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In a recent paper we presented a systematic way of testing the seesaw origin of neutrino mass in the
context of the minimal left-right symmetric model. The essence of the program is to exploit lepton number
violating decays of doubly charged scalars, particles which lie at the heart of the Higgs-mechanism-based
seesaw, to probe the Dirac neutrino mass term which in turn enters directly into a number of physical
processes including the decays of right-handed neutrinos into theW boson and left-handed charged leptons.
In this longer version we discuss at length these and related processes, and we offer some missing technical
details. We also carefully analyze the physically appealing possibility of a parity conserving Yukawa sector
showing that the neutrino Dirac mass matrix can be analytically expressed as a function of light and heavy
neutrino masses and mixing, without resorting to any additional discrete symmetries, a context in which
the seesaw mechanism can be disentangled completely. When parity does get broken, we show that, in the
general case, only the Hermitian part of the Dirac mass term is independent which substantially simplifies
the task of testing experimentally the origin of neutrino mass. We illustrate this program through some
physical examples that allow simple analytical expressions. Our work shows that the minimal left-right
symmetric model is a self-contained theory of neutrino mass which can be in principle tested at the LHC or
the next hadron collider.
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I. INTRODUCTION

Understanding the origin of neutrino mass is a central
task of the physics beyond the Standard Model. After all, a
nonvanishing neutrino mass is the only true failure of the
SM and thus provides a fundamental window into the new
physics. Over the years, the seesaw mechanism emerged
as the main scenario behind the smallness of neutrino
mass [1–3]. By adding new neutral lepton singlets N
(one per generation) to the SM, and allowing for their
gauge invariant masses MN , one gets for the light neutrino
mass matrix

Mν ¼ −MT
D

1

MN
MD ð1Þ

where MD is the Dirac mass term between ν and N. The
above formula (1) is valid as long as MN ≫ MD, a natural
assumption for the gauge singlets N. In order to probe the
seesaw mechanism, ideally one would have to findMD as a
function of neutrino masses and mixing, namely of Mν,

currently being probed in low energy experiments, andMN ,
which could hopefully be determined at the LHC or a future
hadronic collider. Hereafter, this is what we will mean by
disentangling the seesaw, and though in general it is not
always guaranteed and should not be taken for granted
a priori, an effective disentangling would be analogous
to the situation of charged fermions in which one can
determine their Yukawa couplings from the knowledge of
their masses.
However, the situation arising from (1) is given by

(for an equivalent parametrization see [4])

MD ¼ i
ffiffiffiffiffiffiffiffi
MN

p
O

ffiffiffiffiffiffiffi
Mν

p
ð2Þ

where O is an arbitrary complex orthogonal matrix:

OOT ¼ 1: ð3Þ

The arbitrariness of MD in (2) provides a blow to the
program of probing the seesaw origin of the neutrino mass.
Ironically, the same arbitrariness is often used to make MD
artificially large so thatN could be produced at the colliders
(when MD vanishes N are decoupled) but that is against
the spirit of the seesaw as a way of obtaining small neutrino
mass naturally.
A clarification is called for at this point. When we speak

here of the origin of neutrino mass, we mean the physical
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Higgs mechanism origin, as in the case of charged fermions
and gauge bosons. We do not have in mind the valid
question of the values of these parameters. Before asking
why the masses are what they are, we should first know
where they come from. For example, a program aiming to
solve for the mass hierarchies prior to the Higgs mechanism
would have been obviously doomed from its very begin-
ning. In that same spirit, we wish to have a theory that tells
us in a verifiable and predictive manner whether neutrinos
owe their masses to the Higgs mechanism and in which
manner. Only then can one finally address the issue of the
hierarchies of masses and mixings that we are all after.
In the case of charged fermions the Higgs origin of

their masses implies the knowledge of Yukawa couplings
from the values of masses yf ∝ mf=MW , and in turn allows
us to predict the Higgs decay rates into fermion-antifermion
pairs:

Γðh → f̄fÞ ∝ mhðmf=MWÞ2: ð4Þ

Understanding the origin of neutrino mass is comparable to
finding a theory that does for neutrinos what the SM does
for charged fermions, and in this sense the seesaw scenario
by itself comes short.
This should not come as a surprise. After all, the seesaw

mechanism is an ad hoc extension of the SM and makes no
attempt for a dynamical explanation of the Vector-Axial
theory of weak interactions. This is to be contrasted with its
left-right (LR) symmetric extension [5,6] that attributes the
left-handed nature of weak interactions to the spontaneous
breakdown of parity. The smoking gun signature of left-
right symmetry is the existence of RH neutrinos νR, leading
to nonvanishing neutrino mass.
In the minimal version of the theory, coined the minimal

left-right symmetric model (MLRSM) and based on extra
Higgs scalars that are left-handed (LH) and right-handed
(RH) triplets [1,2,7], the seesaw mechanism follows nat-
urally from the spontaneous symmetry breaking with

MN ∝ MWR
ð5Þ

where MWR
is the mass of the right-handed charged gauge

boson. This offers a profound connection between the
smallness of neutrino mass and the near maximality of
parity violation in weak interactions [2].
In the MLRSM the left-right symmetry is broken

spontaneously and can be either a generalized parity P
or generalized charge conjugation C. The impact of this
symmetry on the properties of quarks and leptons is of
fundamental importance. The case of C is easier to deal with
since it leads to symmetric Dirac mass matrices of quarks
and leptons, even after the spontaneous symmetry break-
ing. It implies same LH and RH mixing angles in the quark
sector, while in the lepton sector the condition MT

D ¼ MD
leads to the determination of MD which allows us to

disentangle the seesaw [8]. This in turn allows us, for
example, to predict the decay rates of N → WþeL and
N → hν, and thus probe the Higgs origin of neutrino mass.
The case of P is however highly nontrivial since the

originally Hermitian Dirac mass matrices lose this essential
property after the symmetry breaking due to the emergence
of complex vacuum expectation values. Instead, we have
recently suggested an alternative approach of utilizing the
decays of doubly charged scalars and heavy SM doublet
Higgs to probe MD [9]. We have also shown how to
determineMD in the Hermitian case (unbroken parity in the
Dirac Yukawa sector), which in a simple case of the so-
called type I seesaw and same left and right leptonic mixing
matrices takes the following unique form [9]:

