[23] + 2[31] + 3[12] . (A.66)
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It is instructive to prove then that, using [12] = 12 + (12), one has

[123] = 123 + 1(23)− 2(31) + 3(12) , (A.67)

and to showcase a formula with contracted indices, that one can derive

α1α =
D − 2

1
1 (A.68)

These formulas in component notation are the well-known relations

γµνρ = γµγνγρ + γµηνρ − γνηρµ + γρηµν

γαγµγα = (D − 2)γµ .

Proving SUSY invariance and closure of the algebra for component fields is rapidly

sped up in this formalism, as are the usual gamma identities used in all fermion

calculations.



Appendix B

GKD Symbols and Symmetric

Polynomials

I make copious use of the generalized Kronecker delta (GKD) tensors, which are

the tensor index formulation of weighted, anti-symmetric permutations of indices,

the basis of symmetric polynomials, the basis of p-forms and exterior calculus, and

so on. They are highly powerful objects, so I now review them carefully. To begin

with the most basic object, one has the definition

δM1···MD
N1···ND := εM1···MDεN1···ND . (B.1)

One can also define GKD tensors with indices lower than the the number of space-

time dimensions, which I define as1

δM1···Mn
N1···Nn := n!δ

[M1

N1
· · · δMn]

Nn
(B.2)

First, this is an inelegant way to write down the GKD tensors, but it is a valid

definition. So for instance, they then trivially work for relations of the form

T[µ1···µn] =
1

n!
δ
µ′1···µ′n
µ1···µnTµ′1···µ′n . (B.3)

Second, notice the well known relation

n!δ
[M1

N1
· · · δMD]

ND
:= εM1···MDεN1···ND (B.4)

1The factor of n! exists because I am using weight-one conventions, A[ab] = 1
2 [Aab − Aba]. So

the GKD tensor will always expand out into sums of ordinary Kronecker delta tensors times unity,
e.g. δabcd = δac δ

b
d − δadδbc.

185
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shows how the 2 definitions agree for the case n = D. Third, note that there

are only as many GKD tensors as there are spacetime dimensions, owing to the

Levi-Civita tensor being the largest anti-symmetric form that a spacetime can hold

without implying triviality. Fourth and finally, notice that once one moves to curved

spacetimes, one has

εµ1···µD =
1√
−g

ε̃µ1···µD (B.5)

εµ1···µD =
√
−gε̃µ1···µD (B.6)

with ε̃ being the totally anti-symmetric Levi-Civita symbol. I also use the conven-

tion that ε̃µ1···µD := (−1)ε̃ν1···νDg
µ1ν1 · · · gµDνD . These together imply that the GKD

tensor

δµ1···µD
ν1···νD = εµ1···µDεν1···νD = ε̃µ1···µD ε̃ν1···νD (B.7)

remains a tensor even when promoted to curved spacetimes, since the determinant

factors identically cancel!

B.1 Some Useful GKD Formulas

The power of GKD tensors comes from their beautiful, dimension-independent

recursion relations and their contraction identities. The recursion relations for

fourth-rank and lower GKD tensors is given by

δµνρσαβγδ = δµαδ
νρσ
βγδ − δ

µ
βδ

νρσ
γδα + δµγ δ

νρσ
δαβ − δ

µ
δ δ

νρσ
αβγ , (B.8)

δµνραβγ = δµαδ
νρ
βγ + δµβδ

νρ
γα + δµγ δ

νρ
αβ , (B.9)

δµναβ = δµαδ
ν
β − δ

µ
βδ

ν
α , (B.10)

δµα = δµα . (B.11)

In other words, one can expand them as δp =
∑

σ δ1δp−1, where even-numbered

tensors get alternative signs as one sums over the permutations, but odd-numbered

have no sign as instead one sums over permutations of the bottom indices.

Their very useful (but dimension-dependent) contraction identities generate,
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in 4 and 5 dimensions, formulas such as

5-D 4-D

δMNRS•
ABCD• = (1)δMNRS

ABCD δµνρ•αβγ• = (1)δµνραβγ

δMNR•
ABC• = (2)δMNR

ABC δµν•αβ• = (2)δµναβ
...

