
P
o
S
(
R
A
D
C
O
R
2
0
1
5
)
0
9
0

High-Energy Limit of Quantum Electrodynamics

beyond Sudakov Approximation

Alexander A. Penin∗†

Department of Physics, University of Alberta, Edmonton AB T6G 2J1, Canada

E-mail: penin@ualberta.ca

We study the high-energy behavior of the scattering amplitudes in quantum electrodynamics be-

yond the leading order of the small electron mass expansion in the leading logarithmic approxi-

mation. In contrast to the Sudakov logarithms, the mass-suppressed double-logarithmic radiative

corrections are induced by a soft electron pair exchange and result in enhancement of the power-

suppressed contribution. Possible applications of our result to the analysis of the high-energy

processes is also discussed.

12th International Symposium on Radiative Corrections (Radcor 2015) and LoopFest XIV (Radiative

Corrections for the LHC and Future Colliders)

15-19 June 2015

UCLA Department of Physics & Astronomy Los Angeles, CA, USA

∗Speaker.
†The talk is based on Ref. [1]

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:penin@ualberta.ca


P
o
S
(
R
A
D
C
O
R
2
0
1
5
)
0
9
0

High-Energy Limit of Quantum Electrodynamics beyond Sudakov Approximation Alexander A. Penin

In a renowned paper [2] V.V. Sudakov derived the leading asymptotic behavior of an elec-

tron scattering amplitude in quantum electrodynamics (QED) at high energy. It is determined by

the “Sudakov” radiative corrections, which include the second power of the large logarithm of the

electron mass me divided by a characteristic momentum transfer of the process per each power

of the fine structure constant α . Sudakov double logarithms exponentiate and result in a strong

universal suppression of any electron scattering amplitude with a fixed number of emitted photons

in the limit when all the kinematic invariants of the process are large. This result plays a funda-

mental role in particle physics. Within different approaches it has been extended to the nonabelian

gauge theories and to the subleading logarithms [3, 4, 5, 6, 7, 8], which is crucial for a wide class

of applications from deep inelastic scattering to Drell-Yan processes and the Higgs boson produc-

tion. At the same time no significant progress has been achieved in the study of the logarithmically

enhanced corrections to the subleading contributions suppressed by a power of electron mass at

high energies. However, the power-suppressed contributions are of great interest. They can be-

come asymptotically dominant at very high energies due to Sudakov suppression of the leading

terms. At the intermediate energies the power corrections in many cases are phenomenologically

important [9, 10, 11, 12]. Moreover, in contrast to the Euclidean operator product expansion [13]

or nonrelativistic threshold dynamics [14] very little is known about the general all-order structure

of the large logarithms beyond the leading-power approximation in the high-energy limit, which

is a real challenge for the effective field theory approach. This problem is now actively discussed

in various contexts (see e.g. [15, 16, 17, 18, 19, 20]). In this Letter we make the first step toward

the solution of the problem and generalize the result of Ref. [2] to the leading power-suppressed

contribution. We present a detailed analysis of the electron scattering in the external field and later

discuss the extension of the result to more complex processes.

The amplitude F of the electron scattering in an external field can be parameterized in the

standard way by the Dirac and Pauli form factors

F = ψ̄(p1)

(

γµF1 +
iσµνqν

2me

F2

)

ψ(p2). (1)

The Pauli form factor F2 does not contribute in the approximation discussed in this Letter and we

mainly focus on the high-energy behavior of the Dirac form factor F1. We consider the limit of

the on-shell electron p2
1 = p2

2 = m2
e and the large Euclidean momentum transfer Q2 =−(p2 − p1)

2

when the ratio ρ ≡ m2
e/Q2 is positive and small. The Dirac form factor can then be expanded in an

asymptotic series in ρ

F1 = Sλ

∞

∑
n=0

ρnF
(n)

1 , (2)

where F
(n)