MD ¼ iVL
ffiffiffiffiffiffiffiffiffiffiffiffi
mνmN

p
V†
L: ð6Þ

This expression manifestly demonstrates the predictivity
of the theory—all ambiguities are gone from the Dirac
neutrino mass matrix. The Hermitian case may not be of
pure academic interest only; for light WR it may be a must
due to the constraint of strongCP violation as we discuss in
the following section, below (21).
In this sequel of our paper [9], we describe at length how

MD can be computed in the case of being Hermitian, and
we provide some simple appealing examples that can lead
to transparent analytic expressions. We also elaborate on
the phenomenological aspects of new particle decays and
on the subsequent determination ofMD. The bottom line of
our work is that, independently of whether P is broken or
not in the Yukawa sector, the MLRSM is a self-contained
theory of neutrino mass that allows for a direct probe of its
Higgs origin.
We should stress an important, essential aspect of our

work. We make no assumption whatsoever regarding the
breaking scale of the MLRSM, or equivalently the masses
of N ’s. Needless to say, were they to be accessible at the
LHC or the next hadron collider, this would allow us in
principle to verify this program, but our work is more
general than this scenario since it applies to any scale or any
other imaginable way of knowing the masses and mixings
of N ’s.
The rest of the paper is organized as follows. In the

following section we give the main features of the
MLRSM, those which play an essential role in arriving
at our main results, and set our formalism and notations.
Its main purpose is to ease the reader’s pain in following
the technical aspects in later sections. In Sec. III we discuss
the lepton masses, both charged and neutral, with a focus
on the seesaw. This section plays a central role in under-
standing neutrino mass in the MLRSM and it could be
useful even to the experts in the field. It has two sub-
sections, the first being devoted to the parity conserving
Yukawa sector that leads to Hermitian Dirac mass matrices.
In this case we managed to solve analytically for MD as a
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function of MN and Mν. We give here a detailed exposé of
this important result already found in [9]. The general case
is treated next in the second subsection, where we show that
only the Hermitian part of MD is independent and prepare
the setup for phenomenological implications. The phenom-
enological analysis is left for Sec. IV, where we use a
number of new processes, in particular the lepton number
violation (LNV) decays of doubly charged scalars, to
determine MD and thus demonstrate manifestly that the
MLRSM is a self-contained theory of neutrino mass. Our
conclusions and the outlook for future research are offered
finally in Sec. V.

II. MINIMAL LEFT-RIGHT SYMMETRIC MODEL

The MLRSM is based on the following symmetry group:

GLR ¼ SUð2ÞL × SUð2ÞR ×Uð1ÞB−L ð7Þ

where on top of the LR symmetric gauge group, a discrete
generalized parity P ensures a LR symmetric world prior to
spontaneous symmetry breaking.
We focus on the leptonic sector only—for the quark sector

see [10,11]. Under (7) the leptonic fields transform as

lL;R ¼
�
ν

e

�
L;R

ð8Þ

and under P as

lL ↔ lR: ð9Þ

The new Higgs sector consists of left and right SUð2Þ
triplets ΔLð3; 1; 2Þ and ΔRð1; 3; 2Þ, respectively, where
the quantum numbers denote the representation content
under (7). The RH triplet ΔR is responsible for the breaking
of GLR down to the SM gauge symmetry, and its non-
vanishing vacuum expectation value (VEV) vR (notice that
it can be made real) gives masses to the new heavy gauge
bosons WR and ZR and the RH neutrinos N.
The field decomposition of the triplets has the following

form:

ΔL;R ¼
�
δþL;R=

ffiffiffi
2

p
δþþ
L;R

δ0L;R −δþL;R=
ffiffiffi
2

p
�
: ð10Þ

Besides the usual singly charged fields δ�L (δ�R gets eaten
by the W�

R fields), the doubly charged states δþþ
L;R play an

important role in lepton number violating decays and
in determining MD. As in the original work [6], at
the first stage of symmetry breaking vL ¼ hδ0Li ¼ 0,
vR ¼ hδ0Ri ≠ 0.
On top of the new Higgs multiplets, there must also exist

a SUð2ÞL × SUð2ÞR bidoublet, containing the usual SM
Higgs field, Φð2; 2; 0Þ, with the decomposition

Φ ¼ ½ϕ1; iσ2ϕ�
2�; ϕi ¼

�
ϕ0
i

ϕ−
i

�
; i ¼ 1; 2: ð11Þ

The most general VEV of Φ can be written as

hΦi ¼ vdiagðcos β;− sin βe−iaÞ: ð12Þ

Under parity one has as

ΔL ↔ ΔR; Φ → Φ†: ð13Þ

The leptonic Yukawa interaction is given by

LY ¼ −lLðY1Φ − Y2σ2Φ�σ2ÞlR

−
1

2
ðlT

LYLiσ2ΔLlL þ lT
RYRiσ2ΔRlRÞ þ H:c: ð14Þ

so that because of (13) one has

Y1;2 ¼ Y†
1;2; YL ¼ YR: ð15Þ

These relations are central to our discussion and to our main
results.
Introduce next NL ¼ Cν̄TR, which from (14) leads

immediately to the heavy neutrino mass matrix

MN ¼ vRY�
R: ð16Þ

The SM Higgs doublet h and the new heavy doublet H
are the linear combination of ϕi:

h ¼ cβϕ1 þ e−iasβϕ2; H ¼ −eiasβϕ1 þ cβϕ2; ð17Þ

where cβ ≡ cosβ, sβ ≡ sinβ hereafter. The new doubletH is
basically decoupled, i.e., out of the LHC reach, since it
leads directly at the tree level to the flavor violation in
the K- and B-meson sectors. This implies a lower limit
mH ≳ 20 TeV [12,13], which is far above the LHC reach
(for a recent study regarding the future hadron collider,
see [14]).
It is useful to rewrite the Yukawa interaction of the

bidoublet Φ as the function of the physical fields h and H
and the charged lepton and neutrino Dirac mass matrices:

LΦ ¼ −l̄L

�
M†

D

v
h −

Me þ e−ias2βM
†
D

vc2β
H

�
NR

þ l̄L

�
Me

v
iσ2h� −

M†
D þ eias2βMe

vc2β
iσ2H�

�
eR; ð18Þ

where Me and MD are the charged lepton and neutrino
Dirac mass matrices, respectively, and are given by