δM•A• = (4)δMA δµ•α• = (3)δµα

δMM = 5 δµµ = 4 ,

following the general D-dimensional rule of δ
A1···AD−kC1···Ck
B1···BD−kC1···Ck = k! δ

A1···AD−k
B1···BD−k .

B.2 p-Forms and Exterior Calculus via GKD Ten-

sors

All totally anti-symmetric tensors with p indices may be recast as objects called

a p-form, which fall into an exterior algebra. These objects are defined via contrac-

tions into “basis vectors”

1

0!
1,

1

1!
dxµ,

1

2!
xµ1 ∧ dxµ2 , . . . ,

1

D!
dxµ1 ∧ · · · ∧ dxµD . (B.12)

The wedge product over coordinate basis vectors is defined via GKD tensors as

dxµ1 ∧ · · · ∧ dxµp =
1

p!
δµ1···µp
ν!···νp dxν1 · · · dxνp . (B.13)

So in particular, for a p = D form in D-dimensions, one has

dxµ1 ∧ · · · ∧ dxµD = δµ1µ2···µD
1 2 ···D dx0 dx1 · · · dxD (B.14)

= εµ1···µD dx0 dx1 · · · dxD . (B.15)

The basis can now be seen as the volume measure of a D-dimensional integral

times the Levi-Civita symbol. In fact, p-forms also have integral measures over p-

dimensional hypersurfaces. More details on this can be found in [132]. A p-form is
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created from contracting a antisymmetric rank-p tensor Aµ1···µp into the basis vectors

A = Aµ1···µp dxµ1 ∧ · · · ∧ dxµp (B.16)

= δµ1···µp
ν1···νp Tµ1···µp

(
1

p!
dxν1 · · · dxνp

)
. (B.17)

This object is manifestly diffeomorphism invariant.

The wedge product between a p-form A and a q-form B

A ∧B = δµ1µ2···µpν1···νq
ρ1···ρ(p+q)

Aµ1···µpBν1···νq

(
1

(p+ q)!
dxρ1 · · · dxρ(p+q)

)
, (B.18)

there is a conversion factor of p!q!
(p+q)!

exists simply to keep the wedged coordinate basis

weight-one; however, this always refactors (by design) into a 1
(p+q)!

so I neglect these

factors and only keep them around in the basis vectors, i.e. 1
(p+q)!

dxµ1 · · · dxµ(p+1) .

This object is also manifestly diffeomorphism invariant. This product obeys impor-

tant anti-symmetry identity

A ∧B = (−1)pqB ∧ A , (B.19)

thus an even-rank form always commutes, but two odd-rank forms anti-commute.

A ∧B is manifestly a (p+ q)-form.

The exterior derivative of an arbitrary p-form A can be defined simply via

dA = δνµ1···µp
ρ1···ρ(p+1)

∂νAµ1···µp

(
1

(p+ 1)!
dxρ1 · · · dxρ(p+1)

)
. (B.20)

One can prove the useful relations for p-form A and q-form B from the previous two

formulas, for instance

d(A ∧B) = dA ∧B + (−1)pA ∧ dB . (B.21)

Note that the (−1)p comes from permuting the index for the partial derivative past

A’s p indices.

One can integrate over volume forms over M with a neat conversion
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formula between form notation and component notation (and back again) via

I =

∫
A (B.22)

=

∫
δµ1···µD
ν1···νD Aµ1···µD

(
1

D!
dxν1 ∧ · · · ∧ dxνD

)
(B.23)

=

∫
ε̃µ1···µDAµ1···µD

(
dx1 · · · dxD

)
(B.24)

=

∫
dDx ε̃µ1···µDAµ1···µD (B.25)

=

∫
dDx
√
−gεµ1···µpAµ1···µD (B.26)

where in the second to last line I have used dDx = dx1 · · · dxD and to get to the

last line I have made use of εµ1···µD = 1√
−g ε̃

µ1···µD ; again for more details, I refer

the reader to [132]. Passive diffeomorphism invariance is guaranteed by the form

structure. I list one last formula that applies to a manifold without boundary (or

whose p-forms die at the boundary), known as the integration by parts formula for

p-form A and q-form B∫
M

dA ∧B =

∫
M

(−1)(p+1)A ∧ dB (B.27)

It may be useful to a reader not familiar with p-form (or component notation) to

convert each line their preferred notation and see how each step is generated in their

preferred language.