1 are given by the power series in α with the coefficients depending on ρ only logarith-

mically. The factor Sλ = exp
[

− α
2π B(ρ) ln

(

λ 2/m2
e

)]

with B(ρ) = lnρ +O(1) accounts for the uni-

versal singular dependence of the amplitude on the auxiliary photon mass λ introduced to regulate

the infrared divergences [21]. In the double-logarithmic approximation the leading term is given by

the Sudakov exponent F
(0)

1 = e−x, with x = α
4π ln2 ρ [22]. Let us outline our approach for the anal-

ysis of the power-suppressed double-logarithmic contributions. We use the expansion by regions

method [23, 24, 25] to get a systematic expansion of the Feynman integrals in ρ . In this method the

coefficients F
(n)

1 are given by the sum over contributions of different virtual momentum regions.
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(a) (b) (c)

Figure 1: Different representations of the two-loop Feynman diagram giving the leading power-suppressed

double-logarithmic contribution. In figure (c) the double line arrow represents the soft electron pair propa-

gator and the empty blobs represent the nonlocal interaction of the soft electron pair to the eikonal electrons

and positrons.

Each contribution is represented by a Feynman integral which in general is divergent. These spuri-

ous divergences result from the process of scale separation and have to be dimensionally regulated.

The singular terms cancel out in the sum of all regions but can be used to determine the logarithmic

contributions to F
(n)

1 . The double-logarithmic contributions are determined by the leading singular

behavior of the integrals and can be found by the method developed in Refs. [2, 22, 26]. Though

the method is blind to the power corrections, it can be applied in this case since the expansion by

regions provides the integrals which are homogeneous in the expansion parameter. Sudakov log-

arithms are produced by the soft virtual photons, which are collinear to either p1 or p2. We have

found that such a configuration of virtual momenta does not produce double logarithms in the first

order in ρ . This observation agrees with the analysis [27] of the cusp anomalous dimension, which

determines the double-logarithmic corrections to the light-like Wilson line with a cusp. For the

large cusp angle corresponding to the limit ρ → 0 from the result of Ref. [27] one gets

Γcusp =−
α

π
lnρ

(

1+O(ρ2)
)

, (3)

with vanishing first-order term in ρ . Nevertheless, the O(ρ) double-logarithmic contribution does

exist but originates from completely different virtual momentum configuration described below.

Let us consider an electron propagator S =
/pi
−/l+me

(pi−l)2−m2
e
, where l is the momentum of a virtual photon

with the propagator D =
−gµν

l2−λ 2 . In the soft-photon limit l → 0 the electron propagator becomes

eikonal S ≈ −
/pi
+me

2pil
and develops a collinear singularity when l is parallel to pi. Alternatively,

we may consider the soft-electron limit l′ → 0, where l′ = pi − l. Then the electron propagator

becomes scalar S ≈ me

l′2−m2
e

while the photon propagator becomes eikonal D ≈
gµν

2pil′−m2
e+λ 2 . Thus the

roles of the electron and photon propagators are exchanged. The existence of non-Sudakov double-

logarithmic contributions due to soft electron exchange has actually been known for a long time

[26, 28]. However in our case this virtual momentum configuration does not produce a double-

logarithmic contribution in one loop because the momentum shift distorts the eikonal structure of

the second electron propagator and removes the soft singularity at small l′ necessary to get the

second power of the large logarithm.

This may be avoided only in the two-loop diagram of nonplanar topology, Fig. 1(a). After

shifting the photon virtual momenta by p1 and p2 the diagram can be twisted into the shape of

3
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(a) (b) (c) (d)

Figure 2: Feynman diagrams contributing to the double-logarithmic correction factors φ a,b,c,d , Eq. (7).