MD ¼ −vðcβY1 þ e−iasβY2Þ ð19Þ
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Me ¼ vðe−iasβY1 þ cβY2Þ: ð20Þ

Themeasure of spontaneousCP violation is provided by the
small parameter sat2β which can be shown to satisfy [10]

sat2β ≲ 2mb

mt
: ð21Þ

It can be shown that the same parameter measures the
difference between the right- and left-handed quark mixing
matrix and thus controls the weak contribution to the strong
CP violating parameter θ̄. For lightWR one has that sat2β is
practically vanishing [15] in order to keep θ̄ acceptably
small. The point is that with the spontaneously broken parity
the strong CP parameter θ̄ is finite and calculable in
perturbation theory [16].
Once hΦi is turned on, the left-handed triplet ΔL gets a

small induced VEV vL ∝ v2=vR providing a hierarchy of
SUð2ÞL breaking [7]. It is important to stress that vL is
naturally small, since it is protected by a symmetry [7] (for
a recent discussion, see [17]). The small vL is thus a direct
source of neutrino mass, the so-called type II seesaw. It is
interesting to contrast this situation with the usual type II
SM scenario where one adds ad hoc a SUð2Þ triplet in order
to give the neutrino a nonvanishing mass [18]. The latter
case is an example of a posteriori model building, while in
the MLRSM this is a result of the underlying structure of
the theory. Just as the type I seesaw emerges naturally in
this theory, since RH neutrinos are a must, the same
mechanism that gives them Majorana masses leads auto-
matically to the direct type II contribution to light neutrino
masses.

III. LEPTON MASSES

This is the central section of our work. We go here from
the weak to the mass basis, which requires some care due
to the common source of charged lepton and neutrino
masses in the MLRSM.
The charged lepton mass matrix can be diagonalized by

performing unitary transformations EL and ER on the LH
and RH charged lepton fields, respectively:

Me ¼ ELmeE
†
R: ð22Þ

More precisely, one rotates the LH and RH doublets,

lL → ELlL; lR → ERlR; ð23Þ

so that at this point the gauge interactions of charged gauge
bosons remain still diagonal. The leptonic mixings, i.e., the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix VL
and its right-handed analog VR, will then be simply the
unitary transformations that diagonalize LH and RH
neutrino mass matrices, respectively.

Since parity is broken by the complex VEV hΦi, in
general EL ≠ ER, and thus

Ue ¼ E†
REL ð24Þ

provides a measure of parity breaking.
Equation (23) implies a redefinition of the Dirac neutrino

mass matrix

MD → ERMDE
†
L: ð25Þ

From (19) and (20) it follows that

MD − UeM
†
DUe ¼ isat2βðeiatβMD þmeÞ ð26Þ

me −UemeUe ¼ −isat2βðMD þ e−iatβmeÞ: ð27Þ

From the above equations it is clear that Ue is actually a
function of MD and vice versa as discussed below.
From the Yukawa interaction and (15), one gets for the

ðνL; NLÞ mass matrix

 
vL
vR
UT

eM�
NUe MT

D

MD MN

!
: ð28Þ

This is a combination of both type II and type I seesaw
matrices, with the important proviso of Ue entering in the
direct type II mass term. In other words, in the MLRSM not
onlyMD enters the neutrino mass, but also Ue; this point is
typically missed in the literature.
Under the usual seesaw assumption MN ≫ MD the

matrix (20) can be readily block-diagonalized, through
the ν − N mixing, to the leading order inMD=MN given by

�
ν

N

�
L

→

�
1 Θ†

−Θ 1

��
ν

N

�
L

ð29Þ

with

Θ ¼ 1

MN
MD: ð30Þ

This in turn leads to the celebrated seesaw expression for
the neutrino mass

Mν ¼
vL
vR

UT
eM�

NUe −MT
D

1

MN
MD: ð31Þ

Thus, at the leading level Mν and MN stand for the
approximate (Majorana) mass matrices for the light and
heavy neutrinos, respectively. The neutrino mass matrix is
given as a function of MD and MN . Together with (26)
and (27), the above equation serves to compute MD and
thus to disentangle the seesaw.
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The next step is then to diagonalize these matrices by
the unitary rotations VL and VR respectively. From (23) one
gets immediately

Mν ¼ V�
LmνV

†
L ð32Þ

where mν stands for the diagonal matrix of the light
neutrino masses and VL is the standard PMNS mixing
matrix, which amounts to

νL → VLνL: ð33Þ

Similarly, MN is diagonalized by the unitary VR:

MN ¼ VRmNVT
R ð34Þ

where mN stands for the diagonal matrix of the heavy
neutrino masses. This means equivalently

NL → V�
RNL ð35Þ

when going from the weak to the mass basis. The apparent
difference in the rotations among the light and heavy
neutrino masses is due to the fact that N corresponds to
complex conjugate fields of the right-handed neutrinos νR,
so that one has νR → VRνR in complete analogy with (33).
It is easy to see that (33) and (35) give the usual form of

the charged weak interaction

LW ¼ −
gffiffiffi
2

p ðν̄LV†
L=WLeL þ N̄RV

†
R=WReRÞ þ H:c: ð36Þ

so that VR is the right-handed counterpart of the PMNS
matrix, making clear the choices of the VL and VR
rotations.
Before we enter into the nitty-gritty of our program, we

give a simple example where actually the canonical type I
seesaw becomes negligible—and yet, interestingly enough,
both MD and Ue are calculable, as it turns out, by the
charged lepton masses and the mixing matrices VL and VR.
In this case, the term vL by definition dominates the
contribution to neutrino masses and from (31) one gets

mν ¼
jvLj
vR

mN; Ue ¼ e−iθLVRV
†
L ð37Þ

where we have used vL ¼ jvLje−iθL . Thus, the Dirac
masses can be determined from (27) as a function of the
difference of LH and RH leptonic mixing matrices and the
charged lepton masses

MD ¼ e−2iθLVRV
†
LmeVRV

†
L −me

isat2β
− e−iatβme: ð38Þ

It is noteworthy that the Hermitian limit sat2β ≃ 0 is not
smooth and it has to be dealt with carefully, as we discuss
in the next section. This case exemplifies the fact that the
theory predicts MD, and it does it even when the con-
tribution of MD to neutrino masses is small.