B.2.1 Hodge Duality

Hodge duals are an operator that relates p-forms to (D−p)-forms, namely that

a p-form A can always be exchanged for a (D− p)-form ∗A with no loss of content.

This is done via contracting into a Levi-Civita tensor, i.e.

∗A = δ
µ1···µ(D−p)
ν1···ν(D−p)

(
1

p!
εµ1···µ(d−p)

ρ1···ρpAρ1···ρp

)(
1

(D − p)!
dxν1 · · · dxνD−p

)
. (B.28)

Note that this can been seen at the level of independent basis; for instance in 3

dimensions, a 2-form has 3 independent components, the same as a (3 − 2)-form

= 1-form.
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Under my definitions, there are two potentially useful formulas

∗(∗A) = (−1)p(D−p)A (B.29)∫
A ∧ ∗B =

∫
dDx
√
−gAµ1···µpB

µ1···µp (B.30)

for when both A and B are p-forms, and thus A∧∗B is necessarily a volume form.

N.B. In this text, I will use as a convention that I suppress wedge

products, i.e. AB := A ∧ B. In this section, I have used explicit wedge

product symbols for clarity. Elsewhere, I will simply write AB and I will

convert between these formulas following the rules listed in this section.

B.3 Symmetric Polynomials via GKD Tensors

Symmetric polynomials are merely the natural 2-tensor “polynomials” created

by the GKD tensors. In some meaningful sense, they are like “double p-forms” (only

the second indices do not contract into a coordinate basis dxµ). For instance, given

a group of tensors (Xi)µ
α, where i = 1, . . . , P , one can define rank-P symmetric

polynomial

δP [X1 · · ·XP ] := δµ1···νP
α1···αP (X1)µ1

α1 · · · (XP )µP
αP . (B.31)

These are called symmetric polynomials because the dual anti-symmetry in the top

and bottom indices of the GKD tensor means that all objects inside the polynomial

commute, just like as though they were real variables, e.g.

δ2[X1X2] = δ2[X2X1] . (B.32)

So for instance,

δP [X1X2 · · ·XP ] = δP [X2X1 · · ·XP ] (B.33)

= δP [XPX1 · · ·XP−1] , (B.34)

and so forth. This sets up a very useful homomorphism between tensors in the

symmetric polynomial and real polynomials. So for instance, it follows the simple
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Pascal triangle/Newton multi-nomial expansions

δP [(X + Y )p] = δP [Xp + pXp−1Y + · · ·+ pXY p−1 + Y p] (B.35)

δP [(X + Y + Z)p] = δP [Xp + Y p + Zp

+p
(
Xp−1(Y + Z) + Y p−1(X + Z) + Zp−1(X + Y )

)
+ · · · ] (B.36)

with Xµ
α, Yµ

α, and Zµ
α. Calculus for this reason is also greatly simplified so long

as one keeps track of whether or not the derivative is upstairs or downstairs.

B.4 Bosons with Spin s ≤ 2

There is a unified way of writing down all kinetic terms with GKD tensor for

bosons with spin less than or equal to 2 in all dimensions:

Ss=0 =

∫
dDx

1

2
ϕ (δµα∂µ∂

α)ϕ (B.37)

Ss=1 =

∫
dDx − 1

2
Aµ
(
δµναβ∂ν∂

β
)
Aα (B.38)

Ss=2 =

∫
dDx − 1

2
hµ

α
(
δµνραβγ ∂ν∂

β
)
hρ

γ (B.39)

The sign is picked out by unitarity/positive-definite Hamiltonian. The last equation

for the spin-2 field is nothing more than the action for linearised GR. This is a

massive simplification over the typical way of writing it via,

Ss=2 =

∫
dDx − 1

2
hµ

µ2hν
ν + · · · . (B.40)
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Review of Einstein-Cartan

Formalism

C.1 The Vielbein eµ
a

Physicists are typically taught General Relativity using the original formulation

involving metric tensors and their associated Christoffel symbols. There is, however,

an alternative formulation of General Relativity that uses a different set of variables,

called a “vielbein” and its associated “spin connection”. In this section, I focus on

the vielbein, using all of the usual language of differential geometry [132].