Fig. 1(b,c) with soft electron pair exchange between the eikonal lines. The corresponding con-

tribution has an explicit suppression factor m2
e from two soft electron propagators. Hence the

integration over the virtual momenta can be performed in the leading order of the small electron

mass expansion. Note that in the case under consideration the electron mass regulates both soft and

collinear divergences and we can put λ = 0. The calculation is conveniently performed by using

the light-cone coordinates where p1 ≈ p1− and p2 ≈ p2+. In this representation only the interac-

tion of the transverse photons to soft electrons is not mass-suppressed and we can use
g⊥kl

2pil
for the

eikonal photon propagators. To get the double-logarithmic part of the correction we use Sudakov

parametrization of a virtual photon momentum l = up1+vp2+ l⊥. After integrating over the trans-

verse components l⊥ we get the following representation of the two-loop power-suppressed form

factor

F
(1)

1

∣

∣

∣

2−loop
=−4x2

∫

K(η1,η2,ξ1,ξ2)dη1dη2dξ1dξ2, (4)

where η = lnv/ lnρ , ξ = lnu/ lnρ , the integration goes over the four-dimensional cube 0<ηi, ξi <

1, and the kernel

K(η1,η2,ξ1,ξ2) = θ(1−η1 −ξ1)θ(1−η2 −ξ2)

×θ(η2 −η1)θ(ξ1 −ξ2) (5)

selects the kinematically allowed region of double-logarithmic integration. This gives F
(1)

1 =

− x2

3
+O(x3), in agreement with [9, 29]. The higher-order double-logarithmic corrections are gen-

erated in a usual way through the exchange of soft photons with the propagator
−g+−

l2−λ 2 . The relevant

topologies of the three-loop diagrams are given in Fig. 2. Note that the soft photon exchange be-

tween the soft and internal eikonal electron lines does not produce the double-logarithmic correc-

tion. By using the factorization properties of the soft photon contribution [2] we find the following

representation of the all-order double-logarithmic result

F
(1)

1 = −4x2

∫

φ b(η1,ξ2)φ
c(η1,ξ1)φ

c(ξ2,η2)φ
d(η2)φ

d(ξ1)

×
[

φ a(η2,ξ1)K1(η1,η2,ξ1,ξ2)

+K2(η1,η2,ξ1,ξ2)
]

dη1dη2dξ1dξ2, (6)

where the Sudakov correction factors corresponding to Fig. 2(a-d) are

φ a(η ,ξ ) = exp
[

− x(1−η −ξ )2 ],

4
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n 1 2 3 4 5 6 7

(−1)nn!cn
29
30

257
210

1231
630

396581
103950

5531381
630630

72078311
3153150

4510839803
68918850

Table 1: The normalized coefficients of the series (9) up to n = 7.

φ b(η ,ξ ) = exp
[

−2xηξ
]

,

φ c(η ,ξ ) = exp
[

− xη (η +2ξ −2)
]

,

φ d(η) = exp
[

− x(1−η)2
]

, (7)

respectively, and the new kernels read

K1(η1,η2,ξ1,ξ2) = θ(1−η2 −ξ1)θ(1−η2 −ξ2)

×θ(η2 −η1)θ(ξ1 −ξ2),

K2(η1,η2,ξ1,ξ2) = θ(1−η1 −ξ1)θ(1−η2 −ξ2)

×θ(η2 −η1)θ(ξ1 +η2 −1), (8)

with K = K1+K2. We are not able to find the result for the four-fold integral (6) in a closed analytic

form. However, the coefficients of the series

F
(1)

1 =−
x2

3

(

1+
∞

∑
n=1

cnxn

)

(9)

can in principle be analytically computed for any given n corresponding to the (n+2)-loop double-

logarithmic contribution. The first seven coefficients of the series are listed in Table 1. The se-

ries (9) is useful only for sufficiently small x. For large x the integral (6) can be computed nu-

merically. The result of the numerical evaluation is presented in Fig. 3 for the function f (x) =

−3F
(1)

1 . The function rapidly grows at x ∼ 1 and then monotonically approaches the limit f (∞) =

1.33496 . . . corresponding to

F
(1)

1 (x = ∞) =−0.444988 . . . . (10)

Thus the power-suppressed amplitude is enhanced by the double-logarithmic corrections at high

energy. A similar effect has been observed before e.g. for the electron-muon backward scattering

[26]. In the case under consideration the enhancement may be related to a specific structure of

the process with the soft electron pair exchange. Through the pair emission an eikonal electron is

converted into an eikonal positron with approximately the same momentum but opposite electric

charge, Fig. 1(c). As a result the double-logarithmic contribution of the topology of Fig. 2(c) has an

opposite sign with respect to the one of Fig. 1(a,b,d) and cancels the standard Sudakov suppression.