A. The tale of unbroken parity

What would happen if parity was not broken by the VEV
of Φ, i.e., what if the small parameter sat2β was to be
negligible? CouldMD be found analytically? The answer is
yes as we show now.
From (26) one would have

MD ¼ M†
D; Ue ¼ I ðup to signsÞ: ð39Þ

By taking the complex conjugate of (31) and dividing on
the left and right by

ffiffiffiffiffiffiffiffi
MN

p
, one readily obtains an equation

between symmetric matrices

HHT ¼ v�L
vR

−
1ffiffiffiffiffiffiffiffi
MN

p M�
ν

1ffiffiffiffiffiffiffiffi
MN

p ð40Þ

where H is a Hermitian matrix defined as

H ¼ 1ffiffiffiffiffiffiffiffi
MN

p MD
1ffiffiffiffiffiffiffiffi
M�

N

p : ð41Þ

Since ImTrðHHTÞn ¼ 0 for any n and Hermitian H, one
has the following conditions:

ImTr

�
v�L
vR

−
1

MN
M�

ν

�
n
¼ 0; n ¼ 1; 2; 3: ð42Þ

It turns out that Eqs. (26) and (27) allow for a direct
determination of MD. The crucial step is to decompose the
symmetric matrix (40) as

HHT ¼ OsOT ð43Þ

where O is a complex orthogonal matrix and s is known
as the symmetric normal form [19], to be determined from
the knowledge of neutrino masses and mixing. This is an
unorthodox method for particle physicists, since one
normally uses a unitary matrix instead of orthogonal, since
it guarantees the diagonalization of a symmetric matrix we
are dealing with. However, the unitary matrix approach is
not suitable for our task. In this case, however, the form s is
not guaranteed to be diagonal.
From (43), when H is real and symmetric, it follows

immediately that H becomes O
ffiffiffi
s

p
OT . It can be shown that

in the general complex case this expression generalizes to

H ¼ O
ffiffiffi
s

p
EO†: ð44Þ

The condition H ¼ H† now becomes
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ffiffiffi
s

p
E ¼ E

ffiffiffiffiffi
s�

p
; ET ¼ E� ¼ E−1: ð45Þ

Using (41) and (44), one can achieve the task of
disentangling the seesaw by determining MD as

MD ¼
ffiffiffiffiffiffiffiffi
MN

p
O

ffiffiffi
s

p
EO†

ffiffiffiffiffiffiffiffi
M�

N

p
: ð46Þ

Since O, s and E all follow from the knowledge of Mν and
MN , this manifestly shows how in the parity conserving
case MD can be determined from the knowledge of light
and heavy neutrino masses and mixings.
The above expression is valid for any Mν and MN , i.e.,

any normal form s. It is illustrative to focus on the situation
when s takes a diagonal form, in which case the constraints
(42) imply only two distinct possibilities:

sI ¼ diagðs1; s0; s2Þ; sII ¼ diagðs; s0; s�Þ ð47Þ

with s0;1;2 belonging to R. The matrix E is found to be

EI ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA; EII ¼

0
B@

0 0 1

0 1 0

1 0 0

1
CA ð48Þ

for the respective values sI and sII . Equation (47) can be
generalized to any number of generations n: for n even, for
every eigenvalue z, there is also an eigenvalue z�. For n odd
there is on top one real eigenvalue. The matrix E in this
case has a 1 in the diagonal for each corresponding real
eigenvalues and two 1’s symmetrically opposed in the
antidiagonal for each corresponding complex eigenvalue
and its conjugate.
A comment is called for. In [9] we chose a different

decomposition of MD,

MD ¼ VR
ffiffiffiffiffiffiffi
mN

p
H0 ffiffiffiffiffiffiffimN

p
V†
R; ð49Þ

which led to a different decomposition ofH0H0T in terms of
O0 and s0 in full analogy with (43). It is straightforward to
show that

O0 ¼ 1ffiffiffiffiffiffiffi
mN

p V†
R

ffiffiffiffiffiffiffiffi
MN

p
O; s0 ¼ s: ð50Þ

Since in general MN and Mν are arbitrary complex
matrices up to constraints (42), no general analytic expres-
sion can be offered for MD. The following examples may
help illustrate what is going on.

(i) VR ¼ VL. Imagine an idealized situation with parity
unbroken in the leptonic sector. Clearly, O0 ¼ 1 and
thus

O ¼ 1ffiffiffiffiffiffiffiffi
MN

p VL
ffiffiffiffiffiffiffi
mN

p
; s ¼ vL

vR
−
mν

mN
ð51Þ

and

MD ¼ VLmN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vL
vR

−
mν

mN

r
V†
L ð52Þ

which for vL ¼ 0, i.e., in the type I seesaw limit,
gives the simple form of (6). Matrix (52) is defined
up to signs since, strictly speaking, Ue is defined up
to signs. This example is to be contrasted with the
situation in the SM seesaw scenario, in whichMD is
plagued by the arbitrariness of a complex orthogonal
matrix, here fixed completely.

(ii) Case of two generations. It is always illustrative to
imagine a two-generation world where one can offer
simple analytic formulas. We focus on a physically
appealing situation of nondegenerate neutrinos,
in which case the form s becomes diagonal. For
simplicity, choose again vL ¼ 0 so that the con-
straints (42) become

ImTrM−1
N M�

ν ¼ 0; Im detM−1
N M�

ν ¼ 0: ð53Þ

We can readily write down the eigenvalues of
s ¼ diagðs−; sþÞ:

s� ¼ 1

2
TrM−1

N M�
ν �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðTrM−1

N M�
νÞ2 − detM−1

N M�
ν

r
ð54Þ

which shows explicitly that s� are either both real or
form a complex conjugate pair. In turn, by writing

O ¼
�

cos θ sin θ

− sin θ cos θ

�
ð55Þ

one gets

sin 2θ ¼
� ffiffiffiffiffiffiffiffiffi

M−1
N

p
M�

ν

ffiffiffiffiffiffiffiffiffi
M−1

N

p �
12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
4
ðTrM−1

N M�
νÞ2 − detM−1

N M�
ν

q : ð56Þ

We now turn to the general case, with one last comment
regarding the Hermitian MD. In this case, the freedom in
the RH quark mixing is all gone, and the constraints from
the K- and B-meson system imply WR too heavy to be
accessible at the LHC [13]. The parity conserving situation
is then automatically postponed to a future hadron collider.