At its core level, a vielbein contains precisely the same information as the metric

tensor, but is directly monitoring the difference between the global coordinates and

the local rest frame. In other words, the vielbein starts is defined as the map

between the local inertial coordinates at a point x0 ∈M amd the global coordinate

atlas. Suppose the local coordinates, which for simplicity I denote as Xa(x, x0) and

is essentially the Riemann-normal coordinates at the point x0, one has

eµ
a(x0) =

∂Xa(x, x0)

∂xµ

∣∣∣
x=x0

. (C.1)

It is best to use a new coordinate label, since at this point there is a surviving

Lorentz symmetry not shared in the global coordinate system. This may be viewed

as a spray of coordinate functions, up to local Lorentz boosts, which produce the

local inertial coordinate at x0, i.e. gab(x0) = ηab; at a physical level, one should

expect that this must contain all of the information of the metric since this is also

the information a metric contains. Indeed, this is so. Instead of working with a

spray of local coordinate fields Xa, one can simply choose to work with the vielbien

itself as defined above. Notice that the defining relation, and indeed the pragmatic

192
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definition of the vielbein, is that it follows the change-of-coordinates rule

gµν(x0) =

[
∂Xa

∂xµ
ηab

∂Xa

∂xµ

]
x=x0

(C.2)

= eµ
a(x0)ηabeν

b(x0) (C.3)

=⇒ gµν = eµ
aηabeν

b . (C.4)

In other words the vielbein can be thought of as the map which takes a global metric

gµν to the locally inertial metric ηab . Likewise, the vielbein drags vectors from the

tangent space to the local inertial frame’s space, eµ
a : V µ → V a = eµ

aV µ. Because

eµ
a is a linear map that represents a change of coordinates, it necessarily contains

an inverse mapping that is defined naturally through a matrix inverse. Let E be the

D ×D matrix formulation

E = eµ
a (C.5)

then there is a related object called the inverse vielbein defined in the obvious

manner

ea
µ := [E−1]a

µ (C.6)

It is left to the reader to demonstrate to themselves that formulas like gµνeν
bηab =

ea
µ and Det(E) =

√
−g hold true, so one may always raise and lower with the

respective metrics in the usual manner. Note that it is conventional to define e

(without indices) to be e := Det(E).

Now, of course, it is worth pointing out gauge redundancies/symmetries. Fa-

mously, there is no unique global coordinate system, thus the metric is unique only

up to diffeormorphisms. Likewise, there is no unique local inertial frame, there is

only a unique one up to local Lorentz boosts Xa(x) → Λa
b(x)Xb(x). Since the

metric can be reinterpreted as a Lorentz-invariant contraction of indices, it is trivial

to see that local Lorentz boosts have no affect on the metric

eµ
a(x)→ Λa

b(x)eµ
b(x) (C.7)

=⇒ gµν(x)→ g′µν = gµν(x) , (C.8)

using gµν = eµ
aηabeν

b and the well-known identity Λa
cηabΛ

b
d = ηcd. Likewise, the

vielbein transforms as a covector under diffeormorphisms for the expected reasons

eµ
a → e′µ

a(x′) =
∂x′ν

∂xµ
eν

a(x(x′)) . (C.9)
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Thus, the vielbein at first sight appears to be a bizarre re-encoding of the metric

to accommodate two coordinate systems. As one will discover, however, there are

many advantages to this variable. But first, I need to introduce the spin connection.

C.2 The Spin Connection ωµ
a
b

The spin connection is the second crucial variable in the Einstein-Cartan for-

mulation of General Relativity. This object is noticeably similar to that of the gauge

connections of Yang-Mills. Indeed, this is a connection that knows about the cur-

vature of the spacetime as one moves about the manifold, much like the Yang-Mills

gauge connection Aµ
a knows about the “curvature” induced on objects which are

charged under color. The principle of equivalence requires all objects in the manifold

to be charged under diffs (i.e. have a contribution to the stress-energy). Before get-

ting into this physics, I will introduce the spin connection as the connection needed

to preserve local Lorentz symmetry.