The double-logarithmic approximation of F
(1)

1 given above is valid for α ≪ x≪ 1/α , which covers

the energy interval 1 ≪ | lnρ| ≪ 1/α sufficient for any practical applications. For higher energies

corresponding to x ∼ 1/α the subleading terms proportional to powers of α lnρ ∼ 1 have to be

resumed to all orders.

Unlike the Sudakov double logarithms, the leading power-suppressed double-logarithmic cor-

rections depend not only on the charges of the initial and final states but also on the details of

the scattering process. For example, the non-singlet (i.e. without a closed electron loop) O(ρ)

5
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Figure 3: The result of the numerical evaluation of the function f (x) =−3F
(1)
1 .

double-logarithmic corrections to the scalar form factor vanish to all orders in α due to a spe-

cific Lorentz and Dirac structure of the soft electron pair interaction with the eikonal electrons and

positrons. A less trivial example is the Pauli form factor. The expansion of F2 in ρ (cf. Eq. (2))

starts with the first order term F
(1)

2 . In the double-logarithmic approximation F
(1)

2 = 0 and for the

leading mass correction from the soft electron pair exchange we obtain F
(2)

2 = 4F
(1)

1 , in agreement

with [9, 29]. Thus the O(ρ) corrections are universally related to the soft electron pair exchange

and can be be obtained as a straightforward generalization of our analysis for more complicated

processes such as Bhabha scattering, where only the leading result of the small electron mass ex-

pansion is available in two loops [31, 30]. Moreover, up to two loops the structure of the O(ρ)

double-logarithmic correction in quantum chromodynamics (QCD) is similar to the one in QED.

In particular, the double-logarithmic power-suppressed term in two-loop corrections to the heavy-

quark vector form factor differs from the QED result only by the C2
F −CACF/2 color factor of the

diagram in Fig. 1. Thus our method can be applied to the calculation of the dominant two-loop

power-suppressed corrections to the high-energy processes involving heavy quarks. For the ener-

gies ranging from approximately 10 to 100 times the heavy-quark mass we have | lnρ| ≫ 1 and

ρ ln4 ρ ∼ 1, i.e. the double-logarithmic terms saturate the power-suppressed contribution and are

comparable in magnitude to the nonlogarithmic leading-power corrections in the strong coupling

constant, which are phenomenologically significant. Beyond the two-loop approximation our result

is not directly applicable to the QCD amplitudes since the eikonal gluons in Fig. 1(b) can radiate

soft gluons producing additional double-logarithmic corrections. As a consequence, the leading

power-suppressed double-logarithmic corrections to the heavy-quark vector form factor get a non-

abelian contribution in every order of perturbation theory in contrast to the purely abelian Sudakov

double logarithms. The method could also be applied to the analysis of the two-loop electroweak

corrections at high energy in the spirit of [32, 33, 34, 35, 36].

To summarize, we have generalized the result of Sudakov [2] to the leading power-suppressed

contribution. This is an important step towards a systematic renormalization group analysis of the

6
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high energy behavior of the gauge theory amplitudes beyond the leading power approximation.

The leading power-suppressed double-logarithmic corrections reveal a few characteristic features

which distinguish them from the Sudakov double logarithms. In particular, they are induced by a

soft electron pair exchange and result in an enhancement of the power-suppressed contribution. In

QCD our method can be used for the analysis of the high-energy processes involving heavy quarks

up to two loops. Extending the analysis to the higher orders of perturbative QCD and to subleading

logarithms is a very interesting problem which is beyond the scope of this Letter.
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