B. Broken parity: Setting the stage

We have seen in the previous section how a parity
conserving situation with MD Hermitian allows for its
determination as a function of MN and Mν. This is in
complete analogy with the SM situation where a knowledge
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of charged fermion masses fixes their Yukawa couplings and
allows us to predict branching ratios for the Higgs boson
decays. In the present case one needs to know both Mν and
MN due to their Majorana nature, but still, MD is then
uniquely fixed and we can determine associated decay rates
such as N → hν, N → Zν and N → Wl.
When parity gets broken, however, we have not (yet)

managed to compute MD. Not all is lost though, as we
argued in [9]. The crucial point is the existence of a number
of physical processes, in particular the same sign leptonic
decays of doubly charged scalars δ�L;R, that depend crucially
on MD and can serve to verify the Higgs seesaw origin of
neutrino mass. We discuss these processes in the next
section.
Now, although we found no way of computing MD

analytically in the general case, we show that only its
Hermitian part is independent, which makes the predictions
significantly easier to test. As a first step, we compute the
matrix Ue as a function of MD. Multiplying (27) with me
and taking the square root gives

Ue ¼
1

me

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e þ isat2βðtβe−iam2
e þmeMDÞ

q
: ð57Þ

We keep a small term sat2βm2
e in order to emphasize

that (57) is exact. Notice the fact that UeU
†
e ¼ 1 reduces by

half the number of independent elements of MD, implying
that the anti-Hermitian partMA

D ¼ 1
2
ðMD −M†

DÞ becomes a

function of the Hermitian part MH
D ¼ 1

2
ðMD þM†

DÞ. This
can be shown from (26).
Here we give the leading expression in sat2β, based on

the following expansion of the square root of a matrix
(see Appendix A in [11]):

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ iϵA2

p �
ij
¼ miδij þ iϵ

Aij

mi þmj
þOðϵ2Þ: ð58Þ

Using this in (57) gives

ðUeÞij ¼ δij þ isat2β

�
tβδij
2

þ ðHDÞij
�
þOðs2at22βÞ ð59Þ

where we have defined

ðHDÞij ¼
ðMH

DÞij
mei þmej

: ð60Þ

From (26) and (59) it follows readily that

MA
D ¼ isat2β

2
ðme þ 2tβMH

D þHDMH
D þMH

DHDÞ
þOðs3at32βÞ: ð61Þ

This is an important expression that says that only MH
D is

physical, halving the effective degrees of freedom in the
task of probing the seesaw. The elements of MH

D can be
determined numerically from the seesaw, and we address
this in a forthcoming publication.

C. Broken parity: General situation

As we argued, the expression for Ue in (57) shows
manifestly its dependence on MD. The trouble is that this
Ue is not automatically Hermitian and thus becomes really
useful only when expanded in small sat2β. What one needs
is an explicit unitary expression forUe, valid to all orders in
sat2β which we now provide.
It turns out to be useful to rewrite Eqs. (26) and (27) as

UeM†Ue −M ¼ 0 ð62Þ

UemeUe −me ¼ isat2βM ð63Þ

where M is given by

M ¼ MD þ e−iatβme: ð64Þ

We leave as an exercise for the reader to show that the
above equations can be written as

M ¼
ffiffiffiffiffiffiffiffiffiffiffi
MM†

p
Ue ð65Þ

Ue ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðme þ isat2β
2

MÞðme −
isat2β
2

M†Þ
q �

me þ
isat2β
2

M

�
:

ð66Þ

The last equation is what we were after and what we
promised: an explicitly unitary form of Ue as a function of
MD. It becomes explicitly unity when sat2β vanishes.
There is actually more in these equations; they tell us

finally what is really going on. From (65) the matrix Ue
can be viewed as the “phase” of M, and (66) shows that
due to parity this phase is determined in terms of M itself.
In other words, in spite of being broken spontaneously, P
still acts and sets the phase of M equal to the phase
of me þ i

2
sat2βM.

This is seen nicely in the one-generation toy example
when the matrix M is just a complex number. From (64)
one then has mD ¼ ρeiθ − e−iatβme and (66) shows that θ
is not arbitrary, but actually a function of ρ itself:
sin θ ¼ sat2βρ=2me. Parity does its job by halving the
number of independent degrees of freedom. Notice also
that mD is bounded from above and below, as expected
from (21) and an analogy with the quark system.
Here we give a few words on the parametrization ofMD.

Instead of parametrizing the Hermitian degrees of freedom
of MD by its Hermitian part as we did above in Sec. III B,

DISENTANGLING THE SEESAW MECHANISM IN THE MINIMAL … PHYS. REV. D 100, 115031 (2019)

115031-7



one could have used the Hermitian matrixM ¼
ffiffiffiffiffiffiffiffiffiffiffi
MM†

p
as

well, without any loss of generality. One has then from (65)
and (66)

ðUlÞij ¼ δij þ isat2β
Mij

mei þmej

þOðs2at22βÞ ð67Þ

ðMD þ e−iatβmeÞij ¼ Mij þ isat2β
MikMkj

mek þmej

þOðs2at22βÞ:

ð68Þ

The task now becomes to determine M from the seesaw.
Again, we have found no analytic form yet, but one can
always use a numerical procedure. It can however be
illustrated in our toy one-generation example, where one
has readily for mD ¼ jmDjeiθD

mD ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffi
mνmN

p
VR: ð69Þ

The memory of parity provides an important constraint,
written here to the leading order in sat2β

θD ¼ sat2β
2

�
�2tβ þ

meffiffiffiffiffiffiffiffiffiffiffiffi
mνmN

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
mνmN

p
me

�
: ð70Þ

A comment is called for. The reader familiar with the RH
quark mixing in the MLRSM can recognize here the
expression given in the formula (A11) of [11], with the
understanding that here we have used the seesaw formula
for jmDj. The reason is simple: were neutrinos Dirac
particles, one would have a complete analogy between
the leptonic and quark sectors and θD would correspond to
the conjugate of the RH quark phase. An interested reader
can also find an exact expression for θD analogous to (C1)
of Appendix C in [11], true to all orders in sat2β.
It is worthwhile to confront the MLRSM one-generation

case with the SM seesaw scenario. There the phase ofmD is
simply not physical since its impact can be countered by the
phase of the electron field. Here, on the contrary, the phase
of mD is physical [see e.g., (82) in the next section] and
related to the phase of VR—and furthermore it can be
computed as a function of electron and neutrino masses,
and the VEVs of the bidoublet.
The final message is clear. Whatever parametrization one

chooses to use, the important point is that P fixes n2

elements ofMD. We can say that the spontaneous breaking
of parity plays an equally important role as the seesaw itself
in determining MD.
The crucial point is all this is the softness of the

spontaneous symmetry breaking which makes the theory
remember that parity was there to start with. One is tempted
to agree with Coleman on calling it a hidden, rather than
spontaneously broken symmetry.