Suppose one is given a vector field in the local inertial space, Φa(x). This vector

will transform under a local Lorentz boost as1

Φa(x)→ Λa
b(x)Φb(x) . (C.10)

Notice, however, if one wishes to build up an action or write down field equations for

this object, then one needs to define how derivatives act on this object. In order to

build locally Lorentz-invariant equations, one needs to apply the covariant derivative

trick used in Yang-Mills, namely

∂µΦa → DµΦa = ∂µΦa + ωµ
a
bΦ

b , (C.11)

and then give the spin connection the transformation properties necessary to keep

this derivative gauge covariant

Ωµ
a
b → Λa

cΩµ
c
dΛ

d
b − ∂µΛa

cΛb
c (C.12)

DµΦa → Λa
bDµΦb (C.13)

1N.B. From now on, I shall drop the explicit functional dependence on the manifold, i.e.
Φa(x) = Φa.
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C.2.1 In Matrix Notation

If one puts this into matrix notation, so that the Lorentz indices are suppressed,

i.e.

Ωµ
a
b → Ωµ, Λa

b → Λ , (C.14)

then this has the usual elegance of the Yang-Mills formalism

D′µΦ′ = ∂µΦ′ + Ω′µΦ′ (C.15)

= ∂µ(ΛΦ) + (ΛωµΛ−1 − ∂µΛΛ−1)ΛΦ (C.16)

= Λ(∂µΦ + ωµΦ) . (C.17)

C.2.2 In p-Form Notation

If one puts this into p-form notation, i.e. as a matrix-valued 1-form ω =

ωµdxµ, then one gets another boost in the simplicity of the formalism and a deeper

connection to the geometry.

DΦ = dΦ + ωΦ , (C.18)

ω → ω′ = ΛωΛ−1 − dΛΛ−1 , (C.19)

Φ→ Φ′ = ΛΦ (C.20)

implies

DΦ→ D′Φ′ = dΦ′ + Ω′Φ′ (C.21)

= d(ΛΦ) + (ΛωΛ−1 − dΛΛ−1)ΛΦ (C.22)

= dΛΦ + ΛdΦ + ΛωΦ− dΛΦ (C.23)

= Λ(dΦ + ωΦ) (C.24)

= ΛDΦ . (C.25)

This is as simple of a notation as one can muster. Note one can also use p-forms

without the matrix notation, e.g. DΦa = dΦa + ωa bΦ
b. The notation that is most

practical and convenient depends strongly on the context.
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C.3 The Curvature 2-Form Ra
b

Using the exterior calculus and re-writing the connection as a matrix-valued

1-form ω = ωµ
a
bdx

µ, one can make further crucial analogies with Yang-Mills theory.

Changing gears, one knows from calculations in Yang-Mills (or else one can compute

by hand), that there is a formula

D2Φ = RΦ (C.26)

s.t. R = dω + ω ω (C.27)

=
(
∂µων

ab − ∂νωµ ab + ωµ
a
c ωµ

cb
)(1

2
dxµdxν

)
, (C.28)

where in the last line I have expressed all of the suppressed indices. This 2-form

object, the curvature 2-form R is the only gauge covariant object,

R → ΛRΛ−1 (C.29)

i.e. Ra
b → Λa

cRc
d Λb

d (C.30)

that can be constructed from the spin connection ω. This object also obeys a

Bianchi identity

DR = 0 (C.31)

It should come as no surprise to the reader that this object is merely the Rie-

mann tensor moved from spacetime coordinates µ, ν, ρ, . . . to local Lorentz (i.e.

Minkowski fibre) indices a, b, . . . . Before this can be seen, it is necessary to discuss

how this variable relates to the vielbein.