IV. PHENOMENOLOGICAL IMPLICATIONS

We now turn our attention to the phenomenological
issues, and we do it in full generality without assuming
Hermitian MD. As stressed before, besides eliminating the
freedom in MD, the MLRSM offers a number of new
physical processes which can pave the road for the probing
of MD and the origin of neutrino mass.
First of all, there is an exciting possibility of observing

direct lepton number violation in the WR decays due to the
Majorana nature of RH neutrinos N. Namely, once pro-
ducedWR decays either into two jets or charged leptons and
N’s which then further decay into charged leptons and two
jets. The main semileptonic decays consist then equally of
same and opposite sign charged lepton pairs accompanied
by the pairs of jets. The former provide a direct LNV, and
together with the latter allow for a unique direct test of the
Majorana nature of N. The same sign process [20], coined
Keung-Senjanovic (KS), is a high-energy hadron collider
analog of the neutrinoless double beta decay, with a clear
signature that the outgoing charged leptons have RH
chiralities. It has been argued that the charged lepton
chirality can actually be measured at the LHC [21,22].
In the MLRSM there is also a deep connection between the
neutrinoless double beta decay and the high-energy KS
process, studied in [23].

A. Decays and the probe of MD

The KS signature, if accessible at the LHC or the next
hadron collider, would allow for the determination of MN
(for phenomenological studies, see e.g., [24]), i.e., mN and
the leptonic RH mixing matrix VR, the first step towards
the probe of the seesaw origin of neutrino mass. Next,
through ν − N mixing induced by the nonvanishing MD
elements,N can decay into LH charged leptons too with the
following rate:

ΓðNi → Wþ
LeLj

Þ ∝ mNi

M2
WL

jðV†
RMDÞijj2: ð71Þ

In the above and hereafter, we will not worry about the
precise rates; we give flavor and mass dependence up to
overall dimensionless constants.
In the same manner, decays such as N → Zν and

N → hν (we are assuming N to be also heavier than Z
and h, otherwise the opposite happens) are less exciting
since they involve missing energy. We give anyway their
decay rates for the sake of completeness:

ΓðNi→ZνjÞ∝ΓðNi→hνjÞ∝
mNi

M2
WL

jðV†
RMDVLÞijj2: ð72Þ

These processes, especially N → WþeL, can serve in
the determination of MD; for phenomenological studies
see [8,25].
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In the SM seesaw scenario these decays would of course
also happen [26], with an important difference being thatMD
is ambiguous there. Worse, the production of N in the SM
seesaw can only be achieved throughMD, which requiresMD
to be large, contrary to the seesaw philosophy ofMN ≫ MD
as an explanation of the smallness of neutrino masses.
Moreover, in the MLRSM there are other fundamental
processes which can probe MD, discussed in what follows.

(i) Decays of the doubly charged scalars δþþ
L;R.

Doubly charged scalars are produced pairwise by
the Z-boson and the photon, and unless they are very
light, are expected to be less accessible than theWR.
Nonetheless, their lepton number violating decays
play an important role in disentangling the seesaw.
From (12), the relevant Yukawa interaction is

−Lδ ¼
1

2
δþþ
L eTL

�
UT

e
M�

N

vR
Ue

�
eL

þ 1

2
δþþ
R eTR

�
M�

N

vR

�
eR: ð73Þ

The matrix Ue provides the expected mismatch
between LH and RH states. Notice first that δ−−R →
eReR decays measure, complementary to the KS
process, the masses and mixings of N ’s:

Γðδ−−R → eRi
eRj

Þ ∝ mδ−−R

M2
WR

jðMNÞijj2: ð74Þ

These decays have been studied recently at the
lepton colliders in [27].
The LH analog decays play an even more im-

portant role in verifying the seesaw mechanism due
to the presence of the Ue matrix, since one has

Γðδ−−L → eLi
eLj

Þ ∝ mδ−−L

M2
WR

jðU†
eMNU�

eÞijj2: ð75Þ

Up to a proportionality factor, this is precisely the
direct type II contribution to neutrino mass, i.e., the
upper-left block of the neutrino mass matrix in (28).
These decays can thus directly probe the pure type II
seesaw as discussed in [28] since in that case one has
Γðδ−−L → eLi

eLj
Þ ∝ jðMνÞijj2. In our case it is MN

that gets probed, together with the Ue matrix.
Using the formulas (57) and (60), one obtains to

the leading order in sat2β

Γδ−−L →eLi eLj

ΓδR→eRi eRj

≃
mδ−−L

mδ−−R

�
1þ 2sat2βIm

ðHDMN þMNHT
DÞij

ðMNÞij

�
:

ð76Þ

This expression is of great importance, since it
directly and manifestly probes, through the asym-
metry or left and right doubly charged leptonic
decays, the Hermitian part MH

D of the Dirac mass
matrix. It is straightforward to obtain higher orders
of the above expression.

It cannot be overstressed: it is not just MD, as
usually assumed, that enters into the seesaw formula.
The matrix Ue also plays an essential role and there
is a deep connection between these quantities which
can in principle be probed through the above doubly
charged scalar decays.

Of course, in the Hermitian limit sat2β ≃ 0, one
simply ends up with a LR symmetric prediction
of the same LH and RH doubly charged scalar
decay rates.

(ii) Decays of the singly charged scalars δþL .
The decay δ−L → e−LN which proceeds through

the ν − N mixing Θ is of similar importance as the
N → lLW decay since they both proceed through
MD. The δþL interaction is given in (14), and it is
easily shown to lead to the decay rate

Γδ−L→eLiNj
∝

mδ−L

M2
WR

jðU†
eMNU�

eMT
DM

−1
N VRÞijj2 ð77Þ

which could in principle probe MD if MN was to be
determined. It is a rather complicated expression in
general and obviously hard to verify. It is illustrative
to see what happens in the P conserving situation
and the same LH and RH mixing matrices VL ¼ VR.
Using (52) the above decay rate obtains a simple
flavor structure jðVLmN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vL=vR −mν=mN

p Þijj2.
(iii) Decays of the neutral scalars δ0L;R

The decays δ0L;R → νN also proceed through Θ.
The relevant interactions are given in (14), which
then gives the decay rate for δ0R:

Γδ0R→νiNj
∝

mδ0R

M2
WR

jðV†
LM

†
DVRÞijj2: ð78Þ

It has the same flavor dependence as the N → hν
decay. This is to be expected since h and δ0R mix in
general and the above decay can also proceed through
this mixing and the direct decay in (71). Since the
mixing is proportional to the ratio ofWL=WR masses,
the final result is naturally of the same order of
magnitude.

Similarly, one has for the left-handed δ0L decay

Γδ0L→νiNj
∝

mδ0L

M2
WR

jðV†
LU

†
eMNU�

eMT
DM

−1
N VRÞijj2:

ð79Þ
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As expected, this decay has a rather different
form due to the impact of Ue and is quite messy,
not easy to probe. It becomes illustrative in the
VL ¼ VR limit, since by using (52) the complicated
flavor structure above becomes diagonal:
jðmN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vL=vR −mν=mN

p Þijj2.
(iv) Decay of the heavy charged scalars Hþ

The relevant decays here are H− → eLN and
H− → eRν; they can be easily computed from (18)
to be

ΓH−→eLiNj
∝

mH

M2
WL

j½ðme þ e−ias2βM
†
DÞVR�ijj2 ð80Þ

and

ΓH−→eRiνj ∝
mH

M2
WL

j½V†
LðM†

D þ eias2βmeÞ�ijj2: ð81Þ

It is interesting to check what happens on the
Hermitian limit sat2β ≃ 0. The result depends on
how sat2β vanishes: if a ≃ 0 nothing new happens,
unlike the opposite possibility β ≃ 0. In this case the
decay H− → eLN measures directly VR, while the
H− → eRν decay probes MD, which, as we know
from Sec. III A, gets predicted from Mν and MN .

(v) Decays of the heavy neutral scalar H0

The relevant interactions can be easily determined
from (18). The decay H0 → eē is then given by

ΓH0→eiēj ∝
mH

M2
WL

jðM†
D þ eias2βmeÞijj2: ð82Þ

The decay H0 → νN is probably of secondary
importance, but nonetheless we give the relevant
decay rate

ΓH0→νiNj
∝

mH

M2
WL

j½V†
Lðme þ e−ias2βM

†
DÞVR�ijj2:

ð83Þ

As before, the limit β ≃ 0 simplifies matters. The
H0 → eē decay would then directly probe MD,
while the H0 → νN decay depends on the product
of VL and VR, which makes it harder to disentangle.
We should stress once again that β ≃ 0 requires
heavy WR, beyond the LHC reach. Furthermore, the
same flavor constraints indicate [13] that light WR
in the LHC energy reach basically fixes (modulo
uncertainties) sat2β ≃ 0.02. This in return reduces
substantially the freedom in the quark RH mixing
and MD.
In short, there are a plethora of high-energy

physical processes that probe MD, on top of

measuring MN as in the original KS case. If these
states were to be accessible at the LHC or the next
hadron collider, one would have a clear shot of
verifying or disproving the MLRSM. Here we have
given the list and the associated decay rates for these
processes; their phenomenology shall be dealt with
in detail in a forthcoming publication.

B. The limits on particle masses

Before we turn to the conclusions it may be useful to the
reader to have an idea of the limits on the masses of the
relevant gauge boson and scalar particles.

(i) Limits on the masses of heavy charged and neutral
gauge bosons WR and ZR.

The best limit on the WR mass comes from the
dijet final state. It is thus independent of the detailed
properties of the RH neutrinos and amounts to
MWR

≥ 4 TeV [29]. The limit from the KS process
depends on the mass of the RH neutrinos and it
varies from 3.5 to 5 TeV for mN in the range from
0.1 to 1.8 TeV [30].

The limit on the ZR mass is MZR
≥ 4.6 TeV [30].

We should stress that the MLRSM predictionMZR
≃

1.7MWR
implies that the LHC cannot see the ZR, and

thus, if it were to be seen, it would automatically
invalidate the MLRSM.

(ii) Limit on the mass of the heavy doublet H from the
bidoublet Φ.

As discussed in Sec. II, since the couplings of theH,
given in (18), are determined by the structure of the
bidoublet, the flavor conservation in neutral currents
sets a stringent limit mH ≥ 20 TeV [12,13]. This
raises the question of the perturbativity of the theory
for a WR accessible at the LHC, i.e., for MWR

≲
8 TeV, since H and WR get the mass at the same
large stage of symmetry breaking, and thus a particular
scalar coupling must be large enough to ensure the
heaviness of H. This implies stringent limits on other
scalar masses to be discussed below. For a heavyWR,
with MWR

≳ 20 TeV, so that the H mass does not
require a large coupling, these limits go away and the
theory is of course highly perturbative.

(iii) Limits on the masses of the heavy scalar triplet ΔL.
The best direct limit is on the mass of the doubly

charged component and is roughlymδþþ
L

≥ 400 GeV,
but is flavor dependent [31]. Since the T parameter is
sensitive to the mass splittings in the ΔL multiplet,
one obtains a better limit from the high precision T
constraints; see Fig. 6 in [31]. For a relatively light
WR accessible at the LHC, this implies a limit on the
(basically degenerate) multiplet mass on the order
of TeV.