C.3.1 The Vielbein Postulate

There is a simple relation between the vielbein eµ
a and the spin connection

ωµ
ab. In essence, it forces the vielbein to be covariantly constant with a connection

on each index. In other words,

Dµeν
a = ∂µeν

a − Γρµν eρ
a + ωµ

a
b eν

b = 0 . (C.32)

This formula is called the vielbein postulate. Later on, I will prove that this

follows from a variational principle, but for now I merely take it as a fact. It is quite
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obviously closely related to the Levi-Civita condition

∇ρgµν = 0 , (C.33)

where ∇ only acts with Christoffel symbols, but D acts with both Christoffel for

spacetime indices and spin connections on Lorentz indices. This relation can be

explicated by noting that

∇ρgµν = Dρgµν (C.34)

= Dρ

(
eµ

aηabeν
b
)

(C.35)

= (Dρeµ
a) ηabeν

b + eµ
aηab

(
Dρeν

b
)

(C.36)

= 0 (C.37)

⇔ Dρeµ
a = 0 . (C.38)

(It is trivial to prove that Dρηab = 0.) There are two important facts now to mention.

C.3.2 Curvature 2-form is the Riemann Tensor

The first important fact to mention is that the previously defined curvature

2-form is the Riemann tensor in disguise.2 To start, note that the vielbein

postulate guarantees a nice covariant conversion between tangent space indices and

Lorentz indices, so covariant derivatives play well together

∂ρΦ
a + ωρ

a
bΦ

b = DρΦ
a (C.39)

= Dρ(eν
aΦν) (C.40)

= eν
aDρΦ

ν (C.41)

= eν
a∇ρΦ

ν (C.42)

= eν
a
(
∂ρΦ

ν − ΓνραΦα
)
. (C.43)

Critically, the line (C.42) follows by making use of the fact that Φν is now a tangent

vector, so there is no contribution to it from the spin connection and only the

2So long as there is no torsion, a complication which I will address shortly in section C.3.4.
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Christoffel symbol. From here, the equation D2Φa = Ra
bΦ

b can be re-written as

Rµν
a
bΦ

b = [Dµ, Dν ]Φ
a (C.44)

= D[µDν]Φ
a = D[µDν](eρ

aΦρ) (C.45)

= eρ
aD[µDν](Φ

ρ) (C.46)

= eρ
a∇[µ∇ν]Φ

ρ (C.47)

= eρ
a(Rµν

ρ
σΦσ) (C.48)

= eρ
aRµν

ρ
σ(eb

σΦb) (C.49)

=⇒ Rµν
a
b := Rµν

ρ
σeρ

aeb
σ (C.50)

where in the third line I have used the vielbein postulate, the fourth makes use of

DµΦρ = ∇µΦρ since Φ no longer has Lorentz indices, and the fifth I have made use

of the defining formula for the Riemann tensor. Thus, this proves the equivalence

of the two, up to conversations of tangent space indices to flat space indices with

vielbein.3

C.3.3 Torsion-Free Condition

Secondly, if one looks at the form of the vielbein postulate

∂µeν
a − Γρµν eρ

a + ωµ
a
b eν

b = 0 ,

it suggests that one has the ability to trade in the spin connection in terms of

Christoffel symbol, and vice versa, up to a term with a partial derivative of the

vielbein. This actually is stronger, this equations forces a definition for both the

Christoffel symbol and for the spin connection in terms of the vielbein; in other

words, the spin connection is also a function of the vielbein. I now give an elegant

proof of this without appealing to any knowledge of the Christoffel symbols.

The vielbein postulate can actually can be rephrased as an elegant 2-form

equation by anti-symmetrising the spacetime indices and contracting them into the

2-form basis dxµdxν . One finds that anti-symmetrising kills the Christoffel symbol,

since without torsion Γα[µν] = 0, leaving only spin connection equation

∂[µeν]
a + ω[µ

a
b eν]

b = 0 =⇒ Dea = 0 (C.51)

3Note that I use an non-standard definition of the Riemann tensor that is weight-one, or half
the usual value.
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Solution for the Spin Connection

The spin connection can be solved in this form. Taking this equation

∂[µeν]
c + ω[µ

c
d eν]

d = 0 , (C.52)

one may sequester the spin connection to the RHS, and then convert all of the

indices to Lorentz indices and raise them.

eµaeν b (∂µeν
c − ∂νeµ c) = −eµaeν b

(
ωµ

c
d eν

d − ων c d eµ d
)

(C.53)

= −eµaωµ cb + eνbων
ca , (C.54)

Oabc := eµaeν b (∂µeν
c − ∂νeµ c) (C.55)

= eµaωµ
bc + eν bων

ca (C.56)

where on the second to last line, I have defined the objects of anholonomity

Oabc, a sort of geometric precursor to the spin connection; on the last line, I have

simply used the above equation of motion exchanging b↔ c on the first term. Using

the form of the object of anholonomity in form (C.56), one may note that one can

add permutations of the form abc− bca− cab to isolate a single factor of ωµ
a
beµ

b.