As discussed above, the heaviness of the second
doublet H brings the issue of perturbativity and a
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much stronger limit emerges. By asking that the
perturbative cutoff be not below 10 MWR

, for
MWR

¼ 6 TeV one gets mΔL
≥ 9 TeV [17], far from

the LHC reach. For aWR at the LHC energies, seeing
the ΔL multiplet would invalidate the MLRSM. We
should stress though that this is not a generic prediction
of the theory. For a heavyWR above, say 20 TeV, the
only limit that remains is the direct one.

(iv) Limits on the masses of the δþþ
R and δ0R.

The direct limit on the mass of δþþ
R is similar to

the one of its left-handed counterpart, of roughly
400 GeV, also flavor dependent [31]. However,
similar to the situation regarding ΔL, the perturba-
tivity bound becomes huge for a WR at the LHC
and in this case mδþþ

R
≥ 12 TeV [17]. Once again,

the limit disappears for heavy WR above 20 TeV.
On the other hand, δ0R can be arbitrarily light.

One could hope for a cosmological limit from the
stability of the scalar potential, but we may be living
in a metastable vacuum.

V. SUMMARY AND OUTLOOK

The origin and nature of neutrino mass is arguably one
of the central issues in the quest for the theory beyond the
Standard Model. Over the years, the seesawmechanism has
emerged as the main scenario behind the smallness of
neutrino mass, but by itself falls short of providing a full-
fledged theory. First of all, the SM seesaw cannot be
disentangled, and furthermore, the heavy RH neutrinos can
be produced at the hadron colliders, such as the LHC, only
through the Dirac mass terms. This obviously forces the
Dirac mass terms to be incomparably larger than their
natural seesaw values.
The situation changes dramatically in the context of the

LR symmetric theory, the same one that led originally to
nonvanishing neutrino mass and to the seesaw mechanism
itself. The SM singlet RH neutrinos can be easily and
naturally produced at the hadron colliders due to their
gauge interactions with the WR boson, the RH counterpart
of the SM W boson. Equally important, the Dirac mass
terms stop being plagued by ambiguities allowing for a
verifiable seesaw based on the Higgs mechanism as the
origin of neutrino mass. This is manifest in the case of LR
symmetry being charge conjugation, but it turns out to be
quite subtle in the case of parity.
Whereas for C it is straightforward to compute MD as a

function of Mν and MN in the minimal LR Symmetric
Model, the same was never achieved for the P case, at least
not in full generality. Instead, we recently suggested an
alternative approach using the exciting LNV violating
decays of doubly charged scalars into the pair of the same
sign charged leptons as a probe of MD. Moreover we
managed to solve analytically the parity conserving case
MD ¼ M†

D, and to show that, when parity gets broken, only

the Hermitian part MH
D is independent, simplifying thus

considerably the experimental verification of the program
of disentangling the seesaw.
In this longer followup of our original work, we have

filled in the missing gaps in obtaining our results. We have
given a pedagogical exposé of the Hermitian case, illus-
trating it with a few illuminating examples, and providing
the relevant derivations. We have also provided a list of
relevant decays that depend on MD, and can thus serve to
probe the seesaw origin of neutrino mass. A number of
these processes can test directly the Majorana nature of N ’s
and are complementary to the neutrinoless double beta
decay. This is true in particular of the so-called KS process
of the direct production of N ’s, but it applies also to the
decays of doubly and singly charged scalars from the heavy
Higgs triplets ΔL;R.
In principle also the neutral scalar decays can play the

same role, especially the decay of δ0R into the pairs of N ’s,
and possibly even through the same decays of the SM
Higgs boson, in the case of appreciable h − δ0R mixing (for
a recent phenomenological study, see [32]). All these
particles can also decay into final states that probe MD,
as discussed in Sec. V. Moreover, the decays of the heavy
scalar doublet H from the bidoublet Φ also probe directly
MD, but due to the large limit on its mass are out of the
LHC’s reach.
Before closing it is worthwhile to compare the MLRSM

with other gauge theories of neutrino mass. As we argued
from the beginning it is the LR symmetry that leads to the
existence of RH neutrinos N which then lead to the seesaw
and the rest of the story told here. In turn the global B − L
symmetry of the SM is gauged automatically, and the
cancellation of new induced anomalies provides an addi-
tional raison d’être for N besides the LR symmetry. What
happens then in the more modest approach where one
gauges just the GSM ×Uð1ÞB−L subgroup of the
MLRSM? First of all, N can be produced pairwise through
the new neutral gauge boson Z0, an improvement over the
simple SM seesaw. Moreover, if one were to observe the
N → WþeL process, this would require the ν − N mixing,
and in a renormalizable theory thatmixingwould require the
Yukawa Dirac coupling with the SMHiggs. Thus one could
argue that the above decay would probe the Higgs origin of
neutrino mass, just as in the MLRSM. However, there is a
profound difference. In the Uð1ÞB−L gauged model MD is
arbitrary as in the SM seesaw; i.e., one has the situation
described in (2). It is precisely here where the MLRSM
stands out by having MD structurally predicted from the
knowledge ofMν andMN , which is per se a great motivation
for studying MLRSM, besides the desire to understand the
origin of the breaking of parity in weak interactions.
One could also be more ambitious and embed the

MLRSM in the SOð10Þ grand unified theory which besides
providing the N’s and the seesaw, also links quark and
charged lepton masses. This would be extremely exciting if
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the scale of LR symmetry breaking were accessible to
present day or near future colliders. Unfortunately, in the
minimal predictive version of the SOð10Þ theory the scale
of breaking of SUð2ÞR is predicted to be huge, above
1010 GeV or so, and thus hopelessly out of reach. The
beauty of predicting MD or using MD to determine MN
ends up being more a question of aesthetics than of the
directly verifiable physics.
Another natural theory of neutrino mass is the minimal

supersymmetric Standard Model without the artificial
assumption of R-parity conservation. It provides the
mixture of both the seesaw and the radiative origin of
neutrino masses, and it offers the connection between the
neutrinoless double beta decay and lepton number violation
at hadronic colliders [33]. Unfortunately the proliferation of

unknown parameters, such as the masses and couplings of
the superpartners, impedes the predictivity.
All in all, our work offers yet another conclusive

evidence in favor of the MLRSM standing out by being
a self-contained theory of neutrino mass, in complete
analogy with the SM as a theory of the origin of charged
fermion masses.
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Leptons, Cargèse 1979, edited by M. Lévy (Plenum,
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