Specifically, one finds

Oabc −Obca −Ocab = −2eµ cωµ
ab , (C.57)

∴ ωµ
ab = −1

2
eµ c

(
Oabc −Obca −Ocab

)
(C.58)

This solves for ωµ
ab in terms of the vielbein exclusively once one substitutes in the

definition of the object of anholonomity (C.56) which only depends on derivatives

of the vielbein.

C.3.4 Torsion and Contorsion

Famously, the Einstein-Cartan formalism allows for torsion. The torsion is

typically defined by modifying the Christoffel symbol to contain an antisymmetric

component Γµαβ → Γµαβ−T µ [αβ], so Γµ[αβ] = T µ αβ. This causes a form equation T a =

eµ
aTmu αβ

1
2
dxαdxβ, the torsion-free condition now becomes the torsion equation

of the form

D̂ea = T a (C.59)
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where D̂ = d + ω̂ is the spin connection that has torsion. This equation is not much

harder to solve than the torsion-free condition, since one can choose to shift the

equation into two equations. So if I split the connection as

ω̂ab = ωab[e] +Kab , (C.60)

then

(dea + ωa b[e]e
b)︸ ︷︷ ︸

=0

+Ka
be
b = T a . (C.61)

The new tensor Kµ
ab is called the contorsion. Using the exact same equation as

(C.57), one can see that

Kµ
ab =

1

2
eµ c(T

abc − T bca − T cab) (C.62)

where T abc := eµaeν bT c µν . Geometrically, the torsion causes the geodesics to twist as

they move through the spacetime; physically, torsion appears only in the presence of

fermions. To see this, however, I will need to introduce the action and the equations

of motion. I now move to this task right after writing down the Bianchi identities.

C.3.5 Bianchi Identities

One may take the original Bianchi and incorporate torsion. The generalised

Bianchi identities for the torsion and curvature 2-forms are given by

DRa
b = 0 (C.63)

DT a = Ra
be
b . (C.64)

C.4 Action Principle and Field Equations

C.4.1 Einstein-Cartan Action in First-Order Formalism

The action for Einstein-Cartan gravity is given elegantly in p-form notation as

SEC[e, ω] =
1

4(D − 2)!κ2

∫
Rab[ω]ec1 · · · ecD−2 ε̃abc1...cD−2

(C.65)
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again with the vielbein 1-form ec = eµ
cdxµ and curvature 2-form defined asRab[ω] =

dωab + ωa dω
db. At this level, the spin connection 1-form ωab is merely a field that

one varies with, in addition to the vielbein.

C.4.2 Varying the Spin Connection: Torsion-Free Condition

Integrating out the spin connection leads to the torsion free condition. To see

this, note that

δRab[ω] = d(δωab) + δωa d ω
db + ωa d δω

db = D(δωab) . (C.66)

Therefore, varying the action WRT ωab leads to

δSEC[e, ω] =
1

4(D − 2)!κ2

∫
(Dδωab)ec1 · · · ecD−2 ε̃abc1...cD−2

= 0 (C.67)

=
(D − 2)

2(D − 2)!κ2

∫
δωabDeceded1 · · · edD−3 ε̃abcd1···dD−3

(C.68)

(C.69)

using integration by parts for forms and D(ec1 · · · eD−2) = +(D−2)(Deced1) · · · edD−3

(explicitly relabeling indices). This leads us naturally to the condition

∝ (δωabDec) = 0 =⇒ Dec = 0 . (C.70)

Therefore, one obtains the same constraints as the previous section, so the con-

nection is an auxiliary variable that must be solved for algebraically in terms the

vielbein ea.

N.B. This can also be confirmed, with much more effort, in component notation

by integrating out the spin connection in component form. Doing this yields the

equation

Tα µν = −κ2

(
Sα µν +

1

D − 2
Sβ βµδ

α
ν −

1

D − 2
Sβ βνδ

α
µ

)
(C.71)

where for convenience I have defined the spin density and its associated torsion

tensor as

Sα µν =
1

e

δSEC

δωα ab
ea µe

b
ν (C.72)

T a µν = eα
aTα µν . (C.73)

Then equation (C.71) will generate the torsion-free condition Dea = 0.
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In the presence of fermions, for instance there is a covariant matter action for

spin-1
2

fields [159] is

Sm[ψ, e] =

∫
dDx i

1

2
ψ̄γµ

(
∂µ −

1

4
γabωµ

ab

)
ψ (C.74)

or the covariant Rarita-Schwinger action for gravitino fields

Sm[ψ, e] =

∫
dDx − i1

2
ψ̄µγ

µνρ

(
∂ν −

1

4
γabων

ab

)
ψρ , (C.75)

one clearly has a non-zero contribution to the spin density δSm

δωab
6= 0 from the matter

Lagrangians, which induces torsion terms upon integrating out the spin connection!

Using (C.71) calculations the generated torsion from these terms, but do remember

to keep track of the minus sign from moving the torsion over to the RHS.

From which, one ends up with

Dea = T a , (C.76)

a true torsion equation. Note, also, that this technically implies the entire vielbein

postulate once one uses the canonical definition of the Christoffel symbol.

C.4.3 Varying Vielbeins: Einstein Equations

One may re-write the Einstein-Cartan action in component form, employing

the formula

εa1···aD = ea1
µ1 · · · eaD µDεµ1···µD (C.77)

then

SEC[e, ω] =
1

4(D − 2)!κ2

∫
Rab[ω]

(
ec1 · · · ecD−2 ε̃abc1...cD−2

)
=

1

2(D − 2)!κ2

∫
dDx eRµν

ab[ω]
(
ec1ρ1
· · · ecD−2

ρD−2
ε̃abc1...cD−2

ε̃µνρ1···ρD−2

)
=

1

2(D − 2)!κ2

∫
dDx eRµν

ab[ω]
(
ea

µ′eν
′

b δ
µνρ1···ρD−2

µ′ν′ρ...ρD−2

)
=

1

2κ2

∫
dDx eRµν

ab[ω]
(
ea

µ′eb
ν′δµνµ′ν′

)
(C.78)

=
1

2κ2

∫
dDx e ea

µeb
νRµν

ab (C.79)
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where in the second line I rewritten the volume form into a component action fol-

lowing (B.26). On the third line I have used the (C.77), and then recombined the

tangent space index Levi-Civita’s into a GKD tensor; then I replaced all of the

eρ
aea

ρ′ = δρ
′
ρ into contractions on the GKD tensor. In the fourth line I have used

the GKD contraction identities (B.12).

If one recalls e =
√
−g and Rµν

a
b := Rµν

ρ
σeρ

aeb
σ, then one sees that this is

already the Einstein-Hilbert action. A very straightforward variation of the action

WRT the eµ
a yields the Einstein equations. This is particularly simple since one is

free to hold the spin connection fixed under variations, since

δSEC

δeρ c
=
δSEC

δeρ c

∣∣∣
ωµ ab

+
δSEC

δωµ ab︸ ︷︷ ︸
=0

δω

δeρ c
=
δSEC

δeρ c

∣∣∣
ωµ ab

, (C.80)

and therefore because ωµ
ab is an auxiliary variable, its implicit variations WRT δeρ

c

drop out explicitly.

Once this vielbein is varied, it yields the Einstein equation

Ga = Ra − 1

2
Rea = κ2T a , (C.81)

given the Ricci 1-form Ra = Rµν
abeb

νdxµ and Ricci scalar R = Rµν
abea

µeb
ν , and

T a is the stress-energy 1-form Tµνe
a νdxµ. (Note that in the presence of torsion, the

tensor equations are not symmetric.)

These are the essential features of General Relativity in the Einstein-Cartan

formalism. Note that although General Relativity often refers to the torsion-free,

Levi-Civita connection variant of gravity, I will weaken the definition of General

Relativity to include torsion to allow for couplings to fermion fields (necessary for

SUSY).
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